Sample records for downstream oil industry

  1. European downstream oil industry safety performance : statistical summary of reported incidents, 1996

    DOT National Transportation Integrated Search

    1997-12-01

    This report is the third by CONCAWE reviewing the safety performance of the downstream oil industry in Western Europe. It includes the results of 28 companies which together represent over 90% of the oil refining capacity in Europe. It is therefore a...

  2. European downstream oil industry safety performance : statistical summary of reported incidents, 1998

    DOT National Transportation Integrated Search

    1999-07-01

    This report is the fifth by CONCAWE reviewing the safety performance of the downstream oil industry in Europe. The area of coverage is primarily the EU, EEA and Hungary, but for some companies the data for other European countries such as Poland, Cze...

  3. European downstream oil industry safety performance : statistical summary of reported incidents, 1997 and overview 1993 to 1997

    DOT National Transportation Integrated Search

    1998-10-01

    This report is the fourth by CONCAWE reviewing the safety performance of the downstream ol industry in Western Europe. It includes the results of 27 companies which together represent over 90% of the oil refining capacity in the region. Of the 27 com...

  4. Linking Effective Project Management to Business Strategy in Oil and Gas Industry through Decision-making Processes

    NASA Astrophysics Data System (ADS)

    Adeleke, Adeyinka

    The construction project in the oil and gas industry covers the entire spectrum of hydrocarbon production from the wellhead (upstream) to downstream facilities. In each of these establishments, the activities in a construction project include: consulting, studies, front-end engineering, detail engineering, procurement, program management, construction, installation, commissioning and start-up. Efficient management of each of the activities involved in construction projects is one of the driving forces for the successful completion of the project. Optimizing the crucial factors in project management during each phase of a project in an oil and gas industry can assist managers to maximize the use of available resources and drive the project to successful conclusions. One of these factors is the decision-making process in the construction project. Current research effort investigated the relationship between decision-making processes and business strategy in oil and gas industry using employee surveys. I recruited employees of different races, age group, genders, and years of experience in order understand their influence on the implementation of the decision-making process in oil and gas industry through a quantitative survey. Decision-making was assessed using five decision measures: (a) rational, (b) intuitive, (c) dependent, (d) avoidant, and (e) spontaneous. The findings indicated gender, age, years of work experience and job titles as primary variables with a negative relationship with decision-making approach for employees working in a major oil and gas industry. The study results revealed that the two most likely decision-making methods in oil and gas industry include: making a decision in a logical and systematic way and seek assistance from others when making a decision. Additionally, the two leading management approaches to decision-making in the oil and gas industry include: decision analysis is part of organization culture and management is committed to

  5. Emulsified industrial oils recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil canmore » be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.« less

  6. Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources.

    PubMed

    Akanda, Mohammed Jahurul Haque; Sarker, Mohammed Zaidul Islam; Ferdosh, Sahena; Manap, Mohd Yazid Abdul; Ab Rahman, Nik Norulaini Nik; Ab Kadir, Mohd Omar

    2012-02-10

    Supercritical fluid extraction (SFE), which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO₂ refers to supercritical fluid extraction (SFE) that uses carbon dioxide (CO₂) as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO₂) extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.

  7. Ethos and industry: a critical study of oil industry advertising from 1974-1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurzbard, G.

    This study examines the advocacy advertising of the oil industry in general, and Mobil and Exxon Corporations in particular, during the years 1974-1984. The prospects of divestiture and nationalization of the industry, as a result of both gasoline shortages and exponential increases in profits which begin in the early seventies', created a profound concern by the majors that increasing public disaffection might result in legislation inimical to the industry. Mobil and Exxon's advertising attempted to provide a justification not only for their own operations, but for the entire American socio-economic system. The industry's value system was clearly reflected in itsmore » efforts to convince the public that its motives grew from an abiding commitment to the nation's well-being. The ideational underpinnings of oil industry discourse are traced through a rhetorical exploration of specific advertising campaigns. The study maintains that the weltanschauung of Big Oil is both directly and indirectly manifest in its advertising. An overall assessment of oil industry advertising is provided within a Burkean framework to treat of the textural elements of its discourse.« less

  8. Application of Nanotechnology and Nanomaterials in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Nabhani, Nader; Emami, Milad; Moghadam, A. B. Taghavi

    2011-12-01

    Micro and nano technologies have already contributed significantly to technological advances in a number of industries, including electronics, biomedical, pharmaceutical, materials and manufacturing, aerospace, photography and more recently the energy industries. Micro and nanotechnologies have the potential to introduce revolutionary changes in several areas of the oil and gas industries such as exploration, drilling, production, refining and distribution. For example, nanosensors might provide more detailed and accurate information about reservoirs and smart fluids for enhanced oil recovery (EOR) and drilling. This paper examines and documents applicable nanotechnology base products that can improve the competitiveness of the oil and gas industry. The future challenges of nanotechnology application in the oil and gas industry are also discussed.

  9. [Analysis on oil fume particles in catering industry cooking emission].

    PubMed

    Tan, De-Sheng; Kuang, Yuan-Cheng; Liu, Xin; Dai, Fei-Hong

    2012-06-01

    By measuring the particulate matter of oil fume which is over 10 microm or below 10 microm separately and using microradiography and Electrical Low Pressure Impactor (ELPI), it is found out the distributing characteristic of oil fume particles in catering industry cooking emission. The result shows that the diameter of the oil fume particles which was sedimentated in the kitchen is between 10-400 microm, the concentration peak value is between 10-100 microm. The diameter of oil fume aerosol is mostly smaller than 1 microm, while the concentration peak value is between 0.063-0.109 microm. In addition, the mass concentration peak value is between 6.560-9.990 microm. Through the analysis to the physical characteristics of oil fume from catering industry cooking emissions, the eigenvalue of the oil fume has been found and the feature matter for monitoring the oil fume has been discovered to provide a reasonable standard for controlling and monitoring the catering industry cooking emission.

  10. Application of game theory in decision making strategy: Does gas fuel industry need to kill oil based fuel industry?

    NASA Astrophysics Data System (ADS)

    Azmi, Abdul Luky Shofi'ul; Prabandari, Dyah Lusiana; Hakim, Muhammad Lintang Islami

    2017-03-01

    Even though conversion of oil based fuel (Bahan Bakar Minyak) into gas fuel (Bahan Bakar Gas) for transportation (both land and sea) is one of the priority programs of the government of Indonesia, rules that have been established merely basic rules of gas fuel usage license for transportation, without discussing position of gas fuel related to oil based fuel in detail. This paper focus on possible strategic behavior of the key players in the oil-gas fuel conversion game, who will be impacted by the position of gas fuel as complement or substitution of oil based fuel. These players include industry of oil based fuel, industry of gas fuel, and the government. Modeling is made based on two different conditions: government plays a passive role and government plays an active role in legislating additional rules that may benefit industry of gas fuel. Results obtained under a passive government is that industry of oil based fuel need to accommodate the presence of industry of gas fuel, and industry of gas fuel does not kill/ eliminate the oil based fuel, or gas fuel serves as a complement. While in an active government, the industry of oil based fuel need to increase its negotiation spending in the first phase so that the additional rule that benefitting industry of gas fuel would not be legislated, while industry of gas fuel chooses to indifferent; however, in the last stage, gas fuel turned to be competitive or choose its role to be substitution.

  11. Executive reflects on progress in the oil and gas industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popov, S.

    1997-08-01

    This paper reflects on the UK oil and gas industry`s international globalization and progress from the perspective of a UK industry executive. Sir Ian Wood, managing director of John Wood Group plc, outlined past and future industry developments during a 1997 Offshore Technology Conference speech. He concludes that the UK supply and service industry is now fully involved in the international arena, and hopes to play a significant role in the exciting oil and gas developments in the Gulf of Mexico and frontiers worldwide.

  12. Oil industry waste: a potential feedstock for biodiesel production.

    PubMed

    Abbas, Javeria; Hussain, Sabir; Iqbal, Muhammad Javid; Nadeem, Habibullah; Qasim, Muhammad; Hina, Saadia; Hafeez, Farhan

    2016-08-01

    The worldwide rising energy demands and the concerns about the sustainability of fossil fuels have led to the search for some low-cost renewable fuels. In this scenario, the production of biodiesel from various vegetable and animal sources has attracted worldwide attention. The present study was conducted to evaluate the production of biodiesel from the oil industry waste following base-catalysed transesterification. The transesterification reaction gave a yield of 83.7% by 6:1 methanol/oil molar ratio, at 60°C over 80 min of reaction time in the presence of NaOH. The gas chromatographic analysis of the product showed the presence of 16 fatty acid methyl esters with linoleic and oleic acid as principal components representing about 31% and 20.7% of the total methyl esters, respectively. The fourier transform infrared spectroscopy spectrum of oil industry waste and transesterified product further confirmed the formation of methyl esters. Furthermore, the fuel properties of oil industry waste methyl esters, such as kinematic viscosity, cetane number, cloud point, pour point, flash point, acid value, sulphur content, cold filter plugging point, copper strip corrosion, density, oxidative stability, higher heating values, ash content, water content, methanol content and total glycerol content, were determined and discussed in the light of ASTM D6751 and EN 14214 biodiesel standards. Overall, this study presents the production of biodiesel from the oil industry waste as an approach of recycling this waste into value-added products.

  13. Fiber Bragg Grating Sensors for the Oil Industry.

    PubMed

    Qiao, Xueguang; Shao, Zhihua; Bao, Weijia; Rong, Qiangzhou

    2017-02-23

    With the oil and gas industry growing rapidly, increasing the yield and profit require advances in technology for cost-effective production in key areas of reservoir exploration and in oil-well production-management. In this paper we review our group's research into fiber Bragg gratings (FBGs) and their applications in the oil industry, especially in the well-logging field. FBG sensors used for seismic exploration in the oil and gas industry need to be capable of measuring multiple physical parameters such as temperature, pressure, and acoustic waves in a hostile environment. This application requires that the FBG sensors display high sensitivity over the broad vibration frequency range of 5 Hz to 2.5 kHz, which contains the important geological information. We report the incorporation of mechanical transducers in the FBG sensors to enable enhance the sensors' amplitude and frequency response. Whenever the FBG sensors are working within a well, they must withstand high temperatures and high pressures, up to 175 °C and 40 Mpa or more. We use femtosecond laser side-illumination to ensure that the FBGs themselves have the high temperature resistance up to 1100 °C. Using FBG sensors combined with suitable metal transducers, we have experimentally realized high- temperature and pressure measurements up to 400 °C and 100 Mpa. We introduce a novel technology of ultrasonic imaging of seismic physical models using FBG sensors, which is superior to conventional seismic exploration methods. Compared with piezoelectric transducers, FBG ultrasonic sensors demonstrate superior sensitivity, more compact structure, improved spatial resolution, high stability and immunity to electromagnetic interference (EMI). In the last section, we present a case study of a well-logging field to demonstrate the utility of FBG sensors in the oil and gas industry.

  14. Fiber Bragg Grating Sensors for the Oil Industry

    PubMed Central

    Qiao, Xueguang; Shao, Zhihua; Bao, Weijia; Rong, Qiangzhou

    2017-01-01

    With the oil and gas industry growing rapidly, increasing the yield and profit require advances in technology for cost-effective production in key areas of reservoir exploration and in oil-well production-management. In this paper we review our group’s research into fiber Bragg gratings (FBGs) and their applications in the oil industry, especially in the well-logging field. FBG sensors used for seismic exploration in the oil and gas industry need to be capable of measuring multiple physical parameters such as temperature, pressure, and acoustic waves in a hostile environment. This application requires that the FBG sensors display high sensitivity over the broad vibration frequency range of 5 Hz to 2.5 kHz, which contains the important geological information. We report the incorporation of mechanical transducers in the FBG sensors to enable enhance the sensors’ amplitude and frequency response. Whenever the FBG sensors are working within a well, they must withstand high temperatures and high pressures, up to 175 °C and 40 Mpa or more. We use femtosecond laser side-illumination to ensure that the FBGs themselves have the high temperature resistance up to 1100 °C. Using FBG sensors combined with suitable metal transducers, we have experimentally realized high- temperature and pressure measurements up to 400 °C and 100 Mpa. We introduce a novel technology of ultrasonic imaging of seismic physical models using FBG sensors, which is superior to conventional seismic exploration methods. Compared with piezoelectric transducers, FBG ultrasonic sensors demonstrate superior sensitivity, more compact structure, improved spatial resolution, high stability and immunity to electromagnetic interference (EMI). In the last section, we present a case study of a well-logging field to demonstrate the utility of FBG sensors in the oil and gas industry. PMID:28241460

  15. Progress in modification of sunflower oil to expand its industrial value.

    PubMed

    Rauf, Saeed; Jamil, Nazia; Tariq, Sultan Ali; Khan, Maria; Kausar, Maria; Kaya, Yalcin

    2017-05-01

    Increasing the sunflower seed oil content as well as improving its quality makes it compatible for industrial demands. This is an important breeding objective of sunflower which increases its market value and ensures high returns for the producers. The present review focuses on determining the progress of improving sunflower seed oil content and modifying its quality by empirical and advanced molecular breeding methods. It is known that the sunflower oil content and quality have been altered through empirical selection methods and mutation breeding programmes in various parts of the world. Further improvement in seed oil content and its components (such as phytosterols, tocopherols and modified fatty acid profile) has been slowed down due to low genetic variation in elite germplasm and complex of hereditary traits. Introgression from wild species can be carried out to modify the fatty acids profile and tocopherol contents with linkage drags. Different transgenes introduced through biotechnological methods may produce novel long-chain fatty acids within sunflower oil. Bio-engineering of sunflower oil could allow it to be used in diverse industrial products such as bio-diesel or bio-plastics. These results showed that past and current trends of modifying sunflower oil quality are essential for its further expansion as an oilseed crop. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Pollution control of industrial wastewater from soap and oil industries: a case study.

    PubMed

    Abdel-Gawad, S; Abdel-Shafy, M

    2002-01-01

    Industrial wastewater from soap and oil industries represents a heavy pollution source on their receiving water body. This paper studies a case of pollution control at Tanta Soap and Oil Company, Banha Factory, Egypt. The factory production includes soap, edible oil, and animal fodder. About 4,347 m3/day of industrial wastewater effluent was discharged via gravity sewers to the public sewerage system. Most of the effluent was cooling water because the cooling process in the factory was open circle. In spite of the huge quantity of cooling water being disposed of, disposal of wastewater was violating pertinent legislation. Three procedures were used for controlling the pollution at the Banha Factory. Firstly, all open circuit cooling systems were converted to closed circuit thus reducing the quantity of the discharged wastewater down to 767 m3/day. Secondly, the heavily polluted oil and grease (O&G) wastewater from the refinery unit is treated via two gravity oil separator (GOS) units, dissolved air floatation (DAF), and biological units in order to reduce the high levels of O&G, BOD, COD, and SS to the allowable limits. Thirdly, the heavily polluted waste effluent from the 'red water' saponification unit is treated separately by acidification to convert the emulsified fatty acid to free form in order to be separated through an oil separation unit. The effluent is then passed to liming stage to neutralize excess acidity and precipitate some of the dissolved matters. The mixture is finally clarified and the pH is adjusted to the allowable limits. The effluent wastewater from the three processes is collected and mixed in a final equalization tank for discharging effluent to the public sewerage system. The characteristics of the effluent water are very good with respect to the allowable Egyptian limits for discharging effluent to the public sewerage system.

  17. Physics-Driven Innovation In the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Poitzsch, Martin

    2014-03-01

    In terms of sheer scale and financial investment and geographical footprint, nothing is bigger than the oil and gas industry. This ``mature industry'' employs a bewildering mix of technologies dating from the 19th century to the 21th. Oil well construction represents one of the largest volume markets for steel tubulars, Portland cement, and high-quality sand. On the other hand, advanced 3D seismic data processing, shaped-charge perforating, and nuclear well logging have consistently driven forward the state of the art in their respective areas of applied science, as much or more so than defense or other industries. Moreover, a surprising number of physicists have made their careers in the oil industry. To succeed at introducing new technology requires understanding which problems most need to be solved. The most esoteric technology can take off in this industry if it honestly offers the best solution to a key problem that is costing millions of dollars in risk or inefficiency. When the right breakthrough solution emerges, the resources to implement it can be almost limitless. However, the prevailing culture is conservative and brutally cost-driven: any cheaper or simpler solution that performs as well will prevail, no matter how inelegant!

  18. NORM Management in the Oil & Gas Industry

    NASA Astrophysics Data System (ADS)

    Cowie, Michael; Mously, Khalid; Fageeha, Osama; Nassar, Rafat

    2008-08-01

    It has been established that Naturally Occurring Radioactive Materials (NORM) accumulates at various locations along the oil/gas production process. Components such as wellheads, separation vessels, pumps, and other processing equipment can become NORM contaminated, and NORM can accumulate in sludge and other waste media. Improper handling and disposal of NORM contaminated equipment and waste can create a potential radiation hazard to workers and the environment. Saudi Aramco Environmental Protection Department initiated a program to identify the extent, form and level of NORM contamination associated with the company operations. Once identified the challenge of managing operations which had a NORM hazard was addressed in a manner that gave due consideration to workers and environmental protection as well as operations' efficiency and productivity. The benefits of shared knowledge, practice and experience across the oil & gas industry are seen as key to the establishment of common guidance on NORM management. This paper outlines Saudi Aramco's experience in the development of a NORM management strategy and its goals of establishing common guidance throughout the oil and gas industry.

