Science.gov

Sample records for downregulates glucocorticoid receptor

  1. AMPK Mediates Glucocorticoids Stress-Induced Downregulation of the Glucocorticoid Receptor in Cultured Rat Prefrontal Cortical Astrocytes

    PubMed Central

    Lu, Wei; Zhou, Hai-Yun; Long, Li-Hong; Hu, Zhuang-Li; Ni, Lan; Wang, Yi; Chen, Jian-Guo; Wang, Fang

    2016-01-01

    Chronic stress induces altered energy metabolism and plays important roles in the etiology of depression, in which the glucocorticoid negative feedback is disrupted due to imbalanced glucocorticoid receptor (GR) functions. The mechanism underlying the dysregulation of GR by chronic stress remains elusive. In this study, we investigated the role of AMP-activated protein kinase (AMPK), the key enzyme regulating cellular energy metabolism, and related signaling pathways in chronic stress-induced GR dysregulation. In cultured rat cortical astrocytes, glucocorticoid treatment decreased the level, which was accompanied by the decreased expression of liver kinase B1 (LKB1) and reduced phosphorylation of AMPK. Glucocorticoid-induced effects were attenuated by glucocorticoid-inducible kinase 1 (SGK1) inhibitor GSK650394, which also inhibited glucocorticoid induced phosphorylation of Forkhead box O3a (FOXO3a). Furthermore, glucocorticoid-induced down-regulation of GR was mimicked by the inhibition of AMPK and abolished by the AMPK activators or the histone deacetylase 5 (HDAC5) inhibitors. In line with the role of AMPK in GR expression, AMPK activator metformin reversed glucocorticoid-induced reduction of AMPK phosphorylation and GR expression as well as behavioral alteration of rats. Taken together, these results suggest that chronic stress activates SGK1 and suppresses the expression of LKB1 via inhibitory phosphorylation of FOXO3a. Downregulated LKB1 contributes to reduced activation of AMPK, leading to the dephosphorylation of HDAC5 and the suppression of transcription of GR. PMID:27513844

  2. Glucocorticoids down-regulate beta 1-adrenergic-receptor expression by suppressing transcription of the receptor gene.

    PubMed Central

    Kiely, J; Hadcock, J R; Bahouth, S W; Malbon, C C

    1994-01-01

    The expression of beta 2-adrenergic receptors is up-regulated by glucocorticoids. In contrast, beta 1-adrenergic receptors display glucocorticoid-induced down-regulation. In rat C6 glioma cells, which express both of these subtypes of beta-adrenergic receptors, the synthetic glucocorticoid dexamethasone stimulates no change in the total beta-adrenergic receptor content, but rather shifts the beta 1:beta 2 ratio from 80:20 to 50:50. Radioligand binding and immunoblotting demonstrate a sharp decline in beta 1-adrenergic receptor expression. Metabolic labelling of cells with [35S]-methionine in tandem with immunoprecipitation by beta 1-adrenergic-receptor-specific antibodies reveals a sharp decline in the synthesis of the receptor within 48 h for cells challenged with glucocorticoid. Steady-state levels of beta 1-adrenergic-receptor mRNA declined from 0.47 to 0.26 amol/microgram of total cellular RNA within 2 h of dexamethasone challenge, as measured by DNA-excess solution hybridization. The stability of receptor mRNA was not influenced by glucocorticoid; the half-lives of the beta 1- and beta 2-subtype mRNAs were 1.7 and 1.5 h respectively. Nuclear run-on assays revealed the basis for the down-regulation of receptor expression, i.e. a sharp decline in the relative rate of transcription for the beta 1-adrenergic-receptor gene in nuclei from dexamethasone-treated as compared with vehicle-treated cells. These data demonstrate transcriptional suppression as a molecular explanation for glucocorticoid-induced down-regulation of beta 1-adrenergic receptors. Images Figure 1 Figure 2 Figure 6 PMID:8092990

  3. Peroxisome proliferator-activated receptor {alpha} agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

    SciTech Connect

    Chen Xiang; Li Ming; Sun Weiping; Bi Yan; Cai Mengyin; Liang Hua; Yu Qiuqiong; He Xiaoying; Weng Jianping

    2008-04-18

    It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11{beta}-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPAR{alpha}), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPAR{alpha} activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPAR{alpha} inhibitor MK886, suggesting that fenofibrate activated through PPAR{alpha}. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPAR{alpha}.

  4. Rosiglitazone reverses memory decline and hippocampal glucocorticoid receptor down-regulation in an Alzheimer's disease mouse model

    SciTech Connect

    Escribano, Luis; Simon, Ana-Maria; Perez-Mediavilla, Alberto; Salazar-Colocho, Pablo; Rio, Joaquin Del; Frechilla, Diana

    2009-02-06

    Clinical trials with rosiglitazone, a potent agonist at peroxisome proliferator-activated receptor gamma (PPAR{gamma}) suggest an improvement of cognitive function in Alzheimer's disease (AD) patients. The mechanisms mediating this potential beneficial effect remain to be fully elucidated. In mice overexpressing mutant human amyloid precursor protein (hAPP), a model of AD, we found that memory impairment in the object recognition test was prevented and also reversed by chronic rosiglitazone treatment. Given the possible involvement of glucocorticoid receptors (GR) in the actions of PPAR{gamma}-ligands, we studied the effect of chronic rosiglitazone treatment on GR levels in the hippocampus of hAPP mice. An early down-regulation of GR, not related to elevated plasma corticosterone levels, was found in different hippocampal subfields of the transgenic mice and this decrease was prevented by rosiglitazone. In parallel with behavioural studies, rosiglitazone also normalized GR levels in older animals. This effect may contribute to explain the attenuation of memory decline by PPAR{gamma} activation in an AD mouse model.

  5. Hippocampal microglial activation and glucocorticoid receptor down-regulation precipitate visceral hypersensitivity induced by colorectal distension in rats.

    PubMed

    Zhang, Gongliang; Zhao, Bing-Xue; Hua, Rong; Kang, Jie; Shao, Bo-Ming; Carbonaro, Theresa M; Zhang, Yong-Mei

    2016-03-01

    Visceral hypersensitivity is a common characteristic in patients suffering from irritable bowel syndrome (IBS) and other disorders with visceral pain. Although the pathogenesis of visceral hypersensitivity remains speculative due to the absence of pathological changes, the long-lasting sensitization in neuronal circuitry induced by early life stress may play a critical role beyond the digestive system even after complete resolution of the initiating event. The hippocampus integrates multiple sources of afferent inputs and sculpts integrated autonomic outputs for pain and analgesia regulation. Here, we examined the hippocampal mechanism in the pathogenesis of visceral hypersensitivity with a rat model induced by neonatal and adult colorectal distensions (CRDs). Neither neonatal nor adult CRD evoked behavioral abnormalities in adulthood; however, adult re-exposure to CRD induced persistent visceral hypersensitivity, depression-like behaviors, and spatial learning impairment in rats that experienced neonatal CRD. Rats that experienced neonatal and adult CRDs presented a decrease in hippocampal glucocorticoid receptor (GR) immunofluorescence staining and protein expression, and increases in hippocampal microglial activation and cytokine (IL-1β and TNF-α) accumulation. The decrease in hippocampal GR expression and increase in hippocampal IL-1β and TNF-α accumulation could be prevented by hippocampal local infusion of minocycline, a microglial inhibitor. These results suggest that neonatal CRD can increase the vulnerability of hippocampal microglia, and adult CRD challenge facilitates the hippocampal cytokine release from the sensitized microglia, which down-regulates hippocampal GR protein expression and, subsequently, precipitates visceral hypersensitivity. PMID:26656865

  6. PCB disruption of the hypothalamus-pituitary-interrenal axis involves brain glucocorticoid receptor downregulation in anadromous Arctic charr

    USGS Publications Warehouse

    Aluru, N.; Jorgensen, E.H.; Maule, A.G.; Vijayan, M.M.

    2004-01-01

    We examined whether brain glucocorticoid receptor (GR) modulation by polychlorinated biphenyls (PCBs) was involved in the abnormal cortisol response to stress seen in anadromous Arctic charr (Salvelinus alpinus). Fish treated with Aroclor 1254 (0, 1, 10, and 100 mg/kg body mass) were maintained for 5 mo without feeding in the winter to mimic their seasonal fasting cycle, whereas a fed group with 0 and 100 mg/kg Aroclor was maintained for comparison. Fasting elevated plasma cortisol levels and brain GR content but depressed heat shock protein 90 (hsp90) and interrenal cortisol production capacity. Exposure of fasted fish to Aroclor 1254 resulted in a dose-dependent increase in brain total PCB content. This accumulation in fish with high PCB dose was threefold higher in fasted fish compared with fed fish. PCBs depressed plasma cortisol levels but did not affect in vitro interrenal cortisol production capacity in fasted charr. At high PCB dose, the brain GR content was significantly lower in the fasted fish and this corresponded with a lower brain hsp70 and hsp90 content. The elevation of plasma cortisol levels and upregulation of brain GR content may be an important adaptation to extended fasting in anadromous Arctic charr, and this response was disrupted by PCBs. Taken together, the hypothalamus-pituitary- interrenal axis is a target for PCB impact during winter emaciation in anadromous Arctic charr.

  7. Endothelial glucocorticoid receptor suppresses atherogenesis- Brief Report

    PubMed Central

    Zhang, Xinbo; Rotllan, Noemi; Feng, Yan; Zhou, Han; Fernández-Hernando, Carlos; Yu, Jun; Sessa, William C.

    2015-01-01

    Objective The purpose of this study was to determine the role of the endothelial glucocorticoid receptor in the pathogenesis of atherosclerosis. Approach and Results Control mice and mice lacking the endothelial glucocorticoid receptor were bred onto an Apoe knockout background and subjected to high-fat diet feeding for 12 weeks. Assessment of body weight and total cholesterol and triglycerides before and after the diet revealed no differences between the two groups of mice. However, mice lacking the endothelial glucocorticoid receptor developed more severe atherosclerotic lesions in the aorta, brachiocephalic artery and aortic sinus as well as a heightened inflammatory milieu as evidence by increased macrophage recruitment in the lesions. Conclusions These data suggest the endothelial glucocorticoid receptor is important for tonic inhibition of inflammation and limitation of atherosclerosis progression in this model. PMID:25810297

  8. Differential effect of glucocorticoid receptor antagonists on glucocorticoid receptor nuclear translocation and DNA binding

    PubMed Central

    Spiga, Francesca; Knight, David M; Droste, Susanne K; Conway-Campbell, Becky; Kershaw, Yvonne; MacSweeney, Cliona P; Thomson, Fiona J; Craighead, Mark; Peeters, Bernard WMM; Lightman, Stafford L

    2016-01-01

    The effects of RU486 and S-P, a more selective glucocorticoid receptor antagonist from Schering-Plough, were investigated on glucocorticoid receptor nuclear translocation and DNA binding. In the in vitro study, AtT20 cells were treated with vehicle or with RU486, S-P or corticosterone (3–300 nM) or co-treated with vehicle or glucocorticoid receptor antagonists (3–300 nM) and 30 nM corticosterone. Both glucocorticoid receptor antagonists induced glucocorticoid receptor nuclear translocation but only RU486 induced DNA binding. RU486 potentiated the effect of corticosterone on glucocorticoid receptor nuclear translocation and DNA binding, S-P inhibited corticosterone-induced glucocorticoid receptor nuclear translocation, but not glucocorticoid receptor-DNA binding. In the in vivo study, adrenalectomized rats were treated with vehicle, RU486 (20 mg/kg) and S-P (50 mg/kg) alone or in combination with corticosterone (3 mg/kg). RU486 induced glucocorticoid receptor nuclear translocation in the pituitary, hippocampus and prefrontal cortex and glucocorticoid receptor-DNA binding in the hippocampus, whereas no effect of S-P on glucocorticoid receptor nuclear translocation or DNA binding was observed in any of the areas analysed. These findings reveal differential effects of RU486 and S-P on areas involved in regulation of hypothalamic–pituitary–adrenal axis activity in vivo and they are important in light of the potential use of this class of compounds in the treatment of disorders associated with hyperactivity of the hypothalamic–pituitary–adrenal axis. PMID:20093322

  9. Selenoprotein P Regulation by the Glucocorticoid Receptor

    PubMed Central

    Rock, Colleen; Moos, Philip J.

    2010-01-01

    Maintenance of the antioxidant activity of selenoproteins is one potential mechanism of the beneficial health effects of selenium. Selenoprotein P is the primary selenium distribution protein of the body as well as the major selenium containing protein in serum. The transcriptional regulation of selenoprotein P is of interest since the extrahepatic expression of this gene has demonstrated differentiation-dependent expression in development as well as under different disease states. SEPP1 displays patterned expression in numerous tissues during development and the loss of SEPP1 expression has been observed in malignancy. In addition, factors that influence inflammatory processes like cytokines and their regulators have been implicated in selenoprotein P transcriptional control. Herein, we identify a retinoid responsive element and describe a mechanism where the glucocorticoid receptor negatively regulates expression of selenoprotein P. Luciferase reporter assays and quantitative PCR were used to measure selenoprotein P transcription in engineered HEK-293 cells. When stimulated with ecdysone analogs, selenoprotein P expression was increased with the use of a fusion transcription factor that contains the glucocorticoid receptor DNA binding domain, an ecdysone ligand-binding domain, and a strong transactivation domain as well as the retinoid X receptor. The native glucocorticoid receptor inhibited selenoprotein P transactivation, and selenoprotein P was further attenuated in the presence of dexamethasone. Our results may provide insight into a potential mechanism by which selenium is redistributed during development, differentiation or under conditions of critical illness, where glucocorticoid levels are typically increased. PMID:19513589

  10. Glucocorticoid Regulation of the Vitamin D Receptor

    PubMed Central

    Hidalgo, Alejandro A.; Trump, Donald L.; Johnson, Candace S.

    2010-01-01

    Many studies indicate calcitriol has potent anti-tumor activity in different types of cancers. However, high levels of vitamin D can produce hypercalcemia in some patients. Glucocorticoids are used to ameliorate hypercalcemia and to enhance calcitriol anti-tumor activity. Calcitriol in combination with the glucocorticoid dexamethasone (Dex) increased vitamin D receptor (VDR) protein levels and ligand binding in squamous cell carcinoma VII (SCC). In this study we found that both calcitriol and Dex induce VDR- and glucocorticoid receptor (GR)-mediated transcription respectively, indicating both hormone receptors are active in SCC. Pre-treatment with Dex increases VDR-mediated transcription at the human CYP24A1 promoter. Whereas, pre-treatment with other steroid hormones, including dihydrotestosterone and R1881, has no effect on VDR-mediated transcription. Real-time PCR indicates treatment with Dex increases Vdr transcripts in a time-dependent manner, suggesting Dex may directly regulate expression of Vdr. Numerous putative glucocorticoid response elements (GREs) were found in the Vdr gene. Chromatin immunoprecipitation (ChIP) assay demonstrated GR binding at several putative GREs located within the mouse Vdr gene. However, none of the putative GREs studied increase GR-mediated transcription in luciferase reporter assays. In an attempt to identify the response element responsible for Vdr transcript regulation, future studies will continue to analyze newly identified GREs more distal from the Vdr gene promoter. PMID:20398752

  11. Role of glucocorticoids and glucocorticoid receptor in priming of macrophages caused by glucocorticoid receptor blockade.

    PubMed

    Zhu, Xiao-Yan; Liu, Yu-Jian; Diao, Fei; Fan, Jie; Lu, Jian; Xu, Ren-Bao

    2007-04-01

    We previously reported that glucocorticoid receptor (GR) blockade (injected with GR antagonist RU486) primed the host responses to lipopolysaccharide. Since decrease of GR and elevated glucocorticoids (GCs) have been always reported as parallel responses, we hypothesize that both GCs and GR play important roles in GR blockade induced priming. We first confirm that the production of nitric oxide (NO), superoxide (O2-), and PKCalpha expression are all increased in peritoneal macrophages from GR blockade rats, indicating that macrophages are primed by GR blockade. Furthermore, using unilateral adrenalectomy rats, we find that the elevated GCs caused by a feedback mechanism following GR blockade may be involved in the process of priming. In vitro experiments in RAW264.7 cells show the inhibitory effect of GCs on NO production, which can be thoroughly blocked by RU486, indicating the increase of NO production in GR blockade rats is due to the elimination of GCs's anti-inflammatory function. In contrast, 10(-7) M corticosterone induces significant increases in O2- release, PKCalpha expression and phosphorylation, which cannot be reversed by RU486, demonstrating a previously unrecognized pro-inflammatory role of GCs in enhancing PM activation through a GR-independent pathway. The effect of GCs on PKCalpha expression even exists in GR deficient COS-7 cells as well as in GR knock-down RAW264.7 cells. In conclusion, both GR impairment and elevation of GCs are involved in the priming of macrophages caused by GR blockade. The findings of the divergent roles of GCs in modulation of inflammation may change therapeutic strategy for inflammatory diseases with GCs. PMID:17873323

  12. Glucocorticoid receptors in murine erythroleukaemic cells

    SciTech Connect

    Hammond, K.D.; Torrance, J.M.; DiDomenico, M.

    1987-01-01

    Glucocorticoid receptors in murine erythroleukaemic cells were studied in relation to hexamethylene bisacetamide (HMBA) induced differentiation. Specific binding of dexamethasone was measured. A single class of saturable, high affinity binding sites was demonstrated in intact cells; with cell homogenates or fractions binding was low and could not be reliably quantified. Receptor binding in whole cell suspensions was lower in cells which had been treated with HMBA (36.5 +/- 8.2 pmol/g protein) than in untreated controls (87.9 +/- 23.6 pmol/g protein); dissociation constants were similar in treated (2.7 nM) and untreated cells (2.5 nM). Dexamethasone, hydrocortisone, corticosterone and progesterone competed with tritium-labelled dexamethasone for receptor binding sites; cortisone, deoxycorticosterone and oestradiol had little effect.

  13. Glucocorticoid Receptor: Implications for Rheumatic Diseases “Glucocorticoids in Rheumatic Diseases”

    PubMed Central

    Kino, Tomoshige; Charmandari, Evangelia; Chrousos, George P.

    2013-01-01

    The glucocorticoid receptor (GR), a member of the nuclear receptor superfamily, mediates most of the known biologic effects of glucocorticoids. The human GR gene consists of 9 exons and expresses 2 alternative splicing isoforms, the GRα and GRβ. GRα is the classic receptor that binds to glucocorticoids and mediates most of the known actions of glucocorticoids, while GRβ does not bind to these hormones and exerts a dominant negative effect upon the GRα-induced transcriptional activity. Each of the two GR splice isoforms has 8 translational variants with specific transcriptional activity and tissue distribution. GRα consists of three subdomains, translocates from the cytoplasm into the nucleus upon binding to glucocorticoids, and regulates the transcriptional activity of numerous glucocorticoid-responsive genes either by binding to its cognate DNA sequences or by interacting with other transcription factors. In addition to these genomic actions, the GR also exerts rapid, non-genomic effects, which are possibly mediated by membrane-localized receptors or by translocation into the mitochondria. All these actions of the GR appear to play an important role in the regulation of the immune system. Specifically, the splicing variant GRβ may be involved in the pathogenesis of rheumatic diseases, while the circadian regulation of the GR activity via acetylation by the Clock transcription factor may have therapeutic implications for the preferential timing of glucocorticoid administration in autoimmune inflammatory disorders. PMID:22018181

  14. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer

    PubMed Central

    Kroon, Jan; Puhr, Martin; Buijs, Jeroen T; van der Horst, Geertje; Hemmer, Daniëlle M; Marijt, Koen A; Hwang, Ming S; Masood, Motasim; Grimm, Stefan; Storm, Gert; Metselaar, Josbert M; Meijer, Onno C; Culig, Zoran; van der Pluijm, Gabri

    2016-01-01

    Resistance to docetaxel is a major clinical problem in advanced prostate cancer (PCa). Although glucocorticoids (GCs) are frequently used in combination with docetaxel, it is unclear to what extent GCs and their receptor, the glucocorticoid receptor (GR), contribute to the chemotherapy resistance. In this study, we aim to elucidate the role of the GR in docetaxel-resistant PCa in order to improve the current PCa therapies. GR expression was analyzed in a tissue microarray of primary PCa specimens from chemonaive and docetaxel-treated patients, and in cultured PCa cell lines with an acquired docetaxel resistance (PC3-DR, DU145-DR, and 22Rv1-DR). We found a robust overexpression of the GR in primary PCa from docetaxel-treated patients and enhanced GR levels in cultured docetaxel-resistant human PCa cells, indicating a key role of the GR in docetaxel resistance. The capability of the GR antagonists (RU-486 and cyproterone acetate) to revert docetaxel resistance was investigated and revealed significant resensitization of docetaxel-resistant PCa cells for docetaxel treatment in a dose- and time-dependent manner, in which a complete restoration of docetaxel sensitivity was achieved in both androgen receptor (AR)-negative and AR-positive cell lines. Mechanistically, we demonstrated down-regulation of Bcl-xL and Bcl-2 upon GR antagonism, thereby defining potential treatment targets. In conclusion, we describe the involvement of the GR in the acquisition of docetaxel resistance in human PCa. Therapeutic targeting of the GR effectively resensitizes docetaxel-resistant PCa cells. These findings warrant further investigation of the clinical utility of the GR antagonists in the management of patients with advanced and docetaxel-resistant PCa. PMID:26483423

  15. NALP3 inflammasome up-regulation and CASP1 cleavage of the glucocorticoid receptor causes glucocorticoid resistance in leukemia cells

    PubMed Central

    Paugh, Steven W.; Bonten, Erik J.; Savic, Daniel; Ramsey, Laura B.; Thierfelder, William E.; Gurung, Prajwal; Malireddi, R. K. Subbarao; Actis, Marcelo; Mayasundari, Anand; Min, Jaeki; Coss, David R.; Laudermilk, Lucas T.; Panetta, John C.; McCorkle, J. Robert; Fan, Yiping; Crews, Kristine R.; Stocco, Gabriele; Wilkinson, Mark R.; Ferreira, Antonio M.; Cheng, Cheng; Yang, Wenjian; Karol, Seth E.; Fernandez, Christian A.; Diouf, Barthelemy; Smith, Colton; Hicks, J. Kevin; Zanut, Alessandra; Giordanengo, Audrey; Crona, Daniel; Bianchi, Joy J.; Holmfeldt, Linda; Mullighan, Charles G.; den Boer, Monique L.; Pieters, Rob; Jeha, Sima; Dunwell, Thomas L.; Latif, Farida; Bhojwani, Deepa; Carroll, William L.; Pui, Ching-Hon; Myers, Richard M.; Guy, R. Kiplin; Kanneganti, Thirumala-Devi; Relling, Mary V.; Evans, William E.

    2015-01-01

    Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and leukemia cell resistant to glucocorticoids confers a poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the sensitivity to prednisolone of primary leukemia cells from 444 newly diagnosed ALL patients, revealing significantly higher expression of caspase 1 (CASP1) and its activator NLRP3 in glucocorticoid resistant leukemia cells, due to significantly lower somatic methylation of CASP1 and NLRP3 promoters. Over-expression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1 overexpressing ALL. Our findings establish a new mechanism by which the NLRP3/CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on glucocorticoid transcriptional response suggests this mechanism could also modify glucocorticoid effects in other diseases. PMID:25938942

  16. Reduced signal transduction through glucocorticoid receptor in Burkitt's lymphoma cell lines.

    PubMed

    Sinclair, A J; Jacquemin, M G; Brooks, L; Shanahan, F; Brimmell, M; Rowe, M; Farrell, P J

    1994-03-01

    Signal transduction through the glucocorticoid receptor (GR) was shown to be significantly reduced in Epstein-Barr virus (EBV)-positive group I Burkitt's lymphoma (BL) cell lines compared to human B-lymphocytes immortalized by EBV (LCLs). On the basis of hormone binding assays, nuclear DNA binding activity, and transactivation assays the response was reduced 5- to 10-fold. Direct sequence analysis of the expressed glucocorticoid receptor mRNA in two BL cell lines indicated that the phenotype did not result from mutation of the GR gene. By preparing a high-titer polyclonal antiserum against the t-1 region of the human GR, we further showed that the deficient GR response in BLs is largely reflected in reduced GR steady-state protein levels in BL cells compared to LCLs. However, the level of GR mRNA varies less between the BL cell lines and the LCLs. The Cp promoter of EBV which normally drives expression of the EBNA gene family in EBV-immortalized LCLs contains a functional glucocorticoid response element. Transfection of GR expression constructs to group I BL cells converted the GR response to approximately LCL levels both with respect to hormone binding and glucocorticoid-dependent transcription of a glucocorticoid-dependent promoter. A modest activation of EBNA-2 expression was seen in some such cell lines, suggesting that the lower GR response contributes to the down-regulation of EBNA expression observed in BL. PMID:8122366

  17. Biased signalling from the glucocorticoid receptor: Renewed opportunity for tailoring glucocorticoid activity.

    PubMed

    Keenan, Christine R; Lew, Michael J; Stewart, Alastair G

    2016-07-15

    Recent landmark studies applying analytical pharmacology approaches to the glucocorticoid receptor (GR) have demonstrated that different ligands can cause differential activation of distinct GR-regulated genes. Drawing on concepts of signalling bias from the field of G protein-coupled receptor (GPCR) biology, we speculate that ligand-dependent differences in GR signalling can be considered analogous to GPCR biased signalling, and thus can be quantitatively analysed in a similar way. This type of approach opens up the possibility of using rational structure-based drug optimisation strategies to improve the therapeutic selectivity of glucocorticoid drugs to maximise their efficacy and minimise adverse effects. PMID:26898958

  18. Glucocorticoid dysregulations and their clinical correlates. From receptors to therapeutics.

    PubMed

    Marques, Andrea H; Silverman, Marni N; Sternberg, Esther M

    2009-10-01

    Clinicians have long known that a substantial proportion of patients treated with high-dose glucocorticoids experience a variety of serious side effects, including metabolic syndrome, bone loss, and mood shifts, such as depressive symptomatology, manic or hypomanic symptoms, and even suicide. The reason for individual variability in expression or severity of these side effects is not clear. However, recent emerging literature is beginning to shed light on possible mechanisms of these effects. As an introduction to this volume, this chapter will review the basic biology of glucocorticoid release and molecular mechanisms of glucocorticoid receptor function, and will discuss how dysregulation of glucocorticoid action at all levels could contribute to such side effects. At the molecular level, glucocorticoid receptor polymorphisms may be associated either with receptor hypofunction or hyperfunction and could thus contribute to differential individual sensitivity to the effects of glucocorticoid treatment. Numerous factors regulate hypothalamic-pituitary-adrenal (HPA) axis responsiveness, which could also contribute to individual differences in glucocorticoid side effects. One of these is sex hormone status and the influence of estrogen and progesterone on HPA axis function and mood. Another is immune system activity, in which immune molecules, such as interleukins and cytokines, activate the HPA axis and alter brain function, including memory, cognition, and mood. The effects of cytokines in inducing sickness behaviors, which overlap with depressive symptomatology, could also contribute to individual differences in such symptomatology. Taken together, this knowledge will have important relevance for identifying at-risk patients to avoid or minimize such side effects when they are treated with glucocorticoids. A framework for assessment of patients is proposed that incorporates functional, physiological, and molecular biomarkers to identify subgroups of patients at risk

  19. Endothelial glucocorticoid receptor promoter methylation according to dexamethasone sensitivity.

    PubMed

    Mata-Greenwood, Eugenia; Jackson, P Naomi; Pearce, William J; Zhang, Lubo

    2015-10-01

    We have previously shown that in vitro sensitivity to dexamethasone (DEX) stimulation in human endothelial cells is positively regulated by the glucocorticoid receptor (NR3C1, GR). The present study determined the role of differential GR transcriptional regulation in glucocorticoid sensitivity. We studied 25 human umbilical vein endothelial cells (HUVECs) that had been previously characterized as DEX-sensitive (n=15), or resistant (n=10). Real-time PCR analysis of GR 5'UTR mRNA isoforms showed that all HUVECs expressed isoforms 1B, 1C, 1D, 1F, and 1H, and isoforms 1B and 1C were predominantly expressed. DEX-resistant cells expressed higher basal levels of the 5'UTR mRNA isoforms 1C and 1D, but lower levels of the 5'UTR mRNA isoform 1F than DEX-sensitive cells. DEX treatment significantly decreased GRα and GR-1C mRNA isoform expression in DEX-resistant cells only. Reporter luciferase assays indicated that differential GR mRNA isoform expression was not due to differential promoter usage between DEX-sensitive and DEX-resistant cells. Analysis of promoter methylation, however, showed that DEX-sensitive cells have higher methylation levels of promoter 1D and lower methylation levels of promoter 1F than DEX-resistant cells. Treatment with 5-aza-2-deoxycytidine abolished the differential 5'UTR mRNA isoform expression between DEX-sensitive and DEX-resistant cells. Finally, both GRα overexpression and 5-aza-2-deoxycytidine treatment eliminated the differences between sensitivity groups to DEX-mediated downregulation of endothelial nitric oxide synthase (NOS3), and upregulation of plasminogen activator inhibitor 1 (SERPINE1). In sum, human endothelial GR 5'UTR mRNA expression is regulated by promoter methylation with DEX-sensitive and DEX-resistant cells having different GR promoter methylation patterns. PMID:26242202

  20. [BCL1 POLYMORPHISM OF GLUCOCORTICOID RECEPTOR GENE AND RESPIRATORY DISEASES].

    PubMed

    Prystupa, L N; Garbuzova, V Yu; Kmyta, V V

    2015-01-01

    The article analyses the results of investigating the connection between BCL1-polymorphism of glucocorticoid receptor gene and respiratory diseases. Its role in increasing sensitivity to glucocorticoids is proved here. The authors investigated the association of Bcl1 polymorphism with predisposition to bronchial asthma, chronic obstructive pulmonary disease, with the nicotine addiction degree and with progressing disorders of pulmonary function in cystic fibrosis. PMID:26118026

  1. Selective glucocorticoid receptor translational isoforms reveal glucocorticoid-induced apoptotic transcriptomes

    PubMed Central

    Wu, I; Shin, S C; Cao, Y; Bender, I K; Jafari, N; Feng, G; Lin, S; Cidlowski, J A; Schleimer, R P; Lu, N Z

    2013-01-01

    Induction of T-cell apoptosis contributes to the anti-inflammatory and antineoplastic benefits of glucocorticoids. The glucocorticoid receptor (GR) translational isoforms have distinct proapoptotic activities in osteosarcoma cells. Here we determined whether GR isoforms selectively induce apoptosis in Jurkat T lymphoblastic leukemia cells. Jurkat cells stably expressing individual GR isoforms were generated and treated with vehicle or dexamethasone (DEX). DEX induced apoptosis in cells expressing the GR-A, -B, or -C, but not the GR-D, isoform. cDNA microarray analyses of cells sensitive (GR-C3) and insensitive (GR-D3) to DEX revealed glucocorticoid-induced proapoptotic transcriptomes. Genes that were regulated by the proapoptotic GR-C3, but not by the GR-D3, isoform likely contributed to glucocorticoid-induced apoptosis. The identified genes include those that are directly involved in apoptosis and those that facilitate cell killing. Chromatin immunoprecipitation assays demonstrated that distinct chromatin modification abilities may underlie the distinct functions of GR isoforms. Interestingly, all GR isoforms, including the GR-D3 isoform, suppressed mitogen-stimulated cytokines. Furthermore, the GR-C isoforms were selectively upregulated in mitogen-activated primary T cells and DEX treatment induced GR-C target genes in activated T cells. Cell-specific expressions and functions of GR isoforms may help to explain the tissue- and individual-selective actions of glucocorticoids and may provide a basis for developing improved glucocorticoids. PMID:23303127

  2. Selective glucocorticoid receptor translational isoforms reveal glucocorticoid-induced apoptotic transcriptomes.

    PubMed

    Wu, I; Shin, S C; Cao, Y; Bender, I K; Jafari, N; Feng, G; Lin, S; Cidlowski, J A; Schleimer, R P; Lu, N Z

    2013-01-01

    Induction of T-cell apoptosis contributes to the anti-inflammatory and antineoplastic benefits of glucocorticoids. The glucocorticoid receptor (GR) translational isoforms have distinct proapoptotic activities in osteosarcoma cells. Here we determined whether GR isoforms selectively induce apoptosis in Jurkat T lymphoblastic leukemia cells. Jurkat cells stably expressing individual GR isoforms were generated and treated with vehicle or dexamethasone (DEX). DEX induced apoptosis in cells expressing the GR-A, -B, or -C, but not the GR-D, isoform. cDNA microarray analyses of cells sensitive (GR-C3) and insensitive (GR-D3) to DEX revealed glucocorticoid-induced proapoptotic transcriptomes. Genes that were regulated by the proapoptotic GR-C3, but not by the GR-D3, isoform likely contributed to glucocorticoid-induced apoptosis. The identified genes include those that are directly involved in apoptosis and those that facilitate cell killing. Chromatin immunoprecipitation assays demonstrated that distinct chromatin modification abilities may underlie the distinct functions of GR isoforms. Interestingly, all GR isoforms, including the GR-D3 isoform, suppressed mitogen-stimulated cytokines. Furthermore, the GR-C isoforms were selectively upregulated in mitogen-activated primary T cells and DEX treatment induced GR-C target genes in activated T cells. Cell-specific expressions and functions of GR isoforms may help to explain the tissue- and individual-selective actions of glucocorticoids and may provide a basis for developing improved glucocorticoids. PMID:23303127

  3. Aluminum fluoride inhibition of glucocorticoid receptor inactivation and transformation

    SciTech Connect

    Housley, P.R. )

    1990-04-10

    Fluoride, in the presence of aluminum ions, reversibly inhibits the temperature-mediated inactivation of unoccupied glucocorticoid receptors in cytosol preparations from mouse L cells. The effect is concentration-dependent, with virtually complete stabilization of specific glucocorticoid-binding capacity at 2 mM fluoride and 100 microM aluminum. These concentrations of aluminum and fluoride are ineffective when used separately. Aluminum fluoride also stabilizes receptors toward inactivation by gel filtration and ammonium sulfate precipitation. Aluminum fluoride prevents temperature-dependent transformation of steroid-receptor complexes to the DNA-binding state. Aluminum fluoride does not inhibit calf intestine alkaline phosphatase, and unoccupied receptors inactivated by this enzyme in the presence of aluminum fluoride can be completely reactivated by dithiothreitol. The effects of aluminum fluoride are due to stabilization of the complex between the glucocorticoid receptor and the 90-kDa mammalian heat-shock protein hsp90, which suggests that aluminum fluoride interacts directly with the receptor. Endogenous thermal inactivation of receptors in cytosol is not accompanied by receptor dephosphorylation. However, inactivation is correlated with dissociation of hsp90 from the unoccupied receptor. These results support the proposal that hsp90 is required for the receptor to bind steroid and dissociation of hsp90 is sufficient to inactivate the unoccupied receptor.

  4. Modulatory effects of unsaturated fatty acids on the binding of glucocorticoids to rat liver glucocorticoid receptors.

    PubMed

    Vallette, G; Vanet, A; Sumida, C; Nunez, E A

    1991-09-01

    Binding of the synthetic glucocorticoid dexamethasone to the rat liver cytosol glucocorticoid receptor was inhibited by physiological concentrations of nonesterified fatty acids as a function of increasing dose, degree of unsaturation, and chain length of the fatty acid. Polyunsaturated fatty acids were the most potent inhibitors. Scatchard analysis and Line-weaver-Burk plots of the binding data revealed that both the association constants and number of binding sites decreased and that polyunsaturated fatty acids inhibition was of a mixed non-competitive type. The dissociation rate constant of [3H]dexamethasone from glucocorticoid receptors was increased by up to 10 times in the presence of docosahexaenoic acid, whereas a competitive inhibitor like the glucocorticoid antagonist RU 38486 had no effect. Moreover, sucrose density gradient analysis showed that docosahexaenoic acid inhibited the binding of [3H] dexamethasone to both the 8.8S and 4S forms. The results strongly suggest that unsaturated fatty acids are interacting at a site on the receptor different from the hormone binding site and the heat shock protein and that by binding to a second site unsaturated fatty acids greatly change the conformation of the hormone binding site to reduce its affinity for the hormone, either partially or completely depending on the concentration and the class of the fatty acid. PMID:1874175

  5. Glucocorticoid receptor content of T lymphocytes: evidence for heterogeneity.

    PubMed

    Distelhorst, C W; Benutto, B M

    1981-04-01

    Glucocorticoid receptors were measured in T lymphocytes that were isolated from peripheral blood by either nylon wool filtration or E-rosette sedimentation. T cells isolated by nylon wool filtration specifically bind 6.7 +/- 0.2 fmol of dexamethasone per million cells (equivalent to 4000 +/- 200 receptors per cell), whereas T cells isolated by E-rosette sedimentation bind 12.0 +/- 0.7 fmol of dexamethasone per million cells (equivalent to 7200 +/- 400 receptors per cell). This difference in the amount of dexamethasone bound by the two T cell preparations was significant (p less than .001) and was present immediately after cell isolation. The binding affinities of the different T cell preparations for dexamethasone were similar. T cells that are isolated by a combination of nylon wool filtration followed by E-rosette sedimentation bind the same amount of dexamethasone as T cells isolated by nylon wool filtration alone. T cells isolated by a combination of E-rosette sedimentation following by nylon wool filtration bind less dexamethasone than do T cells isolated by E-rosette sedimentation alone. These findings suggest that T cells are heterogeneous with respect to their quantity of glucocorticoid receptors. Isolation of T cells by E-rosette sedimentation enriches for T cells that have a greater number of glucocorticoid receptors, and isolation of T cells by nylon wool filtration enriches for T cells that have a lesser number of glucocorticoid receptors. PMID:6970782

  6. Autoradiographic localization of benzodiazepine receptor downregulation

    SciTech Connect

    Tietz, E.I.; Rosenberg, H.C.; Chiu, T.H.

    1986-01-01

    Regional differences in downregulation of brain benzodiazepine receptors were studied using a quantitative autoradiographic method. Rats were given a 4-week flurazepam treatment known to cause tolerance and receptor downregulation. A second group of rats was given a similar treatment, but for only 1 week. A third group was given a single acute dose of diazepam to produce a brain benzodiazepine-like activity equivalent to that found after the chronic treatment. Areas studied included hippocampal formation, cerebral cortex, superior colliculus, substantia nigra, dorsal geniculate nucleus, lateral amygdala and lateral hypothalamus. There was a regional variation in the degree of downregulation after 1 week of flurazepam treatment, ranging from 12% to 25%. Extending the flurazepam treatment to 4 weeks caused little further downregulation in those areas studied, except for the pars reticulata of the substantia nigra, which showed a 13% reduction in (/sup 3/H)flunitrazepam binding after 1 week and a 40% reduction after 4 weeks of treatment. In a few areas, such as the lateral hypothalamus, no significant change in binding was found after 4 weeks. Acute diazepam treatment caused no change in binding. This latter finding as well as results obtained during the development of the methodology show that downregulation was not an artifact due to residual drug content of brain slices. The regional variations in degree and rate of downregulation suggest areas that may be most important for benzodiazepine tolerance and dependence and may be related to the varying time courses for tolerance to different benzodiazepine actions.

  7. Disuse atrophy, plasma corticosterone, and muscle glucocorticoid receptor levels

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1987-01-01

    The effect of whole-body suspension on the time course and the extent of plasma corticosterone changes and the tissue sensitivity to glucocorticoids were investigated in rats subjected to seven days of whole-body suspension. Plasma corticosterone increased significantly on the first and the third days of suspension, but returned to control levels by day seven. Muscle glucocorticoid receptors exhibited a characteristic hormonal specificity (evaluated in competitive-displacement experiments). In controls, receptor site concentration in the slow-twitch soleus was comparable to that in the fast-twitch gastrocnemius and plantaris, but was significantly less than in the extensor; seven days of suspension resulted in significant differential effects on muscle receptor levels. The largest increase in receptor concentration was observed in the soleus in which it remained elevated after the receptor levels in other muscles returned to normal.

  8. Downregulation of MicroRNA-30 Facilitates Podocyte Injury and Is Prevented by Glucocorticoids

    PubMed Central

    Wu, Junnan; Zheng, Chunxia; Fan, Yun; Zeng, Caihong; Chen, Zhaohong; Qin, Weisong; Zhang, Changming; Zhang, Wanfen; Wang, Xiao; Zhu, Xiaodong; Zhang, Mingchao; Zen, Ke

    2014-01-01

    MicroRNAs (miRNAs) are essential for podocyte homeostasis, and the miR-30 family may be responsible for this action. However, the exact roles and clinical relevance of miR-30s remain unknown. In this study, we examined the expression of the miR-30 family in the podocytes of patients with FSGS and found that all members are downregulated. Treating cultured human podocytes with TGF-β, LPS, or puromycin aminonucleoside (PAN) also downregulated the miR-30 family. Podocyte cytoskeletal damage and apoptosis caused by treatment with TGF-β or PAN were ameliorated by exogenous miR-30 expression and aggravated by miR-30 knockdown. Moreover, we found that miR-30s exert their protective roles by direct inhibition of Notch1 and p53, which mediate podocyte injury. In rats, treatment with PAN substantially downregulated podocyte miR-30s and induced proteinuria and podocyte injury; however, transfer of exogenous miR-30a to podocytes of PAN-treated rats ameliorated proteinuria and podocyte injury and reduced Notch1 activation. Finally, we demonstrated that glucocorticoid treatment maintains miR-30 expression in cultured podocytes treated with TGF-β, LPS, or PAN and in the podocytes of PAN-treated rats. Glucocorticoid-sustained miR-30 expression associated with reduced Notch1 activation and alleviated podocyte damage. Taken together, these findings demonstrate that miR-30s protect podocytes by targeting Notch1 and p53 and that the loss of miR-30s facilitates podocyte injury. In addition, sustained miR-30 expression may be a novel mechanism underlying the therapeutic effectiveness of glucocorticoids in treating podocytopathy. PMID:24029422

  9. Exploring the Molecular Mechanisms of Glucocorticoid Receptor Action from Sensitivity to Resistance

    PubMed Central

    Ramamoorthy, Sivapriya; Cidlowski, John A.

    2016-01-01

    Glucocorticoids regulate a variety of physiological processes, and are commonly used to treat disorders of inflammation, autoimmune diseases, and cancer. Glucocorticoid action is predominantly mediated through the classic glucocorticoid receptor (GR), but sensitivity to glucocorticoids varies among individuals, and even within different tissues from the same individual. The molecular basis of this phenomenon can be partially explained through understanding the process of generating bioavailable ligand and the molecular heterogeneity of the GR. The molecular mechanisms that regulate glucocorticoid action highlight the dynamic nature of hormone signaling and provide novel insights into genomic glucocorticoid actions and glucocorticoid sensitivity. Although glucocorticoids are highly effective for therapeutic purposes, long-term and/or high-dose glucocorticoid administration often leads to reduced glucocorticoid sensitivity or resistance. Here, we summarize our current understanding of the mechanisms that modulate glucocorticoid sensitivity and resistance with a focus on GR-mediated signaling. PMID:23392094

  10. The glucocorticoid receptor controls hepatic dyslipidemia through Hes1.

    PubMed

    Lemke, Ulrike; Krones-Herzig, Anja; Berriel Diaz, Mauricio; Narvekar, Prachiti; Ziegler, Anja; Vegiopoulos, Alexandros; Cato, Andrew C B; Bohl, Sebastian; Klingmüller, Ursula; Screaton, Robert A; Müller-Decker, Karin; Kersten, Sander; Herzig, Stephan

    2008-09-01

    Aberrant accumulation of lipids in the liver ("fatty liver" or hepatic steatosis) represents a hallmark of the metabolic syndrome and is tightly associated with obesity, type II diabetes, starvation, or glucocorticoid (GC) therapy. While fatty liver has been connected with numerous abnormalities of liver function, the molecular mechanisms of fatty liver development remain largely enigmatic. Here we show that liver-specific disruption of glucocorticoid receptor (GR) action improves the steatotic phenotype in fatty liver mouse models and leads to the induction of transcriptional repressor hairy enhancer of split 1 (Hes1) gene expression. The GR directly interferes with Hes1 promoter activity, triggering the recruitment of histone deacetylase (HDAC) activities to the Hes1 gene. Genetic restoration of hepatic Hes1 levels in steatotic animals normalizes hepatic triglyceride (TG) levels. As glucocorticoid action is increased during starvation, myotonic dystrophy, and Cushing's syndrome, the inhibition of Hes1 through the GR might explain the fatty liver phenotype in these subjects. PMID:18762022

  11. Identification of potential glucocorticoid receptor therapeutic targets in multiple myeloma

    PubMed Central

    Thomas, Alexandra L.; Coarfa, Cristian; Qian, Jun; Wilkerson, Joseph J.; Rajapakshe, Kimal; Krett, Nancy L.; Gunaratne, Preethi H.; Rosen, Steven T.

    2015-01-01

    Glucocorticoids (GC) are a cornerstone of combination therapies for multiple myeloma. However, patients ultimately develop resistance to GCs frequently based on decreased glucocorticoid receptor (GR) expression. An understanding of the direct targets of GC actions, which induce cell death, is expected to culminate in potential therapeutic strategies for inducing cell death by regulating downstream targets in the absence of a functional GR. The specific goal of our research is to identify primary GR targets that contribute to GC-induced cell death, with the ultimate goal of developing novel therapeutics around these targets that can be used to overcome resistance to GCs in the absence of GR. Using the MM.1S glucocorticoid-sensitive human myeloma cell line, we began with the broad platform of gene expression profiling to identify glucocorticoid-regulated genes further refined by combination treatment with phosphatidylinositol-3’-kinase inhibition (PI3Ki). To further refine the search to distinguish direct and indirect targets of GR that respond to the combination GC and PI3Ki treatment of MM.1S cells, we integrated 1) gene expression profiles of combination GC treatment with PI3Ki, which induces synergistic cell death; 2) negative correlation between genes inhibited by combination treatment in MM.1S cells and genes over-expressed in myeloma patients to establish clinical relevance and 3) GR chromatin immunoprecipitation with massively parallel sequencing (ChIP-Seq) in myeloma cells to identify global chromatin binding for the glucocorticoid receptor (GR). Using established bioinformatics platforms, we have integrated these data sets to identify a subset of candidate genes that may form the basis for a comprehensive picture of glucocorticoid actions in multiple myeloma. As a proof of principle, we have verified two targets, namely RRM2 and BCL2L1, as primary functional targets of GR involved in GC-induced cell death. PMID:26715915

  12. Familial glucocorticoid resistance caused by a splice site deletion in the human glucocorticoid receptor gene

    SciTech Connect

    Karl, M.; Lamberts, S.W.J.; Detera-Wadleigh, S.D.; Encio, I.J.; Stratakis, C.A.; Hurley, D.M.; Accili, D.; Chrousos, G.P. Erasmus Univ. of Rotterdam )

    1993-03-01

    The clinical syndrome of generalized, compensated glucocorticoid resistance is characterized by increased cortisol secretion without clinical evidence of hyper- or hypocortisolism, and manifestations of androgen and/or mineralocorticoid excess. This condition results from partial failure of the glucocorticoid receptor (GR) to modulate transcription of its target genes. The authors studied the molecular mechanisms of this syndrome in a Dutch kindred, whose affected members had hypercortisolism and approximately half of normal GRs, and whose proband was a young woman with manifestations of hyperandrogenism. Using the polymerase chain reaction to amplify and sequence each of the nine exons of the GR gene [alpha], along with their 5[prime]- and 3[prime]-flanking regions, the authors identified a 4-base deletion at the 3[prime]-boundary of exon 6 in one GR allele ([Delta][sub 4]), which removed a donor splice site in all three affected members studied. In contrast, the sequence of exon 6 in the two unaffected siblings was normal. A single nucleotide substitution causing an amino acid substitution in the amino terminal domain of the GR (asparagine to serine, codon 363) was also discovered in exon 2 of the other allele (G[sub 1220]) in the proband, in one of her affected brothers and in her unaffected sister. This deletion in the glucocorticoid receptor gene was associated with the expression of only one allele and a decrease of GR protein by 50% in affected members of this glucocorticoid resistant family. The mutation identified in exon 2 did not segregate with the disease and appears to be of no functional significance. The presence of the null allele was apparently compensated for by increased cortisol production at the expense of concurrent hyperandrogenism. 40 refs., 3 figs.

  13. Selective Activator of the Glucocorticoid Receptor Compound A Dissociates Therapeutic and Atrophogenic Effects of Glucocorticoid Receptor Signaling in Skin

    PubMed Central

    Klopot, Anna; Baida, Gleb; Bhalla, Pankaj; Haegeman, Guy; Budunova, Irina

    2015-01-01

    Background: Glucocorticoids are effective anti-inflammatory drugs widely used in dermatology and for the treatment of blood cancer patients. Unfortunately, chronic treatment with glucocorticoids results in serious metabolic and atrophogenic adverse effects including skin atrophy. Glucocorticoids act via the glucocorticoid receptor (GR), a transcription factor that causes either gene transactivation (TA) or transrepression (TR). Compound A (CpdA), a novel non-steroidal GR ligand, does not promote GR dimerization and TA, retains anti-inflammatory potential but induces fewer metabolic side effects compared to classical glucocorticoids when used systemically. As topical effects of CpdA have not been well studied, this work goal was to compare the anti-inflammatory and side effects of topical CpdA and glucocorticoids and to assess their effect on GR TA and TR in keratinocytes. Methods: We used murine immortalized keratinocytes and F1 C57BlxDBA mice. Effect of glucocorticoid fluocinolone acetonide (FA) and CpdA on gene expression in keratinocytes in vitro and in vivo was evaluated by reverse transcription-PCR. The anti-inflammatory effects were assessed in the model of tumor promoter 12-O-tertradecanoyl-acetate (TPA)-induced dermatitis and in croton oil-induced ear edema test. Skin atrophy was assessed by analysis of epidermal thickness, keratinocyte proliferation, subcutaneous adipose hypoplasia, and dermal changes after chronic treatment with FA and CpdA. Results: In mouse keratinocytes in vitro and in vivo, CpdA did not activate GR-dependent genes but mimicked closely the inhibitory effect of glucocorticoid FA on the expression of inflammatory cytokines and matrix metalloproteinases. When applied topically, CpdA inhibited TPA-induced skin inflammation and hyperplasia. Unlike glucocorticoids, CpdA itself did not induce skin atrophy which correlated with lack of induction of atrophogene regulated in development and DNA damage response 1 (REDD1) causatively involved in

  14. Evolution of hormone selectivity in glucocorticoid and mineralocorticoid receptors.

    PubMed

    Baker, Michael E; Funder, John W; Kattoula, Stephanie R

    2013-09-01

    Mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) are descended from an ancestral corticoid receptor (CR). To date, the earliest CR have been found in lamprey and hagfish, two jawless fish (cyclostomes) that evolved at the base of the vertebrate line. Lamprey CR has both MR and GR activity. Distinct orthologs of the GR and MR first appear in skates and sharks, which are cartilaginous fishes (Chondrichthyes). Aldosterone, the physiological mineralocorticoid in terrestrial vertebrates, first appears in lobe-finned fish, such as lungfish and coelacanth, forerunners of terrestrial vertebrates, but not in sharks, skates or ray-finned fish. Skate MR are transcriptionally activated by glucocorticoids, such as corticosterone and cortisol, as well as by mineralocorticoids such as deoxycorticosterone and (experimentally) aldosterone; skate GR have low affinity for all human corticosteroids and 1α-OH-corticosterone, which has been proposed to be biologically active glucocorticoid. In fish, cortisol is both physiological mineralocorticoid and glucocorticoid; in terrestrial vertebrates, cortisol or corticosterone are the physiological glucocorticoids acting through GR, and aldosterone via MR as the physiologic mineralocorticoid. MR have equally high affinity for cortisol, corticosterone and progesterone. We review this evolutionary process through an analysis of changes in sequence and structure of vertebrate GR and MR, identifying changes in these receptors in skates and lobe-fined fish important in allowing aldosterone to act as an agonist at epithelial MR and glucocorticoid specificity for GR. hMR and hGR have lost a key contact between helix 3 and helix 5 that was present in their common ancestor. A serine that is diagnostic for vertebrate MR, and absent in terrestrial and fish GR, is present in lamprey CR, skate MR and GR, but not in coelacanth GR, marking the transition of the GR from MR ancestor. Based on the response of the CR and skate MR and GR to

  15. Renal tubular vasopressin receptors downregulated by dehydration

    SciTech Connect

    Steiner, M.; Phillips, M.I. )

    1988-03-01

    Receptors for arginine vasopressin (AVP) were characterized in tubular epithelial basolateral membranes (BL membranes) prepared from the kidneys of male Spraque-Dawley rats. Association of ({sup 3}H)AVP was rapid, reversible, and specific. Saturation studies revealed a single class of saturable binding sites with a maximal binding (B{sub max}) of 184 {plus minus} 15 fmol/mg protein. The V{sub 2} receptor antagonist was more than 3,700 times as effective in displacing ({sup 3}H)AVP than was the V{sub 1} antagonist. To investigate the physiological regulation of vasopressin receptors, the effects of elevated levels of circulating AVP on receptor characteristics were studied. Seventy-two-hour water deprivation significantly elevated plasma osmolality and caused an 11.5-fold increase in plasma (AVP). Scatchard analysis revealed a 38% decreased in the number of AVP receptors on the BL membranes from dehydrated animals. The high-affinity binding sites on the BL membranes fit the pharmacological profile for adenylate cyclase-linked vasopressin receptors (V{sub 2}), which mediate the antidiuretic action of the hormone. The authors conclude that physiologically elevated levels of AVP can downregulate vasopressin receptors in the kidney.

  16. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    SciTech Connect

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  17. Characterization of human glucocorticoid receptor complexes formed with DNA fragments containing or lacking glucocorticoid response elements

    SciTech Connect

    Tully, D.B.; Cidlowski, J.A. )

    1989-03-07

    Sucrose density gradient shift assays were used to study the interactions of human glucocorticoid receptors (GR) with small DNA fragments either containing or lacking glucocorticoid response element (GRE) DNA consensus sequences. When crude cytoplasmic extracts containing ({sup 3}H)triamcinolone acetonide (({sup 3}H)TA) labeled GR were incubated with unlabeled DNA under conditions of DNA excess, a GRE-containing DNA fragment obtained from the 5' long terminal repeat of mouse mammary tumor virus (MMTV LTR) formed a stable 12-16S complex with activated, but not nonactivated, ({sup 3}H)TA receptor. By contrast, if the cytosols were treated with calf thymus DNA-cellulose to deplete non-GR-DNA-binding proteins prior to heat activation, a smaller 7-10S complex was formed with the MMTV LTR DNA fragment. Activated ({sup 3}H)TA receptor from DNA-cellulose pretreated cytosols also interacted with two similarly sized fragments from pBR322 DNA. Stability of the complexes formed between GR and these three DNA fragments was strongly affected by even moderate alterations in either the salt concentration or the pH of the gradient buffer. Under all conditions tested, the complex formed with the MMTV LTR DNA fragment was more stable than the complexes formed with either of the pBR322 DNA fragments. Together these observations indicate that the formation of stable complexes between activated GR and isolated DNA fragments requires the presence of GRE consensus sequences in the DNA.

  18. The Transcriptomics of Glucocorticoid Receptor Signaling in Developing Zebrafish

    PubMed Central

    Nesan, Dinushan; Vijayan, Mathilakath M.

    2013-01-01

    Cortisol is the primary corticosteroid in teleosts that is released in response to stressor activation of the hypothalamus-pituitary-interrenal axis. The target tissue action of this hormone is primarily mediated by the intracellular glucocorticoid receptor (GR), a ligand-bound transcription factor. In developing zebrafish (Danio rerio) embryos, GR transcripts and cortisol are maternally deposited into the oocyte prior to fertilization and influence early embryogenesis. To better understand of the molecular mechanisms involved, we investigated changes in the developmental transcriptome prior to hatch, in response to morpholino oligonucleotide knockdown of GR using the Agilent zebrafish microarray platform. A total of 1313 and 836 mRNA transcripts were significantly changed at 24 and 36 hours post fertilization (hpf), respectively. Functional analysis revealed numerous developmental processes under GR regulation, including neurogenesis, eye development, skeletal and cardiac muscle formation. Together, this study underscores a critical role for glucocorticoid signaling in programming molecular events essential for zebrafish development. PMID:24348914

  19. Human Glucocorticoid Receptor β Regulates Gluconeogenesis and Inflammation in Mouse Liver.

    PubMed

    He, Bo; Cruz-Topete, Diana; Oakley, Robert H; Xiao, Xiao; Cidlowski, John A

    2015-01-01

    While in vitro studies have demonstrated that a glucocorticoid receptor (GR) splice isoform, β-isoform of human GR (hGRβ), acts as a dominant-negative inhibitor of the classic hGRα and confers glucocorticoid resistance, the in vivo function of hGRβ is poorly understood. To this end, we created an adeno-associated virus (AAV) to express hGRβ in the mouse liver under the control of the hepatocyte-specific promoter. Genome-wide expression analysis of mouse livers showed that hGRβ significantly increased the expression of numerous genes, many of which are involved in endocrine system disorders and the inflammatory response. Physiologically, hGRβ antagonized GRα's function and attenuated hepatic gluconeogenesis through downregulation of phosphoenolpyruvate carboxykinase (PEPCK) in wild-type (WT) mouse liver. Interestingly, however, hGRβ did not repress PEPCK in GR liver knockout (GRLKO) mice. In contrast, hGRβ regulates the expression of STAT1 in the livers of both WT and GRLKO mice. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays demonstrated that hGRβ binds to the intergenic glucocorticoid response element (GRE) of the STAT1 gene. Furthermore, treatment with RU486 inhibited the upregulation of STAT1 mediated by hGRβ. Finally, our array data demonstrate that hGRβ regulates unique components of liver gene expression in vivo by both GRα-dependent and GRα-independent mechanisms. PMID:26711253

  20. Role of Glucocorticoids in Cystic Ovarian Disease: Expression of Glucocorticoid Receptor in the Bovine Ovary.

    PubMed

    Amweg, Ayelen N; Rodríguez, Fernanda M; Huber, Emilia; Marelli, Belkis E; Salvetti, Natalia R; Rey, Florencia; Ortega, Hugo H

    2016-01-01

    The aim of this study was to characterize the expression of glucocorticoid receptor (GR) in the components of normal bovine ovary and in animals with cystic ovarian disease (COD). Changes in the protein and mRNA expression levels were determined in control cows and cows with COD by immunohistochemistry and real-time PCR. GR protein expression in granulosa cells was higher in cysts from animals with spontaneous COD and adrenocorticotropic hormone-induced COD than in tertiary follicles from control animals. In theca interna cells, GR expression was higher in cysts from animals with spontaneous COD than in tertiary follicles from control animals. The increase in GR expression observed in cystic follicles suggests a mechanism of action for cortisol and its receptor through the activation/inactivation of specific transcription factors. These factors could be related to the pathogenesis of COD in cattle. PMID:26677854

  1. Dopamine-dependent responses to morphine depend on glucocorticoid receptors

    PubMed Central

    Marinelli, Michela; Aouizerate, Bruno; Barrot, Michel; Le Moal, Michel; Piazza, Pier Vincenzo

    1998-01-01

    Previous work has shown that glucocorticoid hormones facilitate the behavioral and dopaminergic effects of morphine. In this study we examined the possible role in these effects of the two central corticosteroid receptor types: mineralocorticoid receptor (MR), and glucocorticoid receptor (GR). To accomplish this, specific antagonists of these receptors were infused intracerebroventricularly and 2 hr later we measured: (i) locomotor activity induced by a systemic injection of morphine (2 mg/kg); (ii) locomotor activity induced by an infusion of morphine (1 μg per side) into the ventral tegmental area, which is a dopamine-dependent behavioral response to morphine; (iii) morphine-induced dopamine release in the nucleus accumbens, a dopaminergic projection site mediating the locomotor and reinforcing effects of drugs of abuse. Blockade of MRs by spironolactone had no significant effects on locomotion induced by systemic morphine. In contrast, blockade of GRs by either RU38486 or RU39305, which is devoid of antiprogesterone effects, reduced the locomotor response to morphine, and this effect was dose dependent. GR antagonists also reduced the locomotor response to intraventral tegmental area morphine as well as the basal and morphine-induced increase in accumbens dopamine, as measured by microdialysis in freely moving rats. In contrast, spironolactone did not modify dopamine release. In conclusion, glucocorticoids, via GRs, facilitate the dopamine-dependent behavioral effects of morphine, probably by facilitating dopamine release. The possibility of decreasing the behavioral and dopaminergic effects of opioids by an acute administration of GR antagonists may open new therapeutic strategies for treatment of drug addiction. PMID:9636221

  2. Adipocyte glucocorticoid receptors mediate fat-to-brain signaling.

    PubMed

    de Kloet, Annette D; Krause, Eric G; Solomon, Matia B; Flak, Jonathan N; Scott, Karen A; Kim, Dong-Hoon; Myers, Brent; Ulrich-Lai, Yvonne M; Woods, Stephen C; Seeley, Randy J; Herman, James P

    2015-06-01

    Stress-related (e.g., depression) and metabolic pathologies (e.g., obesity) are important and often co-morbid public health concerns. Here we identify a connection between peripheral glucocorticoid receptor (GR) signaling originating in fat with the brain control of both stress and metabolism. Mice with reduced adipocyte GR hypersecrete glucocorticoids following acute psychogenic stress and are resistant to diet-induced obesity. This hypersecretion gives rise to deficits in responsiveness to exogenous glucocorticoids, consistent with reduced negative feedback via adipocytes. Increased stress reactivity occurs in the context of elevated hypothalamic expression of hypothalamic-pituitary-adrenal (HPA) axis-excitatory neuropeptides and in the absence of altered adrenal sensitivity, consistent with a central cite of action. Our results identify a novel mechanism whereby activation of the adipocyte GR promotes peripheral energy storage while inhibiting the HPA axis, and provide functional evidence for a fat-to-brain regulatory feedback network that serves to regulate not just homeostatic energy balance but also responses to psychogenic stimuli. PMID:25808702

  3. Metabolic functions of glucocorticoid receptor in skeletal muscle

    PubMed Central

    Kuo, Taiyi; Harris, Charles A.; Wang, Jen-Chywan

    2016-01-01

    Glucocorticoids (GCs) exert key metabolic influences on skeletal muscle. GCs increase protein degradation and decrease protein synthesis. The released amino acids are mobilized from skeletal muscle to liver, where they serve as substrates for hepatic gluconeogenesis. This metabolic response is critical for mammals’ survival under stressful conditions, such as fasting and starvation. GCs suppress insulin-stimulated glucose uptake and utilization and glycogen synthesis, and play a permissive role for catecholamine-induced glycogenolysis, thus preserving the level of circulating glucose, the major energy source for the brain. However, chronic or excess exposure of GCs can induce muscle atrophy and insulin resistance. GCs convey their signal mainly through the intracellular glucocorticoid receptor (GR). While GR can act through different mechanisms, one of its major actions is to regulate the transcription of its primary target genes through genomic glucocorticoid response elements (GREs) by directly binding to DNA or tethering onto other DNA-binding transcription factors. These GR primary targets trigger physiological and pathological responses of GCs. Much progress has been made to understand how GCs regulate protein and glucose metabolism. In this review, we will discuss how GR primary target genes confer metabolic functions of GCs, and the mechanisms governing the transcriptional regulation of these targets. Comprehending these processes not only contributes to the fundamental understanding of mammalian physiology, but also will provide invaluable insight for improved GC therapeutics. PMID:23523565

  4. Glucocorticoid receptor translational isoforms underlie maturational stage-specific glucocorticoid sensitivities of dendritic cells in mice and humans.

    PubMed

    Cao, Yun; Bender, Ingrid K; Konstantinidis, Athanasios K; Shin, Soon Cheon; Jewell, Christine M; Cidlowski, John A; Schleimer, Robert P; Lu, Nick Z

    2013-02-28

    Although glucocorticoids are a profoundly important class of anti-inflammatory and immunosuppressive agents, their actions in dendritic cells (DCs) are not well understood. We found that dexamethasone, a potent glucocorticoid, selectively induced apoptosis in mature, but not in immature, DCs in healthy mice, in mice with experimental airway inflammation, and in vitro in bone marrow–derived DCs. Distinct glucocorticoid receptor (GR) translational isoforms expressed in immature and mature DCs probably contribute to the DC maturational stage-specific glucocorticoid sensitivity. The GR-D isoforms were the predominant isoforms in immature DCs, whereas the proapoptotic GR-A isoform was the main isoform in mature DCs. Ectopic expression of the GR-A isoform in immature DCs increased glucocorticoid sensitivity and RU486, a selective GR antagonist, inhibited the glucocorticoid sensitivity of mature DCs. Furthermore, the distinct expression pattern of GR isoforms in immature and mature murine DCs was also observed in human monocyte–derived DCs. These studies suggest that glucocorticoids may spare immature DCs and suppress mature DCs and inflammation via differential expression of GR translational isoforms. PMID:23297131

  5. Glucocorticoid receptor translational isoforms underlie maturational stage-specific glucocorticoid sensitivities of dendritic cells in mice and humans

    PubMed Central

    Cao, Yun; Bender, Ingrid K.; Konstantinidis, Athanasios K.; Shin, Soon Cheon; Jewell, Christine M.; Cidlowski, John A.; Schleimer, Robert P.

    2013-01-01

    Although glucocorticoids are a profoundly important class of anti-inflammatory and immunosuppressive agents, their actions in dendritic cells (DCs) are not well understood. We found that dexamethasone, a potent glucocorticoid, selectively induced apoptosis in mature, but not in immature, DCs in healthy mice, in mice with experimental airway inflammation, and in vitro in bone marrow–derived DCs. Distinct glucocorticoid receptor (GR) translational isoforms expressed in immature and mature DCs probably contribute to the DC maturational stage-specific glucocorticoid sensitivity. The GR-D isoforms were the predominant isoforms in immature DCs, whereas the proapoptotic GR-A isoform was the main isoform in mature DCs. Ectopic expression of the GR-A isoform in immature DCs increased glucocorticoid sensitivity and RU486, a selective GR antagonist, inhibited the glucocorticoid sensitivity of mature DCs. Furthermore, the distinct expression pattern of GR isoforms in immature and mature murine DCs was also observed in human monocyte–derived DCs. These studies suggest that glucocorticoids may spare immature DCs and suppress mature DCs and inflammation via differential expression of GR translational isoforms. PMID:23297131

  6. Epigenetic and Glucocorticoid Receptor-Mediated Regulation of Glutathione Peroxidase 3 in Lung Cancer Cells

    PubMed Central

    An, Byung Chull; Jung, Nak-Kyun; Park, Chun Young; Oh, In-Jae; Choi, Yoo-Duk; Park, Jae-Il; Lee, Seung-won

    2016-01-01

    Glutathione peroxidase 3 (GPx3), an antioxidant enzyme, acts as a modulator of redox signaling, has immunomodulatory function, and catalyzes the detoxification of reactive oxygen species (ROS). GPx3 has been identified as a tumor suppressor in many cancers. Although hyper-methylation of the GPx3 promoter has been shown to down-regulate its expression, other mechanisms by which GPx3 expression is regulated have not been reported. The aim of this study was to further elucidate the mechanisms of GPx3 regulation. GPx3 gene analysis predicted the presence of ten glucocorticoid response elements (GREs) on the GPx3 gene. This result prompted us to investigate whether GPx3 expression is regulated by the glucocorticoid receptor (GR), which is implicated in tumor response to chemotherapy. The corticosteroid dexamethasone (Dex) was used to examine the possible relationship between GR and GPx3 expression. Dex significantly induced GPx3 expression in H1299, H1650, and H1975 cell lines, which exhibit low levels of GPx3 expression under normal conditions. The results of EMSA and ChIP-PCR suggest that GR binds directly to GRE 6 and 7, both of which are located near the GPx3 promoter. Assessment of GPx3 transcription efficiency using a luciferase reporter system showed that blocking formation of the GR-GRE complexes reduced luciferase activity by 7–8-fold. Suppression of GR expression by siRNA transfection also induced down-regulation of GPx3. These data indicate that GPx3 expression can be regulated independently via epigenetic or GR-mediated mechanisms in lung cancer cells, and suggest that GPx3 could potentiate glucocorticoid (GC)-mediated anti-inflammatory signaling in lung cancer cells. PMID:27484907

  7. Epigenetic and Glucocorticoid Receptor-Mediated Regulation of Glutathione Peroxidase 3 in Lung Cancer Cells.

    PubMed

    An, Byung Chull; Jung, Nak-Kyun; Park, Chun Young; Oh, In-Jae; Choi, Yoo-Duk; Park, Jae-Il; Lee, Seung-Won

    2016-08-31

    Glutathione peroxidase 3 (GPx3), an antioxidant enzyme, acts as a modulator of redox signaling, has immunomodulatory function, and catalyzes the detoxification of reactive oxygen species (ROS). GPx3 has been identified as a tumor suppressor in many cancers. Although hyper-methylation of the GPx3 promoter has been shown to down-regulate its expression, other mechanisms by which GPx3 expression is regulated have not been reported. The aim of this study was to further elucidate the mechanisms of GPx3 regulation. GPx3 gene analysis predicted the presence of ten glucocorticoid response elements (GREs) on the GPx3 gene. This result prompted us to investigate whether GPx3 expression is regulated by the glucocorticoid receptor (GR), which is implicated in tumor response to chemotherapy. The corticosteroid dexamethasone (Dex) was used to examine the possible relationship between GR and GPx3 expression. Dex significantly induced GPx3 expression in H1299, H1650, and H1975 cell lines, which exhibit low levels of GPx3 expression under normal conditions. The results of EMSA and ChIP-PCR suggest that GR binds directly to GRE 6 and 7, both of which are located near the GPx3 promoter. Assessment of GPx3 transcription efficiency using a luciferase reporter system showed that blocking formation of the GR-GRE complexes reduced luciferase activity by 7-8-fold. Suppression of GR expression by siRNA transfection also induced down-regulation of GPx3. These data indicate that GPx3 expression can be regulated independently via epigenetic or GR-mediated mechanisms in lung cancer cells, and suggest that GPx3 could potentiate glucocorticoid (GC)-mediated anti-inflammatory signaling in lung cancer cells. PMID:27484907

  8. Cytokine-Effects on Glucocorticoid Receptor Function: Relevance to Glucocorticoid Resistance and the Pathophysiology and Treatment of Major Depression

    PubMed Central

    Pace, Thaddeus W.W.; Hu, Fang; Miller, Andrew H.

    2007-01-01

    Glucocorticoids play an essential role in the response to environmental stressors, serving initially to mobilize bodily responses to challenge and ultimately serving to restrain neuroendocrine and immune reactions. A number of diseases including autoimmune, infectious and inflammatory disorders as well as certain neuropsychiatric disorders such as major depression have been associated with decreased responsiveness to glucocorticoids (glucocorticoid resistance), which is believed to be related in part to impaired functioning of the glucocorticoid receptor (GR). Glucocorticoid resistance, in turn, may contribute to excessive inflammation as well as hyperactivity of corticotropin releasing hormone and sympathetic nervous system pathways, which are known to contribute to a variety of diseases as well as behavioral alterations. Recent data indicate that glucocorticoid resistance may be a result of impaired GR function secondary to chronic exposure to inflammatory cytokines as may occur during chronic medical illness or chronic stress. Indeed, inflammatory cytokines and their signaling pathways including mitogen-activated protein kinases, nuclear factor-kB, signal transducers and activators of transcription, and cyclooxygenase have been found to inhibit GR function. Mechanisms include disruption of GR translocation and/or GR-DNA binding through protein-protein interactions of inflammatory mediators with the GR itself or relevant steroid receptor cofactors as well as alterations in GR phosphorylation status. Interestingly, cAMP signal transduction pathways can enhance GR function and inhibit cytokine signaling. Certain antidepressants have similar effects. Thus, further understanding the effects of cytokines on GR signaling and the mechanisms involved may reveal novel therapeutic targets for reversal of glucocorticoid resistance and restoration of glucocorticoid-mediated inhibition of relevant bodily/immune responses during stress and immune challenge. PMID:17070667

  9. Receptor-dependent mechanisms of glucocorticoid and dioxin-induced cleft palate

    SciTech Connect

    Pratt, R.M.

    1985-09-01

    Glucocorticoids (triamcinolone) and dioxins (TCDD) are highly specific teratogens in the mouse, in that cleft palate is the major malformation observed. Glucocorticoids and TCDD both readily cross the yolk sac and placenta and appear in the developing secondary palate. Structure-activity relationships for glucocorticoid- and TCDD-induced cleft palate suggest a receptor involvement. Receptors for glucocorticoids and TCDD are present in the palate and their levels in various mouse strains are highly correlated with their sensitivity to cleft palate induction. Receptors for glucocorticoids appear to be more prevalent in the palatal mesenchymal cells whereas those for TCDD are probably located in the palatal epithelial cells. Glucocorticoids exert their teratogenic effect on the palate by inhibiting the growth of the palatal mesenchymal cells whereas TCDD alters the terminal cell differentiation of the media palatal epithelial cells. 71 references.

  10. Radiosequence analysis of the human progestin receptor charged with ( sup 3 H)promegestone. A comparison with the glucocorticoid receptor

    SciTech Connect

    Stroemstedt, P.E.B.; Berkenstam, A.; Joernvall, H.G.; Gustafsson, J.A.; Carlstedt-Duke, J. )

    1990-08-05

    Partially purified preparations of the human progestin receptor and the human and rat glucocorticoid receptor proteins were covalently charged with the synthetic progestin, ({sup 3}H)promegestone, by photoaffinity labeling. After labeling, the denaturated protein was cleaved and the mixture of peptides subjected to radiosequence analysis as previously described for the rat glucocorticoid receptor protein. The radioactivity labels identified, corresponded to Met-759 and Met-909 after photoaffinity labeling of the human progestin receptor, and Met-622 and Cys-754 after labeling of the rat glucocorticoid receptor. The residues labeled in the glucocorticoid receptor are the same as those previously reported to bind triamcinolone actonide. The corresponding residues were also labeled in the human glucocorticoid receptor. Met-759 of the progestin receptor and Met-622 of the rat glucocorticoid receptor are positioned within a segment with an overall high degree of sequence similarity and are equivalent. However, Met-909 (progestin receptor) and Cys-754 (glucocorticoid receptor) do not occur within equivalent segments of the two proteins. Thus, although the two classes of steroid hormone share a common structure within the A-ring, there are subtle differences in their interaction with the two separate receptor proteins.

  11. Involvement of the Androgen and Glucocorticoid Receptors in Bladder Cancer

    PubMed Central

    McBeth, Lucien; Grabnar, Maria; Selman, Steven; Hinds, Terry D.

    2015-01-01

    Bladder cancer is encountered worldwide having been associated with a host of environmental and lifestyle risk factors. The disease has a male to female prevalence of 3 : 1. This disparity has raised the possibility of the androgen receptor (AR) pathway being involved in the genesis of the disease; indeed, research has shown that AR is involved in and is likely a driver of bladder cancer. Similarly, an inflammatory response has been implicated as a major player in bladder carcinogenesis. Consistent with this concept, recent work on anti-inflammatory glucocorticoid signaling points to a pathway that may impact bladder cancer. The glucocorticoid receptor- (GR-) α isoform has an important role in suppressing inflammatory processes, which may be attenuated by AR in the development of bladder cancer. In addition, a GR isoform that is inhibitory to GRα, GRβ, is proinflammatory and has been shown to induce cancer growth. In this paper, we review the evidence of inflammatory mediators and the relationship of AR and GR isoforms as they relate to the propensity for bladder cancer. PMID:26347776

  12. An epistatic ratchet constrains the direction of glucocorticoid receptor evolution

    SciTech Connect

    Bridgham, Jamie T.; Ortlund, Eric A.; Thornton, Joseph W.

    2010-10-28

    The extent to which evolution is reversible has long fascinated biologists. Most previous work on the reversibility of morphological and life-history evolution has been indecisive, because of uncertainty and bias in the methods used to infer ancestral states for such characters. Further, despite theoretical work on the factors that could contribute to irreversibility, there is little empirical evidence on its causes, because sufficient understanding of the mechanistic basis for the evolution of new or ancestral phenotypes is seldom available. By studying the reversibility of evolutionary changes in protein structure and function, these limitations can be overcome. Here we show, using the evolution of hormone specificity in the vertebrate glucocorticoid receptor as a case-study, that the evolutionary path by which this protein acquired its new function soon became inaccessible to reverse exploration. Using ancestral gene reconstruction, protein engineering and X-ray crystallography, we demonstrate that five subsequent 'restrictive' mutations, which optimized the new specificity of the glucocorticoid receptor, also destabilized elements of the protein structure that were required to support the ancestral conformation. Unless these ratchet-like epistatic substitutions are restored to their ancestral states, reversing the key function-switching mutations yields a non-functional protein. Reversing the restrictive substitutions first, however, does nothing to enhance the ancestral function. Our findings indicate that even if selection for the ancestral function were imposed, direct reversal would be extremely unlikely, suggesting an important role for historical contingency in protein evolution.

  13. Interactions between methylsulfonyl PCBs and the glucocorticoid receptor.

    PubMed Central

    Johansson, M; Nilsson, S; Lund, B O

    1998-01-01

    Persistent polychlorinated biphenyl (PCB) metabolites were studied with respect to their interaction with the human glucocorticoid receptor (GR). 3-Methylsulphonyl-2,5,6,2',4',5'-hexachlorobiphenyl (3-MeSO2-CB149) was shown to compete with 3H-dexamethasone for binding to the GR, with an IC50 (concentration that inhibits 50%) of approximately 1 microM. Using GRAF cells expressing human GR, glucocorticoid responsive element, and a reporter enzyme, we demonstrated that 3-MeSO2-CB149 functionally acts as an antagonist at the GR (IC50 = 2.7 microM). In accordance with the receptor binding, the antagonism mainly appeared to be of a competitive nature. When studying the competitive binding of 24 methylsulfonyl PCBs (relative to dexamethasone) to GR from mouse liver cytosol, seven compounds had a higher affinity to GR than 3-MeSO2-CB149. Structure-activity relationship studies indicated that the presence of three chlorine atoms in the ortho-position and chlorine and methyl sulfone groups on either end of the molecule (4 and 4'-position) increased the affinity to GR. The relevance of this finding for human health is not known, but PCB methyl sulfones are ubiquitous pollutants present in mother's milk. The results stress the need for studying endocrine disruptors that affect hormonal systems other than sex and thyroidogenic hormones. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:9831536

  14. Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa; Konagaya, Masaaki

    1987-01-01

    The regulation by glucocorticoids of glutamine synthetase in L6 muscle cells in culture is studied. Glutamine synthetase activity was strikingly enhanced by dexamethasone. The dexamethasone-mediated induction of glutamine synthetase activity was blocked by RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction process. RU38486 alone was without effect. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves increased levels of glutamine synthetase mRNA. Glucocorticoids regulate the expression of glutamine synthetase mRNA in cultured muscle cells via interaction with intracellular receptors. Such regulation may be relevant to control of glutamine production by muscle.

  15. Subcellular distribution of glucocorticoid receptors in mouse fibroblasts.

    PubMed

    Middlebrook, J L; Wong, M D; Ishii, D N; Aronow, L

    1975-01-14

    Mouse fibroblasts contain a macromolecular binding component (receptor) which binds glucocorticoids specifically and with high affinity. This study shows that there are three different cellular forms of bound receptor and that it is experimentally possible to markedly alter the subcellular distribution of these three forms. Cells incubated with (3H)triamcinolone acetonide were broken after hypotonic shock and a 7000g hypotonic supernatant was obtained; the pellet was extracted with 0.3 M KCl, yielding a nuclear extract; the remaining pellet was resuspended in water, sonicated, and assayed for "nuclear residual" (i.e., nonextractable) radioactivity. If whole cells are incubated at 0 degrees in a growth medium, almost all of the bound steroid is located in the hypotonic supernatant fraction. Incubation at 37 degrees produces a shift of the steroid-bound macromolecule into the nuclear extractable form, while omission of glucose and addition of KCN at 37 degrees markedly increase the nuclear residual form at the expense of both the nuclear-extractable and supernatant forms. Since DNase treatment of chromatin liberates a soluble steroid-receptor complex, we believe that the nuclear residual form may be steroid-receptor complex tightly bound to chromatin. We propose a model suggesting that an energy-requiring process is required to generate free receptor from the chromatin complex to complete the normal cellular recycling system. PMID:162830

  16. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    SciTech Connect

    Li, Qun-Yi; Zhang, Meng; Hallis, Tina M.; DeRosier, Therese A.; Yue, Jian-Min; Ye, Yang; Mais, Dale E.; Wang, Ming-Wei

    2010-01-15

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K{sub i} = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  17. Different regions of the estrogen receptor are required for synergistic action with the glucocorticoid and progesterone receptors.

    PubMed

    Cato, A C; Ponta, H

    1989-12-01

    Estrogen and progesterone or estrogen and glucocorticoid receptors functionally cooperate in gene activation if their cognate binding sites are close to one another. These interactions have been described as synergism of action of the steroid receptors. The mechanism by which synergism is achieved is not clear, although protein-protein interaction of the receptors is one of the favorite models. In transfection experiments with receptor expression vectors and a reporter gene containing estrogen and progesterone-glucocorticoid receptor binding sites, we have examined the effects that different portions of the various receptors have on synergism. N-terminal domains of the chicken progesterone and human glucocorticoid receptors, when deleted, abolished the synergistic action of these receptors with the estrogen receptor. Deletion of the carboxy-terminal amino acids 341 to 595 of the estrogen receptor produced a mutant receptor that could not trans-activate on its own. This mutant receptor did not affect the action of the glucocorticoid receptor but functioned synergistically with the progesterone receptor. We therefore conclude that the synergistic action of the receptors for estrogen and progesterone is mechanistically different from the synergistic action of the receptors for estrogen and glucocorticoid. PMID:2586523

  18. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses

    PubMed Central

    Xavier, Andre Machado; Anunciato, Aparecida Kataryna Olimpio; Rosenstock, Tatiana Rosado; Glezer, Isaias

    2016-01-01

    Glucocorticoids (GCs) are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GC’s effects on inflammation are generally mediated through GC receptors (GRs). Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade, the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors pathway, or subject key transcription factors, such as NF-κB and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive, or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective GC receptor modulators; SEGRMs), cell culture, animal treatment, or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive. PMID:27148162

  19. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses.

    PubMed

    Xavier, Andre Machado; Anunciato, Aparecida Kataryna Olimpio; Rosenstock, Tatiana Rosado; Glezer, Isaias

    2016-01-01

    Glucocorticoids (GCs) are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GC's effects on inflammation are generally mediated through GC receptors (GRs). Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade, the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors pathway, or subject key transcription factors, such as NF-κB and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive, or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective GC receptor modulators; SEGRMs), cell culture, animal treatment, or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive. PMID:27148162

  20. Leukemia inhibitory factor regulates glucocorticoid receptor expression in the hypothalamic-pituitary-adrenal axis.

    PubMed

    Kariagina, Anastasia; Zonis, Svetlana; Afkhami, Mahta; Romanenko, Dmitry; Chesnokova, Vera

    2005-11-01

    Leukemia inhibitory factor (LIF) is a pleiotropic cytokine belonging to the gp130 family. LIF is induced peripherally and within the brain during inflammatory or chronic autoimmune diseases and is a potent stimulator of the hypothalamic-pituitary-adrenal (HPA) axis. Here we investigated the role of LIF in mediating glucocorticoid receptor (GR) expression in the HPA axis. LIF treatment (3 microg/mouse, i.p.) markedly decreased GR mRNA levels in murine hypothalamus (5-fold, P < 0.01) and pituitary (1.7-fold, P < 0.01) and downregulated GR protein levels. LIF decreased GR expression in murine corticotroph cell line AtT20 within 2 h, and this effect was sustained for 8 h after treatment. LIF-induced GR mRNA reduction was abrogated in AtT20 cells overexpressing dominant-negative mutants of STAT3, indicating that intact JAK-STAT signaling is required to mediate LIF effects on GR expression. Conversely, mice with LIF deficiency exhibited increased GR mRNA levels in the hypothalamus and pituitary (3.5- and 3.5-fold, respectively; P < 0.01 for both) and increased GR protein expression when compared with wild-type littermates. The suppressive effects of dexamethasone on GR were more pronounced in LIF-null animals. These data suggest that LIF maintains the HPA axis activation by decreasing GR expression and raise the possibility that LIF might contribute to the development of central glucocorticoid resistance during inflammation. PMID:15985451

  1. Bifunctional Ligands Allow Deliberate Extrinsic Reprogramming of the Glucocorticoid Receptor

    PubMed Central

    Højfeldt, Jonas W.; Cruz-Rodríguez, Osvaldo; Imaeda, Yasuhiro; Van Dyke, Aaron R.; Carolan, James P.; Mapp, Anna K.

    2014-01-01

    Therapies based on conventional nuclear receptor ligands are extremely powerful, yet their broad and long-term use is often hindered by undesired side effects that are often part of the receptor's biological function. Selective control of nuclear receptors such as the glucocorticoid receptor (GR) using conventional ligands has proven particularly challenging. Because they act solely in an allosteric manner, conventional ligands are constrained to act via cofactors that can intrinsically partner with the receptor. Furthermore, effective means to rationally encode a bias for specific coregulators are generally lacking. Using the (GR) as a framework, we demonstrate here a versatile approach, based on bifunctional ligands, that extends the regulatory repertoire of GR in a deliberate and controlled manner. By linking the macrolide FK506 to a conventional agonist (dexamethasone) or antagonist (RU-486), we demonstrate that it is possible to bridge the intact receptor to either positively or negatively acting coregulatory proteins bearing an FK506 binding protein domain. Using this strategy, we show that extrinsic recruitment of a strong activation function can enhance the efficacy of the full agonist dexamethasone and reverse the antagonist character of RU-486 at an endogenous locus. Notably, the extrinsic recruitment of histone deacetylase-1 reduces the ability of GR to activate transcription from a canonical GR response element while preserving ligand-mediated repression of nuclear factor-κB. By providing novel ways for the receptor to engage specific coregulators, this unique ligand design approach has the potential to yield both novel tools for GR study and more selective therapeutics. PMID:24422633

  2. A naturally hypersensitive glucocorticoid receptor elicits a compensatory reduction of hypothalamus-pituitary-adrenal axis activity early in ontogeny.

    PubMed

    Muráni, Eduard; Ponsuksili, Siriluck; Jaeger, Alexandra; Görres, Andreas; Tuchscherer, Armin; Wimmers, Klaus

    2016-07-01

    We comprehensively characterized the effects of a unique natural gain-of-function mutation in the glucocorticoid receptor (GR), GRAla610Val, in domestic pigs to expand current knowledge of the phenotypic consequences of GR hypersensitivity. Cortisol levels were consistently reduced in one-week-old piglets, at weaning and in peripubertal age, probably due to a reduced adrenal capacity to produce glucocorticoids (GC), which was indicated by an adrenocortical thinning in GRAla610Val carriers. Adrenocorticotrophic hormone (ACTH) levels were significantly reduced in one-week-old piglets only. Expression analyses in peripubertal age revealed significant downregulation of hypothalamic expression of CRH and AVP, the latter only in females, and upregulation of hepatic expression of SERPINA6, by GRAla610Val Transcriptional repression of proinflammatory genes in peripheral blood mononuclear cells (PBMCs) from GRAla610Val carriers was more sensitive to dexamethasone treatment ex vivo However, no significant effects on growth, body composition, blood chemistry or cell counts were observed under baseline conditions. These results suggest that GRAla610Val-induced GR hypersensitivity elicits a compensatory reduction in endogenous, bioactive glucocorticoid levels via readjustment of the hypothalamus-pituitary-adrenal (HPA) axis early in ontogeny to maintain an adequate response, but carriers are more sensitive to exogenous GC. Therefore, GRAla610Val pigs represent a valuable animal model to explore GR-mediated mechanisms of HPA axis regulation and responses to glucocorticoid-based drugs. PMID:27440422

  3. A naturally hypersensitive glucocorticoid receptor elicits a compensatory reduction of hypothalamus–pituitary–adrenal axis activity early in ontogeny

    PubMed Central

    Muráni, Eduard; Ponsuksili, Siriluck; Jaeger, Alexandra; Görres, Andreas; Tuchscherer, Armin; Wimmers, Klaus

    2016-01-01

    We comprehensively characterized the effects of a unique natural gain-of-function mutation in the glucocorticoid receptor (GR), GRAla610Val, in domestic pigs to expand current knowledge of the phenotypic consequences of GR hypersensitivity. Cortisol levels were consistently reduced in one-week-old piglets, at weaning and in peripubertal age, probably due to a reduced adrenal capacity to produce glucocorticoids (GC), which was indicated by an adrenocortical thinning in GRAla610Val carriers. Adrenocorticotrophic hormone (ACTH) levels were significantly reduced in one-week-old piglets only. Expression analyses in peripubertal age revealed significant downregulation of hypothalamic expression of CRH and AVP, the latter only in females, and upregulation of hepatic expression of SERPINA6, by GRAla610Val. Transcriptional repression of proinflammatory genes in peripheral blood mononuclear cells (PBMCs) from GRAla610Val carriers was more sensitive to dexamethasone treatment ex vivo. However, no significant effects on growth, body composition, blood chemistry or cell counts were observed under baseline conditions. These results suggest that GRAla610Val-induced GR hypersensitivity elicits a compensatory reduction in endogenous, bioactive glucocorticoid levels via readjustment of the hypothalamus–pituitary–adrenal (HPA) axis early in ontogeny to maintain an adequate response, but carriers are more sensitive to exogenous GC. Therefore, GRAla610Val pigs represent a valuable animal model to explore GR-mediated mechanisms of HPA axis regulation and responses to glucocorticoid-based drugs. PMID:27440422

  4. Purification of the endogenous glucocorticoid receptor stabilizing factor

    SciTech Connect

    Meshinchi, S.; Stancato, L.F.; Pratt, W.B. ); Gordon, B.M.; Jones, K.W. )

    1991-09-03

    A ubiquitous, low molecular weight, heat-stable component of cytosol stabilizes the glucocorticoid receptor in its untransformed state in association with hsp90. This heat-stable factor mimics molybdate in its effects on receptor function, and it has the heat stability, charge, and chelation properties of a metal oxyanion. In this paper, the authors describe the further purification of the endogenous factor from rat liver cytosol by anion-exchange HPCL (Ion-110) after prepurification by molecular sieving, cation absorption, and charcoal absorption. Elution of the factor with an isocratic gradient of ammonium bicarbonate results in recovery of all of the bioactivity in a single peak which coelutes with inorganic phosphate and contains all of the endogenous molybdenum. The bioactivity can be separated from inorganic phosphate by chromatography of the partially purified endogenous factor on a metal-chelating column of Chelex-100. The chelating procedure results in complete loss of bioactivity with recovery of 98% of the inorganic phosphate in both the column drop-through and a subsequent 1 M NaCl wash. These observations support the proposal that an endogenous metal can stabilize the binding of hsp90 to the receptor but it is likely that other cytosolic components that are not present in the immunopurified complex must contribute to the stability of the soluble protein-protein complex in cytosol.

  5. Silencing Mediator of Retinoid and Thyroid Hormone Receptors (SMRT) regulates glucocorticoid action in adipocytes

    PubMed Central

    Emont, Margo P.; Mantis, Stelios; Kahn, Jonathan H.; Landeche, Michael; Han, Xuan; Sargis, Robert M

    2015-01-01

    Local modulation of glucocorticoid action in adipocytes regulates adiposity and systemic insulin sensitivity. However, the specific cofactors that mediate glucocorticoid receptor (GR) action in adipocytes remain unclear. Here we show that the silencing mediator of retinoid and thyroid hormone receptors (SMRT) is recruited to GR in adipocytes and regulates ligand-dependent GR function. Decreased SMRT expression in adipocytes in vivo increases expression of glucocorticoid-responsive genes. Moreover, adipocytes with decreased SMRT expression exhibit altered glucocorticoid regulation of lipolysis. We conclude that SMRT regulates the metabolic functions of GR in adipocytes in vivo. Modulation of GR-SMRT interactions in adipocytes represents a novel approach to control the local degree of glucocorticoid action and thus influence adipocyte metabolic function. PMID:25766503

  6. Cancer cell-selective promoter recognition accompanies antitumor effect by glucocorticoid receptor-targeted gold nanoparticle

    NASA Astrophysics Data System (ADS)

    Sau, Samaresh; Agarwalla, Pritha; Mukherjee, Sudip; Bag, Indira; Sreedhar, Bojja; Pal-Bhadra, Manika; Patra, Chitta Ranjan; Banerjee, Rajkumar

    2014-05-01

    Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of `exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of `endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of `endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics.Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied

  7. Glucocorticoid dexamethasone down-regulates basal and vitamin D3 induced cathelicidin expression in human monocytes and bronchial epithelial cell line.

    PubMed

    Kulkarni, Nikhil Nitin; Gunnarsson, Hörður Ingi; Yi, Zhiqian; Gudmundsdottir, Steinunn; Sigurjonsson, Olafur E; Agerberth, Birgitta; Gudmundsson, Gudmundur H

    2016-02-01

    Glucocorticoids (GCs) have been extensively used as the mainstream treatment for chronic inflammatory disorders. The persistent use of steroids in the past decades and the association with secondary infections warrants for detailed investigation into their effects on the innate immune system and the therapeutic outcome. In this study, we analyse the effect of GCs on antimicrobial polypeptide (AMP) expression. We hypothesize that GC related side effects, including secondary infections are a result of compromised innate immune responses. Here, we show that treatment with dexamethasone (Dex) inhibits basal mRNA expression of the following AMPs; human cathelicidin, human beta defensin 1, lysozyme and secretory leukocyte peptidase 1 in the THP-1 monocytic cell-line (THP-1 monocytes). Furthermore, pre-treatment with Dex inhibits vitamin D3 induced cathelicidin expression in THP-1 monocytes, primary monocytes and in the human bronchial epithelial cell line BCi NS 1.1. We also demonstrate that treatment with the glucocorticoid receptor (GR) inhibitor RU486 counteracts Dex mediated down-regulation of basal and vitamin D3 induced cathelicidin expression in THP-1 monocytes. Moreover, we confirmed the anti-inflammatory effect of Dex. Pre-treatment with Dex inhibits dsRNA mimic poly IC induction of the inflammatory chemokine IP10 (CXCL10) and cytokine IL1B mRNA expression in THP-1 monocytes. These results suggest that GCs inhibit innate immune responses, in addition to exerting beneficial anti-inflammatory effects. PMID:26358366

  8. Potentiation of glucocorticoid receptor transcriptional activity by sumoylation.

    PubMed

    Le Drean, Yves; Mincheneau, Nathalie; Le Goff, Pascale; Michel, Denis

    2002-09-01

    The glucocorticoid receptor (GR) is a transcription factor, subject to several types of posttranslational modifications including phosphorylation and ubiquitination. We showed that the GR is covalently modified by the small ubiquitin-related modifier-1 (SUMO-1) peptide in mammalian cells. We demonstrated that GR sumoylation is not dependent on the presence of the ligand and regulates the stability of the protein as well as its transcriptional activity. SUMO-1 overexpression induces dramatic GR degradation, abolished by proteasome inhibition. We also found that SUMO-1 stimulates the transactivation capacity of GRs to an extent largely exceeding those observed so far for other sumoylated transcription factors. Overexpression of SUMO-1 specifically enhances the ligand-induced transactivation of GR up to 8-fold. However, this hyperactivation occurs only in the context of a synergy between multiple molecules of GRs. It requires more than one receptor DNA-binding site in promoter and becomes more prominent as the number of sites increases. Interestingly, these observations may be related to the transcriptional properties of the synergy control region of GRs, which precisely contains two evolutionary conserved sumoylation sites. We propose a model in which SUMO-1 regulates the synergy control function of GR and serves as a unique signal for activation and destruction. PMID:12193561

  9. Functional interaction between the glucocorticoid receptor and GANP/MCM3AP

    SciTech Connect

    Osman, Waffa; Laine, Sanna; Zilliacus, Johanna . E-mail: johanna.zilliacus@mednut.ki.se

    2006-10-06

    Glucocorticoids are widely used to treat inflammatory diseases but have a number of side effects that partly are connected to inhibition of cell proliferation. Glucocorticoids mediated their action by binding to the glucocorticoid receptor. In the present study, we have identified by two-hybrid screens the germinal center-associated protein (GANP) and MCM3-associated protein (MCM3AP), a splicing variant of GANP, as glucocorticoid receptor interacting proteins. GANP and MCM3AP can bind to the MCM3 protein involved in initiation of DNA replication. Glutathione-S-transferase-pull-down and co-immunoprecipitation assays showed that the C-terminal domain of GANP, encompassing MCM3AP, interacts with the ligand-binding domain of the glucocorticoid receptor. Characterization of the intracellular localization of GANP revealed that GANP is shuttling between the nucleus and the cytoplasm. Furthermore, we show that glucocorticoids are unable to inhibit DNA replication in HeLa cells overexpressing MCM3AP suggesting a role for both glucocorticoid receptor and GANP/MCM3AP in regulating cell proliferation.

  10. Cell-specific expression of the glucocorticoid receptor within granular convoluted tubules of the rat submaxillary gland

    SciTech Connect

    Antakly, T.; Zhang, C.X.; Sarrieau, A.; Raquidan, D. )

    1991-01-01

    The submaxillary gland, a heterogeneous tissue composed essentially of two functionally distinct cell types (tubular epithelial and acinar), offers an interesting system in which to study the mechanisms of steroid-dependent growth and differentiation. One cell type, the granular convoluted tubular (GCT) cell, secretes a large number of physiologically important polypeptides, including epidermal and nerve growth factors. Two steroids, androgens and glucocorticoids, greatly influence the growth, differentiation, and secretory activity of GCT cells. Because glucocorticoids can partially mimic or potentiate androgen effects, it has been thought that glucocorticoids act via androgen receptors. Since the presence of glucocorticoid receptors is a prerequisite for glucocorticoid action, we have investigated the presence and cellular distribution of glucocorticoid receptors within the rat submaxillary gland. Binding experiments using (3H)dexamethasone revealed the presence of high affinity binding sites in rat submaxillary tissue homogenates. Most of these sites were specifically competed by dexamethasone, corticosterone, and a pure glucocorticoid agonist RU 28362. Neither testosterone nor dihydrotestosterone competed for glucocorticoid binding. The cellular distribution of glucocorticoid receptors within the submaxillary gland was investigated by immunocytochemistry, using two highly specific glucocorticoid receptor antibodies. The receptor was localized in the GCT cells, but not in the acinar cells of rat and mouse submaxillary tissue sections. In GCT cells, the glucocorticoid receptor colocalized with several secretory polypeptides, including epidermal growth factor, nerve growth factor, alpha 2u-globulin, and atrial natriuretic factor.

  11. The glucocorticoid receptor in the distal nephron is not necessary for the development or maintenance of dexamethasone-induced hypertension

    PubMed Central

    Goodwin, Julie E.; Zhang, Junhui; Velazquez, Heino; Geller, David S.

    2010-01-01

    Glucocorticoids are used as a treatment for a variety of conditions and hypertension is a well-recognized side effect of their use. The mechanism of glucocorticoid-induced hypertension is incompletely understood and has traditionally been attributed to promiscuous activation of the mineralocorticoid receptor by cortisol. Multiple lines of evidence, however, point to the glucocorticoid receptor as an important mediator as well. We have developed a mouse model of glucocorticoid-induced hypertension, which is dependent on the glucocorticoid receptor. To determine the site(s) of glucocorticoid receptor action relevant to the development of hypertension, we studied glucocorticoid-induced hypertension in a mouse with a tissue-specific knockout of the glucocorticoid receptor in the distal nephron. Although knockout mice had similar body weight, nephron number and renal histology compared to littermate controls, their baseline blood pressure was mildly elevated. Nevertheless, distal nephron glucocorticoid receptor knockout mice and controls had a similar hypertensive response to dexamethasone. Urinary excretion of electrolytes, both before and after administration of glucocorticoid was also indistinguishable between the two groups. We conclude that the glucocorticoid receptor in the distal nephron is not necessary for the development or maintenance of dexamethasone-induced hypertension in our model. PMID:20188070

  12. Glucocorticoid Receptor as a Potential Target to Decrease Aromatase Expression and Inhibit Leydig Tumor Growth.

    PubMed

    Panza, Salvatore; Malivindi, Rocco; Chemi, Francesca; Rago, Vittoria; Giordano, Cinzia; Barone, Ines; Bonofiglio, Daniela; Gelsomino, Luca; Giordano, Francesca; Andò, Sebastiano; Catalano, Stefania

    2016-05-01

    Leydig cell tumors are the most frequent interstitial neoplasms of the testis with increased incidence in recent years. They are hormonally active and are considered one of the steroid-secreting tumors. Although usually benign, the malignant phenotype responds poorly to conventional chemotherapy or radiation, highlighting the need to identify new therapeutic targets for treatment. Here, we identified a novel glucocorticoid-mediated mechanism that controls cell growth in Leydig cell tumors. We found that a synthetic glucocorticoid receptor agonist, dexamethasone, reduces cell proliferation in rat Leydig tumor cells by decreasing the expression and the enzymatic activity of the estrogen-producing enzyme aromatase. This inhibitory effect relies on the ability of activated glucocorticoid receptor to regulate the aromatase gene transcriptional activity through the recruitment of nuclear receptor corepressor protein and silencing mediator of retinoid and thyroid hormone receptors to a newly identified putative glucocorticoid responsive element within the aromatase promoter II. Our in vivo studies reveal a reduction of tumor growth, after dexamethasone treatment, in animal xenografts. Tumors from dexamethasone-treated mice exhibit a decrease in the expression of the proliferation marker Ki-67 and the aromatase enzyme. Our data demonstrate that activated glucocorticoid receptor, decreasing aromatase expression, induces Leydig tumor regression both in vitro and in vivo, suggesting that glucocorticoid receptor might be a potential target for the therapy of Leydig cell tumors. PMID:26968343

  13. Pathway interactions between MAPKs, mTOR, PKA, and the glucocorticoid receptor in lymphoid cells

    PubMed Central

    Miller, Aaron L; Garza, Anna S; Johnson, Betty H; Thompson, E Brad

    2007-01-01

    Background Glucocorticoids are frequently used as a primary chemotherapeutic agent in many types of human lymphoid malignancies because they induce apoptosis through activation of the glucocorticoid receptor, with subsequent alteration of a complex network of cellular mechanisms. Despite clinical usage for over fifty years, the complete mechanism responsible for glucocorticoid-related apoptosis or resistance remains elusive. The mitogen-activated protein kinase pathway is a signal transduction network that influences a variety of cellular responses through phosphorylation of specific target substrates, including the glucocorticoid receptor. In this study we have evaluated the pharmaceutical scenarios which converge on the mitogen-activated protein kinase pathway to alter glucocorticoid sensitivity in clones of human acute lymphoblastic CEM cells sensitive and refractory to apoptosis in response to the synthetic glucocorticoid dexamethasone. Results The glucocorticoid-resistant clone CEM-C1-15 displays a combination of high constitutive JNK activity and dexamethasone-induced ERK activity with a weak induction of p38 upon glucocorticoid treatment. The cells become sensitive to glucocorticoid-evoked apoptosis after: (1) inhibition of JNK and ERK activity, (2) stimulation of the cAMP/PKA pathway with forskolin, or (3) inhibition of mTOR with rapamycin. Treatments 1–3 in combination with dexamethasone alter the intracellular balance of phospho-MAPKs by lowering JNK phosphorylation and increasing the level of glucocorticoid receptor phosphorylated at serine 211, a modification known to enhance receptor activity. Conclusion Our data support the hypothesis that mitogen-activated protein kinases influence the ability of certain malignant lymphoid cells to undergo apoptosis when treated with glucocorticoid. Activated/phosphorylated JNK and ERK appear to counteract corticoid-dependent apoptosis. Inhibiting these MAPKs restores corticoid sensitivity to a resistant clone of

  14. Metal binding 'finger' structures in the glucocorticoid receptor defined by site-directed mutagenesis.

    PubMed Central

    Severne, Y; Wieland, S; Schaffner, W; Rusconi, S

    1988-01-01

    The glucocorticoid receptor and the other members of the steroid receptor super-family share a highly conserved, cysteine-rich region which coincides with the DNA binding/transactivating domain. It has been postulated that this region is folded into two 'zinc finger' structures, similar to those originally reported for the transcription factor TFIIIA. The first potential finger domain contains four conserved cysteines and one conserved histidine, while the second contains five conserved cysteines. Using site-directed mutagenesis, we have analysed the consequences of altering the proposed finger-like structures. Our results show that most of the mutations affecting the conserved cysteines result in a total loss of glucocorticoid receptor function. In one important exception, however, a conserved cysteine (Cys500) is dispensable for glucocorticoid receptor activity and therefore cannot be involved in complexing a metal ion to form a finger structure. Moreover, the replacement of either Cys476 or Cys482 by His residues maintains partial in vivo activity of the glucocorticoid receptor, while their exchange for an alanine or serine residue, respectively, eliminates receptor function. These results support, at a genetic level, the involvement of cysteines of the glucocorticoid receptor DNA binding domain in metal ion complexation and define the candidate residues involved in such coordination. Images PMID:3191912

  15. Competitive inhibition of (TH)dexamethasone binding to mammary glucocorticoid receptor by leupeptin

    SciTech Connect

    Hsieh, L.C.C.; Su, C.; Markland, F.S. Jr.

    1987-03-01

    The inhibitory effect of leupeptin on (TH)dexamethasone binding to the glucocorticoid receptor from lactating goat mammary cytosol has been studied. Leupeptin (10 mM) caused a significant (about 35%) inhibition of (TH)dexamethasone binding to glucocorticoid receptor. Binding inhibition is further increased following filtration of unlabeled cytosolic receptor through a Bio-Gel A 0.5-m column. Binding inhibition was partially reversed by monothioglycerol at 10 mM concentration. A double reciprocal plot revealed that leupeptin appears to be a competitive inhibitor of (TH)dexamethasone binding to the glucocorticoid receptor. Low salt sucrose density gradient centrifugation revealed that the leupeptin-treated sample formed a slightly larger (approximately 9 S) receptor complex (leupeptin-free complex sediments at 8 S).

  16. Glucocorticoid receptor expression and sub-cellular localization in dopamine neurons of the rat midbrain.

    PubMed

    Hensleigh, E; Pritchard, L M

    2013-11-27

    Stress plays an important role in the development of addiction. Animals subjected to stress exhibit sensitized responses to psychostimulant drugs, and this sensitized response is associated with functional adaptations of the mesolimbic dopamine system. These adaptations likely arise from direct or indirect effects of glucocorticoids on dopaminergic neurons. Though glucocorticoid receptor expression in midbrain dopaminergic neurons has been examined in previous studies, results have been somewhat equivocal. We sought to clarify this issue by analyzing tyrosine hydroxylase (TH) and glucocorticoid receptor (GR) co-localization in the rat midbrain by dual fluorescence immunohistochemistry. We also examined sub-cellular localization of the GR in rat midbrain neurons after acute restraint stress. Adult Long-Evans rats were sacrificed 0, 30, 60 or 120min after 30min of restraint stress. A control group did not undergo restraint. Blood samples were collected immediately before and after restraint for measurement of plasma corticosterone by enzyme immunoassay. Glucocorticoid receptors were observed in dopaminergic neurons in both the substantia nigra (SN) and ventral tegmental area (VTA). The degree of co-localization of TH and GR did not differ between the VTA and the SN. All animals subjected to stress exhibited significant increases in plasma corticosterone. Significant translocation of GR signal to cell nuclei was observed after restraint in the SN, but not in the VTA. These results suggest that stress-induced glucocorticoid secretion could trigger functional changes in the mesolimbic dopamine system by direct activation of glucocorticoid receptors in dopaminergic neurons. PMID:24121048

  17. Cytokines and glucocorticoid receptors are associated with the antidepressant-like effect of alarin.

    PubMed

    Zhuang, Fuzhi; Zhou, Xue; Gao, Xin; Lou, Dan; Bi, Xuesheng; Qin, Shoujun; Sun, Chuxiao; Ye, Peng; Wang, Yun; Ma, Tengfei; Li, Mei; Gu, Shuling

    2016-02-01

    Little is known about the physiological or pharmacological properties of alarin, a new neuropeptide belonging to the galanin family. We previously showed that alarin has an antidepressant-like effect and is associated with a decrease in the hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis that is observed in patients with depression using unpredictable chronic mild stress (UCMS) mouse model of depression. However, the mechanisms underlying these effects have not been uncovered. Inflammatory cytokines are reportedly associated with depression. Animal studies and cytokine immune therapy in humans suggest that pro-inflammatory cytokines induce depressive symptomatology and potently activate the HPA axis, whereas anti-inflammatory cytokines may decrease activation. Thus, we first determined the levels of inflammatory cytokines in the blood and brain to evaluate whether the antidepressant-like effect of alarin in UCMS-treated mice is related to its regulation of these inflammatory cytokines. Pro-inflammatory cytokines disrupt the function and/or expression of glucocorticoid receptors (GRs), which mediate the negative feedback of glucocorticoids on the HPA axis to keep it from being overactivated. We next explored the expression level of GRs in the brains of mice subjected to UCMS and to the administration of alarin. We found that intracerebroventricular administration of alarin significantly ameliorated depression-like behaviors in the UCMS-treated mice. Alarin restored the UCMS-induced an increase in the levels of the pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor α and a decrease in the anti-inflammatory cytokine IL-10 level in the blood, prefrontal cortex, hippocampus and hypothalamus. Alarin also reversed the UCMS-induced down-regulation of GR expression in these brain regions. Thus, the antidepressant-like effects of alarin may be mediated by restoring altered pro-inflammatory and anti-inflammatory cytokine levels and GR

  18. Glucocorticoid receptor signaling contributes to constitutive activation of the noncanonical NF-κB pathway in term human placenta.

    PubMed

    Wang, Bingbing; Palomares, Kristy; Parobchak, Nataliya; Cece, John; Rosen, Max; Nguyen, Anh; Rosen, Todd

    2013-02-01

    Our recent study demonstrated that constitutively activated RelB/NF-κB2 positively regulates the CRH in the human placenta. In the current study, we explored the role of the glucocorticoid receptor (GR) signaling in constitutive activation of the noncanonical NF-κB pathway. A glucocorticoid response element (GRE) motif search suggests that both NF-κB inducing kinase (NIK) and RelB genes, which are key regulators of the noncanonical NF-κB pathway, have a putative GRE within their promoter, approximately 1 kb upstream from the transcription start site. By using chromatin immunoprecipitation assay we identified that the GR and phosphorylated GR at Ser211 were associated with the GREs of both NIK and RelB. Dexamethasone stimulated expression of NIK, RelB, NF-κB2 as well as CRH and cyclooxygenase-2 (COX-2). Repression of GR by short interfering RNA resulted in inhibition of NIK, RelB, NF-κB2, CRH, and COX-2. In addition, depletion of GR attenuated glucocorticoid-mediated up-regulation of NIK, RelB, NF-κB2, CRH, and COX-2. Furthermore, siRNA specifically targeting NIK down-regulated CRH and COX-2. Taken together, these results suggest that constitutive activation of the noncanonical NF-κB pathway in term human placenta is driven by the GR signaling, which in turn up-regulates placental CRH and other NF-κB-responsive genes. PMID:23239753

  19. The nuclear receptor LRH-1 critically regulates extra-adrenal glucocorticoid synthesis in the intestine

    PubMed Central

    Mueller, Matthias; Cima, Igor; Noti, Mario; Fuhrer, Andrea; Jakob, Sabine; Dubuquoy, Laurent; Schoonjans, Kristina; Brunner, Thomas

    2006-01-01

    The nuclear receptor liver receptor homologue-1 (LRH-1, NR5A2) is a crucial transcriptional regulator of many metabolic pathways. In addition, LRH-1 is expressed in intestinal crypt cells where it regulates the epithelial cell renewal and contributes to tumorigenesis through the induction of cell cycle proteins. We have recently identified the intestinal epithelium as an important extra-adrenal source of immunoregulatory glucocorticoids. We show here that LRH-1 promotes the expression of the steroidogenic enzymes and the synthesis of corticosterone in murine intestinal epithelial cells in vitro. Interestingly, LRH-1 is also essential for intestinal glucocorticoid synthesis in vivo, as LRH-1 haplo-insufficiency strongly reduces the intestinal expression of steroidogenic enzymes and glucocorticoid synthesis upon immunological stress. These results demonstrate for the first time a novel role for LRH-1 in the regulation of intestinal glucocorticoid synthesis and propose LRH-1 as an important regulator of intestinal tissue integrity and immune homeostasis. PMID:16923850

  20. The nuclear receptor LRH-1 critically regulates extra-adrenal glucocorticoid synthesis in the intestine.

    PubMed

    Mueller, Matthias; Cima, Igor; Noti, Mario; Fuhrer, Andrea; Jakob, Sabine; Dubuquoy, Laurent; Schoonjans, Kristina; Brunner, Thomas

    2006-09-01

    The nuclear receptor liver receptor homologue-1 (LRH-1, NR5A2) is a crucial transcriptional regulator of many metabolic pathways. In addition, LRH-1 is expressed in intestinal crypt cells where it regulates the epithelial cell renewal and contributes to tumorigenesis through the induction of cell cycle proteins. We have recently identified the intestinal epithelium as an important extra-adrenal source of immunoregulatory glucocorticoids. We show here that LRH-1 promotes the expression of the steroidogenic enzymes and the synthesis of corticosterone in murine intestinal epithelial cells in vitro. Interestingly, LRH-1 is also essential for intestinal glucocorticoid synthesis in vivo, as LRH-1 haplo-insufficiency strongly reduces the intestinal expression of steroidogenic enzymes and glucocorticoid synthesis upon immunological stress. These results demonstrate for the first time a novel role for LRH-1 in the regulation of intestinal glucocorticoid synthesis and propose LRH-1 as an important regulator of intestinal tissue integrity and immune homeostasis. PMID:16923850

  1. Specific regulation of male rat liver cytosolic estrogen receptor by the modulator of the glucocorticoid receptor.

    PubMed

    Celiker, M Y; Haas, A; Saunders, D; Litwack, G

    1993-08-31

    Modulator is a novel low-molecular-weight organic compound that regulates activities of glucocorticoid and mineralocorticoid receptors as well as protein kinase C. In this study we show that male rat liver cytosolic estrogen receptor activation is inhibited by modulator in a dose-dependent manner. Fifty percent inhibition is obtained with 1 unit/ml modulator purified from bovine liver which is within the physiological concentration for modulator. However, sheep uterine cytosolic estrogen and androgen receptors are insensitive to regulation by modulator. Exogenous sodium molybdate treatment inhibits activation of all of these receptors of liver or uterus origin in an identical manner, further differentiating the effects of modulator and the molybdate anion. PMID:8363596

  2. Selective modulation through the glucocorticoid receptor ameliorates muscle pathology in mdx mice

    PubMed Central

    Huynh, Tony; Uaesoontrachoon, Kitipong; Quinn, James L; Tatem, Kathleen S; Heier, Christopher R; Van Der Meulen, Jack H; Yu, Qing; Harris, Mark; Nolan, Christopher J; Haegeman, Guy; Grounds, Miranda D; Nagaraju, Kanneboyina

    2014-01-01

    The over-expression of NF-κB signalling in both muscle and immune cells contribute to the pathology in dystrophic muscle. The anti-inflammatory properties of glucocorticoids, mediated predominantly through monomeric glucocorticoid receptor inhibition of transcription factors such as NF-κB (transrepression), are postulated to be an important mechanism for their beneficial effects in Duchenne muscular dystrophy. Chronic glucocorticoid therapy is associated with adverse effects on metabolism, growth, bone mineral density and the maintenance of muscle mass. These detrimental effects result from direct glucocorticoid receptor homodimer interactions with glucocorticoid response elements of the relevant genes. Compound A, a non-steroidal selective glucocorticoid receptor modulator, is capable of transrepression without transactivation. We confirm the in vitro NF-κB inhibitory activity of compound A in H-2Kb-tsA58 mdx myoblasts and myotubes, and demonstrate improvements in disease phenotype of dystrophin deficient mdx mice. Compound A treatment in mdx mice from 18 days of post-natal age to 8 weeks of age increased the absolute and normalized forelimb and hindlimb grip strength, attenuated cathepsin-B enzyme activity (a surrogate marker for inflammation) in forelimb and hindlimb muscles, decreased serum creatine kinase levels and reduced IL-6, CCL2, IFNγ, TNF and IL-12p70 cytokine levels in gastrocnemius (GA) muscles. Compared with compound A, treatment with prednisolone, a classical glucocorticoid, in both wild-type and mdx mice was associated with reduced body weight, reduced GA, tibialis anterior and extensor digitorum longus muscle mass and shorter tibial lengths. Prednisolone increased osteopontin (Spp1) gene expression and osteopontin protein levels in the GA muscles of mdx mice and had less favourable effects on the expression of Foxo1, Foxo3, Fbxo32, Trim63, Mstn and Igf1 in GA muscles, as well as hepatic Igf1 in wild-type mice. In conclusion, selective

  3. Effect of suspension hypokinesia/hypodynamia on glucocorticoid receptor levels in rat hindlimb muscles

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1982-01-01

    Ilyina-Kakueva et. al. (1976) conducted an investigation in which rats were exposed to weightlessness during the Cosmos program. An examination of the rats revealed a marked atrophy of hindlimb muscles. A suspension model has been developed to simulate these weightlessness-induced alterations. In agreement with the Cosmos studies, suspension hypokinesia/hypodynamia (H/H) results in differential atrophy of hindlimb muscles in rats. Recent studies have demonstrated elevated glucocorticoid receptor numbers in the gastrocnemius muscle following immobilization and denervation. One of the objectives of the present investigation was to evaluate the effect of suspension H/H on glucocorticoid receptor levels in rat hindlimb muscles. Another objective was to ascertain whether altered receptor levels reflect the differential nature of hindlimb muscle atrophy during suspension H/H. The obtained findings suggest that differential muscle atrophy resulting from H/H may result from differential alterations of glucocorticoid receptor levels.

  4. Glucocorticoid receptor density correlates with health risk factors and insulin resistance in Caucasian and African American subjects.

    PubMed

    Islam, A; Chen, Y; Poth, M; Smith, Z P; Deuster, P A

    2012-09-01

    Activation of the hypothalamic-pituitary-adrenal axis leads to secretion of cortisol, which binds to peripheral glucocorticoid receptor and mediates a complex series of metabolic and immune effects. Cortisol also binds to receptors in the hypothalamus and pituitary, and inhibits further secretion of adrenocorticotropic hormone thus preventing an excessive response. Excess glucocorticoid effect is seen in Cushings disease, adrenal adenomas/carcinomas and in glucocorticoid resistance. Within such pathology there are health consequences of excessive glucocorticoid action, including obesity, hypertension, and glucose intolerance or diabetes. We hypothesized that increased glucocorticoid receptor in peripheral tissue might mediate an excess glucocorticoid effect in the absence of increased cortisol secretion. The objective of the study was to investigate the relationship between glucocorticoid receptor density in leukocytes and health risk indices relevant to obesity and diabetes in a sample of Caucasian and African American subjects. Comparison of glucocorticoid receptor concentration with subject body mass index, percentage body fat, waist circumference, insulin resistance, plasma cortisol levels, gender, and lipid profiles were conducted. Increased glucocorticoid receptor density significantly correlated with body mass index, percentage body fat, waist circumference, and insulin resistance. No significant correlation was observed for glucocorticoid receptor density with lipid profiles. Furthermore, no significant differences were observed in glucocorticoid receptor density between Caucasian and African American subjects or male and female participants. Our results show that high risk health conditions, such as obesity and type-2 diabetes, may be associated with a form of hypothalamic-pituitary-adrenal axis dysfunction, characterized by localized leukocyte glucocorticoid receptor over-expression. PMID:22851186

  5. Selective glucocorticoid receptor modulation maintains bone mineral density in mice.

    PubMed

    Thiele, Sylvia; Ziegler, Nicole; Tsourdi, Elena; De Bosscher, Karolien; Tuckermann, Jan P; Hofbauer, Lorenz C; Rauner, Martina

    2012-11-01

    Glucocorticoids (GCs) are potent anti-inflammatory drugs, but their use is limited by their adverse effects on the skeleton. Compound A (CpdA) is a novel GC receptor modulator with the potential for an improved risk/benefit profile. We tested the effects of CpdA on bone in a mouse model of GC-induced bone loss. Bone loss was induced in FVB/N mice by implanting slow-release pellets containing either vehicle, prednisolone (PRED) (3.5 mg), or CpdA (3.5 mg). After 4 weeks, mice were killed to examine the effects on the skeleton using quantitative computed tomography, bone histomorphometry, serum markers of bone turnover, and gene expression analysis. To assess the underlying mechanisms, in vitro studies were performed with human bone marrow stromal cells (BMSCs) and murine osteocyte-like cells (MLO-Y4 cells). PRED reduced the total and trabecular bone density in the femur by 9% and 24% and in the spine by 11% and 20%, respectively, whereas CpdA did not influence these parameters. Histomorphometry confirmed these results and further showed that the mineral apposition rate was decreased by PRED whereas the number of osteoclasts was increased. Decreased bone formation was paralleled by a decline in serum procollagen type 1 N-terminal peptide (P1NP), reduced skeletal expression of osteoblast markers, and increased serum levels of the osteoblast inhibitor dickkopf-1 (DKK-1). In addition, serum CTX-1 and the skeletal receptor activator of NF-κB ligand (RANKL)/osteoprotegerin (OPG) ratio were increased by PRED. None of these effects were observed with CpdA. Consistent with the in vivo data, CpdA did not increase the RANKL/OPG ratio in MLO-Y4 cells or the expression of DKK-1 in bone tissue, BMSCs, and osteocytes. Finally, CpdA also failed to transactivate DKK-1 expression in bone tissue, BMSCs, and osteocytes. This study underlines the bone-sparing potential of CpdA and suggests that by preventing increases in the RANKL/OPG ratio or DKK-1 in osteoblast lineage cells, GC

  6. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression.

    PubMed

    Hinds, Terry D; Peck, Bailey; Shek, Evan; Stroup, Steven; Hinson, Jennifer; Arthur, Susan; Marino, Joseph S

    2016-01-01

    Unlike the glucocorticoid receptor α (GRα), GR β (GRβ) has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex) responsiveness. We measured GR isoform expression in C₂C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C₂C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a) mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx) and muscle ring finger 1 (MuRF1) response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids. PMID:26875982

  7. Glucocorticoid Receptor Confers Resistance to Anti-Androgens by Bypassing Androgen Receptor Blockade

    PubMed Central

    Arora, Vivek K.; Schenkein, Emily; Murali, Rajmohan; Subudhi, Sumit K.; Wongvipat, John; Balbas, Minna D.; Shah, Neel; Cai, Ling; Efstathiou, Eleni; Logothetis, Chris; Zheng, Deyou; Sawyers, Charles L.

    2014-01-01

    Summary The treatment of advanced prostate cancer has been transformed by novel antiandrogen therapies such as enzalutamide. Here we identify induction of glucocorticoid receptor (GR) expression as a common feature of drug resistant tumors in a credentialed preclinical model, a finding also confirmed in patient samples. GR substituted for the androgen receptor (AR) to activate a similar but distinguishable set of target genes and was necessary for maintenance of the resistant phenotype. The GR agonist dexamethasone was sufficient to confer enzalutamide resistance whereas a GR antagonist restored sensitivity. Acute AR inhibition resulted in GR upregulation in a subset of prostate cancer cells due to relief of AR-mediated feedback repression of GR expression. These findings establish a novel mechanism of escape from AR blockade through expansion of cells primed to drive AR target genes via an alternative nuclear receptor upon drug exposure. PMID:24315100

  8. Potent and multiple regulatory actions of microglial glucocorticoid receptors during CNS inflammation

    PubMed Central

    Carrillo-de Sauvage, M Á; Maatouk, L; Arnoux, I; Pasco, M; Sanz Diez, A; Delahaye, M; Herrero, M T; Newman, T A; Calvo, C F; Audinat, E; Tronche, F; Vyas, S

    2013-01-01

    In CNS, glucocorticoids (GCs) activate both GC receptor (GR) and mineralocorticoid receptor (MR), whereas GR is widely expressed, the expression of MR is restricted. However, both are present in the microglia, the resident macrophages of the brain and their activation can lead to pro- or anti-inflammatory effects. We have therefore addressed the specific functions of GR in microglia. In mice lacking GR in macrophages/microglia and in the absence of modifications in MR expression, intraparenchymal injection of lipopolysaccharide (LPS) activating Toll-like receptor 4 signaling pathway resulted in exacerbated cellular lesion, neuronal and axonal damage. Global inhibition of GR by RU486 pre-treatment revealed that microglial GR is the principal mediator preventing neuronal degeneration triggered by lipopolysaccharide (LPS) and contributes with GRs of other cell types to the protection of non-neuronal cells. In vivo and in vitro data show GR functions in microglial differentiation, proliferation and motility. Interestingly, microglial GR also abolishes the LPS-induced delayed outward rectifier currents by downregulating Kv1.3 expression known to control microglia proliferation and oxygen radical production. Analysis of GR transcriptional function revealed its powerful negative control of pro-inflammatory effectors as well as upstream inflammatory activators. Finally, we analyzed the role of GR in chronic unpredictable mild stress and aging, both known to prime or sensitize microglia in vivo. We found that microglial GR suppresses rather than mediates the deleterious effects of stress or aging on neuronal survival. Overall, the results show that microglial GR acts on several key processes limiting pro-inflammatory actions of activated microglia. PMID:24013726

  9. Burn-induced increase in atrogin-1 and MuRF-1 in skeletal muscle is glucocorticoid independent but downregulated by IGF-I.

    PubMed

    Lang, Charles H; Huber, Danuta; Frost, Robert A

    2007-01-01

    The present study determined whether thermal injury increases the expression of the ubiquitin (Ub) E3 ligases referred to as muscle ring finger (MuRF)-1 and muscle atrophy F-box (MAFbx; aka atrogin-1), which are muscle specific and responsible for the increased protein breakdown observed in other catabolic conditions. After 48 h of burn injury (40% total body surface area full-thickness scald burn) gastrocnemius weight was reduced, and this change was associated with an increased mRNA abundance for atrogin-1 and MuRF-1 (3.1- to 8-fold, respectively). Similarly, burn increased polyUb mRNA content in the gastrocnemius twofold. In contrast, there was no burn-induced atrophy of the soleus and no significant change in atrogin-1, MuRF-1, or polyUb mRNA. Burns also did not alter E3 ligase expression in heart. Four hours after administration of the anabolic agent insulin-like growth factor (IGF)-I to burned rats, the mRNA content of atrogin-1 and polyUb in gastrocnemius had returned to control values and the elevation in MuRF-1 was reduced 50%. In contrast, leucine did not alter E3 ligase expression. In a separate study, in vivo administration of the proteasome inhibitor Velcade prevented burn-induced loss of muscle mass determined at 48 h. Finally, administration of the glucocorticoid receptor antagonist RU-486 did not prevent burn-induced atrophy of the gastrocnemius or the associated elevation in atrogin-1, MuRF-1, or polyUb. In summary, the acute muscle wasting accompanying thermal injury is associated with a glucocorticoid-independent increase in the expression of several Ub E3 ligases that can be downregulated by IGF-I. PMID:16946078

  10. Glucocorticoid receptor activation impairs hippocampal plasticity by suppressing BDNF expression in obese mice

    PubMed Central

    Wosiski-Kuhn, Marlena; Erion, Joanna R.; Gomez-Sanchez, Elise P.; Gomez-Sanchez, Celso E.; Stranahan, Alexis M.

    2015-01-01

    Diabetes and obesity are associated with perturbation of adrenal steroid hormones and impairment of hippocampal plasticity, but the question of whether these conditions recruit glucocorticoid-mediated molecular cascades that are comparable to other stressors has yet to be fully addressed. We have used a genetic mouse model of obesity and diabetes with chronically elevated glucocorticoids to determine the mechanism for glucocorticoid-induced deficits in hippocampal synaptic function. Pharmacological inhibition of adrenal steroidogenesis attenuates structural and functional impairments by regulating plasticity among dendritic spines in the hippocampus of leptin receptor deficient (db/db) mice. Synaptic deficits evoked by exposure to elevated corticosterone levels in db/db mice are attributable to glucocorticoid receptor-mediated transrepression of AP-1 actions at BDNF promoters I and IV. db/db mice exhibit corticosterone-mediated reductions in brain-derived neurotrophic factor (BDNF), and a change in the ratio of TrkB to P75NTR that silences the functional response to BDNF stimulation. Lentiviral suppression of glucocorticoid receptor expression rescues behavioral and synaptic function in db/db mice, and also reinstates BDNF expression, underscoring the relevance of molecular mechanisms previously demonstrated after psychological stress to the functional alterations observed in obesity and diabetes. PMID:24636513

  11. Test systems for the determination of glucocorticoid receptor ligand induced skin atrophy

    PubMed Central

    Schäcke, Heike; Asadullah, Khusru

    2011-01-01

    Topical glucocorticoids are highly anti-inflammatory effective but limited by their side effect potential, with skin atrophy being the most prominent one. Thus, determining the atrophogenic potential of novel compounds targeting the glucocorticoid receptor is important. Significant progress in the understanding of glucocorticoid receptor mediated molecular action has been made providing the basis for novel glucocorticoid receptor ligands with a potentially superior effect/side effect profile. Such compounds, however, need to be tested. The present gold standard for the reliable prediction of glucocorticoid induced skin atrophy are still in vivo models, however, in vitro models may replace them to some extent in the future. Indeed, advances in technologies to determine the atrophogenic potential of compounds in vitro has been made recently and promising novel test models like the human full thickness skin models are emerging. Their full predictive value, however, needs to be further evaluated. Currently, a screening approach starting with a combination of several in vitro test systems followed by subsequent testing of the most promising compounds in rodent models is recommended prior entering clinical studies with selected development compounds. PMID:22110776

  12. Cell surface modulation of gene expression in brain cells by down regulation of glucocorticoid receptors

    SciTech Connect

    McGinnis, J.F.; de Vellis, J.

    1981-02-01

    The concentration of glycerol-3-phosphate dehydrogenase (GPDH; sn-glycerol-3-phosphate:NAD/sup +/ 2-oxidoreductase, EC 1.1.1.8) had previously been determined to be regulated by glucocorticoids in rat brain cells in vivo and in cell culture. We now demonstrate that concanavalin A (Con A) can inhibit the induction of GPDH in a dose-dependent manner in C6 rat glioma cells and in primary cultures of rat brain oligodendrocytes. The inhibition specifically prevents the appearance of new molecules of GPDH, although Con A does not significantly inhibit protein synthesis in these cells, nor does it affect the activity of another solube enzyme, lactate dehydrogenase. The ability to block enzyme induction is not limited to Con A, because other lectins also inhibit induction. The molecular mechanism by which Con A inhibits GPDH induction appears to be by the down regulation of the cytoplasmic glucocorticoid receptors, because exposure to Con A results in the loss of more than 90% of the receptor activity. Con A does not inhibit the receptor assay and no direct interaction between the receptor and Con A could be demonstrated. This down regulation is not tumor cell specific and appears to be a general phenomenon, because it occurs in normal oligodendrocytes and even in normal astrocytes (a cell type in which the gene for GPDH is not expressed). The down regulation of glucocorticoid receptors in normal brain cells suggests two important corollaries. First, it demonstrates the existence of a rate-limiting step controlling the glucocorticoid-dependent gene expression in brain cells and possibly represents a regulatory site common to all glucocorticoid target cells. Second, it suggests that the response to glucocorticoids of oligodendrocytes and astrocytes can be regulated in vivo by cell surface contact with endogenous lectins, neighboring cells, or both.

  13. General effect of endotoxin on glucocorticoid receptors in mammalian tissues

    SciTech Connect

    Stith, R.D.; McCallum, R.E.

    1986-01-01

    Considering the ubiquitous nature of glucocorticoid actions and the fact that endotoxin inhibits glucocorticoid action in the liver, we proposed to examine whether endotoxin affected extrahepatic actions of glucocorticoids. Fasted C57BL/6J mice were injected intraperitoneally with endotoxin (LD50) at 0800 and were killed 6 h later. Control mice were injected with an equal volume of saline. /sup 3/H-dexamethasone binding, measured by a new cytosol exchange assay utilizing molybdate plus dithiothreitol, in liver, kidney, skeletal muscle, spleen, lung, and heart tissue was significantly lower in treated than in control mice. The equilibrium dissociation constants were not significantly different, but the number of available binding sites in each tissue was reduced by endotoxin treatment. Phosphoenolpyruvate carboxykinase activity was significantly reduced in liver but not in kidney. Endotoxin treatment lowered glycogen content in liver but not in skeletal muscle. The reduction observed in the a form of liver glycogen synthase due to endotoxin was not seen in skeletal muscle glycogen synthase a. These data support the proposal that endotoxin or a mediator of its action inhibits systemic glucocorticoid action. The results also emphasize the central role of the liver in the metabolic disturbances of the endotoxin-treated mouse.

  14. Chronic stress accelerates ligature-induced periodontitis by suppressing glucocorticoid receptor-α signaling.

    PubMed

    Lu, Huaixiu; Xu, Minguang; Wang, Feng; Liu, Shisen; Gu, Jing; Lin, Songshan; Zhao, Lisheng

    2016-01-01

    Periodontitis is a common chronic inflammatory disease. Recent studies have shown that chronic stress (CS) might modulate periodontal disease, but there are few models of CS-induced periodontitis, and the underlying mechanisms are unclear. The present study established a rat model of periodontitis associated with CS induced by nylon thread ligatures. The severity of periodontitis was evaluated in this model by radiographic and pathological examination. The inflammatory reaction indicated by the elevated serum levels of interleukin (IL)-1β, IL-6 and IL-8 was assessed by enzyme-linked immunosorbent assay. Toll-like receptor-4 (TLR4) and glucocorticoid receptor-α (GR-α) expressions were detected by reverse transcriptase-PCR and western blotting. Open-field tests and serum corticosterone were used to evaluate CS. The results showed that CS induced behavioral changes and increased corticosterone levels of the animals with periodontitis. CS stimulation markedly increased alveolar bone loss, periodontal pocket depth and the number of plaques. It also enhanced the inflammatory reaction. These results suggest that CS accelerated the ligature-induced pathological changes associated with periodontitis. Further analysis of the mechanisms involved showed that GR-α expression was significantly downregulated in periodontal tissues of the animals undergoing CS. Blocking GR-α signaling in lipopolysaccharide and corticosteroid-treated human periodontal ligament fibroblast cells in vitro significantly upregulated the expression of p-Akt (protein kinase B) and TLR4, promoted nuclear factor-κB activity and increased levels of IL-1β, IL-6 and IL-8. This research suggests that CS might accelerate the pathological progression of periodontitis by a GR-α signaling-mediated inflammatory response and that this may be a potential therapeutic target for the treatment of periodontal disease, particularly in patients with CS. PMID:27012709

  15. Chronic stress accelerates ligature-induced periodontitis by suppressing glucocorticoid receptor-α signaling

    PubMed Central

    Lu, Huaixiu; Xu, Minguang; Wang, Feng; Liu, Shisen; Gu, Jing; Lin, Songshan; Zhao, Lisheng

    2016-01-01

    Periodontitis is a common chronic inflammatory disease. Recent studies have shown that chronic stress (CS) might modulate periodontal disease, but there are few models of CS-induced periodontitis, and the underlying mechanisms are unclear. The present study established a rat model of periodontitis associated with CS induced by nylon thread ligatures. The severity of periodontitis was evaluated in this model by radiographic and pathological examination. The inflammatory reaction indicated by the elevated serum levels of interleukin (IL)-1β, IL-6 and IL-8 was assessed by enzyme-linked immunosorbent assay. Toll-like receptor-4 (TLR4) and glucocorticoid receptor-α (GR-α) expressions were detected by reverse transcriptase-PCR and western blotting. Open-field tests and serum corticosterone were used to evaluate CS. The results showed that CS induced behavioral changes and increased corticosterone levels of the animals with periodontitis. CS stimulation markedly increased alveolar bone loss, periodontal pocket depth and the number of plaques. It also enhanced the inflammatory reaction. These results suggest that CS accelerated the ligature-induced pathological changes associated with periodontitis. Further analysis of the mechanisms involved showed that GR-α expression was significantly downregulated in periodontal tissues of the animals undergoing CS. Blocking GR-α signaling in lipopolysaccharide and corticosteroid-treated human periodontal ligament fibroblast cells in vitro significantly upregulated the expression of p-Akt (protein kinase B) and TLR4, promoted nuclear factor-κB activity and increased levels of IL-1β, IL-6 and IL-8. This research suggests that CS might accelerate the pathological progression of periodontitis by a GR-α signaling-mediated inflammatory response and that this may be a potential therapeutic target for the treatment of periodontal disease, particularly in patients with CS. PMID:27012709

  16. Glucocorticoid (GC) sensitivity and GC receptor expression differ in thymocyte subpopulations.

    PubMed

    Berki, Timea; Pálinkás, László; Boldizsár, Ferenc; Németh, Péter

    2002-05-01

    Positive and negative selection steps in the thymus prevent non-functional or harmful T cells from reaching the periphery. To examine the role of glucocorticoid (GC) hormone and its intracellular receptor (GCR) in thymocyte development we measured the GCR expression in different thymocyte subpopulations of BALB/c mice with or without previous dexamethasone (DX), anti-CD3 mAb, RU-486 and RU-43044 treatment. Four-color labeling of thymocytes allowed detection of surface CD4/CD8/CD69 expression in parallel with intracellular GCR molecules by flow cytometry. Double-positive (DP) CD4+CD8+ thymocytes showed the lowest GCR expression compared to double-negative (DN) CD4-CD8- thymocytes and mature single-positive (SP) cells. DX treatment caused a concentration-dependent depletion of the DP cell population and increased appearance of mature SP cells with reduced GCR levels. GCR antagonists (RU-486 or RU-43044) did not influence the effect of DX on thymocyte composition; however, RU-43044 inhibited the high-dose GC-induced GCR down-regulation in SP and DN cells. GCR antagonists alone did not influence the maturation of thymocytes and receptor numbers. Combined low-dose anti-CD3 mAb and DX treatment caused an enhanced maturation (positive selection) of thymocytes followed by the elevation of CD69+ DP cells. The sensitivity of DP thymocytes with a GCRlow phenotype to GC action and the ineffectiveness of the GCR antagonist treatment may reflect a non-genomic GC action in the thymic selection steps. PMID:11978776

  17. Expression of glucocorticoid and progesterone nuclear receptor genes in archival breast cancer tissue

    PubMed Central

    Smith, Robert A; Lea, Rod A; Curran, Joanne E; Weinstein, Stephen R; Griffiths, Lyn R

    2003-01-01

    Background Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. Methods RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. Results Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). Conclusion Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue. PMID:12559052

  18. GLUCOCORTICOID RECEPTOR REGULATION IN THE RAT EMBRYO: A POTENTIAL SITE FOR DEVELOPMENTAL TOXICITY?

    EPA Science Inventory

    Glucocorticoid receptor regulation in the rat embryo: a potential site for developmental toxicity?

    Ghosh B, Wood CR, Held GA, Abbott BD, Lau C.

    National Research Council, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.

  19. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links with Internalizing Behavior Problems

    ERIC Educational Resources Information Center

    Parade, Stephanie H.; Ridout, Kathryn K.; Seifer, Ronald; Armstrong, David A.; Marsit, Carmen J.; McWilliams, Melissa A.; Tyrka, Audrey R.

    2016-01-01

    Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor (GR) gene, "NR3C1," which is a key regulator of the hypothalamic-pituitary-adrenal axis. Yet no prior work has considered the contribution of methylation of "NR3C1" to emerging behavior problems and psychopathology in…

  20. Glucocorticoid hormones downregulate histidine decarboxylase mRNA and enzyme activity in rat lung.

    PubMed

    Zahnow, C A; Panula, P; Yamatodani, A; Millhorn, D E

    1998-08-01

    Histidine decarboxylase (HDC) is the primary enzyme regulating histamine biosynthesis. Histamine contributes to the pathogenesis of chronic inflammatory disorders such as asthma. Because glucocorticoids are effective in the treatment of asthma, we examined the effects of 6 h of exogenously administered dexamethasone (0.5-3,000 microg/kg ip), corticosterone (0.2-200 mg/kg ip), or endogenously elevated corticosterone (via exposure of rats to 10% oxygen) on HDC expression in the rat lung. HDC transcripts were decreased approximately 73% with dexamethasone treatment, 57% with corticosterone treatment, and 50% with exposure to 10% oxygen. Likewise, HDC enzyme activity was decreased 80% by treatment with dexamethasone and corticosterone and 60% by exposure to 10% oxygen. Adrenalectomy prevented the decreases in HDC mRNA and enzyme activity observed in rats exposed to 10% oxygen, suggesting that the adrenal gland is necessary for the mediation of hypoxic effects on HDC gene expression. These results demonstrate that corticosteroids initiate a process that leads to the decrease of HDC mRNA levels and enzyme activity in rat lung. PMID:9700103

  1. Receptor downregulation and desensitization enhance the information processing ability of signaling receptors

    SciTech Connect

    Shankaran, Harish; Wiley, H. S.; Resat, Haluk

    2007-11-09

    The activation of cell surface receptors in addition to initiating signaling events also triggers regulatory processes that restrict the duration of signaling. Acute attenuation of signaling can be accomplished either via ligand-induced internalization of receptors (receptor downregulation) or via ligand-induced receptor desensitization. These phenomena have traditionally been viewed in the context of “adaptation” wherein the receptor system enters a refractory state in the presence of sustained ligand stimuli and thereby prevents the cell from “over-responding” to the ligand. Here we use the epidermal growth factor receptor (EGFR) and G-protein coupled receptors (GPCR) as model systems to respectively examine the effects of downregulation and desensitization on the ability of signaling receptors to decode time-varying ligand stimuli. We show that downregulation and desensitization mechanisms can lead to tight and efficient input-output coupling thereby ensuring synchronous processing of ligand inputs. Frequency response analysis indicates that upstream elements of the EGFR and GPCR networks behave like low-pass filters. Receptor downregulation and desensitization increase the filter bandwidth thereby enabling the receptor systems to decode inputs in a wider frequency range. Further, system-theoretic analysis reveals that the receptor systems are analogous to classical mechanical over-damped oscillators. This analogy enables us to describe downregulation and desensitization as phenomena that make the systems more resilient in responding to ligand perturbations thereby improving the stability of the system resting state. We hypothesize that, in addition to serving as mechanisms for adaptation, receptor downregulation and desensitization play a critical role in temporal information processing.

  2. Covalent affinity labeling, radioautography, and immunocytochemistry localize the glucocorticoid receptor in rat testicular Leydig cells

    SciTech Connect

    Stalker, A.; Hermo, L.; Antakly, T. )

    1989-12-01

    The presence and distribution of glucocorticoid receptors in the rat testis were examined by using 2 approaches: in vivo quantitative radioautography and immunocytochemistry. Radioautographic localization was made possible through the availability of a glucocorticoid receptor affinity label, dexamethasone 21-mesylate, which binds covalently to the glucocorticoid receptor, thereby preventing dissociation of the steroid-receptor complex. Adrenalectomized adult rats were injected with a tritiated (3H) form of this steroid into the testis and the tissue was processed for light-microscope radioautography. Silver grains were observed primarily over the Leydig cells of the interstitial space and to a lesser extent, over the cellular layers which make up the seminiferous epithelium, with no one cell type showing preferential labeling. To determine the specificity of the labeling, a 25- or 50-fold excess of unlabeled dexamethasone was injected simultaneously with the same dose of (3H)-dexamethasone 21-mesylate. In these control experiments, a marked reduction in label intensity was noted over the Leydig as well as tubular cells. Endocytic macrophages of the interstitium were non-specifically labeled, indicating uptake of the ligand possibly by fluid-phase endocytosis. A quantitative analysis of the label confirmed the presence of statistically significant numbers of specific binding sites for glucocorticoids in both Leydig cells and the cellular layers of the seminiferous epithelium; 86% of the label was found over Leydig cells, and only 14% over the cells of the seminiferous epithelium. These binding data were confirmed by light-microscope immunocytochemistry using a monoclonal antibody to the glucocorticoid receptor.

  3. Selective modulation through the glucocorticoid receptor ameliorates muscle pathology in mdx mice.

    PubMed

    Huynh, Tony; Uaesoontrachoon, Kitipong; Quinn, James L; Tatem, Kathleen S; Heier, Christopher R; Van Der Meulen, Jack H; Yu, Qing; Harris, Mark; Nolan, Christopher J; Haegeman, Guy; Grounds, Miranda D; Nagaraju, Kanneboyina

    2013-10-01

    The over-expression of NF-κB signalling in both muscle and immune cells contribute to the pathology in dystrophic muscle. The anti-inflammatory properties of glucocorticoids, mediated predominantly through monomeric glucocorticoid receptor inhibition of transcription factors such as NF-κB (transrepression), are postulated to be an important mechanism for their beneficial effects in Duchenne muscular dystrophy. Chronic glucocorticoid therapy is associated with adverse effects on metabolism, growth, bone mineral density and the maintenance of muscle mass. These detrimental effects result from direct glucocorticoid receptor homodimer interactions with glucocorticoid response elements of the relevant genes. Compound A, a non-steroidal selective glucocorticoid receptor modulator, is capable of transrepression without transactivation. We confirm the in vitro NF-κB inhibitory activity of compound A in H-2K(b) -tsA58 mdx myoblasts and myotubes, and demonstrate improvements in disease phenotype of dystrophin deficient mdx mice. Compound A treatment in mdx mice from 18 days of post-natal age to 8 weeks of age increased the absolute and normalized forelimb and hindlimb grip strength, attenuated cathepsin-B enzyme activity (a surrogate marker for inflammation) in forelimb and hindlimb muscles, decreased serum creatine kinase levels and reduced IL-6, CCL2, IFNγ, TNF and IL-12p70 cytokine levels in gastrocnemius (GA) muscles. Compared with compound A, treatment with prednisolone, a classical glucocorticoid, in both wild-type and mdx mice was associated with reduced body weight, reduced GA, tibialis anterior and extensor digitorum longus muscle mass and shorter tibial lengths. Prednisolone increased osteopontin (Spp1) gene expression and osteopontin protein levels in the GA muscles of mdx mice and had less favourable effects on the expression of Foxo1, Foxo3, Fbxo32, Trim63, Mstn and Igf1 in GA muscles, as well as hepatic Igf1 in wild-type mice. In conclusion, selective

  4. Synthesis and structure-activity relationships of novel indazolyl glucocorticoid receptor partial agonists.

    PubMed

    Gilmore, John L; Sheppeck, James E; Wang, Jim; Dhar, T G Murali; Cavallaro, Cullen; Doweyko, Arthur M; Mckay, Lorraine; Cunningham, Mark D; Habte, Sium F; Nadler, Steven G; Dodd, John H; Somerville, John E; Barrish, Joel C

    2013-10-01

    SAR was used to further develop an indazole class of non-steroidal glucocorticoid receptor agonists aided by a GR LBD (ligand-binding domain)-agonist co-crystal structure described in the accompanying paper. Progress towards discovering a dissociated GR agonist guided by human in vitro assays biased the optimization of this compound series towards partial agonists that possessed excellent selectivity against other nuclear hormone receptors. PMID:23916594

  5. Receptor downregulation and desensitization enhance the information processing ability of signalling receptors

    PubMed Central

    Shankaran, Harish; Wiley, H Steven; Resat, Haluk

    2007-01-01

    Background In addition to initiating signaling events, the activation of cell surface receptors also triggers regulatory processes that restrict the duration of signaling. Acute attenuation of signaling can be accomplished either via ligand-induced internalization of receptors (endocytic downregulation) or via ligand-induced receptor desensitization. These phenomena have traditionally been viewed in the context of adaptation wherein the receptor system enters a refractory state in the presence of sustained ligand stimuli and thereby prevents the cell from over-responding to the ligand. Here we use the epidermal growth factor receptor (EGFR) and G-protein coupled receptors (GPCR) as model systems to respectively examine the effects of downregulation and desensitization on the ability of signaling receptors to decode time-varying ligand stimuli. Results Using a mathematical model, we show that downregulation and desensitization mechanisms can lead to tight and efficient input-output coupling thereby ensuring synchronous processing of ligand inputs. Frequency response analysis indicates that upstream elements of the EGFR and GPCR networks behave like low-pass filters with the system being able to faithfully transduce inputs below a critical frequency. Receptor downregulation and desensitization increase the filter bandwidth thereby enabling the receptor systems to decode inputs in a wider frequency range. Further, system-theoretic analysis reveals that the receptor systems are analogous to classical mechanical over-damped systems. This analogy enables us to metaphorically describe downregulation and desensitization as phenomena that make the systems more resilient in responding to ligand perturbations thereby improving the stability of the system resting state. Conclusion Our findings suggest that in addition to serving as mechanisms for adaptation, receptor downregulation and desensitization can play a critical role in temporal information processing. Furthermore

  6. Effects of maternal dexamethasone treatment early in pregnancy on glucocorticoid receptors in the ovine placenta.

    PubMed

    Shang, H; Meng, W; Sloboda, D M; Li, S; Ehrlich, L; Plagemann, A; Dudenhausen, J W; Henrich, W; Newnham, J P; Challis, J R G; Braun, T

    2015-05-01

    The effects of endogenous cortisol on binucleate cells (BNCs), which promote fetal growth, may be mediated by glucocorticoid receptors (GRs), and exposure to dexamethasone (DEX) in early pregnancy stages of placental development might modify this response. In this article, we have investigated the expression of GR as a determinant of these responses. Pregnant ewes carrying singleton fetuses (n = 119) were randomized to control (2 mL saline/ewe) or DEX-treated groups (intramuscular injections of 0.14 mg/kg ewe weight per 12 hours) at 40 to 41 days of gestation (dG). Placental tissue was collected at 50, 100, 125, and 140 dG. Total glucocorticoid receptor protein (GRt) was increased significantly by DEX at 50 and 125 dG in females only, but decreased in males at 125 dG as compared to controls. Glucocorticoid receptor α (GRα) protein was not changed after DEX treatment. Three BNC phenotypes were detected regarding GRα expression (++, +-, --), DEX increased the proportion of (++) and decreased (--) BNC at 140 dG. Effects were sex- and cell type dependent, modifying the responsiveness of the placenta to endogenous cortisol. We speculate that 3 maturational stages of BNCs exist and that the overall activity of BNCs is determined by the distribution of these 3 cell types, which may become altered through early pregnancy exposure to elevated glucocorticoids. PMID:25332218

  7. Effects of Maternal Dexamethasone Treatment Early in Pregnancy on Glucocorticoid Receptors in the Ovine Placenta

    PubMed Central

    Shang, H.; Meng, W.; Sloboda, D. M.; Li, S.; Ehrlich, L.; Plagemann, A.; Dudenhausen, J. W.; Henrich, W.; Newnham, J. P.; Challis, J. R. G.

    2015-01-01

    The effects of endogenous cortisol on binucleate cells (BNCs), which promote fetal growth, may be mediated by glucocorticoid receptors (GRs), and exposure to dexamethasone (DEX) in early pregnancy stages of placental development might modify this response. In this article, we have investigated the expression of GR as a determinant of these responses. Pregnant ewes carrying singleton fetuses (n = 119) were randomized to control (2 mL saline/ewe) or DEX-treated groups (intramuscular injections of 0.14 mg/kg ewe weight per 12 hours) at 40 to 41 days of gestation (dG). Placental tissue was collected at 50, 100, 125, and 140 dG. Total glucocorticoid receptor protein (GRt) was increased significantly by DEX at 50 and 125 dG in females only, but decreased in males at 125 dG as compared to controls. Glucocorticoid receptor α (GRα) protein was not changed after DEX treatment. Three BNC phenotypes were detected regarding GRα expression (++, +−, −−), DEX increased the proportion of (++) and decreased (−−) BNC at 140 dG. Effects were sex- and cell type dependent, modifying the responsiveness of the placenta to endogenous cortisol. We speculate that 3 maturational stages of BNCs exist and that the overall activity of BNCs is determined by the distribution of these 3 cell types, which may become altered through early pregnancy exposure to elevated glucocorticoids. PMID:25332218

  8. Stress and corticosteroids regulate rat hippocampal mitochondrial DNA gene expression via the glucocorticoid receptor.

    PubMed

    Hunter, Richard G; Seligsohn, Ma'ayan; Rubin, Todd G; Griffiths, Brian B; Ozdemir, Yildirim; Pfaff, Donald W; Datson, Nicole A; McEwen, Bruce S

    2016-08-01

    Glucocorticoids (GCs) are involved in stress and circadian regulation, and produce many actions via the GC receptor (GR), which is classically understood to function as a nuclear transcription factor. However, the nuclear genome is not the only genome in eukaryotic cells. The mitochondria also contain a small circular genome, the mitochondrial DNA (mtDNA), that encodes 13 polypeptides. Recent work has established that, in the brain and other systems, the GR is translocated from the cytosol to the mitochondria and that stress and corticosteroids have a direct influence on mtDNA transcription and mitochondrial physiology. To determine if stress affects mitochondrially transcribed mRNA (mtRNA) expression, we exposed adult male rats to both acute and chronic immobilization stress and examined mtRNA expression using quantitative RT-PCR. We found that acute stress had a main effect on mtRNA expression and that expression of NADH dehydrogenase 1, 3, and 6 (ND-1, ND-3, ND-6) and ATP synthase 6 (ATP-6) genes was significantly down-regulated. Chronic stress induced a significant up-regulation of ND-6 expression. Adrenalectomy abolished acute stress-induced mtRNA regulation, demonstrating GC dependence. ChIP sequencing of GR showed that corticosterone treatment induced a dose-dependent association of the GR with the control region of the mitochondrial genome. These findings demonstrate GR and stress-dependent transcriptional regulation of the mitochondrial genome in vivo and are consistent with previous work linking stress and GCs with changes in the function of brain mitochondria. PMID:27457949

  9. miR-29c induction contributes to downregulation of vascular extracellular matrix proteins by glucocorticoids.

    PubMed

    Chuang, Tsai-Der; Pearce, William J; Khorram, Omid

    2015-07-15

    Maternal undernutrition increases maternal glucocorticoids (GCs) and alters microRNA expression in offspring. Given that the mechanisms of GC action on vascular development are not clear, this study examined the influence of GCs on microRNA 29c (miR-29c) and its predicted targets in primary rat aorta smooth muscle cells (RAOSMCs). Dexamethasone (Dex) and corticosterone (Cor) time-dependently increased miR-29c expression and reduced collagen type III (Col3A1), collagen type IV (Col4A5), elastin (ELN), and matrix metalloproteinase-2 (MMP2) protein in RAOSMCs. These effects were blocked by mifepristone. These genes were also targeted by miR-29c, as confirmed by a significant decrease in luciferase reporter activity of Col3A1 (34%), Col4A5 (45%), ELN (17%), and MMP2 (28%). In cells transfected with reporter plasmids, including the 3'-untranslated region of genes targeted by miR-29c, treatment with Dex or Cor also resulted in decreases in luciferase activity. Gain or loss of function of miR-29c significantly altered mRNA expression of Col3A1 (26% and 26%, respectively), Col4A5 (28% and 32%, respectively), and MMP2 (24% and 14%, respectively) but did not affect ELN. Gain or loss of function of miR-29c also significantly altered protein levels of Col3A1 (51% and 16%, respectively), Col4A5 (56% and 22%, respectively), ELN (53% and 71%, respectively), and MMP2 (28% and 53%, respectively). Coincubation of anti-miR-29c with Dex or Cor partially attenuated the effects of these steroids on protein expression of Col3A1 (25% and 24%, respectively), Col4A5 (26% and 44%, respectively), ELN (31% and 55%, respectively), and MMP2 (46% and 26%, respectively) in RAOSMCs compared with anti-miR negative controls. Our results demonstrate that GCs regulate the expression of Col3A1, Col4A5, ELN, and MMP2, at least in part, through induction of miR-29c. PMID:26017148

  10. Genome-wide analysis of glucocorticoid receptor binding regions in adipocytes reveal gene network involved in triglyceride homeostasis.

    PubMed

    Yu, Chi-Yi; Mayba, Oleg; Lee, Joyce V; Tran, Joanna; Harris, Charlie; Speed, Terence P; Wang, Jen-Chywan

    2010-01-01

    Glucocorticoids play important roles in the regulation of distinct aspects of adipocyte biology. Excess glucocorticoids in adipocytes are associated with metabolic disorders, including central obesity, insulin resistance and dyslipidemia. To understand the mechanisms underlying the glucocorticoid action in adipocytes, we used chromatin immunoprecipitation sequencing to isolate genome-wide glucocorticoid receptor (GR) binding regions (GBRs) in 3T3-L1 adipocytes. Furthermore, gene expression analyses were used to identify genes that were regulated by glucocorticoids. Overall, 274 glucocorticoid-regulated genes contain or locate nearby GBR. We found that many GBRs were located in or nearby genes involved in triglyceride (TG) synthesis (Scd-1, 2, 3, GPAT3, GPAT4, Agpat2, Lpin1), lipolysis (Lipe, Mgll), lipid transport (Cd36, Lrp-1, Vldlr, Slc27a2) and storage (S3-12). Gene expression analysis showed that except for Scd-3, the other 13 genes were induced in mouse inguinal fat upon 4-day glucocorticoid treatment. Reporter gene assays showed that except Agpat2, the other 12 glucocorticoid-regulated genes contain at least one GBR that can mediate hormone response. In agreement with the fact that glucocorticoids activated genes in both TG biosynthetic and lipolytic pathways, we confirmed that 4-day glucocorticoid treatment increased TG synthesis and lipolysis concomitantly in inguinal fat. Notably, we found that 9 of these 12 genes were induced in transgenic mice that have constant elevated plasma glucocorticoid levels. These results suggested that a similar mechanism was used to regulate TG homeostasis during chronic glucocorticoid treatment. In summary, our studies have identified molecular components in a glucocorticoid-controlled gene network involved in the regulation of TG homeostasis in adipocytes. Understanding the regulation of this gene network should provide important insight for future therapeutic developments for metabolic diseases. PMID:21187916

  11. Uterine glucocorticoid receptors are critical for fertility in mice through control of embryo implantation and decidualization

    PubMed Central

    Whirledge, Shannon D.; Oakley, Robert H.; Myers, Page H.; Lydon, John P.; DeMayo, Francesco; Cidlowski, John A.

    2015-01-01

    In addition to the well-characterized role of the sex steroid receptors in fertility and reproduction, organs of the female reproductive tract are also regulated by the hypothalamic–pituitary–adrenal axis. These endocrine organs are sensitive to stress-mediated actions of glucocorticoids, and the mouse uterus contains high levels of the glucocorticoid receptor (GR). Although the presence of GR in the uterus is well established, uterine glucocorticoid signaling has been largely ignored in terms of its reproductive and/or immunomodulatory functions on fertility. To define the direct in vivo function of glucocorticoid signaling in adult uterine physiology, we generated a uterine-specific GR knockout (uterine GR KO) mouse using the PRcre mouse model. The uterine GR KO mice display a profound subfertile phenotype, including a significant delay to first litter and decreased pups per litter. Early defects in pregnancy are evident as reduced blastocyst implantation and subsequent defects in stromal cell decidualization, including decreased proliferation, aberrant apoptosis, and altered gene expression. The deficiency in uterine GR signaling resulted in an exaggerated inflammatory response to induced decidualization, including altered immune cell recruitment. These results demonstrate that GR is required to establish the necessary cellular context for maintaining normal uterine biology and fertility through the regulation of uterine-specific actions. PMID:26598666

  12. Identification of hormone-interacting amino acid residues within the steroid-binding domain of the glucocorticoid receptor in relation to other steroid hormone receptors

    SciTech Connect

    Carlstedt-Duke, J.; Stroemstedt, P.E.; Persson, B.; Cederlund, E.; Gustafsson, J.A.; Joernvall, H.

    1988-05-15

    Purified rat liver glucocorticoid receptor was covalently charged with (/sup 3/H)glucocorticoid by photoaffinity labeling (UV irradiation of (/sup 3/H)triamcinolone acetonide-glucocorticoid receptor) or affinity labeling (incubation with (/sup 3/H)dexamethasone mesylate). After labeling, separate samples of the denatured receptor were cleaved with trypsin (directly or after prior succinylation), chymotrypsin, and cyanogen bromide. Labeled residues in the peptides obtained were identified by radiosequence analysis. The peaks of radioactivity corresponded to Met-622 and Cys-754 after photoaffinity labeling with (/sup 3/H)triamcinolone acetonide and Cys-656 after affinity labeling with (/sup 3/H)dexamethasone mesylate. The labeled residues are all positioned within hydrophobic segments of the steroid-binding domain. The patterns of hydropathy and secondary structure for the glucocorticoid receptor are highly similar to those for the progestin receptor and similar but less so to those for the estrogen receptor and to those for c-erb A.

  13. Role of the hinge region of glucocorticoid receptor for HEXIM1-mediated transcriptional repression

    SciTech Connect

    Yoshikawa, Noritada; Shimizu, Noriaki; Sano, Motoaki; Ohnuma, Kei; Iwata, Satoshi; Hosono, Osamu; Fukuda, Keiichi; Morimoto, Chikao

    2008-06-20

    We previously reported that HEXIM1 (hexamethylene bisacetamide-inducible protein 1), which suppresses transcription elongation via sequestration of positive transcription elongation factor b (P-TEFb) using 7SK RNA as a scaffold, directly associates with glucocorticoid receptor (GR) to suppress glucocorticoid-inducible gene activation. Here, we revealed that the hinge region of GR is essential for its interaction with HEXIM1, and that oxosteroid receptors including GR show sequence homology in their hinge region and interact with HEXIM1, whereas the other members of nuclear receptors do not. We also showed that HEXIM1 suppresses GR-mediated transcription in two ways: sequestration of P-TEFb by HEXIM1 and direct interaction between GR and HEXIM1. In contrast, peroxisome proliferator-activated receptor {gamma}-dependent gene expression is negatively modulated by HEXIM1 solely via sequestration of P-TEFb. We, therefore, conclude that HEXIM1 may act as a gene-selective transcriptional regulator via direct interaction with certain transcriptional regulators including GR and contribute to fine-tuning of, for example, glucocorticoid-mediated biological responses.