  19. Decision Support Model for Selection Technologies in Processing of Palm Oil Industrial Liquid Waste

    NASA Astrophysics Data System (ADS)

    Ishak, Aulia; Ali, Amir Yazid bin

    2017-12-01

    The palm oil industry continues to grow from year to year. Processing of the palm oil industry into crude palm oil (CPO) and palm kernel oil (PKO). The ratio of the amount of oil produced by both products is 30% of the raw material. This means that 70% is palm oil waste. The amount of palm oil waste will increase in line with the development of the palm oil industry. The amount of waste generated by the palm oil industry if it is not handled properly and effectively will contribute significantly to environmental damage. Industrial activities ranging from raw materials to produce products will disrupt the lives of people around the factory. There are many alternative technologies available to process other industries, but problems that often occur are difficult to implement the most appropriate technology. The purpose of this research is to develop a database of waste processing technology, looking for qualitative and quantitative criteria to select technology and develop Decision Support System (DSS) that can help make decisions. The method used to achieve the objective of this research is to develop a questionnaire to identify waste processing technology and develop the questionnaire to find appropriate database technology. Methods of data analysis performed on the system by using Analytic Hierarchy Process (AHP) and to build the model by using the MySQL Software that can be used as a tool in the evaluation and selection of palm oil mill processing technology.

  20. Powerful motors: Kinship, citizenship and the transformation of the Argentine oil industry

    NASA Astrophysics Data System (ADS)

    Shever, Elana

    The privatization of the Argentine oil industry has been described as an unprecedented transfer of property, capital and control from the state to the corporate sphere, but this study demonstrates that the privatization process is better understood as a transformation of the historical configurations of oil-fueled development, political communities and human subjectivities. This dissertation probes the development of the state-led oil industry, and the shift to a corporate-led one, through an ethnography of Argentines differently positioned in relation to the global oil industry. The ethnography explores the lives of middle class oil workers and their families in Northwest Patagonia, impoverished residents of the shanty neighborhoods near the refineries in metropolitan Buenos Aires, and affluent employees of the translocal corporations operating in the Argentine oil fields. After the Introduction delineates this study's four principal interventions into anthropological scholarship, each subsequent chapter engages a particular problem that cuts across the Argentine oil fields and the anthropological theoretical fields. Chapter Two scrutinizes the historical construction of the Argentine subterritory as a "natural" space of value. Chapters Three and Four investigate the articulation of capitalist production and filial reproduction. These chapters argue that sentiment is a crucial generative force that has shaped the oil industry, company towns and worker families from the founding of the state-owned oil company in beginning of the twentieth century to its conversion into a corporate-owned one at the century's close. Chapters Five and Six examine the emergence of consumer citizenship and corporate citizenship out of Argentine neoliberalismo and its transformation of the oil industry. They argue that consumer and corporate citizenship are both reformulations of the older traditions of liberalism and Peronism. All the chapters of this dissertation illustrate that the

  1. Controlling Air Pollution from the Oil and Natural Gas Industry

    EPA Pesticide Factsheets

    EPA regulations for the oil and natural gas industry help combat climate change and reduce air pollution that harms public health. EPA’s regulations apply to oil production, and the production, process, transmission and storage of natural gas.

  2. NORM management in the oil and gas industry.

    PubMed

    Cowie, M; Mously, K; Fageeha, O; Nassar, R

    2012-01-01

    It has been established that naturally occurring radioactive material (NORM) may accumulate at various locations along the oil and gas production process. Components such as wellheads, separation vessels, pumps, and other processing equipment can become contaminated with NORM, and NORM can accumulate in the form of sludge, scale, scrapings, and other waste media. This can create a potential radiation hazard to workers, the general public, and the environment if certain controls are not established. Saudi Aramco has developed NORM management guidelines, and is implementing a comprehensive strategy to address all aspects of NORM management that aim to enhance NORM monitoring; control of NORM-contaminated equipment; control of NORM waste handling and disposal; and protection, awareness, and training of workers. The benefits of shared knowledge, best practice, and experience across the oil and gas industry are seen as key to the establishment of common guidance. This paper outlines Saudi Aramco's experience in the development of a NORM management strategy, and its goals of establishing common guidance throughout the oil and gas industry. Copyright © 2012. Published by Elsevier Ltd.

  3. Multi-objective model of waste transportation management for crude palm oil industry

    NASA Astrophysics Data System (ADS)

    Silalahi, Meslin; Mawengkang, Herman; Irsa Syahputri, Nenna

    2018-02-01

    The crude palm oil industry is an agro-industrial commodity. The global market of this industry has experienced rapid growth in recent years, such that it has a strategic value to be developed for Indonesian economy. Despite these economic benefits there are a number of environmental problems at the factories, such as high water consumption, the generation of a large amount of wastewater with a high organic content, and the generation of a large quantity of solid wastes and air pollution. In terms of waste transportation, we propose a multiobjective programming model for managing business environmental risk in a crude palm oil manufacture which gives the best possible configuration of waste management facilities and allocates wastes to these facilities. Then we develop an interactive approach for tackling logistics and environmental risk production planning problem for the crude palm oil industry.

  4. Withdrawal of 2016 Information Request for the Oil and Gas Industry

    EPA Pesticide Factsheets

    The Environmental Protection Agency (EPA) is providing notice that it is withdrawing its requests that owners and operators in the oil and natural gas industry provide information on equipment and emissions at existing oil and gas operations.

  5. 17 CFR 229.1201 - (Item 1201) General instructions to oil and gas industry-specific disclosures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false (Item 1201) General instructions to oil and gas industry-specific disclosures. 229.1201 Section 229.1201 Commodity and Securities... instructions to oil and gas industry-specific disclosures. (a) If oil and gas producing activities are material...

  6. 17 CFR 229.1201 - (Item 1201) General instructions to oil and gas industry-specific disclosures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 2 2012-04-01 2012-04-01 false (Item 1201) General instructions to oil and gas industry-specific disclosures. 229.1201 Section 229.1201 Commodity and Securities... instructions to oil and gas industry-specific disclosures. (a) If oil and gas producing activities are material...

  7. The impact of internet-connected control systems on the oil and gas industry

    NASA Astrophysics Data System (ADS)

    Martel, Ruth T.

    In industry and infrastructure today, communication is a way of life. In the oil and gas industry, the use of devices that communicate with the network at large is both commonplace and expected. Unfortunately, security on these devices is not always best. Many industrial control devices originate from legacy devices not originally configured with security in mind. All infrastructure and industry today has seen an increase in attacks on their networks and in some cases, a very dramatic increase, which should be a cause for alarm and action. The purpose of this research was to highlight the threat that Internet-connected devices present to an organization's network in the oil and gas industry and ultimately, to the business and possibly even human life. Although there are several previous studies that highlight the problem of these Internet-connected devices, there remains evidence that security response has not been adequate. The analysis conducted on only one easily discovered device serves as an example of the ongoing issue of the security mindset in the oil and gas industry. The ability to connect to a network through an Internet-connected device gives a hacker an anonymous backdoor to do great damage in that network. The hope is that the approach to security in infrastructure and especially the oil and gas industry, changes before a major catastrophe occurs involving human life.

  8. Results of industrial tests of carbonate additive to fuel oil

    NASA Astrophysics Data System (ADS)

    Zvereva, E. R.; Dmitriev, A. V.; Shageev, M. F.; Akhmetvalieva, G. R.

    2017-08-01

    Fuel oil plays an important role in the energy balance of our country. The quality of fuel oil significantly affects the conditions of its transport, storage, and combustion; release of contaminants to atmosphere; and the operation of main and auxiliary facilities of HPPs. According to the Energy Strategy of Russia for the Period until 2030, the oil-refining ratio gradually increases; as a result, the fraction of straight-run fuel oil in heavy fuel oils consistently decreases, which leads to the worsening of performance characteristics of fuel oil. Consequently, the problem of the increase in the quality of residual fuel oil is quite topical. In this paper, it is suggested to treat fuel oil by additives during its combustion, which would provide the improvement of ecological and economic indicators of oil-fired HPPs. Advantages of this method include simplicity of implementation, low energy and capital expenses, and the possibility to use production waste as additives. In the paper, the results are presented of industrial tests of the combustion of fuel oil with the additive of dewatered carbonate sludge, which is formed during coagulation and lime treatment of environmental waters on HPPs. The design of a volume delivery device is developed for the steady additive input to the boiler air duct. The values are given for the main parameters of the condition of a TGM-84B boiler plant. The mechanism of action of dewatered carbonate sludge on sulfur oxides, which are formed during fuel oil combustion, is considered. Results of industrial tests indicate the decrease in the mass fraction of discharged sulfur oxides by 36.5%. Evaluation of the prevented damage from sulfur oxide discharged into atmospheric air shows that the combustion of the fuel oil of 100 brand using carbonate sludge as an additive (0.1 wt %) saves nearly 6 million rubles a year during environmental actions at the consumption of fuel oil of 138240 t/year.

  9. Valorization of Palm Oil Industrial Waste as Feedstock for Lipase Production.

    PubMed

    Silveira, Erick A; Tardioli, Paulo W; Farinas, Cristiane S

    2016-06-01

    The use of residues from the industrial processing of palm oil as carbon source and inducer for microbial lipase production can be a way to add value to such residues and to contribute to reduced enzyme costs. The aim of this work was to investigate the feasibility of using palm oil industrial waste as feedstock for lipase production in different cultivation systems. Evaluation was made of lipase production by a selected strain of Aspergillus niger cultivated under solid-state (SSF) and submerged fermentation (SmF). Lipase activity levels up to 15.41 IU/mL were achieved under SSF. The effects of pH and temperature on the lipase activity of the SSF extract were evaluated using statistical design methodology, and maximum activities were obtained between pH 4.0 and 6.5 and at temperatures between 37 and 55 °C. This lipase presented good thermal stability up to 60 °C and higher specificity towards long carbon chain substrates. The results demonstrate the potential application of palm oil industrial residues for lipase production and contribute to the technological advances needed to develop processes for industrial enzymes production.

  10. Commitment to and preparedness for sustainable supply chain management in the oil and gas industry.

    PubMed

    Wan Ahmad, Wan Nurul K; Rezaei, Jafar; Tavasszy, Lóránt A; de Brito, Marisa P

    2016-09-15

    Our current dependency on the oil and gas (O&G) industry for economic development and social activities necessitates research into the sustainability of the industry's supply chains. At present, studies on sustainable supply chain management (SSCM) practices in the industry do not include firm-internal factors that affect the sustainability strategies employed by different functional areas of its supply chains. Our study aims to address this gap by identifying the relevant internal factors and exploring their relationship with SSCM strategies. Specifically, we discuss the commitment to and preparedness for sustainable practices of companies that operate in upstream and downstream O&G supply chain. We study the impact of these factors on their sustainability strategies of four key supply chain functions: supplier management, production management, product stewardship and logistics management. The analyses of data collected through a survey among 81 companies show that management preparedness may enhance sustainable supply chain strategies in the O&G industry more than commitment does. Among the preparedness measures, management of supply chain operational risks is found to be vital to the sustainability of all supply chain functions except for production management practices. The findings also highlight the central importance of supplier and logistics management to the achievement of sustainable O&G supply chains. Companies must also develop an organizational culture that encourages, for example, team collaboration and proactive behaviour to finding innovative sustainability solutions in order to translate commitment to sustainable practices into actions that can produce actual difference to their SSCM practices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Energetics Applications for the Oil and Gas Industry

    DOE PAGES

    Brinsden, Mark; Boock, Andrea; Baum, Dennis

    2015-08-07

    Here, early motivation and use of energetic materials in the Western World by Alfred Nobel was intended to facilitate mining, construction, and demolition activities. The motivation for the work was the recognized need for a safer energetic material as an alternate to unstabilized nitroglycerine. The invention of dynamite by Nobel was widely adopted in the civilian world and brought a fortune to Nobel, resulting in the formation of the annual Nobel Prize awards, recognizing significant achievements across many fields of endeavour. Nonetheless, further development of energetics was primarily motivated by and funded for military purposes, rather than civilian usage. Andmore » indeed much investment has been given to the development and characterization of military energetics and their application. An example application is the precision shaped charge, primarily developed as a means of focusing energy in a narrow metallic jet for deep penetration of heavy armor. However, the largest costumer today and for many years for shaped charges is not the military, but rather the oil and gas industry, which has adapted the military technology for perforation of oil and gas wells. While there are similar aspects to desired penetration capabilities in both applications, there are enough differences to warrant energetics R & D focused on oil and gas industry needs.« less

  12. Production of sorbent from paper industry solid waste for oil spill cleanup.

    PubMed

    Demirel Bayık, G; Altın, A

    2017-12-15

    The aim of the study is to select a cellulosic waste material from paper industry solid wastes and process it for sorbent production. Four different solid wastes were collected from a local paper production facility and rejects were selected due to its sorption capacity and processability. Oil sorption experiments were conducted according to the ASTM F 726-12 method. Effect of sorbent dosage, contact and dripping time, recovery of the oil, reusability of the sorbent and sorption from the water surface were also determined. Maximum oil sorption capacity was determined as 9.67, 12.92 and 12.84g/g for diesel oil, 0W30 and 10W30 motor oils respectively for the static test and 8.27, 10.45 and 11.69g/g for the dynamic test. An efficient and low-cost sorbent was produced from paper industry rejects that can be used on land and on water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Problems Caused by Microbes and Treatment Strategies Downstream Petroleum Microbiology - An Industry Perspective

    NASA Astrophysics Data System (ADS)

    McFarlane, Elaine

    In the mid 1800's it was discovered that crude oil could be extracted and exploited to produce energy. However, it was the invention of the first four-stroke internal combustion engine in 1876 that transformed the petroleum industry from a localised to a global business (Dell and Rand, 2004). Crude oil is made into useable products at the refinery via separation, conversion and treatment processes. Separation starts with distillation where the crude is evaporated and condensed into fractions based on their boiling ranges (Fig. 19.1). As well as carbon and hydrogen, the fractions consist of sulphur, nitrogen and oxygen (present in low concentrations) and metals like copper and iron (in trace amounts). After separation, heavy fractions are converted into lighter ones using intense heat, pressure and a catalyst to speed up chemical reactions. Molecules like sulphur can then be stripped out by heat treatment under pressure with hydrogen. Injection of refinery additives makes a finished fuel. For example, static dissipator is added to Automotive Gas Oil (AGO) to reduce the risk of spark and explosion during fuel movements; middle distillate flow improver to improve low temperature operability and lubricity improver to lubricate engine components. Finally, fuel quality measurements are made to ensure that the finished fuel meets the relevant specification.

  14. Timing and Institutions: Determinants of the Ownership Structure in the Oil and Gas Industry in Canada and Norway

    NASA Astrophysics Data System (ADS)

    Didier, Thomas

    In response to 1973 oil shock, both the Canadian and Norwegian states expanded public corporate ownership in the oil and gas industry. This thesis questions why the public share of total corporate ownership in the oil industry was greater in Norway than in Canada, and why Petro-Canada was privatized completely while Statoil was not. Two hypotheses are tested from a historical institutionalist perspective. First, the timing of oil development determined whether the private sector would establish itself as the dominant player in the oil and gas industry (in Canada) or not (in Norway) before the 1973 oil shock triggered government interest in public corporate ownership. Second, overlapping jurisdiction over oil resources (in Canada) undermined the effectiveness of mechanisms of reproduction of public corporate ownership. In Norway, the later discovery of oil thus gave the state a stronger bargaining position relative to the oil industry, and in a unitary state the uncontroversial redistributional activities of Statoil attracted more vested interests.

  15. The Relationship Between Oil and Gas Industry Investment in Alternative Energy and Corporate Social Responsibility

    NASA Astrophysics Data System (ADS)

    Konyushikhin, Maxim

    The U.S. Energy Information Administration forecasted energy consumption in the United States to increase approximately 19% between 2006 and 2030, or about 0.7% annually. The research problem addressed in this study was that the oil and gas industry's interest in alternative energy is contrary to its current business objectives and profit goals. The purpose of the quantitative study was to explore the relationship between oil and gas industry investments in alternative energy and corporate social responsibilities. Research questions addressed the relationship between alternative energy investment and corporate social responsibility, the role of oil and gas companies in alternative energy investment, and why these companies chose to invest in alternative energy sources. Systems theory was the conceptual framework, and data were collected from a sample of 25 companies drawn from the 28,000 companies in the oil and gas industry from 2004 to 2009. Multiple regression and correlation analysis were used to answer the research questions and test hypotheses using corporate financial data and company profiles related to alternative energy investment and corporate social responsibility in terms of oil and gas industry financial support of programs that serve the greater social good. Results indicated significant relationships between alternative energy investment and corporate social responsibility. With an increasing global population with energy requirements in excess of what is available using traditional means, the industry should increase investment in alternative sources. The research results may promote positive social change by increasing public awareness regarding the degree to which oil and gas companies invest in developing alternative energy sources, which might, in turn, inspire public pressure on companies in the oil and gas industry to pursue use of alternative energy.

  16. US energy industry financial developments, 1993 first quarter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-06-25

    Net income for 259 energy companies-- including, 20 major US petroleum companies-- rose 38 percent between the first quarter of 1992 and the first quarter of 1993. An increased level of economic activity, along with colder weather, helped lift the demand for natural gas. crude oil, coal, and electricity. The sharp rise in the domestic price of natural gas at the wellhead relative to the year-ago quarter was the most significant development in US energy during the first quarter. As a consequence of higher natural gas prices, the upstream segment of the petroleum industry reported large gains in income, whilemore » downstream income rose due to higher refined product demand. Increased economic activity and higher weather-related natural gas demand also led to improvements in income for the rate-regulated energy segment. However, declining domestic oil production continued to restrain upstream petroleum industry earnings growth, despite a moderate rise in crude oil prices.« less

  17. Wetland mitigation banking for the oil and gas industry: Assessment, conclusions, and recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkey, P.L.; Sundell, R.C.; Bailey, K.A.