  14. Glucocorticoid receptor mediated the propofol self-administration by dopamine D1 receptor in nucleus accumbens.

    PubMed

    Wu, Binbin; Liang, Yuyuan; Dong, Zhanglei; Chen, Zhichuan; Zhang, Gaolong; Lin, Wenxuan; Wang, Sicong; Wang, Benfu; Ge, Ren-Shan; Lian, Qingquan

    2016-07-22

    Propofol, a widely used anesthetic, can cause addictive behaviors in both human and experimental animals. In the present study, we examined the involvement of glucocorticoid receptor (GR) signaling in the molecular process by which propofol may cause addiction. The propofol self-administration model was established by a fixed ratio 1 (FR1) schedule of reinforced dosing over successive 14days in rats. On day 15, the rats were treated with dexamethasone, a GR agonist (10-100μg/kg), or RU486, a GR antagonist (10-100μg/kg) at 1h prior to the last training. The animal behaviors were recorded automatically by the computer. The expression of dopamine D1 receptor in the nucleus accumbens (NAc) was examined by Western blot and the concentrations of plasma corticosterone were measured by enzyme-linked immunosorbent assay (ELISA). To further examine the specificity of GR in the process, mineralocorticoid receptor (MR) antagonist, spironolactone, and dexamethasone plus MR agonist, aldosterone, were also tested. Administration of dexamethasone (100μg/kg) or RU486 (⩾10mg/kg) significantly attenuated the rate of propofol maintained active nose-poke responses and infusions, which were accompanied by reductions in both plasma corticosterone level and the expression of D1 receptor in the NAc. Neither spironolactone alone nor dexamethasone combined with aldosterone affected the propofol-maintaining self-administrative behavior, indicating GR, but not MR, modulates the propofol reward in rats. In addition, neither the food-maintaining sucrose responses under FR1 schedule nor the locomotor activity was affected by any doses of dexamethasone or RU486 tested. These findings provide evidence that GR signaling may play an important role in propofol reward. PMID:27126557

  15. Effect of long term dexamethasone treatment on the glucocorticoid receptor

    SciTech Connect

    Silva, C.M.; DeLorenzo, T.M.; Cidlowski, J.A.

    1986-05-01

    The ability of dexamethasone(dex) to induce alkaline phosphatase activity was found to decrease with chronic hormone exposure. In order to better understand this adaptive resistance, the structure of the receptor from control cells and cells under long term dex (10/sup -6/M) treatment was analyzed. Native isoelectric focusing showed that receptor from dex treated cells focused at more basic pI than receptor from control cells. Denaturing two-dimensional gel analysis resulted in the characteristic 4-5 spots of (/sup 3/H)dexamethasone mesylate (DM) binding of receptor from control cells, but no (/sup 3/H)DM binding could be seen for receptor from dex treated cells. In order to study DNA-binding characteristics, gels were renatured, transferred to nitrocellulose and probed with (/sup 32/P)MMTV-GRE. Receptor from control cells showed 5 spots of DNA-binding at 101 kDa molecular weight and a pI range of 7.42 to 7.32. However, receptor from dex treated cells showed less intense DNA-binding which occurred only at the more basic range of pIs (7.42 to 7.39). Furthermore, no nuclear receptor sites could be measured in the dex treated cells, whereas 20,000 sites were measured in control cells. Even after being taken off hormone treatment for 12 days, cells could regenerate only 50% of their receptors. In conclusion, this system is conducive to studying the mechanism of receptor regulation.

  16. The activated glucocorticoid receptor modulates presumptive autoregulation of ribosomal protein S6 protein kinase, p70 S6K.

    PubMed

    Shah, O Jameel; Iniguez-Lluhi, Jorge A; Romanelli, Angela; Kimball, Scot R; Jefferson, Leonard S

    2002-01-25

    Protein metabolism in eukaryotic organisms is defined by a synthesis-degradation equilibrium that is subject to regulation by hormonal and nutritional signals. In mammalian tissues such as skeletal muscle, glucocorticoid hormones specify a catabolic response that influences both protein synthetic and protein degradative pathways. With regard to the former, glucocorticoids attenuate mRNA translation at two levels: translational efficiency, i.e. translation initiation, and translational capacity, i.e. ribosome biogenesis. Glucocorticoids may impair translational capacity through the ribosomal S6 protein kinase (p70 S6K), a recognized glucocorticoid target and an effector of ribosomal protein synthesis. We demonstrate here that the reduction in growth factor-activated p70 S6K activity by glucocorticoids depends upon a functional glucocorticoid receptor (GR) and that the GR is both necessary and sufficient to render p70 S6K subject to glucocorticoid regulation. Furthermore, the DNA binding and transcriptional activation but not repression properties of the GR are indispensable for p70 S6K regulation. Finally, a mutational analysis of the p70 S6K carboxyl terminus indicates that this region confers glucocorticoid sensitivity, and thus glucocorticoids may facilitate autoinhibition of the enzyme ultimately reducing the efficiency with which T389 is phosphorylated. PMID:11705993

  17. Membrane glucocorticoid receptors are localised in the extracellular matrix and signal through the MAPK pathway in mammalian skeletal muscle fibres

    PubMed Central

    Boncompagni, Simona; Arthurton, Lewis; Akujuru, Eugene; Pearson, Timothy; Steverding, Dietmar; Protasi, Feliciano; Mutungi, Gabriel

    2015-01-01

    A number of studies have previously proposed the existence of glucocorticoid receptors on the plasma membrane of many cell types, including skeletal muscle fibres. However, their exact localisation and the cellular signalling pathway(s) they utilise to communicate with the rest of the cell are still poorly understood. In this study, we investigated the localisation and the mechanism(s) underlying the non-genomic physiological functions of these receptors in mouse skeletal muscle cells. The results show that the receptors were localised in the cytoplasm in myoblasts, in the nucleus in myotubes, in the extracellular matrix, in satellite cells and in the proximity of mitochondria in adult muscle fibres. Also, they bound laminin in a glucocorticoid-dependent manner. Treating small skeletal muscle fibre bundles with the synthetic glucocorticoid beclomethasone dipropionate increased the phosphorylation (= activation) of extracellular signal-regulated kinases 1 and 2, c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. This occurred within 5 min and depended on the fibre type and the duration of the treatment. It was also abolished by the glucocorticoid receptor inhibitor, mifepristone, and a monoclonal antibody against the receptor. From these results we conclude that the non-genomic/non-canonical physiological functions of glucocorticoids, in adult skeletal muscle fibres, are mediated by a glucocorticoid receptor localised in the extracellular matrix, in satellite cells and close to mitochondria, and involve activation of the mitogen-activated protein kinase pathway. PMID:25846902

  18. Sequence-specific DNA binding by glucocorticoid receptor "zinc finger peptides".

    PubMed

    Archer, T K; Hager, G L; Omichinski, J G

    1990-10-01

    Steroid hormone receptors can activate or repress transcription from responsive loci by binding to DNA. We have examined the mechanism of DNA binding by individually synthesizing the putative "zinc finger peptides" from the rat glucocorticoid receptor. Atomic absorption studies show that the peptides will bind zinc on an equimolar basis, and circular dichroism experiments demonstrate a significant alteration in secondary structure in the presence of zinc. The results from a series of experiments establish that metal ion is required for binding to DNA and that the amino-terminal zinc finger shows a significantly greater affinity for glucocorticoid response element-containing DNA over control DNA. These observations indicate that a single synthetic "zinc finger peptide" is able to bind to DNA in a sequence-specific manner. PMID:2120703

  19. Epigenetics and the glucocorticoid receptor: A review of the implications in depression.

    PubMed

    Farrell, Chloe; O'Keane, Veronica

    2016-08-30

    Depression is a serious psychiatric disorder that effects at least 350 million people worldwide today. Dysregulation of the hypothalamic-pituitary-adrenal axis (HPAA) is a robust finding in the pathophysiology of depression. This dysregulation is hypothesized to result from altered central glucocorticoid receptor (GR) levels and/or function as a consequence of chronic glucocorticoid (GC) release, leading to receptor resistance. Pivotal animal and human research to date has identified that early life exposure to prolonged levels of GCs, stress and/or depression, can induce epigenetic modifications at key regions on the GR gene that lead to alterations in GR expression and function. Epigenetics provides an attractive mechanism to explain how ones' genes and environment can interact to produce different disease phenotypes. This review aims to compile the information that has been collected to date and to identify key areas for further investigation. PMID:27344028

  20. Discovery of novel dihydro-9,10-ethano-anthracene carboxamides as glucocorticoid receptor modulators.

    PubMed

    Yang, Bingwei V; Vaccaro, Wayne; Doweyko, Arthur M; Doweyko, Lidia M; Huynh, Tram; Tortolani, David; Nadler, Steven G; McKay, Lorraine; Somerville, John; Holloway, Deborah A; Habte, Sium; Weinstein, David S; Barrish, Joel C

    2009-04-15

    A series of dihydro-9,10-ethano-anthracene-11-carboxamides as novel glucocorticoid receptor modulators is reported. SAR exploration identified compounds from this series displaying a promising dissociation profile in discriminating between transrepression and transactivation activities. 17a is a partial agonist of GR-mediated transactivation which elicits potent and efficacious transrepression in reporter gene assays. A hypothetical binding mode is provided which accounts for the induction of functional activity by a bridgehead methyl group. PMID:19321341

  1. Discovery of potent and selective nonsteroidal indazolyl amide glucocorticoid receptor agonists.

    PubMed

    Sheppeck, James E; Gilmore, John L; Xiao, Hai-Yun; Dhar, T G Murali; Nirschl, David; Doweyko, Arthur M; Sack, Jack S; Corbett, Martin J; Malley, Mary F; Gougoutas, Jack Z; Mckay, Lorraine; Cunningham, Mark D; Habte, Sium F; Dodd, John H; Nadler, Steven G; Somerville, John E; Barrish, Joel C

    2013-10-01

    Modification of a phenolic lead structure based on lessons learned from increasing the potency of steroidal glucocorticoid agonists lead to the discovery of exceptionally potent, nonsteroidal, indazole GR agonists. SAR was developed to achieve good selectivity against other nuclear hormone receptors with the ultimate goal of achieving a dissociated GR agonist as measured by human in vitro assays. The specific interactions by which this class of compounds inhibits GR was elucidated by solving an X-ray co-crystal structure. PMID:23953070

  2. Cytokine-Induced Loss of Glucocorticoid Function: Effect of Kinase Inhibitors, Long-Acting β2-Adrenoceptor Agonist and Glucocorticoid Receptor Ligands

    PubMed Central

    Rider, Christopher F.; Shah, Suharsh; Miller-Larsson, Anna; Giembycz, Mark A.; Newton, Robert

    2015-01-01

    Acting on the glucocorticoid receptor (NR3C1), glucocorticoids are widely used to treat inflammatory diseases. However, glucocorticoid resistance often leads to suboptimal asthma control. Since glucocorticoid-induced gene expression contributes to glucocorticoid activity, the aim of this study was to use a 2×glucocorticoid response element (GRE) reporter and glucocorticoid-induced gene expression to investigate approaches to combat cytokine-induced glucocorticoid resistance. Pre-treatment with tumor necrosis factor-α (TNF) or interleukin-1β inhibited dexamethasone-induced mRNA expression of the putative anti-inflammatory genes RGS2 and TSC22D3, or just TSC22D3, in primary human airway epithelial and smooth muscle cells, respectively. Dexamethasone-induced DUSP1 mRNA was unaffected. In human bronchial epithelial BEAS-2B cells, dexamethasone-induced TSC22D3 and CDKN1C expression (at 6 h) was reduced by TNF pre-treatment, whereas DUSP1 and RGS2 mRNAs were unaffected. TNF pre-treatment also reduced dexamethasone-dependent 2×GRE reporter activation. This was partially reversed by PS-1145 and c-jun N-terminal kinase (JNK) inhibitor VIII, inhibitors of IKK2 and JNK, respectively. However, neither inhibitor affected TNF-dependent loss of dexamethasone-induced CDKN1C or TSC22D3 mRNA. Similarly, inhibitors of the extracellular signal-regulated kinase, p38, phosphoinositide 3-kinase or protein kinase C pathways failed to attenuate TNF-dependent repression of the 2×GRE reporter. Fluticasone furoate, fluticasone propionate and budesonide were full agonists relative to dexamethasone, while GSK9027, RU24858, des-ciclesonide and GW870086X were partial agonists on the 2×GRE reporter. TNF reduced reporter activity in proportion with agonist efficacy. Full and partial agonists showed various degrees of agonism on RGS2 and TSC22D3 expression, but were equally effective at inducing CDKN1C and DUSP1, and did not affect the repression of CDKN1C or TSC22D3 expression by TNF. Finally

  3. Adipocyte glucocorticoid receptor has a minor contribution in adipose tissue growth.

    PubMed

    Desarzens, Sébastien; Faresse, Nourdine

    2016-07-01

    The glucocorticoids bind and activate both the glucocorticoid receptor (GR) as well as the mineralocorticoid receptor in adipocytes. Despite several studies to determine the function of these two receptors in mediating glucocorticoids effects, their relative contribution in adipose tissue expansion and obesity is unclear. To investigate the effect of GR in adipose tissue function, we generated an adipocyte-specific Gr-knockout mouse model (Gr(ad-ko)). These mice were submitted either to a standard diet or a high-fat high sucrose diet. We found that adipocyte-specific deletion of Gr did not affect body weight gain or adipose tissue formation and distribution. However, the lack of Gr in adipocyte promotes a diet-induced inflammation determined by higher pro-inflammatory genes expression and macrophage infiltration in the fat pads. Surprisingly, the adipose tissue inflammation in Gr(ad-ko) mice was not correlated with insulin resistance or dyslipidemia, but with disturbed glucose tolerance. Our data demonstrate that adipocyte-specific ablation of Gr in vivo may affect the adipose tissue function but not its expansion during a high calorie diet. PMID:27106108

  4. Highly inducible expression from vectors containing multiple GRE's in CHO cells overexpressing the glucocorticoid receptor.

    PubMed Central

    Israel, D I; Kaufman, R J

    1989-01-01

    A conditional glucocorticoid-responsive expression vector system is described for highly inducible expression of heterologous genes in mammalian cells. This host-vector system requires high level expression of the glucocorticoid receptor (GR) protein in the host cell and multiple copies of the receptor binding site within the expression vector. Transfection and selection of Chinese hamster ovary cells with expression vectors encoding the rat GR yielded cell lines which express functional receptor at high levels. Insertion of multiple copies of the MMTV enhancer (glucocorticoid responsive element, GRE) into an Adenovirus major late promoter (AdMLP) based expression vector yielded greater than 1000-fold inducible expression by dexamethasone (dex) in transient DNA transfection assays. The induced expression level was 7-fold greater than that obtained with an AdMLP based vector containing an SV40 enhancer, but lacking GRE's. Vectors containing the SV40 enhancer in combination with multiple GRE's exhibited elevated basal expression in the absence of dex, but retained inducibility in both transient assays and after integration and amplification in the CHO genome. This expression system should be of general utility for studying gene regulation and for expressing heterologous genes in a regulatable fashion. Images PMID:2546123

  5. Repression of DNA-binding dependent glucocorticoid receptor-mediated gene expression

    PubMed Central

    Muzikar, Katy A.; Nickols, Nicholas G.; Dervan, Peter B.

    2009-01-01

    The glucocorticoid receptor (GR) affects the transcription of genes involved in diverse processes, including energy metabolism and the immune response, through DNA-binding dependent and independent mechanisms. The DNA-binding dependent mechanism occurs by direct binding of GR to glucocorticoid response elements (GREs) at regulatory regions of target genes. The DNA-binding independent mechanism involves binding of GR to transcription factors and coactivators that, in turn, contact DNA. A small molecule that competes with GR for binding to GREs could be expected to affect the DNA-dependent pathway selectively by interfering with the protein-DNA interface. We show that a DNA-binding polyamide that targets the consensus GRE sequence binds the glucocorticoid-induced zipper (GILZ) GRE, inhibits expression of GILZ and several other known GR target genes, and reduces GR occupancy at the GILZ promoter. Genome-wide expression analysis of the effects of this polyamide on a set of glucocorticoid-induced and -repressed genes could help to elucidate the mechanism of GR regulation for these genes. PMID:19805343

  6. Sequencing analysis of the human glucocorticoid receptor (NR3C1) gene in multiple sclerosis patients.

    PubMed

    Kassi, Eva; Semaniakou, Anna; Sertedaki, Amalia; Evangelopoulos, Maria-Eleftheria; Kazazoglou, Theodosia; Kominakis, Antonios; Sfagos, Constantinos; Charmandari, Evangelia; Chrousos, George P; Moutsatsou, Paraskevi

    2016-04-15

    Various specific human glucocorticoid receptor (NR3C1) gene polymorphisms have been described in multiple sclerosis (MS) patients and correlated with disease progression, susceptibility and aggressiveness. Herein, we investigated the presence of gene alterations in the entire coding region of the NR3C1 in MS patients of variable clinical status (CIS, RRMS and SPMS) and the association(s) of these alterations with severity of disease (EDSS), response to glucocorticoid (GC) treatment and clinical improvement. Sixty Caucasian Greek MS patients were included. Sequencing the coding sequences and intron-exon boundaries of the NR3C1 did not reveal the presence of mutation(s) in any of the MS patients. Three previously described polymorphisms were detected: p.N363S (rs6195), p.N766N (rs6196) and c.1469-16G>T (rs6188). None of the identified alleles/genotypes were found to be associated with the severity of disease, response to glucocorticoids and disease subtypes. Known polymorphism, such as ER22/23EK that has been previously detected in MS patients, was not detected. There is a considerable ethnicity-related variation in the frequency of the NR3C1 polymorphisms. Although a genetic basis of the glucocorticoid sensitivity exists in healthy population, in the presence of chronic inflammation and abundance of cytokines--such in MS patients--other factors appear to play a more important role in GC sensitivity. PMID:27000245

  7. Cell type-dependent divergence of transactivation by glucocorticoid receptor ligand.

    PubMed

    Tanigawa, Kiyoshi; Tanaka, Katsunao; Nagase, Hideki; Miyake, Hidekazu; Kiniwa, Mamoru; Ikizawa, Koichi

    2002-12-01

    The glucocorticoid receptor regulates gene expression mainly by two mechanisms; transactivation and trans-repression. A ligand with strong transrepression and weak transactivation activity is predicted to be a beneficial agent with potent anti-inflammatory activity and minor adverse effects. Recently, the profile of a synthetic steroid, RU24858, has been reported to fulfill this condition in vitro, but others have reported no dissociation between the anti-inflammatory activity and side effects in vivo. To gain further information on the profile of this compound, we evaluated its transactivation ability using a reporter gene analysis both in vitro and in vivo. In the in vitro analysis, RU24858 demonstrated only a weak transactivation activity in HeLa cells, when compared with prednisolone. In CV-1 cells, however, these two glucocorticoids exhibited equivalent transactivation activities. This behavior is independent of whether the reporter gene is regulated by mouse mammary tumor virus promoter or multiple copies of glucocorticoid response element. When the reporter plasmid was inoculated into mouse abdominal skin using a gene gun, followed by orally administration of glucocorticoids, RU24858 induced significantly higher reporter enzyme activity than prednisolone. These results suggest that the profile of RU24858 is divergent and its transactivation ability is comparable to prednisolone depending on the cell-type both in vitro and in vivo. PMID:12499651

  8. Metal oxyanion stabilization of the rat glucocorticoid receptor is independent of thiols.

    PubMed

    Modarress, K J; Cavanaugh, A H; Chakraborti, P K; Simons, S S

    1994-10-14

    The ability of sodium molybdate, both to stabilize the steroid binding activity of glucocorticoid receptors and to prevent the activation of receptor-steroid complexes to a DNA binding species, has long been thought to involve thiols. Two receptor thiols in particular, Cys-656 and Cys-661 of rat receptors, have been suspected. The requirements for the action of molybdate, as well as two other metal oxyanions (tungstate and vanadate) known to exert the same effects as molybdate, have now been examined with receptors in which these thiols, or a third cysteine in the steroid binding cavity (Cys-640), have been mutated to serine. No mutation prevented any metal oxyanion from either stabilizing steroid-free receptors or blocking the activation of complexes for binding to nonspecific or specific DNA sequences. Thus, Cys-640, Cys-656, and Cys-661 are not required for any of the effects of molybdate, tungstate, or vanadate with rat glucocorticoid receptors. Studies with hybrid receptors, and with a 16-kDa steroid binding core fragment containing only 3 cysteines at positions 640, 656, and 661, indicated that no cysteine of the rat receptor was needed to maintain responsiveness to molybdate. Even when all of the thiol groups in crude cytosol were blocked by reaction with excess methyl methanethiol-sulfonate, each metal oxyanion was still able to stabilize the steroid binding of receptors. These results argue that molybdate, tungstate, and vanadate each interact with the receptor or an associated nonreceptor protein(s) in a manner that does not require thiols. An indirect mechanism of molybdate action was evaluated in light of the recent report that the whole cell actions are mediated by increased levels of intracellular cGMP. Under cell-free conditions, however, the effects of molybdate could not be reproduced by cGMP derivatives. Evidence consistent with a direct effect was that molybdate, tungstate, or vanadate each modified the kinetics of proteolysis of wild type

  9. ATP hydrolysis is essential for Bag-1M-mediated inhibition of the DNA binding by the glucocorticoid receptor

    SciTech Connect

    Hong, Wei; Chen, Linfeng; Liu, Yunde; Gao, Weizhen

    2009-12-04

    The 70-kDa heat shock protein (Hsp70) is involved in providing the appropriate conformation of various nuclear hormone receptors, including the glucocorticoid receptor (GR). The Bcl-2 associated athanogene 1M (Bag-1M) is known to downregulate the DNA binding by the GR. Also, Bag-1M interacts with the ATPase domain of Hsp70 to modulate the release of the substrate from Hsp70. In this study, we demonstrate that ATP hydrolysis enhances Bag-1M-mediated inhibition of the DNA binding by the GR. However, the inhibitory effect of Bag-1M was abolished when the intracellular ATP was depleted. In addition, a Bag-1M mutant lacking the interaction with Hsp70 did not influence the GR to bind DNA, suggesting the interaction of Bag-1M with Hsp70 in needed for its negative effect. These results indicate that ATP hydrolysis is essential for Bag-1M-mediated inhibition of the DNA binding by the GR and Hsp70 is a mediator for this process.

  10. Chronic stress alters glucocorticoid receptor and mineralocorticoid receptor mRNA expression in the European starling (Sturnus vulgaris) brain.

    PubMed

    Dickens, M; Romero, L M; Cyr, N E; Dunn, I C; Meddle, S L

    2009-10-01

    Although the glucocorticoid response to acute short-term stress is an adaptive physiological mechanism that aids in the response to and survival of noxious stimuli, chronic stress is associated with a negative impact on health. In wild-caught European starlings (Sturnus vulgaris), chronic stress alters the responsiveness of hypothalamic-pituitary-adrenal (HPA) axis as measured by the acute corticosterone response. In the present study, we investigated potential underlying neuroendocrine mechanisms by comparing glucocorticoid receptor and mineralocorticoid receptor mRNA expression in the brains of chronically and nonchronically-stressed starlings. Hypothalamic paraventricular nucleus, but not hippocampal, glucocorticoid receptor mRNA expression in chronically-stressed birds was significantly lower compared to controls, suggesting changes in the efficacy of corticosterone negative feedback. In addition, chronically-stressed birds showed a significant decrease in hippocampal MR mRNA expression. Together, these results suggest that chronic stress changes the brain physiology of wild birds and provides important information for the understanding of the underlying mechanisms that result in dysregulation of the HPA axis in wild animals by chronic stress. PMID:19686439

  11. An affective disorder in zebrafish with mutation of the glucocorticoid receptor.

    PubMed

    Ziv, L; Muto, A; Schoonheim, P J; Meijsing, S H; Strasser, D; Ingraham, H A; Schaaf, M J M; Yamamoto, K R; Baier, H

    2013-06-01

    Upon binding of cortisol, the glucocorticoid receptor (GR) regulates the transcription of specific target genes, including those that encode the stress hormones corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone. Dysregulation of the stress axis is a hallmark of major depression in human patients. However, it is still unclear how glucocorticoid signaling is linked to affective disorders. We identified an adult-viable zebrafish mutant in which the negative feedback on the stress response is disrupted, due to abolition of all transcriptional activity of GR. As a consequence, cortisol is elevated, but unable to signal through GR. When placed into an unfamiliar aquarium ('novel tank'), mutant fish become immobile ('freeze'), show reduced exploratory behavior and do not habituate to this stressor upon repeated exposure. Addition of the antidepressant fluoxetine to the holding water and social interactions restore normal behavior, followed by a delayed correction of cortisol levels. Fluoxetine does not affect the overall transcription of CRH, the mineralocorticoid receptor (MR), the serotonin transporter (Serta) or GR itself. Fluoxetine, however, suppresses the stress-induced upregulation of MR and Serta in both wild-type fish and mutants. Our studies show a conserved, protective function of glucocorticoid signaling in the regulation of emotional behavior and reveal novel molecular aspects of how chronic stress impacts vertebrate brain physiology and behavior. Importantly, the zebrafish model opens up the possibility of high-throughput drug screens in search of new classes of antidepressants. PMID:22641177

  12. The antidepressant fluoxetine normalizes the nuclear glucocorticoid receptor evoked by psychosocial stress

    NASA Astrophysics Data System (ADS)

    Mitić, M.; Simić, I.; Djordjević, J.; Radojčić, M. B.; Adžić, M.

    2011-12-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and stress disorders. Glucocorticoids, key regulators of the stress response, exert diverse effects on cellular processes in the hippocampus. Beside non-genomic pathways, glucocorticoid effects are mediated through activation of the glucocorticoid receptor (GR), a ligand activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. We analysed the GR protein levels both in the cytoplasmic and nuclear compartments of the hippocampus of Wistar rats exposed to chronic psychosocial isolation stress upon chronic fluoxetine (FLU) treatment. Under chronic stress, corticosterone levels (CORT) were decreased compared to the control, and treatment with FLU did not change its level in the stressed rats. At the molecular level, FLU normalized the level of nuclear GR protein in the hippocampus of the stressed rats. Discrepancy between normalization of nuclear GR in the hippocampus and lack of normalization of HPA axis activity judged by CORT, suggests that other brain structures such as the amygdale and prefrontal cortex that also regulate HPA axis activity, seem not to be normalized by the FLU treatment used in our study.

  13. Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol

    SciTech Connect

    Suino-Powell, Kelly; Xu, Yong; Zhang, Chenghai; Tao, Yong-guang; Tolbert, W. David; Simons, Jr., S. Stoney; Xu, H. Eric

    2010-03-08

    A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacylcortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GR LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator 1 reveals that the GR ligand binding pocket is expanded to a size of 1,070 {angstrom}{sup 3}, effectively doubling the size of the GR dexamethasone-binding pocket of 540 {angstrom}{sup 3} and yet leaving the structure of the coactivator binding site intact. DAC occupies only {approx}50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.

  14. Evolution of corticosteroid specificity for human, chicken, alligator and frog glucocorticoid receptors.

    PubMed

    Katsu, Yoshinao; Kohno, Satomi; Oka, Kaori; Baker, Michael E

    2016-09-01

    We investigated the evolution of the response of human, chicken, alligator and frog glucocorticoid receptors (GRs) to dexamethasone, cortisol, cortisone, corticosterone, 11-deoxycorticosterone, 11-deoxycortisol and aldosterone. We find significant differences among these vertebrates in the transcriptional activation of their full length GRs by these steroids, indicating that there were changes in the specificity of the GR for steroids during the evolution of terrestrial vertebrates. To begin to study the role of interactions between different domains on the GR in steroid sensitivity and specificity for terrestrial GRs, we investigated transcriptional activation of truncated GRs containing their hinge domain and ligand binding domain (LBD) fused to a GAL4 DNA binding domain (GAL4-DBD). Compared to corresponding full length GRs, transcriptional activation of GAL4-DBD_GR-hinge/LBD constructs required higher steroid concentrations and displayed altered steroid specificity, indicating that interactions between the hinge/LBD and other domains are important in glucocorticoid activation of these terrestrial GRs. PMID:27317937

  15. Glucocorticoid receptor gene haplotype structure and steroid therapy outcome in IBD patients

    PubMed Central

    Mwinyi, Jessica; Wenger, Christa; Eloranta, Jyrki J; Kullak-Ublick, Gerd A

    2010-01-01

    AIM: To study whether the glucocorticoid receptor (GR/NR3C1) gene haplotypes influence the steroid therapy outcome in inflammatory bowel disease (IBD). METHODS: We sequenced all coding exons and flanking intronic sequences of the NR3C1 gene in 181 IBD patients, determined the single nucleotide polymorphisms, and predicted the NR3C1 haplotypes. Furthermore, we investigated whether certain NR3C1 haplotypes are significantly associated with steroid therapy outcomes. RESULTS: We detected 13 NR3C1 variants, which led to the formation of 17 different haplotypes with a certainty of > 95% in 173 individuals. The three most commonly occurring haplotypes were included in the association analysis of the influence of haplotype on steroid therapy outcome or IBD activity. None of the NR3C1 haplotypes showed statistically significant association with glucocorticoid therapy success. CONCLUSION: NR3C1 haplotypes are not related to steroid therapy outcome. PMID:20712049

  16. A genome-wide signature of glucocorticoid receptor binding in neuronal PC12 cells

    PubMed Central

    2012-01-01

    Background Glucocorticoids, secreted by the adrenals in response to stress, profoundly affect structure and plasticity of neurons. Glucocorticoid action in neurons is mediated by glucocorticoid receptors (GR) that operate as transcription factors in the regulation of gene expression and either bind directly to genomic glucocorticoid response elements (GREs) or indirectly to the genome via interactions with bound transcription factors. These two modes of action, respectively called transactivation and transrepression, result in the regulation of a wide variety of genes important for neuronal function. The objective of the present study was to identify genome-wide glucocorticoid receptor binding sites in neuronal PC12 cells using Chromatin ImmunoPrecipitation combined with next generation sequencing (ChIP-Seq). Results In total we identified 1183 genomic binding sites of GR, the majority of which were novel and not identified in other ChIP-Seq studies on GR binding. More than half (58%) of the binding sites contained a GRE. The remaining 42% of the GBS did not harbour a GRE and therefore likely bind GR via an intermediate transcription factor tethering GR to the DNA. While the GRE-containing binding sites were more often located nearby genes involved in general cell functions and processes such as apoptosis, cell motion, protein dimerization activity and vasculature development, the binding sites without a GRE were located nearby genes with a clear role in neuronal processes such as neuron projection morphogenesis, neuron projection regeneration, synaptic transmission and catecholamine biosynthetic process. A closer look at the sequence of the GR binding sites revealed the presence of several motifs for transcription factors that are highly divergent from those previously linked to GR-signaling, including Gabpa, Prrx2, Zfp281, Gata1 and Zbtb3. These transcription factors may represent novel crosstalk partners of GR in a neuronal context. Conclusions Here we present

  17. Inflammatory activation is associated with a reduced glucocorticoid receptor alpha/beta expression ratio in monocytes of inpatients with melancholic major depressive disorder

    PubMed Central

    Carvalho, L A; Bergink, V; Sumaski, L; Wijkhuijs, J; Hoogendijk, W J; Birkenhager, T K; Drexhage, H A

    2014-01-01

    In this study, we used new technology to investigate whether a coherent pattern of enhanced expression of inflammatory and other immune activation genes in circulating monocytes is found in patients with major depression. Since a high inflammatory state of monocytes might be related to glucocorticoid resistance, we also included the genes for the two isoforms of the glucocorticoid receptor. For this study, we aimed at finding a similar coherent pattern of inflammatory and immune activation genes in monocytes of patients with MDD and recruited 47 medication-free melancholic MDD inpatients and 42 healthy controls. A quantitative-polymerase chain reaction (Q-PCR) monocyte gene expression analysis was performed using a panel of inflammatory-related genes previously identified as abnormally regulated in mood disorder patients. Selected serum cytokines/chemokines were assessed using a cytometric bead array. Depressive symptoms were analysed using Hamilton depression scores (HAMD). Thirty-four of the 47 monocyte inflammatory-related genes were significantly upregulated and 2 were significantly downregulated as compared to controls, the latter including the gene for the active GRα in particular in those with a high HAMD score. The reduced GRα expression correlated strongly to the upregulation of the inflammatory genes in monocytes. Serum levels of IL6, IL8, CCL2 and VEGF were significantly increased in patients compared to controls. Our data show the deregulation of two interrelated homoeostatic systems, that is, the immune system and the glucocorticoid system, co-occurring in major depression. PMID:24424390

  18. Development of glucocorticoid receptor regulation in the rat forebrain: Implications for adverse effects of glucocorticoids in preterm infants

    EPA Science Inventory

    Glucocorticoids are the consensus treatment to avoid respiratory distress in preterm infants but there is accumulating evidence that these agents evoke long-term neurobehavioral deficits. Earlier, we showed that the developing rat forebrain is far more sensitive to glucocorticoi...

  19. Glucocorticoids inhibit lipopolysaccharide-mediated inflammatory response by downregulating microRNA-155: a novel anti-inflammation mechanism.

    PubMed

    Zheng, Yijie; Xiong, Shudao; Jiang, Pei; Liu, Ronghua; Liu, Xiaoming; Qian, Jing; Zheng, Xiujuan; Chu, Yiwei

    2012-04-15

    Glucocorticoids (GCs) are among the most widely used and effective therapies for many chronic inflammatory diseases. Although attempts have been made to identify important protein-coding genes and pathways involved in the anti-inflammatory effect of GCs, knowledge of genomic aberrations associated with noncoding genes, such as micro-RNAs (miRNAs), and their contributions is relatively limited. In this study, a systematic screening of the miRNA expression profile by microarray showed that GCs inhibited the expression of miR-155 in lipopolysaccharide (LPS)-induced macrophage inflammatory responses. Overexpression of miR-155 markedly reversed the suppressive action of GCs, whereas inhibition of miR-155 exhibited an effect similar to that of GCs on LPS-treated RAW264.7 cells, indicating miR-155 to be a functional regulator in the anti-inflammatory effect of GCs. Furthermore, GCs inhibited miR-155 expression in a GC receptor- and NF-κB-dependent manner. Bioinformatics analysis and luciferase assay revealed that the NF-κB binding site located in the promoter region of the B-cell integration cluster was important in mediating the GC-driven suppression of miR-155 in response to LPS stimulation. In addition, the combination of treatment with GCs and inhibition of miR-155 enhanced the anti-inflammatory effect of GCs on LPS-stimulated RAW264.7 cells. Therefore, we identify miR-155 to be a novel target through which GCs exert their anti-inflammatory effect on the LPS-induced macrophage inflammatory response. These findings may provide a basic rationale for new approaches in the effort to develop anti-inflammatory therapeutics. PMID:22326887

  20. Structural Analysis on the Pathologic Mutant Glucocorticoid Receptor Ligand-Binding Domains.

    PubMed

    Hurt, Darrell E; Suzuki, Shigeru; Mayama, Takafumi; Charmandari, Evangelia; Kino, Tomoshige

    2016-02-01

    Glucocorticoid receptor (GR) gene mutations may cause familial or sporadic generalized glucocorticoid resistance syndrome. Most of the missense forms distribute in the ligand-binding domain and impair its ligand-binding activity and formation of the activation function (AF)-2 that binds LXXLL motif-containing coactivators. We performed molecular dynamics simulations to ligand-binding domain of pathologic GR mutants to reveal their structural defects. Several calculated parameters including interaction energy for dexamethasone or the LXXLL peptide indicate that destruction of ligand-binding pocket (LBP) is a primary character. Their LBP defects are driven primarily by loss/reduction of the electrostatic interaction formed by R611 and T739 of the receptor to dexamethasone and a subsequent conformational mismatch, which deacylcortivazol resolves with its large phenylpyrazole moiety and efficiently stimulates transcriptional activity of the mutant receptors with LBP defect. Reduced affinity of the LXXLL peptide to AF-2 is caused mainly by disruption of the electrostatic bonds to the noncore leucine residues of this peptide that determine the peptide's specificity to GR, as well as by reduced noncovalent interaction against core leucines and subsequent exposure of the AF-2 surface to solvent. The results reveal molecular defects of pathologic mutant receptors and provide important insights to the actions of wild-type GR. PMID:26745667

  1. Screening of bisphenol A, triclosan and paraben analogues as modulators of the glucocorticoid and androgen receptor activities.

    PubMed

    Kolšek, Katra; Gobec, Martina; Mlinarič Raščan, Irena; Sollner Dolenc, Marija

    2015-02-01

    A homeostasis of the glucocorticoid and androgen endocrine system is essential to human health. Their disturbance can lead to various diseases, for example cardiovascular, inflammatory and autoimmune diseases, infertility, cancer. Fifteen widely used industrial chemicals that disrupt endocrine activity were selected for evaluation of potential (anti)glucocorticoid and (anti)androgenic activities. The human breast carcinoma MDA-kb2 cell line was utilized for reporter gene assays, since it expresses both the androgen and the glucocorticoid-responsive reporter. Two new antiandrogens, 4,4'-sulfonylbis(2-methylphenol) (dBPS) and 4,4'-thiodiphenol (THIO), and two new antiglucocorticoids, bisphenol Z and its analog bis[4-(2-hydroxyethoxy)phenyl] sulfone (BHEPS) were identified. Moreover, four new glucocorticoid agonists (methyl paraben, ethyl paraben, propyl paraben and bisphenol F) were found. To elucidate the structure-activity relationship of bisphenols, we performed molecular docking experiments with androgen and glucocorticoid receptor. These docking experiments had shown that bulky structures such as BHEPS and bisphenol Z act as antiglucocorticoid, because they are positioned toward helix H12 in the antagonist conformation and could therefore be responsible for H12 conformational change and the switch between agonistic and antagonistic conformation of receptor. On the other hand smaller structures cannot interact with H12. The results of in vitro screening of fifteen industrial chemicals as modulators of the glucocorticoid and androgen receptor activities demand additional in vivo testing of these chemicals for formulating any relevant hazard identification to human health. PMID:25192815

  2. Cross-talk between glucocorticoid and retinoic acid signals involving glucocorticoid receptor interaction with the homoeodomain protein Pbx1.

    PubMed Central

    Subramaniam, Nanthakumar; Campión, Javier; Rafter, Ingalill; Okret, Sam

    2003-01-01

    Glucocorticoid (GC) signalling influences the response of the cell to a number of other signals via a mechanism referred to as 'cross-talk'. This cross-talk may act at several levels, including an interaction between the transcription factors involved in the signalling pathways. In the present paper, we demonstrate a novel functional interaction between GC and all- trans -retinoic acid (RA) signalling. We show that, in P19 embryonal carcinoma cells, GCs potentiate RA-induced expression of the murine Hoxb -1 gene through an autoregulatory element, b1-ARE, recognized by the Pbx1 and HOXB1 homoeodomain proteins. The synergistic effect of GC did not involve GC receptor (GR) binding to the b1-ARE, and the GC-GR complex alone was unable to activate transcription via the element. Furthermore, the ability of the GR to transactivate was not required, excluding expression of a GC-induced protein as the mechanism for the GC/RA synergy. Additional transfection experiments showed that the Pbx1/HOXB1 heterodimer was the target for the GC effect. Furthermore, functional dissection of the GR demonstrated that the DNA-binding domain (DBD) of the GR was required for the synergy. A physical interaction between the GR and Pbx1 proteins was demonstrated in vivo by co-immunoprecipitation experiments. These results are compatible with a model in which the GC/RA synergy is mediated by a direct interaction between the GR and Pbx1. On the basis of the ubiquitous expression of both GR and Pbx1, a number of genes regulated by Pbx are likely to be important targets for GC-mediated 'cross-talk'. PMID:12487626

  3. Cross-talk between glucocorticoid and retinoic acid signals involving glucocorticoid receptor interaction with the homoeodomain protein Pbx1.

    PubMed

    Subramaniam, Nanthakumar; Campión, Javier; Rafter, Ingalill; Okret, Sam

    2003-03-15

    Glucocorticoid (GC) signalling influences the response of the cell to a number of other signals via a mechanism referred to as 'cross-talk'. This cross-talk may act at several levels, including an interaction between the transcription factors involved in the signalling pathways. In the present paper, we demonstrate a novel functional interaction between GC and all- trans -retinoic acid (RA) signalling. We show that, in P19 embryonal carcinoma cells, GCs potentiate RA-induced expression of the murine Hoxb -1 gene through an autoregulatory element, b1-ARE, recognized by the Pbx1 and HOXB1 homoeodomain proteins. The synergistic effect of GC did not involve GC receptor (GR) binding to the b1-ARE, and the GC-GR complex alone was unable to activate transcription via the element. Furthermore, the ability of the GR to transactivate was not required, excluding expression of a GC-induced protein as the mechanism for the GC/RA synergy. Additional transfection experiments showed that the Pbx1/HOXB1 heterodimer was the target for the GC effect. Furthermore, functional dissection of the GR demonstrated that the DNA-binding domain (DBD) of the GR was required for the synergy. A physical interaction between the GR and Pbx1 proteins was demonstrated in vivo by co-immunoprecipitation experiments. These results are compatible with a model in which the GC/RA synergy is mediated by a direct interaction between the GR and Pbx1. On the basis of the ubiquitous expression of both GR and Pbx1, a number of genes regulated by Pbx are likely to be important targets for GC-mediated 'cross-talk'. PMID:12487626

  4. Proteasome involvement in agonist-induced down-regulation of mu and delta opioid receptors.

    PubMed

    Chaturvedi, K; Bandari, P; Chinen, N; Howells, R D

    2001-04-13

    This study investigated the mechanism of agonist-induced opioid receptor down-regulation. Incubation of HEK 293 cells expressing FLAG-tagged delta and mu receptors with agonists caused a time-dependent decrease in opioid receptor levels assayed by immunoblotting. Pulse-chase experiments using [(35)S]methionine metabolic labeling indicated that the turnover rate of delta receptors was accelerated 5-fold following agonist stimulation. Inactivation of functional G(i) and G(o) proteins by pertussis toxin-attenuated down-regulation of the mu opioid receptor, while down-regulation of the delta opioid receptor was unaffected. Pretreatment of cells with inhibitors of lysosomal proteases, calpain, and caspases had little effect on mu and delta opioid receptor down-regulation. In marked contrast, pretreatment with proteasome inhibitors attenuated agonist-induced mu and delta receptor down-regulation. In addition, incubation of cells with proteasome inhibitors in the absence of agonists increased steady-state mu and delta opioid receptor levels. Immunoprecipitation of mu and delta opioid receptors followed by immunoblotting with ubiquitin antibodies suggested that preincubation with proteasome inhibitors promoted accumulation of polyubiquitinated receptors. These data provide evidence that the ubiquitin/proteasome pathway plays a role in agonist-induced down-regulation and basal turnover of opioid receptors. PMID:11152677

  5. Seasonal variation in glucocorticoid and mineralocorticoid receptors in metabolic tissues of the house sparrow (Passer domesticus).

    PubMed

    Lattin, Christine R; Romero, L Michael

    2015-04-01

    Glucocorticoid hormones like corticosterone (CORT) play essential metabolic roles at both baseline and stress-induced concentrations, and CORT titers vary seasonally in patterns occurring across many different vertebrate species. It has been hypothesized that CORT may vary seasonally due to changing energy requirements at different times of year. However, hormone effects are dependent on binding to receptors in target tissues, and receptors might also vary seasonally. CORT alters metabolism primarily through binding to two receptors, the high-affinity mineralocorticoid receptor (MR) and low-affinity glucocorticoid receptor (GR). We quantified GR and MR in metabolic tissues (liver, kidney, omental and subcutaneous fat, and gastrocnemius and pectoralis muscle) of wild-caught house sparrows (Passer domesticus) to assess these tissues' capacity to respond to CORT-mediated metabolic demands. We quantified receptors using radioligand binding assays in early and late winter, pre-egg-laying, breeding, late breeding and molt (n=12 at each stage). MR binding did not vary significantly in any tissue over the course of the year. Because MR is associated with baseline CORT effects, this suggests that changing hormone titers may primarily regulate baseline CORT effects on metabolism. Seasonal modulation of GR binding occurred in every tissue but omental fat, though peak receptor density did not coincide with peak stress-induced CORT concentrations measured previously. Because GR is associated with stress-induced CORT effects, these data demonstrate seasonal patterns in stress-induced CORT are not driven by metabolic needs alone, although at different times of year sparrows may vary which tissue types respond to increased energy demands resulting from exposure to stressors. PMID:24929232

  6. Ligand-dependent genomic function of glucocorticoid receptor in triple-negative breast cancer.

    PubMed

    Chen, Zhong; Lan, Xun; Wu, Dayong; Sunkel, Benjamin; Ye, Zhenqing; Huang, Jiaoti; Liu, Zhihua; Clinton, Steven K; Jin, Victor X; Wang, Qianben

    2015-01-01

    Glucocorticoids (GCs) have been widely used as coadjuvants in the treatment of solid tumours, but GC treatment may be associated with poor pharmacotherapeutic response or prognosis. The genomic action of GC in these tumours is largely unknown. Here we find that dexamethasone (Dex, a synthetic GC)-regulated genes in triple-negative breast cancer (TNBC) cells are associated with drug resistance. Importantly, these GC-regulated genes are aberrantly expressed in TNBC patients and are associated with unfavourable clinical outcomes. Interestingly, in TNBC cells, Compound A (CpdA, a selective GR modulator) only regulates a small number of genes not involved in carcinogenesis and therapy resistance. Mechanistic studies using a ChIP-exo approach reveal that Dex- but not CpdA-liganded glucocorticoid receptor (GR) binds to a single glucocorticoid response element (GRE), which drives the expression of pro-tumorigenic genes. Our data suggest that development of safe coadjuvant therapy should consider the distinct genomic function between Dex- and CpdA-liganded GR. PMID:26374485

  7. Ligand-dependent genomic function of glucocorticoid receptor in triple-negative breast cancer

    PubMed Central

    Chen, Zhong; Lan, Xun; Wu, Dayong; Sunkel, Benjamin; Ye, Zhenqing; Huang, Jiaoti; Liu, Zhihua; Clinton, Steven K.; Jin, Victor X.; Wang, Qianben

    2015-01-01

    Glucocorticoids (GCs) have been widely used as coadjuvants in the treatment of solid tumours, but GC treatment may be associated with poor pharmacotherapeutic response or prognosis. The genomic action of GC in these tumours is largely unknown. Here we find that dexamethasone (Dex, a synthetic GC)-regulated genes in triple-negative breast cancer (TNBC) cells are associated with drug resistance. Importantly, these GC-regulated genes are aberrantly expressed in TNBC patients and are associated with unfavourable clinical outcomes. Interestingly, in TNBC cells, Compound A (CpdA, a selective GR modulator) only regulates a small number of genes not involved in carcinogenesis and therapy resistance. Mechanistic studies using a ChIP-exo approach reveal that Dex- but not CpdA-liganded glucocorticoid receptor (GR) binds to a single glucocorticoid response element (GRE), which drives the expression of pro-tumorigenic genes. Our data suggest that development of safe coadjuvant therapy should consider the distinct genomic function between Dex- and CpdA-liganded GR. PMID:26374485

  8. New selective glucocorticoid receptor modulators reverse amyloid-β peptide-induced hippocampus toxicity.

    PubMed

    Pineau, Fanny; Canet, Geoffrey; Desrumaux, Catherine; Hunt, Hazel; Chevallier, Nathalie; Ollivier, Matthias; Belanoff, Joseph K; Givalois, Laurent

    2016-09-01

    In Alzheimer's disease (AD), cognitive deficits and psychological symptoms are associated with an early deregulation of the hypothalamic-pituitary-adrenal axis. Here, in an acute model of AD, we investigated if antiglucocorticoid strategies with selective glucocorticoid receptor (GR) modulators (CORT108297 and CORT113176) that combine antagonistic and agonistic GR properties could offer an interesting therapeutic approach in the future. We confirm the expected properties of the nonselective GR antagonist (mifepristone) because in addition to restoring basal circulating glucocorticoids levels, mifepristone totally reverses synaptic deficits and hippocampal apoptosis processes. However, mifepristone only partially reverses cognitive deficit, effects of the hippocampal amyloidogenic pathway, and neuroinflammatory processes, suggesting limits in its efficacy. By contrast, selective GR modulators CORT108297 and CORT113176 at a dose of 20 and 10 mg/kg, respectively, reverse hippocampal amyloid-β peptide generation, neuroinflammation, and apoptotic processes, restore the hippocampal levels of synaptic markers, re-establish basal plasma levels of glucocorticoids, and improve cognitive function. In conclusion, selective GR modulators are particularly attractive and may pave the way to new strategies for AD treatment. PMID:27459932

  9. Androgen receptor silences thioredoxin-interacting protein and competitively inhibits glucocorticoid receptor-mediated apoptosis in pancreatic β-Cells.

    PubMed

    Harada, Naoki; Katsuki, Takahiro; Takahashi, Yuji; Masuda, Tatsuya; Yoshinaga, Mariko; Adachi, Tetsuya; Izawa, Takeshi; Kuwamura, Mitsuru; Nakano, Yoshihisa; Yamaji, Ryoichi; Inui, Hiroshi

    2015-06-01

    Androgen receptor (AR) is known to bind to the same cis-element that glucocorticoid receptor (GR) binds to. However, the effects of androgen signaling on glucocorticoid signaling have not yet been elucidated. Here, we investigated the effects of testosterone on dexamethasone (DEX, a synthetic glucocorticoid)-induced apoptosis of pancreatic β-cells, which might be involved in the pathogenesis of type 2 diabetes mellitus in males. We used INS-1 #6 cells, which were isolated from the INS-1 pancreatic β-cell line and which express high levels of AR. Testosterone and dihydrotestosterone inhibited apoptosis induced by DEX in INS-1 #6 cells. AR knockdown and the AR antagonist hydroxyflutamide each diminished the anti-apoptotic effects of testosterone. AR was localized in the nucleus of both INS-1 #6 cells and pancreatic β-cells of male rats. Induction of thioredoxin-interacting protein (TXNIP) is known to cause pro-apoptotic effects in β-cells. Testosterone suppressed the DEX-induced increase of TXNIP at the transcriptional level. A Chromatin immunoprecipitation assays showed that both AR and GR competitively bound to the TXNIP promoter in ligand-dependent manners. Recombinant DNA-binding domain of AR bound to the same cis-element of the TXNIP promoter that GR binds to. Our results show that AR and GR competitively bind to the same cis-element of TXNIP promoter as a silencer and enhancer, respectively. These results indicate that androgen signaling functionally competes with glucocorticoid signaling in pancreatic β-cell apoptosis. PMID:25639671

  10. Developmental Expression and Glucocorticoid Control of the Leptin Receptor in Fetal Ovine Lung.

    PubMed

    De Blasio, Miles J; Boije, Maria; Vaughan, Owen R; Bernstein, Brett S; Davies, Katie L; Plein, Alice; Kempster, Sarah L; Smith, Gordon C S; Charnock-Jones, D Stephen; Blache, Dominique; Wooding, F B Peter; Giussani, Dino A; Fowden, Abigail L; Forhead, Alison J

    2015-01-01

    The effects of endogenous and synthetic glucocorticoids on fetal lung maturation are well-established, although the role of leptin in lung development before birth is unclear. This study examined mRNA and protein levels of the signalling long-form leptin receptor (Ob-Rb) in fetal ovine lungs towards term, and after experimental manipulation of glucocorticoid levels in utero by fetal cortisol infusion or maternal dexamethasone treatment. In fetal ovine lungs, Ob-Rb protein was localised to bronchiolar epithelium, bronchial cartilage, vascular endothelium, alveolar macrophages and type II pneumocytes. Pulmonary Ob-Rb mRNA abundance increased between 100 (0.69 fractional gestational age) and 144 days (0.99) of gestation, and by 2-4-fold in response to fetal cortisol infusion and maternal dexamethasone treatment. In contrast, pulmonary Ob-Rb protein levels decreased near term and were halved by glucocorticoid treatment, without any significant change in phosphorylated signal transducer and activator of transcription-3 (pSTAT3) at Ser727, total STAT3 or the pulmonary pSTAT3:STAT3 ratio. Leptin mRNA was undetectable in fetal ovine lungs at the gestational ages studied. These findings demonstrate differential control of pulmonary Ob-Rb transcript abundance and protein translation, and/or post-translational processing, by glucocorticoids in utero. Localisation of Ob-Rb in the fetal ovine lungs, including alveolar type II pneumocytes, suggests a role for leptin signalling in the control of lung growth and maturation before birth. PMID:26287800

  11. Differential Expression of Glucocorticoid Receptor Noncoding RNA Repressor Gas5 in Autoimmune and Inflammatory Diseases.

    PubMed

    Mayama, T; Marr, A K; Kino, T

    2016-08-01

    Glucocorticoids have strong regulatory actions on the immune system and act as potent therapeutic compounds for autoimmune and inflammatory diseases. We previously reported that the long noncoding RNA growth arrest-specific 5 (Gas5), which accumulates inside the cells in response to cellular starvation/growth arrest, functions as a potent repressor of the glucocorticoid receptor (GR) through its RNA "glucocorticoid response element (GRE)". To evaluate potential roles of Gas5 in immune-related disorders, we examined Gas5 RNA levels in various autoimmune, inflammatory, and infectious diseases using the microarray data available in the Gene Expression Omnibus. We found that Gas5 levels were altered in whole blood or leukocytes of the patients with rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and sarcoidosis. Gas5 levels were also altered in infectious diseases, such as by the human immunodeficiency virus type-1 and influenza virus, and bacterial sepsis. In our experimental analysis using mice, Gas5 levels were kept at high basal levels and did not respond to fasting in immune organs, such as spleen and thymus, while its levels in metabolic organs, including liver, fat, and skeletal muscles, were low at baseline and were highly elevated upon this treatment, possibly through suppression of the mTOR pathway. These results suggest that Gas5 plays a role in the regulation of immune functions and pathogenesis/pathophysiology of autoimmune, inflammatory, and infectious diseases in part through modulation of the GR transcriptional activity via its decoy RNA "GRE". Changes in the Gas5 levels may also influence disease response to immunosuppressive glucocorticoid therapy. PMID:27214311

  12. Forebrain glucocorticoid receptor gene deletion attenuates behavioral changes and antidepressant responsiveness during chronic stress.

    PubMed

    Jacobson, Lauren

    2014-10-01

    Stress is an important risk factor for mood disorders. Stress also stimulates the secretion of glucocorticoids, which have been found to influence mood. To determine the role of forebrain glucocorticoid receptors (GR) in behavioral responses to chronic stress, the present experiments compared behavioral effects of repeated social defeat in mice with forebrain GR deletion and in floxed GR littermate controls. Repeated defeat produced alterations in forced swim and tail suspension immobility in floxed GR mice that did not occur in mice with forebrain GR deletion. Defeat-induced changes in immobility in floxed GR mice were prevented by chronic antidepressant treatment, indicating that these behaviors were dysphoria-related. In contrast, although mice with forebrain GR deletion exhibited antidepressant-induced decreases in tail suspension immobility in the absence of stress, this response did not occur in mice with forebrain GR deletion after defeat. There were no marked differences in plasma corticosterone between genotypes, suggesting that behavioral differences depended on forebrain GR rather than on abnormal glucocorticoid secretion. Defeat-induced gene expression of the neuronal activity marker c-fos in the ventral hippocampus, paraventricular thalamus and lateral septum correlated with genotype-related differences in behavioral effects of defeat, whereas c-fos induction in the nucleus accumbens and central and basolateral amygdala correlated with genotype-related differences in behavioral responses to antidepressant treatment. The dependence of both negative (dysphoria-related) and positive (antidepressant-induced) behaviors on forebrain GR is consistent with the contradictory effects of glucocorticoids on mood, and implicates these or other forebrain regions in these effects. PMID:25168761

  13. Forebrain glucocorticoid receptor gene deletion attenuates behavioral changes and antidepressant responsiveness during chronic stress

    PubMed Central

    Jacobson, Lauren

    2014-01-01

    Stress is an important risk factor for mood disorders. Stress also stimulates the secretion of glucocorticoids, which have been found to influence mood. To determine the role of forebrain glucocorticoid receptors (GR) in behavioral responses to chronic stress, the present experiments compared behavioral effects of repeated social defeat in mice with forebrain GR deletion and in floxed GR littermate controls. Repeated defeat produced alterations in forced swim and tail suspension immobility in floxed GR mice that did not occur in mice with forebrain GR deletion. Defeat-induced changes in immobility in floxed GR mice were prevented by chronic antidepressant treatment, indicating that these behaviors were dysphoria-related. In contrast, although mice with forebrain GR deletion exhibited antidepressant-induced decreases in tail suspension immobility in the absence of stress, this response did not occur in mice with forebrain GR deletion after defeat. There were no marked differences in plasma corticosterone between genotypes, suggesting that behavioral differences depended on forebrain GR rather than on abnormal glucocorticoid secretion. Defeat-induced gene expression of the neuronal activity marker c-fos in the ventral hippocampus, paraventricular thalamus and lateral septum correlated with genotype-related differences in behavioral effects of defeat, whereas c-fos induction in the nucleus accumbens and central and basolateral amygdala correlated with genotype-related differences in behavioral responses to antidepressant treatment. The dependence of both negative (dysphoria-related) and positive (antidepressant-induced) behaviors on forebrain GR is consistent with the contradictory effects of glucocorticoids on mood, and implicates these or other forebrain regions in these effects. PMID:25168761

  14. Distinct, genome-wide, gene-specific selectivity patterns of four glucocorticoid receptor coregulators.

    PubMed

    Wu, Dai-Ying; Ou, Chen-Yin; Chodankar, Rajas; Siegmund, Kimberly D; Stallcup, Michael R

    2014-01-01

    Glucocorticoids are a class of steroid hormones that bind to and activate the glucocorticoid receptor (GR), which then positively or negatively regulates transcription of many genes that govern multiple important physiological pathways such as inflammation and metabolism of glucose, fat and bone. The remodeling of chromatin and regulated assembly or disassembly of active transcription complexes by GR and other DNA-binding transcription factors is mediated and modulated by several hundred transcriptional coregulator proteins. Previous studies focusing on single coregulators demonstrated that each coregulator is required for regulation of only a subset of all the genes regulated by a steroid hormone. We hypothesized that the gene-specific patterns of coregulators may correspond to specific physiological pathways such that different coregulators modulate the pathway-specificity of hormone action, thereby providing a mechanism for fine tuning of the hormone response. We tested this by direct comparison of multiple coregulators, using siRNA to deplete the products of four steroid hormone receptor coregulator genes (CCAR1, CCAR2, CALCOCO1 and ZNF282). Global analysis of glucocorticoid-regulated gene expression after siRNA mediated depletion of coregulators confirmed that each coregulator acted in a selective and gene-specific manner and demonstrated both positive and negative effects on glucocorticoid-regulated expression of different genes. We identified several classes of hormone-regulated genes based on the effects of coregulator depletion. Each coregulator supported hormonal regulation of some genes and opposed hormonal regulation of other genes (coregulator-modulated genes), blocked hormonal regulation of a second class of genes (coregulator-blocked genes), and had no effect on hormonal regulation of a third gene class (coregulator-independent genes). In spite of previously demonstrated physical and functional interactions among these four coregulators, the majority

  15. Antenatal hypoxia induces epigenetic repression of glucocorticoid receptor and promotes ischemic-sensitive phenotype in the developing heart.

    PubMed

    Xiong, Fuxia; Lin, Thant; Song, Minwoo; Ma, Qingyi; Martinez, Shannalee R; Lv, Juanxiu; MataGreenwood, Eugenia; Xiao, Daliao; Xu, Zhice; Zhang, Lubo

    2016-02-01

    Large studies in humans and animals have demonstrated a clear association of an adverse intrauterine environment with an increased risk of cardiovascular disease later in life. Yet mechanisms remain largely elusive. The present study tested the hypothesis that gestational hypoxia leads to promoter hypermethylation and epigenetic repression of the glucocorticoid receptor (GR) gene in the developing heart, resulting in increased heart susceptibility to ischemia and reperfusion injury in offspring. Hypoxic treatment of pregnant rats from day 15 to 21 of gestation resulted in a significant decrease of GR exon 14, 15, 16, and 17 transcripts, leading to down-regulation of GR mRNA and protein in the fetal heart. Functional cAMP-response elements (CREs) at -4408 and -3896 and Sp1 binding sites at -3425 and -3034 were identified at GR untranslated exon 1 promoters. Hypoxia significantly increased CpG methylation at the CREs and Sp1 binding sites and decreased transcription factor binding to GR exon 1 promoter, accounting for the repression of the GR gene in the developing heart. Of importance, treatment of newborn pups with 5-aza-2'-deoxycytidine reversed hypoxia-induced promoter methylation, restored GR expression and prevented hypoxia-mediated increase in ischemia and reperfusion injury of the heart in offspring. The findings demonstrate a novel mechanism of epigenetic repression of the GR gene in fetal stress-mediated programming of ischemic-sensitive phenotype in the heart. PMID:26779948

  16. Expression of glucocorticoid receptor and coactivators in ependymal cells of male rats.

    PubMed

    Iwata, Kinuyo; Ozawa, Hitoshi

    2014-08-29

    Glucocorticoid receptor (GR) is a ligand-activated nuclear receptor which is widely distributed in the brain. Many types of neurons and glial cells are known to express GR, but the expression of GR in ependymal cells has yet to be identified. The present study therefore was undertaken to determine whether ependymal cells express GR and coactivators of GR, such as steroid receptor coactivator 1 (SRC-1) and p300. GR immunoreactivity was found in cells immunopositive to vimentin, a marker of ependymal cells, around the third ventricle (3V), the lateral ventricle (LV), the cerebral aqueduct and the fourth ventricle (4V), whereas the expression of GR in vimentin-immunoreactive (ir) cells was significantly reduced by adrenalectomy (ADX) in male rats. Vimentin-ir cells also expressed both SRC-1 and p300 at around 3V, LV, the cerebral aqueduct and 4V. ADX had no effect on the expression of SRC-1 or p300 in vimentin-ir cells. These results suggest that glucocorticoid may exert effects on ependymal cells through binding to GR followed by association with SRC-1 and p300 to maintain brain environment under stressful conditions. PMID:25392570

  17. Effects of prenatal and postnatal depression, and maternal stroking, at the glucocorticoid receptor gene.

    PubMed

    Murgatroyd, C; Quinn, J P; Sharp, H M; Pickles, A; Hill, J

    2015-01-01

    In animal models, prenatal and postnatal stress is associated with elevated hypothalamic-pituitary axis (HPA) reactivity mediated via altered glucocorticoid receptor (GR) gene expression. Postnatal tactile stimulation is associated with reduced HPA reactivity mediated via increased GR gene expression. In this first study in humans to examine the joint effects of prenatal and postnatal environmental exposures, we report that GR gene (NR3C1) 1-F promoter methylation in infants is elevated in the presence of increased maternal postnatal depression following low prenatal depression, and that this effect is reversed by self-reported stroking of the infants by their mothers over the first weeks of life. PMID:25942041

  18. Discovery of acylurea isosteres of 2-acylaminothiadiazole in the azaxanthene series of glucocorticoid receptor agonists.

    PubMed

    Gong, Hua; Yang, Michael; Xiao, Zili; Doweyko, Arthur M; Cunningham, Mark; Wang, Jinhong; Habte, Sium; Holloway, Deborah; Burke, Christine; Shuster, David; Gao, Ling; Carman, Julie; Somerville, John E; Nadler, Steven G; Salter-Cid, Luisa; Barrish, Joel C; Weinstein, David S

    2014-08-01

    Acylureas and acyclic imides are found to be excellent isosteres for 2-acylamino-1,3,4-thiadiazole in the azaxanthene-based series of glucocorticoid receptor (GR) agonists. The results reported herein show that primary acylureas maintain high affinity and selectivity for GR while providing improved CYP450 inhibition and pharmacokinetic profile over 2-acylamino-1,3,4-thiadiazoles. General methods for synthesis of a variety of acylureas and acyclic imides from a carboxylic acid were utilized and are described. PMID:24980053

  19. Dimethyl-diphenyl-propanamide derivatives as nonsteroidal dissociated glucocorticoid receptor agonists.

    PubMed

    Yang, Bingwei V; Weinstein, David S; Doweyko, Lidia M; Gong, Hua; Vaccaro, Wayne; Huynh, Tram; Xiao, Hai-Yun; Doweyko, Arthur M; McKay, Lorraine; Holloway, Deborah A; Somerville, John E; Habte, Sium; Cunningham, Mark; McMahon, Michele; Townsend, Robert; Shuster, David; Dodd, John H; Nadler, Steven G; Barrish, Joel C

    2010-12-01

    A series of 2,2-dimethyl-3,3-diphenyl-propanamides as novel glucocorticoid receptor modulators is reported. SAR exploration led to the identification of 4-hydroxyphenyl propanamide derivatives displaying good agonist activity in GR-mediated transrepression assays and reduced agonist activity in GR-mediated transactivation assays. Compounds 17 and 30 showed anti-inflammatory activity comparable to prednisolone in the rat carrageenan-induced paw edema model, with markedly decreased side effects with regard to increases in blood glucose and expression of hepatic tyrosine aminotransferase. A hypothetical binding mode accounting for the induction of the functional activity by a 4-hydroxyl group is proposed. PMID:21073190

  20. Cannabinoid CB1 receptor mediates glucocorticoid effects on hormone secretion induced by volume and osmotic changes.

    PubMed

    Ruginsk, S G; Uchoa, E T; Elias, L L K; Antunes-Rodrigues, J

    2012-02-01

    The present study provides the first in vivo evidence that the cannabinoid CB(1) receptor mediates the effects of dexamethasone on hormone release induced by changes in circulating volume and osmolality. Male adult rats were administered with the CB(1) receptor antagonist rimonabant (10 mg/Kg, p.o.), followed or not in 1 hour by dexamethasone (1 mg/Kg, i.p.). Extracellular volume expansion (EVE, 2 mL/100 g of body weight, i.v.) was performed 2 hours after dexamethasone or vehicle treatment using either isotonic (I-EVE, 0.15 mol/L) or hypertonic (H-EVE, 0.30 mol/L) NaCl solution. Five minutes after EVE, animals were decapitated and trunk blood was collected for all plasma measurements. Rimonabant potentiated oxytocin (OT) secretion induced by H-EVE and completely reversed the inhibitory effects of dexamethasone in response to the same stimulus. These data suggest that glucocorticoid modulation of OT release is mediated by the CB(1) receptor. Although dexamethasone did not affect vasopressin (AVP) secretion induced by H-EVE, the administration of rimonabant potentiated AVP release in response to the same stimulus, supporting the hypothesis that the CB(1) receptor regulates AVP secretion independently of glucocorticoid-mediated signalling. Dexamethasone alone did not affect atrial natriuretic peptide (ANP) release stimulated by I-EVE or H-EVE. However, pretreatment with rimonabant potentiated ANP secretion induced by H-EVE, suggesting a possible role for the CB(1) receptor in the control of peripheral factors that modulate cardiovascular function. Rimonabant also reversed the inhibitory effects of dexamethasone on H-EVE-induced corticosterone secretion, reinforcing the hypothesis that the CB(1) receptor may be involved in the negative feedback exerted by glucocorticoids on the activity of the hypothalamic-pituitary-adrenal axis. Collectively, the results of the present study indicate that the CB(1) receptor modulates neurohypophyseal hormone secretion and

  1. Glucocorticoid Receptor, C/EBP, HNF3, and Protein Kinase A Coordinately Activate the Glucocorticoid Response Unit of the Carbamoylphosphate Synthetase I Gene

    PubMed Central

    Christoffels, Vincent M.; Grange, Thierry; Kaestner, Klaus H.; Cole, Timothy J.; Darlington, Gretchen J.; Croniger, Colleen M.; Lamers, Wouter H.

    1998-01-01

    A single far-upstream enhancer is sufficient to confer hepatocyte-specific, glucocorticoid- and cyclic AMP-inducible periportal expression to the carbamoylphosphate synthetase I (CPS) gene. To identify the mechanism of hormone-dependent activation, the composition and function of the enhancer have been analyzed. DNase I protection and gel mobility shift assays revealed the presence of a cyclic AMP response element, a glucocorticoid response element (GRE), and several sites for the liver-enriched transcription factor families HNF3 and C/EBP. The in vivo relevance of the transcription factors interacting with the enhancer in the regulation of CPS expression in the liver was assessed by the analysis of knockout mice. A strong reduction of CPS mRNA levels was observed in glucocorticoid receptor- and C/EBPα-deficient mice, whereas the CPS mRNA was normally expressed in C/EBPβ knockout mice and in HNF3α and -γ double-knockout mice. (The role of HNFβ could not be assessed, because the corresponding knockout mice die at embryonic day 10). In hepatoma cells, most of the activity of the enhancer is contained within a 103-bp fragment, which depends for its activity on the simultaneous occupation of the GRE, HNF3, and C/EBP sites, thus meeting the requirement of a glucocorticoid response unit. In fibroblast-like CHO cells, on the other hand, the GRE in the CPS enhancer does not cooperate with the C/EBP and HNF3 elements in transactivation of the CPS promoter. In both hepatoma and CHO cells, stimulation of expression by cyclic AMP depends mainly on the integrity of the glucocorticoid pathway, demonstrating cross talk between this pathway and the cyclic AMP (protein kinase A) pathway. PMID:9774647

  2. Noncoding RNA Gas5 Is a Growth Arrest and Starvation-Associated Repressor of the Glucocorticoid Receptor

    PubMed Central

    Kino, Tomoshige; Hurt, Darrell E.; Ichijo, Takamasa; Nader, Nancy; Chrousos, George P.

    2010-01-01

    The availability of nutrients influences cellular growth and survival by affecting gene transcription. Glucocorticoids also influence gene transcription and have diverse activities on cell growth, energy expenditure, and survival. We found that the growth arrest-specific 5 (Gas5) noncoding RNA, which is abundant in cells whose growth has been arrested due to lack of nutrients or growth factors, sensitized cells to apoptosis by suppressing glucocorticoid-mediated induction of several responsive genes, including the one encoding cellular inhibitor of apoptosis 2. Gas5 bound to the DNA-binding domain of the glucocorticoid receptor (GR) by acting as a decoy “glucocorticoid response element (GRE)”, thus, competing with DNA GREs for binding to the GR. We conclude that Gas5 is a ribo-repressor of the GR, influencing cell survival and metabolic activities during starvation by modulating the transcriptional activity of the GR. PMID:20124551

  3. Downregulation of Chicken Interleukin-17 Receptor A during Eimeria Infection

    PubMed Central

    Kim, Woo H.; Jeong, Jipseol; Park, Ae R.; Yim, Dongjean; Kim, Suk; Chang, Hong H.; Yang, Seung-Hak; Kim, Dong-Hee; Lillehoj, Hyun S.

    2014-01-01

    Both interleukin-17A (IL-17A) and IL-17F are proinflammatory cytokines that have an important role in intestinal homeostasis via receptor signaling. These cytokines have been characterized in chickens, but very little is known about their receptors and their functional activity. We provide here the first description of the sequence analysis, bioactivity, and comparative expression analysis of chicken IL-17RA (chIL-17RA) in chickens infected with Salmonella and Eimeria, two major infectious agents of gastrointestinal diseases of poultry of economic importance. A full-length chIL-17RA cDNA with a 2,568-bp coding region was identified from chicken thymus cDNA. chIL-17RA shares ca. 46% identity with mammalian homologues and 29.2 to 31.5% identity with its piscine counterparts. chIL-17RA transcript expression was relatively high in the thymus and in the chicken macrophage cell line HD11. The chIL-17RA-specific small interfering RNA inhibits interleukin-6 (IL-6), IL-8, and IL-1β mRNA expression in chicken embryo fibroblast cells (but not in DF-1 cells) stimulated with chIL-17A or chIL-17F. Interaction between chIL-17RA and chIL-17A was confirmed by coimmunoprecipitation. Downregulation of chIL-17RA occurred in concanavalin A- or lipopolysaccharide-activated splenic lymphocytes but not in poly(I·C)-activated splenic lymphocytes. In Salmonella- and Eimeria-infected chickens, the expression levels of the chIL-17RA transcript were downregulated in intestinal tissues from chickens infected with two Eimeria species, E. tenella or E. maxima, that preferentially infect the cecum and jejunum, respectively. However, chIL-17RA expression was generally unchanged in Salmonella infection. These results suggest that chIL-17RA has an important role in mucosal immunity to intestinal intracellular parasite infections such as Eimeria infection. PMID:24980970

  4. The Human Glucocorticoid Receptor as an RNA-binding Protein: Global Analysis of Glucocorticoid Receptor-Associated Transcripts and Identification of a Target RNA Motif

    PubMed Central

    Ishmael, Faoud T.; Fang, Xi; Houser, Kenneth R.; Pearce, Kenneth; Abdelmohsen, Kotb; Zhan, Ming; Gorospe, Myriam; Stellato, Cristiana

    2010-01-01

    Posttranscriptional regulation is emerging as a key factor in glucocorticoid (GC)-mediated gene regulation. We investigated the role of the human glucocorticoid receptor (GR) as an RNA-binding protein and its effect on mRNA turnover in human airway epithelial cells. Cell treatment with the potent GC budesonide accelerated the decay of CCL2 mRNA (t1/2=8±1 min vs. 62±17 min in DMSO-treated cells) and CCL7 mRNA (t1/2=15±4 min vs. 114±37 min), but not that of CCL5 mRNA (t1/2=231±8 min vs. 266±5 min) in the BEAS-2B cell line. This effect was inhibited by pre-incubation with an anti-GR antibody, indicating that GR itself plays a role in the turnover of these transcripts. Co-immunoprecipitation and biotin pulldown experiments showed that GR associates with CCL2 and CCL7 mRNAs, but not CCL5 mRNA. These methods confirmed CCL2 mRNA targeting by GR in human primary airway epithelial cells. Association of the GR was localized to the 5’UTR of CCL2 mRNA, and further mapped to nucleotides 44–60. The collection of transcripts associated with GR, identified by immunoprecipitation of GR-mRNA complexes followed by microarray analysis, revealed 479 transcripts that associated with GR. Computational analysis of the primary sequence and secondary structures of these transcripts yielded a GC-rich motif, which was shown to bind to GR in vitro. This motif was used to predict binding of GR to an additional 7889 transcripts. These results indicate that cytoplasmic GR interacts with a subset of mRNA through specific sequences and can regulate turnover rates, suggesting a novel posttranscriptional role for GR as an RNA-binding protein. PMID:21148795

  5. [The role of desensitization of glucocorticoid receptors in the development of vascular resistance to endogenous vasoconstrictors in traumatic shock].

    PubMed

    Kozhevnikova, L M; Avdonin, P P; Sukhanova, I F; Avdonin, P V

    2007-01-01

    The fact that the activity of cytosol glucocorticoid receptors decreases in shock have been shown before [Golikov P. P. et al., 2001]. The connection between the development of vascular hyporeactivity to endogenous vasoconstrictors and desensitization of glucocorticoid receptors was studied in this investigation. On Kenton traumatic model in a rat experiment, it was shown that the strength of the isometric constriction of the isolated aorta in response to angiotensin II, endothelin-1, phenylephrine, noradrenaline, and vasopressin falls on the second day after a severe mechanical injury (3.3, 2.1, 1.7, 1.6, and 1.5 times, respectively; p < 0.01). On the contrary, the strength of the constriction in response to serotonin increases more then twice. Artificial desensitization of glucocorticoid receptors by long-term administration of dexamethasone (3 mg per kg during five days) results in similar changes of vascular reactivity i.e. a 2.5, 2, 7, and 1.4-fold decrease in the strength of aortal constriction in response to angiotensin II, vasopressin, and endothelin-1, respectively. The strength of the constriction in response to serotonin tended to increase as well. Carbahol-induced relaxation of the aorta pre-constricted with noradrenaline did not change compared with control, being 70 to 80%, both in shock and after desensitization of glucocorticoid receptors with dexamethasone. Presumably, the pathogenetic mechanism of pressor reaction suppression, connected with a decrease in cytosol glucocorticoid receptor activity and thus with inhibition of glucocorticoid-induced expression of the membrane receptors of endogenous vasoconstrictors, is realized in traumatic shock together with other mechanisms. PMID:17694606

  6. Glucocorticoid receptors in primary cultures of mouse mammary epithelial cells: characterization and modulation by prolactin and cortisol

    SciTech Connect

    Schneider, W.; Shyamala, G.

    1985-06-01

    Mammary epithelial cells isolated from midpregant mice and cultured on collagen gels contain soluble glucocorticoid receptors. The kinetics of binding of dexamethasone reveal a saturable binding site (dissociation constant (K /sub d/), approximately 1 nM), and the binding site obeys a steroid specificity characteristic of a glucocorticoid receptor. As with the receptor isolated from intact glands, the receptor from the cultured cells also requires the addition of dithiothreitol for maximal binding of dexamethasone. The receptors are maintained at in vivo levels (approximately 1.3 pmol/mg DNA) for at least a period of 10 days in culture. However, the presence of both cortisol and PRL is required for the maintenance of the receptors, and the effect of both these hormones is dose dependent.

  7. Mechanisms for the Evolution of a Derived Function in the Ancestral Glucocorticoid Receptor

    SciTech Connect

    Carroll, Sean Michael; Ortlund, Eric A; Thornton, Joseph W.

    2012-03-16

    Understanding the genetic, structural, and biophysical mechanisms that caused protein functions to evolve is a central goal of molecular evolutionary studies. Ancestral sequence reconstruction (ASR) offers an experimental approach to these questions. Here we use ASR to shed light on the earliest functions and evolution of the glucocorticoid receptor (GR), a steroid-activated transcription factor that plays a key role in the regulation of vertebrate physiology. Prior work showed that GR and its paralog, the mineralocorticoid receptor (MR), duplicated from a common ancestor roughly 450 million years ago; the ancestral functions were largely conserved in the MR lineage, but the functions of GRs - reduced sensitivity to all hormones and increased selectivity for glucocorticoids - are derived. Although the mechanisms for the evolution of glucocorticoid specificity have been identified, how reduced sensitivity evolved has not yet been studied. Here we report on the reconstruction of the deepest ancestor in the GR lineage (AncGR1) and demonstrate that GR's reduced sensitivity evolved before the acquisition of restricted hormone specificity, shortly after the GR-MR split. Using site-directed mutagenesis, X-ray crystallography, and computational analyses of protein stability to recapitulate and determine the effects of historical mutations, we show that AncGR1's reduced ligand sensitivity evolved primarily due to three key substitutions. Two large-effect mutations weakened hydrogen bonds and van der Waals interactions within the ancestral protein, reducing its stability. The degenerative effect of these two mutations is extremely strong, but a third permissive substitution, which has no apparent effect on function in the ancestral background and is likely to have occurred first, buffered the effects of the destabilizing mutations. Taken together, our results highlight the potentially creative role of substitutions that partially degrade protein structure and function and

  8. Effects of histamine H1 receptor signaling on glucocorticoid receptor activity. Role of canonical and non-canonical pathways

    PubMed Central

    Zappia, Carlos Daniel; Granja-Galeano, Gina; Fernández, Natalia; Shayo, Carina; Davio, Carlos; Fitzsimons, Carlos P.; Monczor, Federico

    2015-01-01

    Histamine H1 receptor (H1R) antagonists and glucocorticoid receptor (GR) agonists are used to treat inflammatory conditions such as allergic rhinitis, atopic dermatitis and asthma. Consistent with the high morbidity levels of such inflammatory conditions, these receptors are the targets of a vast number of approved drugs, and in many situations their ligands are co-administered. However, this drug association has no clear rationale and has arisen from clinical practice. We hypothesized that H1R signaling could affect GR-mediated activity, impacting on its transcriptional outcome. Indeed, our results show a dual regulation of GR activity by the H1R: a potentiation mediated by G-protein βγ subunits and a parallel inhibitory effect mediated by Gαq-PLC pathway. Activation of the H1R by its full agonists resulted in a composite potentiating effect. Intriguingly, inactivation of the Gαq-PLC pathway by H1R inverse agonists resulted also in a potentiation of GR activity. Moreover, histamine and clinically relevant antihistamines synergized with the GR agonist dexamethasone to induce gene transactivation and transrepression in a gene-specific manner. Our work provides a delineation of molecular mechanisms underlying the widespread clinical association of antihistamines and GR agonists, which may contribute to future dosage optimization and reduction of well-described side effects associated with glucocorticoid administration. PMID:26635083

  9. Farnesyl pyrophosphate inhibits epithelialization and wound healing through the glucocorticoid receptor.

    PubMed

    Vukelic, Sasa; Stojadinovic, Olivera; Pastar, Irena; Vouthounis, Constantinos; Krzyzanowska, Agata; Das, Sharmistha; Samuels, Herbert H; Tomic-Canic, Marjana

    2010-01-15

    Farnesyl pyrophosphate (FPP), a key intermediate in the mevalonate pathway and protein farnesylation, can act as an agonist for several nuclear hormone receptors. Here we show a novel mechanism by which FPP inhibits wound healing acting as an agonist for glucocorticoid receptor (GR). Elevation of endogenous FPP by the squalene synthetase inhibitor zaragozic acid A (ZGA) or addition of FPP to the cell culture medium results in activation and nuclear translocation of the GR, a known wound healing inhibitor. We used functional studies to evaluate the effects of FPP on wound healing. Both FPP and ZGA inhibited keratinocyte migration and epithelialization in vitro and ex vivo. These effects were independent of farnesylation and indicate that modulation of FPP levels in skin may be beneficial for wound healing. FPP inhibition of keratinocyte migration and wound healing proceeds, in part, by repression of the keratin 6 gene. Furthermore, we show that the 3-hydroxy-3-methylglutaryl-CoA-reductase inhibitor mevastatin, which blocks FPP formation, not only promotes epithelialization in acute wounds but also reverses the effect of ZGA on activation of the GR and inhibition of epithelialization. We conclude that FPP inhibits wound healing by acting as a GR agonist. Of special interest is that FPP is naturally present in cells prior to glucocorticoid synthesis and that FPP levels can be further altered by the statins. Therefore, our findings may provide a better understanding of the pleiotropic effects of statins as well as molecular mechanisms by which they may accelerate wound healing. PMID:19903814

  10. Farnesyl Pyrophosphate Inhibits Epithelialization and Wound Healing through the Glucocorticoid Receptor*

    PubMed Central

    Vukelic, Sasa; Stojadinovic, Olivera; Pastar, Irena; Vouthounis, Constantinos; Krzyzanowska, Agata; Das, Sharmistha; Samuels, Herbert H.; Tomic-Canic, Marjana

    2010-01-01

    Farnesyl pyrophosphate (FPP), a key intermediate in the mevalonate pathway and protein farnesylation, can act as an agonist for several nuclear hormone receptors. Here we show a novel mechanism by which FPP inhibits wound healing acting as an agonist for glucocorticoid receptor (GR). Elevation of endogenous FPP by the squalene synthetase inhibitor zaragozic acid A (ZGA) or addition of FPP to the cell culture medium results in activation and nuclear translocation of the GR, a known wound healing inhibitor. We used functional studies to evaluate the effects of FPP on wound healing. Both FPP and ZGA inhibited keratinocyte migration and epithelialization in vitro and ex vivo. These effects were independent of farnesylation and indicate that modulation of FPP levels in skin may be beneficial for wound healing. FPP inhibition of keratinocyte migration and wound healing proceeds, in part, by repression of the keratin 6 gene. Furthermore, we show that the 3-hydroxy-3-methylglutaryl-CoA-reductase inhibitor mevastatin, which blocks FPP formation, not only promotes epithelialization in acute wounds but also reverses the effect of ZGA on activation of the GR and inhibition of epithelialization. We conclude that FPP inhibits wound healing by acting as a GR agonist. Of special interest is that FPP is naturally present in cells prior to glucocorticoid synthesis and that FPP levels can be further altered by the statins. Therefore, our findings may provide a better understanding of the pleiotropic effects of statins as well as molecular mechanisms by which they may accelerate wound healing. PMID:19903814

  11. Acute restraint stress enhances hippocampal endocannabinoid function via glucocorticoid receptor activation.

    PubMed

    Wang, Meina; Hill, Matthew N; Zhang, Longhua; Gorzalka, Boris B; Hillard, Cecilia J; Alger, Bradley E

    2012-01-01

    Exposure to behavioural stress normally triggers a complex, multilevel response of the hypothalamic-pituitary-adrenal (HPA) axis that helps maintain homeostatic balance. Although the endocannabinoid (eCB) system (ECS) is sensitive to chronic stress, few studies have directly addressed its response to acute stress. Here we show that acute restraint stress enhances eCB-dependent modulation of GABA release measured by whole-cell voltage clamp of inhibitory postsynaptic currents (IPSCs) in rat hippocampal CA1 pyramidal cells in vitro. Both Ca(2+)-dependent, eCB-mediated depolarization-induced suppression of inhibition (DSI), and muscarinic cholinergic receptor (mAChR)-mediated eCB mobilization are enhanced following acute stress exposure. DSI enhancement is dependent on the activation of glucocorticoid receptors (GRs) and is mimicked by both in vivo and in vitro corticosterone treatment. This effect does not appear to involve cyclooxygenase-2 (COX-2), an enzyme that can degrade eCBs; however, treatment of hippocampal slices with the L-type calcium (Ca(2+)) channel inhibitor, nifedipine, reverses while an agonist of these channels mimics the effect of in vivo stress. Finally, we find that acute stress produces a delayed (by 30 min) increase in the hippocampal content of 2-arachidonoylglycerol, the eCB responsible for DSI. These results support the hypothesis that the ECS is a biochemical effector of glucocorticoids in the brain, linking stress with changes in synaptic strength. PMID:21890595

  12. Functional interaction between the pro-apoptotic DAP3 and the glucocorticoid receptor.

    PubMed

    Hulkko, Sanna M; Zilliacus, Johanna

    2002-07-19

    Apoptosis is an essential process for functions such as organ development and the immune response, and glucocorticoids are one of the important regulators of the cellular functions underlying these events. We have previously shown that the pro-apoptotic death-associated protein 3 (DAP3) directly interacts with the glucocorticoid receptor (GR), leading to the enhancement of the activity of the ligand-induced receptor. Here, we show that coexpression of DAP3 and GR results in an increased amount of cellular GR, as well as in partial translocation of DAP3 to the nucleus. Although the N-terminal domain of DAP3 is sufficient for interaction with GR, the full-length DAP3 is needed to efficiently increase GR levels and enhance the transcriptional activity of GR. Since full-length DAP3 is also necessary for the pro-apoptotic effect, the interplay between the N- and C-termini of DAP3 is probably essential for its cellular function. PMID:12099703

  13. Down-Regulation of Cell Surface Receptors Is Modulated by Polar Residues within the Transmembrane Domain

    PubMed Central

    Zaliauskiene, Lolita; Kang, Sunghyun; Brouillette, Christie G.; Lebowitz, Jacob; Arani, Ramin B.; Collawn, James F.

    2000-01-01

    How recycling receptors are segregated from down-regulated receptors in the endosome is unknown. In previous studies, we demonstrated that substitutions in the transferrin receptor (TR) transmembrane domain (TM) convert the protein from an efficiently recycling receptor to one that is rapidly down regulated. In this study, we demonstrate that the “signal” within the TM necessary and sufficient for down-regulation is Thr11Gln17Thr19 (numbering in TM). Transplantation of these polar residues into the wild-type TR promotes receptor down-regulation that can be demonstrated by changes in protein half-life and in receptor recycling. Surprisingly, this modification dramatically increases the TR internalization rate as well (∼79% increase). Sucrose gradient centrifugation and cross-linking studies reveal that propensity of the receptors to self-associate correlates with down-regulation. Interestingly, a number of cell surface proteins that contain TM polar residues are known to be efficiently down-regulated, whereas recycling receptors for low-density lipoprotein and transferrin conspicuously lack these residues. Our data, therefore, suggest a simple model in which specific residues within the TM sequences dramatically influence the fate of membrane proteins after endocytosis, providing an alternative signal for down-regulation of receptor complexes to the well-characterized cytoplasmic tail targeting signals. PMID:10930460

  14. Hippocampal glucocorticoid receptor activation enhances voltage-dependent Ca2+ conductances: relevance to brain aging.

    PubMed Central

    Kerr, D S; Campbell, L W; Thibault, O; Landfield, P W

    1992-01-01

    Glucocorticoids (GCs) activate several biochemical/molecular processes in the hippocampus through two receptor types. In addition, GCs influence cognitive behaviors and hippocampal neural activity and can also increase the rate of aging-dependent cell loss in the hippocampus. However, the ionic mechanisms through which GCs modulate hippocampal neuronal function are not well understood. We report here direct evidence that activation of cytosolic steroid receptors, specifically of the type II GC receptor, can enhance voltage-dependent Ca2+ conductances in brain neurons. Ca2+ current was assessed by current-clamp measures of Ca2+ action potentials and by sharp electrode voltage-clamp analyses of voltage-sensitive currents in cesium-, tetrodotoxin-, and tetraethylammonium-treated CA1 neurons in hippocampal slices. Both Ca2+ action potentials and voltage-activated Ca2+ currents (N- and L-like) were increased by 2-hr exposure to the synthetic GC receptor agonist, RU 28362. This effect of RU 28362 was blocked by coincubation with cycloheximide, indicating that the GC receptor-Ca2+ channel interaction depends on de novo protein synthesis. Dysregulated calcium homeostasis is also viewed as a candidate mechanism in brain aging. Thus, present results are consistent with the hypothesis that excessive GC-receptor activation and resultant increased Ca2+ influx may be two sequential phases of a brain-aging process that results initially in impairment of function and eventually in neuronal loss. PMID:1528857

  15. Thymic involution in the suspended rat - Adrenal hypertrophy and glucocorticoid receptor content

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1986-01-01

    The relationship between thymic involution and adrenal hypertrophy is studied. The thymus, adrenal glands, and tissue water content are evaluated in male Sprague rats suspended in antiorthostatic (AO) or orthostatic (O) positions. A 50 percent decrease in the wet weight of the thymus and hypertrophy of the adrenal glands are observed during the seven days of AO suspension. After seven days of recovery the thymus weight is increased to control level; however, the hypertrophy of the adrenal glands remains unchanged. Thymic and renal responses in O postioned rats are similar to AO reactions. Thymic glucocorticoid (GC) receptor concentrations in the rats are analyzed; a 20 percent decrease in GC receptor site concentration, which is related to thymic involution, is detected in both AO and O rats. It is concluded that there is a temporal correlation between thymic involution and adrenal hypertrophy, which is not affected by AO positioning, and thymic involution is not associated with an increased sensitivity to GC.

  16. Glucocorticoid receptor isoforms direct distinct mitochondrial programs to regulate ATP production.

    PubMed

    Morgan, David J; Poolman, Toryn M; Williamson, Andrew J K; Wang, Zichen; Clark, Neil R; Ma'ayan, Avi; Whetton, Anthony D; Brass, Andrew; Matthews, Laura C; Ray, David W

    2016-01-01

    The glucocorticoid receptor (GR), a nuclear receptor and major drug target, has a highly conserved minor splice variant, GRγ, which differs by a single arginine within the DNA binding domain. GRγ, which comprises 10% of all GR transcripts, is constitutively expressed and tightly conserved through mammalian evolution, suggesting an important non-redundant role. However, to date no specific role for GRγ has been reported. We discovered significant differences in subcellular localisation, and nuclear-cytoplasmic shuttling in response to ligand. In addition the GRγ transcriptome and protein interactome was distinct, and with a gene ontology signal for mitochondrial regulation which was confirmed using Seahorse technology. We propose that evolutionary conservation of the single additional arginine in GRγ is driven by a distinct, non-redundant functional profile, including regulation of mitochondrial function. PMID:27226058

  17. Glucocorticoid receptor isoforms direct distinct mitochondrial programs to regulate ATP production

    PubMed Central

    Morgan, David J.; Poolman, Toryn M.; Williamson, Andrew J. K.; Wang, Zichen; Clark, Neil R.; Ma’ayan, Avi; Whetton, Anthony D.; Brass, Andrew; Matthews, Laura C.; Ray, David W.

    2016-01-01

    The glucocorticoid receptor (GR), a nuclear receptor and major drug target, has a highly conserved minor splice variant, GRγ, which differs by a single arginine within the DNA binding domain. GRγ, which comprises 10% of all GR transcripts, is constitutively expressed and tightly conserved through mammalian evolution, suggesting an important non-redundant role. However, to date no specific role for GRγ has been reported. We discovered significant differences in subcellular localisation, and nuclear-cytoplasmic shuttling in response to ligand. In addition the GRγ transcriptome and protein interactome was distinct, and with a gene ontology signal for mitochondrial regulation which was confirmed using Seahorse technology. We propose that evolutionary conservation of the single additional arginine in GRγ is driven by a distinct, non-redundant functional profile, including regulation of mitochondrial function. PMID:27226058

  18. Structural Stereochemistry of Androstene Hormones Determines Interactions with Human Androgen, Estrogen, and Glucocorticoid Receptors

    PubMed Central

    Shaak, Thomas L.; Wijesinghe, Dayanjan S.; Chalfant, Charles E.; Diegelmann, Robert F.; Ward, Kevin R.; Loria, Roger M.

    2013-01-01

    DHEA, 17α-AED, 17β-AED, and 17β-AET exhibit strong biological activity that has been attributed to androgenic, estrogenic, or antiglucocorticoid activity in vivo and in vitro. This study compared DHEA, 17α-AED, 17β-AED, and 17β-AET for their ability to activate the human AR, ER, and GR and determine the relative androgenicity, estrogenicity, and glucocorticoid activity. The results show that, at the receptor level, these androstene hormones are weak AR and even weaker ER activators. Direct androstene hormone activation of the human AR, ERα, and ERβ may not be essential for their biological function. Similarly, these hormones indirectly activated the human GR, only in the presence of high dexamethasone concentrations. These results underscore the major difference between androstene hormone interactions with these nuclear receptors and their biological effects. PMID:24729874

  19. Identification of an epitope shared by the DNA-binding domain of glucocorticoid receptor and the B chain of insulin.

    PubMed Central

    Cayanis, E; Sarangarajan, R; Lombes, M; Nahon, E; Edelman, I S; Erlanger, B F

    1989-01-01

    A monoclonal antibody (8G11-C6) generated by an auto-anti-idiotypic route and directed to a site near the ligand-binding site of the glucocorticoid receptor also binds to native insulin and the B chain of insulin but not to the A chain of insulin. The glucocorticoid receptor and the B chain of insulin, therefore, share a cross-reacting epitope. Examination of the primary sequences of the two proteins revealed a limited number of regions of identity or close homology. Several peptides representative of those regions were synthesized. A heptapeptide sequence of the B chain of insulin with homology to a sequence in the first "zinc finger" of the DNA-binding domain of the glucocorticoid receptor was identified as the cross-reactive epitope. This heptapeptide sequence is restricted to and highly conserved among insulins of various species. Homologous sequences are found in the DNA-binding domains of most steroid receptors and related DNA-binding proteins. Consistent with this is the finding that 8G11-C6 inhibits the binding of glucocorticoid receptor to DNA-cellulose. PMID:2467302

  20. Differences between brain structures in nuclear translocation and DNA binding of the glucocorticoid receptor during stress and the circadian cycle.

    PubMed

    Kitchener, Pierre; Di Blasi, Francesco; Borrelli, Emiliana; Piazza, Pier Vincenzo

    2004-04-01

    Glucocorticoid receptors (GRs) are transcription factors that, upon activation by glucocorticoids, translocate to the cell nucleus, and bind to specific response elements (GREs) in the promoter region of target genes. We analysed stress- and circadian-induced changes in nuclear translocation and GRE binding of GRs in the hippocampus and the prefrontal cortex of the rat brain. Nuclear translocation and binding to GRE were measured in nuclear extracts by Western blot and gel shift, respectively. When glucocorticoid levels were low, as during the light period of the circadian cycle, nuclear GRs and GRE binding were almost undetectable. However, the increase in glucocorticoid levels observed during the dark phase of the circadian cycle or after stress induced a massive nuclear translocation of GRs and GRE binding. These effects were corticosterone-dependent because they were suppressed by adrenalectomy and restored by the injection of corticosterone. Furthermore, GR translocation and GRE binding were of higher amplitude or lasted longer in the hippocampus than in the prefrontal cortex. By contrast, extracellular levels of glucocorticoids, measured by microdialysis in freely moving animals, were identical in the two structures. These results suggest that specific intracellular regulations of GR activity contribute to differentiate the effects of glucocorticoids in different regions of the brain. PMID:15078557

  1. Kaiso represses the expression of glucocorticoid receptor via a methylation-dependent mechanism and attenuates the anti-apoptotic activity of glucocorticoids in breast cancer cells

    PubMed Central

    Zhou, Lin; Zhong, Yan; Yang, Fang-hui; Li, Zi-bo; Zhou, Jiang; Liu, Xie-hong; Li, Min; Hu, Fang

    2016-01-01

    Kaiso is a Pox Virus and Zinc Finger (POZ-ZF) transcription factor with bi-modal DNA-binding specificity. Here, we demonstrated that Kaiso expression is inversely correlated with glucocorticoid receptor (GR) expression in breast carcinomas. Knockdown of Kaiso increased GR expression, while overexpression of Kaiso inhibited GR expression in breast cancer cells. Furthermore, Kaiso repressed GR proximal promoter-reporter activity in a dose-dependent manner. Remarkably, ChIP experiments demonstrated that endogenous Kaiso was associated with the GR promoter sequence in a methylation-dependent manner. Since glucocorticoids inhibit chemotherapyinduced apoptosis and have been widely used as a co-treatment of patients with breast cancer, we assessed the role of Kasio in GR-mediated anti-apoptotic effects. We found that overexpression of Kaiso attenuated the anti-apoptotic effects of glucocorticoids in breast cancer cells. Our findings suggest that GR is a putative target gene of Kaiso and suggest Kaiso to be a potential therapeutic target in GC-combination chemotherapy in breast cancer. [BMB Reports 2016; 49(3): 167-172] PMID:26424557

  2. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    SciTech Connect

    Inoue-Toyoda, Maki; Kato, Kohsuke; Nagata, Kyosuke; Yoshikawa, Hiroyuki

    2015-02-27

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX.

  3. Non-receptor-tyrosine Kinases Integrate Fast Glucocorticoid Signaling in Hippocampal Neurons

    PubMed Central

    Yang, Silei; Roselli, Francesco; Patchev, Alexandre V.; Yu, Shuang; Almeida, Osborne F. X.

    2013-01-01

    Despite numerous descriptions of rapid effects of corticosterone on neuronal function, the intracellular mechanisms responsible for these changes remain elusive. The present comprehensive analysis reveals that signaling from a membrane-located G protein-coupled receptor activates PKC, Akt/PKB, and PKA, which subsequently trigger the phosphorylation of the tyrosine kinases Pyk2, Src, and Abl. These changes induce rapid cytoskeletal rearrangements (increased PSD-95 co-clustering) within the post-synaptic density; these events are accompanied by increased surface NMDA receptor expression, reflecting corticosterone-induced inhibition of NMDA receptor endocytosis. Notably, none of these signaling mechanisms require de novo protein synthesis. The observed up-regulation of ERK1/2 (downstream of NMDA receptor signaling) together with the fact that c-Abl integrates cytoplasmic and nuclear functions introduces a potential mechanism through which rapid signaling initiated at the plasma membrane may eventually determine the long term integrated response to corticosterone by impacting on the transcriptional machinery that is regulated by classical, nuclear mineralocorticoid, and glucocorticoid receptors. PMID:23818519

  4. DNA binding triggers tetramerization of the glucocorticoid receptor in live cells.

    PubMed

    Presman, Diego M; Ganguly, Sourav; Schiltz, R Louis; Johnson, Thomas A; Karpova, Tatiana S; Hager, Gordon L

    2016-07-19

    Transcription factors dynamically bind to chromatin and are essential for the regulation of genes. Although a large percentage of these proteins appear to self-associate to form dimers or higher order oligomers, the stoichiometry of DNA-bound transcription factors has been poorly characterized in vivo. The glucocorticoid receptor (GR) is a ligand-regulated transcription factor widely believed to act as a dimer or a monomer. Using a unique set of imaging techniques coupled with a cell line containing an array of DNA binding elements, we show that GR is predominantly a tetramer when bound to its target DNA. We find that DNA binding triggers an interdomain allosteric regulation within the GR, leading to tetramerization. We therefore propose that dynamic changes in GR stoichiometry represent a previously unidentified level of regulation in steroid receptor activation. Quaternary structure analysis of other members of the steroid receptor family (estrogen, androgen, and progesterone receptors) reveals variation in oligomerization states among this family of transcription factors. Because GR's oligomerization state has been implicated in therapy outcome, our findings open new doors to the rational design of novel GR ligands and redefine the quaternary structure of steroid receptors. PMID:27382178

  5. Glucocorticoid receptors in the prefrontal cortex regulate dopamine efflux to stress via descending glutamatergic feedback to the ventral tegmental area.

    PubMed

    Butts, Kelly A; Phillips, Anthony G

    2013-09-01

    Enhanced dopamine (DA) efflux in the medial prefrontal cortex (mPFC) is a well-documented response to acute stress. We have previously shown that glucocorticoid receptors in the mPFC regulate stress-evoked DA efflux but the underlying mechanism is unknown. DA neurons in the ventral tegmental area (VTA) receive excitatory input from and send reciprocal projections to the mPFC. We hypothesize that blockade of prefrontal glucocorticoid receptors can reduce activity of descending glutamatergic input to the VTA, thereby attenuating stress-evoked DA efflux in the mPFC. Using in vivo microdialysis, we demonstrate that acute tail-pinch stress leads to a significant increase in glutamate efflux in the VTA. Blockade of prefrontal glucocorticoid receptors with the selective antagonist CORT 108297 attenuates stress-evoked glutamate efflux in the VTA together with DA efflux in the mPFC. Furthermore, blockade of ionotrophic glutamate receptors in the VTA attenuates stress-evoked DA efflux in the mPFC. We also examine the possible role of glucocorticoid-induced synthesis and release of endocannabinoids acting presynaptically via cannabinoid CB1 receptors to inhibit GABA release onto prefrontal pyramidal cells, thus enhancing descending glutamatergic input to the VTA leading to an increase in mPFC DA efflux during stress. However, administration of the cannabinoid CB1 receptor antagonist into the mPFC does not attenuate stress-evoked DA efflux in the mPFC. Taken together, our data indicate that glucocorticoids act locally within the mPFC to modulate mesocortical DA efflux by potentiation of glutamatergic drive onto DA neurons in the VTA. PMID:23590841

  6. A functional glucocorticoid-responsive unit composed of two overlapping inactive receptor-binding sites: evidence for formation of a receptor tetramer.

    PubMed Central

    Garlatti, M; Daheshia, M; Slater, E; Bouguet, J; Hanoune, J; Beato, M; Barouki, R

    1994-01-01

    An unusual glucocorticoid-responsive element (called GRE A) was found to mediate the induction of the cytosolic aspartate aminotransferase gene by glucocorticoids and was bound by the glucocorticoid receptor in a DNase I footprinting assay. GRE A consists of two overlapping GREs, each comprising a conserved half-site and an imperfect half-site. The complete unit was able to confer glucocorticoid inducibility to a heterologous promoter (delta MTV-CAT). Mutation of any of the half-sites, including the imperfect ones, abolished inducibility by the hormone, demonstrating that each of the isolated GREs was inactive. In electrophoretic mobility shift assays, purified rat liver glucocorticoid receptor (GR) formed a low-mobility complex with GRE A, presumably containing a GR tetramer. When purified bacterially expressed DBD was used, low-mobility complexes as well as dimer and monomer complexes were formed. In inactive mutated oligonucleotides, no GR tetramer formation was detected. Modification of the imperfect half-sites in order to increase their affinity for GR gave a DNA sequence that bound a GR tetramer in a highly cooperative manner. This activated unit consisting of two overlapping consensus GREs mediated glucocorticoid induction with a higher efficiency than consensus GRE. Images PMID:7969140

  7. Human Glucocorticoid Receptor β Binds RU-486 and Is Transcriptionally Active▿

    PubMed Central

    Lewis-Tuffin, Laura J.; Jewell, Christine M.; Bienstock, Rachelle J.; Collins, Jennifer B.; Cidlowski, John A.

    2007-01-01

    Human glucocorticoid receptor (hGR) is expressed as two alternately spliced C-terminal isoforms, α and β. In contrast to the canonical hGRα, hGRβ is a nucleus-localized orphan receptor thought not to bind ligand and not to affect gene transcription other than by acting as a dominant negative to hGRα. Here we used confocal microscopy to examine the cellular localization of transiently expressed fluorescent protein-tagged hGRβ in COS-1 and U-2 OS cells. Surprisingly, yellow fluorescent protein (YFP)-hGRβ was predominantly located in the cytoplasm and translocated to the nucleus following application of the glucocorticoid antagonist RU-486. This effect of RU-486 was confirmed with transiently expressed wild-type hGRβ. Confocal microscopy of coexpressed YFP-hGRβ and cyan fluorescent protein-hGRα in COS-1 cells indicated that the receptors move into the nucleus independently. Using a ligand binding assay, we confirmed that hGRβ bound RU-486 but not the hGRα ligand dexamethasone. Examination of the cellular localization of YFP-hGRβ in response to a series of 57 related compounds indicated that RU-486 is thus far the only identified ligand that interacts with hGRβ. The selective interaction of RU-486 with hGRβ was also supported by molecular modeling and computational docking studies. Interestingly, microarray analysis indicates that hGRβ, expressed in the absence of hGRα, can regulate gene expression and furthermore that occupation of hGRβ with the antagonist RU-486 diminishes that capacity despite the lack of helix 12 in the ligand binding domain. PMID:17242213

  8. Astragaloside IV inhibits microglia activation via glucocorticoid receptor mediated signaling pathway

    PubMed Central

    Liu, Hong-Shuai; Shi, Hai-Lian; Huang, Fei; Peterson, Karin E.; Wu, Hui; Lan, Yun-Yi; Zhang, Bei-Bei; He, Yi-Xin; Woods, Tyson; Du, Min; Wu, Xiao-Jun; Wang, Zheng-Tao

    2016-01-01

    Inhibition of microglia activation may provide therapeutic treatment for many neurodegenerative diseases. Astragaloside IV (ASI) with anti-inflammatory properties has been tested as a therapeutic drug in clinical trials of China. However, the mechanism of ASI inhibiting neuroinflammation is unknown. In this study, we showed that ASI inhibited microglia activation both in vivo and in vitro. It could enhance glucocorticoid receptor (GR)-luciferase activity and facilitate GR nuclear translocation in microglial cells. Molecular docking and TR-FRET GR competitive binding experiments demonstrated that ASI could bind to GR in spite of relative low affinity. Meanwhile, ASI modulated GR-mediated signaling pathway, including dephosphorylation of PI3K, Akt, I κB and NF κB, therefore, decreased downstream production of proinflammatory mediators. Suppression of microglial BV-2 activation by ASI was abrogated by GR inhibitor, RU486 or GR siRNA. Similarly, RU486 counteracted the alleviative effect of ASI on microgliosis and neuronal injury in vivo. Our findings demonstrated that ASI inhibited microglia activation at least partially by activating the glucocorticoid pathway, suggesting its possible therapeutic potential for neuroinflammation in neurological diseases. PMID:26750705

  9. Glucocorticoid receptors in the nucleus of the solitary tract (NTS) decrease endocrine and behavioral stress responses

    PubMed Central

    Ghosal, Sriparna; Bundzikova-Osacka, Jana; Dolgas, C. Mark.; Myers, Brent; Herman, James P.

    2014-01-01

    Stress activates the hypothalamo-pituitary-adrenal (HPA) axis, leading to adrenocortical secretion of glucocorticoids. The magnitude and duration of the HPA axis response is mediated in large part by the glucocorticoid receptor (GR). The nucleus of the solitary tract (NTS) abundantly expresses the GR and is a key brain region for processing autonomic and endocrine stress responses. This study tests the hypothesis that GR within the NTS plays an important role in inhibiting stress-induced endocrine and behavioral responses. Cohorts of rats received bilateral micropellet (30 μg) implantations of crystalline corticosterone, mifepristone (a GR antagonist) or cholesterol (control) directed into the region of the NTS, and were subsequently subjected to either acute psychogenic (restraint) stress or chronic variable stress (CVS). We found that NTS GR antagonism increased acute stress-induced corticosterone levels, whereas GR activation within the NTS attenuated this response. Following CVS, basal and 15 min post-restraint plasma corticosterone levels were increased by NTS GR antagonism, which was associated with an increase in Fos immunoreactivity within the PVN. Using the elevated plus maze (EPM) and forced swim test (FST), we assessed the effect of NTS GR inhibition on anxiety- and depressionlike behaviors, respectively. GR inhibition within the NTS decreased open arm exploratory behavior in the EPM and increased immobility in the FST relative to controls. Together, the findings reveal a novel role of NTS GR signaling for inhibiting both endocrine and behavioral responses to stress. PMID:24845185

  10. Sweet-P inhibition of glucocorticoid receptor β as a potential cancer therapy

    PubMed Central

    Nwaneri, Assumpta C.; McBeth, Lucien; Hinds, Terry D.

    2016-01-01

    The need for the development of new cancer therapies and push for the design of new targeting techniques is on the rise, and would be useful for cancers that are resistant to current drug treatments. The understanding of the genome has significantly advanced cancer therapy, as well as prevention and earlier detection. This research highlight discusses a potential new type of cancer-targeting molecule, Sweet-P, which is the first of its kind. Sweet-P specifically targets the microRNA-144 binding site in the 3′ untranslated region (3′ UTR) of the human glucocorticoid receptor β (GRβ), which has been demonstrated to increase expression. GRβ has been shown to be highly expressed in cells from solid tumors of uroepithelial carcinomas, gliomas, osteosarcomas, and hepatocellular carcinomas, as well as in liquid tumor cells from leukemia patients. In non-cancerous diseases, GRβ has been shown to be highly expressed in glucocorticoid-resistant asthma. These maladies brought the need for the development of the Sweet-P anti-GRβ molecule. Sweet-P was shown to repress the migration of bladder cancer cells, and may serve as a new therapeutic for GRβ-related diseases. PMID:27468424

  11. Loss of the Endothelial Glucocorticoid Receptor Prevents the Therapeutic Protection Afforded by Dexamethasone after LPS

    PubMed Central

    Goodwin, Julie E.; Feng, Yan; Velazquez, Heino; Zhou, Han; Sessa, William C.

    2014-01-01

    Glucocorticoids are normally regarded as anti-inflammatory therapy for a wide variety of conditions and have been used with some success in treating sepsis and sepsis-like syndromes. We previously demonstrated that mice lacking the glucocorticoid receptor in the endothelium (GR EC KO mice) are extremely sensitive to low-dose LPS and demonstrate prolonged activation and up regulation of NF-κB. In this study we pre-treated these GR EC KO mice with dexamethasone and assessed their response to an identical dose of LPS. Surprisingly, the GR EC KO mice fared even worse than when given LPS alone demonstrating increased mortality, increased levels of the inflammatory cytokines TNF-α and IL-6 and increased nitric oxide release after the dexamethasone pre-treatment. As expected, control animals pre-treated with dexamethasone showed improvement in all parameters assayed. Mechanistically we demonstrate that GR EC KO mice show increased iNOS production and NF-κB activation despite treatment with dexamethasone. PMID:25299055

  12. Greater Glucocorticoid Receptor Activation in Hippocampus of Aged Rats Sensitizes Microglia

    PubMed Central

    Barrientos, Ruth M.; Thompson, Vanessa M.; Kitt, Meagan M.; Amat, Jose; Hale, Matthew W.; Frank, Matthew G.; Crysdale, Nicole Y.; Stamper, Christopher E.; Hennessey, Patrick A.; Watkins, Linda R.; Spencer, Robert L.; Lowry, Christopher A.; Maier, Steven F.

    2014-01-01

    Healthy aging individuals are more likely to suffer profound memory impairments following an immune challenge than are younger adults. These challenges produce a brain inflammatory response that is exaggerated with age. Sensitized microglia found in the normal aging brain are responsible for this amplified response, which in turn interferes with processes involved in memory formation. Here, we examine factors that may lead aging to sensitize microglia. Aged rats exhibited higher CORT levels in the hippocampus, but not in plasma, throughout the daytime (diurnal inactive phase). These elevated hippocampal CORT levels were associated with increased hippocampal 11β-HSD1 protein expression, the enzyme that catalyzes glucocorticoid formation, and greater hippocampal glucocorticoid receptor (GR) activation. Intracisternal administration of mifepristone, a GR antagonist, effectively reduced immune-activated proinflammatory responses, specifically from hippocampal microglia, and prevented E. coli-induced memory impairments in aged rats. Voluntary exercise as a therapeutic intervention significantly reduced total hippocampal GR expression. These data strongly suggest that increased GR activation in the aged hippocampus plays a critical role in sensitizing microglia. PMID:25559333

  13. Adult male mice conceived by in vitro fertilization exhibit increased glucocorticoid receptor expression in fat tissue.

    PubMed

    Simbulan, R K; Liu, X; Feuer, S K; Maltepe, E; Donjacour, A; Rinaudo, P

    2016-02-01

    Prenatal development is highly plastic and readily influenced by the environment. Adverse conditions have been shown to alter organ development and predispose offspring to chronic diseases, including diabetes and hypertension. Notably, it appears that the changes in glucocorticoid hormones or glucocorticoid receptor (GR) levels in peripheral tissues could play a role in the development of chronic diseases. We have previously demonstrated that in vitro fertilization (IVF) and preimplantation embryo culture is associated with growth alterations and glucose intolerance in mice. However, it is unknown if GR signaling is affected in adult IVF offspring. Here we show that GR expression is increased in inbred (C57Bl6/J) and outbred (CF-1× B6D2F1/J) blastocysts following in vitro culture and elevated levels are also present in the adipose tissue of adult male mice. Importantly, genes involved in lipolysis and triglyceride synthesis and responsive to GR were also increased in adipose tissue, indicating that increased GR activates downstream gene pathways. The promoter region of GR, previously reported to be epigenetically modified by perinatal manipulation, showed no changes in DNA methylation status. Our findings demonstrate that IVF results in a long-term change in GR gene expression in a sex- and tissue-specific manner. These changes in adipose tissues may well contribute to the metabolic phenotype in mice conceived by IVF. PMID:26511158

  14. TALEN-mediated genetic inactivation of the glucocorticoid receptor in cytomegalovirus-specific T cells.

    PubMed

    Menger, Laurie; Gouble, Agnes; Marzolini, Maria A V; Pachnio, Annette; Bergerhoff, Katharina; Henry, Jake Y; Smith, Julianne; Pule, Martin; Moss, Paul; Riddell, Stanley R; Quezada, Sergio A; Peggs, Karl S

    2015-12-24

    Cytomegalovirus (CMV) infection is responsible for substantial morbidity and mortality after allogeneic hematopoietic stem cell transplant. T-cell immunity is critical for control of CMV infection, and correction of the immune deficiency induced by transplant is now clinically achievable by the adoptive transfer of donor-derived CMV-specific T cells. It is notable, however, that most clinical studies of adoptive T- cell therapy exclude patients with graft-versus-host disease (GVHD) from receiving systemic corticosteroid therapy, which impairs cellular immunity. This group of patients remains the highest clinical risk group for recurrent and problematic infections. Here, we address this unmet clinical need by genetic disruption of the glucocorticoid receptor (GR) gene using electroporation of transcription activator-like effector nuclease (TALEN) messenger RNA. We demonstrate efficient inactivation of the GR gene without off-target activity in Streptamer-selected CMV-specific CD8(+) T cells (HLA-A02/NLV peptide), conferring resistance to glucocorticoids. TALEN-modified CMV-specific T cells retained specific killing of target cells pulsed with the CMV peptide NLV in the presence of dexamethasone (DEX). Inactivation of the GR gene also conferred resistance to DEX in a xenogeneic GVHD model in sublethally irradiated NOD-scid IL2rγ(null) mice. This proof of concept provides the rationale for the development of clinical protocols for producing and administering high-purity genetically engineered virus-specific T cells that are resistant to the suppressive effects of corticosteroids. PMID:26508783

  15. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression.

    PubMed

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. PMID:25110054

  16. Control of Energy Balance by Hypothalamic Gene Circuitry Involving Two Nuclear Receptors, Neuron-Derived Orphan Receptor 1 and Glucocorticoid Receptor

    PubMed Central

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Soo-Kyung

    2013-01-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance. PMID:23897430

  17. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    PubMed

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance. PMID:23897430

  18. Thymic involution in the suspended rat model for weightlessness - Decreased glucocorticoid receptor concentration

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1984-01-01

    Hindlimb muscle atrophy, thymic involution and adrenal hypertrophy in rats during spaceflight can be simulated using suspension models. Skeletal muscle and thymus are sensitive to gluco-corticoids (GC), and previous studies have demonstrated that muscle atrophy in suspended rats is associated with increased GC receptor concentration. The objectives were to confirm thymic involution during suspension, and determine if involution correlated with increased GC receptor concentration. Seven days of antiorthostatic (AO) suspension of rats produced a significant (P less than 0.001) reduction in thymic wet weight not associated with an alteration of percent water content. GC receptor concentration (pmol/mg protein) decreased 20 percent (P less than 0.025) in thymus glands from 7 day AO suspended rats. Suspension, therefore, is associated with involution of the thymus, but this is not dependent upon AO positioning. Thymus GC receptor concentrations were depressed in 7-day suspended rats, in contrast with previous observations on skeletal muscle, suggesting that different mechanisms may underlie these responses.

  19. Distribution and Abundance of Glucocorticoid and Mineralocorticoid Receptors throughout the Brain of the Great Tit (Parus major)

    PubMed Central

    Senft, Rebecca A.; Meddle, Simone L.; Baugh, Alexander T.

    2016-01-01

    The glucocorticoid stress response, regulated by the hypothalamic-pituitary-adrenal (HPA) axis, enables individuals to cope with stressors through transcriptional effects in cells expressing the appropriate receptors. The two receptors that bind glucocorticoids—the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR)—are present in a variety of vertebrate tissues, but their expression in the brain is especially important. Neural receptor patterns have the potential to integrate multiple behavioral and physiological traits simultaneously, including self-regulation of glucocorticoid secretion through negative feedback processes. In the present work, we quantified the expression of GR and MR mRNA throughout the brain of a female great tit (Parus major), creating a distribution map encompassing 48 regions. This map, the first of its kind for P. major, demonstrated a widespread but not ubiquitous distribution of both receptor types. In the paraventricular nucleus of the hypothalamus (PVN) and the hippocampus (HP)—the two brain regions that we sampled from a total of 25 birds, we found high GR mRNA expression in the former and, unexpectedly, low MR mRNA in the latter. We examined the covariation of MR and GR levels in these two regions and found a strong, positive relationship between MR in the PVN and MR in the HP and a similar trend for GR across these two regions. This correlation supports the idea that hormone pleiotropy may constrain an individual’s behavioral and physiological phenotype. In the female song system, we found moderate GR in hyperstriatum ventrale, pars caudalis (HVC), and moderate MR in robust nucleus of the arcopallium (RA). Understanding intra- and interspecific patterns of glucocorticoid receptor expression can inform us about the behavioral processes (e.g. song learning) that may be sensitive to stress and stimulate future hypotheses concerning the relationships between receptor expression, circulating hormone concentrations

  20. Endocytic downregulation of ErbB receptors: mechanisms and relevance in cancer

    PubMed Central

    Roepstorff, Kirstine; Grøvdal, Lene; Grandal, Michael; Lerdrup, Mads

    2008-01-01

    ErbB receptors (EGFR (ErbB1), ErbB2, ErbB3, and ErbB4) are important regulators of normal growth and differentiation, and they are involved in the pathogenesis of cancer. Following ligand binding and receptor activation, EGFR is endocytosed and transported to lysosomes where the receptor is degraded. This downregulation of EGFR is a complex and tightly regulated process. The functions of ErbB2, ErbB3, and ErbB4 are also regulated by endocytosis to some extent, although the current knowledge of these processes is sparse. Impaired endocytic downregulation of signaling receptors is frequently associated with cancer, since it can lead to increased and uncontrolled receptor signaling. In this review we describe the current knowledge of ErbB receptor endocytic downregulation. In addition, we outline how ErbB receptors can escape endocytic downregulation in cancer, and we discuss how targeted anti-cancer therapy may induce endocytic downregulation of ErbB receptors. PMID:18288481

  1. Down-regulation of phospholipase C-beta1 following chronic muscarinic receptor activation.

    PubMed

    Sorensen, S D; Linseman, D A; Fisher, S K

    1998-04-01

    To determine whether prolonged activation of a phospholipase C-coupled receptor can lead to a down-regulation of its effector enzyme, SH-SY5Y neuroblastoma cells were incubated for 24 h with the muscarinic receptor agonist, oxotremorine-M. Under these conditions, significant reductions (46-53%) in muscarinic cholinergic receptor density, G(alphaq/11) and phospholipase C-beta1 (but not the beta3-or gamma1 isoforms) were observed. These results suggest that a selective down-regulation of phospholipase C-beta1 may play a role in adaptation to chronic muscarinic receptor activation. PMID:9617763

  2. Novel Tumor Suppressor Function of Glucocorticoid-Induced TNF Receptor GITR in Multiple Myeloma

    PubMed Central

    Liu, Yang; Quang, Phong; Braggio, Esteban; Ngo, Hai; Badalian-Very, Gayane; Flores, Ludmila; Zhang, Yong; Sacco, Antonio; Maiso, Patricia; Azab, Abdel Kareem; Azab, Feda; Carrasco, Ruben; Rollins, Barrett J.; Roccaro, Aldo M.; Ghobrial, Irene M.

    2013-01-01

    Glucocorticoid-induced TNF receptor (GITR) plays a crucial role in modulating immune response and inflammation, however the role of GITR in human cancers is poorly understood. In this study, we demonstrated that GITR is inactivated during tumor progression in Multiple Myeloma (MM) through promoter CpG island methylation, mediating gene silencing in primary MM plasma cells and MM cell lines. Restoration of GITR expression in GITR deficient MM cells led to inhibition of MM proliferation in vitro and in vivo and induction of apoptosis. These findings were supported by the presence of induction of p21 and PUMA, two direct downstream targets of p53, together with modulation of NF-κB in GITR-overexpressing MM cells. Moreover, the unbalanced expression of GITR in clonal plasma cells correlated with MM disease progression, poor prognosis and survival. These findings provide novel insights into the pivotal role of GITR in MM pathogenesis and disease progression. PMID:23785514

  3. Function changing mutations in glucocorticoid receptor evolution correlate with their relevance to mode coupling.

    PubMed

    Kav, Batuhan; Öztürk, Murat; Kabakçιoğlu, Alkan

    2016-05-01

    Nonlinear effects in protein dynamics are expected to play role in function, particularly of allosteric nature, by facilitating energy transfer between vibrational modes. A recently proposed method focusing on the non-Gaussian shape of the configurational population near equilibrium projects this information onto real space in order to identify the aminoacids relevant to function. We here apply this method to three ancestral proteins in glucocorticoid receptor (GR) family and show that the mutations that restrict functional activity during GR evolution correlate significantly with locations that are highlighted by the nonlinear contribution to the near-native configurational distribution. Our findings demonstrate that the analysis of nonlinear effects in protein dynamics can be harnessed into a predictive tool for functional site determination. Proteins 2016; 84:655-665. © 2016 Wiley Periodicals, Inc. PMID:26873882

  4. Glucocorticoid receptors in the prefrontal cortex regulate stress-evoked dopamine efflux and aspects of executive function

    PubMed Central

    Butts, Kelly A.; Weinberg, Joanne; Young, Allan H.; Phillips, Anthony G.

    2011-01-01

    Enhanced dopamine efflux in the prefrontal cortex is a well-documented response to acute stress. However, the underlying mechanism(s) for this response is unknown. Using in vivo microdialysis, we demonstrate that blocking glucocorticoid receptors locally within the rat prefrontal cortex results in a reduction in stress-evoked dopamine efflux. In contrast, blocking glucocorticoid receptors in the ventral tegmental area did not affect stress-evoked dopamine efflux in the prefrontal cortex. Additionally, local administration of corticosterone into the prefrontal cortex increased prefrontal dopamine efflux. The functional impact of enhanced dopamine efflux evoked by acute stress was demonstrated using a cognitive task dependent on the prefrontal cortex and sensitive to impairment in working memory. Notably, stress-induced impairments in cognition were attenuated by blockade of glucocorticoid receptors in the prefrontal cortex. Taken together, these data demonstrate that glucocorticoids act locally within the prefrontal cortex to modulate mesocortical dopamine efflux leading to the cognitive impairments observed during acute stress. PMID:22032926

  5. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine

    PubMed Central

    Parnaudeau, Sébastien; Dongelmans, Marie-louise; Turiault, Marc; Ambroggi, Frédéric; Delbes, Anne-Sophie; Cansell, Céline; Luquet, Serge; Piazza, Pier-Vincenzo; Tronche, François; Barik, Jacques

    2014-01-01

    The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs) release. GCs bind the glucocorticoid receptor (GR) a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While GR within dopamine-innervated areas drives cocaine's behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurons is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice. PMID:24574986

  6. Cyclic, nonequilibrium models of glucocorticoid antagonism: role of activation, nuclear binding and receptor recycling.

    PubMed

    Munck, A; Holbrook, N J

    1988-10-01

    Quantitative models that have been proposed to date to explain mechanisms of glucocorticoid antagonism have generally been of the equilibrium type, involving hypothetical allosteric equilibria between active and inactive states of the receptor or the steroid-receptor complex. We describe here the agonist-antagonist relationships predicted by a nonequilibrium cyclic model that we have recently devised to account for the kinetic behavior of glucocorticoid-receptor complexes in intact rat thymus cells. This model simulates quantitatively most kinetic and steady state results that have been obtained so far. It postulates the existence of only well-established receptor species, and its kinetic parameters can in principle be determined by receptor measurements with intact cells. To calculate the steady state agonist-antagonist properties it is assumed that biological activity is proportional to the total amount of nuclear-bound complex, whether formed by agonist or antagonist. The agonist activity of a steroid is determined by the steady state ratio of nuclear-bound to total complexes it forms. This ratio varies from 0 for a pure antagonist to 1 for a pure agonist. It turns out to be independent of agonist and antagonist concentrations, and a function only of the rate constants for the reactions of the complexes formed by a steroid. Analysis of the dependence of the ratio on each rate constant shows quantitatively how each reaction in the cyclic model--activation of the nonactivated complex, nuclear binding of the activated complexes, and dissociation and recycling of activated and nuclear-bound complexes--affects antagonist properties. Steady state interactions of agonists with antagonists are found to be determined by equations that are identical to those for competition in simple equilibrium systems. Predicted dose-response relations agree qualitatively with experimentally observed relations. They are similar to those predicted by two-state allosteric models, although

  7. Role of the Ada adaptor complex in gene activation by the glucocorticoid receptor.

    PubMed Central

    Henriksson, A; Almlöf, T; Ford, J; McEwan, I J; Gustafsson, J A; Wright, A P

    1997-01-01

    We have shown that the Ada adaptor complex is important for the gene activation capacity of the glucocorticoid receptor in yeast. The recently isolated human Ada2 protein also increases the potency of the receptor protein in mammalian cells. The Ada pathway is of key significance for the tau1 core transactivation domain (tau1c) of the receptor, which requires Ada for activity in vivo and in vitro. Ada2 can be precipitated from nuclear extracts by a glutathione S-transferase-tau1 fusion protein coupled to agarose beads, and a direct interaction between Ada2 and tau1c can be shown by using purified proteins. This interaction is strongly reduced by a mutation in tau1c that reduces transactivation activity. Mutations affecting the Ada complex do not reverse transcriptional squelching by the tau1 domain, as they do for the VP16 transactivation domain, and thus these powerful acidic activators differ in at least some important aspects of gene activation. Mutations that reduce the activity of the tau1c domain in wild-type yeast strains cause similar reductions in ada mutants that contain little or no Ada activity. Thus, gene activation mechanisms, in addition to the Ada pathway, are involved in the activity of the tau1c domain. PMID:9154805

  8. G-protein-coupled glucocorticoid receptors on the pituitary cell membrane.

    PubMed

    Maier, Christina; Rünzler, Dominik; Schindelar, Julia; Grabner, Gottfried; Waldhäusl, Werner; Köhler, Gottfried; Luger, Anton

    2005-08-01

    Rapid, nongenomic actions of glucocorticoids (GCs) have been well documented, but information about putative membrane receptors that mediate them is scarce. We used fluorescence correlation spectroscopy to search for membrane GC-binding on the mouse pituitary cell line AtT-20. A slowly diffusing fraction (tau3; diffusion constant 3x10(-10) cm2 s-1) of fluorescein-labeled dexamethasone on the cell membrane corresponds to fluorescein-dexamethasone binding. Preincubation experiments were performed to test binding specificity: a 500-fold excess of unlabeled dexamethasone abolished subsequent fluorescein-dexamethasone membrane binding from 58+/-2 (control) to 8+/-1 (% of tau3, mean+/-s.e.m.), the natural ligand corticosterone prevented it partially (29+/-2), while the sex steroids estradiol (56+/-4) and progesterone (50+/-4) and the GC-receptor antagonist RU486 (56+/-2) had no effect. Preincubation with pertussis toxin resulted in disappearance of the slowest diffusion component (11+/-4) suggesting association of the receptor with a G-protein. Varying the concentration of fluorescein-dexamethasone showed that membrane binding is highly cooperative with an apparent Kd of 180 nM and Bmax of 230 nM. Taken together, these results demonstrate high-affinity GC-binding on the cell membrane of AtT-20 cells with characteristics distinct from intracellular binding. PMID:16079279

  9. Transcription Factor AP1 Potentiates Chromatin Accessibility and Glucocorticoid Receptor Binding

    PubMed Central

    Biddie, Simon C.; John, Sam; Sabo, Pete J.; Thurman, Robert E.; Johnson, Thomas A.; Schiltz, R. Louis; Miranda, Tina B.; Sung, Myong-Hee; Trump, Saskia; Lightman, Stafford L.; Vinson, Charles; Stamatoyannopoulos, John A.; Hager, Gordon L.

    2011-01-01

    Summary Ligand-dependent transcription by the nuclear receptor glucocorticoid receptor (GR) is mediated by interactions with co-regulators. The role of these interactions in determining selective binding of GR to regulatory elements remains unclear. Recent findings indicate a large fraction of genomic GR binding coincides with chromatin that is accessible prior to hormone treatment, suggesting that receptor binding is dictated by proteins that maintain chromatin in an open state. Combining DNaseI accessibility and chromatin immunoprecipitation with high-throughput sequencing, we identify the activator protein 1 (AP1) as a major partner for productive GR-chromatin interactions. AP1 is critical for GR-regulated transcription and recruitment to co-occupied regulatory elements, illustrating an extensive AP1-GR interaction network. Importantly, the maintenance of baseline chromatin accessibility facilitates GR recruitment and is dependent on AP1 binding. We propose a model where the basal occupancy of transcription factors act to prime chromatin and direct inducible transcription factors to select regions in the genome. PMID:21726817

  10. Protopanaxadiol and protopanaxatriol bind to glucocorticoid and oestrogen receptors in endothelial cells

    PubMed Central

    Leung, Kar Wah; Leung, Fung Ping; Mak, Nai Ki; Tombran-Tink, Joyce; Huang, Yu; Wong, Ricky NS

    2009-01-01

    Background and purpose: Ginsenosides are used widely for medicinal purposes, but the mechanisms of their action are still unclear, although there is some evidence that these effects are mediated by nuclear receptors. Here we examined whether two metabolites of ginsenoside, protopanaxadiol (g-PPD) and protopanaxatriol (g-PPT), could modulate endothelial cell functions through the glucocorticoid receptor (GR) and oestrogen receptor (ER). Experiment approaches: The effects of g-PPD and g-PPT on intracellular calcium ion concentration ([Ca2+]i) and nitric oxide (NO) production in human umbilical vein endothelial cells (HUVECs) were measured using Fura-2-acetoxymethyl ester, 4-amino-5-methylamino-2′,7′-difluorofluorescein and Griess reagent. Effects on expression of GR and ER isoforms in HUVECs were determined using reverse transcriptase-/real-time PCR and immunocytochemistry. Phosphorylation of endothelial NO synthase (eNOS) was assessed by Western blotting. Results: Ginsenoside protopanaxadiol and g-PPT increased [Ca2+]i, eNOS phosphorylation and NO production in HUVECs, which were inhibited by the GR antagonist, RU486, the ER antagonist, ICI 182,780 and siRNA targeting GR or ERβ. The NO production was Ca2+-dependent and the [Ca2+]i elevation in HUVECs resulted from both intracellular Ca2+ release and extracellular Ca2+ influx. Conclusions and implications: Ginsenoside protopanaxadiol and g-PPT were functional ligands for both GR and ERβ, through which these ginsenoside metabolites exerted rapid, non-genomic effects on endothelial cells. PMID:19226254

  11. Intracellular glucocorticoid receptors in spleen, but not skin, vary seasonally in wild house sparrows (Passer domesticus).

    PubMed

    Lattin, Christine R; Waldron-Francis, K; Romero, L Michael

    2013-04-01

    Over the short-term and at physiological doses, acute increases in corticosterone (CORT) titres can enhance immune function. There are predictable seasonal patterns in both circulating CORT and immune function across many animal species, but whether CORT receptor density in immune tissues varies seasonally is currently unknown. Using radioligand binding assays, we examined changes in concentrations of glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) in spleen and skin in wild-caught house sparrows in Massachusetts during six different life-history stages: moult, early winter, late winter, pre-egg-laying, breeding and late breeding. Splenic GR and MR binding were highest during the pre-laying period. This may help animals respond to immune threats through increased lymphocyte proliferation and/or an increase in delayed-type hypersensitivity reactions, both of which CORT can stimulate and in which spleen is involved. A decrease in splenic GR and MR during the late breeding period coincides with low baseline and stress-induced CORT, suggesting immune function in spleen may be relatively CORT-independent during this period. We saw no seasonal patterns in GR or MR in skin, suggesting skin's response to CORT is modulated primarily via changes in circulating CORT titres and/or via local production of CORT in response to wounding and other noxious stimuli. PMID:23407837

  12. ATP-dependent release of glucocorticoid receptors from the nuclear matrix.

    PubMed Central

    Tang, Y; DeFranco, D B

    1996-01-01

    Glucocorticoid receptors (GRs) have the capacity to shuttle between the nuclear and cytoplasmic compartments, sharing that trait with other steroid receptors and unrelated nuclear proteins of diverse function. Although nuclear import of steroid receptors, like that of nearly all other karyophilic proteins examined to date, requires ATP, there appear to be different energetic requirements for export of proteins, including steroid receptors, from nuclei. In an attempt to reveal which steps, if any, in the nuclear export pathway utilized by steroid receptors require ATP, we have used indirect immunofluorescence to visualize GRs within cells subjected to a reversible ATP depletion. Under conditions which lead to >95% depletion of cellular ATP levels within 90 min, GRs remain localized within nuclei and do not efflux into the cytoplasm. Under analogous conditions of ATP depletion, transfected progesterone receptors are also retained within nuclei. Importantly, GRs which accumulate within nuclei of ATP-depleted cells are distinguished from nuclear receptors in metabolically active cells by their resistance to in situ extraction with a hypotonic, detergent-containing buffer. GRs in ATP-depleted cells are not permanently trapped in this nuclear compartment, as nuclear receptors rapidly regain their capacity to be extracted upon restoration of cellular ATP, even in the absence of de novo protein synthesis. More extensive extraction of cells with high salt and detergent, coupled with DNase I digestion, established that a significant fraction of GRs in ATP-depleted cells are associated with an RNA-containing nuclear matrix. Quantitative Western blot (immunoblot) analysis confirmed the dramatic increase in GR binding to the nuclear matrix of ATP-depleted cells, while confocal microscopy revealed that GRs are bound to the matrix throughout all planes of the nucleus. ATP depletion does not lead to wholesale collapse of nuclear proteins onto the matrix, as the interaction of a

  13. Glucocorticoid regulation of human pulmonary surfactant protein-B (SP-B) mRNA stability is independent of activated glucocorticoid receptor.

    PubMed

    Tillis, Ceá C; Huang, Helen W; Bi, Weizhen; Pan, Su; Bruce, Shirley R; Alcorn, Joseph L

    2011-06-01

    Adequate expression of surfactant protein-B (SP-B) is critical in the function of pulmonary surfactant to reduce alveolar surface tension. Expression of SP-B mRNA is restricted to specific lung-airway epithelial cells, and human SP-B mRNA stability is increased in the presence of the synthetic glucocorticoid dexamethasone (DEX). Although the mechanism of SP-B mRNA stabilization by DEX is unknown, studies suggest involvement of the glucocorticoid receptor (GR). We developed a dual-cistronic plasmid-based expression assay in which steady-state levels of SP-B mRNA, determined by Northern analysis, reproducibly reflect changes in SP-B mRNA stability. Using this assay, we found that steady-state levels of SP-B mRNA increased greater than twofold in transfected human-airway epithelial cells (A549) incubated with DEX (10(-7) M). DEX-mediated changes in SP-B mRNA levels required the presence of the SP-B mRNA 3'-untranslated region but did not require ongoing protein synthesis. The effect of DEX on SP-B mRNA levels was dose dependent, with maximal effect at 10(-7) M. DEX increased levels of SP-B mRNA in cells lacking GR, and the presence of the GR antagonist RU486 did not interfere with the effect of DEX. Surprisingly, other steroid hormones (progesterone, estradiol, and vitamin D; 10(-7) M) significantly increased SP-B mRNA levels, suggesting a common pathway of steroid hormone action on SP-B mRNA stability. These results indicate that the effect of DEX to increase SP-B mRNA stability is independent of activated GR and suggests that the mechanism is mediated by posttranscriptional or nongenomic effects of glucocorticoids. PMID:21398497

  14. 5'UTR sequences of the glucocorticoid receptor 1A transcript encode a peptide associated with translational regulation of the glucocorticoid receptor.

    PubMed

    Diba, F; Watson, C S; Gametchu, B

    2001-01-01

    We have recently reported that glucocorticoid receptor (GR) transcript 1A, one of the five mouse GR splice variants (1A-1E), encodes membrane GR (mGR), which subsequently participates in mediating the apoptotic effects of glucocorticoids (GCs); all transcripts vary at their 5'UTR. Computer analysis of the entire1026 bp comprising the 5'UTR of transcript 1A identified five putative translation start sites at positions 85, 217, 478, 628, and 892 with the potential to encode peptides of 33, 93, 6, 18, and 41 amino acids, respectively. We then separately generated point mutations at these five upstream AUG codons of the GR 1A cDNA and performed in vitro transcription/translation experiments to investigate the regulatory effects of these sites on GR synthesis. GR translation products were immuno-captured with BUGR-2 antibody (Ab), then subjected to Western blot analysis. Mutation of the uAUG codon-2 completely inhibited GR synthesis, while mutations at the other four uAUG codons had no significant effect on the translation of transcript 1A. Antibodies (Abs) against the uORF-2 and uORF-5 protein products were used to perform Western blot analysis on cytosolic proteins from S-49 cells (which express GR transcript 1A), U937 cells transfected with GR 1A cDNA, or in vitro translation products from this cDNA. This assay identified an intense immunoreactive band of approximately 8.5 kDa recognized only with Ab to the uORF-2 peptide; this size is consistent with the computer-predicted size of the uORF-2 product, suggesting that the uORF-2 product is indeed synthesized in cells. No peptide was identified with Ab to uORF-5 peptide. Indirect fluorescent Ab staining, confocal microscopy and FACS analysis all showed that the ORF-2 peptide is localized both in the interior of the cell and at the plasma membrane. Using Ab to ORF-2 peptide for immunoadsorption we then asked whether cellular factors interact with the product of uORF-2. Immuno-captured uORF-2 peptide levels correlated

  15. The prognostic value of glucocorticoid receptors for adult acute lymphoblastic leukemia

    PubMed Central

    EL-Maghraby, Shereen M.; Kandil, Noha S.; El-Bendary, Waleed R.

    2015-01-01

    Background Therapeutic protocols used in adult acute lymphoblastic leukemia (ALL) are widely variable, and glucocorticoids (GCs) are essential components in ALL treatment. Therefore, this study aimed to evaluate the distribution of prominent glucocorticoid receptor (GR) gene polymorphic variants among adult ALL patients. We also investigated the association between GR messenger ribonucleic acid (mRNA) isoform expressions and the response to chemotherapy. Methods Fifty-two newly diagnosed Philadelphia-negative adult ALL patients and 30 healthy control subjects were enrolled in this study. Genotyping was carried out using a polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis. GR mRNA isoform expressions were assayed by quantitative real-time PCR. Results ALL patients in this study had a median age of 34 years (range, 18-75). GRα expression was associated with complete remission (P=0.03), while GRγ mRNA expression was significantly higher in GC resistant patients (P=0.032) and in non-responders (P=0.019). However, there were no significant associations with GC resistance. The BclI polymorphic variant of the GR gene was the most frequent in adult ALL patients and was not associated with the GC response. Both higher GRα expression and lower GRγ expression were associated with achievement of complete remission, while higher GRγ expression was associated with GC-resistance. Conclusion Our data suggest that the level of GR isoform expression may be useful in predicting GC response, achievement of complete remission, and better event-free survival in ALL patients. However, further evaluation with a larger cohort of patients is warranted. PMID:26770951

  16. Glucocorticoid receptor antagonism as a novel therapy for triple-negative breast cancer

    PubMed Central

    Skor, Maxwell N.; Wonder, Erin L.; Kocherginsky, Masha; Goyal, Anju; Hall, Ben A.; Cai, Yi; Conzen, Suzanne D.

    2013-01-01

    Purpose: Triple-negative breast cancer (TNBC) accounts for 10-20% of newly diagnosed invasive breast cancer. Finding effective targets for chemotherapy-resistant TNBC has proven difficult in part because of TNBC’s molecular heterogeneity. We have previously reported that, likely because of GR’s anti-apoptotic activity in ER-negative breast epithelial and cancer cells, high glucocorticoid receptor (GR) expression/activity in early-stage TNBC significantly correlates with chemotherapy-resistance and increased recurrence. We hypothesized that pre-treatment with mifepristone, a (GR)-antagonist, would potentiate the efficacy of chemotherapy in GR+ TNBC by inhibiting GR’s anti-apoptotic signaling pathways and increasing the cytotoxic efficiency of chemotherapy. Experimental Design: TNBC cell apoptosis was examined in the context of physiological glucocorticoid concentrations, chemotherapy, and/or pharmacologic concentrations of mifepristone. We used high-throughput live microscopy with continuous recording to measure apoptotic cells stained with a fluorescent dye, and Western analysis to detect caspase-3 and PARP cleavage. The effect of mifepristone on GR-mediated gene expression was also measured. TNBC xenograft studies were performed in female severe combined immunodeficient (SCID) mice and tumors were measured following treatment with vehicle, paclitaxel or mifepristone/paclitaxel. Results: We found that although mifepristone treatment alone had no significant effect on TNBC cell viability or clonogenicity in the absence of chemotherapy, the addition of mifepristone to dexamethasone/paclitaxel treatment significantly increased cytotoxicity and caspase-3/PARP cleavage. Mifepristone also antagonized GR-induced SGK1 and MKP1/DUSP1 gene expression, while significantly augmenting paclitaxel-induced GR+ MDA-MB-231 xenograft tumor shrinkage in vivo. Conclusions: These results suggest that mifepristone pre-treatment could be a useful strategy for increasing tumor cell

  17. Forkhead box A3 mediates glucocorticoid receptor function in adipose tissue.

    PubMed

    Ma, Xinran; Xu, Lingyan; Mueller, Elisabetta

    2016-03-22

    Glucocorticoids (GCs) are widely prescribed anti-inflammatory agents, but their chronic use leads to undesirable side effects such as excessive expansion of adipose tissue. We have recently shown that the forkhead box protein A3 (Foxa3) is a calorie-hoarding factor that regulates the selective enlargement of epididymal fat depots and suppresses energy expenditure in a nutritional- and age-dependent manner. It has been demonstrated that Foxa3 levels are elevated in adipose depots in response to high-fat diet regimens and during the aging process; however no studies to date have elucidated the mechanisms that control Foxa3's expression in fat. Given the established effects of GCs in increasing visceral adiposity and in reducing thermogenesis, we assessed the existence of a possible link between GCs and Foxa3. Computational prediction analysis combined with molecular studies revealed that Foxa3 is regulated by the glucocorticoid receptor (GR) in preadipocytes, adipocytes, and adipose tissues and is required to facilitate the binding of the GR to its target gene promoters in fat depots. Analysis of the long-term effects of dexamethasone treatment in mice revealed that Foxa3 ablation protects mice specifically against fat accretion but not against other pathological side effects elicited by this synthetic GC in tissues such as liver, muscle, and spleen. In conclusion our studies provide the first demonstration, to our knowledge, that Foxa3 is a direct target of GC action in adipose tissues and point to a role of Foxa3 as a mediator of the side effects induced in fat tissues by chronic treatment with synthetic steroids. PMID:26957608

  18. Impact of Cadmium Exposure during Pregnancy on Hepatic Glucocorticoid Receptor Methylation and Expression in Rat Fetus

    PubMed Central

    Castillo, Paula; Ibáñez, Freddy; Guajardo, Angélica; Llanos, Miguel N.; Ronco, Ana M.

    2012-01-01

    Adverse fetal environment due to maternal undernutrition or exposure to environmental chemicals alters glucocorticoid (GC) metabolism increasing the risk of metabolic disorders in adulthood. In this study, we investigated the effects of maternal exposure to cadmium (Cd, 50 ppm) during pregnancy in the methylation of fetal hepatic glucocorticoid receptor promoter (GR) and the correlation with its expression and that of the DNA methyltransferases (DNMT1a and 3a). We also studied the expression of liver phosphoenolpyruvate carboxykinase (PEPCK) and acyl-CoA oxidase (AOX), two enzymes involved in the metabolism of carbohydrates and lipids respectively. The methylation of the rat GR gene exon 110 (GR110) in nucleotides -2536 to -2361 was analyzed by pyrosequencing. Quantitative real time PCR was used to assess hepatic GR, PEPCK and AOX mRNA, and their protein levels using Western blotting analysis. Differential methylation was noted across groups at all CpG sites in the GR exon 110 in a sex-dependent manner. In males, CpG were more methylated than the controls (185±21%, p<0.001) but only CpG sites 1,6,7 and 9 showed a significantly different extent of methylation. In addition, a lower expression of GR (mRNA and protein) was found. On the contrary, in females, CpG were less methylated than the controls (62±11%, p<0.05) and overexpressed, affecting PEPCK and AOX expression, which did not change in males. The GR methylation profile correlates with DNMT3a expression which may explain epigenetic sex-dependent changes on GR110 promoter induced by Cd treatment. In conclusion, Cd exposure during pregnancy affects fetal liver DNMT3a resulting in sex-dependent changes in methylation and expression of GR110. Although these effects do not seem to be directly involved in the low birth weight and height, they may have relevant implications for long-term health. PMID:22957049

  19. Novel Mechanism of Steroid Action in Skin through Glucocorticoid Receptor Monomers

    PubMed Central

    Radoja, Nadezda; Komine, Mayumi; Jho, Sang H.; Blumenberg, Miroslav; Tomic-Canic, Marjana

    2000-01-01

    Glucocorticoids (GCs), important regulators of epidermal growth, differentiation, and homeostasis, are used extensively in the treatment of skin diseases. Using keratin gene expression as a paradigm of epidermal physiology and pathology, we have developed a model system to study the molecular mechanism of GCs action in skin. Here we describe a novel mechanism of suppression of transcription by the glucocorticoid receptor (GR) that represents an example of customizing a device for transcriptional regulation to target a specific group of genes within the target tissue, in our case, epidermis. We have shown that GCs repress the expression of the basal-cell-specific keratins K5 and K14 and disease-associated keratins K6, K16, and K17 but not the differentiation-specific keratins K3 and K10 or the simple epithelium-specific keratins K8, K18, and K19. We have identified the negative recognition elements (nGREs) in all five regulated keratin gene promoters. Detailed footprinting revealed that the function of nGREs is to instruct the GR to bind as four monomers. Furthermore, using cotransfection and antisense technology we have found that, unlike SRC-1 and GRIP-1, which are not involved in the GR complex that suppresses keratin genes, histone acetyltransferase and CBP are. In addition, we have found that GR, independently from GREs, blocks the induction of keratin gene expression by AP1. We conclude that GR suppresses keratin gene expression through two independent mechanisms: directly, through interactions of keratin nGREs with four GR monomers, as well as indirectly, by blocking the AP1 induction of keratin gene expression. PMID:10825196

  20. Cross talk of signaling pathways in the regulation of the glucocorticoid receptor function.

    PubMed

    Davies, Laura; Karthikeyan, Nirupama; Lynch, James T; Sial, Elin-Alia; Gkourtsa, Areti; Demonacos, Constantinos; Krstic-Demonacos, Marija

    2008-06-01

    Several posttranslational modifications including phosphorylation have been detected on the glucocorticoid receptor (GR). However, the interdependence and combinatorial regulation of these modifications and their role in GR functions are poorly understood. We studied the effects of c-Jun N-terminal kinase (JNK)-dependent phosphorylation of GR on its sumoylation status and the impact that these modifications have on GR transcriptional activity. GR is targeted for phosphorylation at serine 246 (S246) by the JNK protein family in a rapid and transient manner. The levels of S246 phosphorylation of endogenous GR increased significantly in cells treated with UV radiation that activates JNK. S246 GR phosphorylation by JNK facilitated subsequent GR sumoylation at lysines 297 and 313. GR sumoylation increased with JNK activation and was inhibited in cells treated with JNK inhibitor. GR sumoylation in cells with activated JNK was mediated preferentially by small ubiquitin-like modifier (SUMO)2 rather than SUMO1. An increase in GR transcriptional activity was observed after inhibition of JNK or SUMO pathways and suppression of GR transcriptional activity after activation of both pathways in cells transfected with GR-responsive reporter genes. Endogenous GR transcriptional activity was inhibited on endogenous target genes IGF binding protein (IGFBP) and glucocorticoid-induced leucine zipper (GILZ) when JNK and SUMO pathways were induced individually or simultaneously. Activation of both of these signals inhibited GR-mediated regulation of human inhibitor of apoptosis gene (hIAP), whereas simultaneous activation had no effect. We conclude that phosphorylation aids GR sumoylation and that cross talk of JNK and SUMO pathways fine tune GR transcriptional activity in a target gene-specific manner, thereby modulating the hormonal response of cells exposed to stress. PMID:18337589

  1. Enhancement of stress resilience through Hdac6-mediated regulation of glucocorticoid receptor chaperone dynamics

    PubMed Central

    Jochems, Jeanine; Teegarden, Sarah L; Chen, Yong; Boulden, Janette; Challis, Collin; Ben-Dor, Gabriel A; Kim, Sangwon F; Berton, Olivier

    2014-01-01

    Background Acetylation of Hsp90 regulates downstream hormone signaling via the glucocorticoid receptor (GR), but the role of this molecular mechanism in stress homeostasis remains poorly understood. We tested whether acetylation of Hsp90 in the brain predicts and modulates the behavioral sequelae of a mouse model of social stress. Methods Mice subjected to chronic social defeat stress (CSDS) were stratified into resilient and vulnerable subpopulations. HPA axis function was probed using a DEX/CRF test. Hsp90 acetylation, Hsp90-GR interactions and GR translocation were measured in the dorsal raphe nucleus (DRN). To manipulate Hsp90 acetylation, we pharmacologically inhibited Hdac6, a known deacetylase of Hsp90 or overexpressed a point-mutant that mimics the hyperacetylated state of Hsp90 at lysine K294 Results Lower acetylated Hsp90, higher GR-Hsp90 association and enhanced GR translocation were observed in DRN of vulnerable mice after CSDS. Administration of ACY-738, an Hdac6-selective inhibitor, led to Hsp90 hyperacetylation in brain and in neuronal culture. In cell-based assays, ACY-738 increased the relative association of Hsp90 with FKBP51 versus FKBP52 and inhibited hormone-induced GR translocation. This effect was replicated by overexpressing the acetylation-mimic point-mutant of Hsp90. In vivo, ACY-738 promoted resilience to CSDS and serotonin-selective viral overexpression of the acetylation-mimic mutant of Hsp90 in raphe neurons reproduced the behaviroral effect of ACY-738. Conclusions Hyperacetylation of Hsp90 is a predictor and causal molecular determinant of stress resilience in mice. Brain-penetrant Hdac6 inhibitors increase Hsp90 acetylation and modulate GR chaperone dynamics offering a promising strategy to curtail deleterious socioaffective effects of stress and glucocorticoids. PMID:25442004

  2. Forkhead box A3 mediates glucocorticoid receptor function in adipose tissue

    PubMed Central

    Ma, Xinran; Xu, Lingyan; Mueller, Elisabetta

    2016-01-01

    Glucocorticoids (GCs) are widely prescribed anti-inflammatory agents, but their chronic use leads to undesirable side effects such as excessive expansion of adipose tissue. We have recently shown that the forkhead box protein A3 (Foxa3) is a calorie-hoarding factor that regulates the selective enlargement of epididymal fat depots and suppresses energy expenditure in a nutritional- and age-dependent manner. It has been demonstrated that Foxa3 levels are elevated in adipose depots in response to high-fat diet regimens and during the aging process; however no studies to date have elucidated the mechanisms that control Foxa3’s expression in fat. Given the established effects of GCs in increasing visceral adiposity and in reducing thermogenesis, we assessed the existence of a possible link between GCs and Foxa3. Computational prediction analysis combined with molecular studies revealed that Foxa3 is regulated by the glucocorticoid receptor (GR) in preadipocytes, adipocytes, and adipose tissues and is required to facilitate the binding of the GR to its target gene promoters in fat depots. Analysis of the long-term effects of dexamethasone treatment in mice revealed that Foxa3 ablation protects mice specifically against fat accretion but not against other pathological side effects elicited by this synthetic GC in tissues such as liver, muscle, and spleen. In conclusion our studies provide the first demonstration, to our knowledge, that Foxa3 is a direct target of GC action in adipose tissues and point to a role of Foxa3 as a mediator of the side effects induced in fat tissues by chronic treatment with synthetic steroids. PMID:26957608

  3. Sustained Interleukin-1β Exposure Modulates Multiple Steps in Glucocorticoid Receptor Signaling, Promoting Split-Resistance to the Transactivation of Prominent Anti-Inflammatory Genes by Glucocorticoids

    PubMed Central

    2015-01-01

    Clinical treatment with glucocorticoids (GC) can be complicated by cytokine-induced glucocorticoid low-responsiveness (GC-resistance, GCR), a condition associated with a homogeneous reduction in the expression of GC-receptor- (GR-) driven anti-inflammatory genes. However, GR level and phosphorylation changes modify the expression of individual GR-responsive genes differently. As sustained IL-1β exposure is key in the pathogenesis of several major diseases with prevalent GCR, we examined GR signaling and the mRNA expression of six GR-driven genes in cells cultured in IL-1β and afterwards challenged with GC. After a GC challenge, sustained IL-1β exposure reduced the cytoplasmic GR level, GRSer203 and GRSer211 phosphorylation, and GR nuclear translocation and led to selective GCR in the expression of the studied genes. Compared to GC alone, in a broad range of GC doses plus sustained IL-1β, FKBP51 mRNA expression was reduced by 1/3, TTP by 2/3, and IRF8 was completely knocked down. In contrast, high GC doses did not change the expression of GILZ and DUSP1, while IGFBP1 was increased by 5-fold. These effects were cytokine-selective, IL-1β dose- and IL-1R1-dependent. The integrated gain and loss of gene functions in the “split GCR” model may provide target cells with a survival advantage by conferring resistance to apoptosis, chemotherapy, and GC. PMID:25977599

  4. Blockade of glucocorticoid receptors improves cutaneous wound healing in stressed mice.

    PubMed

    de Almeida, Taís Fontoura; de Castro Pires, Taiza; Monte-Alto-Costa, Andréa

    2016-02-01

    Stress is an important condition of modern life. The successful wound healing requires the execution of three major overlapping phases: inflammation, proliferation, and remodeling, and stress can disturb this process. Chronic stress impairs wound healing through the activation of the hypothalamic-pituitary-adrenal axis, and the glucocorticoids (GCs) hormones have been shown to delay wound closure. Therefore, the aim of this study was to investigate the effects of a GC receptor antagonist (RU486) treatment on cutaneous healing in chronically stressed mice. Male mice were submitted to rotational stress, whereas control animals were not subjected to stress. Stressed and control animals were treated with RU486. A full-thickness excisional lesion was generated, and seven days later, lesions were recovered. The RU486 treatment improves wound healing since contraction takes place earlier in RU486-treated in comparison to non-treated mice, and the RU486 treatment also improves the angiogenesis in Stress+RU486 mice when compared to stressed animals. The Stress+RU486 group showed a decrease in inflammatory cell infiltration and in hypoxia-inducible factor-1α and inducible nitric oxide synthase expression; meanwhile, there was an increase in myofibroblasts quantity. In conclusion, blockade of GC receptors with RU486 partially ameliorates stress-impaired wound healing, suggesting that stress inhibits healing through more than one functional pathway. PMID:26515142

  5. Glucocorticoid receptor (GR) {beta} has intrinsic, GR{alpha}-independent transcriptional activity

    SciTech Connect

    Kino, Tomoshige; Manoli, Irini; Kelkar, Sujata; Wang, Yonghong; Su, Yan A.; Chrousos, George P.

    2009-04-17

    The human glucocorticoid receptor (GR) gene produces C-terminal GR{beta} and GR{alpha} isoforms through alternative use of specific exons 9{beta} and {alpha}, respectively. We explored the transcriptional activity of GR{beta} on endogenous genes by developing HeLa cells stably expressing EGFP-GR{beta} or EGFP. Microarray analyses revealed that GR{beta} had intrinsic gene-specific transcriptional activity, regulating mRNA expression of a large number of genes negatively or positively. Majority of GR{beta}-responsive genes was distinct from those modulated by GR{alpha}, while GR{beta} and GR{alpha} mutually modulated each other's transcriptional activity in a subpopulation of genes. We did not observe in HCT116 cells nuclear translocation of GR{beta} and activation of this receptor by RU 486, a synthetic steroid previously reported to bind GR{beta} and to induce nuclear translocation. Our results indicate that GR{beta} has intrinsic, GR{alpha}-independent, gene-specific transcriptional activity, in addition to its previously reported dominant negative effect on GR{alpha}-induced transactivation of GRE-driven promoters.

  6. Frequent promoter hypermethylation and expression reduction of the glucocorticoid receptor gene in breast tumors

    PubMed Central

    Nesset, Kirsten A; Perri, Ami M; Mueller, Christopher R

    2014-01-01

    Previous studies have found that expression of the Glucocorticoid Receptor (GR) is altered or reduced in various cancers, while the GR promoter has been shown to be methylated in gastric, lung, and colorectal cancers. Examining a small cohort of matched normal and breast cancer samples we found that GR levels were dramatically reduced in almost all tumors in relation to their normal tissue. The methylation status of the GR promoter was assessed to determine if this observed decrease of expression in breast tumors could be due to epigenetic regulation. While it was not methylated in normal tissue, the GR proximal promoter was methylated in 15% of tumor samples, particularly, but not exclusively, in Estrogen Receptor positive tumors. GR expression in these tumors was particularly low and loss of GR expression was specifically correlated with methylation of the proximal promoter GR B region. Overall, these results show that hypermethylation of the promoter in tumors is a frequent event and suggests that GR may act as a tumor suppressor in breast tissue. PMID:24622770

  7. Glucocorticoid receptor dysfunction: consequences for the pathophysiology and treatment of mood disorders

    PubMed Central

    Abraham, Aju; Watson, Stuart; Young, Allan H

    2003-01-01

    Background: Hypothalamic-pituitary-adrenal (HPA) axis dysfunction in mood disorders is one of the most robust findings in biological psychiatry. However, considerable debate surrounds the nature of the core abnormality, its cause, consequences and treatment implications. Aims: To review the evidence for the role of HPA axis dysfunction in the pathophysiology of mood disorders with particular reference to corticosteroid receptor pathology. Methods: A selective review of the published literature in this field, focusing on human studies. Results: The nature of basal HPA axis dysregulation described in both manic and depressed bipolars appears to be similar to those described in MDD. But studies using the dexamethasone/ corticotropin releasing hormone (dex/CRH) test and dexamethasone suppression test (DST) have shown that HPA axis dysfunction is more prevalent in bipolar than in unipolar disorder. There is robust evidence for corticotropin releasing hormone (CRH) hyperdrive and glucocorticoid receptor (GR) dysfunction in mood disorders, with increasing evidence for disorders within the AVP system. Conclusion: HPA axis dysfunction is prevalent in patients with mood disorder, particularly those with psychotic disorders and bipolar affective disorder. This may be secondary to genetic factors, early life adversities or both. Dysfunction of GR may be the underlying abnormality and preliminary findings suggest that it is a potential target for novel therapies. Declaration of interest: None PMID:21206827

  8. Glucocorticoids and beta-adrenergic-receptor agonists: their combined effect on fetal rabbit lung surfactant.

    PubMed

    Ekelund, L; Enhorning, G

    1985-08-15

    In a previous study on pregnant rabbits (Am J Obstet Gynecol 1983; 147:437) we found that a prolonged infusion of the beta 2-adrenergic-receptor agonist terbutaline would first cause a release of fetal pulmonary surfactant, so that more was available in the airways. However, the airway fluid then contained less surfactant, indicating a depletion of stores. Since terbutaline is often used in high doses as a tocolytic agent, surfactant depletion could be a serious side effect. With further studies on rabbits, we wanted to test the hypothesis that with an accelerated surfactant synthesis, achieved with glucocorticoids, the increased release, evoked with the terbutaline, would never cause a depletion of the surfactant stores. Our results supported this hypothesis. Betamethasone, administered to the pregnant doe on the twenty-sixth and twenty-seventh days of gestation, 0.1 mg/kg, increased compliance of the fetal lungs, and more phospholipid phosphorus could be lavaged from the airways. These effects were further increased when, following steroid administration, the doe was infused with terbutaline. Depletion of the surfactant stores was never seen when betamethasone was given prior to the beta-adrenergic-receptor agonist. PMID:3839627

  9. Insights into Negative Regulation by the Glucocorticoid Receptor from Genome-Wide Profiling of Inflammatory Cistromes

    PubMed Central

    Uhlenhaut, N. Henriette; Barish, Grant D.; Yu, Ruth T.; Downes, Michael; Karunasiri, Malith; Liddle, Christopher; Schwalie, Petra; Hübner, Norbert; Evans, Ronald M.