    1994-01-01

    Wetland mitigation banks are already in existence in the United States, and the number is increasing. To date, most of these banks have been created and operated for mitigation of impacts arising from highway or commercial development and have not been associated with the oil and gas industry. Argonne National Laboratory evaluated the positive and negative aspects of wetland mitigation banking for the oil and gas industry by examining banks already created for other uses by federal, state, and private entities. Specific issues addressed in this study include (1) the economic, ecological, and technical effectiveness of existing banks; (2) themore » changing nature of local, state, and federal jurisdiction; and (3) the unique regulatory and jurisdictional problems affecting bank developments associated with the oil and gas industry.« less

  18. Applications of Biosurfactants in the Petroleum Industry and the Remediation of Oil Spills

    PubMed Central

    Silva, Rita de Cássia F. S.; Almeida, Darne G.; Rufino, Raquel D.; Luna, Juliana M.; Santos, Valdemir A.; Sarubbo, Leonie Asfora

    2014-01-01

    Petroleum hydrocarbons are important energy resources. However, petroleum is also a major pollutant of the environment. Contamination by oil and oil products has caused serious harm, and increasing attention has been paid to the development and implementation of innovative technologies for the removal of these contaminants. Biosurfactants have been extensively used in the remediation of water and soil, as well as in the main stages of the oil production chain, such as extraction, transportation, and storage. This diversity of applications is mainly due to advantages such as biodegradability, low toxicity and better functionality under extreme conditions in comparison to synthetic counterparts. Moreover, biosurfactants can be obtained with the use of agro-industrial waste as substrate, which helps reduce overall production costs. The present review describes the potential applications of biosurfactants in the oil industry and the remediation of environmental pollution caused by oil spills. PMID:25029542

  19. Applications of biosurfactants in the petroleum industry and the remediation of oil spills.

    PubMed

    de Cássia F S Silva, Rita; Almeida, Darne G; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Sarubbo, Leonie Asfora

    2014-07-15

    Petroleum hydrocarbons are important energy resources. However, petroleum is also a major pollutant of the environment. Contamination by oil and oil products has caused serious harm, and increasing attention has been paid to the development and implementation of innovative technologies for the removal of these contaminants. Biosurfactants have been extensively used in the remediation of water and soil, as well as in the main stages of the oil production chain, such as extraction, transportation, and storage. This diversity of applications is mainly due to advantages such as biodegradability, low toxicity and better functionality under extreme conditions in comparison to synthetic counterparts. Moreover, biosurfactants can be obtained with the use of agro-industrial waste as substrate, which helps reduce overall production costs. The present review describes the potential applications of biosurfactants in the oil industry and the remediation of environmental pollution caused by oil spills.

  20. Technological properties of amazonian oils and fats and their applications in the food industry.

    PubMed

    Bezerra, Carolina Vieira; Rodrigues, Antonio Manoel da Cruz; de Oliveira, Pedro Danilo; da Silva, Dayala Albuquerque; da Silva, Luiza Helena Meller

    2017-04-15

    The application of lipids to food production is dependent on their physical, chemical, and nutritional properties. In this study, pracaxi oil, passion fruit oil, cupuassu fat, and palm stearin underwent physicochemical analyses and were combined at ratios of 40:60, 50:50, 60:40, and 70:30 to assess their potential applications in the food industry. Pracaxi oil, passion fruit oil, and cupuassu fat had interesting fatty acid profiles from a nutritional standpoint, displaying the lowest atherogenicity and thrombogenicity indices (0.02 and 0.14; 0.12 and 0.34; 0.16 and 0.65), respectively. Palm stearin had high thermal stability (7.23h). The primary applications of the blends obtained in this study are in table and functional margarine, particularly the pracaxi-stearin and passion fruit-stearin 40:60 and 50:50, pracaxi-cupuassu 60:40 and 70:30, and passion fruit-cupuassu 40:60 blends. The results suggest new industrial applications, especially for pracaxi and passion fruit oils, which are commonly applied in the cosmetic industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Facilitating Oil Industry Access to Federal Lands through Interagency Data Sharing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul Jehn; Ben Grunewald

    Much of the environmental and technical data useful to the oil and gas industry and regulatory agencies is now contained in disparate state and federal databases. Delays in coordinating permit approvals between federal and state agencies translate into increased operational costs and stresses for the oil and gas industry. Making federal lease stipulation and area restriction data available on state agency Web sites will streamline a potential lessors review of available leases, encourage more active bidding on unleased federal lands, and give third-party operators independent access to data who otherwise may not have access to lease restrictions and other environmentalmore » data. As a requirement of the Energy Policy Conservation Act (EPCA), the Bureau of Land Management (BLM) is in the process of inventorying oil and natural gas resources beneath onshore federal lands and the extent and nature of any stipulation, restrictions, or impediments to the development of these resources. The EPCA Phase 1 Inventory resulted in a collection of GIS coverage files organized according to numerous lease stipulation reference codes. Meanwhile, state agencies also collect millions of data elements concerning oil and gas operations. Much of the oil and gas data nationwide is catalogued in the Ground Water Protection Council's (GWPC's) successfully completed Risk Based Data Management System (RBDMS). The GWPC and the states of Colorado, New Mexico, Utah, and Montana are implementing a pilot project where BLM lease stipulation data and RBDMS data will be displayed in a GIS format on the Internet. This increased access to data will increase bid activity, help expedite permitting, and encourage exploration on federal lands. Linking environmental, lease stipulation and resource inventory assessment data and making a GIS interface for the data available to industry and other agencies via the internet represents an important step in the GWPC strategy for all oil and gas regulatory e

  2. Proceedings of the symposium on assessing the industrial hygiene monitoring needs for the coal conversion and oil shale industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, O. Jr.

    1979-03-01

    This work was supported by the United States Department of Energy, Division of Biomedical and Environmental Research, Analysis and Assessment Program, through the Safety and Environmental Protection Division at Brookhaven National Laboratory. The symposium program included presentations centering around the themes: Recognition of Occupational Health Monitoring Requirements for the Coal Conversion and Oil Shale Industries and Status of Dosimetry Technology for Occupational Health Monitoring for the Coal Conversion and Oil Shale Industries. Sixteen papers have been entered individually into EDB and ERA; six had been entered previously from other sources. (LTN)

  3. Broken trusts: The Texas Attorney General versus the oil industry, 1889-1909

    NASA Astrophysics Data System (ADS)

    Singer, Jonathan Whitney

    The legal history of state antitrust enforcement and the oil industry in Texas illustrates how and why antitrust law contemplated complementary enforcement at the state and federal government level. Historians, economists, and lawyers have concentrated on federal antitrust law and enforcement, ignoring state efforts. Yet for most of the first twenty-five years following the enactment of the Sherman Antitrust Act, federal enforcement efforts were extremely limited, leaving the field to the states. Texas was one of several states that had strong antitrust laws, and whose attorneys general prosecuted antitrust violations with vigor. Political ambition was a factor in the decisions to investigate and prosecute cases against a highly visible target, the petroleum industry, but there was also a genuine belief in the goals of antitrust policy, and in the efficacy of enforcement of the laws. Enforcement efforts were also complicated by the fact that large oil companies provided vital commodities, articles of "prime necessity," to the citizens of Texas and following the discovery of large oil fields, played an increasingly important role in the economies of many Texas communities. The Texas Attorney General's antitrust enforcement efforts against the oil industry in this time of transition from an agricultural society to an industrial society provide insights into the litigation process, and reveal how well the rhetoric of trust-busting fit with the reality of antitrust enforcement. The antitrust crusade against the petroleum industry also highlights the changing roles of state government in the late nineteenth and early twentieth centuries, particularly the Attorney General's Department. The experience of Texas undermines the view that federal action has always dominated antitrust enforcement efforts and that antitrust litigation against Standard Oil was ineffective and ineffectual. Rather, the Texas Attorney General's litigations and their results suggest that some states

  4. Human factors engineering in oil and gas--a review of industry guidance.

    PubMed

    Robb, Martin; Miller, Gerald

    2012-01-01

    Oil and gas exploration and production activities are carried out in hazardous environments in many parts of the world. Recent events in the Gulf of Mexico highlight those risks and underline the importance of considering human factors during facility design. Ergonomic factors such as machinery design, facility and accommodation layout and the organization of work activities have been systematically considered over the past twenty years on a limited number of offshore facility design projects to a) minimize the occupational risks to personnel, b) support operations and maintenance tasks and c) improve personnel wellbeing. During this period, several regulators and industry bodies such as the American Bureau of Shipping (ABS), the American Society of Testing and Materials (ASTM), the UK's Health and Safety Executive (HSE), Oil and Gas Producers (OGP), and Norway's Petroleum Safety Authority (PSA) have developed specific HFE design standards and guidance documents for the application of Human Factors Engineering (HFE) to the design and operation of Oil and Gas projects. However, despite the existence of these guidance and recommended design practise documents, and documented proof of their value in enhancing crew safety and efficiency, HFE is still not well understood across the industry and application across projects is inconsistent. This paper summarizes the key Oil and Gas industry bodies' HFE guidance documents, identifies recurring themes and current trends in the use of these standards, provides examples of where and how these HFE standards have been used on past major offshore facility design projects, and suggests criteria for selecting the appropriate HFE strategy and tasks for future major oil and gas projects. It also provides a short history of the application of HFE to the offshore industry, beginning with the use of ASTM F 1166 to a major operator's Deepwater Gulf of Mexico facility in 1990 and the application of HFE to diverse world regions. This

  5. Assessment of the radiological impact of oil refining industry.

    PubMed

    Bakr, W F

    2010-03-01

    The field of radiation protection and corresponding national and international regulations has evolved to ensure safety in the use of radioactive materials. Oil and gas production processing operations have been known to cause naturally occurring radioactive materials (NORMs) to accumulate at elevated concentrations as by-product waste streams. A comprehensive radiological study on the oil refining industry in Egypt was carried out to assess the radiological impact of this industry on the workers. Scales, sludge, water and crude oil samples were collected at each stage of the refining process. The activity concentration of (226)Ra, (232)Th and (40)K were determined using high-resolution gamma spectrometry. The average activity concentrations of the determined isotopes are lower than the IAEA exempt activity levels for NORM isotopes. Different exposure scenarios were studied. The average annual effective dose for workers due to direct exposure to gamma radiation and dust inhalation found to be 0.6 microSv and 3.2 mSv, respectively. Based on the ALARA principle, the results indicate that special care must be taken during cleaning operations in order to reduce the personnel's exposure due to maintenance as well as to avoid contamination of the environment. 2009 Elsevier Ltd. All rights reserved.

  6. Economic feasibility of biochemical processes for the upgrading of crudes and the removal of sulfur, nitrogen, and trace metals from crude oil -- Benchmark cost establishment of biochemical processes on the basis of conventional downstream technologies. Final report FY95

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Premuzic, E.T.

    1996-08-01

    During the past several years, a considerable amount of work has been carried out showing that microbially enhanced oil recovery (MEOR) is promising and the resulting biotechnology may be deliverable. At Brookhaven National Laboratory (BNL), systematic studies have been conducted which dealt with the effects of thermophilic and thermoadapted bacteria on the chemical and physical properties of selected types of crude oils at elevated temperatures and pressures. Current studies indicate that during the biotreatment several chemical and physical properties of crude oils are affected. The oils are (1) emulsified; (2) acidified; (3) there is a qualitative and quantitative change inmore » light and heavy fractions of the crudes; (4) there are chemical changes in fractions containing sulfur compounds; (5) there is an apparent reduction in the concentration of trace metals; and (6) the qualitative and quantitative changes appear to be microbial species dependent; and (7) there is a distinction between biodegraded and biotreated oils. The downstream biotechnological crude oil processing research performed thus far is of laboratory scale and has focused on demonstrating the technical feasibility of downstream processing with different types of biocatalysts under a variety of processing conditions. Quantitative economic analysis is the topic of the present project which investigates the economic feasibility of the various biochemical downstream processes which hold promise in upgrading of heavy crudes, such as those found in California, e.g., Monterey-type, Midway Sunset, Honda crudes, and others.« less

  7. How a Physicist Can Add Value In the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Poitzsch, Martin

    2011-03-01

    The talk will focus on some specific examples of innovative and fit-for-purpose physics applied to solve real-world oil and gas exploration and production problems. In addition, links will be made to some of the skills and areas of practical experience acquired in physics education and research that can prove invaluable for success in such an industrial setting with a rather distinct and unique culture and a highly-collaborative working style. The oil and gas industry is one of the largest and most geographically and organizationally diverse areas of business activity on earth; and as a `mature industry,' it is also characterized by a bewildering mix of technologies dating from the 19th century to the 21st. Oil well construction represents one of the largest volume markets for steel tubulars, Portland cement, and high-quality sand. On the other hand, 3D seismic data processing, shaped-charge perforating, and nuclear well logging have consistently driven forward the state of the art in their respective areas of applied science, as much or more so than defense or other industries. Moreover, a surprising number of physicists have made their careers in the oil industry. To be successful at introducing new technology requires understanding which problems most need to be solved. The most exotic or improbable technologies can take off in this industry if they honestly offer the best solution to a real problem that is costing millions of dollars in risk or inefficiency. On the other hand, any cheaper or simpler solution that performs as well would prevail, no matter how inelegant! The speaker started out in atomic spectroscopy (Harvard), post-doc'ed in laser cooling and trapping of ions for high-accuracy time and frequency metrology (NIST), and then jumped directly into Drilling Engineering with Schlumberger Corp. in Houston. Since then, his career has moved through applied electromagnetics, geological imaging, nuclear magnetic resonance logging, some R and D portfolio

  8. Cattle and the oil and gas industry in Alberta: A literature review with recommendations for environmental management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The purpose of this report is to bring together a review of published information on the potential effects of upstream oil and gas industry operations on the cattle industry in Alberta, some indication of the probability of occurrence of these effects, and recommendations on how they might be avoided or mitigated. Based on reviews of scientific papers and industry good-practice manuals, the report describes: The sources and quantities of environmental contaminants generated by Alberta`s oil and gas industry, including normal operations, accidental releases, and the effects of aging infrastructure; the chemical composition of the products, materials, and wastes associated withmore » the industry; the fate and transport of the contaminants through air, water, and soil; cattle operations in Alberta; the toxicology of oil and gas industry contaminants in cattle; and selected Alberta case studies of accidental releases and planned experiments. Conclusions and recommendations deal with critical information gaps and strategies for the sustainable management of cattle and oil/gas operations in the province.« less

  9. Determinants of Network News Coverage of the Oil Industry during the Late 1970s.

    ERIC Educational Resources Information Center

    Erfle, Stephen; McMillan, Henry

    1989-01-01

    Examines which firms and products best predict media coverage of the oil industry. Reports that price variations in testing oil and gasoline correlate with the extent of news coverage provided by network television. (MM)

  10. SEASAT demonstration experiments with the offshore oil, gas and mining industries

    NASA Technical Reports Server (NTRS)

    Mourad, A. G.; Robinson, A. C.; Balon, J. E.

    1979-01-01

    Despite its failure, SEASAT-1 acquired a reasonable volume of data that can be used by industrial participants on a non-real-time basis to prove the concept of microwave sensing of the world's oceans from a satellite platform. The amended version of 8 experimental plans are presented, along with a description of the satellite, its instruments, and the data available. Case studies are summarized for the following experiments: (1) Beaufort Sea oil, gas, and Arctic operations; (2) Labrador Sea oil, gas, and sea ice; (3) Gulf of Mexico pipelines; (4) U.S. East Coast offshore oil and gas; (5) worldwide offshore drilling and production operations; (6) Equatorial East Pacific Ocean mining; (7) Bering Sea ice project; and (8) North Sea oil and gas.

  11. Predominant MIC Mechanisms in the Oil and Gas Industry

    DTIC Science & Technology

    literature, terms such as microbial corrosion, biocorrosion, microbially influenced/induced corrosion, and biodegradation are often applied. All descriptions...express that microorganisms (bacteria, archaea, and fungi) influence the corrosion process of a given material. In this chapter, an overview of the common MIC mechanisms encountered in the oil and gas industry is presented.

  12. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site.

    PubMed

    Kassotis, Christopher D; Iwanowicz, Luke R; Akob, Denise M; Cozzarelli, Isabelle M; Mumford, Adam C; Orem, William H; Nagel, Susan C

    2016-07-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    USGS Publications Warehouse

    Kassotis, Christopher D.; Iwanowicz, Luke R.; Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam; Orem, William H.; Nagel, Susan C.

    2016-01-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby.

  14. Volatility of bitumen prices and implications for the industry

    USGS Publications Warehouse

    Attanasi, E.D.

    2008-01-01

    Sustained crude oil price increases have led to increased investment in and production of Canadian bitumen to supplement North American oil supplies. For new projects, the evaluation of profitability is based on a prediction of the future price path of bitumen and ultimately light/medium crude oil. This article examines the relationship between the bitumen and light crude oil prices in the context of a simple error-correction economic-adjustment model. The analysis shows bitumen prices to be significantly more volatile than light crude prices. Also, the dominant effect of an oil price shock on bitumen prices is immediate and is amplified, both in absolute terms and percentage price changes. It is argued that the bitumen industry response to such market risks will likely be a realignment toward vertical integration via new downstream construction, mergers, or on a de facto basis by the establishment of alliances. ?? 2008 International Association for Mathematical Geology.