    2013-01-01

    Summary How the glucocorticoid receptor (GR) activates some genes while potently repressing others remains an open question. There are three current models for suppression: trans-repression via GR ‘tethering’ to AP-1/NF-κB sites, direct GR association with inhibitory elements (nGREs), and GR recruitment of the corepressor GRIP1. To gain insights into GR suppression, we used genomic analyses and genome-wide profiling of GR, p65, and c-Jun in LPS-stimulated macrophages. We show that GR mediates both activation and repression at tethered sites, GREs, and GRIP1-bound elements, indicating that motif classification is insufficient to predict regulatory polarity of GR binding. Interestingly, sites of GR repression utilize GRIP1’s corepressor function and display reduced histone acetylation. Together, these findings suggest that while GR occupancy confers hormone responsiveness, the receptor itself may not participate in the regulatory effects. Furthermore, transcriptional outcome is not established by sequence, but is influenced by epigenetic regulators, context, and other unrecognized regulatory determinants. PMID:23159735

  10. Heterocyclic glucocorticoid receptor modulators with a 2,2-dimethyl-3-phenyl-N-(thiazol or thiadiazol-2-yl)propanamide core.

    PubMed

    Xiao, Hai-Yun; Wu, Dauh-Rurng; Sheppeck, James E; Habte, Sium F; Cunningham, Mark D; Somerville, John E; Barrish, Joel C; Nadler, Steven G; Dhar, T G Murali

    2013-10-15

    A series of heterocyclic glucocorticoid receptor (GR) modulators with 2,2-dimethyl-3-phenyl-N-(thiazol or thiadiazol-2-yl)propanamide core are described. Structure-activity relationships suggest a combination of H-bond acceptor and a 4-fluorophenyl moiety as being important structural components contributing to the glucocorticoid receptor binding and functional activity for this series of GR modulators. PMID:24011644

  11. Subchronic glucocorticoid receptor inhibition rescues early episodic memory and synaptic plasticity deficits in a mouse model of Alzheimer's disease.

    PubMed

    Lanté, Fabien; Chafai, Magda; Raymond, Elisabeth Fabienne; Pereira, Ana Rita Salgueiro; Mouska, Xavier; Kootar, Scherazad; Barik, Jacques; Bethus, Ingrid; Marie, Hélène

    2015-06-01

    The early phase of Alzheimer's disease (AD) is characterized by hippocampus-dependent memory deficits and impaired synaptic plasticity. Increasing evidence suggests that stress and dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis, marked by the elevated circulating glucocorticoids, are risk factors for AD onset. How these changes contribute to early hippocampal dysfunction remains unclear. Using an elaborated version of the object recognition task, we carefully monitored alterations in key components of episodic memory, the first type of memory altered in AD patients, in early symptomatic Tg2576 AD mice. We also combined biochemical and ex vivo electrophysiological analyses to reveal novel cellular and molecular dysregulations underpinning the onset of the pathology. We show that HPA axis, circadian rhythm, and feedback mechanisms, as well as episodic memory, are compromised in this early symptomatic phase, reminiscent of human AD pathology. The cognitive decline could be rescued by subchronic in vivo treatment with RU486, a glucocorticoid receptor antagonist. These observed phenotypes were paralleled by a specific enhancement of N-Methyl-D-aspartic acid receptor (NMDAR)-dependent LTD in CA1 pyramidal neurons, whereas LTP and metabotropic glutamate receptor-dependent LTD remain unchanged. NMDAR transmission was also enhanced. Finally, we show that, as for the behavioral deficit, RU486 treatment rescues this abnormal synaptic phenotype. These preclinical results define glucocorticoid signaling as a contributing factor to both episodic memory loss and early synaptic failure in this AD mouse model, and suggest that glucocorticoid receptor targeting strategies could be beneficial to delay AD onset. PMID:25622751

  12. Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring

    PubMed Central

    Desarnaud, Frank; Bader, Heather N.; Makotkine, Iouri; Flory, Janine D.; Bierer, Linda M.; Meaney, Michael J.

    2014-01-01

    Objective Differential effects of maternal and paternal PTSD have been observed in adult offspring of Holocaust survivors in both glucocorticoid receptor sensitivity and vulnerability to psychiatric disorder. The current study examined the relative influences of maternal and paternal PTSD on DNA methylation of the exon 1F promoter of the glucocorticoid receptor gene (NR3C1) in peripheral blood mononuclear cells (PBMCs), and its relationship to glucocorticoid receptor sensitivity, in Holocaust offspring. Method Adult offspring with at least one Holocaust survivor parent (n=80), and demographically similar participants without parental Holocaust exposure or PTSD (n=15) completed clinical interviews, self-report measures, and biological procedures. Blood samples were collected for analysis of glucocorticoid receptor gene exon 1F (GR-1F) promoter methylation and cortisol levels in response to low-dose dexamethasone, and two-way analysis of covariance was performed using maternal and paternal PTSD as main effects. Hierarchical-clustering analysis was used to permit visualization of maternal vs. paternal PTSD effects on clinical variables. Results A significant interaction demonstrated that in the absence of maternal PTSD, offspring with paternal PTSD showed higher GR-1F promoter methylation, whereas offspring with both maternal and paternal PTSD showed lower methylation. Lower GR-1F promoter methylation was significantly associated with greater post-dexamethasone cortisol suppression. The clustering analysis confirmed that maternal and paternal PTSD effects were differentially associated with clinical indicators. Conclusions This is the first study to demonstrate alterations of GR-1F promoter methylation in relation to parental PTSD and neuroendocrine outcomes. The moderation of paternal PTSD effects by maternal PTSD suggests different mechanisms for the intergenerational transmission of trauma-related vulnerabilities. PMID:24832930

  13. Boehringer Ingleheim's selective glucocorticoid receptor agonist development candidate: evaluation of WO2010141331, WO2010141332 and WO2010141333.

    PubMed

    Norman, Peter

    2011-07-01

    Three applications from Boehringer Ingelheim all relate to the preparation of non-steroidal glucocorticoid receptor agonists useful in the treatment of inflammatory respiratory diseases. The first two applications claim chiral processes for the preparation of these compounds or intermediates useful therein. These provide two alternative routes, respectively, using achiral and chiral reagents. The third application relates to the preparation of a crystalline salt of the preferred compound on a multi-kilogram scale in micronised form. PMID:21548852

  14. PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal.

    PubMed

    Lee, Hsiang-Ying; Gao, Xiaofei; Barrasa, M Inmaculada; Li, Hu; Elmes, Russell R; Peters, Luanne L; Lodish, Harvey F

    2015-06-25

    Many acute and chronic anaemias, including haemolysis, sepsis and genetic bone marrow failure diseases such as Diamond-Blackfan anaemia, are not treatable with erythropoietin (Epo), because the colony-forming unit erythroid progenitors (CFU-Es) that respond to Epo are either too few in number or are not sensitive enough to Epo to maintain sufficient red blood cell production. Treatment of these anaemias requires a drug that acts at an earlier stage of red cell formation and enhances the formation of Epo-sensitive CFU-E progenitors. Recently, we showed that glucocorticoids specifically stimulate self-renewal of an early erythroid progenitor, burst-forming unit erythroid (BFU-E), and increase the production of terminally differentiated erythroid cells. Here we show that activation of the peroxisome proliferator-activated receptor α (PPAR-α) by the PPAR-α agonists GW7647 and fenofibrate synergizes with the glucocorticoid receptor (GR) to promote BFU-E self-renewal. Over time these agonists greatly increase production of mature red blood cells in cultures of both mouse fetal liver BFU-Es and mobilized human adult CD34(+) peripheral blood progenitors, with a new and effective culture system being used for the human cells that generates normal enucleated reticulocytes. Although Ppara(-/-) mice show no haematological difference from wild-type mice in both normal and phenylhydrazine (PHZ)-induced stress erythropoiesis, PPAR-α agonists facilitate recovery of wild-type but not Ppara(-/-) mice from PHZ-induced acute haemolytic anaemia. We also show that PPAR-α alleviates anaemia in a mouse model of chronic anaemia. Finally, both in control and corticosteroid-treated BFU-E cells, PPAR-α co-occupies many chromatin sites with GR; when activated by PPAR-α agonists, additional PPAR-α is recruited to GR-adjacent sites and presumably facilitates GR-dependent BFU-E self-renewal. Our discovery of the role of PPAR-α agonists in stimulating self-renewal of early erythroid

  15. PPARα and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal

    PubMed Central

    Lee, Hsiang-Ying; Gao, Xiaofei; Barrasa, M. Inmaculada; Li, Hu; Elmes, Russell R.; Peters, Luanne L.; Lodish, Harvey F.

    2015-01-01

    Summary Many acute and chronic anemias, including hemolysis, sepsis, and genetic bone marrow failure diseases such as Diamond-Blackfan Anemia (DBA), are not treatable with erythropoietin (Epo), because the colony-forming unit erythroid progenitors (CFU-Es) that respond to Epo are either too few in number or are not sensitive enough to Epo to maintain sufficient red blood cell production 1,2,3–5,6,7,8,9. Treatment of these anemias requires a drug that acts at an earlier stage of red cell formation and enhances the formation of Epo-sensitive CFU-E progenitors. Recently we showed that glucocorticoids specifically stimulate self-renewal of the early erythroid progenitor, the burst-forming unit erythroid (BFU-E), and increase the production of terminally differentiated erythroid cells 10,11. Here we demonstrate that activation of the peroxisome proliferator-activated receptor alpha (PPARα) by PPARα agonists, GW7647 and fenofibrate, synergizes with glucocorticoid receptor (GR) to promote BFU-E self-renewal. Over time these agonists greatly increase production of mature red blood cells in cultures both of mouse fetal liver BFU-Es and of mobilized human adult CD34+ peripheral blood progenitors, the latter employing a new and effective culture system that generates normal enucleated reticulocytes. While PPARα−/− mice show no hematological difference from wild-type mice in both normal and phenylhydrazine (PHZ)-induced stress erythropoiesis, PPARα agonists facilitate recovery of wild-type mice, but not PPARα−/− mice, from PHZ-induced acute hemolytic anemia. We also showed that PPARα alleviates anemia in a mouse model of chronic anemia. Finally, both in control and corticosteroid-treated BFU-E cells PPARα co-occupies many chromatin sites with GR; when activated by PPARα agonists, additional PPARα is recruited to GR-adjacent sites and presumably facilitates GR-dependent BFU-E self-renewal. Our discovery of the role of PPARα agonists in stimulating self

  16. Discrimination between NL1- and NL2-Mediated Nuclear Localization of the Glucocorticoid Receptor

    PubMed Central

    Savory, Joanne G. A.; Hsu, Brian; Laquian, Ian R.; Giffin, Ward; Reich, Terry; Haché, Robert J. G.; Lefebvre, Yvonne A.

    1999-01-01

    Glucocorticoid receptor (GR) cycles between a free liganded form that is localized to the nucleus and a heat shock protein (hsp)-immunophilin-complexed, unliganded form that is usually localized to the cytoplasm but that can also be nuclear. In addition, rapid nucleocytoplasmic exchange or shuttling of the receptor underlies its localization. Nuclear import of liganded GR is mediated through a well-characterized sequence, NL1, adjacent to the receptor DNA binding domain and a second, uncharacterized motif, NL2, that overlaps with the ligand binding domain. In this study we report that rapid nuclear import (half-life [t1/2] of 4 to 6 min) of agonist- and antagonist-treated GR and the localization of unliganded, hsp-associated GRs to the nucleus in G0 are mediated through NL1 and correlate with the binding of GR to pendulin/importin α. By contrast, NL2-mediated nuclear transfer of GR occurred more slowly (t1/2 = 45 min to 1 h), was agonist specific, and appeared to be independent of binding to importin α. Together, these results suggest that NL2 mediates the nuclear import of GR through an alternative nuclear import pathway. Nuclear export of GR was inhibited by leptomycin B, suggesting that the transfer of GR to the cytoplasm is mediated through the CRM1-dependent pathway. Inhibition of GR nuclear export by leptomycin B enhanced the nuclear localization of both unliganded, wild-type GR and hormone-treated NL1− GR. These results highlight that the subcellular localization of both liganded and unliganded GRs is determined, at least in part, by a flexible equilibrium between the rates of nuclear import and export. PMID:9891038

  17. DEXAMETHASONE SUPPRESSES THE EXPRESSION OF MULTIPLE RAT CARBOXYLESTERASES THROUGH TRANSCRIPTIONAL REPRESSION: EVIDENCE FOR AN INVOLVEMENT OF THE GLUCOCORTICOID RECEPTOR

    PubMed Central

    Shi, Deshi; Yang, Jian; Yang, Dongfang; Yan, Bingfang

    2008-01-01

    Carboxylesterases play important roles in the metabolism of xenobiotics and detoxication of insecticides. Without exception, all mammalian species studied express multiple forms of carboxylesterases. Several rat carboxylesterases are well-characterized including hydrolase A, B and S, and the expression of these enzymes is significantly suppressed by glucocorticoid dexamethasone. In this study, we used multiple experimental systems and presented a molecular mechanism for the suppression. Rats receiving one or more daily injections of dexamethasone consistently expressed lower HA, HB and HS. The suppression occurred at the levels of mRNA, protein and hydrolytic activity. In hepatoma cell line H4-II-E-C3, nanomolar dexamethasone caused significant decreases in HA, HB and HS mRNA, and the decreases were abolished by antiglucocorticoid RU486. Additionally, dexamethasone at nanomolar concentrations repressed the promoters of carboxylesterases, and the repression was reduced by glucocorticoid receptor-β, a dominant negative regulator of the glucocorticoid receptor (GR). In contrast, co-transfection of the pregnane X receptor (PXR) increased the reporter activities, but the increase occurred only at micromolar concentrations of dexamethasone. These findings establish that both GR and PXR are involved in the regulated expression of rat carboxylesterases by dexamethasone but their involvement depends on the concentrations. PMID:18938207

  18. Systems Biology and Birth Defects Prevention: Blockade of the Glucocorticoid Receptor Prevents Arsenic-Induced Birth Defects

    PubMed Central

    Ahir, Bhavesh K.; Sanders, Alison P.; Rager, Julia E.

    2013-01-01

    Background: The biological mechanisms by which environmental metals are associated with birth defects are largely unknown. Systems biology–based approaches may help to identify key pathways that mediate metal-induced birth defects as well as potential targets for prevention. Objectives: First, we applied a novel computational approach to identify a prioritized biological pathway that associates metals with birth defects. Second, in a laboratory setting, we sought to determine whether inhibition of the identified pathway prevents developmental defects. Methods: Seven environmental metals were selected for inclusion in the computational analysis: arsenic, cadmium, chromium, lead, mercury, nickel, and selenium. We used an in silico strategy to predict genes and pathways associated with both metal exposure and developmental defects. The most significant pathway was identified and tested using an in ovo whole chick embryo culture assay. We further evaluated the role of the pathway as a mediator of metal-induced toxicity using the in vitro midbrain micromass culture assay. Results: The glucocorticoid receptor pathway was computationally predicted to be a key mediator of multiple metal-induced birth defects. In the chick embryo model, structural malformations induced by inorganic arsenic (iAs) were prevented when signaling of the glucocorticoid receptor pathway was inhibited. Further, glucocorticoid receptor inhibition demonstrated partial to complete protection from both iAs- and cadmium-induced neurodevelopmental toxicity in vitro. Conclusions: Our findings highlight a novel approach to computationally identify a targeted biological pathway for examining birth defects prevention. PMID:23458687

  19. Kaposi's sarcoma-associated herpesvirus-encoded LANA associates with glucocorticoid receptor and enhances its transcriptional activities

    SciTech Connect

    Togi, Sumihito; Nakasuji, Misa; Muromoto, Ryuta; Ikeda, Osamu; Okabe, Kanako; Kitai, Yuichi; Kon, Shigeyuki; Oritani, Kenji; Matsuda, Tadashi

    2015-07-31

    Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA), which interacts with cellular proteins, plays a central role in modification of viral and/or cellular gene expression. Here, we show that LANA associates with glucocorticoid receptor (GR), and that LANA enhances the transcriptional activity of GR. Co-immunoprecipitation revealed a physical interaction between LANA and GR in transiently transfected 293T and HeLa cells. In human B-lymphoma cells, LANA overexpression enhanced GR activity and cell growth suppression following glucocorticoid stimulation. Furthermore, confocal microscopy showed that activated GR was bound to LANA and accumulated in the nucleus, leading to an increase in binding of activated GR to the glucocorticoid response element of target genes. Taken together, KSHV-derived LANA acts as a transcriptional co-activator of GR. Our results might suggest a careful use of glucocorticoids in the treatment of patients with KSHV-related malignancies such as Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. - Highlights: • KSHV-LANA enhances the transcriptional activity of GR in 293T and HeLa cells. • KSHV-LANA physically associates with GR. • KSHV-LANA enhances GR activation and cell growth suppression in human B-lymphocytes. • KSHV-LANA influences the nuclear retention and DNA binding activity of GR.

  20. Elevated glucocorticoid receptor binding in cultured human lymphoblasts following hydroxyurea treatment: lack of effect on steroid responsiveness

    SciTech Connect

    Littlefield, B.A.; Hoagland, H.C.; Greipp, P.R.

    1986-08-01

    While studying the effects of chemotherapy on glucocorticoid receptor (GR) binding levels in hematological malignancies, we observed a sizable increase in nuclear GR binding of (/sup 3/H)dexamethasone in peripheral leukocytes from a chronic basophilic leukemia patient following treatment with hydroxyurea plus prednisone, but not after prednisone alone. This apparent clinical effect of hydroxyurea led to an examination of hydroxyurea effects on GR binding and sensitivity in the glucocorticoid-sensitive human lymphoblast cell line GM4672A. GR binding levels in GM4672A cells were measured following a 3-day exposure to 50 microM hydroxyurea, a concentration chosen to have a minimal but measurable effect on cellular growth rates with little or no effect on cellular viability. Under these conditions, nuclear (/sup 3/H)dexamethasone receptor binding measured by Scatchard analysis using a whole-cell assay was elevated 2.4-fold over control values (P less than 0.05), while cytosolic residual receptor binding (measured at 37/sup 0/C) remained unchanged. Thus, the total cellular content of measurable GR was increased, and this increase was totally accounted for by GR capable of nuclear binding. Hydroxyurea treatment of GM4672A cells had no effect on the affinity of nuclear or cytosolic GR for (/sup 3/H)dexamethasone. The increase in measurable nuclear-bound receptors occurred in a time-dependent manner over a period of 3 days and was fully reversible within 3 days following removal of hydroxyurea. The increase in receptor binding could not be explained by the slight alterations in cell cycle kinetics which occur at this low level of hydroxyurea. Despite increased receptor binding, cellular glucocorticoid responsiveness was unaltered as assessed by dexamethasone inhibition of cell growth and dexamethasone inhibition of a urokinase-like plasminogen activator.

  1. Localization of glucocorticoid receptor messenger ribonucleic acid in hippocampus of rat brain using in situ hybridization.

    PubMed

    Yang, G; Matocha, M F; Rapoport, S I

    1988-08-01

    An in situ hybridization procedure was applied to quantify glucocorticoid receptor (GR) mRNAs in the hippocampus of rat brain. Hybridization was carried out using a radiolabeled antisense probe complementary to the rat liver GR gene. The specificity of the method was validated by showing: 1) a high cellular grain density in sections hybridized with an antisense but not a sense probe; 2) agreement between the experimental and theoretical temperature at which 50% of the hybrids melted, and 3) a high signal distribution of GR mRNA in the hippocampus, a region of brain known to preferentially concentrate steroid hormones. Within the hippocampus, however, subregional differences in hybridization densities were observed. Quantitative autoradiography indicated that the average neuronal silver grain number was highest in the pyramidal cell layers of CA2 and CA4 and lowest in those of CA1 and CA3. Also, there was a significant difference in the average grain number between all of the cell fields except for that between CA2 and CA4. These results show that contiguous but neuroanatomically distinct cell fields of the hippocampus express different levels of GR transcripts, and indicate that differential regulation of GR expression occurs in subpopulations of hippocampal neurons. PMID:3211154

  2. Action control is mediated by prefrontal BDNF and glucocorticoid receptor binding.

    PubMed

    Gourley, Shannon L; Swanson, Andrew M; Jacobs, Andrea M; Howell, Jessica L; Mo, Michelle; Dileone, Ralph J; Koleske, Anthony J; Taylor, Jane R

    2012-12-11

    Stressor exposure biases decision-making strategies from those based on the relationship between actions and their consequences to others restricted by stimulus-response associations. Chronic stressor exposure also desensitizes glucocorticoid receptors (GR) and diminishes motivation to acquire food reinforcement, although causal relationships are largely not established. We show that a history of chronic exposure to the GR ligand corticosterone or acute posttraining GR blockade with RU38486 makes rodents less able to perform actions based on their consequences. Thus, optimal GR binding is necessary for the consolidation of new response-outcome learning. In contrast, medial prefrontal (but not striatal) BDNF can account for stress-related amotivation, in that selective medial prefrontal cortical Bdnf knockdown decreases break-point ratios in a progressive-ratio task. Knockdown also increases vulnerability to RU38486. Despite the role of BDNF in dendritic spine reorganization, deep-layer spine remodeling does not obviously parallel progressive-ratio response patterns, but treatment with the Na(+)-channel inhibitor riluzole reverses corticosteroid-induced motivational deficits and restores prefrontal BDNF expression after corticosterone. We argue that when prefrontal neurotrophin systems are compromised, and GR-mediated hypothalamic-pituitary-adrenal axis feedback is desensitized (as in the case of chronic stress hormone exposure), amotivation and inflexible maladaptive response strategies that contribute to stress-related mood disorders result. PMID:23185000

  3. Dissociated nonsteroidal glucocorticoid receptor modulators; discovery of the agonist trigger in a tetrahydronaphthalene-benzoxazine series.

    PubMed

    Barker, Mike; Clackers, Margaret; Copley, Royston; Demaine, Derek A; Humphreys, Davina; Inglis, Graham G A; Johnston, Michael J; Jones, Haydn T; Haase, Michael V; House, David; Loiseau, Richard; Nisbet, Lesley; Pacquet, Francois; Skone, Philip A; Shanahan, Stephen E; Tape, Dan; Vinader, Victoria M; Washington, Melanie; Uings, Iain; Upton, Richard; McLay, Iain M; Macdonald, Simon J F

    2006-07-13

    The tetrahydronaphthalene-benzoxazine glucocorticoid receptor (GR) partial agonist 4b was optimized to produce potent full agonists of GR. Aromatic ring substitution of the tetrahydronaphthalene leads to weak GR antagonists. Discovery of an "agonist trigger" substituent on the saturated ring of the tetrahydronaphthalene leads to increased potency and efficacious GR agonism. These compounds are efficacy selective in an NFkB GR agonist assay (representing transrepression effects) over an MMTV GR agonist assay (representing transactivation effects). 52 and 60 have NFkB pIC(50) = 8.92 (105%) and 8.69 (92%) and MMTV pEC(50) = 8.20 (47%) and 7.75 (39%), respectively. The impact of the trigger substituent on agonism is modeled within GR and discussed. 36, 52, and 60 have anti-inflammatory activity in a mouse model of inflammation after topical dosing with 52 and 60, having an effect similar to that of dexamethasone. The original lead was discovered by a manual agreement docking method, and automation of this method is also described. PMID:16821781

  4. Childhood Adversity and Epigenetic Modulation of the Leukocyte Glucocorticoid Receptor: Preliminary Findings in Healthy Adults

    PubMed Central

    Tyrka, Audrey R.; Price, Lawrence H.; Marsit, Carmen; Walters, Oakland C.; Carpenter, Linda L.

    2012-01-01

    Background A history of early adverse experiences is an important risk factor for adult psychopathology. Changes in stress sensitivity and functioning of the hypothalamic-pituitary-adrenal (HPA) axis may underlie the association between stress and risk for psychiatric disorders. Preclinical work in rodents has linked low levels of maternal care to increased methylation of the promoter region of the glucocorticoid receptor (GR) gene, as well as to exaggerated hormonal and behavioral responses to stress. Recent studies have begun to examine whether early-life stress leads to epigenetic modifications of the GR gene in humans. Methods We examined the degree of methylation of a region of the promoter of the human GR gene (NR3C1) in leukocyte DNA from 99 healthy adults. Participants reported on their childhood experiences of parental behavior, parental death or desertion, and childhood maltreatment. On a separate day, participants completed the dexamethasone/corticotropin-releasing hormone (Dex/CRH) test, a standardized neuroendocrine challenge test. Results Disruption or lack of adequate nurturing, as measured by parental loss, childhood maltreatment, and parental care, was associated with increased NR3C1 promoter methylation (p<.05). In addition, NR3C1 promoter methylation was linked to attenuated cortisol responses to the Dex/CRH test (p<.05). Conclusions These findings suggest that childhood maltreatment or adversity may lead to epigenetic modifications of the human GR gene. Alterations in methylation of this gene could underlie the associations between childhood adversity, alterations in stress reactivity, and risk for psychopathology. PMID:22295073

  5. Hippocampal increase of 5-hmC in the glucocorticoid receptor gene following acute stress

    PubMed Central

    Kintner, Douglas B.; Sabat, Grzegorz; Barrett-Wilt, Gregory A.; Cengiz, Pelin; Alisch, Reid S.

    2015-01-01

    5-hydroxymethylcytosine (5-hmC) is a novel environmentally sensitive DNA modification that is highly enriched in post-mitotic neurons and is associated with active transcription of neuronal genes. Recently, 5-hmC was functionally linked to learning and cognition and these studies revealed an accumulation of 5-hmC in the prefrontal cortex of mice undergoing fear extinction. These studies led us to hypothesize a role for 5-hmC in response to stress. To test this hypothesis, we combined immunohistochemistry, tandem mass spectrometry, and tet-assisted sodium bisulfite sequencing (TAB-seq) analyses on tissue and DNA from the hippocampus of 7-week old male mice exposed to a single thirty-minute restraint stress. After first identifying that the broad neuronal distribution of 5-hmC is not disrupted by acute stress, we used TAB-seq to find a stress-induced increase of 5-hmC in the 3’UTR of the glucocorticoid receptor gene (Nr3c1). Nr3c1 has a well-defined role in the stress pathway and these data suggest that 5-hmC contributes to these processes. Together, these data indicate that a deeper investigation of stress-related 5-hmC levels may reveal an environmental impact on this newly discovered epigenetic mark in the brain. PMID:25746451

  6. Identification and characterization of DNA sequences that prevent glucocorticoid receptor binding to nearby response elements.

    PubMed

    Telorac, Jonas; Prykhozhij, Sergey V; Schöne, Stefanie; Meierhofer, David; Sauer, Sascha; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H

    2016-07-27

    Out of the myriad of potential DNA binding sites of the glucocorticoid receptor (GR) found in the human genome, only a cell-type specific minority is actually bound, indicating that the presence of a recognition sequence alone is insufficient to specify where GR binds. Cooperative interactions with other transcription factors (TFs) are known to contribute to binding specificity. Here, we reasoned that sequence signals preventing GR recruitment to certain loci provide an alternative means to confer specificity. Motif analyses uncovered candidate Negative Regulatory Sequences (NRSs) that interfere with genomic GR binding. Subsequent functional analyses demonstrated that NRSs indeed prevent GR binding to nearby response elements. We show that NRS activity is conserved across species, found in most tissues and that they also interfere with the genomic binding of other TFs. Interestingly, the effects of NRSs appear not to be a simple consequence of changes in chromatin accessibility. Instead, we find that NRSs interact with proteins found at sub-nuclear structures called paraspeckles and that these proteins might mediate the repressive effects of NRSs. Together, our studies suggest that the joint influence of positive and negative sequence signals partition the genome into regions where GR can bind and those where it cannot. PMID:27016732

  7. Adult-Onset Hypothyroidism Enhances Fear Memory and Upregulates Mineralocorticoid and Glucocorticoid Receptors in the Amygdala

    PubMed Central

    Montero-Pedrazuela, Ana; Fernández-Lamo, Iván; Alieva, María; Pereda-Pérez, Inmaculada; Venero, César; Guadaño-Ferraz, Ana

    2011-01-01

    Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment. PMID:22039511

  8. Hippocampal increase of 5-hmC in the glucocorticoid receptor gene following acute stress.

    PubMed

    Li, Sisi; Papale, Ligia A; Kintner, Douglas B; Sabat, Grzegorz; Barrett-Wilt, Gregory A; Cengiz, Pelin; Alisch, Reid S

    2015-06-01

    5-Hydroxymethylcytosine (5-hmC) is a novel environmentally sensitive DNA modification that is highly enriched in post-mitotic neurons and is associated with active transcription of neuronal genes. Recently, 5-hmC was functionally linked to learning and cognition and these studies revealed an accumulation of 5-hmC in the prefrontal cortex of mice undergoing fear extinction. These studies led us to hypothesize a role for 5-hmC in response to stress. To test this hypothesis, we combined immunohistochemistry, tandem mass spectrometry, and tet-assisted sodium bisulfite sequencing (TAB-seq) analyses on tissue and DNA from the hippocampus of 7-week old male mice exposed to a single 30-min restraint stress. After first identifying that the broad neuronal distribution of 5-hmC is not disrupted by acute stress, we used TAB-seq to find a stress-induced increase of 5-hmC in the 3'UTR of the glucocorticoid receptor gene (Nr3c1). Nr3c1 has a well-defined role in the stress pathway and these data suggest that 5-hmC contributes to these processes. Together, these data indicate that a deeper investigation of stress-related 5-hmC levels may reveal an environmental impact on this newly discovered epigenetic mark in the brain. PMID:25746451

  9. Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity.

    PubMed

    Schöne, Stefanie; Jurk, Marcel; Helabad, Mahdi Bagherpoor; Dror, Iris; Lebars, Isabelle; Kieffer, Bruno; Imhof, Petra; Rohs, Remo; Vingron, Martin; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H

    2016-01-01

    The glucocorticoid receptor (GR) binds as a homodimer to genomic response elements, which have particular sequence and shape characteristics. Here we show that the nucleotides directly flanking the core-binding site, differ depending on the strength of GR-dependent activation of nearby genes. Our study indicates that these flanking nucleotides change the three-dimensional structure of the DNA-binding site, the DNA-binding domain of GR and the quaternary structure of the dimeric complex. Functional studies in a defined genomic context show that sequence-induced changes in GR activity cannot be explained by differences in GR occupancy. Rather, mutating the dimerization interface mitigates DNA-induced changes in both activity and structure, arguing for a role of DNA-induced structural changes in modulating GR activity. Together, our study shows that DNA sequence identity of genomic binding sites modulates GR activity downstream of binding, which may play a role in achieving regulatory specificity towards individual target genes. PMID:27581526

  10. The Central Nervous System Regulates Embryonic HSPC Production via Stress-Responsive Glucocorticoid Receptor Signaling.

    PubMed

    Kwan, Wanda; Cortes, Mauricio; Frost, Isaura; Esain, Virginie; Theodore, Lindsay N; Liu, Sarah Y; Budrow, Nadine; Goessling, Wolfram; North, Trista E

    2016-09-01

    Hematopoietic stem and progenitor cell (HSPC) specification is regulated by numerous defined factors acting locally within the hemogenic niche; however, it is unclear whether production can adapt to fluctuating systemic needs. Here we show that the CNS controls embryonic HSPC numbers via the hypothalamic-pituitary-adrenal/interrenal (HPA/I) stress response axis. Exposure to serotonin or the reuptake inhibitor fluoxetine increased runx1 expression and Flk1(+)/cMyb(+) HSPCs independent of peripheral innervation. Inhibition of neuronal, but not peripheral, tryptophan hydroxlyase (Tph) persistently reduced HSPC number. Consistent with central HPA/I axis induction and glucocorticoid receptor (GR) activation, GR agonists enhanced, whereas GR loss diminished, HSPC formation. Significantly, developmental hypoxia, as indicated by Hif1α function, induced the HPA/I axis and cortisol production. Furthermore, Hif1α-stimulated HSPC enhancement was attenuated by neuronal tph or GR loss. Our data establish that embryonic HSC production responds to physiologic stress via CNS-derived serotonin synthesis and central feedback regulation to control HSC numbers. PMID:27424782

  11. Evaluation of the Selective Glucocorticoid Receptor Agonist Compound A for Ototoxic Effects

    PubMed Central

    Honeder, Clemens; Engleder, Elisabeth; Schöpper, Hanna; Krause, Markus; Landegger, Lukas David; Plasenzotti, Roberto; Gabor, Franz; Gstoettner, Wolfgang; Arnoldner, Christoph

    2016-01-01

    Objective To evaluate the selective glucocorticoid receptor agonist (SEGRA) compound A, a potential novel therapeutic for inner ear disorders, for ototoxic effects. Study Design Laboratory animal study Methods Experimental guinea pigs were grouped as follows: 1 & 2) systemic application of compound A (1.5 mg/kg and 4.5 mg/kg; n=6/group); 3 & 4) intratympanic application of compound A (1 mM and 10 mM; n=6/group). Contralateral ears in topically treated animals served as controls. Hearing thresholds were determined by ABR before and directly after the application of compound A, as well as on days three, seven, 14, 21 and 28. At the end of the experiments temporal bones were harvested for histological evaluation. Results Systemic administration of compound A (1.5 mg/kg & 4.5 mg/kg) did not cause hearing threshold shifts, whereas the intratympanic injection (1 mM & 10 mM) resulted in a hearing loss. Histological analysis of the middle and inner ears after topical compound A application showed alterations in the tympanic membranes, the auditory ossicles and the round window membranes, whilst spiral ganglion cells and hair cells were not affected. Conclusion SEGRAs like compound A could provide novel therapeutic options with reduced metabolic side-effects for the treatment of inner ear disorders. Whereas intratympanic application of compound A resulted in hearing loss, the systemic application of compound A merits evaluation for otoprotective effects in trauma models. PMID:25382757

  12. Localization of glucocorticoid receptor messenger ribonucleic acid in hippocampus of rat brain using in situ hybridization

    SciTech Connect

    Yang, G.; Matocha, M.F.; Rapoport, S.I.

    1988-08-01

    An in situ hybridization procedure was applied to quantify glucocorticoid receptor (GR) mRNAs in the hippocampus of rat brain. Hybridization was carried out using a radiolabeled antisense probe complementary to the rat liver GR gene. The specificity of the method was validated by showing: 1) a high cellular grain density in sections hybridized with an antisense but not a sense probe; 2) agreement between the experimental and theoretical temperature at which 50% of the hybrids melted, and 3) a high signal distribution of GR mRNA in the hippocampus, a region of brain known to preferentially concentrate steroid hormones. Within the hippocampus, however, subregional differences in hybridization densities were observed. Quantitative autoradiography indicated that the average neuronal silver grain number was highest in the pyramidal cell layers of CA2 and CA4 and lowest in those of CA1 and CA3. Also, there was a significant difference in the average grain number between all of the cell fields except for that between CA2 and CA4. These results show that contiguous but neuroanatomically distinct cell fields of the hippocampus express different levels of GR transcripts, and indicate that differential regulation of GR expression occurs in subpopulations of hippocampal neurons.

  13. Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism

    PubMed Central

    Rando, Gianpaolo; Tan, Chek Kun; Khaled, Nourhène; Montagner, Alexandra; Leuenberger, Nicolas; Bertrand-Michel, Justine; Paramalingam, Eeswari; Guillou, Hervé; Wahli, Walter

    2016-01-01

    In mammals, hepatic lipid catabolism is essential for the newborns to efficiently use milk fat as an energy source. However, it is unclear how this critical trait is acquired and regulated. We demonstrate that under the control of PPARα, the genes required for lipid catabolism are transcribed before birth so that the neonatal liver has a prompt capacity to extract energy from milk upon suckling. The mechanism involves a fetal glucocorticoid receptor (GR)-PPARα axis in which GR directly regulates the transcriptional activation of PPARα by binding to its promoter. Certain PPARα target genes such as Fgf21 remain repressed in the fetal liver and become PPARα responsive after birth following an epigenetic switch triggered by β-hydroxybutyrate-mediated inhibition of HDAC3. This study identifies an endocrine developmental axis in which fetal GR primes the activity of PPARα in anticipation of the sudden shifts in postnatal nutrient source and metabolic demands. DOI: http://dx.doi.org/10.7554/eLife.11853.001 PMID:27367842

  14. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links With Internalizing Behavior Problems.

    PubMed

    Parade, Stephanie H; Ridout, Kathryn K; Seifer, Ronald; Armstrong, David A; Marsit, Carmen J; McWilliams, Melissa A; Tyrka, Audrey R

    2016-01-01

    Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor (GR) gene, NR3C1, which is a key regulator of the hypothalamic-pituitary-adrenal axis. Yet no prior work has considered the contribution of methylation of NR3C1 to emerging behavior problems and psychopathology in childhood. This study examined the links between methylation of NR3C1 and behavior problems in preschoolers. Data were drawn from a sample of preschoolers with early adversity (n = 171). Children ranged in age from 3 to 5 years, were racially and ethnically diverse, and nearly all qualified for public assistance. Seventy-one children had child welfare documentation of moderate to severe maltreatment in the past 6 months. Structured record review and interviews in the home were used to assess early adversity. Parents reported on child internalizing and externalizing behavior problems. Methylation of NR3C1 at exons 1D , 1F , and 1H were measured via sodium bisulfite pyrosequencing from saliva DNA. Methylation of NR3C1 at exons 1D and 1F was positively associated with internalizing (r = .21, p < .01 and r = .23, p < .01, respectively), but not externalizing, behavior problems. Furthermore, NR3C1 methylation mediated effects of early adversity on internalizing behavior problems. These results suggest that methylation of NR3C1 contributes to psychopathology in young children, and NR3C1 methylation from saliva DNA is salient to behavioral outcomes. PMID:26822445

  15. Down-regulation of insulin receptors is related to insulin internalization

    SciTech Connect

    Geiger, D.; Carpentier, J.L.; Gorden, P.; Orci, L. )

    1989-11-01

    In the present study, we have tested the influence of inhibition of endocytosis by hypertonic medium on the regulation of cell surface insulin receptors. We show that active internalization of {sup 125}I-insulin is markedly inhibited by hypertonic media and that, in parallel, cell surface invaginations are significantly diminished. These two events are accompanied by a marked inhibition of cell surface insulin receptor down-regulation. These data provide further strong evidence that receptor-mediated endocytosis is the major mechanism by which insulin receptors are regulated at the surface of target cells.

  16. Expression of mineralocorticoid and glucocorticoid receptors in preautonomic neurons of the rat paraventricular nucleus.

    PubMed

    Chen, Jian; Gomez-Sanchez, Celso E; Penman, Alan; May, Paul J; Gomez-Sanchez, Elise

    2014-03-01

    Activation of mineralocorticoid receptors (MR) of the hypothalamic paraventricular nucleus (PVN) increases sympathetic excitation. To determine whether MR and glucocorticoid receptors (GR) are expressed in preautonomic neurons of the PVN and how they relate to endogenous aldosterone levels in healthy rats, retrograde tracer was injected into the intermediolateral cell column at T4 to identify preautonomic neurons in the PVN. Expression of MR, GR, 11-β hydroxysteroid dehydrogenase1 and 2 (11β-HSD1, 2), and hexose-6-phosphate dehydrogenase (H6PD) required for 11β-HSD1 reductase activity was assessed by immunohistochemistry. RT-PCR and Western blot analysis were used to determine MR gene and protein expression. Most preautonomic neurons were in the caudal mediocellular region of PVN, and most expressed MR; none expressed GR. 11β-HSD1, but not 11β-HSD2 nor H6PD immunoreactivity, was detected in the PVN. In rats with chronic low or high sodium intakes, the low-sodium diet was associated with significantly higher plasma aldosterone, MR mRNA and protein expression, and c-Fos immunoreactivity within labeled preautonomic neurons. Plasma corticosterone and sodium and expression of tonicity-responsive enhancer binding protein in the PVN did not differ between groups, suggesting osmotic adaptation to the altered sodium intake. These results suggest that MR within preautonomic neurons in the PVN directly participate in the regulation of sympathetic nervous system drive, and aldosterone may be a relevant ligand for MR in preautonomic neurons of the PVN under physiological conditions. Dehydrogenase activity of 11β-HSD1 occurs in the absence of H6PD, which regenerates NADP(+) from NADPH and may increase MR gene expression under physiological conditions. PMID:24381176

  17. Role of the glucocorticoid receptor in the recurrence of primary nephrotic syndrome

    PubMed Central

    LIANG, YUMEI; CHEN, YINYIN; CHEN, YING; GONG, YUTING

    2015-01-01

    The present study aimed to investigate the changes in the expression levels of the glucocorticoid receptor (GR) and its subtypes in patients with recurrent renal syndrome. In addition, the effects of tumour necrosis factor α (TNF-α) and a TNF-α monoclonal antibody on these receptors in peripheral blood mononuclear cells (PBMCs) isolated from the patients was analysed. Furthermore, a new treatment method for recurrent renal syndrome was explored. The serum levels of TNF-α in the normal (A), stable renal syndrome (B) and renal syndrome recurrence (C) groups of patients were determined by enzyme-linked immunosorbent assay (ELISA). The mRNA and protein expression levels of GR, GRα and GRβ were determined by ELISA, western blot analysis and quantitative polymerase chain reaction in PBMC cultures from the three groups in the absence of intervention (blank control) and following stimulation with methylprednisolone, TNF-α and/or TNF-α monoclonal antibody. Group C exhibited higher expression levels of TNF-α and GRβ but a lower level of GRα expression (P<0.05) compared with the other groups. Regardless of methylprednisolone intervention, the expression levels of GR and GRβ in the three groups following stimulation by TNF-α were significantly higher compared with those in the respective blank control, whereas in group C, the GRα expression levels following TNF-α treatment were lower compared with those in the control group (P<0.05). The treatment of group C with TNF-α monoclonal antibodies resulted in higher GRα expression but lower GRβ expression compared with those in the blank control (P<0.05). The change in the ratios of the GR subtypes may be associated with renal syndrome recurrence. TNF-α may be involved in renal syndrome relapse by changing the levels of GR as well as the proportion of the GR subtypes. TNF-α monoclonal antibodies may mitigate the changes in the ratios of these subtypes. PMID:26622525

  18. Expression of mineralocorticoid and glucocorticoid receptors in preautonomic neurons of the rat paraventricular nucleus

    PubMed Central

    Chen, Jian; Gomez-Sanchez, Celso E.; Penman, Alan; May, Paul J.

    2013-01-01

    Activation of mineralocorticoid receptors (MR) of the hypothalamic paraventricular nucleus (PVN) increases sympathetic excitation. To determine whether MR and glucocorticoid receptors (GR) are expressed in preautonomic neurons of the PVN and how they relate to endogenous aldosterone levels in healthy rats, retrograde tracer was injected into the intermediolateral cell column at T4 to identify preautonomic neurons in the PVN. Expression of MR, GR, 11-β hydroxysteroid dehydrogenase1 and 2 (11β-HSD1, 2), and hexose-6-phosphate dehydrogenase (H6PD) required for 11β-HSD1 reductase activity was assessed by immunohistochemistry. RT-PCR and Western blot analysis were used to determine MR gene and protein expression. Most preautonomic neurons were in the caudal mediocellular region of PVN, and most expressed MR; none expressed GR. 11β-HSD1, but not 11β-HSD2 nor H6PD immunoreactivity, was detected in the PVN. In rats with chronic low or high sodium intakes, the low-sodium diet was associated with significantly higher plasma aldosterone, MR mRNA and protein expression, and c-Fos immunoreactivity within labeled preautonomic neurons. Plasma corticosterone and sodium and expression of tonicity-responsive enhancer binding protein in the PVN did not differ between groups, suggesting osmotic adaptation to the altered sodium intake. These results suggest that MR within preautonomic neurons in the PVN directly participate in the regulation of sympathetic nervous system drive, and aldosterone may be a relevant ligand for MR in preautonomic neurons of the PVN under physiological conditions. Dehydrogenase activity of 11β-HSD1 occurs in the absence of H6PD, which regenerates NADP+ from NADPH and may increase MR gene expression under physiological conditions. PMID:24381176

  19. DHEA prevents mineralo- and glucocorticoid receptor-induced chronotropic and hypertrophic actions in isolated rat cardiomyocytes.

    PubMed

    Mannic, Tiphaine; Mouffok, Mounira; Python, Magaly; Yoshida, Takehisa; Maturana, Andres D; Vuilleumier, Nicolas; Rossier, Michel F

    2013-03-01

    Corticosteroids have been involved in the genesis of ventricular arrhythmias associated with pathological heart hypertrophy, although molecular mechanisms responsible for these effects have not been completely explained. Because mineralocorticoid receptor (MR) antagonists have been demonstrated to be beneficial on the cardiac function, much attention has been given to the action of aldosterone on the heart. However, we have previously shown that both aldosterone and corticosterone in vitro induce a marked acceleration of the spontaneous contractions, as well as a significant cell hypertrophy in isolated neonate rat ventricular cardiomyocytes. Moreover, a beneficial role of the steroid hormone dehydroepiandrosterone (DHEA) has been also proposed, but the mechanism of its putative cardioprotective function is not known. We found that DHEA reduces both the chronotropic and the hypertrophic responses of cardiomyocytes upon stimulation of MR and glucocorticoid receptor (GR) in vitro. DHEA inhibitory effects were accompanied by a decrease of T-type calcium channel expression and activity, as assessed by quantitative PCR and the patch-clamp technique. Prevention of cell hypertrophy by DHEA was also revealed by measuring the expression of A-type natriuretic peptide and BNP. The kinetics of the negative chronotropic effect of DHEA, and its sensitivity to actinomycin D, pointed out the presence of both genomic and nongenomic mechanisms of action. Although the genomic action of DHEA was effective mostly upon MR activation, its rapid, nongenomic response appeared related to DHEA antioxidant properties. On the whole, these results suggest new mechanisms for a putative cardioprotective role of DHEA in corticosteroid-associated heart diseases. PMID:23397034

  20. Mixed-model QSAR at the glucocorticoid receptor: predicting the binding mode and affinity of psychotropic drugs.

    PubMed

    Spreafico, Morena; Ernst, Beat; Lill, Markus A; Smiesko, Martin; Vedani, Angelo

    2009-01-01

    The glucocorticoid receptor (GR) is a member of the nuclear receptor superfamily that affects immune response, development, and metabolism in target tissues. Glucocorticoids are widely used to treat diverse pathophysiological conditions, but their clinical applicability is limited by side effects. A prediction of the binding affinity toward the GR would be beneficial for identifying glucocorticoid-mediated adverse effects triggered by drugs or chemicals. By identifying the binding mode to the GR using flexible docking (software Yeti) and quantifying the binding affinity through multidimensional QSAR (software Quasar), we validated a model family based on 110 compounds, representing four different chemical classes. The correlation with the experimental data (cross-validated r(2)=0.702; predictive r(2)=0.719) suggests that our approach is suited for predicting the binding affinity of related compounds toward the GR. After challenging the model by a series of scramble tests, a consensus approach (software Raptor), and a prediction set, it was incorporated into our VirtualToxLab and used to simulate and quantify the interaction of 24 psychotropic drugs with the GR. PMID:19009570

  1. The role of the glucocorticoid receptor gene (NR3C1) for the processing of aversive stimuli.

    PubMed

    Schneider, Katja Kerstin; Frings, Christian; Meyer, Jobst; Schote, Andrea B

    2016-06-01

    The glucocorticoid receptor (GR) is a crucial component of the hypothalamus-pituitary-adrenal (HPA) axis and as such a part of the stress response system. An impairment of the GR not only alters the level of glucocorticoids, but also modulates cognitive functions and the processing of emotional stimuli. We tested the effects of functional polymorphisms of the GR-encoding gene (NR3C1) on the processing of emotional stimuli on a basal level. In a sample of n=182 participants, we found a haplotype (NR3C1-CTGGACA) to modulate the performance in an emotional reaction time task. Compared to non-carriers, participants who carried the haplotype were quicker to react after aversive stimuli had been presented. In contrast, the presence of the haplotype had no effect on the processing of neutral stimuli. We conclude that properties of the glucocorticoid receptor contribute to the processing of emotional stimuli and influence the intensity of their processing even in the absence of acute stressors. PMID:26689331

  2. Accumulation of Cytoplasmic Glucocorticoid Receptor Is Related to Elevation of FKBP5 in Lymphocytes of Depressed Patients

    PubMed Central

    Mitic, Milos; Soldatovic, Ivan; Jovicic, Milica; Maric, Nadja; Radulovic, Jelena; Adzic, Miroslav

    2016-01-01

    We have previously shown that patients with the major depressive disorder (MDD) exhibited elevated phosphorylation of the lymphocyte glucocorticoid receptor (GR) at serine 226 (S226). Here, we further analyse potential alterations of GR signalization in lymphocytes of MDD patients, i.e. the cytoplasmic/nuclear distribution of GR, levels of FK506-binding protein 5 (FKBP5) and glucocorticoid-induced leucine zipper (GILZ). The FKBP5 acts as an important regulator of GR activation, by decreasing ligand binding and impeding translocation of the receptor to the nucleus, while GILZ mediates glucocorticoid anti-inflammatory effects. Our result showed that the depressed patients had significantly higher GR levels in the cytoplasm compared to controls, which was accompanied by higher FKBP5 levels. Linear regression model demonstrated significantly higher correlation between FKBP5 and cytoplasmic GR than the presence of MDD itself or phosphorylation of nuclear GR at S226. There were no differences in the levels of GILZ isoforms. Therefore, the results suggest that accumulation of the GR in cytoplasm is related to the elevation of FKBP5, adding one more step in understanding altered GR signalling in lymphocytes, and potentially brain tissue, of MDD patients. PMID:25355489

  3. Reverse Effect of Mammalian Hypocalcemic Cortisol in Fish: Cortisol Stimulates Ca2+ Uptake via Glucocorticoid Receptor-Mediated Vitamin D3 Metabolism

    PubMed Central

    Lin, Chia-Hao; Tsai, I-Lun; Su, Che-Hsien; Tseng, Deng-Yu; Hwang, Pung-Pung

    2011-01-01

    Cortisol was reported to downregulate body-fluid Ca2+ levels in mammals but was proposed to show hypercalcemic effects in teleostean fish. Fish, unlike terrestrial vertebrates, obtain Ca2+ from the environment mainly via the gills and skin rather than by dietary means, and have to regulate the Ca2+ uptake functions to cope with fluctuating Ca2+ levels in aquatic environments. Cortisol was previously found to regulate Ca2+ uptake in fish; however, the molecular mechanism behind this is largely unclear. Zebrafish were used as a model to explore this issue. Acclimation to low-Ca2+ fresh water stimulated Ca2+ influx and expression of epithelial calcium channel (ecac), 11β-hydroxylase and the glucocorticoid receptor (gr). Exogenous cortisol increased Ca2+ influx and the expressions of ecac and hydroxysteroid 11-beta dehydrogenase 2 (hsd11b2), but downregulated 11β-hydroxylase and the gr with no effects on other Ca2+ transporters or the mineralocorticoid receptor (mr). Morpholino knockdown of the GR, but not the MR, was found to impair zebrafish Ca2+ uptake function by inhibiting the ecac expression. To further explore the regulatory mechanism of cortisol in Ca2+ uptake, the involvement of vitamin D3 was analyzed. Cortisol stimulated expressions of vitamin D-25hydroxylase (cyp27a1), cyp27a1 like (cyp27a1l), 1α-OHase (cyp27b1) at 3 dpf through GR, the first time to demonstrate the relationship between cortisol and vitamin D3 in fish. In conclusion, cortisol stimulates ecac expression to enhance Ca2+ uptake functions, and this control pathway is suggested to be mediated by the GR. Lastly, cortisol also could mediate vitamin D3 signaling to stimulate Ca2+ uptake in zebrafish. PMID:21887296

  4. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    SciTech Connect

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  5. Regulation of human bone marrow stromal cell proliferation and differentiation capacity by glucocorticoid receptor and AP-1 crosstalk

    PubMed Central

    Cárcamo-Orive, Iván; Gaztelumendi, Ainhoa; Delgado, Jesús; Tejados, Naiara; Dorronsoro, Akaitz; Fernández-Rueda, Jon; Pennington, Daniel J; Trigueros, César

    2010-01-01

    Although marrow adipocytes and osteoblasts derive from a common bone marrow stromal cells (BMSCs), the mechanisms that underlie osteoporosis-associated bone loss and marrow adipogenesis during prolonged steroid treatment are unclear. We show in human BMSCs (hBMSCs) that glucocorticoid receptor (GR) signaling in response to high concentrations of glucocorticoid (GC) supports adipogenesis but inhibits osteogenesis by reducing c-Jun expression and hBMSC proliferation. Conversely, significantly lower concentrations of GC, which permit hBMSC proliferation, are necessary for normal bone mineralization. In contrast, platelet-derived growth factor (PDGF) signaling increases both JNK/c-Jun activity and hBMSC expansion, favoring osteogenic differentiation instead of adipogenesis. Indeed, PDGF antagonizes the proadipogenic qualities of GC/GR signaling. Thus our results reveal a novel c-Jun-centered regulatory network of signaling pathways in differentiating hBMSCs that controls the proliferation-dependent balance between osteogenesis and adipogenesis. PMID:20499359

  6. Relative glucocorticoid potency revisited.

    PubMed

    Tanaka, H; Hirano, F; Nomura, Y; Miura, T; Makino, Y; Fukawa, E; Makino, I

    1994-01-01

    To determine the relative potency of synthetic glucocorticoids, glucocorticoid receptor expressing cells were transfected with a hormone-inducible reporter gene, and were cultured in the presence of various glucocorticoid ligands. Hormonal inducibility was determined by means of a chloramphenicol acetyltransferase assay. Dexamethasone and prednisolone, as well as cortisol, induced the expression of the reporter gene in a dose-dependent fashion. The relative potency of each ligand was in this order when inducibility was quantitatively assessed. In conclusion, the transcription assay described here may be a convenient and alternative method to evaluate the relative potency of given glucocorticoids. PMID:7939139

  7. Estrogen receptor beta activation prevents glucocorticoid receptor-dependent effects of the central nucleus of the amygdala on behavior and neuroendocrine function.

    PubMed

    Weiser, Michael J; Foradori, Chad D; Handa, Robert J

    2010-06-01

    Neuropsychiatric disorders such as anxiety and depression have formidable economic and societal impacts. A dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis leading to elevated endogenous glucocorticoid levels is often associated with such disorders. Chronically high glucocorticoid levels may act upon the central nucleus of the amygdala (CeA) to alter normally adaptive responses into those that are maladaptive and detrimental. In addition to glucocorticoids, other steroid hormones such as estradiol and androgens can also modify hormonal and behavioral responses to threatening stimuli. In particular, estrogen receptor beta (ERbeta) agonists have been shown to be anxiolytic. Consequently, these experiments addressed the hypothesis that the selective stimulation of glucocorticoid receptor (GR) in the CeA would increase anxiety-like behaviors and HPA axis reactivity to stress, and further, that an ERbeta agonist could modulate these effects. Young adult female Sprague-Dawley rats were ovariectomized and bilaterally implanted via stereotaxic surgery with a wax pellet containing the selective GR agonist RU28362 or a blank pellet, to a region just dorsal to the CeA. Four days later, animals were administered the ERbeta agonist S-DPN or vehicle (with four daily sc injections). Anxiety-type behaviors were measured using the elevated plus maze (EPM). Central RU28362 implants caused significantly higher anxiety-type behaviors in the EPM and greater plasma CORT levels than controls given a blank central implant. Moreover, S-DPN treated animals, regardless of type of central implant, displayed significantly lower anxiety-type behaviors and post-EPM plasma CORT levels than vehicle treated controls or vehicle treated animals implanted with RU28362. These results indicate that selective activation of GR within the CeA is anxiogenic, and peripheral administration of an ERbeta agonist can overcome this effect. These data suggest that estradiol signaling via ERbeta

  8. Estrogen receptor beta activation prevents glucocorticoid receptor-dependent effects of the central nucleus of the amygdala on behavior and neuroendocrine function

    PubMed Central

    Weiser, Michael J.; Foradori, Chad D.; Handa, Robert J.

    2010-01-01

    Neuropsychiatric disorders such as anxiety and depression have formidable economic and societal impacts. A dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis leading to elevated endogenous glucocorticoid levels is often associated with such disorders. Chronically high glucocorticoid levels may act upon the central nucleus of the amygdala (CeA) to alter normally adaptive responses into those that are maladaptive and detrimental. In addition to glucocorticoids, other steroid hormones such as estradiol and androgens can also modify hormonal and behavioral responses to threatening stimuli. In particular, estrogen receptor beta (ERβ) agonists have been shown to be anxiolytic. Consequently, these experiments addressed the hypothesis that the selective stimulation of glucocorticoid receptor (GR) in the CeA would increase anxiety-like behaviors and HPA axis reactivity to stress, and further, that an ERβ agonist could modulate these effects. Young adult female Sprague-Dawley rats were ovariectomized and bilaterally implanted via stereotaxic surgery with a wax pellet containing the selective GR agonist RU28362 or a blank pellet, to a region just dorsal to the CeA. Four days later, animals were administered the ERβ agonist S-DPN or vehicle (with four daily sc injections). Anxiety-type behaviors were measured using the elevated plus maze (EPM). Central RU28362 implants caused significantly higher anxiety-type behaviors in the EPM and greater plasma CORT levels than controls given a blank central implant. Moreover, S-DPN treated animals, regardless of type of central implant, displayed significantly lower anxiety-type behaviors and post-EPM plasma CORT levels than vehicle treated controls or vehicle treated animals implanted with RU28362. These results indicate that selective activation of GR within the CeA is anxiogenic, and peripheral administration of an ERβ agonist can overcome this effect. These data suggest that estradiol signaling via ERβ prevents

  9. Stability and sequence-specific DNA binding of activation-labile mutants of the human glucocorticoid receptor

    SciTech Connect

    Elsasser, M.S.; Eisen, L.P.; Harmon, J.M. ); Riegel, A.T. )

    1991-11-19

    The stability and DNA-binding properties of activation-labile (act{sup 1}) human glucocorticoid receptors (hGRs) from the glucocorticoid-resistant mutant 3R7.6TG.4 were investigated. These receptors are able to bind reversible associating ligands with normal affinity and specificity, but become unstable during attempted activation to the DNA binding form. Affinity labeling and immunochemical analysis demonstrated that act{sup 1} receptors are not preferentially proteolyzed during attempted activation. In addition, analysis of binding to calf thymus DNA showed that after loss of ligand, act{sup 1} receptors retain the ability to bind to DNA nonspecifically. A 370 bp MMTV promoter fragment containing multiple GREs and an upstream 342 bp fragment lacking GRE sequences were used to assess the binding of act{sup 1} hGR to specific DNA sequences. Immunoadsorption of hGR-DNA complexes after incubation with {sup 32}P-end-labeled fragments showed that both normal and act{sup 1} both normal and act{sup 1} hGRs could be blocked with a synthetic oligonucleotide containing a perfect palindromic GRE, but not with an oligonucleotide in which the GRE was replaced by and ERE. Analogous results were obtained for normal and act{sup 1} hGR activated in the absence of ligand, or after incubation with the glucocorticoid antagonist RU 38486. These results suggest that sequence-specific binding of the hGR does not require the presence of bound ligand and suggest a role for the ligand in trans-activation of hormonally responsive genes.

  10. Glucocorticoid receptor mediates the expansion of splenic late erythroid progenitors during chronic psychological stress.

    PubMed

    Vignjevic, S; Budec, M; Markovic, D; Dikic, D; Mitrovic, O; Diklic, M; Suboticki, T; Cokic, V; Jovcic, G

    2015-02-01

    Stress evokes an integrated neuroendocrine response perturbing the homeostasis of different physiological systems. In contrast to well established physiologica linteractions between neuroendocrine and immune systems during chronic stress, there has been relatively little information on the effects of psychological stress on erythroid cells. Since stress-induced erythropoiesis occurs predominantly in the spleen, in the current study, we investigated the influence of chronic psychological stress on splenic erythroid progenitors and examined a role of glucocorticoid receptor (GR) in observed effect using a mouse model of restraint. The adult male mice were subjected to 2 hours daily restraint stress for 7 or 14 consecutive days and the role of GR in erythropoietic response to stress was assessed by pretreatment of mice with GR antagonist mifepristone 60 min prior to restraint. The results showed that chronic restraint stress induced an increase in spleen weight as well as in the cellularity of red pulp, as compared to controls. Furthermore, 7 and 14 days of restraint stress resulted in markedly increased number of both splenic early (BFU-E) and late (CFU-E) erythroid progenitors. Blockade of GR with mifepristone did not affect the number of BFU-E in stressed mice, but it completely abolished the effect of repeated psychological stress on CFU-E cells. Additionally, plasma corticosterone concentration was enhanced whereas the GR expression was significantly decreased within splenic red pulp after one and two weeks of stress exposure. Obtained findings suggest for the first time an indispensable role for GR in the expansion of CFU-E progenitors in the spleen under conditions of chronic psychological stress. PMID:25716969

  11. Crosstalk in Inflammation: The Interplay of Glucocorticoid Receptor-Based Mechanisms and Kinases and Phosphatases

    PubMed Central

    Beck, Ilse M. E.; Vanden Berghe, Wim; Vermeulen, Linda; Yamamoto, Keith R.; Haegeman, Guy; De Bosscher, Karolien

    2009-01-01

    Glucocorticoids (GCs) are steroidal ligands for the GC receptor (GR), which can function as a ligand-activated transcription factor. These steroidal ligands and derivatives thereof are the first line of treatment in a vast array of inflammatory diseases. However, due to the general surge of side effects associated with long-term use of GCs and the potential problem of GC resistance in some patients, the scientific world continues to search for a better understanding of the GC-mediated antiinflammatory mechanisms. The reversible phosphomodification of various mediators in the inflammatory process plays a key role in modulating and fine-tuning the sensitivity, longevity, and intensity of the inflammatory response. As such, the antiinflammatory GCs can modulate the activity and/or expression of various kinases and phosphatases, thus affecting the signaling efficacy toward the propagation of proinflammatory gene expression and proinflammatory gene mRNA stability. Conversely, phosphorylation of GR can affect GR ligand- and DNA-binding affinity, mobility, and cofactor recruitment, culminating in altered transactivation and transrepression capabilities of GR, and consequently leading to a modified antiinflammatory potential. Recently, new roles for kinases and phosphatases have been described in GR-based antiinflammatory mechanisms. Moreover, kinase inhibitors have become increasingly important as antiinflammatory tools, not only for research but also for therapeutic purposes. In light of these developments, we aim to illuminate the integrated interplay between GR signaling and its correlating kinases and phosphatases in the context of the clinically important combat of inflammation, giving attention to implications on GC-mediated side effects and therapy resistance. PMID:19890091

  12. Disrupting Hypothalamic Glucocorticoid Receptors Causes HPA Axis Hyperactivity and Excess Adiposity

    PubMed Central

    Laryea, Gloria; Schütz, Günther

    2013-01-01

    The glucocorticoid receptor (GR) regulates hypothalamic-pituitary-adrenal (HPA) axis activity during the stress response. The paraventricular nucleus (PVN) is a major site of negative feedback to coordinate the degree of the HPA axis activity with the magnitude of the exposed stressor. To define the function of endogenous PVN GR, we used Cre-loxP technology to disrupt different GR exons in Sim1-expressing neurons of the hypothalamus. GR exon 2-deleted mice (Sim1Cre-GRe2Δ) demonstrated 43% loss of PVN GR compared with an 87% GR loss in exon 3-deleted mice (Sim1Cre-GRe3Δ). Sim1Cre-GRe3Δ mice display stunted growth at birth but develop obesity in adulthood and display impaired stress-induced glucose release. We observed elevated basal and stress-induced corticosterone levels in Sim1Cre-GRe3Δ mice, compared with control and Sim1Cre-GRe2Δ mice, and impaired dexamethasone suppression, indicating an inability to negatively regulate corticosterone secretion. Sim1Cre-GRe3Δ mice also showed increased CRH mRNA in the PVN, increased basal plasma ACTH levels, and reduced locomotor behavior. We observed no differences in Sim1Cre-GRe2Δ mice compared with control mice in any measure. Our behavioral data suggest that GR deletion in Sim1-expressing neurons has no effect on anxiety or despair-like behavior under basal conditions. We conclude that loss of PVN GR results in severe HPA axis hyperactivity and Cushing's syndrome-like phenotype but does not affect anxiety and despair-like behaviors. PMID:23979842

  13. Glucocorticoid receptors and extinction retention deficits in the single prolonged stress model.

    PubMed

    Knox, D; Nault, T; Henderson, C; Liberzon, I

    2012-10-25

    Single prolonged stress (SPS) is a rodent model of post traumatic stress disorder that is comprised of serial application of restraint (r), forced swim (fs), and ether (eth) followed by a 7-day quiescent period. SPS induces extinction retention deficits and it is believed that these deficits are caused by the combined stressful effect of serial exposure to r, fs, and eth. However, this hypothesis remains untested. Neurobiological mechanisms by which SPS induces extinction retention deficits are unknown, but SPS enhances glucocorticoid receptor (GR) expression in the hippocampus, which is critical for contextual modulation of extinction retrieval. Upregulation of GRs in extinction circuits may be a mechanism by which SPS induces extinction retention deficits, but this hypothesis has not been examined. In this study, we systematically altered the stressors that constitute SPS (i.e. r, fs, eth), generating a number of partial SPS (p-SPS) groups, and observed the effects SPS and p-SPSs had on extinction retention and GR levels in the hippocampus and prefrontal cortex (PFC). PFC GRs were assayed, because regions of the PFC are critical for maintaining extinction. We predicted that only exposure to full SPS would result in extinction retention deficits and enhance hippocampal and PFC GR levels. Only exposure to full SPS induced extinction retention deficits. Hippocampal and PFC GR expression was enhanced by SPS and most p-SPSs, however hippocampal GR expression was significantly larger following the full SPS exposure than all other conditions. Our findings suggest that the combined stressful effect of serial exposure to r, fs, and eth results in extinction retention deficits. The results also suggest that simple enhancements in GR expression in the hippocampus and PFC are insufficient to result in extinction retention deficits, but raise the possibility that a threshold-enhancement in hippocampal GR expression contributes to SPS-induced extinction retention deficits

  14. The anticancer plant triterpenoid, avicin D, regulates glucocorticoid receptor signaling: implications for cellular metabolism.

    PubMed

    Haridas, Valsala; Xu, Zhi-Xiang; Kitchen, Doug; Jiang, Anna; Michels, Peter; Gutterman, Jordan U

    2011-01-01

    Avicins, a family of apoptotic triterpene electrophiles, are known to regulate cellular metabolism and energy homeostasis, by targeting the mitochondria. Having evolved from "ancient hopanoids," avicins bear a structural resemblance with glucocorticoids (GCs), which are the endogenous regulators of metabolism and energy balance. These structural and functional similarities prompted us to compare the mode of action of avicin D with dexamethasone (Dex), a prototypical GC. Using cold competition assay, we show that Avicin D competes with Dex for binding to the GC receptor (GR), leading to its nuclear translocation. In contrast to Dex, avicin-induced nuclear translocation of GR does not result in transcriptional activation of GC-dependent genes. Instead we observe a decrease in the expression of GC-dependent metabolic proteins such as PEPCK and FASN. However, like Dex, avicin D treatment does induce a transrepressive effect on the pro-inflammatory transcription factor NF-κB. While avicin's ability to inhibit NF-κB and its downstream targets appear to be GR-dependent, its pro-apoptotic effects were independent of GR expression. Using various deletion mutants of GR, we demonstrate the requirement of both the DNA and ligand binding domains of GR in mediating avicin D's transrepressive effects. Modeling of avicin-GR interaction revealed that avicin molecule binds only to the antagonist confirmation of GR. These findings suggest that avicin D has properties of being a selective GR modulator that separates transactivation from transrepression. Since the gene-activating properties of GR are mainly linked to its metabolic effects, and the negative interference with the activity of transcription factors to its anti-inflammatory and immune suppressive effects, the identification of such a dissociated GR ligand could have great potential for therapeutic use. PMID:22132201

  15. Detection of glucocorticoid receptor agonists in effluents from sewage treatment plants in Japan.

    PubMed

    Suzuki, Go; Sato, Kentaro; Isobe, Tomohiko; Takigami, Hidetaka; Brouwer, Abraham; Nakayama, Kei

    2015-09-15

    Glucocorticoids (GCs) are widely used as anti-inflammatory drugs. Our previous study demonstrated that several GCs such as cortisol and dexamethasone (Dex) were frequently detected in effluents collected from Japanese sewage treatment plants (STPs) in 2012. In this study, we used the GC-Responsive Chemical-Activated LUciferase gene eXpression (GR-CALUX) assay to elucidate GC receptor (GR) agonistic activities of ten pure synthetic GCs and selected STP effluents in Japan for assessment of the risks associated with the presence of GR agonists. The tested GCs demonstrated dose-dependent agonistic effects in the GR-CALUX assay and their EC50 values were calculated for estimation of relative potencies (REPs) compared to Dex. The GR agonistic potency was in the rank of: clobetasol propionate > clobetasone butyrate > betamethasone 17-valerate > difluprednate > betamethasone 17,21-dipropionate > Dex > betamethasone > 6α-methylprednisolone > prednisolone > cortisol. The GR agonistic activity in STP effluents as measured in Dex-equivalent (Dex-EQ) activities ranged from < 3.0-78 ng L(-1) (median: 29 ng L(-1), n = 50). To evaluate the contribution of the target GCs, theoretical Dex-EQs were calculated by multiplying the concentrations of each GC by its respective REP. Our calculation of Dex-EQ contribution for individual GR agonists indicated that the well-known GCs cortisol and Dex should not be given priority for subsequent in vivo testing, monitoring and removal experiments, but rather the highly potent synthetic GCs clobetasol propionate and betamethasone 17-valerate (REP = 28 and 3.1) as well as other unidentified compounds are important GR agonists in STP effluents in Japan. PMID:25965047

  16. Immunochemical analysis of the glucocorticoid receptor: identification of a third domain separate from the steroid-binding and DNA-binding domains.

    PubMed Central

    Carlstedt-Duke, J; Okret, S; Wrange, O; Gustafsson, J A

    1982-01-01

    The glucocorticoid-receptor complex can be subdivided into three separate domains by limited proteolysis with trypsin or alpha-chymotrypsin. The following characteristics can be separated: steroid-binding activity (domain A), DNA-binding activity (domain B), and immunoactivity (domain C). We have previously reported the separation of the steroid-binding domain from the DNA-binding domain by limited proteolysis of the receptor with trypsin. In this paper, we report the detection by immunochemical analysis of a third domain of the glucocorticoid receptor, which does not bind hormone. Immunoactivity was detected by using specific antiglucocorticoid receptor antibodies raised in rabbits against purified rat liver glucocorticoid receptor and the assay used was an enzyme-linked immunosorbent assay. After digestion with alpha-chymotrypsin, the immunoactive region of the receptor (domain C) was separated from the other two domains (A and B). The immunoactive fragment was found to have a Stokes radius of 2.6 nm. Further digestion with alpha-chymotrypsin resulted in separation of the immunoactive fragment to give a fragment having a Stokes radius of 1.4 nm. The immunoactive domain could be separated from the half of the glucocorticoid receptor containing the steroid-binding and the DNA-binding domains (Stokes radius, 3.3 nm), by limited proteolysis of the receptor by alpha-chymotrypsin followed by gel filtration or chromatography on DNA-cellulose. PMID:6181503

  17. Glucocorticoid receptor-mediated cell cycle arrest is achieved through distinct cell-specific transcriptional regulatory mechanisms.

    PubMed Central

    Rogatsky, I; Trowbridge, J M; Garabedian, M J

    1997-01-01

    Glucocorticoids inhibit proliferation of many cell types, but the events leading from the activated glucocorticoid receptor (GR) to growth arrest are not understood. Ectopic expression and activation of GR in human osteosarcoma cell lines U2OS and SAOS2, which lack endogenous receptors, result in a G1 cell cycle arrest. GR activation in U2OS cells represses expression of the cyclin-dependent kinases (CDKs) CDK4 and CDK6 as well as their regulatory partner, cyclin D3, leading to hypophosphorylation of the retinoblastoma protein (Rb). We also demonstrate a ligand-dependent reduction in the expression of E2F-1 and c-Myc, transcription factors involved in the G1-to-S-phase transition. Mitogen-activated protein kinase, CDK2, cyclin E, and the CDK inhibitors (CDIs) p27 and p21 are unaffected by receptor activation in U2OS cells. The receptor's N-terminal transcriptional activation domain is not required for growth arrest in U2OS cells. In Rb-deficient SAOS2 cells, however, the expression of p27 and p21 is induced upon receptor activation. Remarkably, in SAOS2 cells that express a GR deletion derivative lacking the N-terminal transcriptional activation domain, induction of CDI expression is abolished and the cells fail to undergo ligand-dependent cell cycle arrest. Similarly, murine S49 lymphoma cells, which, like SAOS2 cells, lack Rb, require the N-terminal activation domain for growth arrest and induce CDI expression upon GR activation. These cell-type-specific differences in receptor domains and cellular targets linking GR activation to cell cycle machinery suggest two distinct regulatory mechanisms of GR-mediated cell cycle arrest: one involving transcriptional repression of G1 cyclins and CDKs and the other involving enhanced transcription of CDIs by the activated receptor. PMID:9154817

  18. c-Myb interacts with the glucocorticoid receptor and regulates its level in pre-B-acute lymphoblastic leukemia cells†

    PubMed Central

    Sarvaiya, Purvaba J.; Schwartz, Jason R.; Geng, Chuan-dong; Vedeckis, Wayne V.

    2012-01-01

    Glucocorticoid (GC) hormones are used in the treatment of hematopoietic malignancies. When the GC binds to the glucocorticoid receptor (GR) protein, c-Myb and GR are recruited at the Glucocorticoid Response Unit in the DNA. Here we demonstrate that c-Myb interacts with the GR and that decreasing c-Myb amounts reduces the levels of GR transcripts and protein in 697 pre-B-acute lymphoblastic leukemia (ALL) cells. Furthermore, the auto-upregulation of GR promoter 1C and promoter 1D is blunted at reduced c-Myb levels. Taken together, these data show that c-Myb is a direct, key regulator of the GR. Unexpectedly, the reduction in c-Myb levels increased the sensitivity of the cells to steroid-mediated apoptosis. This was because the reduction in c-Myb itself decreases cell viability, and the residual GR remained above the threshold needed to trigger apoptosis. These studies show the mutual importance of c-Myb and the GR in controlling survival of pre-B ALL cells. PMID:22516378

  19. Nicotinic Acid-Mediated Activation of Both Membrane and Nuclear Receptors towards Therapeutic Glucocorticoid Mimetics for Treating Multiple Sclerosis

    PubMed Central

    Penberthy, W. Todd

    2009-01-01

    Acute attacks of multiple sclerosis (MS) are most commonly treated with glucocorticoids, which can provide life-saving albeit only temporary symptomatic relief. The mechanism of action (MOA) is now known to involve induction of indoleamine 2,3-dioxygenase (IDO) and interleukin-10 (IL-10), where IL-10 requires subsequent heme oxygenase-1 (HMOX-1) induction. Ectopic expression studies reveal that even small changes in expression of IDO, HMOX-1, or mitochondrial superoxide dismutase (SOD2) can prevent demyelination in experimental autoimmune encephalomyelitis (EAE) animal models of MS. An alternative to glucocorticoids is needed for a long-term treatment of MS. A distinctly short list of endogenous activators of both membrane G-protein-coupled receptors and nuclear peroxisome proliferating antigen receptors (PPARs) demonstrably ameliorate EAE pathogenesis by MOAs resembling that of glucocorticoids. These dual activators and potential MS therapeutics include endocannabinoids and the prostaglandin 15-deoxy-Δ12,14-PGJ2. Nicotinamide profoundly ameliorates and prevents autoimmune-mediated demyelination in EAE via maintaining levels of nicotinamide adenine dinucleotide (NAD), without activating PPAR nor any G-protein-coupled receptor. By comparison, nicotinic acid provides even greater levels of NAD than nicotinamide in many tissues, while additionally activating the PPARγ-dependent pathway already shown to provide relief in animal models of MS after activation of GPR109a/HM74a. Thus nicotinic acid is uniquely suited for providing therapeutic relief in MS. However nicotinic acid is unexamined in MS research. Nicotinic acid penetrates the blood brain barrier, cures pellagric dementia, has been used for over 50 years clinically without toxicity, and raises HDL concentrations to a greater degree than any pharmaceutical, thus providing unparalleled benefits against lipodystrophy. Summary analysis reveals that the expected therapeutic benefits of high-dose nicotinic acid

  20. Availability of chemosensory receptors is down-regulated by habituation of larvae to a morphogenetic signal.

    PubMed Central

    Trapido-Rosenthal, H G; Morse, D E

    1986-01-01

    Larvae of the gastropod mollusc Haliotis rufescens are induced to settle from the plankton and metamorphose in response to exogenous gamma-aminobutyric acid (GABA) and a number of GABA-mimetic compounds, including a GABA-mimetic inducer uniquely associated with the surfaces of the naturally recruiting algae. Previous evidence has shown that recognition of these inducers is mediated by specialized chemosensory receptors on the larval epithelium and that transduction of the morphogenetic signal then is mediated by cAMP and excitatory depolarization. We demonstrate here the specific and saturable labeling of a population of larval receptors with the GABA analog beta-(p-chlorophenyl)-[3H]GABA ([3H]baclofen); identification of these labeled receptors with those controlling metamorphosis is suggested by four independent criteria: the effectiveness of GABA and its close structural analogs to induce metamorphosis is closely correlated with the effectiveness of these compounds to compete for binding to this receptor; the natural inducer purified from the recruiting algae competes for binding to this receptor; (-)-[3H]baclofen specifically bound to the receptors is shed from the larvae after approximately 20 hr, at the time corresponding to the metamorphic abscission and shedding of sensory cilia and other structures from the larvae; and the availability of the receptors for labeling and the ability of the larvae to respond to GABA and GABA analogs can be down-regulated in parallel by habituation of the larvae early in their development. These down-regulated larvae are fully capable of settlement and metamorphosis in response to agents that elevate intracellular cAMP or depolarize the chemosensory membrane, confirming that down-regulation is confined to the receptors, with no effect on the postreceptor pathway. The results reported here thus suggest that the sensitivity of marine invertebrate larvae to morphogenetic stimuli from the environment can be down-regulated by

  1. Discovery of Compound A – a selective activator of the glucocorticoid receptor with anti-inflammatory and anti-cancer activity

    PubMed Central

    Lesovaya, Ekaterina; Yemelyanov, Alexander; Swart, Amanda C.; Swart, Pieter; Haegeman, Guy; Budunova, Irina

    2015-01-01

    Glucocorticoids are among the most effective anti-inflammatory drugs, and are widely used for cancer therapy. Unfortunately, chronic treatment with glucocorticoids results in multiple side effects. Thus, there was an intensive search for selective glucocorticoid receptor (GR) activators (SEGRA), which retain therapeutic potential of glucocorticoids, but with fewer adverse effects. GR regulates gene expression by transactivation (TA), by binding as homodimer to gene promoters, or transrepression (TR), via diverse mechanisms including negative interaction between monomeric GR and other transcription factors. It is well accepted that metabolic and atrophogenic effects of glucocorticoids are mediated by GR TA. Here we summarized the results of extensive international collaboration that led to discovery and characterization of Compound A (CpdA), a unique SEGRA with a proven “dissociating” GR ligand profile, preventing GR dimerization and shifting GR activity towards TR both in vitro and in vivo. We outlined here the unusual story of compound's discovery, and presented a comprehensive overview of CpdA ligand properties, its anti-inflammatory effects in numerous animal models of inflammation and autoimmune diseases, as well as its anti-cancer effects. Finally, we presented mechanistic analysis of CpdA and glucocorticoid effects in skin, muscle, bone, and regulation of glucose and fat metabolism to explain decreased CpdA side effects compared to glucocorticoids. Overall, the results obtained by our and other laboratories underline translational potential of CpdA and its derivatives for treatment of inflammation, autoimmune diseases and cancer. PMID:26436695

  2. The glucocorticoid-induced gene tdag8 encodes a pro-apoptotic G protein-coupled receptor whose activation promotes glucocorticoid-induced apoptosis.

    PubMed

    Malone, Michael H; Wang, Zhengqi; Distelhorst, Clark W

    2004-12-17

    The apoptotic action of glucocorticoids on lymphocytes makes them effective therapeutics for many lymphoid malignancies. Although it is clear that glucocorticoid-induced apoptosis requires transcription, the gene products that induce apoptosis remain unknown. Using gene expression profiles of lymphoma cell lines and primary thymocytes treated with the synthetic glucocorticoid dexamethasone, we discovered that induction of tdag8 (T-cell death-associated gene 8) was a common event in each model system investigated. Activation of TDAG8 by its agonist psychosine markedly enhanced dexamethasone-induced apoptosis in a TDAG8-dependent manner. Expression of a TDAG8-GFP fusion protein was sufficient to induce apoptosis, and repression of endogenous TDAG8 using RNA interference partially inhibited dexamethasone-induced apoptosis. Together, these data suggest that TDAG8 is a regulator of glucocorticoid-induced apoptosis and that agonists of TDAG8 may be promising agents to improve the efficacy of glucocorticoids for the treatment of leukemia and lymphoma. PMID:15485889

  3. Downregulation of transferrin receptor surface expression by intracellular antibody

    SciTech Connect

    Peng Jilin; Wu Sha; Zhao Xiaoping; Wang Min; Li Wenhan; Shen Xin; Liu Jing; Lei Ping; Zhu Huifen; Shen Guanxin . E-mail: guanxin_shen@yahoo.com.cn

    2007-03-23

    To deplete cellular iron uptake, and consequently inhibit the proliferation of tumor cells, we attempt to block surface expression of transferrin receptor (TfR) by intracellular antibody technology. We constructed two expression plasmids (scFv-HAK and scFv-HA) coding for intracellular single-chain antibody against TfR with or without endoplasmic reticulum (ER) retention signal, respectively. Then they were transfected tumor cells MCF-7 by liposome. Applying RT-PCR, Western blotting, immunofluorescence microscopy and immunoelectron microscope experiments, we insure that scFv-HAK intrabody was successfully expressed and retained in ER contrasted to the secreted expression of scFv-HA. Flow cytometric analysis confirmed that the TfR surface expression was markedly decreased approximately 83.4 {+-} 2.5% in scFv-HAK transfected cells, while there was not significantly decrease in scFv-HA transfected cells. Further cell growth and apoptosis characteristics were evaluated by cell cycle analysis, nuclei staining and MTT assay. Results indicated that expression of scFv-HAK can dramatically induce cell cycle G1 phase arrest and apoptosis of tumor cells, and consequently significantly suppress proliferation of tumor cells compared with other control groups. For First time this study demonstrates the potential usage of anti-TfR scFv-intrabody as a growth inhibitor of TfR overexpressing tumors.