  15. Lymphohaematopoietic malignancy around all industrial complexes that include major oil refineries in Great Britain.

    PubMed

    Wilkinson, P; Thakrar, B; Walls, P; Landon, M; Falconer, S; Grundy, C; Elliott, P

    1999-09-01

    To examine the incidence of lymphohaematopoietic malignancy around industrial complexes that include major oil refineries in Great Britain after recent public and scientific concern of possible carcinogenic hazards of emissions from the petrochemical industry. Small area study of the incidence of lymphohaematopoietic malignancies, 1974-91, within 7.5 km of all 11 oil refineries (grouped into seven sites) in Great Britain that were operational by the early 1970s and processed more than two million tonnes of crude oil in 1993. Combined analysis of data from all seven sites showed no significant (p < 0.05) increase in risk of these malignancies within 2 km or 7.5 km. Hodgkin's lymphoma, but no other malignancy, showed evidence (p = 0.02) of a decline in risk with distance from refineries, but there was an apparent deficit of cases of multiple myeloma near the refineries (p = 0.04). There was no evidence of association between residence near oil refineries and leukaemias, or non-Hodgkin's lymphoma. A weak positive association was found between risk of Hodgkin's disease and proximity to major petrochemical industry, and a negative association with multiple myeloma, which may be chance findings within the context of multiple statistical testing.

  16. Addressing oil price changes through business profitability in oil and gas industry in the United Kingdom.

    PubMed

    Vătavu, Sorana; Lobonț, Oana-Ramona; Para, Iulia; Pelin, Andrei

    2018-01-01

    In this paper, we investigate how crude oil price and volume traded affected the profitability of oil and gas companies in the United Kingdom (UK) since the financial crisis started in 2008. The study benefit from insights of the financial statements, to develop a model that focuses on how changes in oil price impact corporate performance. In order to observe the financial indicators that influence the performance, as well as the effects that changes in oil prices and demand of crude oil have on the profitability of oil and gas companies, we apply comparative regression analysis, including the generalised method of moments estimation technique for panel data set. The sample is consisting of 31 oil and gas companies in the UK, and the period analysed is 2006-2014. Results show that profitable oil and gas companies managed to face the drop in oil price and recover, characterized by significant cash flows and stock turnover, efficient use of assets, and high solvency rates. Although the oil price and volume traded do not significantly affect profitability and other financial ratios, if the oil price continues to decrease, it would permanently alter both the UK economy and oil and gas companies. In order to survive, companies make drastic cuts and defer essential investments, often at the long-term expense of asset performance. This study is important in a world where the energy consumption steadily grew over time. However, the renewable energy is cheaper and more environmentally friendly, and thus, countries where oil and gas industry is one of the most popular sectors face an economic decline. These results could be useful for investors, managers or decision makers, reclaiming strategic decisions in the current uncertain and volatile environment.

  17. Market entry mode and competency building of Western oil companies in the Russian up stream oil and gas industry

    NASA Astrophysics Data System (ADS)

    Stephenson, Paul M.

    This dissertation investigated the market entry and competency building strategies within the context of the Russian oil and gas industry. The study was designed to be of interest to business practitioners and academics given the growing importance of fossil fuel in the energy balance of the global economy and the importance of Russia as a supplier and purchaser in the international market. The study's mixed methodology provides an understanding on the environmental factors that are postulated to impact foreign direct investment flow into Russia and the oil and gas sector. A case study of a fictitiously named Western-Russo oil company was conducted to provide a deep understanding of how capability is viewed by Russian and Western employees and the factors that influences the implementation of a successful competency development program. The case was centered on the development of a Well-Site supervisor group within a Western-Russian oil company. Findings of the study showed that there was no correlation between corruption and foreign direct investment inflow into the Russian economy. The findings also showed that both Russian and Western employees in the oil and gas industry are less focused on nontechnical competency development issues, that Western employees are more orientated towards the bottom-line than Russian employees, and that both groups see operational management as a core competency. In the area of financial management and technology application, there were significant differences in the viewpoint of both groups. Western employees saw a stronger need for financial management and less need for technology application when compared to their Russian counterparts. The results have implications for Western business contemplating entering the Russian oil and gas industry. Western firms need to understand the key drivers that will help them overcome the social and cultural barriers between Western and Russian employees. The role of the company leader is very

  18. A review of shape memory material’s applications in the offshore oil and gas industry

    NASA Astrophysics Data System (ADS)

    Patil, Devendra; Song, Gangbing

    2017-09-01

    The continuously increasing demand for oil and gas and the depleting number of new large reservoir discoveries have made it necessary for the oil and gas industry to investigate and design new, improved technologies that unlock new sources of energy and squeeze more from existing resources. Shape memory materials (SMM), with their remarkable properties such as the shape memory effect (SME), corrosion resistance, and superelasticity have shown great potential to meet these demands by significantly improving the functionality and durability of offshore systems. Shape memory alloy (SMA) and shape memory polymer (SMP) are two types of most commonly used SMM’s and are ideally suited for use over a range of robust engineering applications found within the oil and gas industry, such as deepwater actuators, valves, underwater connectors, seals, self-torqueing fasteners and sand management. The potential high strain and high force output of the SME of SMA can be harnessed to create a lightweight, solid state alternative to conventional hydraulic, pneumatic or motor based actuator systems. The phase transformation property enables the SMA to withstand erosive stresses, which is useful for minimizing the effect of erosion often experienced by downhole devices. The superelasticity of the SMA provides good energy dissipation, and can overcome the various defects and limitations suffered by conventional passive damping methods. The higher strain recovery during SME makes SMP ideal for developments of packers and sand management in downhole. The increasing number of SMM related research papers and patents from oil and gas industry indicate the growing research interest of the industry to implement SMM in offshore applications. This paper reviews the recent developments and applications of SMM in the offshore oil and gas industry.

  19. 77 FR 61026 - Olive Oil: Conditions of Competition Between U.S. and Major Foreign Supplier Industries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 332-537] Olive Oil: Conditions of Competition... Commission (Commission) instituted investigation No. 332-537, Olive Oil: Conditions of Competition between U..., the report will include the following-- 1. An overview of the commercial olive oil industry in the...

  20. Responsible management of peatlands in Canada, from peat industry to oil sands

    NASA Astrophysics Data System (ADS)

    Rochefort, Line

    2013-04-01

    Canada harbors one third of the peat resources of the world. Peat is an accumulated organic matter composed of dead and partly decomposed plant material, forming huge deposit through time in wetlands like peatlands and boreal coniferous swamps. Peat is a valuable resource as a growing media and soil amendments, an eco-friendly absorbent, also used as biofilters, for body care and for wastewater treatment. Peatlands also offer valuable ecological services : for example, they are the most efficient terrestrial ecosystem to store carbon on a long-term basis. Their ability to "cool off" the planet warrants a good look at their management. The horticultural peat industry of Canada has invested 22 years in R&D in habitat restoration and is now a strong leader in managing industrial peatlands in a sustainable way. The oil sand industry, which is strongly impacting the wetland landscapes of northern Canada, does realize that it has to reduce its ecological footprint, which is heavily criticized around the world. Decommissioned open mines near Fort McMurray have already begun recreating peatland ecosystems, and some restoration attempts of former oil pads are underway in the Peace River region. But the restoration of the largely disturbed wetland landscape of the oil sands is commanding innovative solutions.

  1. A pattern of contractor selection for oil and gas industries in a safety approach using ANP-DEMATEL in a Grey environment.

    PubMed

    Gharedaghi, Gholamreza; Omidvari, Manouchehr

    2018-01-11

    Contractor selection is one of the major concerns of industry managers such as those in the oil industry. The objective of this study was to determine a contractor selection pattern for oil and gas industries in a safety approach. Assessment of contractors based on specific criteria and ultimately selecting an eligible contractor preserves the organizational resources. Due to the safety risks involved in the oil industry, one of the major criteria of contractor selection considered by managers today is safety. The results indicated that the most important safety criterion of contractor selection was safety records and safety investments. This represented the industry's risks and the impact of safety training and investment on the performance of other sectors and the overall organization. The output of this model could be useful in the safety risk assessment process in the oil industry and other industries.

  2. Bitumen and heavy oil upgrading in Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrones, J.; Germain, R.R.

    1989-01-01

    A review is presented of the heavy oil upgrading industry in Canada. Up to now it has been based on the processing of bitumen extracted from oil sands mining operations at two sites, to produce a residue-free, low sulphur, synthetic crude. Carbon rejection has been the prime process technology with delayed coking being used by Suncor and FLUID COKING at Syncrude. Alternative processes for recovering greater amounts of synthetic crude are examined. These include a variety of hydrogen addition processes and combinations which produce pipelineable materials requiring further processing in downstream refineries with expanded capabilities. The Newgrade Energy Inc. upgradermore » now under construction in Regina, will use fixed-bed, catalytic, atmospheric-residue, hydrogen processing. Two additional projects, also based on hydrogenation, will use ebullated bed catalyst systems; the expansion of Syncrude, now underway, is using the LC Fining Process whereas the announced Husky Bi-Provincial upgrader is based on H-Oil.« less

  3. Bitumen and heavy oil upgrading in Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrones, J.

    1988-06-01

    A review is presented of the heavy oil upgrading industry in Canada. Up to now it has been based on the processing of bitumen extracted from oil sands mining operations at two sites, to produce a residue-free, low sulfur, synthetic crude. Carbon rejection has been the prime process technology with delayed coking being used by Suncor and FLUID COKING at Syncrude. Alternative processes for recovering greater amounts of synthetic crude are examined. These include a variety of hydrogen addition processes and combinations which produce pipelineable materials requiring further processing in downstream refineries with expanded capabilities. The Newgrade Energy Inc. upgrader,more » now under construction in Regina, will use fixed-bed, catalytic, atmospheric-residue, hydrogen processing. Two additional products, also based on hydrogenation, will use ebullated bed catalyst systems: the expansion of Syncrude, now underway, is using the LC Fining Process whereas the announced Husky Bi-Provincial upgrader is based on H-Oil.« less

  4. Frequency-Selective Surface to Determine Permittivity of Industrial Oil and Effect of Nanoparticle Addition in X-Band

    NASA Astrophysics Data System (ADS)

    Jafari, Fereshteh Sadat; Ahmadi-Shokouh, Javad

    2018-02-01

    A frequency-selective surface (FSS) structure is proposed for characterization of the permittivity of industrial oil using a transmission/reflection (TR) measurement scheme in the X-band. Moreover, a parameter study is presented to distinguish the dielectric constant and loss characteristics of test materials. To model the loss empirically, we used CuO nanoparticles artificially mixed with an industrial oil. In this study, the resonant frequency of the FSS is the basic parameter used to determine the material characteristics, including resonance properties such as the magnitude of transmission ( S 21), bandwidth, and frequency shift. The results reveal that the proposed FSS structure and setup can act well as a sensor for characterization of the dielectric properties of industrial oil.

  5. Use of Olive Oil Industrial By-Product for Pasta Enrichment.

    PubMed

    Padalino, Lucia; D'Antuono, Isabella; Durante, Miriana; Conte, Amalia; Cardinali, Angela; Linsalata, Vito; Mita, Giovanni; Logrieco, Antonio F; Del Nobile, Matteo Alessandro

    2018-04-16

    During recent years food industries generally produce a large volume of wastes both solid and liquid, representing a disposal and potential environmental pollution problem. The goal of the study was to optimize, from both sensory and nutritional points of view, the formulation of durum wheat spaghetti enriched with an olive oil industrial by-product, indicated as olive paste. Three consecutive steps were carried out. In the first one, the olive paste was air-dried at low temperature, milled to record olive paste flour and properly analyzed for its biochemical composition. In the second step, the olive paste flour was added to the pasta dough at 10% and 15% ( w / w ). In the last step, different concentrations of transglutaminase were added to enriched pasta (10% olive paste) to further improve the quality. Sensory properties and nutritional content of enriched and control pasta were properly measured. Spaghetti with 10% olive paste flour and 0.6% transglutaminase were considered acceptable to the sensory panel test. Nutritional analyses showed that addition of 10% olive paste flour to pasta considerably increased content of flavonoids and total polyphenols. The proper addition of olive paste flour and transglutaminase for pasta enrichment could represent a starting point to valorize olive oil industrial by-products and produce new healthy food products.

  6. Training using multimedia in the oil and gas industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bihn, G.C.

    1997-02-01

    Multimedia is becoming a widely used and accepted tool in general education. From preschool to the university, multimedia is promising and delivering some very impressive results. Its application in specific industry segments, like oil and gas, is expected to proliferate within the very near future. In fact, many titles are already on the market or in development. The objective of this article is to present an overview of the current state of multimedia as used in petroleum industry training and to provide managers with a feel for not only the technology but, more importantly, what benefit the technology is expectedmore » to bring to their organization.« less

  7. Assessing drivers of export orientation in the subsea oil and gas industry.

    PubMed

    Aarstad, Jarle; Pettersen, Inger Beate; Jakobsen, Stig-Erik

    2015-01-01

    The purpose of this short study was to identify the drivers of export orientation of firms in the subsea oil and gas industry in Western Norway. As the oil fields in the North Sea are approaching a stage of maturity, gaining knowledge of these drivers is crucial. An online survey was conducted of firms operating in the subsea oil and gas industry in the region. Consistent with previous research, the data reveal that product innovation and a majority share of international ownership increase firms' export rates. The use of instrumental variables indicates that both product innovation and international ownership are causes of subsea petroleum exports. The study moreover finds that subcontractors have a lower rate of direct exports than system providers, but international ownership in particular boosts subcontractors' export rates, probably by decreasing their market dependency on regional system providers. A clear recommendation for managers and stakeholders is that they should encourage foreign investments throughout the value chain. The results of such a strategy appear to be especially positive for subcontractors.

  8. Feasibility Studies of Palm Oil Mill Waste Aggregates for the Construction Industry.

    PubMed

    Kanadasan, Jegathish; Fauzi, Auni Filzah Ahmad; Razak, Hashim Abdul; Selliah, Paramananthan; Subramaniam, Vijaya; Yusoff, Sumiani

    2015-09-22

    The agricultural industry in Malaysia has grown rapidly over the years. Palm oil clinker (POC) is a byproduct obtained from the palm oil industry. Its lightweight properties allows for its utilization as an aggregate, while in powder form as a filler material in concrete. POC specimens obtained throughout each state in Malaysia were investigated to evaluate the physical, chemical, and microstructure characteristics. Variations between each state were determined and their possible contributory factors were assessed. POC were incorporated as a replacement material for aggregates and their engineering characteristics were ascertained. Almost 7% of density was reduced with the introduction of POC as aggregates. A sustainability assessment was made through greenhouse gas emission (GHG) and cost factor analyses to determine the contribution of the addition of POC to the construction industry. Addition of POC helps to lower the GHG emission by 9.6% compared to control specimens. By channeling this waste into the construction industry, an efficient waste-management system can be promoted; thus, creating a cleaner environment. This study is also expected to offer some guides and directions for upcoming research works on the incorporation of POC.

  9. Feasibility Studies of Palm Oil Mill Waste Aggregates for the Construction Industry

    PubMed Central

    Kanadasan, Jegathish; Ahmad Fauzi, Auni Filzah; Abdul Razak, Hashim; Selliah, Paramananthan; Subramaniam, Vijaya; Yusoff, Sumiani

    2015-01-01

    The agricultural industry in Malaysia has grown rapidly over the years. Palm oil clinker (POC) is a byproduct obtained from the palm oil industry. Its lightweight properties allows for its utilization as an aggregate, while in powder form as a filler material in concrete. POC specimens obtained throughout each state in Malaysia were investigated to evaluate the physical, chemical, and microstructure characteristics. Variations between each state were determined and their possible contributory factors were assessed. POC were incorporated as a replacement material for aggregates and their engineering characteristics were ascertained. Almost 7% of density was reduced with the introduction of POC as aggregates. A sustainability assessment was made through greenhouse gas emission (GHG) and cost factor analyses to determine the contribution of the addition of POC to the construction industry. Addition of POC helps to lower the GHG emission by 9.6% compared to control specimens. By channeling this waste into the construction industry, an efficient waste-management system can be promoted; thus, creating a cleaner environment. This study is also expected to offer some guides and directions for upcoming research works on the incorporation of POC. PMID:28793579

  10. Robust control charts in industrial production of olive oil

    NASA Astrophysics Data System (ADS)

    Grilo, Luís M.; Mateus, Dina M. R.; Alves, Ana C.; Grilo, Helena L.

    2014-10-01

    Acidity is one of the most important variables in the quality analysis and characterization of olive oil. During the industrial production we use individuals and moving range charts to monitor this variable, which is not always normal distributed. After a brief exploratory data analysis, where we use the bootstrap method, we construct control charts, before and after a Box-Cox transformation, and compare their robustness and performance.

  11. Cyber Vulnerabilities Within Critical Infrastructure: The Flaws of Industrial Control Systems in the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Alpi, Danielle Marie

    The 16 sectors of critical infrastructure in the US are susceptible to cyber-attacks. Potential attacks come from internal and external threats. These attacks target the industrial control systems (ICS) of companies within critical infrastructure. Weakness in the energy sector's ICS, specifically the oil and gas industry, can result in economic and ecological disaster. The purpose of this study was to establish means for oil companies to identify and stop cyber-attacks specifically APT threats. This research reviewed current cyber vulnerabilities and ways in which a cyber-attack may be deterred. This research found that there are insecure devices within ICS that are not regularly updated. Therefore, security issues have amassed. Safety procedures and training thereof are often neglected. Jurisdiction is unclear in regard to critical infrastructure. The recommendations this research offers are further examination of information sharing methods, development of analytic platforms, and better methods for the implementation of defense-in-depth security measures.

  12. Downstream Petroleum Mergers and Acquisitions by U.S. Major Oil Companies

    EIA Publications

    2009-01-01

    A summary presentation of mergers and acquisitions by U.S. major oil companies (including the U.S. affiliates of foreign major oil companies). The presentation focuses on petroleum refining over the last several years through late 2009.