  4. The Kampo Medicine Yokukansan Decreases MicroRNA-18 Expression and Recovers Glucocorticoid Receptors Protein Expression in the Hypothalamus of Stressed Mice

    PubMed Central

    Tanaka, Takashi; Tohyama, Masaya

    2015-01-01

    It is well known that glucocorticoid receptor (GR) signaling regulates the hypothalamic-pituitary-adrenal (HPA) axis, and GR expression level is associated with HPA axis activity. Recent studies revealed that microRNA- (miR-) 18 and/or 124a are candidate negative regulators of GR in the brain. The Kampo medicine Yokukansan (YKS) can affect psychological symptoms such as depression and anxiety that are associated with stress responses. In this study, we evaluated the effect of YKS on miR-18 and 124a and GR levels in mice exposed to stress. We found that YKS pretreatment normalized elevated plasma corticosterone levels in stress-exposed mice. In addition, GR mRNA levels were downregulated in the brain following stress exposure. While miR-124a expression levels were not altered in the hypothalamus of stress-exposed mice, miR-18 levels decreased in the hypothalamus of YKS-pretreated mice after stress exposure. Finally, GR protein levels in the paraventricular nucleus (PVN) of the hypothalamus after stress exposure recovered in YKS-pretreated mice. Collectively, these data suggest that YKS normalizes GR protein levels by regulating miR-18 expression in the hypothalamus, thus normalizing HPA axis activity following stress exposure. PMID:26106615

  5. Attenuated stress-evoked anxiety, increased sucrose preference and delayed spatial learning in glucocorticoid-induced receptor (GIR) deficient mice

    PubMed Central

    Vollmer, Lauren E.; Ghosal, Sriparna; Rush, Jennifer A.; Sallee, Floyd R.; Herman, James P.; Weinert, Mychal; Sah, Renu

    2012-01-01

    The glucocorticoid induced receptor (GIR) is a stress-responsive gene that is abundantly expressed in forebrain limbic regions. GIR has been classified as a NPY-like receptor, however, physiological attributes have not been investigated. In the current study mice lacking GIR (−/−) were screened in various paradigms related to stress, anxiety, activity, memory, fear and reward. GIR −/− mice elicited behavioral insensitivity to the anxiogenic effects of restraint stress. However, hypothalamic pituitary adrenal (HPA) axis response to stress was not impacted by GIR deficiency. Increased preference for sucrose was observed in GIR −/− mice suggestive of modulation of reward-associated behaviors by the receptor. A delayed acquisition of spatial learning was also observed in GIR −/− mice. There were no effects of genotype on the modulation of anxiety-like behavior, activity, and fear conditioning-extinction. Our data extend previous studies on GIR regulation by glucocorticoids and provides novel evidence for a role of GIR in reward, learning and the behavioral outcomes of stress. PMID:23088626

  6. Biochemical characterization of nuclear receptors for vitamin D{sub 3} and glucocorticoids in prostate stroma cell microenvironment

    SciTech Connect

    Hidalgo, Alejandro A.; Montecinos, Viviana P.; Paredes, Roberto; Godoy, Alejandro S.; McNerney, Eileen M.; Tovar, Heribelt; Pantoja, Diego; Johnson, Candace; Trump, Donald; Onate, Sergio A.

    2011-08-19

    Highlights: {yields} Fibroblasts from benign and carcinoma-associated stroma were biochemically characterized for VDR and GR function as transcription factors in prostate stroma cell microenvironment. {yields} Decreased SRC-1/CBP coactivators recruitment to VDR and GR may result in hormone resistance to 1,25D{sub 3} in stromal cell microenvironment prostate cancer. {yields} 1a,25-Dyhidroxyvitamin D{sub 3} (1,25D{sub 3}) and glucocorticoids, either alone or in combination, may not be an alternative for 'some' advanced prostate cancers that fails androgen therapies. -- Abstract: The disruption of stromal cell signals in prostate tissue microenvironment influences the development of prostate cancer to androgen independence. 1{alpha},25-Dihydroxyvitamin D{sub 3} (1,25D{sub 3}) and glucocorticoids, either alone or in combination, have been investigated as alternatives for the treatment of advanced prostate cancers that fails androgen therapies. The effects of glucocorticoids are mediated by the intracellular glucocorticoid receptor (GR). Similarly, the effect of 1,25D{sub 3} is mediated by the 1,25D{sub 3} nuclear receptor (VDR). In this study, fibroblasts from benign- (BAS) and carcinoma-associated stroma (CAS) were isolated from human prostates to characterize VDR and GR function as transcription factors in prostate stroma. The VDR-mediated transcriptional activity assessed using the CYP24-luciferase reporter was limited to 3-fold induction by 1,25D{sub 3} in 9 out of 13 CAS (70%), as compared to >10-fold induction in the BAS clinical sample pair. Expression of His-tagged VDR (Ad-his-VDR) failed to recover the low transcriptional activity of the luciferase reporter in 7 out of 9 CAS. Interestingly, expression of Ad-his-VDR successfully recovered receptor-mediated induction in 2 out of the 9 CAS analyzed, suggesting that changes in the receptor protein itself was responsible for decreased response and resistance to 1,25D{sub 3} action. Conversely, VDR

  7. Reduction of hepatic and adipose tissue glucocorticoid receptor expression with antisense oligonucleotides improves hyperglycemia and hyperlipidemia in diabetic rodents without causing systemic glucocorticoid antagonism.

    PubMed

    Watts, Lynnetta M; Manchem, Vara Prasad; Leedom, Thomas A; Rivard, Amber L; McKay, Robert A; Bao, Dingjiu; Neroladakis, Teri; Monia, Brett P; Bodenmiller, Diane M; Cao, Julia Xiao-Chun; Zhang, Hong Yan; Cox, Amy L; Jacobs, Steven J; Michael, M Dodson; Sloop, Kyle W; Bhanot, Sanjay

    2005-06-01

    Glucocorticoids (GCs) increase hepatic gluconeogenesis and play an important role in the regulation of hepatic glucose output. Whereas systemic GC inhibition can alleviate hyperglycemia in rodents and humans, it results in adrenal insufficiency and stimulation of the hypothalamic-pituitary-adrenal axis. In the present study, we used optimized antisense oligonucleotides (ASOs) to cause selective reduction of the glucocorticoid receptor (GCCR) in liver and white adipose tissue (WAT) and evaluated the resultant changes in glucose and lipid metabolism in several rodent models of diabetes. Treatment of ob/ob mice with GCCR ASOs for 4 weeks resulted in approximately 75 and approximately 40% reduction in GCCR mRNA expression in liver and WAT, respectively. This was accompanied by approximately 65% decrease in fed and approximately 30% decrease in fasted glucose levels, a 60% decrease in plasma insulin concentration, and approximately 20 and 35% decrease in plasma resistin and tumor necrosis factor-alpha levels, respectively. Furthermore, GCCR ASO reduced hepatic glucose production and inhibited hepatic gluconeogenesis in liver slices from basal and dexamethasone-treated animals. In db/db mice, a similar reduction in GCCR expression caused approximately 40% decrease in fed and fasted glucose levels and approximately 50% reduction in plasma triglycerides. In ZDF and high-fat diet-fed streptozotocin-treated (HFD-STZ) rats, GCCR ASO treatment caused approximately 60% reduction in GCCR expression in the liver and WAT, which was accompanied by a 40-70% decrease in fasted glucose levels and a robust reduction in plasma triglyceride, cholesterol, and free fatty acids. No change in circulating corticosterone levels was seen in any model after GCCR ASO treatment. To further demonstrate that GCCR ASO does not cause systemic GC antagonism, normal Sprague-Dawley rats were challenged with dexamethasone after treating with GCCR ASO. Dexamethasone increased the expression of GC

  8. Downregulation of kinin B1 receptor function by B2 receptor heterodimerization and signaling

    PubMed Central

    Zhang, Xianming; Brovkovych, Viktor; Zhang, Yongkang; Tan, Fulong; Skidgel, Randal A.

    2014-01-01

    Signaling through the G protein-coupled kinin receptors B1 (kB1R) and B2 (kB2R) plays a critical role in inflammatory responses mediated by activation of the kallikrein-kinin system. The kB2R is constitutively expressed and rapidly desensitized in response to agonist whereas kB1R expression is upregulated by inflammatory stimuli and it is resistant to internalization and desensitization. Here we show that the kB1R heterodimerizes with kB2Rs in co-transfected HEK293 cells and natively expressing endothelial cells, resulting in significant internalization and desensitization of the kB1R response in cells pre-treated with kB2R agonist. However, pre-treatment of cells with kB1R agonist did not affect subsequent kB2R responses. Agonists of other G protein-coupled receptors (thrombin, lysophosphatidic acid) had no effect on a subsequent kB1R response. The loss of kB1R response after pretreatment with kB2R agonist was partially reversed with kB2R mutant Y129S, which blocks kB2R signaling without affecting endocytosis, or T342A, which signals like wild type but is not endocytosed. Co-endocytosis of the kB1R with kB2R was dependent on β-arrestin and clathrin-coated pits but not caveolae. The sorting pathway of kB1R and kB2R after endocytosis differed as recycling of kB1R to the cell surface was much slower than that of kB2R. In cytokine-treated human lung microvascular endothelial cells, pre-treatment with kB2R agonist inhibited kB1R-mediated increase in transendothelial electrical resistance (TER) caused by kB1R stimulation (to generate nitric oxide) and blocked the profound drop in TER caused by kB1R activation in the presence of pyrogallol (a superoxide generator). Thus, kB1R function can be downregulated by kB2R co-endocytosis and signaling, suggesting new approaches to control kB1R signaling in pathological conditions. PMID:25289859

  9. Alpha-melanocyte-stimulating hormone down-regulates CXC receptors through activation of neutrophil elastase.

    PubMed

    Manna, Sunil K; Sarkar, Abira; Sreenivasan, Yashin

    2006-03-01

    Considering the role of interleukin-8 (IL-8) in a large number of acute and chronic inflammatory diseases, the regulation of IL-8-mediated biological responses is important. Alpha-melanocyte-stimulating hormone (alpha-MSH), a tridecapeptide, inhibits most forms of inflammation by an unknown mechanism. In the present study, we have found that alpha-MSH interacts predominantly with melanocortin-1 receptors and inhibits several IL-8-induced biological responses in macrophages and neutrophils. It down-regulated receptors for IL-8 but not for TNF, IL-4, IL-13 or TNF-related apoptosis-inducing ligand (TRAIL) in neutrophils. It down-regulated CXCR type 1 and 2 but not mRNA levels. alpha-MSH did not inhibit IL-8 binding in purified cell membrane or affinity-purified CXCR. IL-8 or anti-CXCR Ab protected against alpha-MSH-mediated inhibition of IL-8 binding. The level of neutrophil elastase, a specific serine protease, but not cathepsin G or proteinase 3 increased in alpha-MSH-treated cells, and restoration of CXCR by specific neutrophil elastase or serine protease inhibitors indicates the involvement of elastase in alpha-MSH-induced down-regulation of CXCR. These studies suggest that alpha-MSH inhibits IL-8-mediated biological responses by down-regulating CXCR through induction of serine protease and that alpha-MSH acts as a potent immunomodulator in neutrophil-driven inflammatory distress. PMID:16479540

  10. Mapping amino acids of the measles virus hemagglutinin responsible for receptor (CD46) downregulation.

    PubMed

    Bartz, R; Brinckmann, U; Dunster, L M; Rima, B; Ter Meulen, V; Schneider-Schaulies, J

    1996-10-01

    We compared the amino acid sequences of groups of receptor (CD46) downregulating and nondownregulating measles virus (MV) hemagglutinins (Hs) and identified seven group-specific differences as candidates for the mediation of the observed differential effects. Using site-directed mutagenesis, we mutated the chosen amino acids of the H of MV-strain WTF (WTF-H), a nondownregulating H, and Introduced the corresponding amino acids of Edmonston-H (Edm-H), a downregulating H. We identified four amino acids, 211G, 243R, 451V, and 481Y, which influenced the downregulative function when introduced into WTF-H. The double mutation 451V and 481Y in WTF-H led to a degree of CD46 downregulation comparable to that of Edm-H. Conversely, introducing amino acids 451E and 481N into Edm-H resulted in a loss of the downregulative function. These results indicate that these amino acids play a decisive role in the H-CD46 interaction. PMID:8862431

  11. Activation of farnesoid X receptor downregulates visfatin and attenuates diabetic nephropathy.

    PubMed

    Zhou, Baoshang; Feng, Bing; Qin, Zhexue; Zhao, Youguang; Chen, Yu; Shi, Zhengmin; Gong, Yi; Zhang, Jing; Yuan, Fahuan; Mu, Jiao

    2016-01-01

    Visfatin, a recently discovered adipocytokine, has been shown to have an important role in the pathogenesis of diabetic nephropathy (DN). The farnesoid X receptor (FXR), a ligand-activated nuclear receptor, plays a protective role in DN. The regulation between FXR and visfatin and their interaction in DN has not been well established. In this study, we reported that FXR agonist GW4064 reduced high glucose induced human mesangial cells (HMCs) inflammation, fibrosis and proliferation by downregulating visfatin expression, which can be blunted by exogenous visfatin treatment. Moreover, luciferase reporter assay showed FXR regulated visfatin transcription activity probably by binding to the -1607 bp and -1192 bp region of the visfatin promoter. In vivo study also showed that GW4064 ameliorated the progression of DN in db/db mice with a decreased visfatin expression. These findings suggest that FXR activation delayed the progression of diabetic nephropathy and this effect is through downregulating visfatin. PMID:26450152

  12. Tannic acid down-regulates the angiotensin type 1 receptor through a MAPK-dependent mechanism.

    PubMed

    Yesudas, Rekha; Gumaste, Upendra; Snyder, Russell; Thekkumkara, Thomas

    2012-03-01

    In the present study, we investigated the effects of tannic acid (TA), a hydrolysable polyphenol, on angiotensin type 1 receptor (AT1R) expression in continuously passaged rat liver epithelial cells. Under normal conditions, exposure of cells to TA resulted in the down-regulation of AT1R-specific binding in concentrations ranging from 12.5-100 μg/ml (7.34-58.78 μm) over a time period of 2-24 h with no change in receptor affinity to angiotensin II (AngII). The inhibitory effect of TA on AT1R was specific and reversible. In TA-treated cells, we observed a significant reduction in AngII-mediated intracellular calcium signaling, a finding consistent with receptor down-regulation. Under similar conditions, TA down-regulated AT1R mRNA expression without changing the rate of mRNA degradation, suggesting that TA's effect is mediated through transcriptional inhibition. Cells expressing recombinant AT1R without the native promoter show no change in receptor expression, whereas a pCAT reporter construct possessing the rat AT1R promoter was significantly reduced in activity. Furthermore, TA induced the phosphorylation of MAPK p42/p44. Pretreatment of the cells with a MAPK kinase (MEK)-specific inhibitor PD98059 prevented TA-induced MAPK phosphorylation and down-regulation of the AT1R. Moreover, there was no reduction in AngII-mediated intracellular calcium release upon MEK inhibition, suggesting that TA's observed inhibitory effect is mediated through MEK/MAPK signaling. Our findings demonstrate, for the first time, that TA inhibits AT1R gene expression and cellular response, suggesting the observed protective effects of dietary polyphenols on cardiovascular conditions may be, in part, through inhibition of AT1R expression. PMID:22322600

  13. Role of EGF receptor ligands in TCDD-induced EGFR down-regulation and cellular proliferation.

    PubMed

    Campion, Christina M; Leon Carrion, Sandra; Mamidanna, Gayatri; Sutter, Carrie Hayes; Sutter, Thomas R; Cole, Judith A

    2016-06-25

    In cultures of normal human epidermal keratinocytes (NHEKs), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces the expression of the epidermal growth factor receptor ligands transforming growth factor-α (TGF-α) and epiregulin (EREG). TCDD also down-regulates EGF receptors (EGFR), suggesting that decreases in signaling contribute to the effects of TCDD. In this study, we treated post-confluent NHEKs with 10 nM TCDD and assessed its effects on EGFR binding, EGFR ligand secretion, basal ERK activity, and proliferation. TCDD caused time-dependent deceases in [(125)I]-EGF binding to levels 78% of basal cell values at 72 h. Amphiregulin (AREG) levels increased with time in culture in basal and TCDD-treated cells, while TGF-α and epiregulin (EREG) secretion were stimulated by TCDD. Inhibiting EGFR ligand release with the metalloproteinase inhibitor batimastat prevented EGFR down-regulation and neutralizing antibodies for AREG and EREG relieved receptor down-regulation. In contrast, neutralizing TGF-α intensified EGFR down-regulation. Treating NHEKs with AREG or TGF-α caused rapid internalization of receptors with TGF-α promoting recycling within 90 min. EREG had limited effects on rapid internalization or recycling. TCDD treatment increased ERK activity, a response reduced by batimastat and the neutralization of all three ligands indicating that the EGFR and its ligands maintain ERK activity. All three EGFR ligands were required for the maintenance of total cell number in basal and TCDD-treated cultures. The EGFR inhibitor PD1530305 blocked basal and TCDD-induced increases in the number of cells labeled by 5-ethynyl-2'-deoxyuridine, identifying an EGFR-dependent pool of proliferating cells that is larger in TCDD-treated cultures. Overall, these data indicate that TCDD-induced EGFR down-regulation in NHEKs is caused by AREG, TGF-α, and EREG, while TGF-α enhances receptor recycling to maintain a pool of EGFR at the cell surface. These receptors are required for

  14. Prenatal Stress, Fearfulness, and the Epigenome: Exploratory Analysis of Sex Differences in DNA Methylation of the Glucocorticoid Receptor Gene.

    PubMed

    Ostlund, Brendan D; Conradt, Elisabeth; Crowell, Sheila E; Tyrka, Audrey R; Marsit, Carmen J; Lester, Barry M

    2016-01-01

    Exposure to stress in utero is a risk factor for the development of problem behavior in the offspring, though precise pathways are unknown. We examined whether DNA methylation of the glucocorticoid receptor gene, NR3C1, was associated with experiences of stress by an expectant mother and fearfulness in her infant. Mothers reported on prenatal stress and infant temperament when infants were 5 months old (n = 68). Buccal cells for methylation analysis were collected from each infant. Prenatal stress was not related to infant fearfulness or NR3C1 methylation in the sample as a whole. Exploratory sex-specific analysis revealed a trend-level association between prenatal stress and increased methylation of NR3C1 exon 1F for female, but not male, infants. In addition, increased methylation was significantly associated with greater fearfulness for females. Results suggest an experience-dependent pathway to fearfulness for female infants via epigenetic modification of the glucocorticoid receptor gene. Future studies should examine prenatal stress in a comprehensive fashion while considering sex differences in epigenetic processes underlying infant temperament. PMID:27462209

  15. Effects of Acute Restraint-Induced Stress on Glucocorticoid Receptors and BDNF after Mild Traumatic Brain Injury

    PubMed Central

    Griesbach, Grace S.; Vincelli, Jennifer; Tio, Delia L.; Hovda, David A.

    2012-01-01

    We have previously reported that experimental mild traumatic brain injury results in increased sensitivity to stressful events during the first post injury weeks, as determined by analyzing the hypothalamic-pituitary-adrenal (HPA) axis regulation following restraint-induced stress. This is the same time period when rehabilitative exercise has proven to be ineffective after a mild fluid-percussion injury (FPI). Here we evaluated effects of stress on neuroplasticity. Adult male rats underwent either a FPI or sham injury. Additional rats were only exposed to anesthesia. Rats were exposed to 30-min of restraint stress, followed by tail vein blood collection at post-injury days (PID) 1, 7 and 14. The response to dexamethasone (DEX) was also evaluated. Hippocampal tissue was collected 120 min after stress onset. Brain derived neutrophic factor (BDNF) along with glucocorticoid (GR) and mineralocorticoid (MR) receptors were determined by western blot analysis. Results indicated injury dependent changes in glucocorticoid and mineralocorticoid receptors that were influenced by the presence of dexamethasone. Control and FPI rats responded differentially to DEX in that GR increases after receiving the lower dose of DEX were longer lasting in the FPI group. A suppression of MR was found at PID 1 in vehicle treated FPI and Sham groups. Decreases in the precursor form of BDNF were observed in different FPI groups at PIDs 7 and 14, These findings suggest that the increased sensitivity to stressful events during the first post injury weeks, after a mild FPI, has an impact on hippocampal neuroplasticity. PMID:22445725

  16. Prenatal Stress, Fearfulness, and the Epigenome: Exploratory Analysis of Sex Differences in DNA Methylation of the Glucocorticoid Receptor Gene

    PubMed Central

    Ostlund, Brendan D.; Conradt, Elisabeth; Crowell, Sheila E.; Tyrka, Audrey R.; Marsit, Carmen J.; Lester, Barry M.

    2016-01-01

    Exposure to stress in utero is a risk factor for the development of problem behavior in the offspring, though precise pathways are unknown. We examined whether DNA methylation of the glucocorticoid receptor gene, NR3C1, was associated with experiences of stress by an expectant mother and fearfulness in her infant. Mothers reported on prenatal stress and infant temperament when infants were 5 months old (n = 68). Buccal cells for methylation analysis were collected from each infant. Prenatal stress was not related to infant fearfulness or NR3C1 methylation in the sample as a whole. Exploratory sex-specific analysis revealed a trend-level association between prenatal stress and increased methylation of NR3C1 exon 1F for female, but not male, infants. In addition, increased methylation was significantly associated with greater fearfulness for females. Results suggest an experience-dependent pathway to fearfulness for female infants via epigenetic modification of the glucocorticoid receptor gene. Future studies should examine prenatal stress in a comprehensive fashion while considering sex differences in epigenetic processes underlying infant temperament. PMID:27462209

  17. Glucocorticoid and progestin receptors are differently involved in the cooperation with a structural element of the mouse mammary tumor virus promoter.

    PubMed Central

    Le Ricousse, S; Gouilleux, F; Fortin, D; Joulin, V; Richard-Foy, H

    1996-01-01

    We have previously characterized a regulatory element located between -294 and -200 within the mouse mammary tumor virus (MMTV) long terminal repeat (LTR). This element termed AA element cooperates with the glucocorticoid response elements (GREs) for glucocorticoid activation. Here we show that in a MMTV LTR wild type context, the deletion of this element significantly reduces both glucocorticoid and progestin activation of the promoter. Deletion of the two most distal GREs forces the glucocorticoid receptor (GR) and the progestin receptor (PR) to bind the same response elements and results in a dramatic decrease in the inducibility of the MMTV promoter by the two hormones. The simultaneous deletion of the two distal GREs and of the AA element abolishes completely the glucocorticoid-induced activation of the promoter. In contrast it restores a significant level of progestin-induced activation. This different effect of the double deletion on glucocorticoid- and progestin-induced MMTV promoter activation is not cell specific because it is also observed, and is even stronger, when either GR or PR is expressed in the same cell line (NIH 3T3). This is the first description of a mutated MMTV promoter that, although retaining GREs, is activated by progestins and not by glucocorticoids. This suggests a different functional cooperation between protein(s) interacting with the AA element and GR or PR. Cotransfections with constructs containing wild-type or mutated MMTV LTR with either PR lacking its C-terminal domain or GR/PR chimeras in which the N-terminal domains have been exchanged demonstrate that the N-terminal domains of the receptors specify the different behavior of GR and PR regarding the AA element. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8643531

  18. PDE4 inhibitors augment levels of glucocorticoid receptor in B cell chronic lymphocytic leukemia but not in normal circulating hematopoietic cells

    PubMed Central

    Meyers, John A.; Taverna, Josephine; Chaves, Jorge; Makkinje, Anthony; Lerner, Adam

    2009-01-01

    Purpose Type 4 cAMP phosphodiesterase (PDE4) inhibitors, compounds that activate cAMP-mediated signaling by inhibiting cAMP catabolism, potentiate glucocorticoid-mediated apoptosis in chronic lymphocytic leukemia (CLL) cells but the mechanism by which this occurs is unknown. In this study, we sought to address whether PDE4 inhibitors alter expression of glucocorticoid receptor (GRα) in CLL cells. Experimental Design CLL cells or normal hematopoietic cells were treated with PDE4 inhibitors followed by analysis of GRα transcript and protein by real-time PCR and Western analysis. Results PDE4 inhibitors up-regulate glucocorticoid receptor transcript levels in CLL cells but not normal circulating T cells, B cells, monocytes or neutrophils. As GRα transcript half-life does not vary in CLL cells treated with the prototypic PDE4 inhibitor rolipram, the four-fold increase in GRα mRNA levels observed within four hours of rolipram treatment appears to result from an increase in transcription. Rolipram treatment increases levels of transcripts derived from the 1A3 promoter to a greater extent than the 1B promoter. Treatment of CLL cells with cilomilast and roflumilast, two PDE4 inhibitors previously studied in clinical trials also augments GRα transcript levels and glucocorticoid-mediated apoptosis. Washout studies demonstrate that simultaneous treatment with both drug classes irreversibly augments apoptosis over the same time frame that glucocorticoid receptor up-regulation occurs. While treatment of CLL cells with glucocorticoids reduces basal GRα transcript levels in a dose-related manner, co-treatment with rolipram maintained GRα transcript levels above baseline. Conclusion Our results suggest that PDE4 inhibitors may sensitize CLL cells to glucocorticoid-induced apoptosis by augmenting GRα expression. PMID:17699872

  19. Effects of a Glucocorticoid Receptor Agonist, Dexamethasone, on Fathead Minnow Reproduction and Development

    EPA Science Inventory

    Few studies have examined the effects of synthetic glucocorticoids on the reproductive axis of fish, despite the fact that these chemicals are therapeutically prescribed anti-inflammatory agents that are abundantly produced and consumed. To generate data to assess potential risk ...

  20. Effects of a Glucocorticoid Receptor Agonist, Dexamethasone, on Fathead Minnow Reproduction, Growth, and Development.

    EPA Science Inventory

    Few studies have examined the effects of synthetic glucocorticoids on the reproductive axis of fish, despite the fact that these chemicals are therapeutically prescribed anti-inflammatory agents that are abundantly produced and consumed. To generate data to assess potential risk ...

  1. Development of an exchange assay for cytosolic glucocorticoid receptors using the synergistic effects of molybdate plus dithiothreitol

    SciTech Connect

    Kalimi, M.; Hubbard, J.R.

    1983-09-01

    A glucocorticoid receptor exchange assay has been developed for the accurate quantification of both free and steroid-bound receptors in rat liver cytosol. Hepatic cytosol from adrenalectomized rats was saturated in vitro with unlabeled corticosterone. Cytosol was subsequently treated with (/sup 3/H)dexamethasone (with and without 1000-fold cold dexamethasone) for 2-28 h at 4 C in the presence of 10 mM molybdate plus 5 mM dithiothreitol (DTT). Complete exchange occurred between 16-28 h in the presence of molybdate plus DTT. In control and 10 mM molybdate (alone) treated samples only about 50% exchange was achieved. In the presence of 5 mM DTT (alone) approximately 60-70% exchange was observed. The exchange assay (utilizing molybdate plus DTT) was also applied to hepatic cytosol of adrenalectomized rats injected with corticosterone in vivo and to samples prebound with unlabeled dexamethasone.

  2. Inhibition of the production of mediators of inflammation by corticosteroids is a glucocorticoid receptor-mediated process

    PubMed Central

    Dijk, A. P. M. van; Tak, C. J. A. M.; Wilson, J. H. P.; Zijlstra, F. J.

    1996-01-01

    In order to find an explanation for corticosteroid resistance we assessed whether inhibition by dexamethasone (DEX) of the stimulated production of TNF-∝, IL-6, PGE2 and LTB4 by peripheral blood mononuclear cells (MNC) depends on binding to the glucocorticoid receptor (GR), and whether it is determined by the number or the affinity of the GR of these cells. GR number and affinity of MNC were determined by means of a whole cell DEX binding assay. MNC were incubated with DEX and LPS or A23187 in the absence or presence of RU486, a potent steroid antagonist. DEX caused a concentration dependent inhibition of TNF-∝, IL-6 and PGE2 production but had no effect on LTB4 production. RU486 significantly blocked the effect of DEX, but no correlations were found between the inhibition of mediator release and the Kd or receptor number. PMID:18475705

  3. Increased lung prolyl hydroxylase and decreased glucocorticoid receptor are related to decreased surfactant protein in the growth-restricted sheep fetus.

    PubMed

    Orgeig, Sandra; McGillick, Erin V; Botting, Kimberley J; Zhang, Song; McMillen, I Caroline; Morrison, Janna L

    2015-07-01

    Experimental placental restriction (PR) by carunclectomy in fetal sheep results in intrauterine growth restriction (IUGR), chronic hypoxemia, increased plasma cortisol, and decreased lung surfactant protein (SP) expression. The mechanisms responsible for decreased SP expression are unknown but may involve decreased glucocorticoid (GC) action or changes in hypoxia signaling. Endometrial caruncles were removed from nonpregnant ewes to induce PR. Lungs were collected from control and PR fetuses at 130-135 (n = 19) and 139-145 (n = 28) days of gestation. qRT-PCR and Western blotting were used to quantify lung mRNA and protein expression, respectively, of molecular regulators and downstream targets of the GC and hypoxia-signaling pathways. We confirmed a decrease in SP-A, -B, and -C, but not SP-D, mRNA expression in PR fetuses at both ages. There was a net downregulation of GC signaling with a reduction in GC receptor (GR)-α and -β protein expression and a decrease in the cofactor, GATA-6. GC-responsive genes including transforming growth factor-β1, IL-1β, and β2-adrenergic receptor were not stimulated. Prolyl hydroxylase domain (PHD)2 mRNA and protein and PHD3 mRNA expression increased with a concomitant increase in hypoxia-inducible factor-1α (HIF-1α) and HIF-1β mRNA expression. There was an increase in mRNA expression of several, but not all, hypoxia-responsive genes. Hence, both GC and hypoxia signaling may contribute to reduced SP expression. Although acute hypoxia normally inactivates PHDs, chronic hypoxemia in the PR fetus increased PHD abundance, which normally prevents HIF signaling. This may represent a mechanism by which chronic hypoxemia contributes to the decrease in SP production in the IUGR fetal lung. PMID:25934670

  4. Estrogen impairs glucocorticoid dependent negative feedback on the hypothalamic-pituitary-adrenal axis via estrogen receptor alpha within the hypothalamus.

    PubMed

    Weiser, M J; Handa, R J

    2009-03-17

    Numerous studies have established a link between individuals with affective disorders and a dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, most notably characterized by a reduced sensitivity to glucocorticoid negative (-) feedback. Furthermore there is a sex difference in the etiology of mood disorders with incidence in females being two to three times that of males, an association that may be a result of the influence of estradiol (E2) on HPA axis function. In these studies, we have examined the effect of E2 on glucocorticoid-mediated HPA axis (-) feedback during both the diurnal peak and the stress-induced rise in corticosterone (CORT). Young adult female Sprague-Dawley (SD) rats were ovariectomized (OVX) and 1 week later treated subcutaneous (s.c.) with oil or estradiol benzoate (EB) for 4 days. On the 4th day of treatment, animals were injected with a single dose of dexamethasone (DEX), or vehicle. EB treatment significantly increased the evening elevation in CORT and the stress-induced rise in CORT. In contrast, DEX treatment reduced the diurnal and stress induced rise in CORT and adrenocorticotropic hormone (ACTH), and this reduction was not apparent following co-treatment with EB. To determine a potential site of E2's action, female SD rats were OVX and 1 week later, wax pellets containing E2, the estrogen receptor beta (ERbeta) agonist diarylpropionitrile (DPN), or the estrogen receptor alpha (ERalpha) agonist propylpyrazoletriol (PPT), was implanted bilaterally and dorsal to the paraventricular nucleus of the hypothalamus (PVN). Seven days later, animals were injected s.c. with a single dose of DEX, or vehicle to test for glucocorticoid-dependent (-) feedback. Results show that E2 and PPT increased, while DPN decreased the diurnal peak and stress-induced CORT and ACTH levels as compared to controls. Furthermore, E2 and PPT impaired the ability of DEX to inhibit both the diurnal and the stress-induced rise in CORT and ACTH, whereas DPN had

  5. The pro-apoptotic protein death-associated protein 3 (DAP3) interacts with the glucocorticoid receptor and affects the receptor function.

    PubMed Central

    Hulkko, S M; Wakui, H; Zilliacus, J

    2000-01-01

    The yeast two-hybrid system was used to isolate cDNAs encoding proteins that interact with the glucocorticoid receptor (GR) ligand-binding domain in a ligand-dependent manner. One isolated cDNA encoded a fragment of death-associated protein 3 (DAP3), which has been implicated as a positive mediator of apoptosis. In vitro experiments showed that the full-length DAP3 also interacted with GR. The main interaction domain was mapped to the N-terminal region of DAP3 that had previously been shown to function in a dominant-negative fashion, protecting cells from apoptosis. Co-transfection experiments in COS-7 cells showed that DAP3 had a stimulatory effect on the ligand-induced transcriptional activation by GR and also increased the steroid-sensitivity. Furthermore, DAP3 formed a complex with several other nuclear receptors and some basic helix-loop-helix/Per-Arnt-Sim proteins, as well as with heat-shock protein 90 (hsp90) (Arnt is the aryl-hydrocarbon-receptor nuclear translocator, and Per and Sim are the Drosophila proteins Period and Single-minded). The results suggest that DAP3 could have an important role in GR action, possibly by modulating the cytoplasmic GR-hsp90 complex. Since glucocorticoids can induce apoptosis, the pro-apoptotic DAP3 protein may be involved in this function of GR. PMID:10903152

  6. The pro-apoptotic protein death-associated protein 3 (DAP3) interacts with the glucocorticoid receptor and affects the receptor function.

    PubMed

    Hulkko, S M; Wakui, H; Zilliacus, J

    2000-08-01

    The yeast two-hybrid system was used to isolate cDNAs encoding proteins that interact with the glucocorticoid receptor (GR) ligand-binding domain in a ligand-dependent manner. One isolated cDNA encoded a fragment of death-associated protein 3 (DAP3), which has been implicated as a positive mediator of apoptosis. In vitro experiments showed that the full-length DAP3 also interacted with GR. The main interaction domain was mapped to the N-terminal region of DAP3 that had previously been shown to function in a dominant-negative fashion, protecting cells from apoptosis. Co-transfection experiments in COS-7 cells showed that DAP3 had a stimulatory effect on the ligand-induced transcriptional activation by GR and also increased the steroid-sensitivity. Furthermore, DAP3 formed a complex with several other nuclear receptors and some basic helix-loop-helix/Per-Arnt-Sim proteins, as well as with heat-shock protein 90 (hsp90) (Arnt is the aryl-hydrocarbon-receptor nuclear translocator, and Per and Sim are the Drosophila proteins Period and Single-minded). The results suggest that DAP3 could have an important role in GR action, possibly by modulating the cytoplasmic GR-hsp90 complex. Since glucocorticoids can induce apoptosis, the pro-apoptotic DAP3 protein may be involved in this function of GR. PMID:10903152

  7. Direct stoichiometric evidence that the untransformed M sub r 300,000, 9S, glucocorticoid receptor is a core unit derived from a larger heteromeric complex

    SciTech Connect

    Bresnick, E.H.; Dalman, F.C.; Pratt, W.B. )

    1990-01-16

    The authors have used three methods to measure the stoichiometry of the glucocorticoid receptor and the 90-kDa heat shock protein (hsp90) in L-cell glucocorticoid receptor complexes that were purified by immunoadsorption to protein A-sepharose with an anti-receptor monoclonal antibody, followed by a minimal washing procedure that permits retention of receptor-associated protein. In two of the methods, receptor was quantitated by radioligand binding, and receptor-specific hsp90 was quantitated against a standard curve of purified hsp90, either on Coomassie blue stained SDS gels by laser densitometry or on Western blots by quantitative immunoblotting with {sup 125}I-labeled counterantibody. The stoichiometry values obtained by densitometry and immunoblotting are 7 and 6 mol of hsp90/mol of receptor, respectively. In a third method, which detects total receptor protein rather than just steroid-bound receptor, the ratio of hsp90 to receptor was determined by immunopurifying receptor complexes from ({sup 35}S)methionine-labeled L cells, and the amount of {sup 35}S incorporated into receptor and hsp90 was corrected for the established methionine content of the respective proteins. These observations lead to the conclusion that the untransformed L-cell glucocorticoid receptor exists in cytosol in a much larger heteromeric complex than considered to date. The authors propose that the 9S receptor form that is commonly observed by density gradient centrifugation, and by gel filtration chromatography, must be a core unit containing two hsp90 and one GR which is derived from this larger structure.

  8. Temporal variability of glucocorticoid receptor activity is functionally important for the therapeutic action of fluoxetine in the hippocampus.

    PubMed

    Lee, M-S; Kim, Y-H; Park, W-S; Park, O-K; Kwon, S-H; Hong, K S; Rhim, H; Shim, I; Morita, K; Wong, D L; Patel, P D; Lyons, D M; Schatzberg, A F; Her, S

    2016-02-01

    Previous studies have shown inconsistent results regarding the actions of antidepressants on glucocorticoid receptor (GR) signalling. To resolve these inconsistencies, we used a lentiviral-based reporter system to directly monitor rat hippocampal GR activity during stress adaptation. Temporal GR activation was induced significantly by acute stress, as demonstrated by an increase in the intra-individual variability of the acute stress group compared with the variability of the non-stress group. However, the increased intra-individual variability was dampened by exposure to chronic stress, which was partly restored by fluoxetine treatment without affecting glucocorticoid secretion. Immobility in the forced-swim test was negatively correlated with the intra-individual variability, but was not correlated with the quantitative GR activity during fluoxetine therapy; this highlights the temporal variability in the neurobiological links between GR signalling and the therapeutic action of fluoxetine. Furthermore, we demonstrated sequential phosphorylation between GR (S224) and (S232) following fluoxetine treatment, showing a molecular basis for hormone-independent nuclear translocation and transcriptional enhancement. Collectively, these results suggest a neurobiological mechanism by which fluoxetine treatment confers resilience to the chronic stress-mediated attenuation of hypothalamic-pituitary-adrenal axis activity. PMID:25330740

  9. Rapid Activation of Glucocorticoid Receptors in the Prefrontal Cortex Mediates the Expression of Contextual Conditioned Fear in Rats.

    PubMed

    Reis, Fernando M C V; Almada, Rafael C; Fogaça, Manoela V; Brandão, Marcus L

    2016-06-01

    The aim of the present study was to investigate the role of glucocorticoids in medial prefrontal cortex (mPFC) activity and the expression of contextual conditioned fear (freezing). Rats were pretreated with vehicle or metyrapone, a corticosterone synthesis blocker, and exposed to a context previously paired with footshocks. Freezing and Fos-protein expression in different mPFC regions were assessed. Exposure to the aversive context led to increased freezing and Fos expression in the prelimbic (PrL), anterior cingulate areas 1 and 2 (Cg1/Cg2). Pretreatment with metyrapone decreased freezing and Fos expression in these areas. Administration of spironolactone, an MR antagonist, in the PrL before the test decreased freezing. Pretreatment with RU38486, a glucocorticoid receptor (GR) antagonist, reduced this effect of spironolactone, suggesting that the effects of this MR antagonist may be attributable to a redirection of endogenous corticosterone actions to GRs. Consistent with this result, the decrease in freezing that was induced by intra-PrL injections of corticosterone was attenuated by pretreatment with RU38486 but not spironolactone. These findings indicate that corticosterone release during aversive conditioning influences mPFC activity and the retrieval of conditioned fear memory indicating the importance of balance between MR:GR-mediated effects in this brain region in this process. PMID:25976757

  10. The Cochaperone SGTA (Small Glutamine-rich Tetratricopeptide Repeat-containing Protein Alpha) Demonstrates Regulatory Specificity for the Androgen, Glucocorticoid, and Progesterone Receptors*

    PubMed Central

    Paul, Atanu; Garcia, Yenni A.; Zierer, Bettina; Patwardhan, Chaitanya; Gutierrez, Omar; Hildenbrand, Zacariah; Harris, Diondra C.; Balsiger, Heather A.; Sivils, Jeffrey C.; Johnson, Jill L.; Buchner, Johannes; Chadli, Ahmed; Cox, Marc B.

    2014-01-01

    Steroid hormone receptors are ligand-dependent transcription factors that require the ordered assembly of multichaperone complexes for transcriptional activity. Although heat shock protein (Hsp) 90 and Hsp70 are key players in this process, multiple Hsp70- and Hsp90-associated cochaperones associate with receptor-chaperone complexes to regulate receptor folding and activation. Small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA) was recently characterized as an Hsp70 and Hsp90-associated cochaperone that specifically regulates androgen receptor activity. However, the specificity of SGTA for additional members of the steroid hormone receptor superfamily and the mechanism by which SGTA regulates receptor activity remain unclear. Here we report that SGTA associates with and specifically regulates the androgen, glucocorticoid, and progesterone receptors and has no effect on the mineralocorticoid and estrogen receptors in both yeast and mammalian cell-based reporter assays. In both systems, SGTA knockdown/deletion enhances receptor activity, whereas SGTA overexpression suppresses receptor activity. We demonstrate that SGTA binds directly to Hsp70 and Hsp90 in vitro with similar affinities yet predominately precipitates with Hsp70 from cell lysates, suggesting a role for SGTA in early, Hsp70-mediated folding. Furthermore, SGTA expression completely abrogates the regulation of receptor function by FKBP52 (52-kDa FK506-binding protein), which acts at a later stage of the chaperone cycle. Taken together, our data suggest a role for SGTA at distinct steps in the chaperone-dependent modulation of androgen, glucocorticoid, and progesterone receptor activity. PMID:24753260

  11. Can Selective MHC Downregulation Explain the Specificity and Genetic Diversity of NK Cell Receptors?

    PubMed Central

    Carrillo-Bustamante, Paola; Kesmir, Can; de Boer, Rob J.

    2015-01-01

    Natural killer (NK) cells express inhibiting receptors (iNKRs), which specifically bind MHC-I molecules on the surface of healthy cells. When the expression of MHC-I on the cell surface decreases, which might occur during certain viral infections and cancer, iNKRs lose inhibiting signals and the infected cells become target for NK cell activation (missing-self detection). Although the detection of MHC-I deficient cells can be achieved by conserved receptor-ligand interactions, several iNKRs are encoded by gene families with a remarkable genetic diversity, containing many haplotypes varying in gene content and allelic polymorphism. So far, the biological function of this expansion within the NKR cluster has remained poorly understood. Here, we investigate whether the evolution of diverse iNKRs genes can be driven by a specific viral immunoevasive mechanism: selective MHC downregulation. Several viruses, including EBV, CMV, and HIV, decrease the expression of MHC-I to escape from T cell responses. This downregulation does not always affect all MHC loci in the same way, as viruses target particular MHC molecules. To study the selection pressure of selective MHC downregulation on iNKRs, we have developed an agent-based model simulating an evolutionary scenario of hosts infected with herpes-like viruses, which are able to selectively downregulate the expression of MHC-I molecules on the cell surface. We show that iNKRs evolve specificity and, depending on the similarity of MHC alleles within each locus and the differences between the loci, they can specialize to a particular MHC-I locus. The easier it is to classify an MHC allele to its locus, the lower the required diversity of the NKRs. Thus, the diversification of the iNKR cluster depends on the locus specific MHC structure. PMID:26136746

  12. Molecular docking and 3D-QSAR studies on the glucocorticoid receptor antagonistic activity of hydroxylated polychlorinated biphenyls.

    PubMed

    Liu, S; Luo, Y; Fu, J; Zhou, J; Kyzas, G Z

    2016-02-01

    The glucocorticoid receptor (GR) antagonistic activities of hydroxylated polychlorinated biphenyls (HO-PCBs) were recently characterised. To further explore the interactions between HO-PCBs and the GR, and to elucidate structural characteristics that influence the GR antagonistic activity of HO-PCBs, molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed. Comparative molecular similarity indices analysis (CoMSIA) was performed using both ligand- and receptor-based alignment schemes. Results generated from the receptor-based model were found to be more satisfactory, with q(2) of 0.632 and r(2) of 0.931 compared with those from the ligand-based model. Some internal validation strategies (e.g. cross-validation analysis, bootstrapping analysis and Y-randomisation) and an external validation method were used respectively to further assess the stability and predictive ability of the derived model. Graphical interpretation of the model provided some insights into the structural features that affected the GR antagonistic activity of HO-PCBs. Molecular docking studies revealed that some key residues were critical for ligand-receptor interactions by forming hydrogen bonds (Glu540) and hydrophobic interactions with ligands (Ile539, Val543 and Trp577). Although CoMSIA sometimes depends on the alignment of the molecules, the information provided is beneficial for predicting the GR antagonistic activities of HO-PCB homologues and is helpful for understanding the binding mechanisms of HO-PCBs to GR. PMID:26848875

  13. Glucocorticoid-dependent induction of interleukin-6 receptor expression in human hepatocytes facilitates interleukin-6 stimulation of amino acid transport.

    PubMed Central

    Fischer, C P; Bode, B P; Takahashi, K; Tanabe, K K; Souba, W W

    1996-01-01

    OBJECTIVE: The authors studied the effects of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) on glutamine and alanine transport in isolated human hepatocytes. They also evaluated the role of dexamethasone in modulating this response and its effects on the expression of the plasma membrane high-affinity IL-6 receptor. SUMMARY BACKGROUND DATA: Animal studies indicate that cytokines are important mediators of the increased hepatic amino acid uptake that occurs during cancer and sepsis, but studies in human tissues are lacking. The control of transport by cytokines and cytokine receptor expression in the liver may provide a mechanism by which hepatocytes can modulate amino acid availability during catabolic disease states. METHODS: Human hepatocytes were isolated from wedge biopsy specimens and plated in 24-well trays. Interleukin-6 and TNF-alpha, in combination with the synthetic glucocorticoid dexamethasone, were added to hepatocytes in culture, and the transport of radiolabeled glutamine and alanine was measured. Fluorescent-activated cell sorter (FACS) analysis was used to study the effects of dexamethasone on IL-6 receptor number in the well-differentiated human hepatoma HepG2. RESULTS: Both IL-6 and TNF-alpha exerted a small stimulatory effect on alanine and glutamine transport. Dexamethasone alone did not alter transport rates, but pretreatment of cells augmented the effects of both cytokines on carrier-mediated amino acid uptake. Dexamethasone pretreatment and a combination of IL-6 and TNF-alpha resulted in a greater than twofold increase in transport activity. Fluorescent-activated cell sorter analysis demonstrated that dexamethasone induced a threefold increase in the expression of high-affinity IL-6 receptors. CONCLUSIONS: Interleukin-6 and TNF-alpha work coordinately with glucocorticoids to stimulate amino acid uptake in human hepatocytes. Dexamethasone exerts a permissive effect on cytokine-mediated increases in transport by increasing IL

  14. Density enhanced phosphatase-1 down-regulates urokinase receptor surface expression in confluent endothelial cells

    PubMed Central

    Brunner, Patrick M.; Heier, Patricia C.; Mihaly-Bison, Judit; Priglinger, Ute; Binder, Bernd R.

    2011-01-01

    VEGF165, the major angiogenic growth factor, is known to activate various steps in proangiogenic endothelial cell behavior, such as endothelial cell migration and invasion, or endothelial cell survival. Thereby, the urokinase-type plasminogen activator (uPA) system has been shown to play an essential role not only by its proteolytic capacities, but also by induction of intracellular signal transduction. Therefore, expression of its cell surface receptor uPAR is thought to be an essential regulatory mechanism in angiogenesis. We found that uPAR expression on the surface of confluent endothelial cells was down-regulated compared with subconfluent proliferating endothelial cells. Regulation of uPAR expression was most probably affected by extracellular signal-regulated kinase 1/2 (ERK1/2) activation, a downstream signaling event of the VEGF/VEGF-receptor system. Consistently, the receptor-like protein tyrosine phosphatase DEP-1 (density enhanced phosphatase-1/CD148), which is abundantly expressed in confluent endothelial cells, inhibited the VEGF-dependent activation of ERK1/2, leading to down-regulation of uPAR expression. Overexpression of active ERK1 rescued the DEP-1 effect on uPAR. That DEP-1 plays a biologic role in angiogenic endothelial cell behavior was demonstrated in endothelial cell migration, proliferation, and capillary-like tube formation assays in vitro. PMID:21304107

  15. Indole Glucocorticoid Receptor Antagonists Active in a Model of Dyslipidemia Act via a Unique Association with an Agonist Binding Site.

    PubMed

    Luz, John G; Carson, Matthew W; Condon, Bradley; Clawson, David; Pustilnik, Anna; Kohlman, Daniel T; Barr, Robert J; Bean, James S; Dill, M Joelle; Sindelar, Dana K; Maletic, Milan; Coghlan, Michael J

    2015-08-27

    To further elucidate the structural activity correlation of glucocorticoid receptor (GR) antagonism, the crystal structure of the GR ligand-binding domain (GR LBD) complex with a nonsteroidal antagonist, compound 8, was determined. This novel indole sulfonamide shows in vitro activity comparable to known GR antagonists such as mifepristone, and notably, this molecule lowers LDL (-74%) and raises HDL (+73%) in a hamster model of dyslipidemia. This is the first reported crystal structure of the GR LBD bound to a nonsteroidal antagonist, and this article provides additional elements for the design and pharmacology of clinically relevant nonsteroidal GR antagonists that may have greater selectivity and fewer side effects than their steroidal counterparts. PMID:26218343

  16. Investigation on critical structural motifs of ligands for triggering glucocorticoid receptor nuclear migration through molecular docking simulations.

    PubMed

    Liu, Ya-Lin; Jang, Soonmin; Wang, Shih-Min; Chen, Chiu-Hao; Li, Feng-Yin

    2016-06-01

    The glucocorticoid receptor (GR), a transcription factor regulating gene expression in a ligand-dependent fashion, is known for flexibility in adapting various ligands with their structures ranging from steroid to non-steroid. However, in our previous study, GR shows a stringent discrimination against a set of steroid ligands with highly similar structures for triggering its nuclear migration. In order to resolve this puzzle, we employed molecular docking simulations to investigate the origin of this structural discrimination. By analyzing the docking orientations and the related ligand-GR interaction patterns, we found that the hydrophilicity mismatch between the docking ligand and the GR ligand-binding site is the main cause combined with the steric hindrance and structural rigidness of these steroid ligands. Furthermore, we utilized this knowledge to rationalize how the structure-binding interaction of non-steroid ligands triggers GR nuclear migration with their structures available in Protein Data Bank. PMID:26198481

  17. Novel synthesis of the hexahydroimidazo[1,5b]isoquinoline scaffold: application to the synthesis of glucocorticoid receptor modulators.

    PubMed

    Xiao, Hai-Yun; Wu, Dauh-Rurng; Malley, Mary F; Gougoutas, Jack Z; Habte, Sium F; Cunningham, Mark D; Somerville, John E; Dodd, John H; Barrish, Joel C; Nadler, Steven G; Dhar, T G Murali

    2010-02-11

    The first stereoselective synthesis of the hexahydroimidazo[1,5b]isoquinoline (HHII) scaffold as a surrogate for the steroidal A-B ring system is described. The structure-activity relationships of the analogs derived from this scaffold show that the basic imidazole moiety is tolerated by the glucocorticoid receptor (GR) in terms of binding affinity, although the partial agonist activity in the transrepressive assays depends on the substitution pattern on the B-ring. More importantly, most compounds in the HHII series bearing a tertiary alcohol moiety on the B-ring are either inactive or significantly less active in inducing GR-mediated transactivation, thus displaying a "dissociated" pharmacology in vitro. PMID:20047280

  18. Chronic ethanol administration downregulates neurotensin receptors in long- and short-sleep mice.

    PubMed

    Campbell, A D; Erwin, V G

    1993-05-01

    Neurotensin (NT) has been shown to differentially alter many of the physiologic responses to ethanol administration in long-sleep (LS) and short-sleep (SS) mice, which were selectively bred for differences in hypnotic sensitivity to ethanol. These mice have been shown to differ in NT receptor densities in cortical and mesolimbic brain regions and it has been suggested that ethanol actions may be mediated, in part, by neurotensinergic processes. The present study was conducted to further examine this hypothesis by determining the effects of acute and chronic ethanol administration on NT receptor systems in these mice. Scatchard analysis of [3H]NT binding in brain membranes from mice chronically treated with ethanol yielded a one-site model, whereas binding in membranes from control mice were best described by a two-site model. Values for binding capacity (Bmax) were significantly reduced in several brain regions, and binding site density for total, levocabastine-sensitive, and levocabastine-insensitive binding sites were also reduced. The maximum effect was seen after 2 weeks of chronic ethanol consumption. Three weeks after withdrawal from ethanol, Kd and Bmax had returned to control values. Similarly, binding density in all regions for total, levocabastine-sensitive, and levocabastine-insensitive sites had returned to control values within 2 weeks. NT receptor characteristics measured 2 h post-3.0 g/kg ethanol revealed that ethanol caused a rapid downregulation of both subtypes of NT receptors. The finding that both acute and chronic ethanol significantly downregulate the neurotensin receptor systems further supports the hypothesis that ethanol's actions may be mediated in part by neurotensinergic systems. PMID:8100076

  19. Role of the low-affinity glucocorticoid receptor in the regulation of behavior and energy metabolism in the migratory red knot Calidris canutus islandica.

    PubMed

    Landys, Meta M; Piersma, Theunis; Ramenofsky, Marilyn; Wingfield, John C

    2004-01-01

    Plasma corticosterone increases in association with migratory flight in the red knot Calidris canutus islandica, suggesting that corticosterone may promote migratory activity and/or energy mobilization in this species. This hypothesis is supported by general effects of glucocorticoids, which include stimulation of locomotion and the mobilization of energy depots. We experimentally examined the role of elevated corticosterone levels in the migratory red knot by comparing foraging behavior, flight frequency, and plasma metabolites between vehicle-injected controls and birds treated with RU486, an antagonist to the genomic low-affinity glucocorticoid receptor (GR). We predicted that RU486 treatment would interfere with energy mobilization. However, we expected no effects on flight activity because recent studies suggest that glucocorticoids affect locomotion through a nongenomic receptor. Finally, because glucocorticoids exert permissive effects on food intake, we postulated that RU486 treatment in the red knot would interfere with feeding. Results were consistent with the latter prediction, suggesting that the GR participates in the promotion of hyperphagia, the intense feeding state that is characteristic of the migratory condition. RU486 treatment did not affect flight frequency, suggesting that corticosterone may support migratory activity through a receptor other than the GR. Energy metabolism (as determined through plasma metabolites) was also unaffected by RU486, possibly because energetic demands experienced by captive birds were low. PMID:15449237

  20. AMPA receptors serum-dependently mediate GABAA receptor alpha1 and alpha6 subunit down-regulation in cultured mouse cerebellar granule cells.

    PubMed

    Uusi-Oukari, Mikko; Kontturi, Leena-Stiina; Kallinen, Sampsa A; Salonen, Virpi

    2010-04-01

    Depolarization of cultured mouse cerebellar granule cells with potassium or kainate results in developmentally arrested state that includes down-regulation of GABA(A) receptor alpha1, alpha6 and beta2 subunit expression. These subunits are normally strongly expressed in cerebellar granule cells from second postnatal week throughout the adulthood. In the present study we demonstrate that selective activation of AMPA subtype of glutamate receptors down-regulates alpha1 and alpha6 subunit mRNA expression. Removal of AMPA agonist from culture medium restores expression of these subunits indicating reversibility of the down-regulation. In serum-free culture medium AMPA receptor activation did not down-regulate alpha1 or alpha6 subunit expression. Furthermore, the down-regulation was strongly attenuated when the cells were cultured in the presence of dialysed fetal calf serum. The results indicate that down-regulation of GABA(A) receptor alpha1 and alpha6 subunits by AMPA receptor activation is dependent on the presence of low molecular weight compounds present in fetal calf serum. In order to study mouse cerebellar granule cell maturation and/or regulation of GABA(A) receptor subunit expression in culture, the experiments should be performed in the absence of fetal calf serum. PMID:20170697

  1. Identification of cysteine-644 as the covalent site of attachment of dexamethasone 21-mesylate to murine glucocorticoid receptors in WEHI-7 cells

    SciTech Connect

    Smith, L.I.; Bodwell, J.E.; Mendel, D.B.; Ciardelli, T.; North, W.G.; Munck, A.

    1988-05-17

    Dexamethasone 21-mesylate is a highly specific synthetic glucocorticoid derivative that binds covalently to glucocorticoid receptors via sulfhydryl groups. The authors have identified the amino acid that reacts with the dexamethasone 21-mesylate by using enzymatic digestion and microsequencing for radiolabel. Nonactivated glucocorticoid receptors obtained from labeling intact WEHI-7 mouse thymoma cells with (/sup 3/H)dexamethasone 21-mesylate were immunopurified and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Trypsin digestion followed by reversed-phase high-performance liquid chromatography (reversed-phase HPLC) produced a single (/sup 3/H)dexamethasone 21-mesylate labeled peptide. Automated Edman degradation of this peptide revealed that the (/sup 3/H)dexamethasone 21-mesylate was located at position 5 from the amino terminus. Dual-isotope labeling studies with (/sup 3/H)dexamethasone 21-mesylate and (/sup 35/S)methionine demonstrated that this peptide contained methionine. Staphylococcus aureus V8 protease digestion of (/sup 3/H)dexamethasone 21-mesylate labeled steroid-binding subunits generated a different radiolabeled peptide containing label at position 7 from the amino terminus. On the basis of the published amino acid sequence of the murine glucocorticoid receptor, their data clearly identify cysteine-644 as the single residue in the steroid-binding domain that covalently binds dexamethasone 21-mesylate. They have confirmed this finding by demonstrating that a synthetic peptide representing the amino acid sequence 640-650 of the murine glucocorticoid receptor behaves in an identical manner on reversed-phase HPLC as the trypsin-generated peptide from intact cells.

  2. Dopamine D2-Receptor Antagonists Down-Regulate CYP1A1/2 and CYP1B1 in the Rat Liver

    PubMed Central

    Harkitis, P.; Lang, M. A.; Marselos, M.; Fotopoulos, A.; Albucharali, G.; Konstandi, M.

    2015-01-01

    Dopaminergic systems regulate the release of several hormones including growth hormone (GH), thyroid hormones, insulin, glucocorticoids and prolactin (PRL) that play significant roles in the regulation of various Cytochrome P450 (CYP) enzymes. The present study investigated the role of dopamine D2-receptor-linked pathways in the regulation of CYP1A1, CYP1A2 and CYP1B1 that belong to a battery of genes controlled by the Aryl Hydrocarbon Receptor (AhR) and play a crucial role in the metabolism and toxicity of numerous environmental toxicants. Inhibition of dopamine D2-receptors with sulpiride (SULP) significantly repressed the constitutive and benzo[a]pyrene (B[a]P)-induced CYP1A1, CYP1A2 and CYP1B expression in the rat liver. The expression of AhR, heat shock protein 90 (HSP90) and AhR nuclear translocator (ARNT) was suppressed by SULP in B[a]P-treated livers, whereas the AhRR expression was increased by the drug suggesting that the SULP-mediated repression of the CYP1 inducibility is due to inactivation of the AhR regulatory system. At signal transduction level, the D2-mediated down-regulation of constitutive CYP1A1/2 and CYP1B1 expression appears to be mediated by activation of the insulin/PI3K/AKT pathway. PRL-linked pathways exerting a negative control on various CYPs, and inactivation of the glucocorticoid-linked pathways that positively control the AhR-regulated CYP1 genes, may also participate in the SULP-mediated repression of both, the constitutive and induced CYP1 expression. The present findings indicate that drugs acting as D2-dopamine receptor antagonists can modify several hormone systems that regulate the expression of CYP1A1, CYP1A2 and CYP1B1, and may affect the toxicity and carcinogenicity outcome of numerous toxicants and pre-carcinogenic substances. Therefore, these drugs could be considered as a part of the strategy to reduce the risk of exposure to environmental pollutants and pre-carcinogens. PMID:26466350

  3. The interchange of immunophilins leads to parallel pathways and different intermediates in the assembly of Hsp90 glucocorticoid receptor complexes

    PubMed Central

    Ebong, Ima-obong; Beilsten-Edmands, Victoria; Patel, Nisha A; Morgner, Nina; Robinson, Carol V

    2016-01-01

    Hormone receptors require participation of the chaperones Hsp40/Hsp70 to form client-transfer complexes with Hsp90/Hop. Interaction with the co-chaperone p23 releases Hop and Hsp70, and the immunophilin FKBP52 mediates transfer of the Hsp90-receptor complex to the nucleus. Inhibition of glucocorticoid receptor (GR) transport by FKBP51, but not by FKBP52, has been observed at the cellular level, but the subunit composition of the intermediates involved has not been deduced. Here we use mass spectrometry to show that FKBP51/52 form analogous complexes with GR/Hsp90/Hop/Hsp70/ATP, but differences emerge upon addition of p23 to client-transfer complexes. When FKBP51 is present, a stable intermediate is formed (FKBP51)1(GR)1(Hsp90)2(p23)2 by expulsion of Hsp70 and Hop. By contrast, in the presence of FKBP52, ejection of p23 also takes place to form the nuclear transfer complex (FKBP52)1(GR)1(Hsp90)2. Our results are therefore consistent with pathways in which FKBP51/52 are interchangeable during the early assembly reactions. Following interaction with p23, however, the pathways diverge with FKBP51 sequestering GR in a stable intermediate complex with p23. By contrast, binding of FKBP52 occurs almost concomitantly with release of p23 to form a highly dynamic transfer complex, primed for interaction with the dynactin transport machinery. PMID:27462449

  4. The effect of CD4 receptor downregulation and its downstream signaling molecules on HIV-1 latency

    SciTech Connect

    Kim, Kyung-Chang; Kim, Hyeon Guk; Roh, Tae-Young; Park, Jihwan; Jung, Kyung-Min; Lee, Joo-Shil; Choi, Sang-Yun; Kim, Sung Soon; Choi, Byeong-Sun

    2011-01-14

    Research highlights: {yields} CD4 receptors were downregulated on the surface of HIV-1 latently infected cells. {yields} CD4 downstream signaling molecules were suppressed in HIV-1 latently infected cells. {yields} HIV-1 progeny can be reactivated by induction of T-cell activation signal molecules. {yields} H3K4me3 and H3K9ac were highly enriched in CD4 downstream signaling molecules. {yields} HIV-1 latency can be maintained by the reduction of downstream signaling molecules. -- Abstract: HIV-1 can establish a latent infection in memory CD4 + T cells to evade the host immune response. CD4 molecules can act not only as the HIV-1 receptor for entry but also as the trigger in an intracellular signaling cascade for T-cell activation and proliferation via protein tyrosine kinases. Novel chronic HIV-1-infected A3.01-derived (NCHA) cells were used to examine the involvement of CD4 downstream signaling in HIV-1 latency. CD4 receptors in NCHA cells were dramatically downregulated on its surface but were slightly decreased in whole-cell lysates. The expression levels of CD4 downstream signaling molecules, including P56{sup Lck}, ZAP-70, LAT, and c-Jun, were sharply decreased in NCHA cells. The lowered histone modifications of H3K4me3 and H3K9ac correlated with the downregulation of P56{sup Lck}, ZAP-70, and LAT in NCHA cells. AP-1 binding activity was also reduced in NCHA cells. LAT and c-Jun suppressed in NCHA cells were highly induced after PMA treatment. In epigenetic analysis, other signal transduction molecules which are associated with active and/or latent HIV-1 infection showed normal states in HIV-1 latently infected cells compared to A3.01 cells. In conclusion, we demonstrated that the HIV-1 latent state is sustained by the reduction of downstream signaling molecules via the downregulation of CD4 and the attenuated activity of transcription factor as AP-1. The HIV-1 latency model via T-cell deactivation may provide some clues for the development of the new

  5. The siRNA-Mediated Down-Regulation of Vascular Endothelial Growth Factor Receptor1

    PubMed Central

    Jafari Sani, Moslem; Yazdi, Foad; Masoomi Karimi, Masoomeh; Alizadeh, Javad; Rahmati, Majid; Zarei Mahmudabadi, Ali

    2016-01-01

    Background Angiogenesis is an important biological process involved in the proliferation of endothelial cells, tumor growth and metastasis. Vascular endothelial growth factor (VEGF) is considered as a prominent regulator of angiogenesis which exerts the aforementioned effect(s) through its respective receptors (VEGFR1 and VEGFR2). VEGF receptors are targeted as a therapeutic candidate for cancer growth inhibition. RNAi as a new and promising strategy has provided a useful means to specifically suppress gene expression in cancer cells. Objectives The current study aimed to down-regulate expression of the VEGFR1 using siRNA. Materials and Methods This experimental study designed specific siRNAs against VEGFR1. Total RNA was extracted from human umbilical vain endothelial cell (HUVEC) and subsequently cDNA was synthetized. PCR was performed using specific primers to amplify the target gene. After double digestion and purification, the gene was cloned into pEFGP-N1 expression vector. Then, AGS cells were transfected with recombinant pEGFP-N1 using lipofectamin. The gene expression and down-regulation were evaluated by fluorescence scanning, reverse transcription PCR (RT-PCR) and Western blot techniques. Results Fluorescent scanning, RT-PCR (27.68%) and western blot analysis (31.06%) showed that the expression of VEGFR1 was suppressed effectively. Conclusions The results of the current study showed that specifically designed siRNA can be considered as an appropriate strategy to suppress gene expression and might be a promising tool to prevent angiogenesis. PMID:27275397

  6. Antileukemia Effect of Ciclopirox Olamine Is Mediated by Downregulation of Intracellular Ferritin and Inhibition β-Catenin-c-Myc Signaling Pathway in Glucocorticoid Resistant T-ALL Cell Lines

    PubMed Central

    Zhang, Ge; Gu, Ling; Zhang, Yanle; Gao, Ju; Wei, Yuquan

    2016-01-01

    Ciclopirox olamine (CPX) is an antifungal drug that has been reported to have antitumor effects. In this study we investigated the antileukemia effects and the possible mechanisms of CPX on glucocorticoid (GC)-resistant T-cell acute lymphoblastic leukemia (T-ALL) cell lines. The results indicated that CPX inhibited the growth of GC-resistant T-ALL cells in a time- and dose-dependent manner, and this effect was closely correlated with the downregulation of intracellular ferritin. CPX induced cell cycle arrest at G1 phase by upregulation of cyclin-dependent kinase (CDK) inhibitor of p21 and downregulation of the expressions of cyclin D, retinoblastoma protein (Rb), and phosphorylated Rb (pRb). CPX also enhanced apoptotic cell death by downregulation of anti-apoptotic proteins such as Bcl-2, Bcl-xL, and Mcl-1. More importantly, CPX demonstrated a strong synergistic antileukemia effect with GC and this effect was mediated, at least in part, by inhibition of the β-catenin-c-Myc signaling pathway. These findings suggest that CPX could be a promising antileukemia drug, and modulation of the intracellular ferritin expression might be an effective method in the treatment of ALL. Therefore, integrating CPX into the current GC-containing ALL protocols could lead to the improvement of the outcome of ALL, especially GC-resistant ALL. PMID:27551974

  7. Antileukemia Effect of Ciclopirox Olamine Is Mediated by Downregulation of Intracellular Ferritin and Inhibition β-Catenin-c-Myc Signaling Pathway in Glucocorticoid Resistant T-ALL Cell Lines.

    PubMed

    Wu, Jianrong; Liu, Huajun; Zhang, Ge; Gu, Ling; Zhang, Yanle; Gao, Ju; Wei, Yuquan; Ma, Zhigui

    2016-01-01

    Ciclopirox olamine (CPX) is an antifungal drug that has been reported to have antitumor effects. In this study we investigated the antileukemia effects and the possible mechanisms of CPX on glucocorticoid (GC)-resistant T-cell acute lymphoblastic leukemia (T-ALL) cell lines. The results indicated that CPX inhibited the growth of GC-resistant T-ALL cells in a time- and dose-dependent manner, and this effect was closely correlated with the downregulation of intracellular ferritin. CPX induced cell cycle arrest at G1 phase by upregulation of cyclin-dependent kinase (CDK) inhibitor of p21 and downregulation of the expressions of cyclin D, retinoblastoma protein (Rb), and phosphorylated Rb (pRb). CPX also enhanced apoptotic cell death by downregulation of anti-apoptotic proteins such as Bcl-2, Bcl-xL, and Mcl-1. More importantly, CPX demonstrated a strong synergistic antileukemia effect with GC and this effect was mediated, at least in part, by inhibition of the β-catenin-c-Myc signaling pathway. These findings suggest that CPX could be a promising antileukemia drug, and modulation of the intracellular ferritin expression might be an effective method in the treatment of ALL. Therefore, integrating CPX into the current GC-containing ALL protocols could lead to the improvement of the outcome of ALL, especially GC-resistant ALL. PMID:27551974

  8. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies

    PubMed Central

    Finsterwald, Charles; Alberini, Cristina M.

    2013-01-01

    A proper response against stressors is critical for survival. In mammals, the stress response is primarily mediated by secretion of glucocorticoids via the hypothalamic-pituitaryadrenocortical (HPA) axis and release of catecholamines through adrenergic neurotransmission. Activation of these pathways results in a quick physical response to the stress and, in adaptive conditions, mediates long-term changes in the brain that lead to the formation of long-term memories of the experience. These long-term memories are an essential adaptive mechanism that allows an animal to effectively face similar demands again. Indeed, a moderate stress level has a strong positive effect on memory and cognition, as a single arousing or moderately stressful event can be remembered for up to a lifetime. Conversely, exposure to extreme, traumatic, or chronic stress can have the opposite effect and cause memory loss, cognitive impairments, and stress-related psychopathologies such as anxiety disorders, depression and post-traumatic stress disorder (PTSD). While more effort has been devoted to the understanding of the effects of the negative effects of chronic stress, much less has been done thus far on the identification of the mechanisms engaged in the brain when stress promotes long-term memory formation. Understanding these mechanisms will provide critical information for use in ameliorating memory processes in both normal and pathological conditions. Here, we will review the role of glucocorticoids and glucocorticoid receptors (GRs) in memory formation and modulation. Furthermore, we will discuss recent findings on the molecular cascade of events underlying the effect of GR activation in adaptive levels of stress that leads to strong, long-lasting memories. Our recent data indicate that the positive effects of GR activation on memory consolidation critically engage the brain-derived neurotrophic factor (BDNF) pathway. We propose and will discuss the hypothesis that stress promotes the

  9. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies.

    PubMed

    Finsterwald, Charles; Alberini, Cristina M

    2014-07-01

    A proper response against stressors is critical for survival. In mammals, the stress response is primarily mediated by secretion of glucocorticoids via the hypothalamic-pituitary-adrenocortical (HPA) axis and release of catecholamines through adrenergic neurotransmission. Activation of these pathways results in a quick physical response to the stress and, in adaptive conditions, mediates long-term changes in the brain that lead to the formation of long-term memories of the experience. These long-term memories are an essential adaptive mechanism that allows an animal to effectively face similar demands again. Indeed, a moderate stress level has a strong positive effect on memory and cognition, as a single arousing or moderately stressful event can be remembered for up to a lifetime. Conversely, exposure to extreme, traumatic, or chronic stress can have the opposite effect and cause memory loss, cognitive impairments, and stress-related psychopathologies such as anxiety disorders, depression and post-traumatic stress disorder (PTSD). While more effort has been devoted to the understanding of the negative effects of chronic stress, much less has been done thus far on the identification of the mechanisms engaged in the brain when stress promotes long-term memory formation. Understanding these mechanisms will provide critical information for use in ameliorating memory processes in both normal and pathological conditions. Here, we will review the role of glucocorticoids and glucocorticoid receptors (GRs) in memory formation and modulation. Furthermore, we will discuss recent findings on the molecular cascade of events underlying the effect of GR activation in adaptive levels of stress that leads to strong, long-lasting memories. Our recent data indicate that the positive effects of GR activation on memory consolidation critically engage the brain-derived neurotrophic factor (BDNF) pathway. We propose and will discuss the hypothesis that stress promotes the formation of

  10. Polymorphisms in the glucocorticoid receptor co-chaperone FKBP5 predict persistent musculoskeletal pain after traumatic stress exposure

    PubMed Central

    Bortsov, Andrey V.; Smith, Jennifer E.; Diatchenko, Luda; Soward, April C.; Ulirsch, Jacob C.; Rossi, Catherine; Swor, Robert A.; Hauda, William E.; Peak, David A.; Jones, Jeffrey S.; Holbrook, Debra; Rathlev, Niels K.; Foley, Kelly A.; Lee, David C.; Collette, Renee; Domeier, Robert M.; Hendry, Phyllis L.; McLean, Samuel A.

    2013-01-01

    Individual vulnerability factors influencing the function of the hypothalamic-pituitary-adrenal (HPA) axis may contribute to the risk of the development of persistent musculoskeletal pain after traumatic stress exposure. The objective of the study was to evaluate the association between polymorphisms in the gene encoding FK506 binding protein 51, FKBP5, a glucocorticoid receptor co-chaperone, and musculoskeletal pain severity six weeks after two common trauma exposures. The study included data from two prospective emergency department-based cohorts: a discovery cohort (n=949) of European Americans experiencing motor vehicle collision and a replication cohort of adult European American women experiencing sexual assault (n=53). DNA was collected from trauma survivors at the time of initial assessment. Overall pain and neck pain six weeks after trauma exposure were assessed using a 0–10 numeric rating scale. After adjustment for multiple comparisons, six FKBP5 polymorphisms showed significant association (minimum p <0.0001) with both overall and neck pain in the discovery cohort. The association of rs3800373, rs9380526, rs9394314, rs2817032, and rs2817040 with neck pain and/or overall pain six weeks after trauma was replicated in the sexual assault cohort, showing the same direction of the effect in each case. The results of this study indicate that genetic variants in FKBP5 influence the severity of musculoskeletal pain symptoms experienced during the weeks after motor vehicle collision and sexual assault. These results suggest that glucocorticoid pathways influence the development of persistent post-traumatic pain, and that such pathways may be a target of pharmacologic interventions aimed at improving recovery after trauma. PMID:23707272

  11. Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity.

    PubMed

    Gallina, Donika; Zelinka, Christopher Paul; Cebulla, Colleen M; Fischer, Andy J

    2015-11-01

    Reactive microglia and macrophages are prevalent in damaged retinas. Glucocorticoid signaling is known to suppress inflammation and the reactivity of microglia and macrophages. In the vertebrate retina, the glucocorticoid receptor (GCR) is known to be activated and localized to the nuclei of Müller glia (Gallina et al., 2014). Accordingly, we investigated how signaling through GCR influences the survival of neurons using the chick retina in vivo as a model system. We applied intraocular injections of GCR agonist or antagonist, assessed microglial reactivity, and the survival of retinal neurons following different damage paradigms. Microglial reactivity was increased in retinas from eyes that were injected with vehicle, and this reactivity was decreased by GCR-agonist dexamethasone (Dex) and increased by GCR-antagonist RU486. We found that activation of GCR suppresses the reactivity of microglia and inhibited the loss of retinal neurons resulting from excitotoxicity. We provide evidence that the protection-promoting effects of Dex were maintained when the microglia were selectively ablated. Similarly, intraocular injections of Dex protected ganglion cells from colchicine-treatment and protected photoreceptors from damage caused by retinal detachment. We conclude that activation of GCR promotes the survival of ganglion cells in colchicine-damaged retinas, promotes the survival of amacrine and bipolar cells in excitotoxin-damaged retinas, and promotes the survival of photoreceptors in detached retinas. We propose that suppression of microglial reactivity is secondary to activation of GCR in Müller glia, and this mode of signaling is an effective means to lessen the damage and vision loss resulting from different types of retinal damage. PMID:26272753

  12. Cistrome-based Cooperation between Airway Epithelial Glucocorticoid Receptor and NF-κB Orchestrates Anti-inflammatory Effects.

    PubMed

    Kadiyala, Vineela; Sasse, Sarah K; Altonsy, Mohammed O; Berman, Reena; Chu, Hong W; Phang, Tzu L; Gerber, Anthony N

    2016-06-10

    Antagonism of pro-inflammatory transcription factors by monomeric glucocorticoid receptor (GR) has long been viewed as central to glucocorticoid (GC) efficacy. However, the mechanisms and targets through which GCs exert therapeutic effects in diseases such as asthma remain incompletely understood. We previously defined a surprising cooperative interaction between GR and NF-κB that enhanced expression of A20 (TNFAIP3), a potent inhibitor of NF-κB. Here we extend this observation to establish that A20 is required for maximal cytokine repression by GCs. To ascertain the global extent of GR and NF-κB cooperation, we determined genome-wide occupancy of GR, the p65 subunit of NF-κB, and RNA polymerase II in airway epithelial cells treated with dexamethasone, TNF, or both using chromatin immunoprecipitation followed by deep sequencing. We found that GR recruits p65 to dimeric GR binding sites across the genome and discovered additional regulatory elements in which GR-p65 cooperation augments gene expression. GR targets regulated by this mechanism include key anti-inflammatory and injury response genes such as SERPINA1, which encodes α1 antitrypsin, and FOXP4, an inhibitor of mucus production. Although dexamethasone treatment reduced RNA polymerase II occupancy of TNF targets such as IL8 and TNFAIP2, we were unable to correlate specific binding sequences for GR or occupancy patterns with repressive effects on transcription. Our results suggest that cooperative anti-inflammatory gene regulation by GR and p65 contributes to GC efficacy, whereas tethering interactions between GR and p65 are not universally required for GC-based gene repression. PMID:27076634

  13. N-bromotaurine surrogates for loss of antiproliferative response and enhances cisplatin efficacy in cancer cells with impaired glucocorticoid receptor.

    PubMed

    Logotheti, Stella; Khoury, Nikolas; Vlahopoulos, Spiros A; Skourti, Elena; Papaevangeliou, Dimitra; Liloglou, Triantafyllos; Gorgoulis, Vassilis; Budunova, Irina; Kyriakopoulos, Anthony M; Zoumpourlis, Vassilis

    2016-07-01

    Glucocorticoids (GCs) are frequently used in anticancer combination regimens; however, their continuous use adds selective pressure on cancer cells to develop GC-resistance via impairment of the glucocorticoid receptor (GR), therefore creating a need for GC-alternatives. Based on the drug repurposing approach and the commonalities between inflammation and neoplasia, drugs that are either in late-stage clinical trials and/or already marketed for GC-refractory inflammatory diseases could be evaluated as GC-substitutes in the context of cancer. Advantageously, unlike new molecular entities currently being de novo developed to restore GC-responsiveness of cancer cells, such drugs have documented safety and efficacy profile, which overall simplifies their introduction in clinical cancer trials. In this study, we estimated the potential of a well-established, multistage, cell line-based, mouse skin carcinogenesis model to be exploited as an initial screening tool for unveiling covert GC-substitutes. First, we categorized the cell lines of this model to GC-sensitive and GC-resistant, in correlation with their corresponding GR status, localization, and functionality. We found that GC-resistance starts in papilloma stages, due to a dysfunctional GR, which is overexpressed, DNA binding-competent, but transactivation-incompetent in papilloma, squamous, and spindle stages of the model. Then, aided by this tool, we evaluated the ability of N-bromotaurine, a naturally occurring, small-molecule, nonsteroid anti-inflammatory drug which is under consideration for use interchangeably/in replacement to GCs in skin inflammations, to restore antiproliferative response of GC-resistant cancer cells. Unlike GCs, N-bromotaurine inhibited cell-cycle progression in GC-resistant cancer cells and efficiently synergized with cisplatin, thus indicating a potential to be exploited instead of GCs against cancer. PMID:27063960

  14. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma

    PubMed Central

    Friesen, Claudia; Hormann, Inis; Roscher, Mareike; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf; Debatin, Klaus-Michael; Miltner, Erich

    2014-01-01

    Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells. PMID:24626197

  15. Ritonavir binds to and downregulates estrogen receptors: Molecular mechanism of promoting early atherosclerosis

    SciTech Connect

    Xiang, Jin; Wang, Ying; Su, Ke; Liu, Min; Hu, Peng-Chao; Ma, Tian; Li, Jia-Xi; Wei, Lei; Zheng, Zhongliang; Yang, Fang

    2014-10-01

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. - Graphical abstract: RTV directly binds to ERα and Leu536 in the hydrophobic core of ligand binding domain is essential for the interaction. - Highlights: • RTV increases the thickness of rat coronary artery wall and foam cell formation. • RTV downregulates the expression of ERα and ERβ. • RTV inhibits ERα promoter activity. • RTV directly binds to ERα and the key amino acid is Leu536. • RTV inhibits the nuclear translocation of ERα and GPER.

  16. Dioxin mediates downregulation of the reduced folate carrier transport activity via the arylhydrocarbon receptor signalling pathway

    SciTech Connect

    Halwachs, Sandra; Lakoma, Cathleen; Gebhardt, Rolf; Schaefer, Ingo; Seibel, Peter; Honscha, Walther

    2010-07-15

    Dioxins such as 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) are common environmental contaminants known to regulate several genes via activation of the transcription factor aryl hydrocarbon receptor (AhR) associated with the development of numerous adverse biological effects. However, comparatively little is known about the molecular mechanisms by which dioxins display their toxic effects in vertebrates. The 5' untranslated region of the hepatocellular Reduced folate carrier (Rfc1; Slc19a1) exhibits AhR binding sites termed dioxin responsive elements (DRE) that have as yet only been found in the promoter region of prototypical TCDD target genes. Rfc1 mediated transport of reduced folates and antifolate drugs such as methotrexate (MTX) plays an essential role in physiological folate homeostasis and MTX cancer chemotherapy. In order to determine whether this carrier represents a target gene of dioxins we have investigated the influence of TCDD on functional Rfc1 activity in rat liver. Pre-treatment of rats with TCDD significantly diminished hepatocellular Rfc1 uptake activity in a time- and dose-dependent manner. In further mechanistic studies we demonstrated that this reduction was due to TCDD-dependent activation of the AhR signalling pathway. We additionally showed that binding of the activated receptor to DRE motifs in the Rfc1 promoter resulted in downregulation of Rfc1 gene expression and reduced carrier protein levels. As downregulation of pivotal Rfc1 activity results in functional folate deficiency associated with an elevated risk of cardiovascular diseases or carcinogenesis, our results indicate that deregulation of this essential transport pathway represents a novel regulatory mechanism how dioxins display their toxic effects through the Ah receptor.

  17. A transition in transcriptional activation by the glucocorticoid and retinoic acid receptors at the tumor stage of dermal fibrosarcoma development.

    PubMed Central

    Vivanco, M D; Johnson, R; Galante, P E; Hanahan, D; Yamamoto, K R

    1995-01-01

    In transgenic mice harboring the bovine papillomavirus genome, fibrosarcomas arise along an experimentally accessible pathway in which normal dermal fibroblasts progress through two pre-neoplastic stages, mild and aggressive fibromatosis, followed by a final transition to the tumor stage. We found that the glucocorticoid receptor (GR) displays only modest transcriptional regulatory activity in cells derived from the three non-tumor stages, whereas it is highly active in fibrosarcoma cells. Upon inoculation into mice, the aggressive fibromatosis cells progress to tumor cells that have high GR activity; thus, the increased transcriptional regulatory activity of GR correlates with the cellular transition to the tumor stage. The intracellular levels of GR, as well as its hormone-dependent nuclear translocation and specific DNA binding activities, are unaltered throughout the progression. Strikingly, the low GR activity observed in the pre-neoplastic stages cannot be overcome by exogenous GR introduced by co-transfection. Moreover, comparisons of primary embryo fibroblasts and their transformed derivatives revealed a similar pattern--modest GR activity, unresponsive to overexpressed GR protein, in the normal cells was strongly increased in the transformed cells. Likewise, the retinoic acid receptor (RAR) displayed similar differential activity in the fibrosarcoma pathway. Thus, the oncogenic transformation of fibroblasts, and likely other cell types, is accompanied by a striking increase in the activities of transcriptional regulators such as GR and RAR. We suggest that normal primary cells have a heretofore unrecognized capability to limit the magnitude of induction of gene expression. Images PMID:7774580

  18. Cortisol stimulates proliferation and apoptosis in the late gestation fetal heart: differential effects of mineralocorticoid and glucocorticoid receptors

    PubMed Central

    Feng, Xiaodi; Reini, Seth A.; Richards, Elaine; Wood, Charles E.

    2013-01-01

    We have previously found that modest chronic increases in maternal cortisol result in an enlarged fetal heart. To explore the mechanisms of this effect, we used intrapericardial infusions of a mineralocorticoid receptor (MR) antagonist (canrenoate) or of a glucocorticoid receptor (GR) antagonist (mifepristone) in the fetus during maternal infusion of cortisol (1 mg·kg−1·day−1). We have shown that the MR antagonist blocked the increase in fetal heart weight and in wall thickness resulting from maternal cortisol infusion. In the current study we extended those studies and found that cortisol increased Ki67 staining in both ventricles, indicating cell proliferation, but also increased active caspase-3 staining in cells of the conduction pathway in the septum and subendocardial layers of the left ventricle, suggesting increased apoptosis in Purkinje fibers. The MR antagonist blocked the increase in cell proliferation, whereas the GR antagonist blocked the increased apoptosis in Purkinje fibers. We also found evidence of activation of caspase-3 in c-kit-positive cells, suggesting apoptosis in stem cell populations in the ventricle. These studies suggest a potentially important role of corticosteroids in the terminal remodeling of the late gestation fetal heart and suggest a mechanism for the cardiac enlargement with excess corticosteroid exposure. PMID:23785077

  19. Road transportation affects blood hormone levels and lymphocyte glucocorticoid and beta-adrenergic receptor concentrations in calves.

    PubMed

    Odore, R; D'Angelo, A; Badino, P; Bellino, C; Pagliasso, S; Re, G

    2004-11-01

    The effect of transportation on blood cortisol and catecholamine levels, lymphocyte glucocorticoid receptor (GR) and beta-adrenergic receptor (beta-AR) concentrations was investigated in calves. Blood samples were collected from 24 six-month-old calves before departure (T(0)), on arrival (T(1)), and at 24 h (T(2)) and one week (T(3)) after arrival. Animals were loaded and transported about 950 km, from the Midy-Pyrenes region (Cahors, France) to the Piedmont region (Italy), over a total of 14 h. Serum cortisol levels and plasma catecholamines (adrenaline, noradrenaline) were determined by radioimmunoassay. Lymphocyte GRs and beta-ARs were measured through binding assays. A significant (P < 0.05) increase in cortisol and catecholamine concentrations was observed immediately after transport. The increase in hormone levels at time T(1) was negatively correlated with lymphocyte GR and beta-AR concentrations. At times T(2) and T(3), blood cortisol and catecholamine levels and lymphocyte GRs and beta-ARs returned to normal. The results demonstrate the activation of the hypothalamic-pituitary-adrenal axis and the catecholaminergic system in long-term transported calves. However, these systems returned to normal within 24 h after the end of transport. PMID:15501147

  20. The long-acting β2-adrenoceptor agonist, indacaterol, enhances glucocorticoid receptor-mediated transcription in human airway epithelial cells in a gene- and agonist-dependent manner

    PubMed Central

    Joshi, T; Johnson, M; Newton, R; Giembycz, M A

    2015-01-01

    Background and Purpose Inhaled glucocorticoid (ICS)/long-acting β2-adrenoceptor agonist (LABA) combination therapy is a recommended treatment option for patients with moderate/severe asthma in whom adequate control cannot be achieved by an ICS alone. Previously, we discovered that LABAs can augment dexamethasone-inducible gene expression and proposed that this effect may explain how these two drugs interact to deliver superior clinical benefit. Herein, we extended that observation by analysing, pharmacodynamically, the effect of the LABA, indacaterol, on glucocorticoid receptor (GR)-mediated gene transcription induced by seven ligands with intrinsic activity values that span the spectrum of full agonism to antagonism. Experimental Approach BEAS-2B human airway epithelial cells stably transfected with a 2× glucocorticoid response element luciferase reporter were used to model gene transcription together with an analysis of several glucocorticoid-inducible genes. Key Results Indacaterol augmented glucocorticoid-induced reporter activation in a manner that was positively related to the intrinsic activity of the GR agonist. This effect was demonstrated by an increase in response maxima without a change in GR agonist affinity or efficacy. Indacaterol also enhanced glucocorticoid-inducible gene expression. However, the magnitude of this effect was dependent on both the GR agonist and the gene of interest. Conclusions and Implications These data suggest that indacaterol activates a molecular rheostat, which increases the transcriptional competency of GR in an agonist- and gene-dependent manner without apparently changing the relationship between fractional GR occupancy and response. These findings provide a platform to rationally design ICS/LABA combination therapy that is based on the generation of agonist-dependent gene expression profiles in target and off-target tissues. PMID:25598440

  1. Receptor usage and differential downregulation of CD46 by measles virus wild-type and vaccine strains.

    PubMed

    Schneider-Schaulies, J; Schnorr, J J; Brinckmann, U; Dunster, L M; Baczko, K; Liebert, U G; Schneider-Schaulies, S; ter Meulen, V

    1995-04-25

    Recently, two cell surface molecules, CD46 and moesin, have been found to be functionally associated with measles virus (MV) infectivity of cells. We investigated the receptor usage of MV wild-type, subacute sclerosing panencephalitis, and vaccine strains and their effect on the down-regulation of CD46 after infection. We found that the infection of human cell lines with all 19 MV strains tested was inhibitable with antibodies against CD46. In contrast, not all strains of MV led to the downregulation of CD46 following infection. The group of CD46 non-downregulating strains comprised four lymphotropic wild-type isolates designated AB, DF, DL, and WTF. Since the downregulation of CD46 is caused by interaction with newly synthesized MV hemagglutinin (MV-H), we tested the capability of recombinant MV-H proteins to downregulate CD46. Recombinant MV-H proteins of MV strains Edmonston, Halle, and CM led to the down-regulation of CD46, whereas those of DL and WTF did not. This observed differential downregulation by different MV strains has profound consequences, since lack of CD46 on the cell surface leads to susceptibility of cells to complement lysis. These results suggest that lymphotropic wild-type strains of MV which do not downregulate CD46 may have an advantage for replication in vivo. The relatively weak immune response against attenuated vaccine strains of MV compared with wild-type strains might be related to this phenomenon. PMID:7732009

  2. CXCL4 Downregulates the Atheroprotective Hemoglobin Receptor CD163 in Human Macrophages

    PubMed Central

    Gleissner, Christian A.; Shaked, Iftach; Erbel, Christian; Böckler, Dittmar; Katus, Hugo A.; Ley, Klaus

    2010-01-01

    Rationale CXCL4 is a platelet-derived chemokine that promotes macrophage differentiation from monocytes. Deletion of the PF4 gene that encodes CXCL4 reduces atherosclerotic lesions in ApoE−/− mice. Objective We sought to study effects of CXCL4 on macrophage differentiation with possible relevance for atherogenesis. Methods and Results Flow cytometry for expression of surface markers in macrophage colony–stimulating factor (M-CSF)– and CXCL4-induced macrophages demonstrated virtually complete absence of the hemoglobin scavenger receptor CD163 in CXCL4-induced macrophages. mRNA for CD163 was downregulated as early as 2 hours after CXCL4. CD163 protein reached a minimum after 3 days, which was not reversed by treatment of cells with M-CSF. The CXCL4 effect was entirely neutralized by heparin, which bound CXCL4 and prevented CXCL4 surface binding to monocytes. Pretreatment of cells with chlorate, which inhibits glycosaminoglycan synthesis, strongly inhibited CXCL4-dependent downregulation of CD163. Similar to recombinant CXCL4, releasate from human platelets also reduced CD163 expression. CXCL4-differentiated macrophages were unable to upregulate the atheroprotective enzyme heme oxygenase-1 at the RNA and protein level in response to hemoglobin–haptoglobin complexes. Immunofluorescence of human atherosclerotic plaques demonstrated presence of both CD68+CD163+ and CD68+CD163− macrophages. PF4 and CD163 gene expression within human atherosclerotic lesions were inversely correlated, supporting the in vivo relevance of CXCL4-induced downregulation of CD163. Conclusions CXCL4 may promote atherogenesis by suppressing CD163 in macrophages, which are then unable to upregulate the atheroprotective enzyme heme oxygenase-1 in response to hemoglobin. PMID:19910578

  3. Potent anti-prostate cancer agents derived from a novel androgen receptor down-regulating agent.

    PubMed

    Purushottamachar, Puranik; Khandelwal, Aakanksha; Vasaitis, Tadas S; Bruno, Robert D; Gediya, Lalji K; Njar, Vincent C O

    2008-04-01

    The search for novel androgen receptor (AR) down-regulating agents by catalyst HipHop pharmacophore modeling led to the discovery of some lead molecules. Unexpectedly, the effect of these leads on human prostate cancer LNCaP cell viability did not correlate with the ability of the compounds to cause down-regulation of AR protein expression. Through rational synthetic optimization of the lead compound (BTB01434), we have discovered a series of novel substituted diaryl molecules as potent anti-prostate cancer agents. Some compounds (1-6) were shown to be extremely potent inhibitors of LNCaP cell viability with GI(50) values in the nanomolar range (1.45-83 nM). The most potent compound (4-methylphenyl)[(4-methylphenyl)sulfonyl]amine (5) with a GI(50) value of 1.45 nM is 27,000 times more potent than our lead compound BTB01434 (GI(50)=39.8 microM). In addition, some of the compounds exhibited modest anti-androgenic activities and one was also a potent inhibitor (GI(50)=850 nM) of PC-3 (AR-null) cell growth. A clear structure-activity relationship (SAR) has been established for activity against LNCaP cells, where potent molecules possess two substituted/unsubstituted aromatic rings connected through a sulfonamide linker. These novel compounds are strong candidates for development for the treatment of hormone-sensitive and importantly hormone-refractory prostate cancers in humans. PMID:18316193

  4. Dysregulation of Ack1 inhibits down-regulation of the EGF receptor

    SciTech Connect

    Grovdal, Lene Melsaether; Johannessen, Lene E.; Rodland, Marianne Skeie; Madshus, Inger Helene; Stang, Espen

    2008-04-01

    The protein tyrosine kinase Ack1 has been linked to cancer when over-expressed. Ack1 has also been suggested to function in clathrin-mediated endocytosis and in down-regulation of the epidermal growth factor (EGF) receptor (EGFR). We have studied the intracellular localization of over-expressed Ack1 and found that Ack1 co-localizes with the EGFR upon EGF-induced endocytosis in cells with moderate over-expression of Ack. This co-localization is mainly observed in early endosomes. Furthermore, we found that over-expression of Ack1 retained the EGFR at the limiting membrane of early endosomes, inhibiting sorting to inner vesicles of multivesicular bodies. Down-regulation of Ack1 in HeLa cells resulted in reduced rate of {sup 125}I-EGF internalization, whereas internalization of {sup 125}I-transferrin was not affected. In cells where Ack1 had been knocked down by siRNA, recycling of internalized {sup 125}I-EGF was increased, while degradation of {sup 125}I-EGF was inhibited. Together, these data suggest that Ack1 is involved in an early step of EGFR desensitization.

  5. Short-term withdrawal from developmental exposure to cocaine activates the glucocorticoid receptor and alters spine dynamics.

    PubMed

    Caffino, Lucia; Giannotti, Giuseppe; Malpighi, Chiara; Racagni, Giorgio; Fumagalli, Fabio

    2015-10-01

    Although glucocorticoid receptors (GRs) contribute to the action of cocaine, their role following developmental exposure to the psychostimulant is still unknown. To address this issue, we exposed adolescent male rats to cocaine (20mg/kg/day) from post-natal day (PND) 28 to PND 42 and sacrificed them at PND 45 or 90. We studied the medial prefrontal cortex (mPFC), a brain region that is still developing during adolescence. In PND 45 rats we found enhanced GR transcription and translation as well as increased trafficking toward the nucleus of the receptor, with no alteration in plasma corticosterone levels. We also showed reduced expression of the GR co-chaperone FKBP51, that normally keeps the receptor in the cytoplasm, and increased expression of Src1, which cooperates in the activation of GR transcriptional activity, revealing that short withdrawal alters the finely tuned mechanisms regulating GR action. Since activation of GRs regulate dendritic spine morphology, we next investigated spine dynamics in cocaine-withdrawn rats. We found that PSD95, cofilin and F-actin, molecules regulating spine actin network, are reduced in the mPFC of PND 45 rats suggesting reduced spine density, confirmed by confocal imaging. Further, formation of filopodia, i.e. the inactive spines, is enhanced suggesting the formation of non-functional spines. Of note, no changes were found in molecules related to GR machinery or spine dynamics following long-term abstinence, i.e. in adult rats (PND 90). These findings demonstrate that short withdrawal promotes plastic changes in the developing brain via the dysregulation of the GR system and alterations in the spine network. PMID:26004981

  6. Novel epididymis-specific mRNAs downregulated by HE6/Gpr64 receptor gene disruption.

    PubMed

    Davies, Ben; Behnen, Martina; Cappallo-Obermann, Heike; Spiess, Andrej-Nikolai; Theuring, Franz; Kirchhoff, Christiane

    2007-05-01

    Targeted disruption of the epididymis-specific HE6/Gpr64 receptor gene in mice led to male infertility. In order to characterize the phenotype at a molecular level, we compared the gene expression patterns of wild type (wt) versus knockout (KO) caput epididymides. The caput region of KO males, although morphologically normal, nevertheless showed an aberrant expression pattern. Combining micro array analysis, differential library screening, Northern blot analysis and quantitative RT-PCR, we found that the knockout of the HE6/Gpr64 receptor was mainly associated with the downregulation of genes specific to the initial segment. The list of KO downregulated transcripts comprised Enpp2/autotaxin, the lipocalins 8 and 9, the beta-defensin Defb42, cystatins 8 and 12, as well as the membrane proteins Adam (A Disintegrin And Metalloprotease) 28, claudin-10, EAAC1, and the novel Me9. Clusterin/ApoJ and osteopontin/Spp1 mRNAs, on the other hand, were upregulated in the KO tissues. The Me9 transcript was studied in further detail, and we report here a cluster of related epididymis-specific genes. Me9 is specifically expressed in the initial segment and is representative of a novel and highly conserved mammalian gene family. The family consists of single-exon genes only; intron-containing paralogs have not yet been ascertained. The cloned cDNA sequences predicted hydrophobic polytopic membrane proteins containing the DUF716 motif. Protein expression was shown in the rodent caput epididymidis but remained uncertain in primates. PMID:17034053

  7. Blocking glucocorticoid receptors at adolescent age prevents enhanced freezing between repeated cue-exposures after conditioned fear in adult mice raised under chronic early life stress.

    PubMed

    Arp, J Marit; Ter Horst, Judith P; Loi, Manila; den Blaauwen, Jan; Bangert, Eline; Fernández, Guillén; Joëls, Marian; Oitzl, Melly S; Krugers, Harm J

    2016-09-01

    Early life adversity can have long-lasting impact on learning and memory processes and increase the risk to develop stress-related psychopathologies later in life. In this study we investigated (i) how chronic early life stress (ELS) - elicited by limited nesting and bedding material from postnatal day 2 to 9 - affects conditioned fear in adult mice and (ii) whether these effects can be prevented by blocking glucocorticoid receptors (GRs) at adolescent age. In adult male and female mice, ELS did not affect freezing behavior to the first tone 24h after training in an auditory fear-conditioning paradigm. Exposure to repeated tones 24h after training also resulted in comparable freezing behavior in ELS and control mice, both in males and females. However, male (but not female) ELS compared to control mice showed significantly more freezing behavior between the tone-exposures, i.e. during the cue-off periods. Intraperitoneal administration of the GR antagonist RU38486 during adolescence (on postnatal days 28-30) fully prevented enhanced freezing behavior during the cue-off period in adult ELS males. Western blot analysis revealed no effects of ELS on hippocampal expression of glucocorticoid receptors, neither at postnatal day 28 nor at adult age, when mice were behaviorally tested. We conclude that ELS enhances freezing behavior in adult mice in a potentially safe context after cue-exposure, which can be normalized by brief blockade of glucocorticoid receptors during the critical developmental window of adolescence. PMID:27246249

  8. Epigenetic modification of the glucocorticoid receptor gene is linked to traumatic memory and post-traumatic stress disorder risk in genocide survivors.

    PubMed

    Vukojevic, Vanja; Kolassa, Iris-T; Fastenrath, Matthias; Gschwind, Leo; Spalek, Klara; Milnik, Annette; Heck, Angela; Vogler, Christian; Wilker, Sarah; Demougin, Philippe; Peter, Fabian; Atucha, Erika; Stetak, Attila; Roozendaal, Benno; Elbert, Thomas; Papassotiropoulos, Andreas; de Quervain, Dominique J-F

    2014-07-30

    Recent evidence suggests that altered expression and epigenetic modification of the glucocorticoid receptor gene (NR3C1) are related to the risk of post-traumatic stress disorder (PTSD). The underlying mechanisms, however, remain unknown. Because glucocorticoid receptor signaling is known to regulate emotional memory processes, particularly in men, epigenetic modifications of NR3C1 might affect the strength of traumatic memories. Here, we found that increased DNA methylation at the NGFI-A (nerve growth factor-induced protein A) binding site of the NR3C1 promoter was associated with less intrusive memory of the traumatic event and reduced PTSD risk in male, but not female survivors of the Rwandan genocide. NR3C1 methylation was not significantly related to hyperarousal or avoidance symptoms. We further investigated the relationship between NR3C1 methylation and memory functions in a neuroimaging study in healthy subjects. Increased NR3C1 methylation-which was associated with lower NR3C1 expression-was related to reduced picture recognition in male, but not female subjects. Furthermore, we found methylation-dependent differences in recognition memory-related brain activity in men. Together, these findings indicate that an epigenetic modification of the glucocorticoid receptor gene promoter is linked to interindividual and gender-specific differences in memory functions and PTSD risk. PMID:25080589

  9. Associations of glucocorticoid receptor and corticosteroid-binding globulin gene polymorphisms on fat mass and fat mass distribution in prepubertal obese children.

    PubMed

    Barat, Pascal; Corcuff, Jean-Benoît; Tauber, Maïté; Moisan, Marie-Pierre

    2012-12-01

    Previous studies conducted in adult obese patients have shown that glucocorticoid receptor and corticosteroid-binding globulin gene polymorphisms influence cortisol-driven obesity and metabolic parameters. We investigated the impact of these polymorphisms in prepubertal obese children that were thoroughly examined for hypothalamic-pituitary-adrenal axis activity and for metabolic and obesity parameters. Obese children carrier of the allele G of the BclI polymorphism within glucocorticoid receptor gene tend to present a higher percentage of fat mass as well as a decreased cortisol suppression after low-dose dexamethasone as found in adult studies. Additionally, these allele G carriers show a strong correlation between truncal fat mass distribution and cortisol response to a standardized lunch, whereas this correlation is weak in allele C carriers. No differences were found for obesity or metabolic parameters between genotypes at the corticosteroid-binding globulin locus. However, allele 90 carriers present increased 24-h free urinary cortisol. Overall, this study provides new data showing the influence of glucocorticoid receptor and corticosteroid-binding globulin genes in obesity and/or cortisol action in prepubertal obese children. PMID:22576823

  10. Glucocorticoid receptor-dependent disruption of a specific nucleosome on the mouse mammary tumor virus promoter is prevented by sodium butyrate.

    PubMed Central

    Bresnick, E H; John, S; Berard, D S; LeFebvre, P; Hager, G L

    1990-01-01

    Our laboratory has previously developed cell lines derived from mouse NIH 3T3 fibroblasts and C127 mammary tumor cells that stably express mouse mammary tumor virus (MMTV) long terminal repeat fusion genes in bovine papillomavirus-based episomes. Glucocorticoid hormone strongly activates transcription from episomes and induces the disruption of a single nucleosome in an array of phased nucleosomes on the MMTV promoter. Sodium butyrate inhibits the glucocorticoid hormone-dependent development of a nuclease-hypersensitive site that is due to the displacement of this nucleosome, and inhibits induction of RNA transcripts from episomes. Saturation binding studies show that butyrate treatment does not significantly affect the amount or the hormone-binding affinity of the glucocorticoid receptor. In a transient transfection assay, glucocorticoid hormone can activate transcription from a MMTV long terminal repeat-driven luciferase gene construct equivalently in untreated and butyrate-treated cells, indicating that the soluble factors necessary for transactivation of the MMTV promoter are unaffected by butyrate. The differential effect of butyrate on the induction of stable chromatin templates and transiently expressed plasmids suggests that butyrate prevents nucleosome displacement and represses transcription by inducing a modification of chromatin. Images PMID:2160080

  11. Glucocorticoid Receptors, Brain-Derived Neurotrophic Factor, Serotonin and Dopamine Neurotransmission are Associated with Interferon-Induced Depression

    PubMed Central

    Udina, M; Navinés, R; Egmond, E; Oriolo, G; Langohr, K; Gimenez, D; Valdés, M; Gómez-Gil, E; Grande, I; Gratacós, M; Kapczinski, F; Artigas, F; Vieta, E; Solà, R

    2016-01-01

    Background: The role of inflammation in mood disorders has received increased attention. There is substantial evidence that cytokine therapies, such as interferon alpha (IFN-alpha), can induce depressive symptoms. Indeed, proinflammatory cytokines change brain function in several ways, such as altering neurotransmitters, the glucocorticoid axis, and apoptotic mechanisms. This study aimed to evaluate the impact on mood of initiating IFN-alpha and ribavirin treatment in a cohort of patients with chronic hepatitis C. We investigated clinical, personality, and functional genetic variants associated with cytokine-induced depression. Methods: We recruited 344 Caucasian outpatients with chronic hepatitis C, initiating IFN-alpha and ribavirin therapy. All patients were euthymic at baseline according to DSM-IV-R criteria. Patients were assessed at baseline and 4, 12, 24, and 48 weeks after treatment initiation using the Patient Health Questionnaire (PHQ), the Hospital Anxiety and Depression Scale (HADS), and the Temperament and Character Inventory (TCI). We genotyped several functional polymorphisms of interleukin-28 (IL28B), indoleamine 2,3-dioxygenase (IDO-1), serotonin receptor-1A (HTR1A), catechol-O-methyl transferase (COMT), glucocorticoid receptors (GCR1 and GCR2), brain-derived neurotrophic factor (BDNF), and FK506 binding protein 5 (FKBP5) genes. A survival analysis was performed, and the Cox proportional hazards model was used for the multivariate analysis. Results: The cumulative incidence of depression was 0.35 at week 24 and 0.46 at week 48. The genotypic distributions were in Hardy-Weinberg equilibrium. Older age (p = 0.018, hazard ratio [HR] per 5 years = 1.21), presence of depression history (p = 0.0001, HR = 2.38), and subthreshold depressive symptoms at baseline (p = 0.005, HR = 1.13) increased the risk of IFN-induced depression. So too did TCI personality traits, with high scores on fatigability (p = 0.0037, HR = 1.17), impulsiveness (p = 0.0200 HR = 1

  12. Genetic and epigenetic variation of the glucocorticoid receptor (NR3C1) in placenta and infant neurobehavior.

    PubMed

    Bromer, Cailey; Marsit, Carmen J; Armstrong, David A; Padbury, James F; Lester, Barry

    2013-11-01

    The intrauterine environment can impact the developing infant by altering the function of the placenta through changes to the epigenetic regulatory features of this tissue. Genetic variation, too, may impact infant development or may modify the relationship between epigenetic alterations and infant outcomes. To examine the associations of these variations with early life infant neurodevelopment, we examined the extent of DNA methylation of the glucocorticoid receptor gene (NR3C1) promoter and a common single nucleotide polymorphism in the promoter region in a series of 186 placentas from healthy newborn infants. We associated these molecular features with specific summary measures from the NICU Network Neurobehavioral Scales. After controlling for genotype and confounders, we identified significant associations of NR3C1 methylation with infant quality of movement (p = .05) and with infant attention (p = .05), and a potential interaction between methylation and genotype on infant attention score. These results suggest that epigenetic alteration of the NR3C1 gene in the placentas of genetically susceptible infants can have impacts on neurodevelopment which may have lifelong impact on neurobehavioral and mental health outcomes. Further research is needed to more precisely define these relationships and the interaction between epigenetic alterations and genetic variations on infant health. PMID:22714792

  13. Histone acetylation characterizes chromatin presetting by NF1 and Oct1 and enhances glucocorticoid receptor binding to the MMTV promoter

    SciTech Connect

    Astrand, Carolina; Belikov, Sergey; Wrange, Orjan

    2009-09-10

    Transcription from the mouse mammary tumor virus (MMTV) promoter is induced by the glucocorticoid receptor (GR). This switch was reconstituted in Xenopus oocytes. Previously, we showed that Nuclear Factor 1 (NF1) and Octamer Transcription Factor 1 (Oct1) bind constitutively to the MMTV promoter and thereby induce translational nucleosome positioning representing an intermediary, i.e. preset, state of nucleosome organization. Here we further characterize this NF1 and Oct1 induced preset chromatin in relation to the inactive and the hormone-activated state. The preset chromatin exhibits increased histone acetylation but does not cause dissociation of histone H1 as oppose to the hormone-activated state. Furthermore, upon hormone induction the preset MMTV chromatin displays an enhanced and prolonged GR binding capacity and transcription during an intrinsic and time-dependent silencing of the injected template. The silencing process correlates with a reduced histone acetylation. However, a histone deacetylase inhibitor, trichostatin A (TSA), does not counteract silencing in spite of its distinct stimulation of GR-DNA binding. The latter indicates the importance of histone acetylation to maintain DNA access for inducible factor binding. We discuss how constitutively bound factors such as NF1 and Oct1 may participate in the maintenance of tissue specificity of hormone responsive genes.

  14. Methylation of the Glucocorticoid Receptor (NR3C1) in Placenta Is Associated with Infant Cry Acoustics

    PubMed Central

    Sheinkopf, Stephen J.; Righi, Giulia; Marsit, Carmen J.; Lester, Barry M.

    2016-01-01

    Epigenetic mechanisms regulating expression of the glucocorticoid receptor gene (NR3C1) promoter may influence behavioral and biological aspects of stress response in human infants. Acoustic features of infant crying are an indicator of neurobehavioral and neurological status not yet investigated in relation to epigenetic mechanisms. We examined NR3C1 methylation in placental tissue from a series of 120 healthy newborn infants in relation to a detailed set of acoustic features extracted from newborn infant cries. We identified significant associations of NR3C1 methylation with energy variation in infants' cries as well as with the presence of very high fundamental frequency in cry utterances. The presence of high fundamental frequency in cry (above 1 kHz) has been linked to poor vocal tract control, poor regulation of stress response, and may be an indicator or poor neurobehavioral integrity. Thus, these results add to evidence linking epigenetic alteration of the NR3C1 gene in the placenta to neurodevelopmental features in infants. PMID:27313516

  15. [Expression and analysis of the extracellular domain of human glucocorticoid-induced tumor necrosis factor receptor ligand in Escherichia coli].

    PubMed

    Jiao, Yanli; Zheng, Fang; Li, Xiaoxia; Wang, Baoli; Guo, Shanyi

    2009-05-01

    GITRL (Glucocorticoid-induced tumor necrosis factor receptor ligand) has been recently identified as a novel inhibitor of osteoclastogenesis and hence called Osteostat. In this study, we expressed recombinant extracellular domain of GITRL protein in Escherichia coli and analyzed its bioactivity. Using an Eco31I enzyme-based restriction and ligation method, we obtained an E. coli-preferred DNA sequence coding for the extracellular domain of human GITRL. The DNA was cloned into expression vector pQE-30Xa that encodes a fusion tag of 6xHis before the insert. The resultant recombinant expression vector pQE/GITRL was subsequently transformed into E. coli strain M15[pREP4]. After induction with Isopropyl beta-D-Thiogalactoside (IPTG), the cells produced the fusion protein mainly in the form of inclusion bodies as identified by SDS-PAGE. The recombinant protein was purified by affinity chromatography through Ni-NTA column and recognized by anti-His polyclonal antibody using Western blotting analysis. Moreover, we established a simple, efficient and sensitive reporter gene-based method to detect the activity of the recombinant protein. The results showed that the target protein was biologically active. PMID:19670639

  16. Glucocorticoid Receptor (NR3C1) Variants Associate with the Muscle Strength and Size Response to Resistance Training

    PubMed Central

    Ash, Garrett I.; Kostek, Matthew A.; Lee, Harold; Angelopoulos, Theodore J.; Gordon, Paul M.; Moyna, Niall M.; Visich, Paul S.; Zoeller, Robert F.; Price, Thomas B.; Devaney, Joseph M.; Gordish-Dressman, Heather; Thompson, Paul D.; Hoffman, Eric P.; Pescatello, Linda S.

    2016-01-01

    Glucocorticoid receptor (NR3C1) polymorphisms associate with obesity, muscle strength, and cortisol sensitivity. We examined associations among four NR3C1 polymorphisms and the muscle response to resistance training (RT). European-American adults (n = 602, 23.8±0.4yr) completed a 12 week unilateral arm RT program. Maximum voluntary contraction (MVC) assessed isometric strength (kg) and MRI assessed biceps size (cm2) pre- and post-resistance training. Subjects were genotyped for NR3C1 -2722G>A, -1887G>A, -1017T>C, and +363A>G. Men carrying the -2722G allele gained less relative MVC (17.3±1.2vs33.5±6.1%) (p = 0.010) than AA homozygotes; men with -1887GG gained greater relative MVC than A allele carriers (19.6±1.4vs13.2±2.3%) (p = 0.016). Women carrying the -1017T allele gained greater relative size (18.7±0.5vs16.1±0.9%) (p = 0.016) than CC homozygotes. We found sex-specific NR3C1 associations with the muscle strength and size response to RT. Future studies should investigate whether these associations are partially explained by cortisol’s actions in muscle tissue as they interact with sex differences in cortisol production. PMID:26821164

  17. Glucocorticoid Receptor (NR3C1) Variants Associate with the Muscle Strength and Size Response to Resistance Training.

    PubMed

    Ash, Garrett I; Kostek, Matthew A; Lee, Harold; Angelopoulos, Theodore J; Clarkson, Priscilla M; Gordon, Paul M; Moyna, Niall M; Visich, Paul S; Zoeller, Robert F; Price, Thomas B; Devaney, Joseph M; Gordish-Dressman, Heather; Thompson, Paul D; Hoffman, Eric P; Pescatello, Linda S

    2016-01-01

    Glucocorticoid receptor (NR3C1) polymorphisms associate with obesity, muscle strength, and cortisol sensitivity. We examined associations among four NR3C1 polymorphisms and the muscle response to resistance training (RT). European-American adults (n = 602, 23.8±0.4yr) completed a 12 week unilateral arm RT program. Maximum voluntary contraction (MVC) assessed isometric strength (kg) and MRI assessed biceps size (cm2) pre- and post-resistance training. Subjects were genotyped for NR3C1 -2722G>A, -1887G>A, -1017T>C, and +363A>G. Men carrying the -2722G allele gained less relative MVC (17.3±1.2vs33.5±6.1%) (p = 0.010) than AA homozygotes; men with -1887GG gained greater relative MVC than A allele carriers (19.6±1.4vs13.2±2.3%) (p = 0.016). Women carrying the -1017T allele gained greater relative size (18.7±0.5vs16.1±0.9%) (p = 0.016) than CC homozygotes. We found sex-specific NR3C1 associations with the muscle strength and size response to RT. Future studies should investigate whether these associations are partially explained by cortisol's actions in muscle tissue as they interact with sex differences in cortisol production. PMID:26821164

  18. Compound A, a selective glucocorticoid receptor agonist, inhibits immunoinflammatory diabetes, induced by multiple low doses of streptozotocin in mice

    PubMed Central

    Saksida, T; Vujicic, M; Nikolic, I; Stojanovic, I; Haegeman, G; Stosic-Grujicic, S

    2014-01-01

    Background and Purpose Type 1 diabetes is a multifactorial inflammatory disease that develops as a result of deregulated immune responses, causing progressive autoimmune destruction of insulin-producing beta cells of pancreas. 2-((4-acetoxyphenyl)-2-chloro-N-methyl) ethylammonium chloride, compound A (CpdA), is a selective glucocorticoid receptor (GR) agonist that displays strong anti-inflammatory and immunomodulatory activities. We investigated the therapeutic effectiveness of CpdA in a pharmacological model of type 1 diabetes in mice. Experimental Approach The utility of CpdA in diabetes prevention was evaluated in vivo through its prophylactic administration to male C57BL/6 mice that received multiple low doses of streptozotocin for immunoinflammatory diabetes induction. The effect of CpdA on disease development was studied by measuring blood glucose and insulin level, histopathological examination, determination of the nature of infiltrating cells, pro- and anti-inflammatory cytokine production, and signalling pathways. Key Results Prophylactic in vivo therapy with CpdA conferred protection against development of immunoinflammatory diabetes in mice by dampening the M1/Th1/Th17 immune response and switching it towards an anti-inflammatory M2/Th2/Treg profile, thus preserving beta cell function. Conclusions and Implications Anti-diabetic properties of CpdA are mediated through modulation of immune cell-mediated pathways, but without triggering adverse events. These findings provide basic information for the therapeutic use of selective GR agonists in the amelioration of islet-directed autoimmunity. PMID:25158597

  19. Glucocorticoid-Induced Tumour Necrosis Factor Receptor-Related Protein: A Key Marker of Functional Regulatory T Cells

    PubMed Central

    Ronchetti, Simona; Ricci, Erika; Petrillo, Maria Grazia; Cari, Luigi; Migliorati, Graziella; Nocentini, Giuseppe; Riccardi, Carlo

    2015-01-01

    Glucocorticoid-induced tumour necrosis factor receptor-related protein (GITR, TNFRSF18, and CD357) is expressed at high levels in activated T cells and regulatory T cells (Tregs). In this review, we present data from mouse and human studies suggesting that GITR is a crucial player in the differentiation of thymic Tregs (tTregs), and expansion of both tTregs and peripheral Tregs (pTregs). The role of GITR in Treg expansion is confirmed by the association of GITR expression with markers of memory T cells. In this context, it is not surprising that GITR appears to be a marker of active Tregs, as suggested by the association of GITR expression with other markers of Treg activation or cytokines with suppressive activity (e.g., IL-10 and TGF-β), the presence of GITR+ cells in tissues where Tregs are active (e.g., solid tumours), or functional studies on Tregs. Furthermore, some Treg subsets including Tr1 cells express either low or no classical Treg markers (e.g., FoxP3 and CD25) and do express GITR. Therefore, when evaluating changes in the number of Tregs in human diseases, GITR expression must be evaluated. Moreover, GITR should be considered as a marker for isolating Tregs. PMID:25961057

  20. Epigenetic Mechanisms for the Early Environmental Regulation of Hippocampal Glucocorticoid Receptor Gene Expression in Rodents and Humans

    PubMed Central

    Zhang, Tie Yuan; Labonté, Benoit; Wen, Xiang Lan; Turecki, Gustavo; Meaney, Michael J

    2013-01-01

    Parental care influences development across mammals. In humans such influences include effects on phenotypes, such as stress reactivity, which determine individual differences in the vulnerability for affective disorders. Thus, the adult offspring of rat mothers that show an increased frequency of pup licking/grooming (ie, high LG mothers) show increased hippocampal glucocorticoid receptor (GR) expression and more modest hypothalamic–pituitary–adrenal responses to stress compared with the offspring of low LG mothers. In humans, childhood maltreatment associates decreased hippocampal GR expression and increased stress responses in adulthood. We review the evidence suggesting that such effects are mediated by epigenetic mechanisms, including DNA methylation and hydroxymethylation across GR promoter regions. We also present new findings revealing associated histone post-translational modifications of a critical GR promoter in rat hippocampus. Taken together these existing evidences are consistent with the idea that parental influences establish stable phenotypic variation in the offspring through effects on intracellular signaling pathways that regulate the epigenetic state and function of specific regions of the genome. PMID:22968814

  1. Ligand-dependent interaction of the glucocorticoid receptor with p53 enhances their degradation by Hdm2

    PubMed Central

    Sengupta, Sagar; Wasylyk, Bohdan

    2001-01-01

    The glucocorticoid receptor (GR) and the tumor supressor p53 mediate different stress responses. We have studied the mechanism of their mutual inhibition in normal endothelial cells (HUVEC) in response to hypoxia, a physiological stress, and mitomycin C, which damages DNA. Dexamethasone (Dex) stimulates the degradation of endogenous GR and p53 by the proteasome pathway in HUVEC under hypoxia and mitomycin C treatments, and also in hepatoma cells (HepG2) under normoxia. Dex inhibits the functions of p53 (apoptosis, Bax, and p21WAF1/CIP1 expression) and GR (PEPCK and G-6-Pase expression). Endogenous p53 and GR form a ligand-dependent trimeric complex with Hdm2 in the cytoplasm. Disruption of the p53–HDM2 interaction prevents Dex-induced ubiquitylation of GR and p53. The ubiquitylation of GR requires p53, the interaction of p53 with Hdm2, and E3 ligase activity of Hdm2. These results provide a mechanistic basis for GR and p53 acting as opposing forces in the decision between cell death and survival. PMID:11562347

  2. Time-dependent effects of dexamethasone plasma concentrations on glucocorticoid receptor challenge tests.

    PubMed

    Menke, Andreas; Arloth, Janine; Best, Johanna; Namendorf, Christian; Gerlach, Tamara; Czamara, Darina; Lucae, Susanne; Dunlop, Boadie W; Crowe, Tanja Mletzko; Garlow, Steven J; Nemeroff, Charles B; Ritchie, James C; Craighead, W Edward; Mayberg, Helen S; Rex-Haffner, Monika; Binder, Elisabeth B; Uhr, Manfred

    2016-07-01

    Glucocorticoid challenge tests such as the dexamethasone suppression test (DST) and the combined dexamethasone/corticotropin-releasing hormone (dex-CRH) test are considered to be able to sensitively measure hypothalamic-pituitary-adrenal (HPA) axis activity in stress-related psychiatric and endocrine disorders. We used mass-spectrometry to assess the relationship of plasma dexamethasone concentrations and the outcome of these tests in two independent cohorts. Dexamethasone concentrations were measured after oral ingestion of 1.5mg dexamethasone in two cohorts that underwent a standard (dexamethasone at 23:00h) as well as modified (18:00h) DST and dex-CRH test. The first study population was a case/control cohort of 105 depressed patients and 133 controls in which peripheral blood mRNA expression was also measured. The second was a cohort of 261 depressed patients that underwent a standard dex-CRH test at baseline and after 12 weeks' treatment with cognitive-behavioral therapy or antidepressants. Dexamethasone concentrations explained significant proportions of the variance in the DST in both the first (24.6%) and the second (5.2%) cohort. Dexamethasone concentrations explained a higher proportion of the variance in the dex-CRH test readouts, with 41.9% of the cortisol area under the curve (AUC) in the first sample and 24.7% in the second sample. In contrast to these strong effects at later time points, dexamethasone concentrations did not impact cortisol or ACTH concentrations or mRNA expression 3hours after ingestion. In the second sample, dexamethasone concentrations at baseline and week 12 were highly correlated, independent of treatment type and response status. Importantly, a case/control effect in the Dex-CRH test was only apparent when controlling for dexamethasone concentrations. Our results suggest that the incorporation of plasma dexamethasone concentration or measures of earlier endocrine read-outs may help to improve the assessment of endocrine

  3. Glucocorticoid receptor gene modulates severity of depression in women with crack cocaine addiction.

    PubMed

    Rovaris, Diego L; Aroche, Angelita P; da Silva, Bruna S; Kappel, Djenifer B; Pezzi, Júlio C; Levandowski, Mateus L; Hess, Adriana R B; Schuch, Jaqueline B; de Almeida, Rosa M M; Grassi-Oliveira, Rodrigo; Bau, Claiton H D

    2016-09-01

    Crack cocaine addicted inpatients that present more severe withdrawal symptoms also exhibit higher rates of depressive symptoms. There is strong evidence that the identification of genetic variants in depression is potentialized when reducing phenotypic heterogeneity by studying selected groups. Since depression has been associated to dysregulation of the hypothalamic-pituitary-adrenal axis, this study evaluated the effects of SNPs in stress-related genes on depressive symptoms of crack cocaine addicts at early abstinence and over the detoxification treatment (4th, 11th and 18th day post admission). Also, the role of these SNPs on the re-hospitalization rates after 2.5 years of follow-up was studied. One hundred eight-two women were enrolled and eight SNPs in four genes (NR3C2, NR3C1, FKBP5 and CRHR1) were genotyped. A significant main effect of NR3C1-rs41423247 was found, where the C minor allele increased depressive symptoms at early abstinence. This effect remained significant after 10,000 permutations to account for multiple SNPs tested (P=0.0077). There was no effect of rs41423247 on the course of detoxification treatment, but a slight effect of rs41423247 at late abstinence was detected (P=0.0463). This analysis suggests that the presence of at least one C allele is worse at early abstinence, while only CC genotype appears to increase depressive symptoms at late abstinence. Also, a slight effect of rs41423247 C minor allele increasing the number of re-hospitalizations after 2.5 years was found (P=0.0413). These findings are in agreement with previous studies reporting an influence of rs41423247 on sensitivity to glucocorticoids and further elucidate its resulting effects on depressive-related traits. PMID:27397864

  4. Structural bisphenol analogues differentially target steroidogenesis in murine MA-10 Leydig cells as well as the glucocorticoid receptor.

    PubMed

    Roelofs, Maarke J E; van den Berg, Martin; Bovee, Toine F H; Piersma, Aldert H; van Duursen, Majorie B M

    2015-03-01

    Although much information on the endocrine activity of bisphenol A (BPA) is available, a proper human hazard assessment of analogues that are believed to have a less harmful toxicity profile is lacking. Here the possible effects of BPA, bisphenol F (BPF), bisphenol S (BPS), as well as the brominated structural analogue and widely used flame retardant tetrabromobisphenol A (TBBPA) on human glucocorticoid and androgen receptor (GR and AR) activation were assessed. BPA, BPF, and TBBPA showed clear GR and AR antagonism with IC50 values of 67 μM, 60 μM, and 22 nM for GR, and 39 μM, 20 μM, and 982 nM for AR, respectively, whereas BPS did not affect receptor activity. In addition, murine MA-10 Leydig cells exposed to the bisphenol analogues were assessed for changes in secreted steroid hormone levels. Testicular steroidogenesis was altered by all bisphenol analogues tested. TBBPA effects were more directed towards the male end products and induced testosterone synthesis, while BPF and BPS predominantly increased the levels of progestagens that are formed in the beginning of the steroidogenic pathway. The MA-10 Leydig cell assay shows added value over the widely used H295R steroidogenesis assay because of its fetal-like characteristics and specificity for the physiologically more relevant testicular Δ4 steroidogenic pathway. Therefore, adding an in vitro assay covering fetal testicular steroidogenesis, such as the MA-10 cell line, to the panel of tests used to screen potential endocrine disruptors, is highly recommendable. PMID:25576683

  5. Natural disordered sequences in the amino terminal domain of nuclear receptors: lessons from the androgen and glucocorticoid receptors.

    PubMed

    McEwan, Iain J; Lavery, Derek; Fischer, Katharina; Watt, Kate

    2007-01-01

    Steroid hormones are a diverse class of structurally related molecules, derived from cholesterol, that include androgens, estrogens, progesterone and corticosteroids. They represent an important group of physiologically active signalling molecules that bind intracellular receptor proteins and regulate genes involved in developmental, reproductive and metabolic processes. The receptor proteins share structurally and functionally related ligand binding and DNA-binding domains, but possess distinct N-terminal domains (NTD) of unique length and amino acids sequence. The NTD contains sequences important for gene regulation, exhibit structure plasticity and are likely to contribute to the specificity of the steroid hormone/receptor response. PMID:17464357

  6. Natural disordered sequences in the amino terminal domain of nuclear receptors: lessons from the androgen and glucocorticoid receptors

    PubMed Central

    McEwan, Iain J.; Lavery, Derek; Fischer, Katharina; Watt, Kate

    2007-01-01

    Steroid hormones are a diverse class of structurally related molecules, derived from cholesterol, that include androgens, estrogens, progesterone and corticosteroids. They represent an important group of physiologically active signalling molecules that bind intracellular receptor proteins and regulate genes involved in developmental, reproductive and metabolic processes. The receptor proteins share structurally and functionally related ligand binding and DNA-binding domains, but possess distinct N-terminal domains (NTD) of unique length and amino acids sequence. The NTD contains sequences important for gene regulation, exhibit structure plasticity and are likely to contribute to the specificity of the steroid hormone/receptor response. PMID:17464357

  7. Adult glucocorticoid exposure leads to transcriptional and DNA methylation changes in nuclear steroid receptors in the hippocampus and kidney of mouse male offspring.

    PubMed

    Petropoulos, Sophie; Matthews, Stephen G; Szyf, Moshe

    2014-02-01

    Synthetic glucocorticoids (sGCs) are commonly prescribed for the management of inflammatory and endocrine disorders. However, nothing is known regarding the effects of sGC on adult germline methylome and whether these effects can be transmitted to the next generation. We hypothesized that administration of sGC to adult male mice alters DNA methylation in mature sperm and modifies the transcription and methylation of steroid receptors in male F1 offspring. Adult C57BL/6 males (n = 10/group) were injected on five consecutive days with 1 mg/kg sGC (i.e., dexamethasone) or vehicle and euthanized 35 or 60 days after initial treatment or bred with control females (60 days postinitial treatment; n = 5/group). A significant increase in global non-CpG methylation was observed in F0 sperm 60 days following sGC treatment. In the hippocampus and kidney of Postnatal Day 50 (PND50) and PND240 male offspring derived from fathers exposed to sGC, significant differences in mineralocorticoid receptor (Nr3c2; Mr), estrogen alpha receptor (Nr3a1; Ers1), and glucocorticoid receptor (Nr3c1; Gr) expression were observed. Furthermore, significant demethylation in regulatory regions of Mr, Gr, and Esr1 was observed in the PND50 kidney derived from fathers exposed to sGC. This is the first demonstration that paternal pharmacological exposure to sGC can alter the expression and DNA methylation of nuclear steroid receptors in brain and somatic tissues of offspring. These findings provide proof of principle that adult male exposure to sGC can affect DNA methylation and gene expression in offspring, indicating the possibility that adult experiences that evoke increases in endogenous glucocorticoid (i.e., stress) might have similar effects. PMID:24451982

  8. NMDA receptor dysregulation in chronic state: a possible mechanism underlying depression with BDNF downregulation.

    PubMed

    Vásquez, Carol E; Riener, Romina; Reynolds, Elaine; Britton, Gabrielle B

    2014-12-01

    Several lines of evidence indicate that chronic stress and downregulation of brain-derived neurotrophic factor (BNDF) are the key components of depression pathology. Evidence from animal models of depression demonstrates that chronic stress impairs hippocampal BDNF expression and that antidepressant drug effects correlate with increased BDNF synthesis and activity in the hippocampus. Studies with human carriers of BDNF Met-allele polymorphism link stress vulnerability and risk for depression. The mechanism by which chronic stress downregulates BDNF and promotes depressive-like responses is not established yet. It has been reported that chronic stress mediates alterations in several calcium-related components involved in BDNF synthesis, including CAMKII, CAMKIV and cAMP-response element-binding protein (CREB), and glutamatergic neurotransmission through N-Methyl-D-Aspartate receptors (NMDAR). Treatments with NMDAR antagonists like ketamine modulate glutamate signals, upregulate CREB and BDNF expression, and correct stress-induced cognitive and behavioral alterations. With the increasing interest to develop NMDAR modulators, it is crucial to understand the conditions that lead to depression pathology in order to develop rational therapies aimed at reestablishing proper neuronal function. We present here the current knowledge regarding the relation between chronic stress, BDNF and NMDARs and its implications in depression. We discuss a plausible mechanism where chronic stress induced NMDAR stimulation could lead to dysregulated calcium signaling and decreased BDNF activity. In these circumstances, neurons become vulnerable to the effects of stress, leading to dysfunctional neurotransmission and behavioral alterations. We propose that treatment with NMDAR antagonists may help to return the balance of calcium signaling, promote proper BDNF signaling and correct depressive symptoms. PMID:25277075

  9. A novel role for Glucocorticoid-Induced TNF Receptor Ligand (Gitrl) in early embryonic zebrafish development.

    PubMed

    Poulton, Lynn D; Nolan, Kathleen F; Anastasaki, Corina; Waldmann, Herman; Patton, E Elizabeth

    2010-01-01

    Tumour necrosis factor ligand and receptor superfamily (TNFSF and TNFRSF) members have diverse and well-studied functions in the immune system. Additional, non-immunological roles, such as in the morphogenesis of bone, tooth, hair and skin have also been described for some members. GITRL and its receptor GITR are well-described as co-regulators of the mammalian immune response. Here, we describe the identification and cloning of their zebrafish homologues and demonstrate a novel role for the ligand, but not the receptor, in early vertebrate development. The assignment of zebrafish Gitrl and Gitr was supported by homology and phylogenetic analysis. The ligand exhibited an oscillating pattern of mRNA expression during the first 36 hours post fertilization, during which time gitr mRNA was not detected, and morpholino oligonucleotide-mediated knock-down of gitrl, but not of gitr, resulted in disruption of early embryogenesis, most clearly revealed during gastrulation, which corresponded to the earliest peak in gitrl mRNA expression (5.25-10 hpf). We found Stat3 signalling to be altered in the gitrl-morphants, suggesting that one possible role for Gitrl during embryogenesis may be modulation of Jak/Stat signalling. PMID:19598108

  10. Celastrol suppresses invasion of colon and pancreatic cancer cells through the downregulation of expression of CXCR4 chemokine receptor.

    PubMed

    Yadav, Vivek R; Sung, Bokyung; Prasad, Sahdeo; Kannappan, Ramaswamy; Cho, Sung-Gook; Liu, Mingyao; Chaturvedi, Madan M; Aggarwal, Bharat B

    2010-12-01

    Although metastasis accounts for >90% of cancer-related deaths, no therapeutic that targets this process has yet been approved. Because the chemokine receptor CXCR4 is one of the targets closely linked with tumor metastasis, inhibitors of this receptor have the potential to abrogate metastasis. In the current report, we demonstrate that celastrol can downregulate the CXCR4 expression on breast cancer MCF-7 cells stably transfected with HER2, an oncogene known to induce the chemokine receptor. Downregulation of CXCR4 by the triterpenoid was not cell type-specific as downregulation occurred in colon cancer, squamous cell carcinoma, and pancreatic cancer cells. Decrease in CXCR4 expression was not due to proteolysis as neither proteasome inhibitors nor lysosomal stabilization had any effect. Quantitative reverse transcription polymerase chain reaction analysis revealed that downregulation of CXCR4 messenger RNA (mRNA) by celastrol occurred at the translational level. Chromatin immunoprecipitation analysis revealed regulation at the transcriptional level as well. Abrogation of the chemokine receptor by celastrol or by gene-silencing was accompanied by suppression of invasiveness of colon cancer cells induced by CXCL12, the ligand for CXCR4. This effect was not cell type-specific as celastrol also abolished invasiveness of pancreatic tumor cells, and this effect again correlated with the disappearance of both the CXCR4 mRNA and CXCR4 protein. Other triterpenes, such as withaferin A and gedunin, which are known to inhibit Hsp90, did not downregulate CXCR4 expression, indicating that the effects were specific to celastrol. Overall, these results show that celastrol has potential in suppressing invasion and metastasis of cancer cells by down-modulation of CXCR4 expression. PMID:20798912

  11. Prostaglandin E2 mediates growth arrest in NFS-60 cells by down-regulating interleukin-6 receptor expression.

    PubMed Central

    de Silva, Kumudika I; Daud, Asif N; Deng, JiangPing; Jones, Stephen B; Gamelli, Richard L; Shankar, Ravi

    2003-01-01

    Interleukin-6 (IL-6), a potent myeloid mitogen, and the immunosuppressive prostanoid prostaglandin E2 (PGE2) are elevated following thermal injury and sepsis. We have previously demonstrated that bone marrow myeloid commitment shifts toward monocytopoiesis and away from granulocytopoiesis during thermal injury and sepsis and that PGE2 plays a central role in this alteration. Here we investigated whether PGE2 can modulate IL-6-stimulated growth in the promyelocytic cell line, NFS-60, by down-regulating IL-6 receptor (IL-6r) expression. Exposure of NFS-60 cells to PGE2 suppressed IL-6-stimulated proliferation as well as IL-6r expression. Receptor down-regulation is functionally significant since IL-6-induced signal transduction through activators of transcription (STAT)-3 is also decreased. Down-regulation of IL-6r correlated with the ability of PGE2 to arrest cells in the G0/G1 phase of the cell cycle. PGE2 appears to signal through EP2 receptors. Butaprost (EP2 agonist) but not sulprostone (EP3 agonist) inhibited IL-6-stimulated proliferation. In addition, an EP2 antagonist (AH6809) alleviated the anti-proliferative effects of PGE2. NFS-60 cells express predominantly EP2 and EP4 receptors. While PGE2 down-regulated both the IL-6r protein and mRNA expression, it had no influence on EP2 or EP4 mRNA expression. The present study demonstrates that PGE2 is a potent down-regulator of IL-6r expression and thus may provide a mechanistic explanation for the granulocytopenia seen in thermal injury and sepsis. PMID:12429018

  12. Dysregulation of Hypothalamo-Pituitary-Adrenocortical Axis in Overweight Female Diabetic Subjects is Associated with Downregulation of Corticosteroid Receptors and 11β-HSD1 in the Brain.

    PubMed

    Li, S; Liao, Y; Wang, L; Huang, R; Yue, J; Xu, H; Zhou, H; Lou, Z; Hu, Y; Liu, W

    2016-03-01

    The objective of this work was to assess hypothalamo-pituitary-adrenocortical (HPA) axis dysregulation in overweight diabetic women and investigate the possible mechanism using overweight diabetic rats. Twenty-two overweight diabetic women were recruited alongside 34 lean and 23 overweight healthy women serving as controls. Dexamethasone suppression test (0.25 mg DST) and low dose adrenocorticotropic hormone (ACTH) stimulation assay were used to evaluate the HPA axis activity. Then, high fat diet (HF) and STZ-induced diabetic rats were utilized to investigate the possible mechanism. After measurement of corticosterone circadian patterns and dexamethasone suppression levels, mRNA amounts of mineralocorticoid receptors (MR), glucocorticoid receptors (GR), and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) were determined by real time PCR at hippocampus, hypothalamus, and pituitary levels. Overweight diabetic women showed impaired HPA axis with negative feedback efficacy (suppression ratio F-DEX%: 0.52±0.06% vs. 0.49±0.06% vs. 0.14±0.08%), as well as increased adrenal cortisol secretion response to low dose ACTH stimulation. Interestingly, F-DEX% was negatively correlated with BMI (r=- 0.323, p=0.003), waist circumference (r=- 0.319, p=0.004), and HbA1c (r=- 0.334, p=0.002). Stepwise linear regression analysis showed F-DEX% was significantly related to HbA1c level (β=- 0.328, p=0.007) after adjusting for other covariates (age, BMI, waist circumference, SBP, TC, TG, and HOMA-IR). Furthermore, 11β-HSD1, MR, and GR mRNA expression levels were reduced at pituitary level while GR expression was downregulated at hippocampus level in HF and HF+STZ rats. In conclusion, hyperactive HPA axis in overweight diabetic subjects may be associated with downregulation of 11β-HSD1, MR, and GR in the brain. PMID:26212138

  13. Liver X receptor agonist downregulates hepatic apoM expression in vivo and in vitro

    SciTech Connect

    Zhang Xiaoying; Zhu Zhaojin; Luo Guanghua; Zheng Lu; Nilsson-Ehle, Peter; Xu Ning

    2008-06-20

    It has been demonstrated that apolipoprotein M (apoM), a recently discovered HDL apolipoprotein, has antiatherosclerotic properties, which may be mediated by the enhancement of reversed cholesterol transportation and/or hepatic cholesterol catabolism. The detailed mechanisms are unknown yet. Liver X receptor (LXR) belongs to the nuclear receptor superfamily and is a ligand-activated transcription factor involved in the regulation of lipid metabolism and inflammation. Activation of LXR in the cell cultures results in an enhancement of cholesterol efflux to apoAI. In the present study, we investigated effects of the LXR agonist, T0901317 on hepatic apoM expression in vivo and in vitro. Serum apoM levels in mice given T0901317 at 10 mg or 100 mg/kg for 7 days were reduced by 12-17% (P < 0.05). In HepG2 cell cultures, apoM mRNA levels were significantly lower in presence of 25 {mu}M T0901317 (37.1%) than in control cells (P < 0.001). A similar reduction was found by the addition of 9-cis retinoic acid (RA). Twenty-five micromolar T0901317 together with 100 nM RA decreased apoM mRNA expression by 65% (P < 0.001). Thus, the LXR agonist T0901317 significantly downregulates apoM mRNA expression in vivo and in vitro, which indicates that apoM is another novel target gene regulated by the LXR. The combination of RA and T0901317 showed additive effects, which suggests that apoM expression can be modulated by LXR/RXR pathway.

  14. Aryl Hydrocarbon Receptor Downregulates MYCN Expression and Promotes Cell Differentiation of Neuroblastoma

    PubMed Central

    Wu, Pei-Yi; Liao, Yung-Feng; Juan, Hsueh-Fen; Huang, Hsuan-Cheng; Wang, Bo-Jeng; Lu, Yen-Lin; Yu, I-Shing; Shih, Yu-Yin; Jeng, Yung-Ming; Hsu, Wen-Ming; Lee, Hsinyu

    2014-01-01

    Neuroblastoma (NB) is the most common malignant disease of infancy. MYCN amplification is a prognostic factor for NB and is a sign of highly malignant disease and poor patient prognosis. In this study, we aimed to investigate novel MYCN-related genes and assess how they affect NB cell behavior. The different gene expression found in 10 MYCN amplification NB tumors and 10 tumors with normal MYCN copy number were analyzed using tissue oligonucleotide microarrays. Ingenuity Pathway Analysis was subsequently performed to identify the potential genes involved in MYCN regulation pathways. Aryl hydrocarbon receptor (AHR), a receptor for dioxin-like compounds, was found to be inversely correlated with MYCN expression in NB tissues. This correlation was confirmed in a further 14 human NB samples. Moreover, AHR expression in NB tumors was found to correlate highly with histological grade of differentiation. In vitro studies revealed that AHR overexpression in NB cells induced spontaneous cell differentiation. In addition, it was found that ectopic expression of AHR suppressed MYCN promoter activity resulting in downregulation of MYCN expression. The suppression effect of AHR on the transcription of MYCN was compensated for by E2F1 overexpression, indicating that E2F1 is involved in the AHR-regulating MYCN pathway. Furthermore, AHR shRNA promotes the expression of E2F1 and MYCN in NB cells. These findings suggest that AHR is one of the upstream regulators of MYCN. Through the modulation of E2F1, AHR regulates MYCN gene expression, which may in turn affect NB differentiation. PMID:24586395

  15. The effect of sex and irritable bowel syndrome on HPA axis response and peripheral glucocorticoid receptor expression

    PubMed Central

    Videlock, Elizabeth J.; Shih, Wendy; Adeyemo, Mopelola; Mahurkar-Joshi, Swapna; Presson, Angela P.; Polytarchou, Christos; Alberto, Melissa; Iliopoulos, Dimitrios; Mayer, Emeran A.; Chang, Lin

    2016-01-01

    Background and aims Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been reported in irritable bowel syndrome (IBS). Enhanced HPA axis response has been associated with reduced glucocorticoid receptor (GR) mediated negative feedback inhibition. We aimed to study the effects of IBS status, sex, or presence of early adverse life events (EAL) on the cortisol response to corticotropin-releasing factor (CRF) and adrenocorticotropic hormone (ACTH), and on GR mRNA expression in peripheral blood mononuclear cells (PBMCs). Methods Rome III+ IBS patients and healthy controls underwent CRF (1 μg/kg ovine) and ACTH (250 μg) stimulation tests with serial plasma ACTH and cortisol levels measured (n = 116). GR mRNA levels were measured using quantitative PCR (n = 143). Area under the curve (AUC) and linear mixed effects models were used to compare ACTH and cortisol response measured across time between groups. Results There were divergent effects of IBS on the cortisol response to ACTH by sex. In men, IBS was associated with an increased AUC (p = 0.009), but in women AUC was blunted in IBS (p = 0.006). Men also had reduced GR mRNA expression (p = 0.007). Cumulative exposure to EALs was associated with an increased HPA response. Lower GR mRNA was associated with increased pituitary HPA response and increased severity of overall symptoms and abdominal pain in IBS. Conclusion This study highlights the importance of considering sex in studies of IBS and the stress response in general. Our findings also provide support for PBMC GR mRNA expression as a peripheral marker of central HPA response. PMID:27038676

  16. Behavioral and neurochemical characterization of TrkB-dependent mechanisms of agomelatine in glucocorticoid receptor-impaired mice.

    PubMed

    Boulle, F; Velthuis, H; Koedam, K; Steinbusch, H W; van den Hove, D L A; Kenis, G; Gabriel, C; Mocaer, E; Franc, B; Rognan, D; Mongeau, R; Lanfumey, L

    2016-01-01

    Growing evidence indicates that impairment of the stress response, in particular the negative feedback regulation mechanism exerted by the hypothalamo-pituitary-adrenal (HPA) axis, might be responsible for the hippocampal atrophy observed in depressed patients. Antidepressants, possibly through the activation of BDNF signaling, may enhance neuroplasticity and restore normal hippocampal functions. In this context, glucocorticoid receptor-impaired (GR-i) mice-a transgenic mouse model of reduced GR-induced negative feedback regulation of the HPA axis-were used to investigate the role of BDNF/TrkB signaling in the behavioral and neurochemical effects of the new generation antidepressant drug, agomelatine. GR-i mice exhibited marked alterations in depressive-like and anxiety-like behaviors, together with a decreased cell proliferation and altered levels of neuroplastic and epigenetic markers in the hippocampus. GR-i mice and their wild-type littermates were treated for 21 days with vehicle, agomelatine (50mg/kg/day; i.p) or the TrkB inhibitor Ana-12 (0.5mg/kg/day, i.p) alone, or in combination with agomelatine. Chronic treatment with agomelatine resulted in antidepressant-like effects in GR-i mice and reversed the deficit in hippocampal cell proliferation and some of the alterations of mRNA plasticity markers in GR-i mice. Ana-12 blocked the effect of agomelatine on motor activity as well as its ability to restore a normal hippocampal cell proliferation and expression of neurotrophic factors. Altogether, our findings indicate that agomelatine requires TrkB signaling to reverse some of the molecular and behavioral alterations caused by HPA axis impairment. PMID:26653128

  17. Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor

    PubMed Central

    2010-01-01

    Background Glucocorticoids (GCs) control expression of a large number of genes via binding to the GC receptor (GR). Transcription may be regulated either by binding of the GR dimer to DNA regulatory elements or by protein-protein interactions of GR monomers with other transcription factors. Although the type of regulation for a number of individual target genes is known, the relative contribution of both mechanisms to the regulation of the entire transcriptional program remains elusive. To study the importance of GR dimerization in the regulation of gene expression, we performed gene expression profiling of livers of prednisolone-treated wild type (WT) and mice that have lost the ability to form GR dimers (GRdim). Results The GR target genes identified in WT mice were predominantly related to glucose metabolism, the cell cycle, apoptosis and inflammation. In GRdim mice, the level of prednisolone-induced gene expression was significantly reduced compared to WT, but not completely absent. Interestingly, for a set of genes, involved in cell cycle and apoptosis processes and strongly related to Foxo3a and p53, induction by prednisolone was completely abolished in GRdim mice. In contrast, glucose metabolism-related genes were still modestly upregulated in GRdim mice upon prednisolone treatment. Finally, we identified several novel GC-inducible genes from which Fam107a, a putative histone acetyltransferase complex interacting protein, was most strongly dependent on GR dimerization. Conclusions This study on prednisolone-induced effects in livers of WT and GRdim mice identified a number of interesting candidate genes and pathways regulated by GR dimers and sheds new light onto the complex transcriptional regulation of liver function by GCs. PMID:20525385

  18. Ontogeny of hypothalamic glucocorticoid receptor-mediated inhibition of the hypothalamic-pituitary-adrenal axis in mice.

    PubMed

    Laryea, Gloria; Arnett, Melinda; Muglia, Louis J

    2015-01-01

    Glucocorticoid receptors (GR) in the paraventricular nucleus of the hypothalamus (PVN) are important regulators of negative feedback regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Previous evaluation of endogenous PVN GR function in adult mice demonstrated that mice with loss of GR exon 3 in the PVN (Sim1Cre-GRe3Δ) have a hyperactive HPA axis, growth impairment and metabolic disruptions. Here, we hypothesized that lack of negative feedback inhibition of the HPA axis through PVN GR, as demonstrated through loss of PVN GR early in life, will have developmental-stage-specific consequences. Immunofluorescence revealed that Sim1Cre-GRe3Δ mice display PVN GR loss as early as post-natal day 2 compared to control mice. Sim1Cre-GRe3Δ mice compared to controls also displayed increased corticotropin-releasing hormone (CRH) mRNA in the PVN at post-natal day 10, as shown by in situ hybridization. Corticosterone radioimmunoassay revealed that the disruptions in PVN GR and CRH expression led to elevated basal corticosterone secretion in male Sim1Cre-GRe3Δ mice by early adolescence and increased stress-induced (restraint) corticosterone secretion in late adolescence into adulthood. In comparison, female Sim1Cre-GRe3Δ mice did not display corticosterone disruption until adulthood. Circadian rhythmicity of corticosterone secretion was normal for male and female mice at all age groups regardless of genotype with one exception. In late adolescence, female Sim1Cre-GRe3Δ mice had disrupted circadian corticosterone secretion due to significantly elevated circulating levels at nadir. We conclude that PVN GR function matures at an earlier developmental time point in male than in female mice and thus leads to later differential stress responsiveness between sexes. PMID:26068518

  19. Epigenetic modifications of the glucocorticoid receptor gene are associated with the vulnerability to psychopathology in childhood maltreatment.

    PubMed

    Radtke, K M; Schauer, M; Gunter, H M; Ruf-Leuschner, M; Sill, J; Meyer, A; Elbert, T

    2015-01-01

    Stress, particularly when experienced early in life, can have profound implications for mental health. Previous research covering various tissues such as the brain, suggests that the detrimental impact of early-life stress (ELS) on mental health is mediated via epigenetic modifications including DNA methylation. Genes of the hypothalamic-pituitary-adrenal axis--in particular, the glucocorticoid receptor (hGR) gene--stand out as key targets for ELS. Even though the link between hGR methylation and either ELS or psychopathology is fairly well established, the mutually dependent relationships between ELS, DNA methylation and psychopathology remain to be uncovered. The specific psychopathology an individual might develop in the aftermath of stressful events can be highly variable, however, most studies investigating hGR methylation and psychopathology suffer from being limited to a single symptom cluster of mental disorders. Here, we screened volunteers for childhood maltreatment and analyzed whether it associates with hGR methylation in lymphocytes and a range of measures of psychological ill-health. hGR methylation in lymphocytes most likely reflects methylation patterns found in the brain and thus provides valuable insights into the etiology of psychopathology. We find the interaction between childhood maltreatment and hGR methylation to be strongly correlated with an increased vulnerability to psychopathology providing evidence of epigenome × environment interactions. Furthermore, our results indicate an additive effect of childhood maltreatment and hGR methylation in predicting borderline personality disorder (BPD)-associated symptoms, suggesting that the combination of both ELS and DNA methylation that possibly represents unfavorable events experienced even earlier in life poses the risk for BPD. PMID:26080088

  20. Expression profiling associates blood and brain glucocorticoid receptor signaling with trauma-related individual differences in both sexes.

    PubMed

    Daskalakis, Nikolaos P; Cohen, Hagit; Cai, Guiqing; Buxbaum, Joseph D; Yehuda, Rachel

    2014-09-16

    Delineating the molecular basis of individual differences in the stress response is critical to understanding the pathophysiology and treatment of posttraumatic stress disorder (PTSD). In this study, 7 d after predator-scent-stress (PSS) exposure, male and female rats were classified into vulnerable (i.e., "PTSD-like") and resilient (i.e., minimally affected) phenotypes on the basis of their performance on a variety of behavioral measures. Genome-wide expression profiling in blood and two limbic brain regions (amygdala and hippocampus), followed by quantitative PCR validation, was performed in these two groups of animals, as well as in an unexposed control group. Differentially expressed genes were identified in blood and brain associated with PSS-exposure and with distinct behavioral profiles postexposure. There was a small but significant between-tissue overlap (4-21%) for the genes associated with exposure-related individual differences, indicating convergent gene expression in both sexes. To uncover convergent signaling pathways across tissue and sex, upstream activated/deactivated transcription factors were first predicted for each tissue and then the respective pathways were identified. Glucocorticoid receptor (GR) signaling was the only convergent pathway associated with individual differences when using the most stringent statistical threshold. Corticosterone treatment 1 h after PSS-exposure prevented anxiety and hyperarousal 7 d later in both sexes, confirming the GR involvement in the PSS behavioral response. In conclusion, genes and pathways associated with extreme differences in the traumatic stress behavioral response can be distinguished from those associated with trauma exposure. Blood-based biomarkers can predict aspects of brain signaling. GR signaling is a convergent signaling pathway, associated with trauma-related individual differences in both sexes. PMID:25114262

  1. Pharmacological manipulation of glucocorticoid receptors differentially affects cocaine self-administration in environmentally enriched and isolated rats

    PubMed Central

    Hofford, Rebecca S.; Prendergast, Mark A.; Bardo, Michael T.

    2015-01-01

    Social isolation rearing (isolated condition, IC) is used as a model of early life stress in rodents. Rats raised in this condition are often compared to rats raised in an environmentally enriched condition (EC). However, EC rats are repeatedly exposed to forced novelty, another classic stressor in rodents. These studies explored the relationship between cocaine self-administration and glucocorticoid receptor (GR) activation and measured total levels of GR protein in reward-related brain regions (medial prefrontal cortex, orbitofrontal cortex, nucleus accumbens, amygdala) in rats chronically exposed to these conditions. For experiment 1, rats were housed in EC or IC and were then trained to self-administer cocaine. Rats raised in these housing conditions were tested for their cocaine responding after pretreatment with the GR antagonist, RU486, or the GR agonist, corticosterone (CORT). For experiment 2, levels of GR from EC and IC rats were measured in brain regions implicated in drug abuse using Western blot analysis. Pretreatment with RU486 (20 mg/kg) decreased responding for a low unit dose of cocaine (0.03 mg/kg/infusion) in EC rats only. IC rats were unaffected by RU486 pretreatment, but earned significantly more cocaine than EC rats after pretreatment with CORT (10 mg/kg). No difference in GR expression was found between EC and IC rats in any brain area examined. These results, along with previous literature, suggest that enrichment enhances responsivity of the HPA axis related to cocaine reinforcement, but this effect is unlikely due simply to differential baseline GR expression in areas implicated in drug abuse. PMID:25655510

  2. Glucocorticoid receptors in the retina, Müller glia and the formation of Müller glia-derived progenitors

    PubMed Central

    Gallina, Donika; Zelinka, Christopher; Fischer, Andy J.

    2014-01-01

    Identification of the signaling pathways that influence the reprogramming of Müller glia into neurogenic retinal progenitors is key to harnessing the potential of these cells to regenerate the retina. Glucocorticoid receptor (GCR) signaling is commonly associated with anti-inflammatory responses and GCR agonists are widely used to treat inflammatory diseases of the eye, even though the cellular targets and mechanisms of action in the retina are not well understood. We find that signaling through GCR has a significant impact upon the ability of Müller glia to become proliferating Müller glia-derived progenitor cells (MGPCs). The primary amino acid sequence and pattern of GCR expression in the retina is highly conserved across vertebrate species, including chickens, mice, guinea pigs, dogs and humans. In all of these species we find GCR expressed by the Müller glia. In the chick retina, we find that GCR is expressed by progenitors in the circumferential marginal zone (CMZ) and is upregulated by Müller glia in acutely damaged retinas. Activation of GCR signaling inhibits the formation of MGPCs and antagonizes FGF2/MAPK signaling in the Müller glia. By contrast, we find that inhibition of GCR signaling stimulates the formation of proliferating MGPCs in damaged retinas, and enhances the neuronal differentiation while diminishing glial differentiation. Given the conserved expression pattern of GCR in different vertebrate retinas, we propose that the functions and mechanisms of GCR signaling are highly conserved and are mediated through the Müller glia. We conclude that GCR signaling directly inhibits the formation of MGPCs, at least in part, by interfering with FGF2/MAPK signaling. PMID:25085975

  3. PA1 protein, a new competitive decelerator acting at more than one step to impede glucocorticoid receptor-mediated transactivation.

    PubMed

    Zhang, Zhenhuan; Sun, Yunguang; Cho, Young-Wook; Chow, Carson C; Simons, S Stoney

    2013-01-01

    Numerous cofactors modulate the gene regulatory activity of glucocorticoid receptors (GRs) by affecting one or more of the following three major transcriptional properties: the maximal activity of agonists (A(max)), the potency of agonists (EC(50)), and the partial agonist activity of antisteroids (PAA). Here, we report that the recently described nuclear protein, Pax2 transactivation domain interaction protein (PTIP)-associated protein 1 (PA1), is a new inhibitor of GR transactivation. PA1 suppresses A(max), increases the EC(50), and reduces the PAA of an exogenous reporter gene in a manner that is independent of associated PTIP. PA1 is fully active with, and strongly binds to, the C-terminal half of GR. PA1 reverses the effects of the coactivator TIF2 on GR-mediated gene induction but is unable to augment the actions of the corepressor SMRT. Analysis of competition assays between PA1 and TIF2 with an exogenous reporter indicates that the kinetic definition of PA1 action is a competitive decelerator at two sites upstream from where TIF2 acts. With the endogenous genes IGFBP1 and IP6K3, PA1 also represses GR induction, increases the EC(50), and decreases the PAA. ChIP and re-ChIP experiments indicate that PA1 accomplishes this inhibition of the two genes via different mechanisms as follows: PA1 appears to increase GR dissociation from and reduce GR transactivation at the IGFBP1 promoter regions but blocks GR binding to the IP6K3 promoter. We conclude that PA1 is a new competitive decelerator of GR transactivation and can act at more than one molecularly defined step in a manner that depends upon the specific gene. PMID:23161582

  4. Epigenetic modifications of the glucocorticoid receptor gene are associated with the vulnerability to psychopathology in childhood maltreatment

    PubMed Central

    Radtke, K M; Schauer, M; Gunter, H M; Ruf-Leuschner, M; Sill, J; Meyer, A; Elbert, T

    2015-01-01

    Stress, particularly when experienced early in life, can have profound implications for mental health. Previous research covering various tissues such as the brain, suggests that the detrimental impact of early-life stress (ELS) on mental health is mediated via epigenetic modifications including DNA methylation. Genes of the hypothalamic–pituitary–adrenal axis—in particular, the glucocorticoid receptor (hGR) gene—stand out as key targets for ELS. Even though the link between hGR methylation and either ELS or psychopathology is fairly well established, the mutually dependent relationships between ELS, DNA methylation and psychopathology remain to be uncovered. The specific psychopathology an individual might develop in the aftermath of stressful events can be highly variable, however, most studies investigating hGR methylation and psychopathology suffer from being limited to a single symptom cluster of mental disorders. Here, we screened volunteers for childhood maltreatment and analyzed whether it associates with hGR methylation in lymphocytes and a range of measures of psychological ill-health. hGR methylation in lymphocytes most likely reflects methylation patterns found in the brain and thus provides valuable insights into the etiology of psychopathology. We find the interaction between childhood maltreatment and hGR methylation to be strongly correlated with an increased vulnerability to psychopathology providing evidence of epigenome × environment interactions. Furthermore, our results indicate an additive effect of childhood maltreatment and hGR methylation in predicting borderline personality disorder (BPD)-associated symptoms, suggesting that the combination of both ELS and DNA methylation that possibly represents unfavorable events experienced even earlier in life poses the risk for BPD. PMID:26080088

  5. Haploinsufficiency for NR3C1, the gene encoding the glucocorticoid receptor, in blastic plasmacytoid dendritic cell neoplasms.