  13. Use of Olive Oil Industrial By-Product for Pasta Enrichment

    PubMed Central

    Padalino, Lucia; Durante, Miriana; Conte, Amalia; Mita, Giovanni; Logrieco, Antonio F.; Del Nobile, Matteo Alessandro

    2018-01-01

    Background: During recent years food industries generally produce a large volume of wastes both solid and liquid, representing a disposal and potential environmental pollution problem. Objective: The goal of the study was to optimize, from both sensory and nutritional points of view, the formulation of durum wheat spaghetti enriched with an olive oil industrial by-product, indicated as olive paste. Methods: Three consecutive steps were carried out. In the first one, the olive paste was air-dried at low temperature, milled to record olive paste flour and properly analyzed for its biochemical composition. In the second step, the olive paste flour was added to the pasta dough at 10% and 15% (w/w). In the last step, different concentrations of transglutaminase were added to enriched pasta (10% olive paste) to further improve the quality. Sensory properties and nutritional content of enriched and control pasta were properly measured. Results: Spaghetti with 10% olive paste flour and 0.6% transglutaminase were considered acceptable to the sensory panel test. Nutritional analyses showed that addition of 10% olive paste flour to pasta considerably increased content of flavonoids and total polyphenols. Conclusions: The proper addition of olive paste flour and transglutaminase for pasta enrichment could represent a starting point to valorize olive oil industrial by-products and produce new healthy food products. PMID:29659550

  14. From Process Development to Manufacturing: Lab-Intensive Courses in Downstream Bioprocessing

    ERIC Educational Resources Information Center

    Gilleskie, Gary L.; Reeves, Baley A.

    2014-01-01

    Most chemical engineering graduates work in industry, a fact that underscores the need for courses to provide experiences that prepare them for industry. The Biomanufacturing Training and Education Center (BTEC) at North Carolina State University has addressed this need by developing and delivering a comprehensive downstream bioprocessing program…

  15. Remote Sensing Application in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Sizov, Oleg; Aloltsov, Alexander; Rubtsova, Natalia

    2014-05-01

    The main environmental problems of the Khanty-Mansi Autonomous Okrug (a federal subject of Russia) related to the activities of oil and gas industry (82 active companies which hold 77,000 oil wells). As on the 1st of January 2013 the subject produces more than 50% of all oil in Russia. The principle of environmental responsibility makes it necessary to minimize human impact and ecological impact. One of the most effective tools for environmental monitoring is remote sensing. The main advantages of such approach are: wide coverage of areas of interest, high temporal resolution, precise location, automatic processing, large set of extracted parameters, etc. Authorities of KhMAO are interested in regular detection of the impact on the environment by processing satellite data and plan to increase the coverage from 434.9 to 659.9 square kilometers with resolution not less than 10 m/pixel. Years of experience of our company shows the significant potential to expand the use of such remote sensing data in the solution of environmental problems. The main directions are: monitoring of rational use of associated petroleum gas (detection of all gas flares and volumes of burned gas), monitoring of soil pollution (detection of areas of oil pollution, assess of the extent of pollution, planning of reclamation activities and assessment of their efficiency, detection of potential areas of pipelines corrosion), monitoring of status of sludge pits (inventory of all sludge pits, assessment of their liquidation), monitoring of technogenic impact (detection of changes), upgrading of a geospatial database (topographic map of not less than 1:50000 scale). Implementation of modeling, extrapolation and remote analysis techniques based on satellite images will help to reduce unnecessary costs for instrumental methods. Thus, the introduction of effective remote monitoring technology to the activity of oil and gas companies promotes environmental responsibility of these companies.

  16. Oil industry in Uganda: The socio-economic effects on the people of Kabaale Village, Hoima, and Bunyoro region in Uganda

    NASA Astrophysics Data System (ADS)

    Kyomugasho, Miriam

    This thesis examines the socio-economic effects of oil industry on the people of Kabaale Village, Hoima, and Bunyoro region in Uganda. The thesis analyses the current political economy of Uganda and how Uganda is prepared to utilize the proceeds from the oil industry for the development of the country and its people. In addition, the research examines the effects of industry on the people of Uganda by analyzing how the people of Kabaale in Bunyoro region were affected by the plans to construct oil refinery in their region. This field research was done using qualitative methods and the Historical Materialism theoretical framework guided the study. The major findings include; displacement of people from land especially women, lack of accountability from the leadership, and less citizen participation in the policy formulation and oil industry. Ugandans, East Africans and the wider Pan-African world need to re-organize their socio-economic structure to enable people own means of production; participate and form labor organizations. Additionally, there is a need for oil producing African countries to unite and setup and oil fund for resources and investment instead of relying on foreign multinationals or become rentier states.

  17. Citrus Essential Oils: Current and Prospective Uses in the Food Industry.

    PubMed

    Mustafa, Nazik E M

    2015-01-01

    Citrus essential oils (CEOs) are gaining popularity in the food industry. This review summarises the chemical compositions of citrus essential oils (monoterpenes, sesquiterpenes and oxygenated derivatives) and explores their antimicrobial activities for use as preservatives in addition to highlight their uses as flavouring and antioxidant agents. The myriad uses of these compounds reflect a global trend towards the increased consumption of natural products. However, challenges such as production technologies, oxidation, chemical contamination by pesticides and consumption induced allergic effects still need to be addressed. Patents identified with CEO uses in food processing and those describe techniques of extraction are presented.

  18. Industrial hygiene monitoring needs for the coal conversion and oil shale industries. Study group report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Otto; Morris, Samuel; Cessario, Thomas R.

    1979-11-01

    Conclusions of a study group organized to assess the need for research and development of instrumentation for monitoring occupational exposures in the coal conversion and oil shale industries are reported. Research and development requirements for assessing potentially hazardous exposures are reviewed. Hazardous substances are classified in the following four categories: those which are immediately hazardous to life and health; high risk, but not immediately hazardous; moderate risk and not immediately hazardous; and short-term, nonroutine high hazards. Specific research recommendations are made in the following areas: personal monitors for gases; nitrogen compounds; aerosols; metals; fibers and dust; surface contamination; skin contamination;more » analytical development; industrial hygiene surveys;research; and, bioassays. (JGB)« less

  19. Has Alberta Oil Sands Development Altered Delivery of Polycyclic Aromatic Compounds to the Peace-Athabasca Delta?

    PubMed Central

    Hall, Roland I.; Wolfe, Brent B.; Wiklund, Johan A.; Edwards, Thomas W. D.; Farwell, Andrea J.; Dixon, D. George

    2012-01-01

    Background The extent to which Alberta oil sands mining and upgrading operations have enhanced delivery of bitumen-derived contaminants via the Athabasca River and atmosphere to the Peace-Athabasca Delta (200 km to the north) is a pivotal question that has generated national and international concern. Accounts of rare health disorders in residents of Fort Chipewyan and deformed fish in downstream ecosystems provided impetus for several recent expert-panel assessments regarding the societal and environmental consequences of this multi-billion-dollar industry. Deciphering relative contributions of natural versus industrial processes on downstream supply of polycyclic aromatic compounds (PACs) has been identified as a critical knowledge gap. But, this remains a formidable scientific challenge because loading from natural processes remains unknown. And, industrial activity occurs in the same locations as the natural bitumen deposits, which potentially confounds contemporary upstream-downstream comparisons of contaminant levels. Methods/Principal Findings Based on analyses of lake sediment cores, we provide evidence that the Athabasca Delta has been a natural repository of PACs carried by the Athabasca River for at least the past two centuries. We detect no measureable increase in the concentration and proportion of river-transported bitumen-associated indicator PACs in sediments deposited in a flood-prone lake since onset of oil sands development. Results also reveal no evidence that industrial activity has contributed measurably to sedimentary concentration of PACs supplied by atmospheric transport. Conclusions/Significance Findings suggest that natural erosion of exposed bitumen in banks of the Athabasca River and its tributaries is a major process delivering PACs to the Athabasca Delta, and the spring freshet is a key period for contaminant mobilization and transport. This baseline environmental information is essential for informed management of natural resources

  20. Occupational asthma induced by tall oil in the rubber tyre industry.

    PubMed

    Tarlo, S M

    1992-01-01

    A worker in the rubber tyre industry is described with occupational asthma from exposure to a solution of tall oil, a pine resin, confirmed by specific inhalation challenge. This supports studies of contact dermatitis which have suggested abietic and dehydroabietic acid oxidants to be the cause of colophony induced allergic reactions.

  1. Recent judicial developments in state income taxation of the oil and gas industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellerstein, W.

    1986-03-01

    The oil and gas industry has been at the center of activity involving state income taxation. The author reviews several recent judicial decisions whose implications extend beyond individual state borders. He describes how state interpretations of the Uniform Division of Income for Tax Purposes Act (UDITPA) property factor, the deductibility of the Windfall Profits Tax, and the constitutionality of Alaska's separate accounting for oil companies led to decisions which affect controversies in other states.

  2. Microbial production of scleroglucan and downstream processing.

    PubMed

    Castillo, Natalia A; Valdez, Alejandra L; Fariña, Julia I

    2015-01-01

    Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a β-1,3-β-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length, and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc.), and biomedical (immunoceutical, antitumor, etc.) applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high exopolysaccharide concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined.

  3. Microbial production of scleroglucan and downstream processing

    PubMed Central

    Castillo, Natalia A.; Valdez, Alejandra L.; Fariña, Julia I.

    2015-01-01

    Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a β-1,3-β-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length, and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc.), and biomedical (immunoceutical, antitumor, etc.) applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high exopolysaccharide concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined. PMID:26528259

  4. Computational sciences in the upstream oil and gas industry

    PubMed Central

    Halsey, Thomas C.

    2016-01-01

    The predominant technical challenge of the upstream oil and gas industry has always been the fundamental uncertainty of the subsurface from which it produces hydrocarbon fluids. The subsurface can be detected remotely by, for example, seismic waves, or it can be penetrated and studied in the extremely limited vicinity of wells. Inevitably, a great deal of uncertainty remains. Computational sciences have been a key avenue to reduce and manage this uncertainty. In this review, we discuss at a relatively non-technical level the current state of three applications of computational sciences in the industry. The first of these is seismic imaging, which is currently being revolutionized by the emergence of full wavefield inversion, enabled by algorithmic advances and petascale computing. The second is reservoir simulation, also being advanced through the use of modern highly parallel computing architectures. Finally, we comment on the role of data analytics in the upstream industry. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597785

  5. Metabolic engineering of plant oils and waxes for use as industrial feedstocks.

    PubMed

    Vanhercke, Thomas; Wood, Craig C; Stymne, Sten; Singh, Surinder P; Green, Allan G

    2013-02-01

    Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks. © 2012 CSIRO Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  6. Integrated process for the removal of emulsified oils from effluents in the steel industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benito, J.M.; Rios, G.; Gutierrez, B.

    1999-11-01

    Emulsified oils contained in aqueous effluents from cold-rolling mills of the steel industry can be effectively removed via an integrated process consisting of a coagulation/flocculation stage followed by ultrafiltration of the resulting aqueous phase. The effects of CaCl{sub 2}, NaOH, and lime on the stability of different industrial effluents were studied in the coagulation experiments. The flocculants tested were inorganic prehydrolyzed aluminum salts and quaternary polyamines. Ultrafiltration of the aqueous phase from the coagulation/flocculation stage was carried out in a stirred cell using Amicon PM30 and XM300 organic membranes. Permeate fluxes were measured for industrial effluents to which the indicatedmore » coagulants and flocculants had been added. Oil concentrations in the permeate were 75% lower than the limits established by all European Union countries. Complete regeneration of the membrane was accomplished with an aqueous solution of a commercial detergent.« less

  7. Hazardous Waste Cleanup: Industrial Oil Tank Services, Inc. in Verona, New York

    EPA Pesticide Factsheets

    Industrial Oil Tank Services, Inc. operated as a petroleum recovery facility in the town of Verona in Oneida County from mid-1970’s through 1992. The site stored hazardous wastes in 23 steel tanks of various sizes with a total combined capacity of

  8. A speculative look at the future of the American Petroleum Industry based on a full-cycle analysis of the American Whale Oil Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, J.L. Jr.

    1995-09-01

    A full-cycle, industry-scale look at the American whaling industry of the 19th century suggests a number of comparisons with the American petroleum industry of the 20th century. Using the King Hubbert production profile for extraction industries as a guide, both industries show a similar business life span. An understanding of the history of American whaling will, perhaps, gives us a more complete understanding of the history of the American petroleum industry. The rise of the American whaling industry to the premier investment opportunity of its day is little known to most in today`s oil and gas industry. Yet, we allmore » know that abundant and inexpensive crude oil was a key factor in its demise. From a careful study of the history of the American whaling industry a set of factors (or stages of transition), common to similar extraction industries, can be developed, which may help investors and workers determine the state of health of our industry: (1) defection of highly skilled personnel to other, comparable, technical industries; (2) discovery and initial development of a replacement commodity; (3) major calamity, which adversely affects the industry in terms of significant loss of working capital and/or resources; (4) loss of sufficient investment capital to continue resource addition; (5) rapid development of a replacement commodity with attendant decrease in per unit price to a position lower than the primary commodity; (6) significant loss of market share by the primary commodity; and (7) end of the primary commodity as a major economic force.« less

  9. Challenges in Modelling and Control of Offshore De-oiling Hydrocyclone Systems

    NASA Astrophysics Data System (ADS)

    Durdevic, Petar; Pedersen, Simon; Yang, Zhenyu

    2017-01-01

    Offshore de-oiling installations are facing an increasing challenge with regards to removing oil residuals from produced water prior to discharge into the ocean. The de-oiling of produced water is initially achieved in the primary separation processes using gravity-based multi-phase separators, which can effectively handle large amounts of oil-well fluids but may struggle with the efficient separation of small dispersed oil particles. Thereby hydrocyclone systems are commonly employed in the downstream Produced Water Treatment (PWT) process for further reducing the oil concentration in the produced water before it can be discharged into the ocean. The popularity of hydrocyclone technology in the offshore oil and gas industry is mainly due to its rugged design and low maintenance requirements. However, to operate and control this type of system in an efficient way is far less simple, and alternatively this task imposes a number of key control challenges. Specifically, there is much research to be performed in the direction of dynamic modelling and control of de-oiling hydrocyclone systems. The current solutions rely heavily on empirical trial-and-error approaches. This paper gives a brief review of current hydrocyclone control solutions and the remaining challenges and includes some of our recent work in this topic and ends with a motivation for future work.

  10. Lipase production by Penicillium restrictum using solid waste of industrial babassu oil production as substrate.

    PubMed

    Palma, M B; Pinto, A L; Gombert, A K; Seitz, K H; Kivatinitz, S C; Castilho, L R; Freire, D M

    2000-01-01

    Lipase, protease, and amylase production by Penicillium restrictum in solid-state fermentation was investigated. The basal medium was an industrial waste of babassu oil (Orbignya oleifera) production. It was enriched with peptone, olive oil, and Tween-80. The supplementation positively influenced both enzyme production and fungal growth. Media enriched with Tween-80 provided the highest protease activity (8.6 U/g), whereas those enriched with peptone and olive oil led to the highest lipase (27.8 U/g) and amylase (31.8 U/g) activities, respectively.

  11. Life cycle inventory of oil palm lumber production: A gate-to-gate case study

    NASA Astrophysics Data System (ADS)

    Shamsudin, Noor Ainna; Sahid, Ismail; Mokhtar, Anis; Muhamad, Halimah; Ahmad, Shamim

    2018-04-01

    Life Cycle Assessment (LCA) has been applied in the Malaysian oil palm industry since 2010. It is important to ensure that this main industry is ready to meet the demands and expectations of European market on the environmental performance of the oil palm industry. In addition, oil palm biomass, especially oil palm trunk (OPT) are abundantly available after replanting every year. In order to maximize the usage of OPT as a green product, it can be converted to palm lumber as a value-added product. Palm lumber act as a basis product from OPT before it is converted to panel product such as plywood, sandwich board and so on. However, the LCA study on palm lumber production is still scarce in Malaysia. Hence, this paper aims to perform and collect the inventory data for palm lumber production, which is known as Life Cycle Inventory (LCI). A gate-to-gate system boundary and the functional unit of 1 m3 of palm lumber produced have been used in this study. This inventory data was collected from three batches of the production cycle. The inputs are mainly the raw materials which are the OPT and the energy from diesel and electricity from the grid. Generally, each consumption of input such as energy and fossil fuel were different at each stage of palm lumber production. Kiln-drying represents a prominent stage in terms of energy consumption, which electrical use in the dryer represents 94% of total electrical grid consumption as compared to another stage of palm lumber production. By adding the inventory information especially in the downstream sector of biomass industry, hopefully it can improve the sustainability of oil palm industry in Malaysia.

  12. Competency Based Education Curriculum for the Orientation and Safety Program of the Oil and Gas Industry.

    ERIC Educational Resources Information Center

    United Career Center, Clarksburg, WV.

    This competency-based education curriculum for teaching the orientation and safety program for the oil and gas industry in West Virginia is organized into seven units. These units cover the following topics: introduction to oil and gas, first aid, site preparation, drilling operations, equipment familiarity, well completion, and preparation for…

  13. Palm oil mill effluent treatment and utilization to ensure the sustainability of palm oil industries.

    PubMed

    Hasanudin, U; Sugiharto, R; Haryanto, A; Setiadi, T; Fujie, K

    2015-01-01

    The purpose of this study was to evaluate the current condition of palm oil mill effluent (POME) treatment and utilization and to propose alternative scenarios to improve the sustainability of palm oil industries. The research was conducted through field survey at some palm oil mills in Indonesia, in which different waste management systems were used. Laboratory experiment was also carried out using a 5 m(3) pilot-scale wet anaerobic digester. Currently, POME is treated through anaerobic digestion without or with methane capture followed by utilization of treated POME as liquid fertilizer or further treatment (aerobic process) to fulfill the wastewater quality standard. A methane capturing system was estimated to successfully produce renewable energy of about 25.4-40.7 kWh/ton of fresh fruit bunches (FFBs) and reduce greenhouse gas (GHG) emissions by about 109.41-175.35 kgCO2e/tonFFB (CO2e: carbon dioxide equivalent). Utilization of treated POME as liquid fertilizer increased FFB production by about 13%. A palm oil mill with 45 ton FFB/hour capacity has potential to generate about 0.95-1.52 MW of electricity. Coupling the POME-based biogas digester and anaerobic co-composting of empty fruit bunches (EFBs) is capable of adding another 0.93 MW. The utilization of POME and EFB not only increases the added value of POME and EFB by producing renewable energy, compost, and liquid fertilizer, but also lowers environmental burden.