    PubMed

    Emadali, Anouk; Hoghoughi, Neda; Duley, Samuel; Hajmirza, Azadeh; Verhoeyen, Els; Cosset, Francois-Loic; Bertrand, Philippe; Roumier, Christophe; Roggy, Anne; Suchaud-Martin, Céline; Chauvet, Martine; Bertrand, Sarah; Hamaidia, Sieme; Rousseaux, Sophie; Josserand, Véronique; Charles, Julie; Templier, Isabelle; Maeda, Takahiro; Bruder-Costa, Juliana; Chaperot, Laurence; Plumas, Joel; Jacob, Marie-Christine; Bonnefoix, Thierry; Park, Sophie; Gressin, Remy; Tensen, Cornelis P; Mecucci, Cristina; Macintyre, Elizabeth; Leroux, Dominique; Brambilla, Elisabeth; Nguyen-Khac, Florence; Luquet, Isabelle; Penther, Dominique; Bastard, Christian; Jardin, Fabrice; Lefebvre, Christine; Garnache, Francine; Callanan, Mary B

    2016-06-16

    Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and highly aggressive leukemia for which knowledge on disease mechanisms and effective therapies are currently lacking. Only a handful of recurring genetic mutations have been identified and none is specific to BPDCN. In this study, through molecular cloning in an index case that presented a balanced t(3;5)(q21;q31) and molecular cytogenetic analyses in a further 46 cases, we identify monoallelic deletion of NR3C1 (5q31), encoding the glucocorticoid receptor (GCR), in 13 of 47 (28%) BPDCN patients. Targeted deep sequencing in 36 BPDCN cases, including 10 with NR3C1 deletion, did not reveal NR3C1 point mutations or indels. Haploinsufficiency for NR3C1 defined a subset of BPDCN with lowered GCR expression and extremely poor overall survival (P = .0006). Consistent with a role for GCR in tumor suppression, functional analyses coupled with gene expression profiling identified corticoresistance and loss-of-EZH2 function as major downstream consequences of NR3C1 deletion in BPDCN. Subsequently, more detailed analyses of the t(3;5)(q21;q31) revealed fusion of NR3C1 to a long noncoding RNA (lncRNA) gene (lincRNA-3q) that encodes a novel, nuclear, noncoding RNA involved in the regulation of leukemia stem cell programs and G1/S transition, via E2F. Overexpression of lincRNA-3q was a consistent feature of malignant cells and could be abrogated by bromodomain and extraterminal domain (BET) protein inhibition. Taken together, this work points to NR3C1 as a haploinsufficient tumor suppressor in a subset of BPDCN and identifies BET inhibition, acting at least partially via lncRNA blockade, as a novel treatment option in BPDCN. PMID:27060168

  6. Predicting the probability of successful efficacy of a dissociated agonist of the glucocorticoid receptor from dose-response analysis.

    PubMed

    Conrado, Daniela J; Krishnaswami, Sriram; Shoji, Satoshi; Kolluri, Sheela; Hey-Hadavi, Judith; McCabe, Dorothy; Rojo, Ricardo; Tammara, Brinda K

    2016-06-01

    PF-04171327 is a dissociated agonist of the glucocorticoid receptor (DAGR) being developed to retain anti-inflammatory efficacy while reducing unwanted effects. Our aim was to conduct a longitudinal dose-response analysis to identify the DAGR doses with efficacy similar to or greater than prednisone 10 mg once daily (QD). The data included were from a Phase 2, randomized, double-blind, parallel-group study in 323 subjects with active rheumatoid arthritis on a background of methotrexate. Subjects received DAGR 1, 5, 10 or 15 mg, prednisone 5 or 10 mg, or placebo QD for 8 weeks. The Disease Activity Score 28-4 calculated using C-Reactive Protein (DAS28-4 CRP) was the efficacy endpoint utilized in this dose-response model. For DAGR, the maximum effect (Emax) on DAS28-4 CRP was estimated to be -1.2 points (95 % CI -1.7, -0.84), and the evaluated dose range provided 31-87 % of the Emax; for prednisone 5 and 10 mg, the estimated effects were -0.27 (95 % CI -0.55, 0.006) and -0.94 point (95 % CI -1.3, -0.59), respectively. Stochastic simulations indicated that the DAGR 1, 5, 10 and 15 mg have probabilities of 0.9, 29, 54 and 62 %, respectively, to achieve efficacy greater than prednisone 10 mg at week 8. DAGR 9 mg estimated probability was 50 % suggesting that DAGR ≥9 mg QD has an effect on DAS28-4 CRP comparable to or greater than prednisone 10 mg QD. This work informs dose selection for late-stage confirmatory trials. PMID:27178257

  7. Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat

    SciTech Connect

    Piteau, Shalea; Olver, Amy; Kim, Su-Jin; Winter, Kyle; Pospisilik, John Andrew; Lynn, Francis; Manhart, Susanne; Demuth, Hans-Ulrich; Speck, Madeleine; Pederson, Raymond A.; McIntosh, Christopher H.S.

    2007-11-03

    In type 2 diabetes (T2DM) {beta}-cell responsiveness to glucose-dependent insulinotropic polypeptide (GIP) is reduced. In a model of T2DM, the VDF Zucker rat, GIP receptor mRNA and protein levels were shown to be down-regulated. Possible restoration of responsiveness to GIP in Zucker rats by reducing hyperglycemia has been examined. ZDF rats with extreme hyperglycemia demonstrated greater islet GIP receptor mRNA down-regulation (94.3 {+-} 3.8%) than ZF rats (48.8 {+-} 22.8%). GIP receptor mRNA levels in ZDF rats returned to 83.0 {+-} 17.9% of lean following normalization of hyperglycemia by phlorizin treatment and pancreas perfusions demonstrated markedly improved GIP responsiveness. Treatment of VDF rats with a DP IV inhibitor (P32/98) resulted in improved glucose tolerance and restored sensitivity to GIP in isolated pancreata. These findings support the proposal that GIP receptor down-regulation in rodent T2DM is secondary to chronic hyperglycemia and that normalization of glycemia can restore GIP sensitivity.

  8. Luteinizing Hormone Receptor mRNA Down-Regulation Is Mediated through ERK-Dependent Induction of RNA Binding Protein

    PubMed Central

    Menon, Bindu; Franzo-Romain, Megan; Damanpour, Shadi

    2011-01-01

    The ligand-induced down-regulation of LH receptor (LHR) expression in the ovaries, at least in part, is regulated by a posttranscriptional process mediated by a specific LH receptor mRNA binding protein (LRBP). The LH-mediated signaling pathways involved in this process were examined in primary cultures of human granulosa cells. Treatment with 10 IU human chorionic gonadotropin (hCG) for 12 h resulted in the down-regulation of LHR mRNA expression while producing an increase in LHR mRNA binding to LRBP as well as a 2-fold increase in LRBP levels. The activation of ERK½ pathway in LH-mediated LHR mRNA down-regulation was also established by demonstrating the translocation of ERK½ from the cytosol to the nucleus using confocal microcopy. Inhibition of protein kinase A using H-89 or ERK½ by U0126 abolished the LH-induced LHR mRNA down-regulation. These treatments also abrogated both the increases in LRBP levels as well as the LHR mRNA binding activity. The abolishment of the hCG-induced increase in LRBP levels and LHR mRNA binding activity was further confirmed by transfecting granulosa cells with ERK½ specific small interfering RNA. This treatment also reversed the hCG-induced down-regulation of LHR mRNA. These data show that LH-regulated ERK½ signaling is required for the LRBP-mediated down-regulation of LHR mRNA. PMID:21147848

  9. Glucocorticoid receptor haploinsufficiency causes hypertension and attenuates hypothalamic-pituitary-adrenal axis and blood pressure adaptions to high-fat diet.

    PubMed

    Michailidou, Z; Carter, R N; Marshall, E; Sutherland, H G; Brownstein, D G; Owen, E; Cockett, K; Kelly, V; Ramage, L; Al-Dujaili, E A S; Ross, M; Maraki, I; Newton, K; Holmes, M C; Seckl, J R; Morton, N M; Kenyon, C J; Chapman, K E

    2008-11-01

    Glucocorticoid hormones are critical to respond and adapt to stress. Genetic variations in the glucocorticoid receptor (GR) gene alter hypothalamic-pituitary-adrenal (HPA) axis activity and associate with hypertension and susceptibility to metabolic disease. Here we test the hypothesis that reduced GR density alters blood pressure and glucose and lipid homeostasis and limits adaption to obesogenic diet. Heterozygous GR(betageo/+) mice were generated from embryonic stem (ES) cells with a gene trap integration of a beta-galactosidase-neomycin phosphotransferase (betageo) cassette into the GR gene creating a transcriptionally inactive GR fusion protein. Although GR(betageo/+) mice have 50% less functional GR, they have normal lipid and glucose homeostasis due to compensatory HPA axis activation but are hypertensive due to activation of the renin-angiotensin-aldosterone system (RAAS). When challenged with a high-fat diet, weight gain, adiposity, and glucose intolerance were similarly increased in control and GR(betageo/+) mice, suggesting preserved control of intermediary metabolism and energy balance. However, whereas a high-fat diet caused HPA activation and increased blood pressure in control mice, these adaptions were attenuated or abolished in GR(betageo/+) mice. Thus, reduced GR density balanced by HPA activation leaves glucocorticoid functions unaffected but mineralocorticoid functions increased, causing hypertension. Importantly, reduced GR limits HPA and blood pressure adaptions to obesogenic diet. PMID:18697839

  10. Local blockade of glucocorticoid activation reverses stress- and glucocorticoid-induced delays in cutaneous wound healing

    PubMed Central

    Youm, Jong-Kyung; Park, Kyungho; Uchida, Yoshikazu; Chan, Aegean; Mauro, Theodora M.; Holleran, Walter M.; Elias, Peter M.

    2015-01-01

    Stress slows cutaneous wound healing (WH) in an endogenous glucocorticoid (GC)-dependent fashion. We investigated whether stress/GC-induced delays in WH require further intracutaneous activation of endogenous GC; and whether blockade or down-regulation of peripheral activation normalizes WH in the face of stress. Delayed WH in our motion-restricted murine model of stress could be attributed to elevated systemic GC, because blockade of GC production (using corticotropin-releasing factor inhibitor, antalarmin), or of peripheral binding to the GC receptor [GCr], with an antagonist, Ru-486, normalized WH. We next investigated whether local blockade or down-regulation of the peripheral GC-activating enzyme, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), accelerates cutaneous WH. Topical applications of nonspecific (carbenoxolone) as well as an isoform-specific 11β-HSD1 inhibitor overcame stress and exogenous GC-induced delays in WH. Moreover, two liver X receptor ligands, TO901317 and GW3695, down-regulated expression of 11β-HSD1, attenuating stress-induced delays in WH. Combined inhibitor and liver X receptor ligand applications accelerated WH in the face of stress/systemic GC. Thus: (1) intracutaneous conversion of inactive-to-active GC accounts for stress (GC)-induced delays in WH; and (2) blockade or down-regulation of 11β-HSD1 and/or GCr normalize cutaneous WH in the face of stress/GC. Local blockade or down-regulation of cutaneous GC activation could help enhance WH in various clinical settings. PMID:23927023

  11. Forced swim stress but not exogenous corticosterone could induce the reinstatement of extinguished morphine conditioned place preference in rats: involvement of glucocorticoid receptors in the basolateral amygdala.

    PubMed

    Karimi, Sara; Attarzadeh-Yazdi, Ghassem; Yazdi-Ravandi, Saeid; Hesam, Soghra; Azizi, Pegah; Razavi, Yasaman; Haghparast, Abbas

    2014-05-01

    Addiction is a common psychiatric disease and stress has an important role in the drug seeking and relapse behaviors. The involvement of basolateral amygdala (BLA) in the effects of stress on reward pathway is discussed in several studies. In this study, we tried to find out the involvement of glucocorticoid receptors (GRs) in the BLA in stress-induced reinstatement of extinguished morphine-induced conditioned place preference (CPP) in rats. The CPP paradigm was done in adult male Wistar rats weighing 220-320 g, and conditioning score and locomotor activity were recorded by Ethovision software. Animals received effective dose of morphine (5mg/kg) daily, during the 3-day conditioning phase. In extinction phase, rats were put in the CPP box for 30 min a day for 8 days. After extinction, animals were injected by corticosterone (10 m/kg) or exposed to forced swim stress (FSS) 10 min before subcutaneous administration of ineffective dose of morphine (0.5mg/kg) in order to reinstate the extinguished morphine-CPP. To block the glucocorticoid receptors in the BLA, after stereotaxic surgery and placing two cannulae in this area bilaterally, animals received GR antagonist mifepristone (RU38486; 0.3, 3 and 30 ng/0.3 μl DMSO per side) prior to exposure to FSS then each animal received ineffective dose of morphine (0.5mg/kg) as drug-induced reinstatement. The results revealed that physical stress (FSS) but not exogenous corticosterone can significantly induce reinstatement of extinguished morphine-CPP, and intra-BLA mifepristone prevents the stress-induced reinstatement. It can be proposed that stress partially exerts its effect on the reward pathway via glucocorticoid receptors in the BLA. PMID:24508237

  12. The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function.

    PubMed

    Batalha, Vânia L; Ferreira, Diana G; Coelho, Joana E; Valadas, Jorge S; Gomes, Rui; Temido-Ferreira, Mariana; Shmidt, Tatiana; Baqi, Younis; Buée, Luc; Müller, Christa E; Hamdane, Malika; Outeiro, Tiago F; Bader, Michael; Meijsing, Sebastiaan H; Sadri-Vakili, Ghazaleh; Blum, David; Lopes, Luísa V

    2016-01-01

    Caffeine is associated with procognitive effects in humans by counteracting overactivation of the adenosine A2A receptor (A2AR), which is upregulated in the human forebrain of aged and Alzheimer's disease (AD) patients. We have previously shown that an anti-A2AR therapy reverts age-like memory deficits, by reestablishment of the hypothalamic-pituitary-adrenal (HPA) axis feedback and corticosterone circadian levels. These observations suggest that A2AR over-activation and glucocorticoid dysfunction are key events in age-related hippocampal deficits; but their direct connection has never been explored. We now show that inducing A2AR overexpression in an aging-like profile is sufficient to trigger HPA-axis dysfunction, namely loss of plasmatic corticosterone circadian oscillation, and promotes reduction of GR hippocampal levels. The synaptic plasticity and memory deficits triggered by GR in the hippocampus are amplified by A2AR over-activation and were rescued by anti-A2AR therapy; finally, we demonstrate that A2AR act on GR nuclear translocation and GR-dependent transcriptional regulation. We provide the first demonstration that A2AR is a major regulator of GR function and that this functional interconnection may be a trigger to age-related memory deficits. This supports the idea that the procognitive effects of A2AR antagonists, namely caffeine, on Alzheimer's and age-related cognitive impairments may rely on its ability to modulate GR actions. PMID:27510168

  13. The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function

    PubMed Central

    Batalha, Vânia L.; Ferreira, Diana G.; Coelho, Joana E.; Valadas, Jorge S.; Gomes, Rui; Temido-Ferreira, Mariana; Shmidt, Tatiana; Baqi, Younis; Buée, Luc; Müller, Christa E.; Hamdane, Malika; Outeiro, Tiago F.; Bader, Michael; Meijsing, Sebastiaan H.; Sadri-Vakili, Ghazaleh; Blum, David; Lopes, Luísa V.

    2016-01-01

    Caffeine is associated with procognitive effects in humans by counteracting overactivation of the adenosine A2A receptor (A2AR), which is upregulated in the human forebrain of aged and Alzheimer’s disease (AD) patients. We have previously shown that an anti-A2AR therapy reverts age-like memory deficits, by reestablishment of the hypothalamic-pituitary-adrenal (HPA) axis feedback and corticosterone circadian levels. These observations suggest that A2AR over-activation and glucocorticoid dysfunction are key events in age-related hippocampal deficits; but their direct connection has never been explored. We now show that inducing A2AR overexpression in an aging-like profile is sufficient to trigger HPA-axis dysfunction, namely loss of plasmatic corticosterone circadian oscillation, and promotes reduction of GR hippocampal levels. The synaptic plasticity and memory deficits triggered by GR in the hippocampus are amplified by A2AR over-activation and were rescued by anti-A2AR therapy; finally, we demonstrate that A2AR act on GR nuclear translocation and GR-dependent transcriptional regulation. We provide the first demonstration that A2AR is a major regulator of GR function and that this functional interconnection may be a trigger to age-related memory deficits. This supports the idea that the procognitive effects of A2AR antagonists, namely caffeine, on Alzheimer’s and age-related cognitive impairments may rely on its ability to modulate GR actions. PMID:27510168

  14. Glucocorticoids Induce Cardiac Fibrosis via Mineralocorticoid Receptor in Oxidative Stress: Contribution of Elongation Factor Eleven-Nineteen Lysine-Rich Leukemia (ELL)

    PubMed Central

    Omori, Yosuke; Mano, Toshiaki; Ohtani, Tomohito; Sakata, Yasushi; Takeda, Yasuharu; Tamaki, Shunsuke; Tsukamoto, Yasumasa; Miwa, Takeshi; Yamamoto, Kazuhiro; Komuro, Issei

    2014-01-01

    Background Cardiac fibrosis is considered to be a crucial factor in the development of heart failure. Blockade of the mineralocorticoid receptor (MR) attenuated cardiac fibrosis and improved the prognosis of patients with chronic heart failure but the ligand for MR and the regulatory mechanism of MR pathway in the diseased heart are unclear. Here, we investigated whether glucocorticoids can promote cardiac fibrosis through MR in oxidative stress and the involvement of elongation factor eleven-nineteen lysine-rich leukemia (ELL), a co-activator of MR, in this pathway. Methods and Results The MR antagonist eplerenone attenuated corticosterone-induced collagen synthesis assessed by [3H]proline incorporation in rat neonatal cultured cardiac fibroblasts in the presence of H2O2, as an oxidative stress but not in the absence of H2O2. H2O2 increased the ELL expression levels and MR-bound ELL. ELL expression levels and MR-bound ELL were also increased in the left ventricle of heart failure model rats with significant fibrosis and enhanced oxidative stress. Eplerenone did not attenuate corticosterone-induced increase of [3H]proline incorporation in the presence of H2O2 after knockdown of ELL expression using small interfering RNA in cardiac fibroblasts. Conclusion Glucocorticoids can promote cardiac fibrosis via MR in oxidative stress, and oxidative stress modulates MR response to glucocorticoids through the interaction with ELL. Preventing cardiac fibrosis by modulating glucocorticoid-MR-ELL pathway may become a new therapeutic strategy for heart failure. PMID:25349466

  15. Specificity and sensitivity of glucocorticoid signaling in health and disease.

    PubMed

    Cain, Derek W; Cidlowski, John A

    2015-08-01

    Endogenous glucocorticoids regulate a variety of physiologic processes and are crucial to the systemic stress response. Glucocorticoid receptors are expressed throughout the body, but there is considerable heterogeneity in glucocorticoid sensitivity and induced biological responses across tissues. The immunoregulatory properties of glucocorticoids are exploited in the clinic for the treatment of inflammatory and autoimmune disorders as well as certain hematological malignancies, but adverse side effects hamper prolonged use. Fully understanding the molecular events that shape the physiologic effects of glucocorticoid treatment will provide insight into optimal glucocorticoid therapies, reliable assessment of glucocorticoid sensitivity in patients, and may advance the development of novel GR agonists that exert immunosuppressive effects while avoiding harmful side effects. In this review, we provide an overview of mechanisms that affect glucocorticoid specificity and sensitivity in health and disease, focusing on the distinct isoforms of the glucocorticoid receptor and their unique regulatory and functional properties. PMID:26303082

  16. Icariin exerts estrogen-like activity in ameliorating EAE via mediating estrogen receptor β, modulating HPA function and glucocorticoid receptor expression

    PubMed Central

    Wei, Zhisheng; Wang, Mengxia; Hong, Mingfan; Diao, Shengpeng; Liu, Aiqun; Huang, Yeqing; Yu, Qingyun; Peng, Zhongxing

    2016-01-01

    Background: Estrogen exerts neuroprotective and anti-inflammatory effects in EAE and multiple sclerosis (MS), but its clinical application is hindered due to side effects and risk of tumor. Phytoestrogen structurally or functionally mimics estrogen with fewer side effects than endogenous estrogen. Icariin (ICA), an active component of Epimedium extracts, demonstrates estrogen-like neuroprotective effects. However, it is unclear whether ICA is effective in EAE and what are the underlying mechanisms. Objective: To determine the therapeutic effects of ICA in EAE and explore the possible mechanisms. Methods: C57BL/6 EAE mice were treated with Diethylstilbestrol, different dose of ICA and mid-dose ICA combined with ICI 182780. The clinical scores and serum Interleukin-17 (IL-17), Corticosterone (CORT) concentrations were then analyzed. Western blot were performed to investigate the expressions of glucocorticoid receptor (GR), estrogen receptor alpha (ERα) and ERβ in the cerebral white matter of EAE mice. Results: High dose ICA is equally effective in ameliorating neurological signs of EAE as estrogen. Estrogen and ICA has no effects on serum concentrations of IL-17 in EAE. While the CORT levels were decreased by ICA at mid or high doses, the expressions of GR, ERα and ERβ were up-regulated by estrogen or different doses of ICA in a dosedependent manner. Estrogen induced the elevation of ERα more markedly than ICA. In contrast, ICA at mid and high doses promoted ERβ more significantly than estrogen. Conclusion: ICA exerts estrogen-like activity in ameliorating EAE via mediating ERβ, modulating HPA function and up-regulating the expression of GR in cerebral white matter. ICA may be a promising therapeutic option for MS. PMID:27186315

  17. An analysis of glucocorticoid receptor-mediated gene expression in BEAS-2B human airway epithelial cells identifies distinct, ligand-directed, transcription profiles with implications for asthma therapeutics

    PubMed Central

    Joshi, T; Johnson, M; Newton, R; Giembycz, M

    2015-01-01

    Background and Purpose International asthma guidelines recommend that inhaled glucocorticoids be used as a monotherapy in all patients with mild to moderate disease because of their ability to suppress airways inflammation. Current evidence suggests that the therapeutic benefit of glucocorticoids is due to the transactivation and transrepression of anti-inflammatory and pro-inflammatory genes respectively. However, the extent to which clinically relevant glucocorticoids are equivalent in their ability to modulate gene expression is unclear. Experimental Approach A pharmacodynamics investigation of glucocorticoid receptor (GR)-mediated gene transactivation in BEAS-2B human airway epithelial cells was performed using a glucocorticoid response element luciferase reporter coupled with an analysis of glucocorticoid-inducible genes encoding proteins with anti-inflammatory and adverse-effect potential. Key Results Using transactivation as a functionally relevant output, a given glucocorticoid displayed a unique, gene expression ‘fingerprint’ where intrinsic efficacy and GR density were essential determinants. We showed that depending on the gene selected for analysis, a given glucocorticoid can behave as an antagonist, partial agonist, full agonist or even ‘super agonist’. In the likely event that different, tissue-dependent gene expression profiles are reproduced in vivo, then the anti-inflammatory and adverse-effect potential of many glucocorticoids currently available as asthma therapeutics may not be equivalent. Conclusions and Implications The generation of gene expression ‘fingerprints’ in target and off-target human tissues could assist the rational design of GR agonists with improved therapeutic ratios. This approach could identify compounds that are useful in the management of severe asthma and other inflammatory disorders where systemic exposure is desirable. PMID:25393397

  18. Distribution of beta-adrenergic receptors in failing human myocardium. Implications for mechanisms of down-regulation

    SciTech Connect

    Murphree, S.S.; Saffitz, J.E.

    1989-06-01

    The density of beta-adrenergic receptors is reduced in crude membranes prepared from failing human myocardium. We used quantitative autoradiography of radioligand binding sites in intact tissue slices to determine whether the total tissue content of receptors is reduced and to characterize the transmural distribution of receptors in cardiac myocytes and the coronary vasculature in hearts obtained from nine cardiac transplant patients with severe congestive failure. Binding of (125Iodo)cyanopindolol to transmural slices of human myocardium was rapid, saturable, stereoselective, and displaceable by agonists and antagonists with an appropriate rank order of potency. Binding isotherms in four normal and nine failing ventricles showed a significant reduction in the total tissue content of beta-receptors in failing myocardium (38.3 +/- 2.0 fmol/mg protein) compared with normal tissue (52.4 +/- 1.7 fmol/mg protein, p = 0.038). In the normal ventricles, the greatest receptor density was observed autoradiographically in myocytic regions of the subendocardium. Receptor density of the coronary arterioles was approximately 70% of that in adjacent myocytic regions. The density of binding sites in both myocytic regions and arterioles was diminished in all regions of the failing ventricles, but down-regulation was due primarily to a selective reduction of beta-receptors of subendocardial myocytes (63 +/- 5% of subepicardial receptor density vs. 115 +/- 6% in controls, p less than 0.0001). These observations indicate that down-regulation occurs nonuniformly in the transmural distribution and thus is likely not related simply to elevated circulating catecholamine levels.

  19. Downregulation of the T-Cell Receptor by Human Immunodeficiency Virus Type 2 Nef Does Not Protect against Disease Progression▿

    PubMed Central

    Feldmann, Jérôme; Leligdowicz, Aleksandra; Jaye, Assan; Dong, Tao; Whittle, Hilton; Rowland-Jones, Sarah L.

    2009-01-01

    Chronic immune activation is thought to play a major role in human immunodeficiency virus (HIV) pathogenesis, but the relative contributions of multiple factors to immune activation are not known. One proposed mechanism to protect against immune activation is the ability of Nef proteins from some HIV and simian immunodeficiency virus strains to downregulate the T-cell receptor (TCR)-CD3 complex of the infected cell, thereby reducing the potential for deleterious activation. HIV type 1 (HIV-1) Nef has lost this property. In contrast to HIV-1, HIV-2 infection is characterized by a marked disparity in the disease course, with most individuals maintaining a normal life span. In this study, we examined the relationship between the ability of HIV-2 Nef proteins to downregulate the TCR and immune activation, comparing progressors and nonprogressors. Representative Nef variants were isolated from 28 HIV-2-infected individuals. We assessed their abilities to downregulate the TCR from the surfaces of CD4 T cells. In the same individuals, the activation of peripheral lymphocytes was evaluated by measurement of the expression levels of HLA-DR and CD38. We observed a striking correlation of the TCR downregulation efficiency of HIV-2 Nef variants with immune activation in individuals with a low viral load. This strongly suggests that Nef expression can influence the activation state of the immune systems of infected individuals. However, the efficiency of TCR downregulation by Nef was not reduced in progressing individuals, showing that TCR downregulation does not protect against progression in HIV-2 infection. PMID:19812166

  20. Design and x-ray crystal structures of high-potency nonsteroidal glucocorticoid agonists exploiting a novel binding site on the receptor

    SciTech Connect

    Biggadike, Keith; Bledsoe, Randy K.; Coe, Diane M.; Cooper, Tony W.J.; House, David; Iannone, Marie A.; Macdonald, Simon J.F.; Madauss, Kevin P.; McLay, Iain M.; Shipley, Tracy J.; Taylor, Simon J.; Tran, Thuy B.; Uings, Iain J.; Weller, Victoria; Williams, Shawn P.

    2010-09-17

    Crystallography and computer modeling have been used to exploit a previously unexplored channel in the glucocorticoid receptor (GR). Highly potent, nonsteroidal indazole amides showing excellent complementarity to the channel were designed with the assistance of the computational technique AlleGrow. The accuracy of the design process was demonstrated through crystallographic structural determination of the GR ligand-binding domain-agonist complex of the D-prolinamide derivative 11. The utility of the channel was further exemplified through the design of a potent phenylindazole in which structural motifs, seen to interact with the traditional GR ligand pocket, were abandoned and replaced by interactions within the new channel. Occupation of the channel was confirmed with a second GR crystal structure of this truncated D-alaninamide derivative 13. Compound 11 displays properties compatible with development as an intranasal solution formulation, whereas oral bioavailability has been demonstrated with a related truncated exemplar 14. Data with the pyrrolidinone amide 12 demonstrate the potential for further elaboration within the 'meta' channel to deliver compounds with selectivity for the desired transrepressive activity of glucocorticoids. The discovery of these interactions with this important receptor offers significant opportunities for the design of novel GR modulators.

  1. Pharmacological Inhibition of O-GlcNAcase Does Not Increase Sensitivity of Glucocorticoid Receptor-Mediated Transrepression

    PubMed Central

    Stivers, Peter J.; Harmonay, Lauren; Hicks, Alexandra; Mehmet, Huseyin; Morris, Melody; Robinson, Gain M.; Strack, Peter R.; Savage, Mary J.; Zaller, Dennis M.; Zwierzynski, Izabela; Brandish, Philip E.

    2015-01-01

    Glucocorticoid signaling regulates target genes by multiple mechanisms, including the repression of transcriptional activities of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) though direct protein-protein interactions and subsequent O-GlcNAcylation of RNA polymerase II (pol II). Recent studies have shown that overexpression of O-linked β-N-acetylglucosamine transferase (OGT), which adds an O-linked β-N-acetylglucosamine (O-GlcNAc) group to the C-terminal domain of RNA pol II, increases the transrepression effects of glucocorticoids (GC). As O-GlcNAcase (OGA) is an enzyme that removes O-GlcNAc from O-GlcNAcylated proteins, we hypothesized that the potentiation of GC effects following OGT overexpression could be similarly observed via the direct inhibition of OGA, inhibiting O-GlcNAc removal from pol II. Here we show that despite pharmacological evidence of target engagement by a selective small molecule inhibitor of OGA, there is no evidence for a sensitizing effect on glucocorticoid-mediated effects on TNF-α promoter activity, or gene expression generally, in human cells. Furthermore, inhibition of OGA did not potentiate glucocorticoid–induced apoptosis in several cancer cell lines. Thus, despite evidence for O-GlcNAc modification of RNA pol II in GR-mediated transrepression, our data indicate that pharmacological inhibition of OGA does not potentiate or enhance glucocorticoid-mediated transrepression. PMID:26670328

  2. The first X-ray crystal structure of the glucocorticoid receptor bound to a non-steroidal agonist

    SciTech Connect

    Madauss, Kevin P.; Bledsoe, Randy K.; Mclay, Iain; Stewart, Eugene L.; Uings, Iain J.; Weingarten, Gordon; Williams, Shawn P.

    2009-07-23

    The amino-pyrazole 2,6-dichloro-N-ethyl benzamide 1 is a selective GR agonist with dexamethasone-like in vitro potency. Its X-ray crystal structure in the GR LBD (Glucocorticoid ligand-binding domain) is described and compared to other reported structures of steroidal GR agonists in the GR LBD (3E7C).

  3. Morphine-induced desensitization and down-regulation at mu-receptors in 7315C pituitary tumor cells

    SciTech Connect

    Puttfarcken, P.S.; Cox, B.M. )

    1989-01-01

    Pituitary 7315c tumor cells maintained in culture were treated with varying concentrations of morphine from 10 nM to 300 {mu}M, for periods of five or forty-eight hours. The ability of the mu-opioid receptor agonist, DAMGO, to inhibit forskolin-stimulated adenylyl cyclase in washed membrane preparations from the treated cells was compared with its activity in membranes from cells incubated in the absence of added morphine. In the same membrane preparations, the number and affinity of mu-opioid receptors was estimated by measurements of ({sup 3}H)diprenorphine binding. After 5 hr of treatment with morphine concentrations of 100 nM or higher, a significant reduction in inhibition of adenylyl cyclase by DAMGO was observed. Little further loss of agonist activity was observed when the incubations were extended to 48 hr. After 5 hr of morphine treatment, there was no change in either the number of receptors, or their affinity for ({sup 3}H)diprenorphine. However after 48 hr of morphine treatment, greater than 25% reductions in receptor number were apparent with morphine pretreatment concentrations of 10 {mu}M or higher. These results suggest that opioid tolerance in this system is primarily associated with a reduced ability of agonist-occupied receptor to activate the effector system. Receptor down-regulation was not necessary for loss of agonist response, although a reduction in receptor number occurred after exposure to high concentrations of morphine for periods longer than 5hr.

  4. Knockdown of GnT-Va expression inhibits ligand-induced downregulation of the epidermal growth factor receptor and intracellular signaling by inhibiting receptor endocytosis

    PubMed Central

    Guo, Hua-Bei; Johnson, Heather; Randolph, Matthew; Lee, Intaek; Pierce, Michael

    2009-01-01

    Changes in the expression of N-glycan branching glycosyltransferases can alter cell surface receptor functions, involving their levels of cell surface retention, rates of internalization into the endosomal compartment, and subsequent intracellular signaling. To study in detail the regulation of signaling of the EGF receptor (EGFR) by GlcNAcβ(1,6)Man branching, we utilized specific siRNA to selectively knockdown GnT-Va expression in the highly invasive human breast carcinoma line MDA-MB231, which resulted in the attenuation of its invasiveness-related phenotypes. Compared to control cells, ligand-induced downregulation of EGFR was significantly inhibited in GnT-Va-suppressed cells. This effect could be reversed by re-expression of GnT-Va, indicating that changes in ligand-induced receptor downregulation were dependent on GnT-Va activity. Knockdown of GnT-Va had no significant effect on c-Cbl mediated receptor ubiquitination and degradation, but did cause the inhibition of receptor internalization, showing that altered signaling and delayed ligand-induced downregulation of EGFR expression resulted from decreased EGFR endocytosis. Similar results were obtained with HT1080 fibrosarcoma cells treated with GnT-Va siRNA. Inhibited receptor internalization caused by the expression of GnT-Va siRNA appeared to be independent of galectin binding since decreased EGFR internalization in the knockdown cells was not affected by the treatment of the cells with lactose, a galectin inhibitor. Our results show that decreased GnT-Va activity due to siRNA expression in human carcinoma cells inhibits ligand-induced EGFR internalization, consequently resulting in delayed downstream signal transduction and inhibition of the EGF-induced, invasiveness-related phenotypes. PMID:19225046

  5. Interactions between N-Ethylmaleimide-sensitive factor and GluA2 contribute to effects of glucocorticoid hormones on AMPA receptor function in the rodent hippocampus.

    PubMed

    Xiong, Hui; Cassé, Frédéric; Zhou, Ming; Xiong, Zhi-Qi; Joels, Marian; Martin, Stéphane; Krugers, Harm J

    2016-07-01

    Glucocorticoid hormones, via activation of their receptors, promote memory consolidation, but the exact underlying mechanisms remain elusive. We examined how corticosterone regulates AMPA receptor (AMPAR) availability in the synapse, which is important for synaptic plasticity and memory formation. Peptides which specifically block the interaction between N-Ethylmaleimide-Sensitive Factor (NSF) and the AMPAR-subunit GluA2 prevented the increase in synaptic transmission and surface expression of AMPARs known to occur after corticosterone application to hippocampal neurons. Combining a live imaging Fluorescence Recovery After Photobleaching (FRAP) approach with the use of the pH-sensitive GFP-AMPAR tagging revealed that this NSF/GluA2 interaction was also essential for the increase of the mobile fraction and reduction of the diffusion of AMPARs after treating hippocampal neurons with corticosterone. We conclude that the interaction between NSF and GluA2 contributes to the effects of corticosterone on AMPAR function. © 2016 Wiley Periodicals, Inc. PMID:26766634

  6. Effect of Lipopolysaccharide on Glucocorticoid Receptor Function in Control Nasal Mucosa Fibroblasts and in Fibroblasts from Patients with Chronic Rhinosinusitis with Nasal Polyps and Asthma

    PubMed Central

    Fernández-Bertolín, Laura; Mullol, Joaquim; Fuentes-Prado, Mireya; Roca-Ferrer, Jordi; Alobid, Isam; Picado, César; Pujols, Laura

    2015-01-01

    Background Chronic rhinosinusitis with nasal polyps (CRSwNP) is a chronic inflammatory disease of the upper airways frequently associated with asthma. Bacterial infection is a feature of CRSwNP that can aggravate the disease and the response to glucocorticoid treatment. Objective We examined whether the bacterial product lipopolysaccharide (LPS) reduces glucocorticoid receptor (GR) function in control nasal mucosa (NM) fibroblasts and in nasal polyp (NP) fibroblasts from patients with CRSwNP and asthma. Methods NP (n = 12) and NM fibroblasts (n = 10) were in vitro pre-incubated with LPS (24 hours) prior to the addition of dexamethasone. Cytokine/chemokine secretion was measured by ELISA and Cytometric Bead Array. GRα, GRβ, mitogen-activated protein-kinase phosphatase-1 (MKP-1) and glucocorticoid-induced leucine zipper (GILZ) expression was measured by RT-PCR and immunoblotting, GRα nuclear translocation by immunocytochemistry, and GRβ localization by immunoblotting. The role of MKP-1 and GILZ on dexamethasone-mediated cytokine inhibition was analyzed by small interfering RNA silencing. Results Pre-incubation of nasal fibroblasts with LPS enhanced the secretion of IL-6, CXCL8, RANTES, and GM-CSF induced by FBS. FBS-induced CXCL8 secretion was higher in NP than in NM fibroblasts. LPS effects on IL-6 and CXCL8 were mediated via activation of p38α/β MAPK and IKK/NF-κB pathways. Additionally, LPS pre-incubation: 1) reduced dexamethasone’s capacity to inhibit FBS-induced IL-6, CXCL8 and RANTES, 2) reduced dexamethasone-induced GRα nuclear translocation (only in NM fibroblasts), 3) did not alter GRα/GRβ expression, 4) decreased GILZ expression, and 5) did not affect dexamethasone’s capacity to induce MKP-1 and GILZ expression. MKP-1 knockdown reduced dexamethasone’s capacity to suppress FBS-induced CXCL8 release. Conclusion The bacterial product LPS negatively affects GR function in control NM and NP fibroblasts by interfering with the capacity of the

  7. Demonstration by transfection studies that mutations in the adrenocorticotropin receptor gene are one cause of the hereditary syndrome of glucocorticoid deficiency

    SciTech Connect

    Naville, D.; Barjhoux, L.; Jaillard, C.

    1996-04-01

    The hereditary syndrome of unresponsiveness to ACTH is a rare autosomal recessive disorder characterized by low levels of serum cortisol and high levels of plasma ACTH. There is no cortisol response to exogenous ACTH. Recent cloning of the human ACTH receptor gene has enabled us to study this gene in patients with glucocorticoid deficiency. By using the PCR to amplify the coding sequence of the ACTH receptor gene, we identified three mutations in two unrelated patients. One mutation present in homozygous form converted the negatively charged Asp{sup 107}, located in the third transmembrane domain, to an uncharged Asn residue. The second patient was a compound heterozygote: the paternal allele contained a one-nucleotide insertion leading to a stop codon within the third extracellular loop, and the maternal allele contained a point mutation converting Cys{sup 235} to Phe, also in the third extracellular loop. Normal and mutant ACTH receptor genes were expressed in the M3 cell line, and intracellular cAMP production in response to ACTH was measured. For the mutant receptors, no response to physiological ACTH concentrations was detected, suggesting an impaired binding of ACTH to the receptors and/or an altered coupling to the adenylate cyclase effector. 24 refs., 6 figs., 2 tabs.

  8. Glucocorticoid receptor deletion from the dorsal raphé nucleus of mice reduces dysphoria-like behavior and impairs hypothalamic-pituitary-adrenocortical axis feedback inhibition

    PubMed Central

    Vincent, Melanie Y.; Jacobson, Lauren

    2014-01-01

    Glucocorticoids can cause depression and anxiety. Mechanisms for glucocorticoid effects on mood are largely undefined. The dorsal raphé nucleus (DRN) produces the majority of serotonin in the brain, and expresses glucocorticoid receptors (GR). Since we previously showed that antidepressants used to treat depression and anxiety decrease DRN GR expression, we hypothesized that deleting DRN GR would have anxiolytic- and antidepressant-like effects. We also hypothesized that DRN GR deletion would disinhibit activity of the hypothalamic pituitary adrenal (HPA) axis. Adeno-associated virus pseudotype AAV2/9 expressing either Cre recombinase (DRNGRKO mice) or GFP (DRN-GFP mice) was injected into the DRN of floxed GR mice to test these hypotheses. Three weeks after injection, mice underwent 10d of social defeat or control handling and tested for anxiety-like behavior (open field test, elevated plus maze), depression-like behavior (sucrose preference, forced swim test (FST), tail suspension (TST)), social interaction, and circadian and stress-induced HPA activity. DRN GR deletion decreased anxiety-like behavior in control but not in defeated mice. DRN GR deletion decreased FST and tended to decrease TST despair-like behavior in both control and defeated mice, but did not affect sucrose preference. Exploration of social (a novel mouse) as well as neutral targets (an empty box) was increased in DRNGRKO mice, suggesting that DRN GR deletion also promotes active coping. DRN GR deletion increased stress-regulated HPA activity without strongly altering circadian HPA activity. We have shown a novel role for DRN GR to mediate anxiety- and despair-like behavior and to regulate HPA negative feedback during acute stress. PMID:24684372

  9. Identification of Eight Different Isoforms of the Glucocorticoid Receptor in Guinea Pig Placenta: Relationship to Preterm Delivery, Sex and Betamethasone Exposure

    PubMed Central

    Saif, Zarqa; Dyson, Rebecca M.; Palliser, Hannah K.; Wright, Ian M. R.; Lu, Nick; Clifton, Vicki L.

    2016-01-01

    The placental glucocorticoid receptor (GR) is central to glucocorticoid signalling and for mediating steroid effects on pathways associated with fetal growth and lung maturation but the GR has not been examined in the guinea pig placenta even though this animal is regularly used as a model of preterm birth and excess glucocorticoid exposure. Guinea pig dams received subcutaneous injections of either vehicle or betamethasone at 24 and 12 hours prior to preterm or term caesarean-section delivery. At delivery pup and organ weights were recorded. Placentae were dissected, weighed and analysed using Western blot to examine GR isoform expression in nuclear and cytoplasmic extracts. A comparative examination of the guinea pig GR gene identified it is capable of producing seven of the eight translational GR isoforms which include GRα-A, C1, C2, C3, D1, D2, and D3. GRα-B is not produced in the Guinea Pig. Total GR antibody identified 10 specific bands from term (n = 29) and preterm pregnancies (n = 27). Known isoforms included GRγ, GRα A, GRβ, GRP, GRA and GRα D1-3. There were sex and gestational age differences in placental GR isoform expression. Placental GRα A was detected in the cytoplasm of all groups but was significantly increased in the cytoplasm and nucleus of preterm males and females exposed to betamethasone and untreated term males (KW-ANOVA, P = 0.0001, P = 0.001). Cytoplasmic expression of GRβ was increased in female preterm placentae and preterm and term male placentae exposed to betamethasone (P = 0.01). Nuclear expression of GRβ was increased in all placentae exposed to betamethasone (P = 0.0001). GRα D2 and GRα D3 were increased in male preterm placentae when exposed to betamethasone (P = 0.01, P = 0.02). The current data suggests the sex-specific placental response to maternal betamethasone may be dependent on the expression of a combination of GR isoforms. PMID:26840867

  10. Identification of Eight Different Isoforms of the Glucocorticoid Receptor in Guinea Pig Placenta: Relationship to Preterm Delivery, Sex and Betamethasone Exposure.

    PubMed

    Saif, Zarqa; Dyson, Rebecca M; Palliser, Hannah K; Wright, Ian M R; Lu, Nick; Clifton, Vicki L

    2016-01-01

    The placental glucocorticoid receptor (GR) is central to glucocorticoid signalling and for mediating steroid effects on pathways associated with fetal growth and lung maturation but the GR has not been examined in the guinea pig placenta even though this animal is regularly used as a model of preterm birth and excess glucocorticoid exposure. Guinea pig dams received subcutaneous injections of either vehicle or betamethasone at 24 and 12 hours prior to preterm or term caesarean-section delivery. At delivery pup and organ weights were recorded. Placentae were dissected, weighed and analysed using Western blot to examine GR isoform expression in nuclear and cytoplasmic extracts. A comparative examination of the guinea pig GR gene identified it is capable of producing seven of the eight translational GR isoforms which include GRα-A, C1, C2, C3, D1, D2, and D3. GRα-B is not produced in the Guinea Pig. Total GR antibody identified 10 specific bands from term (n = 29) and preterm pregnancies (n = 27). Known isoforms included GRγ, GRα A, GRβ, GRP, GRA and GRα D1-3. There were sex and gestational age differences in placental GR isoform expression. Placental GRα A was detected in the cytoplasm of all groups but was significantly increased in the cytoplasm and nucleus of preterm males and females exposed to betamethasone and untreated term males (KW-ANOVA, P = 0.0001, P = 0.001). Cytoplasmic expression of GRβ was increased in female preterm placentae and preterm and term male placentae exposed to betamethasone (P = 0.01). Nuclear expression of GRβ was increased in all placentae exposed to betamethasone (P = 0.0001). GRα D2 and GRα D3 were increased in male preterm placentae when exposed to betamethasone (P = 0.01, P = 0.02). The current data suggests the sex-specific placental response to maternal betamethasone may be dependent on the expression of a combination of GR isoforms. PMID:26840867

  11. New dimension of glucocorticoids in cancer treatment.

    PubMed

    Lin, Kai-Ti; Wang, Lu-Hai

    2016-07-01

    Glucocorticoids have been used in clinical oncology for over half a century. The clinical applications of glucocorticoids in oncology are mainly dependent on their pro-apoptotic action to treat lymphoproliferative disorders, and also on alleviating side effects induced by chemotherapy or radiotherapy in non-hematologic cancer types. Researches in the past few years have begun to unveil the profound complexity of glucocorticoids signaling and have contributed remarkably on therapeutic strategies. However, it remains striking and puzzling how glucocorticoids use different mechanisms in different cancer types and different targets to promote or inhibit tumor progression. In this review, we provide an update on glucocorticoids and its receptor, GR-mediated signaling and highlight some of the latest findings on the actions of glucocorticoids signaling during tumor progression and metastasis. PMID:26930575

  12. Amphetamine Up-Regulates AGS1 mRNA and Protein Levels in Rat Frontal Cortex: The Role of Dopamine and Glucocorticoid Receptors

    PubMed Central

    Schwendt, Marek; McGinty, Jacqueline F.

    2010-01-01

    Acute and chronic exposure to psychostimulants results in altered function of G-protein-coupled receptors in the forebrain. It is believed that neuroadaptations in G-protein signaling contribute to behavioral sensitivity to psychostimulants that persists over a prolonged drug-free period. Proteins termed activators of G-protein signaling (AGS) have been characterized as potent modulators of both receptor-dependent and receptor-independent G-protein signaling. Nevertheless, the regulation of AGS gene and protein expression by psychostimulants remains poorly understood. In the present study, we investigated amphetamine (AMPH)-induced changes in expression patterns of several forebrain-enriched AGS proteins. A single exposure to AMPH (2.5 mg/kg i.p.) selectively induced gene expression of AGS1, but not Rhes or AGS3 proteins, in the rat prefrontal cortex (PFC) as measured 3h later. Induction of AGS1 mRNA in the PFC by acute AMPH was transient and dose-dependent. Even repeated treatment with AMPH for 5 days did not produce lasting changes in AGS1 mRNA and protein levels in the PFC as measured three weeks post treatment. However, at this time point, a low dose AMPH challenge (1 mg/kg, i.p.) induced a robust behavioral response and up-regulated AGS1 expression in the PFC selectively in animals with an AMPH history. The effects of AMPH on AGS1 expression in the PFC were blocked by a D2, but not D1, dopamine receptor antagonist and partially by a glucocorticoid receptor antagonist. Collectively, the present study suggests that (1) AGS1 represents a regulator of G-protein signaling that is rapidly inducible by AMPH in the frontal cortex, (2) AGS1 regulation in the PFC parallels behavioral activation by acute AMPH in drug-naïve animals and hypersensitivity to AMPH challenge in sensitized animals, and (3) D2 dopamine and glucocorticoid receptors regulate AMPH effects on AGS1 in the PFC. Changes in AGS1 levels in the PFC may result in abnormal receptor-to-G-protein coupling

  13. Blockade of interleukin-6 receptor enhances the anti-arthritic effect of glucocorticoids without decreasing bone mineral density in mice with collagen-induced arthritis.

    PubMed

    Suzuki, M; Yoshida, H; Hashizume, M; Tanaka, K; Matsumoto, Y

    2015-11-01

    In a mouse arthritis model, we investigated whether interleukin-6 receptor (IL-6R) blockade would enhance the anti-arthritic effect of glucocorticoids (GCs). DBA/1J mice were immunized with type II collagen (CII), and were treated with prednisolone (PSL) and/or anti-mouse IL-6R antibody (MR16-1). Also, the effects of IL-6 on gene expression and the nuclear translocation of glucocorticoid receptors (GRs) were examined in cultured cells treated with dexamethasone (DEX). PSL reduced the arthritis score dose-dependently in the collagen-induced arthritis (CIA) mouse model. The arthritis score in the PSL (3 mg/kg) + MR16-1 group was lower than in the PSL (3 mg/kg) group, and at the same level as in the PSL (6 mg/kg) group. Lumbar vertebra bone mineral density (BMD) was decreased significantly in CIA mice and was higher in the PSL (3 mg/kg) + MR16-1 group than in the PSL (6 mg/kg) group. In the in-vitro synovial cells, IL-6 pretreatment attenuated the inhibitory effect of DEX on cyclooxygenase (COX)-2 expression and inhibited the nuclear translocation of GR induced by DEX. In contrast, in MC3T3-E1 osteoblastic cells, IL-6 pretreatment exacerbated the decrease in expression of osteocalcin and the increase in expression of receptor activator of nuclear factor kappa-B ligand (RANKL) by DEX. We demonstrated that IL-6 signalling blockade by an anti-IL-6R antibody can augment the anti-arthritic effect of GCs and inhibit the bone loss they cause. PMID:26201536

  14. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene.

    PubMed

    Chu, Weiwei; Wei, Wei; Yu, Shigang; Han, Haiyin; Shi, Xiaoli; Sun, Wenxing; Gao, Ying; Zhang, Lifan; Chen, Jie

    2016-03-25

    Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1 preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes. PMID:26896766

  15. Compound A, a Dissociated Glucocorticoid Receptor Modulator, Inhibits T-bet (Th1) and Induces GATA-3 (Th2) Activity in Immune Cells

    PubMed Central

    Ferraz-de-Paula, Viviane; Palermo-Neto, Joao; Castro, Carla N.; Druker, Jimena; Holsboer, Florian; Perone, Marcelo J.; Gerlo, Sarah; De Bosscher, Karolien; Haegeman, Guy; Arzt, Eduardo

    2012-01-01

    Background Compound A (CpdA) is a dissociating non-steroidal glucocorticoid receptor (GR) ligand which has anti-inflammatory properties exerted by down-modulating proinflammatory gene expression. By favouring GR monomer formation, CpdA does not enhance glucocorticoid (GC) response element-driven gene expression, resulting in a reduced side effect profile as compared to GCs. Considering the importance of Th1/Th2 balance in the final outcome of immune and inflammatory responses, we analyzed how selective GR modulation differentially regulates the activity of T-bet and GATA-3, master drivers of Th1 and Th2 differentiation, respectively. Results Using Western analysis and reporter gene assays, we show in murine T cells that, similar to GCs, CpdA inhibits T-bet activity via a transrepressive mechanism. Different from GCs, CpdA induces GATA-3 activity by p38 MAPK-induction of GATA-3 phosphorylation and nuclear translocation. CpdA effects are reversed by the GR antagonist RU38486, proving the involvement of GR in these actions. ELISA assays demonstrate that modulation of T-bet and GATA-3 impacts on cytokine production shown by a decrease in IFN-γ and an increase in IL-5 production, respectively. Conclusions Taken together, through their effect favoring Th2 over Th1 responses, particular dissociated GR ligands, for which CpdA represents a paradigm, hold potential for the application in Th1-mediated immune disorders. PMID:22496903

  16. Maternal psychosocial stress during pregnancy alters the epigenetic signature of the glucocorticoid receptor gene promoter in their offspring: a meta-analysis.

    PubMed

    Palma-Gudiel, H; Córdova-Palomera, A; Eixarch, E; Deuschle, M; Fañanás, L

    2015-01-01

    Prenatal stress has been widely associated with a number of short- and long-term pathological outcomes. Epigenetic mechanisms are thought to partially mediate these environmental insults into the fetal physiology. One of the main targets of developmental programming is the hypothalamic-pituitary-adrenal (HPA) axis as it is the main regulator of the stress response. Accordingly, an increasing number of researchers have recently focused on the putative association between DNA methylation at the glucocorticoid receptor gene (NR3C1) and prenatal stress, among other types of psychosocial stress. The current study aims to systematically review and meta-analyze the existing evidence linking several forms of prenatal stress with DNA methylation at the region 1F of the NR3C1 gene. The inclusion of relevant articles allowed combining empirical evidence from 977 individuals by meta-analytic techniques, whose methylation assessments showed overlap across 5 consecutive CpG sites (GRCh37/hg19 chr5:142,783,607-142,783,639). From this information, methylation levels at CpG site 36 displayed a significant correlation to prenatal stress (r = 0.14, 95% CI: 0.05-0.23, P = 0.002). This result supports the proposed association between a specific CpG site located at the NR3C1 promoter and prenatal stress. Several confounders, such as gender, methylation at other glucocorticoid-related genes, and adjustment for pharmacological treatments during pregnancy, should be taken into account in further studies. PMID:26327302

  17. Interaction of the BcII glucocorticoid receptor polymorphism and childhood abuse in Bulimia Nervosa (BN): relationship to BN and to associated trait manifestations.

    PubMed

    Steiger, Howard; Gauvin, Lise; Joober, Ridha; Israel, Mimi; Badawi, Guilaine; Groleau, Patricia; Bruce, Kenneth R; Yin Kin, N M K Ng; Sycz, Lindsay; Ouelette, Anne Sophie

    2012-02-01

    We recently documented a gene-environment interaction suggesting that individuals with Bulimia Nervosa (BN) differed from normal eaters as to the combined presence of the low-function allele of the glucocorticoid receptor polymorphism, BcII, and childhood abuse. The present study examined the extent to which any such interaction effect may have been attributable to behavioral impulsivity, sensation seeking, affective instability or depression. We had 174 bulimic and 130 nonbulimic women provide blood for genetic assays, and measured psychopathological traits and childhood abuse using structured interviews and self-report questionnaires. As expected, we observed a significant BcII × abuse interaction indicating genetic and environmental susceptibilities to co-occur significantly more often in bulimic than in nonbulimic individuals. The BcII × abuse interaction was attenuated when levels of depression were accounted for, but was surprisingly unaffected by controls for motoric impulsivity, sensation seeking or affective instability. Our findings suggest that stress-induced alterations in glucocorticoid sensitivity contribute to BN and depressive disturbances--without being associated with the behavioral/affective dysregulation seen in many BN sufferers. We discuss theoretical and clinical implications of these observations. PMID:22088926

  18. sup 1 H NMR studies of DNA recognition by the glucocorticoid receptor: Complex of the DNA binding domain with a half-site response element

    SciTech Connect

    Remerowski, M.L.; Kellenbach, E.; Boelens, R.; Kaptein, R. ); van der Marel, G.A.; van Boom, J.H. ); Maler, B.A.; Yamamoto, K.R. )

    1991-12-17

    The complex of the rat glucocorticoid receptor (GR) DNA binding domain (DBD) and half-site sequence of the consensus glucocorticoid response element (GRE) has been studied by two-dimensional {sup 1}H NMR spectroscopy. The DNA fragment is a 10 base-pair oligonucleotide, 5{prime}d(GCTGTTCTGC)3{prime}{center dot}5{prime}d-(GCAGAACAGC)3{prime}, containing the stronger binding GRE half-site hexamer, with GC base pairs at each end. The 93-residue GR-DBD contains an 86-residue segment corresponding to residues 440-525 of the rat GR. Eleven NOE cross peaks between the protein and DNA have been identified, and changes in the chemical shift of the DNA protons upon complex formation have been analyzed. Using these protein-DNA contact points, it can be concluded that (1) the 'recognition helix' formed by residues C460-E469 lies in the major groove of the DNA; (2) the GR-DBD is oriented on the GRE half-site such that residues A477-D481, forming the so-called D-loop, are available for protein-protein interaction in the GR-DBD dimer on the intact consensus GRE; and (3) the 5-methyl of the second thymine in the half-site and valine 462 interact, confirming indirect evidence that both play an important role in GR-DBD DNA binding.

  19. Baicalin promotes hippocampal neurogenesis via SGK1- and FKBP5-mediated glucocorticoid receptor phosphorylation in a neuroendocrine mouse model of anxiety/depression.

    PubMed

    Zhang, Kuo; Pan, Xing; Wang, Fang; Ma, Jie; Su, Guangyue; Dong, Yingxu; Yang, Jingyu; Wu, Chunfu

    2016-01-01

    Antidepressants increase hippocampal neurogenesis by activating the glucocorticoid receptor (GR), but excessive GR activation impairs hippocampal neurogenesis, suggesting that normal GR function is crucial for hippocampal neurogenesis. Baicalin was reported to regulate the expression of GR and facilitate hippocampal neurogenesis, but the underlying molecular mechanisms are still unknown. In this study, we used the chronic corticosterone (CORT)-induced mouse model of anxiety/depression to assess antidepressant-like effects of baicalin and illuminate possible molecular mechanisms by which baicalin affects GR-mediated hippocampal neurogenesis. We found that oral administration of baicalin (40, 80 or 160 mg/kg) for 4 weeks alleviated several chronic CORT-induced anxiety/depression-like behaviors. Baicalin also increased Ki-67- and DCX-positive cells to restore chronic CORT-induced suppression of hippocampal neurogenesis. Moreover, baicalin normalized the chronic CORT-induced decrease in GR protein levels, the increase in GR nuclear translocation and the increase in GR phosphorylation at Ser203 and Ser211. Finally, chronic CORT exposure increased the level of FK506-binding protein 51 (FKBP5) and of phosphorylated serum- and glucocorticoid-inducible kinase 1 (SGK1) at Ser422 and Thr256, whereas baicalin normalized these changes. Together, our findings suggest that baicalin improves anxiety/depression-like behaviors and promotes hippocampal neurogenesis. We propose that baicalin may normalize GR function through SGK1- and FKBP5-mediated GR phosphorylation. PMID:27502757

  20. Baicalin promotes hippocampal neurogenesis via SGK1- and FKBP5-mediated glucocorticoid receptor phosphorylation in a neuroendocrine mouse model of anxiety/depression

    PubMed Central

    Zhang, Kuo; Pan, Xing; Wang, Fang; Ma, Jie; Su, Guangyue; Dong, Yingxu; Yang, Jingyu; Wu, Chunfu

    2016-01-01

    Antidepressants increase hippocampal neurogenesis by activating the glucocorticoid receptor (GR), but excessive GR activation impairs hippocampal neurogenesis, suggesting that normal GR function is crucial for hippocampal neurogenesis. Baicalin was reported to regulate the expression of GR and facilitate hippocampal neurogenesis, but the underlying molecular mechanisms are still unknown. In this study, we used the chronic corticosterone (CORT)-induced mouse model of anxiety/depression to assess antidepressant-like effects of baicalin and illuminate possible molecular mechanisms by which baicalin affects GR-mediated hippocampal neurogenesis. We found that oral administration of baicalin (40, 80 or 160 mg/kg) for 4 weeks alleviated several chronic CORT-induced anxiety/depression-like behaviors. Baicalin also increased Ki-67- and DCX-positive cells to restore chronic CORT-induced suppression of hippocampal neurogenesis. Moreover, baicalin normalized the chronic CORT-induced decrease in GR protein levels, the increase in GR nuclear translocation and the increase in GR phosphorylation at Ser203 and Ser211. Finally, chronic CORT exposure increased the level of FK506-binding protein 51 (FKBP5) and of phosphorylated serum- and glucocorticoid-inducible kinase 1 (SGK1) at Ser422 and Thr256, whereas baicalin normalized these changes. Together, our findings suggest that baicalin improves anxiety/depression-like behaviors and promotes hippocampal neurogenesis. We propose that baicalin may normalize GR function through SGK1- and FKBP5-mediated GR phosphorylation. PMID:27502757

  1. Fasting induces CART down-regulation in the zebrafish nervous system in a cannabinoid receptor 1-dependent manner.

    PubMed

    Nishio, Shin-Ichi; Gibert, Yann; Berekelya, Liubov; Bernard, Laure; Brunet, Frédéric; Guillot, Etienne; Le Bail, Jean-Christophe; Sánchez, Juan Antonio; Galzin, Anne Marie; Triqueneaux, Gerard; Laudet, Vincent

    2012-08-01

    Central and peripheral mechanisms modulate food intake and energy balance in mammals and the precise role of the type 1 cannabinoid receptor (CB1) in these processes is still being explored. Using the zebrafish, Danio rerio, we show that rimonabant, a CB1-specific antagonist with an EC(50) of 5.15 × 10(-8) m, decreases embryonic yolk sac reserve use. We reveal a developmental overlap between CART genes and CB1 expression in the hypothalamus and medulla oblongata, two brain structures that play crucial roles in appetite regulation in mammals. We show that morpholino knockdown of CB1 or fasting decreases cocaine- and amphetamine-related transcript (CART)-3 expression. Strikingly, this down-regulation occurs only in regions coexpressing CB1 and CART3, reinforcing the link between CB1, CART, and appetite regulation. We show that rimonabant treatment impairs the fasting-induced down-regulation of CART expression in specific brain regions, whereas vehicle alone-treated embryos do not display this rescue of CART expression. Our data reveal that CB1 lies upstream of CART and signals the appetite through the down-regulation of CART expression. Thus, our results establish the zebrafish as a promising system to study appetite regulation. PMID:22700585

  2. The herpes simplex virus receptor nectin-1 is down-regulated after trans-interaction with glycoprotein D

    SciTech Connect

    Stiles, Katie M.; Milne, Richard S.B.; Cohen, Gary H.; Eisenberg, Roselyn J.; Krummenacher, Claude

    2008-03-30

    During herpes simplex virus (HSV) entry, membrane fusion occurs either on the cell surface or after virus endocytosis. In both cases, binding of glycoprotein D (gD) to a receptor such as nectin-1 or HVEM is required. In this study, we co-cultured cells expressing gD with nectin-1 expressing cells to investigate the effects of gD on nectin-1 at cell contacts. After overnight co-cultures with gD expressing cells, there was a down-regulation of nectin-1 in B78H1-C10, SY5Y, A431 and HeLa cells, which HSV enters by endocytosis. In contrast, on Vero cells, which HSV enters at the plasma membrane, nectin-1 was not down-regulated. Further analysis of B78H1-derived cells showed that nectin-1 down-regulation corresponds to the ability of gD to bind nectin-1 and is achieved by internalization and low-pH-dependent degradation of nectin-1. Moreover, gD is necessary for virion internalization in B78H1 cells expressing nectin-1. These data suggest that the determinants of gD-mediated internalization of nectin-1 may direct HSV to an endocytic pathway during entry.

  3. Genetics Home Reference: familial glucocorticoid deficiency

    MedlinePlus

    ... familial glucocorticoid deficiency type 1 lead to defective trafficking of the receptor to the cell surface. J ... short stature, and natural killer cell deficiency in humans. J Clin Invest. 2012 Mar;122(3):814- ...

  4. Insulin Receptor Substrate-1 Activation Mediated p53 Downregulation Protects Against Hypoxic-Ischemia in the Neonatal Brain.

    PubMed

    Tu, Yi-Fang; Jiang, Si-Tse; Chow, Yen-Hung; Huang, Chao-Ching; Ho, Chien-Jung; Chou, Ya-Ping

    2016-08-01

    This study determined if dietary restriction (DR) protects against hypoxic-ischemia (HI) in the neonatal brain via insulin receptor substrate-1 (IRS-1)/Akt pathway-mediated downregulation of p53 in the neurovascular unit. On postnatal (P) day 7, HI was induced in rat pups grouped from P1 into normal litter size (NL, 12 pups/dam) and increased litter size (DR, 18 pups/dam). In vivo IRS-1 anti-sense oligonucleotide and IRS-1 overexpressed recombinant adenovirus were given, and neurovascular damage was assessed. In vitro models of oxygen-glucose deprivation (OGD) examined the inhibition and overexpression of IRS-1 on p53 and cell death in neurons and endothelial cells. Compared to NL pups, DR pups had significantly higher IRS-1, p-IRS-1, and pAkt levels, decreased p53, more tight junction proteins, reduced blood-brain barrier (BBB) damage after HI, and less infarct volumes at P21. Immunofluorescence revealed that IRS-1 was upregulated in the endothelial cells and neurons of DR pups. IRS-1 downregulation in DR pups reduced p-Akt, increased p53, worsened BBB damage, and increased brain injury, whereas IRS-1 overexpression in NL pups upregulated p-Akt, decreased p53, attenuated BBB damage, and decreased brain injury. In vitro, IRS-1 downregulation aggravated cell death in neurons and endothelial cells and is associated with decreased p-Akt and increased p53. In contrast, IRS-1 overexpression reduced cell death in endothelial cells with increased p-Akt and decreased p53. In conclusion, DR reduces neurovascular damage after HI in the neonatal brain through an IRS-1/Akt-mediated p53 downregulation, suggesting that IRS-1 signaling is a therapeutic target for hypoxic brain injury in neonates. PMID:26111627

  5. Site-specific methylation changes in the glucocorticoid receptor exon 1F promoter in relation to life adversity: systematic review of contributing factors

    PubMed Central

    Daskalakis, Nikolaos P.; Yehuda, Rachel

    2014-01-01

    There has been recent interest in epigenetics in psychiatry since it offers a means of understanding how stressful life experiences, in interaction with the genotype, result in epigenetic changes that result in altered gene expression, ultimately affecting the risk for mental disorders. Many studies focused on methylation of the glucocorticoid receptor exon 1F promoter following an initial observation that changes in this region could be modulated by the environment. This review examines all published studies that have attempted to measure methylation in this region using different techniques, several tissue types, populations at different behavioral state and stages of development. Methodological issues have been raised with the aim of attempting to understand methylation quantification and site of action. We propose that it is useful to examine whether methylation at specific sites within the promoter region may be particularly relevant to psychiatric vulnerability to stress-related outcomes. PMID:25484853

  6. MicroRNA-122 Down-Regulation Is Involved in Phenobarbital-Mediated Activation of the Constitutive Androstane Receptor

    PubMed Central

    Shizu, Ryota; Shindo, Sawako; Yoshida, Takemi; Numazawa, Satoshi

    2012-01-01

    Constitutive androstane receptor (CAR) is a nuclear receptor that regulates the transcription of target genes, including CYP2B and 3A. Phenobarbital activates CAR, at least in part, in an AMP-activated protein kinase (AMPK)-dependent manner. However, the precise mechanisms underlying phenobarbital activation of AMPK are still unclear. In the present study, it was demonstrated that phenobarbital administration to mice decreases hepatic miR-122, a liver-enriched microRNA involved in both hepatic differentiation and function. The time-course change in the phenobarbital-mediated down-regulation of miR-122 was inversely correlated with AMPK activation. Phenobarbital decreased primary miR-122 to approximately 25% of the basal level as early as 1 h and suppressed transactivity of mir-122 promoter in HuH-7 cells, suggesting that the down-regulation occurred at the transcriptional level. AMPK activation by metformin or 5-aminoimidazole-4-carboxamide 1-β-D-ribonucleoside had no evident effect on miR-122 levels. An inhibitory RNA specific for miR-122 increased activated AMPK and CAR-mediated trancactivation of the phenobarbital-responsive enhancer module in HepG2 cells. Conversely, the reporter activity induced by the ectopic CAR was almost completely suppressed by co-transfection with the miR-122 mimic RNA. GFP-tagged CAR was expressed in the cytoplasm in addition to the nucleus in the majority of HuH-7 cells in which miR-122 was highly expressed. Co-transfection of the mimic or the inhibitor RNA for miR-122 further increased or decreased, respectively, the number of cells that expressed GFP-CAR in the cytoplasm. Taken together, these results suggest that phenobarbital-mediated down-regulation of miR-122 is an early and important event in the AMPK-dependent CAR activation and transactivation of its target genes. PMID:22815988

  7. MicroRNA-122 down-regulation is involved in phenobarbital-mediated activation of the constitutive androstane receptor.

    PubMed

    Shizu, Ryota; Shindo, Sawako; Yoshida, Takemi; Numazawa, Satoshi

    2012-01-01

    Constitutive androstane receptor (CAR) is a nuclear receptor that regulates the transcription of target genes, including CYP2B and 3A. Phenobarbital activates CAR, at least in part, in an AMP-activated protein kinase (AMPK)-dependent manner. However, the precise mechanisms underlying phenobarbital activation of AMPK are still unclear. In the present study, it was demonstrated that phenobarbital administration to mice decreases hepatic miR-122, a liver-enriched microRNA involved in both hepatic differentiation and function. The time-course change in the phenobarbital-mediated down-regulation of miR-122 was inversely correlated with AMPK activation. Phenobarbital decreased primary miR-122 to approximately 25% of the basal level as early as 1 h and suppressed transactivity of mir-122 promoter in HuH-7 cells, suggesting that the down-regulation occurred at the transcriptional level. AMPK activation by metformin or 5-aminoimidazole-4-carboxamide 1-β-D-ribonucleoside had no evident effect on miR-122 levels. An inhibitory RNA specific for miR-122 increased activated AMPK and CAR-mediated trancactivation of the phenobarbital-responsive enhancer module in HepG2 cells. Conversely, the reporter activity induced by the ectopic CAR was almost completely suppressed by co-transfection with the miR-122 mimic RNA. GFP-tagged CAR was expressed in the cytoplasm in addition to the nucleus in the majority of HuH-7 cells in which miR-122 was highly expressed. Co-transfection of the mimic or the inhibitor RNA for miR-122 further increased or decreased, respectively, the number of cells that expressed GFP-CAR in the cytoplasm. Taken together, these results suggest that phenobarbital-mediated down-regulation of miR-122 is an early and important event in the AMPK-dependent CAR activation and transactivation of its target genes. PMID:22815988

  8. RAC3 more than a nuclear receptor coactivator: a key inhibitor of senescence that is downregulated in aging

    PubMed Central

    Fernández Larrosa, P N; Ruíz Grecco, M; Mengual Gómez, D; Alvarado, C V; Panelo, L C; Rubio, M F; Alonso, D F; Gómez, D E; Costas, M A

    2015-01-01

    Receptor-associated coactivator 3 (RAC3) is a nuclear receptor coactivator usually overexpressed in tumors that exerts oncogenic functions in the cytoplasm and the nucleus. Although as part of its oncogenic actions it was previously identified as an inhibitor of apoptosis and autophagy, its expression is required in order to preserve the pluripotency and embryonic stem cell self-renewal. In this work we investigated its role in cellular senescence. We found that RAC3 overexpression in the nontumoral HEK293 cells inhibits the premature senescence induced by hydrogen peroxide or rapamycin. The mechanism involves not only the inhibition of autophagy early induced by these stimuli in the pathway to senescence, but also the increase in levels and nuclear localization of both the cell cycle suppressors p53/p21 and the longevity promoters FOXO1A, FOXO3A and SIRT1. Furthermore, we found that RAC3 overexpression is required in order to maintain the telomerase activity. In tumoral HeLa cells its activity was inhibited by depletion of RAC3 inducing replicative senescence. Moreover, we demonstrated that in vivo, levels of RAC3 are downregulated in the liver from aged as compared with young rats, whereas the levels of p21 are increased, correlating with the expected senescent cell contents in aged tissues. A similar downregulation of RAC3 was observed in the premature and replicative senescence of human fetal WI-38 cells and premature senescence of hepatocyte HepG2 cell line. Taken together, all these results demonstrate that RAC3 is an inhibitor of senescence whose downregulation in aged individuals could be probably a tumor suppressor mechanism, avoiding the clonal expansion of risky old cells having damaged DNA. PMID:26469953

  9. Biological Roles of Hydroxysteroid (11-Beta) Dehydrogenase 1 (HSD11B1), HSD11B2, and Glucocorticoid Receptor (NR3C1) in Sheep Conceptus Elongation.

    PubMed

    Brooks, Kelsey; Burns, Gregory; Spencer, Thomas E

    2015-08-01

    In sheep, the elongating conceptus synthesizes and secretes interferon tau (IFNT) as well as prostaglandins (PGs) and cortisol. The enzymes, hydroxysteroid (11-beta) dehydrogenase 1 (HSD11B1) and HSD11B2 interconvert cortisone and cortisol. In sheep, HSD11B1 is expressed and active in the conceptus trophectoderm as well as in the endometrial luminal epithelia; in contrast, HSD11B2 expression is most abundant in conceptus trophectoderm. Cortisol is a biologically active glucocorticoid and ligand for the glucocorticoid receptor (NR3C1 or GR) and mineralocorticoid receptor (NR3C2 or MR). Expression of MR is not detectable in either the ovine endometrium or conceptus during early pregnancy. In tissues that do not express MR, HSD11B2 protects cells from the growth-inhibiting and/or proapoptotic effects of cortisol, particularly during embryonic development. In study one, an in utero loss-of-function analysis of HSD11B1 and HSD11B2 was conducted in the conceptus trophectoderm using morpholino antisense oligonucleotides (MAOs) that inhibit mRNA translation. Elongating, filamentous conceptuses were recovered on Day 14 from ewes infused with control morpholino or HSD11B2 MAO. In contrast, HSD11B1 MAO resulted in severely growth-retarded conceptuses or conceptus fragments with apoptotic trophectoderm. In study two, clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 genome editing was used to determine the role of GR in conceptus elongation and development. Elongating, filamentous-type conceptuses (12-14 cm in length) were recovered from ewes gestating control embryos (n = 7/7) and gestating GR-edited embryos (n = 6/7). These results support the idea that the effects of HSD11B1-derived cortisol on conceptus elongation are indirectly mediated by the endometrium and are not directly mediated through GR in the trophectoderm. PMID:26085523

  10. Thyroid hormone regulation of gene expression in primary cerebrocortical cells: role of thyroid hormone receptor subtypes and interactions with retinoic acid and glucocorticoids.

    PubMed

    Gil-Ibáñez, Pilar; Bernal, Juan; Morte, Beatriz

    2014-01-01

    The effects of thyroid hormone on brain development and function are largely mediated by the binding of 3,5,3'-triiodo-L-thyronine (T3) to its nuclear receptors (TR) to regulate positively or negatively gene expression. We have analyzed by quantitative polymerase chain reaction the effect of T3 on primary cultured cells from the embryonic mouse cerebral cortex, on the expression of Hr, Klf9, Shh, Dio3, Aldh1a1, and Aldh1a3. In particular we focused on T3 receptor specificity, and on the crosstalk between T3, retinoic acid and dexamethasone. To check for receptor subtype specificity we used cerebrocortical cells derived from wild type mice and from mice deficient in thyroid hormone receptor subtypes. Receptor subtype specificity was found for Dio3 and Aldh1a1, which were induced by T3 only in cells expressing the T3 receptor alpha 1 subtype. Interactions of T3 with retinoic acid signaling through the control of retinoic acid metabolism are likely to be important during development. T3 had opposing influences on retinoic acid synthesizing enzymes, increasing the expression of Aldh1a1, and decreasing Aldh1a3, while increasing the retinoic acid degrading enzyme Cyp26b1. Dexamethasone increased Klf9 and Aldh1a1 expression. The effects of T3 and dexamethasone on Aldh1a1 were highly synergistic, with mRNA increments of up to 20 fold. The results provide new data on thyroid hormone regulation of gene expression and underscore the importance of thyroid hormone interactions with retinoic acid and glucocorticoids during neural development. PMID:24618783

  11. Thyroid Hormone Regulation of Gene Expression in Primary Cerebrocortical Cells: Role of Thyroid Hormone Receptor Subtypes and Interactions with Retinoic Acid and Glucocorticoids

    PubMed Central

    Gil-Ibáñez, Pilar; Bernal, Juan; Morte, Beatriz

    2014-01-01

    The effects of thyroid hormone on brain development and function are largely mediated by the binding of 3,5,3′-triiodo-L-thyronine (T3) to its nuclear receptors (TR) to regulate positively or negatively gene expression. We have analyzed by quantitative polymerase chain reaction the effect of T3 on primary cultured cells from the embryonic mouse cerebral cortex, on the expression of Hr, Klf9, Shh, Dio3, Aldh1a1, and Aldh1a3. In particular we focused on T3 receptor specificity, and on the crosstalk between T3, retinoic acid and dexamethasone. To check for receptor subtype specificity we used cerebrocortical cells derived from wild type mice and from mice deficient in thyroid hormone receptor subtypes. Receptor subtype specificity was found for Dio3 and Aldh1a1, which were induced by T3 only in cells expressing the T3 receptor alpha 1 subtype. Interactions of T3 with retinoic acid signaling through the control of retinoic acid metabolism are likely to be important during development. T3 had opposing influences on retinoic acid synthesizing enzymes, increasing the expression of Aldh1a1, and decreasing Aldh1a3, while increasing the retinoic acid degrading enzyme Cyp26b1. Dexamethasone increased Klf9 and Aldh1a1 expression. The effects of T3 and dexamethasone on Aldh1a1 were highly synergistic, with mRNA increments of up to 20 fold. The results provide new data on thyroid hormone regulation of gene expression and underscore the importance of thyroid hormone interactions with retinoic acid and glucocorticoids during neural development. PMID:24618783

  12. Detection and downregulation of type I IGF receptor expression by antibody-conjugated quantum dots in breast cancer cells.

    PubMed

    Zhang, Hua; Sachdev, Deepali; Wang, Chun; Hubel, Allison; Gaillard-Kelly, Martine; Yee, Douglas

    2009-03-01

    The type I insulin-like growth factor (IGF) receptor (IGF1R) is a transmembrane tyrosine kinase involved in breast cancer proliferation, survival, and metastasis. Several monoclonal antibodies directed against the receptor are in clinical trials. In order to develop a methodology to detect and measure IGF1R levels in breast cancer cells, we covalently conjugated an IGF1R antibody, AVE-1642, with quantum dots (Qdots), which are nanocrystals that emit fluorescence upon excitation. AVE-1642 Qdots only bound to cells that express IGF1R, and measured IGF1R levels by fluorescence emission at 655 nm. After binding to the cell surface, AVE-1642 Qdots underwent receptor mediated endocytosis, localized to endosome, and later translocated into the nucleus. Treating MCF-7 cells with AVE-1642 Qdots, but not unconjugated Qdots alone, downregulated IGF1R levels and rendered cells refractory to IGF-I stimulation. Furthermore, cell proliferation was slightly inhibited by AVE-1642 Qdots, but not the unconjugated Qdots. Our data suggest that AVE-1642 Qdots can be used to detect IGF1R expression and measure changes in cell surface receptor levels. In addition, the inhibitory effect of AVE-1642 Qdots to cell proliferation implies that it may serve as a traceable therapeutic agent. PMID:18418709

  13. Historical overview of nuclear receptors.

    PubMed

    Gustafsson, Jan-Ake

    2016-03-01

    This review summarizes the birth of the field of nuclear receptors, from Jensen's discovery of estrogen receptor alpha, Gustafsson's discovery of the three-domain structure of the glucocorticoid receptor, the discovery of the glucocorticoid response element and the first partial cloning of the glucocorticoid receptor. Furthermore the discovery of the novel receptors called orphan receptors is described. PMID:25797032

  14. Down-regulation of chicken interleukin-17 receptor A in Eimeria infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both IL-17A and IL-17F are proinflammatory cytokines, which play an important role in intestinal homeostasis through their receptor signaling. In chickens, these two cytokines have been recently characterized, but to date, very little is known about their receptors and their functional activity. Th...

  15. GABA[subscript A] Receptor Downregulation in Brains of Subjects with Autism

    ERIC Educational Resources Information Center

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Thuras, Paul D.

    2009-01-01

    Gamma-aminobutyric acid A (GABA[subscript A]) receptors are ligand-gated ion channels responsible for mediation of fast inhibitory action of GABA in the brain. Preliminary reports have demonstrated altered expression of GABA receptors in the brains of subjects with autism suggesting GABA/glutamate system dysregulation. We investigated the…

  16. Antioxidants Abrogate Alpha-Tocopherylquinone-Mediated Down-Regulation of the Androgen Receptor in Androgen-Responsive Prostate Cancer Cells

    PubMed Central

    Fajardo, Alexandra M.; MacKenzie, Debra A.; Olguin, Sarah L.; Scariano, John K.; Rabinowitz, Ian; Thompson, Todd A.

    2016-01-01

    Tocopherylquinone (TQ), the oxidation product of alpha-tocopherol (AT), is a bioactive molecule with distinct properties from AT. In this study, AT and TQ are investigated for their comparative effects on growth and androgenic activity in prostate cancer cells. TQ potently inhibited the growth of androgen-responsive prostate cancer cell lines (e.g., LAPC4 and LNCaP cells), whereas the growth of androgen-independent prostate cancer cells (e.g., DU145 cells) was not affected by TQ. Due to the growth inhibitory effects induced by TQ on androgen-responsive cells, the anti-androgenic properties of TQ were examined. TQ inhibited the androgen-induced activation of an androgen-responsive reporter and inhibited the release of prostate specific antigen from LNCaP cells. TQ pretreatment was also found to inhibit AR activation as measured using the Multifunctional Androgen Receptor Screening assay. Furthermore, TQ decreased androgen-responsive gene expression, including TM4SF1, KLK2, and PSA over 5-fold, whereas AT did not affect the expression of androgen-responsive genes. Of importance, the antiandrogenic effects of TQ on prostate cancer cells were found to result from androgen receptor protein down-regulation produced by TQ that was not observed with AT treatment. Moreover, none of the androgenic endpoints assessed were affected by AT. The down-regulation of androgen receptor protein by TQ was abrogated by co-treatment with antioxidants. Overall, the biological actions of TQ were found to be distinct from AT, where TQ was found to be a potent inhibitor of cell growth and androgenic activity in androgen-responsive prostate cancer cells. PMID:26986969

  17. Glucocorticoids and nervous system plasticity

    PubMed Central

    Madalena, Kathryn M.; Lerch, Jessica K.

    2016-01-01

    Glucocorticoid and glucocorticoid receptor (GC/GR) interactions alter numerous aspects of neuronal function. These consequences (e.g., anti-inflammatory vs. pro-inflammatory) can vary depending on the duration of GC exposure or central nervous system (CNS) injury model. In this review we discuss how GC/GR interactions impact neuronal recovery after a central or peripheral nerve injury and discuss how GC exposure duration can produce divergent CNS neuronal growth responses. Finally we consider how new findings on gender specific immune cell responses after a nerve injury could intersect with GC/GR interactions to impact pain processing. PMID:26981074

  18. The progestin-only contraceptive medroxyprogesterone acetate, but not norethisterone acetate, enhances HIV-1 Vpr-mediated apoptosis i