  14. From agro-industrial wastes to single cell oils: a step towards prospective biorefinery.

    PubMed

    Diwan, Batul; Parkhey, Piyush; Gupta, Pratima

    2018-04-23

    The reserves of fossil-based fuels, which currently seem sufficient to meet the global demands, is inevitably on the verge of exhaustion. Contemporary raw material for alternate fuel like biodiesel is usually edible plant commodity oils, whose increasing public consumption rate raises the need of finding a non-edible and fungible alternate oil source. In this quest, single cell oils (SCO) from oleaginous yeasts and fungi can provide a sustainable alternate of not only functional but also valuable (polyunsaturated fatty acids (PUFA)-rich) lipids. Researches are been increasingly driven towards increasing the SCO yield in order to realize its commercial importance. However, bulk requirement of expensive synthetic carbon substrate, which inflates the overall SCO production cost, is the major limitation towards complete acceptance of this technology. Even though substrate cost minimization could make the SCO production profitable is uncertain, it is still essential to identify suitable cheap and abundant substrates in an attempt to potentially reduce the overall process economy. One of the most sought-after in-expensive carbon reservoirs, agro-industrial wastes, can be an attractive replacement to expensive synthetic carbon substrates in this regard. The present review assess these possibilities referring to the current experimental investigations on oleaginous yeasts, and fungi reported for conversion of agro-industrial feedstocks into triacylglycerols (TAGs) and PUFA-rich lipids. Multiple associated factors regulating lipid accumulation utilizing such substrates and impeding challenges has been analyzed. The review infers that production of bulk oil in combination to high-value fatty acids, co-production strategies for SCO and different microbial metabolites, and reutilization and value addition to spent wastes could possibly leverage the high operating costs and help in commencing a successful biorefinery. Rigorous research is nevertheless required whether it is

  15. Industrial conversion costs from oil and gas to alternative fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Askari, H.; Reichert, A.T.

    1977-01-01

    From a national standpoint, many questions can be raised on conversion -- whether mandatory or through taxation. 1) Why is it necessary to intervene in the market since price increases will act to allocate available fuels. The desire to reduce dependence on imported oil and gas may be an overriding constraint -- an unproven proposition; some believe that price increases would not have a significant positive impact on output -- a position without a great deal of economic or geological foundation; and the President, for obvious reasons, did not want to force households into conversion nor did he want tomore » propose deregulation which, in the short run, may increase prices directly to consumers but it would be politically more palatable to pass on energy price increase through industry; though astute politically, the economic merit of such a decision is very questionable. 2) Is the cutback of oil and gas consumption being targeted into the least critical area of national need, namely industry. 3) From the national perspective, is conversion desirable as compared to continued dependence on foreign oil for existing plants, with non-petroleum fuel sources for new plants and new residential dwellings. If conversion costs are prohibitive, then it may be ruled out. If conversion costs are low but the real cost of using coal or electricity far exceeds the economic risk of OPEC price increases or embargoes, then again conversion may be ruled out. In short, even if conversion costs are low, it is far from obvious that conversion is desirable. In this paper, the question of conversion cost and its regional implications is examined in detail.« less

  16. Regional resource depletion and industry activity: The case of oil and gas in the Gulf of Mexico

    USGS Publications Warehouse

    Attanasi, E.D.

    1986-01-01

    Stable and declining oil and gas prices have changed the industry's price expectations and, along with depletion of promising exploration prospects, has resulted in reduced exploration. Even with intensive additional exploration, production in most U.S. areas is expected to decline. What does this imply for the drilling and petroleum industry suppliers in particular regions? How should planners in government and the private sector project and incorporate the consequences of these changes in their strategies? This paper answers these questions for the industry operating in the offshore Gulf of Mexico. Future oil and gas production, as well as demand for offshore drilling and production facilities, are shown to depend on the size distribution of undiscovered fields, their associated production costs, and oil and gas prices. Declining well productivity is a consequence of development of progressively smaller fields so that long-run drilling demand should not decline in proportion to the expected production decline. Calculations show a substantial payoff to the drilling industry, in terms of potential demand increases, if it can develop and implement cost reducing technologies. Implications of these results for other offshore producing areas such as the North Sea are also discussed. ?? 1986.

  17. [Evaluating efficiency of influenza vaccinal prevention among oil and gas industry workers].

    PubMed

    Bulanov, V E; Ivanov, A V; Shostak, G R

    2013-01-01

    Explore information about the incidence of employees of enterprises of the oil and gas industry with the influenza (SARS). The degree of influence of vaccination on the incidence of influenza, the number and structure of complications as a result of vaccination and their impact on efficiency. Evaluation of the cost-effectiveness of vaccination.

  18. Thailand's downstream projects proliferate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-06-03

    Thailand continues to press expansion and modernization of its downstream sector. Among recent developments: Construction of an olefins unit at Thailand's second major petrochemical complex and a worldscale aromatics unit in Thailand is threatened by rising costs. Thailand's National Petrochemical Corp (NPC) let a 9 billion yen contract to Mitsui Engineering and Shipbuilding Co. and C. Itoh and Co. for a dual fuel cogeneration power plant at its Mab Ta Phud, Rayong province, petrochemical complex. Financing is in place to flash a green light for a $530 million Belgian-Thai joint venture sponsoring a worldscale polyvinyl chloride/vinyl chloride monomer plant inmore » Thailand. Work is more than 50% complete on the $345 million second phase expansion of Thai Oil's Sri Racha refinery in Chon Buri province. Petroleum Authority of Thailand (PTT) endorsed a plan to install two more natural gas processing plants in Thailand to meet rapidly growing domestic demand for petroleum gas.« less

  19. ADA Title I allegations and the Mining, Quarrying, and Oil/Gas Extraction industry.

    PubMed

    Van Wieren, Todd A; Rhoades, Laura; McMahon, Brian T

    2017-01-01

    The majority of research about employment discrimination in the U.S. Mining, Quarrying, and Oil/Gas (MQOGE) industries has concentrated on gender and race, while little attention has focused on disability. To explore allegations of Americans with Disabilities Act (ADA) Title I discrimination made to the Equal Employment Opportunity Commission (EEOC) by individuals with disabilities against MQOGE employers. Key data available to this study included demographic characteristics of charging parties, size of employers, types of allegations, and case outcomes. Using descriptive analysis, allegation profiles were developed for MQOGE's three main sectors (i.e., Oil/Gas Extraction, Mining except Oil/Gas, and Support Activities). These three profiles where then comparatively analyzed. Lastly, regression analysis explored whether some of the available data could partially predict MQOGE case outcomes. The predominant characteristics of MQOGE allegations were found to be quite similar to the allegation profile of U.S. private-sector industry as a whole, and fairly representative of MQOGE's workforce demographics. Significant differences between MQOGE's three main sector profiles were noted on some important characteristics. Lastly, it was found that MQOGE case outcomes could be partially predicted via some of the available variables. The study's limitations were presented and recommendations were offered for further research.

  20. The oil and gas industry of coastal Louisiana and its effects on land use and other socioeconomic patterns

    USGS Publications Warehouse

    Davis, Donald W.; Place, John L.

    1983-01-01

    Louisiana's coastal wetlands, alone with their well-drained urbanized strips, have been significantly affected by the oil and gas industry. Onshore, more than 6,300 exploratory wells and more than 21,000 development wells were drilled in Louisiana's eight southernmost parishes between 1937 and 1977. Nearly all those wells were in wetlands or inland water bodies. The wetlands, totaling more than 2 million hectares (ha), extend inland to roughly latitude 30? N, and are about 15 percent forested swamp and 85 percent nonforested marsh. Inland waters within the Louisiana coastal zone total more than 1 million ha. Nearly all these waters are quite shallow. More than 235,000 ha of this coastal area is used for major activities associated with the extraction of oil and gas. Production in the eight southern parishes peaked in 1970 to 120 million m3 of oil and 172 billion m 3 of gas. Connecting extensive onshore fields--and also servicing offshore fields--are intricate networks of canals for pipelines and maritime traffic related to the oil and gas industry. Offshore, more than 2,400 drilling and production platforms had been installed by May of 1981. Oil production from wells in both Federal and State waters off Louisiana peaked at 71 million m3 in 1972. Offshore gas production continues to increase, with 131 billion m3, in 1979. Since the early 1950's southern Louisiana's population has shifted from remote rural areas in the marshes to the more densely settled areas on the natural levees and beach ridges where employment is available in oil-field support industries and businesses. In 1975, in the 14 primary settlement clusters within the coastal wetlands, more than 3,600 advertised business activities were connected directly to the oil and gas industry. This compares to about 1,200 such activities in 1955, at the start of offshore development. These businesses are listed as water transportation, transportation equipment, pipelines, chemicals, special trade contractors, and

  1. The Impact of Post-Training on Job Performance in Nigera's Oil Industry

    ERIC Educational Resources Information Center

    Aibieyi, Stanley

    2012-01-01

    The Nigeria's oil industry has been criticized for some time now for its inability to render adequate services to the general public. This criticism is predicated on the fact that the standards of productivity in their services are low and that their facilities (i.e. the refineries) are not working up to capacity. This is evident in their…

  2. Usability of food industry waste oils as fuel for diesel engines.

    PubMed

    Winfried, Russ; Roland, Meyer-Pittroff; Alexander, Dobiasch; Jürgen, Lachenmaier-Kölch

    2008-02-01

    Two cogeneration units were each fitted with a prechamber (IDI) diesel engine in order to test the feasibility of using waste oils from the food industry as a fuel source, and additionally to test emissions generated by the combustion of these fuels. Esterified waste oils and animal fats as well as mustard oil were tested and compared to the more or less "common" fuels: diesel, rapeseed oil and rapeseed methyl ester. The results show that, in principle, each of these fuels is suitable for use in a prechamber diesel engine. Engine performance can be maintained at a constant level. Without catalytic conversion, the nitrogen oxides emissions were comparable. A significant reduction in NO(x) was achieved through the injection of urea. Combining a urea injection with the SCR catalytic converter reduced NO(x) emissions between 53% and 67%. The carbon monoxide emissions from waste oils are not significantly different from those of "common" fuels and can be reduced the same way as of hydrocarbon emissions, through utilization of a catalytic converter. The rate of carbon monoxide reduction by catalytic conversion was 84-86%. A lower hydrocarbon concentration was associated with fuels of agricultural origin. With the catalytic converter a reduction of 29-42% achieved. Each prechamber diesel engine exhibited its own characteristic exhaust, which was independent of fuel type. The selective catalytic reduction of the exhaust emissions can be realized without restriction using fuels of agricultural origin.

  3. Isotopic Characterization of Mercury Downstream of Historic Industrial Contamination in the South River, Virginia.

    PubMed

    Washburn, Spencer J; Blum, Joel D; Demers, Jason D; Kurz, Aaron Y; Landis, Richard C

    2017-10-03

    Historic point source mercury (Hg) contamination from industrial processes on the South River (Waynesboro, Virginia) ended decades ago, but elevated Hg concentrations persist in the river system. In an effort to better understand Hg sources, mobility, and transport in the South River, we analyzed total Hg (THg) concentrations and Hg stable isotope compositions of streambed sediments, stream bank soils, suspended particles, and filtered surface waters. Samples were collected along a longitudinal transect of the South River, starting upstream of the historic Hg contamination point-source and extending downstream to the confluence with the South Fork Shenandoah River. Analysis of the THg concentration and Hg isotopic composition of these environmental samples indicates that the regional background Hg source is isotopically distinct in both Δ 199 Hg and δ 202 Hg from Hg derived from the original source of contamination, allowing the tracing of contamination-sourced Hg throughout the study reach. Three distinct end-members are required to explain the Hg isotopic and concentration variation observed in the South River. A consistent negative offset in δ 202 Hg values (∼0.28‰) was observed between Hg in the suspended particulate and dissolved phases, and this fractionation provides insight into the processes governing partitioning and transport of Hg in this contaminated river system.

  4. Anicteric hepatoxicity: a potential health risk of occupational exposures in Nigerian petroleum oil refining and distribution industry.

    PubMed

    Ezejiofor, Tobias I Ndubuisi; Ezejiofor, Anthonet N; Orisakwe, Orish E; Nwigwe, Hariet C; Osuala, Ferdinand Ou; Iwuala, Moses Oe

    2014-01-22

    Literature abounds linking one's job to certain unpalatable health outcomes. Since exposures to hazardous conditions in industrial environments often results in sundry health effects among workers, we embarked on this study to investigate the hepatic health effects of occupational activities in the petroleum refining and distribution industry. Biochemical markers of liver functions were assayed in plasma, using Reflotron dry chemistry spectrophotometric system. The study was conducted on randomly selected workers of Port Harcourt Refining Company (PHRC) and Pipelines and Petroleum Product Marketing Company (PPMC) both in Alesa-Eleme near Port Harcourt, Nigeria, as well as non-oil work civil servants serving as control subjects. Results showed that, bilirubin ranged 0.3-1.6 mg/dl with a mean of 0.66±0.20mg/dl among the oil workers as against 0.5-1.00mg/dl with a mean of 0.58±0.13mg/dl in non-oil workers, Alkaline phosphatase ranged 50.00-296.00u/l (mean: 126.21±39.49u/l) in oil workers as against 40.20-111u/l (mean: 66.83±18.54u/l) for non-oil workers, Aspartic transaminases (AST) ranged 5.80-140.20u/l (mean: 21.81±11.49u/l) in oil workers against 18.00-44.00u/l (mean: 26.89±6.99u/l) for non-oil workers, while Alanine transaminases (ALT) ranged 4.90-86.00u/l (mean: 22.14±11.28u/l) in oil workers as against 10.00-86.60u/l (mean: 22.30±10.22u/l) for the non-oil workers. A close study of the results revealed that although the mean values for all the studied parameters were still within the parametric reference ranges, however, relative to the referents, there were significant increases (P<0.05) in plasma bilirubin (though anicteric) and alkaline phosphatase that was not matched with a corresponding increase in the plasma transaminases, suggesting a possibility that toxic anicteric hepatoxicity is part of the potential health effects of sundry exposures in the Nigeria petroleum oil refining and distribution industry. Gender differentiation data showed that

  5. Anicteric hepatoxicity: a potential health risk of occupational exposures in Nigerian petroleum oil refining and distribution industry

    PubMed Central

    2014-01-01

    Background Literature abounds linking one’s job to certain unpalatable health outcomes. Since exposures to hazardous conditions in industrial environments often results in sundry health effects among workers, we embarked on this study to investigate the hepatic health effects of occupational activities in the petroleum refining and distribution industry. Method Biochemical markers of liver functions were assayed in plasma, using Reflotron dry chemistry spectrophotometric system. The study was conducted on randomly selected workers of Port Harcourt Refining Company (PHRC) and Pipelines and Petroleum Product Marketing Company (PPMC) both in Alesa-Eleme near Port Harcourt, Nigeria, as well as non-oil work civil servants serving as control subjects. Result and conclusion Results showed that, bilirubin ranged 0.3-1.6 mg/dl with a mean of 0.66±0.20mg/dl among the oil workers as against 0.5-1.00mg/dl with a mean of 0.58±0.13mg/dl in non-oil workers, Alkaline phosphatase ranged 50.00-296.00u/l (mean: 126.21±39.49u/l) in oil workers as against 40.20-111u/l (mean: 66.83±18.54u/l) for non-oil workers, Aspartic transaminases (AST) ranged 5.80-140.20u/l (mean: 21.81±11.49u/l) in oil workers against 18.00-44.00u/l (mean: 26.89±6.99u/l) for non-oil workers, while Alanine transaminases (ALT) ranged 4.90-86.00u/l (mean: 22.14±11.28u/l) in oil workers as against 10.00-86.60u/l (mean: 22.30±10.22u/l) for the non-oil workers. A close study of the results revealed that although the mean values for all the studied parameters were still within the parametric reference ranges, however, relative to the referents, there were significant increases (P<0.05) in plasma bilirubin (though anicteric) and alkaline phosphatase that was not matched with a corresponding increase in the plasma transaminases, suggesting a possibility that toxic anicteric hepatoxicity is part of the potential health effects of sundry exposures in the Nigeria petroleum oil refining and distribution industry

  6. Chemical Compositions and Aroma Evaluation of Volatile Oil from the Industrial Cultivation Medium of Enterococcus faecalis.

    PubMed

    Ono, Toshirou; Usami, Atsushi; Nakaya, Satoshi; Maeba, Keisuke; Yonejima, Yasunori; Toyoda, Masanori; Ikeda, Atsushi; Miyazawa, Mitsuo

    2015-01-01

    Enterococcus faecalis is one of the major lactic acid bacterium (LAB) species colonizing the intestines of animals and humans. The characteristic odor of the volatile oils obtained from both the liquid medium after incubation (MAI) and liquid medium before incubation (MBI) in the cultivation process of E. faecalis was investigated to determine the utility of the liquid medium. In total, fifty-six and thirty-two compounds were detected in the volatile oils from the MAI (MAI oil) and MBI (MBI oil), respectively. The principle components of MAI oil were 2,5-dimethylpyrazine (19.3%), phenylacetaldehyde (19.3%), and phenylethyl alcohol (9.3%). The aroma extract dilution analysis (AEDA) method was performed using gas chromatography-olfactometry (GC-O). The total number of aroma-active compounds identified in the volatile oil from MBI and MAI was thirteen compounds; in particular, 5-methyl-2-furanmethanol, phenylacetaldehyde, and phenylethyl alcohol were the most primary aroma-active compounds in MAI oil. These results imply that the industrial cultivation medium after incubation of E. faecalis may be utilized as a source of volatile oils.

  7. Transient re-emergence of oil of turpentine allergy in the pottery industry.

    PubMed

    Lear, J T; Heagerty, A H; Tan, B B; Smith, A G; English, J S

    1996-09-01

    Allergy to oil of turpentine has diminished largely due to the use of cheaper substitutes in many occupations. However, 2 particular areas still reliant on real oil of turpentine are those of the perfume industry and ceramic decoration. We report 24 cases of hand dermatitis in pottery workers involved in ceramic decoration, paintresses, liners, gilders, enamellers and a fine china painter, seen in a 6-month period following a change from Portuguese to Indonesian turpentine, of whom 14 were sensitive to Indonesian turpentine, 8 to alpha-pinene, 4 to delta-3-carene and 2 positive to turpentine peroxides. Previous reports suggest that delta-3-carene is the main allergen and reports of sensitivity to alpha-pinene in the absence of sensitivity to turpentine peroxide, in particular to the hydroperoxide of delta-3-carene, are few. Turpentine allergy continues to be a problem in the pottery industry and is more common than allergy to the heavy metals of the colours used in ceramic decoration. alpha-Pinene, an unusual allergen, appears to be the most common in our area. Reversion to Portuguese turpentine seems to have alleviated the problem.

  8. A threat intelligence framework for access control security in the oil industry

    NASA Astrophysics Data System (ADS)

    Alaskandrani, Faisal T.

    The research investigates the problem raised by the rapid development in the technology industry giving security concerns in facilities built by the energy industry containing diverse platforms. The difficulty of continuous updates to network security architecture and assessment gave rise to the need to use threat intelligence frameworks to better assess and address networks security issues. Focusing on access control security to the ICS and SCADA systems that is being utilized to carry out mission critical and life threatening operations. The research evaluates different threat intelligence frameworks that can be implemented in the industry seeking the most suitable and applicable one that address the issue and provide more security measures. The validity of the result is limited to the same environment that was researched as well as the technologies being utilized. The research concludes that it is possible to utilize a Threat Intelligence framework to prioritize security in Access Control Measures in the Oil Industry.

  9. Large expansion of oil industry in the Ecuadorian Amazon: biodiversity vulnerability and conservation alternatives.

    PubMed

    Lessmann, Janeth; Fajardo, Javier; Muñoz, Jesús; Bonaccorso, Elisa

    2016-07-01

    Ecuador will experience a significant expansion of the oil industry in its Amazonian region, one of the most biodiverse areas of the world. In view of the changes that are about to come, we explore the conflicts between oil extraction interests and biodiversity protection and apply systematic conservation planning to identify priority areas that should be protected in different oil exploitation scenarios. First, we quantified the current extent of oil blocks and protected zones and their overlap with two biodiversity indicators: 25 ecosystems and 745 species (whose distributions were estimated via species distribution models). With the new scheme of oil exploitation, oil blocks cover 68% (68,196 km(2)) of the Ecuadorian Amazon; half of it occupied by new blocks open for bids in the southern Amazon. This region is especially vulnerable to biodiversity losses, because peaks of species diversity, 19 ecosystems, and a third of its protected zones coincide spatially with oil blocks. Under these circumstances, we used Marxan software to identify priority areas for conservation outside oil blocks, but their coverage was insufficient to completely represent biodiversity. Instead, priority areas that include southern oil blocks provide a higher representation of biodiversity indicators. Therefore, preserving the southern Amazon becomes essential to improve the protection of Amazonian biodiversity in Ecuador, and avoiding oil exploitation in these areas (33% of the extent of southern oil blocks) should be considered a conservation alternative. Also, it is highly recommended to improve current oil exploitation technology to reduce environmental impacts in the region, especially within five oil blocks that we identified as most valuable for the conservation of biodiversity. The application of these and other recommendations depends heavily on the Ecuadorian government, which needs to find a better balance between the use of the Amazon resources and biodiversity conservation.

  10. Rice Bran Oil: A Versatile Source for Edible and Industrial Applications.

    PubMed

    Pal, Yogita P; Pratap, Amit P

    2017-01-01

    Rice bran oil (RBO) is healthy gift generously given by nature to mankind. RBO is obtained from rice husk, a byproduct of rice milling industry and is gaining lot of importance as cooking oil due to presence of important micronutrient, gamma oryzanol. Its high smoke point is beneficial for its use for frying and deep frying of food stuff. It is popular because of balanced fatty acid profile (most ideal ratio of saturated, monounsaturated and polyunsaturated fatty acids), antioxidant capacity, and cholesterollowering abilities. Rice bran wax which is secondary by-product obtained as tank settling from RBO is used as a substitute for carnauba wax in cosmetics, confectionery, shoe creams etc. It can be also used as a source for fatty acid and fatty alcohol. The article is intended to highlight for the importance of RBO and its applications.

  11. Palm Oil in Myanmar: A Spatiotemporal Analysis of the Effects of Industrial Farming on Biodiversity Loss

    PubMed Central

    Nicholas, Khristopher; Fanzo, Jessica; MacManus, Kytt

    2018-01-01

    Background: Palm oil consumption is potentially deleterious to human health, and its production has resulted in 11 million hectares of deforestation globally. Importing roughly 394,000 metric tons of palm oil in 2012 alone, the Burmese government has recently pushed for intensive oil palm development to sate domestic demand for consumption and become international market players. Given well-studied linkages between biodiversity loss and ecosystem instability, this study aims to characterize the nature of deforestation for oil palm production in Myanmar, its relationship to increased biodiversity loss, and contextualize the potential impacts of this loss on diets and human health in rural Myanmar. Methods: First, a GIS land suitability analysis overlaying spatial data on rainfall, elevation, and slope was conducted in order to identify areas of Myanmar best suited to oil palm tree growth. Second, after narrowing the geographic range, vegetation indices using varying spectral band models in ENVI (Environment for Visualizing Images) allowed a more granular examination of changes in vegetation phenology from 1975 to 2015. Lastly, ground truthing permitted an in-person verification of GIS and ENVI results and provided contextual understanding of oil palm development in Myanmar. Results: GIS analysis revealed that the Tanintharyi Region, one of the most biodiverse regions in Myanmar, is highly suitable for oil palm growth. Next, vegetation indices revealed a progressive shift from smallholder farming, with little observable deforestation between 1975 and 1990, to industrial oil palm plantations all throughout Tanintharyi starting around 2000—a shift concomitant with biodiversity loss of primary forestland. Ground truthing indicated that plantation development has advanced rapidly, though not without barriers to growth. Conclusions: If these trends of Burmese oil palm intensification continue, 4 key outcomes may follow: (1) even higher levels of biodiversity loss, (2

  12. Production of wax esters via microbial oil synthesis from food industry waste and by-product streams.

    PubMed

    Papadaki, Aikaterini; Mallouchos, Athanasios; Efthymiou, Maria-Nefeli; Gardeli, Chryssavgi; Kopsahelis, Nikolaos; Aguieiras, Erika C G; Freire, Denise M G; Papanikolaou, Seraphim; Koutinas, Apostolis A

    2017-12-01

    The production of wax esters using microbial oils was demonstrated in this study. Microbial oils produced from food waste and by-product streams by three oleaginous yeasts were converted into wax esters via enzymatic catalysis. Palm oil was initially used to evaluate the influence of temperature and enzyme activity on wax ester synthesis catalysed by Novozyme 435 and Lipozyme lipases using cetyl, oleyl and behenyl alcohols. The highest conversion yields (up to 79.6%) were achieved using 4U/g of Novozyme 435 at 70°C. Transesterification of microbial oils to behenyl and cetyl esters was achieved at conversion yields up to 87.3% and 69.1%, respectively. Novozyme 435 was efficiently reused for six and three cycles during palm esters and microbial esters synthesis, respectively. The physicochemical properties of microbial oil derived behenyl esters were comparable to natural waxes. Wax esters from microbial oils have potential applications in cosmetics, chemical and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Offshore Europe 95: Securing the future: 12th Aberdeen-based conference & exhibition to examine future of European oil & gas industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-01

    Offshore Europe 95 - which will be held September 5-8, 1995, in Aberdeen, Scotland - was designed to generate interest across the oil and gas industry and to be relevant to everyone from CEOs to trainee engineers. While the European offshore oil and gas industry has had some remarkable success in reducing its costs, it faces difficult and growing challenges, and Offshore Eurpoe is the perfect opportunity for companies to learn from each other how to successfully face these hurdles. Sessions will be held on every aspect of the oil and gas industry and are organized under eight technical categories:more » drilling; exploration; management and economics; development and abandonment; well intervention; health, safety, and environment; production; and reservoir management. Much greater operating effectiveness and striking technological advances have enabled us to maintain reserves, prolong the lives of mature producing fields, and continue the pace of new development.« less

  14. Examining spatial patterns in polycyclic aromatic compounds measured in stream macroinvertebrates near a small subarctic oil and gas operation.

    PubMed

    Korosi, J B; Eickmeyer, D C; Chin, K S; Palmer, M J; Kimpe, L E; Blais, J M

    2016-03-01

    The Cameron River runs through a small, remote petrochemical development in the Cameron Hills (Northwest Territories, Canada). In order to evaluate the exposure of aquatic biota to contaminants from oil and gas activities, we measured polycyclic aromatic compounds (PACs) in macroinvertebrates collected from sites and tributaries along the Cameron River, including upstream and downstream of the development, and sites located near drilled wells (developed). Macroinvertebrate tissue PAC burdens ranged from 0.2-2.8 μg g(-1) lipid for unsubstituted compounds, and from 4.2-63.2 μg g(-1) lipid for alkylated compounds, relatively low compared to similar studies from more industrialized regions in North America. There was no significant difference in tissue PAC burdens between upstream, downstream, or developed sites (p = 0.12), although alkyl PACs in five out of seven developed sites were higher than the regional average. Petrogenic PACs were dominant in most samples, including alkyl fluorines, alkyl phenanthrene/anthracenes, and alkyl dibenzothiophenes. Minimal changes in PAC composition in macroinvertebrate tissues were detected along the Cameron River, with the exception of the two sites furthest downstream that had high concentrations of C3-C4 naphthalene. Overall, our results suggest that oil and gas development in the Cameron Hills has not resulted in substantial increases in PAC bioaccumulation in stream macroinvertebrates, although the potential that alkyl naphthalenes are being transported downstream from the development warrants further attention.

  15. Replacing fossil oil with fresh oil – with what and for what?

    PubMed Central

    Carlsson, Anders S; Yilmaz, Jenny Lindberg; Green, Allan G; Stymne, Sten; Hofvander, Per

    2011-01-01

    Industrial chemicals and materials are currently derived mainly from fossil-based raw materials, which are declining in availability, increasing in price and are a major source of undesirable greenhouse gas emissions. Plant oils have the potential to provide functionally equivalent, renewable and environmentally friendly replacements for these finite fossil-based raw materials, provided that their composition can be matched to end-use requirements, and that they can be produced on sufficient scale to meet current and growing industrial demands. Replacement of 40% of the fossil oil used in the chemical industry with renewable plant oils, whilst ensuring that growing demand for food oils is also met, will require a trebling of global plant oil production from current levels of around 139 MT to over 400 MT annually. Realisation of this potential will rely on application of plant biotechnology to (i) tailor plant oils to have high purity (preferably >90%) of single desirable fatty acids, (ii) introduce unusual fatty acids that have specialty end-use functionalities and (iii) increase plant oil production capacity by increased oil content in current oil crops, and conversion of other high biomass crops into oil accumulating crops. This review outlines recent progress and future challenges in each of these areas. Practical applications: The research reviewed in this paper aims to develop metabolic engineering technologies to radically increase the yield and alter the fatty acid composition of plant oils and enable the development of new and more productive oil crops that can serve as renewable sources of industrial feedstocks currently provided by non-renewable and polluting fossil-based resources. As a result of recent and anticipated research developments we can expect to see significant enhancements in quality and productivity of oil crops over the coming decades. This should generate the technologies needed to support increasing plant oil production into the future

  16. Potential production of palm oil-based foaming agent as fire extinguisher of peatlands in Indonesia: Literature review

    NASA Astrophysics Data System (ADS)

    Subekti, P.; Hambali, E.; Suryani, A.; Suryadarma, P.

    2017-05-01

    This study aims to analyze the potential aplication of of palm oil-based foaming agent as peat fires fighter in Indonesia. From literature review, it has been known that the foaming agent able to form foam to extinguish fire, wrap and refrigerate the burning peat. It is necessary to develop the production and application of foaming agent in Indonesia because peat fires occur almost every year that caused smoke haze. Potential raw material for the production of environmental friendly foaming agent as foam extinguishing for peat fires in Indonesia aong other is palm oil due to abundant availability, sustainable, and foam product easily degraded in the environment of the burnt areas. Production of foaming agent as fire-fighting in Indonesia is one alternative to reduce the time to control the fire and smog disaster impact. Application of palm oil as a raw material for fire-fighting is contribute to increase the value added and the development of palm oil downstream industry.

  17. Solvent-free microwave extraction of essential oil from aromatic herbs: from laboratory to pilot and industrial scale.

    PubMed

    Filly, Aurore; Fernandez, Xavier; Minuti, Matteo; Visinoni, Francesco; Cravotto, Giancarlo; Chemat, Farid

    2014-05-01

    Solvent-free microwave extraction (SFME) has been proposed as a green method for the extraction of essential oil from aromatic herbs that are extensively used in the food industry. This technique is a combination of microwave heating and dry distillation performed at atmospheric pressure without any added solvent or water. The isolation and concentration of volatile compounds is performed in a single stage. In this work, SFME and a conventional technique, hydro-distillation HD (Clevenger apparatus), are used for the extraction of essential oil from rosemary (Rosmarinus officinalis L.) and are compared. This preliminary laboratory study shows that essential oils extracted by SFME in 30min were quantitatively (yield and kinetics profile) and qualitatively (aromatic profile) similar to those obtained using conventional hydro-distillation in 2h. Experiments performed in a 75L pilot microwave reactor prove the feasibility of SFME up scaling and potential industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Industry disputes administration report on oil and gas leasing

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-05-01

    Despite the Obama administration's efforts to make millions of acres of public lands available for oil and gas development, most of the acreage onshore and offshore of the contiguous United States remains idle, according to “Oil and gas lease utilization, onshore and offshore,” a 15 May report issued by the Department of the Interior (DOI). The report, which is being disputed by industry representatives, notes that 72% of the nearly 36 million leased offshore acres currently are inactive and that 50.6% of onshore leased acres (about 20.8 million acres) also are idle. “As part of the Obama administration's all-of- the-above energy strategy, we continue to make millions of acres of public lands available for safe and responsible domestic energy production on public lands and in federal waters,” said DOI secretary Ken Salazar. “These lands and waters belong to the American people, and they expect those energy supplies to be developed in a timely and responsible manner and with a fair return to taxpayers. We will continue to encourage companies to diligently bring production online quickly and safely on public lands already under lease.”

  19. Closing oil palm yield gaps among Indonesian smallholders through industry schemes, pruning, weeding and improved seeds

    PubMed Central

    Soliman, T.; Lim, F. K. S.; Lee, J. S. H.

    2016-01-01

    Oil palm production has led to large losses of valuable habitats for tropical biodiversity. Sparing of land for nature could in theory be attained if oil palm yields increased. The efficiency of oil palm smallholders is below its potential capacity, but the factors determining efficiency are poorly understood. We employed a two-stage data envelopment analysis approach to assess the influence of agronomic, supply chain and management factors on oil palm production efficiency in 190 smallholders in six villages in Indonesia. The results show that, on average, yield increases of 65% were possible and that fertilizer and herbicide use was excessive and inefficient. Adopting industry-supported scheme management practices, use of high-quality seeds and higher pruning and weeding rates were found to improve efficiency. Smallholder oil palm production intensification in Indonesia has the capacity to increase production by 26%, an equivalent of 1.75 million hectares of land. PMID:27853605

  20. Closing oil palm yield gaps among Indonesian smallholders through industry schemes, pruning, weeding and improved seeds.

    PubMed

    Soliman, T; Lim, F K S; Lee, J S H; Carrasco, L R

    2016-08-01

    Oil palm production has led to large losses of valuable habitats for tropical biodiversity. Sparing of land for nature could in theory be attained if oil palm yields increased. The efficiency of oil palm smallholders is below its potential capacity, but the factors determining efficiency are poorly understood. We employed a two-stage data envelopment analysis approach to assess the influence of agronomic, supply chain and management factors on oil palm production efficiency in 190 smallholders in six villages in Indonesia. The results show that, on average, yield increases of 65% were possible and that fertilizer and herbicide use was excessive and inefficient. Adopting industry-supported scheme management practices, use of high-quality seeds and higher pruning and weeding rates were found to improve efficiency. Smallholder oil palm production intensification in Indonesia has the capacity to increase production by 26%, an equivalent of 1.75 million hectares of land.

  1. The use of waterworks sludge for the treatment of vegetable oil refinery industry wastewater.

    PubMed

    Basibuyuk, M; Kalat, D G

    2004-03-01

    Water treatment works using coagulation/flocculation in the process stream will generate a waste sludge. This sludge is termed as ferric, alum, or lime sludge based on which coagulant was primarily used. The works in Adana, Turkey uses ferric chloride. The potential for using this sludge for the treatment of vegetable oil refinery industry wastewater by coagulation has been investigated. The sludge acted as a coagulant and excellent oil and grease, COD and TSS removal efficiencies were obtained. The optimum conditions were a pH of 6 and a sludge dose of 1100 mg SS l(-1). The efficiency of sludge was also compared with alum and ferric chloride for the vegetable oil refinery wastewater. At doses of 1300-1900 mg SS l(-1), the sludge was as effective as ferric chloride and alum at removing oil and grease, COD, and TSS. In addition, various combinations of ferric chloride and waterworks sludge were also examined. Under the condition of 12.5 mg l(-1) fresh ferric chloride and 1000 mg SS l(-1) sludge dose, 99% oil and grease 99% TSS and 83% COD removal efficiencies were obtained.

  2. Crustal layering, simplicity, and the oil industry: The alteration of an epistemic paradigm by a commercial environment

    NASA Astrophysics Data System (ADS)

    Anduaga, Aitor

    This paper proposes that the gradual alteration of the predominant epistemic paradigm in crustal seismology in the interwar period-namely, simplicity-came about because of the strong influence of a particular commercial environment, i.e. the oil industry. I begin by demonstrating the interwar predominance of Jeffreys' 'simplicity postulate' and his probabilistic epistemology, highlighting the espousal by several seismologists (Bullen, Stoneley, Byerly), whose crustal models drew on mathematical idealisations. Next, I demonstrate that the renunciation of simplicity in the 1930s came about too quickly, and, above all, too heterodoxically to have been the result of new geological evidence. Rather, I argue, the paradigm shift among seismologists was a result of the significant rise in seismic exploration generated by the oil industry. Driven by market demands, American petroleum companies pioneered new technologies, organised research initiatives, and trained young geophysicists who, through the fusion of experimentalism and field experience, brought about fundamental progress in earthquake seismology. Remarkably, historians of science have almost entirely failed to recognise the interwar primacy of the simplicity paradigm as well as its subsequent renunciation. More importantly, they have failed to acknowledge the role the oil industry played in contributing to this renunciation and to the development of new paradigms in seismology.

  3. Engineering industrial oil biosynthesis: cloning and characterization of Kennedy pathway acyltransferases from novel oilseed species

    USDA-ARS?s Scientific Manuscript database

    For more than twenty years, various industrial, governmental, and academic laboratories have developed and refined genetic engineering strategies aimed at manipulating lipid metabolism in plants and microbes. The goal of these projects is to produce renewable specialized oils that can effectively c...

  4. Comparative effects of oil palm and selective logging on erosion, river channels and water chemistry in Malaysian steeplands

    NASA Astrophysics Data System (ADS)

    Walsh, Rory; Nainar, Anand; Nurhidayu, Siti; Higton, Sam; Annammala, Kogilavani; Wall, Katy; Bidin, Kawi; Blake, William; Darling, Isabella

    2017-04-01

    Oil palm land-use has expanded greatly in recent decades in SE Asia and other parts of the wet tropics, including to steepland areas, where bench-terraced landscaping is involved. Retaining (and sometimes restoring) riparian forest strips and rainforest fragments on the steepest slopes have been adopted as elements of strategies designed to reduce adverse effects on runoff generation, erosion, downstream sedimentation, flooding and pollutional problems - as well as biodiversity and emissions. Results of catchment monitoring, soil erosion and sediment fingerprinting research in oil palm and selectively logged steeplands of eastern Sabah and Peninsular Malaysia are presented. The evidence indicates the greater scale and temporal persistence of effects that oil palm land-use (compared with selective logging) has had on suspended sediment dynamics, soil erosion, downstream sedimentation, channel geometry and dynamics and river pollution. The importance of (1) high densities of roads and tracks and (2) relatively impermeable bench-terraced terrain in enhancing runoff, sediment and nutrient outputs in storm events is stressed. Influences of oil palm management practices including riparian forest strips in increasing or reducing these effects are critically reviewed and ways of increasing the effectiveness of riparian forest strips are proposed. The design and rationale of current projects exploring and testing consequences of existing and proposed improved land management practices are briefly described. The key importance of involvement of people from the oil palm industry (including multinational companies, smallholders and their organizations) and Government bodies that are responsible for land-use policies and land management practices is stressed.

  5. Benefits of clean development mechanism application on the life cycle assessment perspective: a case study in the palm oil industry.

    PubMed

    Chuen, Onn Chiu; Yusoff, Sumiani

    2012-03-01

    This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill.

  6. Downstream change of velocity in rivers

    USGS Publications Warehouse

    Leopold, Luna Bergere

    1953-01-01

    Because river slope generally decreases in a downstream direction, it is generally supposed that velocity of flow also decreases downstream. Analysis of some of the large number of velocity measurements made at stream-gaging stations demonstrates that mean velocity generally tends to increase downstream. Although there are many reaches in nearly all rivers where mean velocity decreases downstream, the general tendency for conservation or for downstream increase was found in all data studied.Computations of bed velocity indicate that this parameter also tends to increase downstream.Near the streambed, shear in the vertical profile of velocity (rate of decrease of velocity with depth) tends to decrease downstream. This down-valley decrease of shear implies decreasing competence downstream.

  7. The Oil Industries Fake Abundance Story: Is Distortion of the Truth Ever Appropriate?

    NASA Astrophysics Data System (ADS)

    Murray, J. W.

    2014-12-01

    The oil industries and their cornucopian supporters (press, politicians, energy agencies) promote the story that in the oil is abundant and oil production will increase. The reality is that 1) World crude oil production has been on a plateau since 2005, in spite of new technology (fracking), record high prices (Brent Oil > 100 per barrel) and record spending on exploration and development (5.4 trillion over the past six years) and 2) The price of oil has risen steadily from 1999 to present. Typically when commodities are abundant the price tends to fall. How is this reality being distorted? 1) Resources are being equated with reserves (both are amounts), neither of which can be equated with each other or with production (a rate). 2) Crude oil (the price or which is rigorously defined by API density) has been redefined as total liquids, which includes substances (lease condensates, natural gas liquids, biofuels, refinery gains) which can not be used in the same way oil is or sold for the same price as oil. If what you are selling cannot be sold on the world market as crude oil, then it is not crude oil. 3) The demand for oil remains high, but World production is stagnant and World net-export production has been decreasing since 2005. Thus the price remains high and will only increase in the future. Growth in Global GDP is impacted by high-priced oil. How do you know unethical behavior when you see it? It has to do with intentionality and motivation. "Advocacy science" often reports data to support their cause. Is that unethical? Where is the divide between being an "Issue Advocate" and "Advocacy Science"? If data are reported poorly, is it unethical or just "bad science"? Do the same ethical standards apply to businesses (when profits are involved) and politicians (when elections are at stake)? Why would the definition of oil include NGL, condensates and refinery gains if not trying to inflate the numbers. The standards should be the same, but when there are no

  8. Downstream process options for the ABE fermentation.

    PubMed

    Friedl, Anton

    2016-05-01

    Butanol is a very interesting substance both for the chemical industry and as a biofuel. The classical distillation process for the removal of butanol is far too energy demanding, at a factor of 220% of the energy content of butanol. Alternative separation processes studied are hybrid processes of gas-stripping, liquid-liquid extraction and pervaporation with distillation and a novel adsorption/drying/desorption hybrid process. Compared with the energy content of butanol, the resulting energy demand for butanol separation and concentration of optimized hybrid processes is 11%-22% for pervaporation/distillation and 11%-17% for liquid-liquid extraction/distillation. For a novel adsorption/drying/desorption process, the energy demand is 9.4%. But all downstream process options need further proof of industrial applicability. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Ethanesulfonic acid-based esterification of industrial acidic crude palm oil for biodiesel production.

    PubMed

    Hayyan, Adeeb; Mjalli, Farouq S; Hashim, Mohd Ali; Hayyan, Maan; AlNashef, Inas M; Al-Zahrani, Saeed M; Al-Saadi, Mohammed A

    2011-10-01

    An industrial grade acidic crude palm oil (ACPO) pre-treatment process was carried out using ethanesulfonic acid (ESA) as a catalyst in the esterification reaction. ESA was used in different dosages to reduce free fatty acid (FFA) to a minimum level for the second stage of biodiesel production via alkaline transesterification reaction. Different process operating conditions were optimized such as ESA dosage (0.25-3.5% wt/wt), methanol to ACPO molar ratio (1:1-20:1), reaction temperature (40-70 °C), and reaction time (3-150 min). This study revealed the potential use of abundant quantities of ACPO from oil palm mills for biodiesel production. The lab scale results showed the effectiveness of the pre-treatment process using ESA catalyst. Three consecutive catalyst recycling runs were achieved without significant degradation in its performance. Second and third reuse runs needed more reaction time to achieve the target level of FFA content. Esterification and transesterification using ESA and KOH respectively is proposed for biodiesel industrial scale production. The produced biodiesel meets the international standards specifications for biodiesel fuel (EN 14214 and ASTM D6751). Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Comparative studies of oil product regulation in polluted soil for several industrialized countries

    NASA Astrophysics Data System (ADS)

    Paccassoni, F.; Kalnina, D.; Piga, L.

    2017-10-01

    Oil contaminated sites are the consequence of a long period of industrialization. Oil is a complex mixture including aliphatic and aromatic hydrocarbons, which are known to have negative effects on human health and the environment. Dividing oil products in groups (fractions) of petroleum hydrocarbons that act alike in soil and water, one can better know what happens to them. Being able to understand the behaviour of oil products in soil, it will allow to implement prevention and remediation actions. Interventions on contaminated sites are bound to comply with regulatory limits that each country has set in their own environmental legislation. The different concentration thresholds of oil products in soil for several EU countries and Canada has led to compare: limit values, analytical method, soil characteristics and/or land use. This will allow to evaluate what could be the best regulation approach, assessing if it is better to consider soil matrix in the site or the specific land use or both of them. It will also assess what is the best analytical methodology to be adopted to achieve the pollutant concentrations in the soil in order to have comparable results among different countries, such as: Baltic countries (Latvia, Estonia, Lithuania), Nordic countries (Finland, Sweden, Norway, Denmark), Western countries (Italy and The Netherlands) and Canada, like gaschromatography in the range from C10 - C50. The study presents an overview of environmental regulatory system of several EU countries and Canada and the correlation between different parameters about oil products indicated in each environmental legislation.

  11. Biomethane potential of the POME generated in the palm oil industry in Ghana from 2002 to 2009.

    PubMed

    Arthur, Richard; Glover, Kwasi

    2012-05-01

    The palm oil industry experienced significant improvement in its production level from 2002 to 2009 from the established companies, medium scale mills (MSM), small scale and other private holdings (SS and OPH) groups. However, the same cannot be said for treatment of the palm oil mill effluent (POME) produced. The quantity of crude palm oil (CPO) produced in Ghana from 2002 to 2009 and IPCC guidelines for National Greenhouse Gas Inventories, specifically on industrial wastewater were used in this study. During this period about 10 million cubic metres of POME was produced translating into biomethane potential of 38.5 million m(3) with equivalent of 388.29 GW h of energy. A linear growth model developed to predict the equivalent carbon dioxide (CO(2)) emissions indicates that if the biomethane is not harnessed then by 2015 the untreated POME could produce 0.58 million tCO(2)-eq and is expected to increase to 0.70 million tCO(2)-eq by 2020. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Investigating the Connections between Oil and Gas Industry Affiliation and Climate Change Concerns

    NASA Astrophysics Data System (ADS)

    Schrader, S. M.; Bunnell, D.; Danielson, C.; Borglum, S.

    2012-12-01

    In addition to the research on scientific aspects of climate change, significant work has also been done on the perception of climate change among various sectors of the population. This is an important area of research as in many cases the science policy of a country is a function of the popular sentiment. One area of interest is the relationship between education, specifically in related areas such as earth sciences and engineering, to one's views on climate change. While research has shown that there is a correlation between higher education and an acceptance of human caused climate change, this work looks into the question more specifically. The question asked here is: given a group of people with education and experience in the earth sciences, does the area of employment affect how they view the issue? In other words, does an engineer or geoscientist working in the oil and gas industry look at the data relating to climate change in the same way an equivalently educated engineer or geoscientist working in another field does? An understanding of whether or not employment in the oil and gas industry has a similar effect on views of climate change as political or religious ideologies may help in fostering communication between disciplines and working together for solutions. In order to look at this question, a survey is being conducted of members in the petroleum engineering community. The survey is designed along the lines of similar surveys to measure the respondents understanding of, concern with, and beliefs about climate change. It also includes other correlating factors such as political and religious views. A second group of engineers in fields that typically place them outside of the oil and gas industry are being surveyed as a control group. The results will determine whether individuals with similar educational backgrounds look at the data connected with climate change differently based on the field in which they work, and if so, are there other

  13. An overview of turbomachinery project in Malaysian oil and gas industry

    NASA Astrophysics Data System (ADS)

    Abd. Rahman Sabri, Harris; Rahim, Abd. Rahman Abdul; Yew, Wong Kuan; Ismail, Syuhaida

    2017-12-01

    Being the most demanding, challenging and exciting engineering and technological advances has provided escalated interests amongst the engineers at large to venture into the oil and gas (O&G) industry. Although claimed as the most expensive industry in the world via the utilisation of critical equipments, the O&G industry is still recording notorius failures in its project management especially due to turbomachinery issues, the heart equipment of any O&G project. Therefore, it is important for this paper to review turbomachinery project as one of the long lead items during project executions that is also proven to be the most costly and expensive equipment. This paper therefore discusses the gaps in turbomachinery studies via literature review in highlighting its application in O&G projects. It is found that the main components of turbomachinery are driver and driven equipment, which are applied for mechanical equipment, Electric Power Generation and heat generation for Combined Cycled Configuration. Important variables for turbomachinery selection include: (1) process requirement; (2) site location; (3) driver selection; (4) equipment sparing philosophy; (5) efficiency and reliability; (6) operability and maintainability; and (7) cost. It is hoped that this paper would lead to the successful project management of turbomachinery in the O&G industry.

  14. Distribution of radium in oil and gas industry wastes from Malaysia.

    PubMed

    Omar, M; Ali, H M; Abu, M P; Kontol, K M; Ahmad, Z; Ahmad, S H S S; Sulaiman, I; Hamzah, R

    2004-05-01

    Radium concentrations in 470 samples of the various types of waste from oil and gas industries were analysed using gamma spectrometers. The results showed that the radium concentration varied within a wide range. The highest mean 226Ra and 228Ra concentrations of 114,300 and 130,120 Bq/kg, respectively, were measured in scales. Overall, 75% of the waste, mostly sludge and extraction residue lies within the normal range of radium concentration in soils of Malaysia. However, some platform sludge can have radium concentration up to 560 Bq/kg.

  15. Implications of Peak Oil for Industrialized Societies

    ERIC Educational Resources Information Center

    McPherson, Guy R.; Weltzin, Jake F.

    2008-01-01

    The world passed the halfway point of oil supply in 2005. World demand for oil likely will severely outstrip supply in 2008, leading to increasingly higher oil prices. Consequences are likely to include increasing gasoline prices, rapidly increasing inflation, and subsequently a series of increasingly severe recessions followed by a worldwide…

  16. Rapid methodology via mass spectrometry to quantify addition of soybean oil in extra virgin olive oil: A comparison with traditional methods adopted by food industry to identify fraud.

    PubMed

    da Silveira, Roberta; Vágula, Julianna Matias; de Lima Figueiredo, Ingrid; Claus, Thiago; Galuch, Marilia Bellanda; Santos Junior, Oscar Oliveira; Visentainer, Jesui Vergilio

    2017-12-01

    Fast and innovative methodology to monitors the addition of soybean oil in extra virgin olive oil was developed employing ESI-MS with ionization operating in positive mode. A certified extra virgin olive oil and refined soybean oil samples were analyzed by direct infusion, the identification of a natural lipid marker present only in soybean oil (m/z 886.68 [TAG+NH 4 ] + ) was possible. The certified extra virgin olive oil was purposely adulterated with soybean oil in different levels (1, 5, 10, 20, 50, 70, 90%) being possible to observe that the new methodology is able to detect even small fraud concentration, such as 1% (v/v). Additionally, commercial samples were analyzed and were observed the addition of soybean oil as a common fraud in this segment. This powerful analytical method proposed could be applied as routine analysis by control organization, as well as food industries, considering its pronounced advantages; simplicity, rapidity, elevated detectability and minor amounts of sample and solvent consumed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Fuel Oil and Kerosene Sales

    EIA Publications

    2016-01-01

    Provides information, illustrations and state-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off-highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses.

  18. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    PubMed

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  19. Study on vacuum pyrolysis of coffee industrial residue for bio-oil production

    NASA Astrophysics Data System (ADS)

    Chen, Nanwei; Ren, Jie; Ye, Ziwei; Xu, Qizhi; Liu, Jingyong; Sun, Shuiyu

    2017-03-01

    Coffee industrial residue (CIR) is a biomass with high volatile content (64.94 wt.%) and heating value (21.3 MJ·kg-1). This study was carried out to investigate the pyrolysis condition and products of CIR using thermogravimetric analyser (TGA) and vacuum tube furnace. The influence of pyrolysis temperature, time, pressure and heating rate on the yield of pyrolysis products were discussed. There was an optimal pyrolysis condition: CIR was heated from normal temperature to 400 °C for 60 min, with 10 °C·min-1 heating rate and a pressure of 30 kPaabs. In this condition, the yields of bio-oil, char and non-condensable gas were 42.29, 33.14 and 24.57 wt.%, respectively. The bio-oil contained palmitic acid (47.48 wt.%), oleic acid (17.45 wt.%), linoleic acid (11.34 wt.%), octadecanoic acid (7.62 wt.%) and caffeine (5.18 wt.%).

  20. Prospects of Applying Vibration-Resistant Pressure Gauges in the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Pirogov, S. P.; Cherentsov, D. A.; Gulyaev, B. A.

    2016-10-01

    The article presents justification for improving vibration protection of pressure gauges used in the oil and gas industry. A mathematical model of manometric tubular spring oscillations in a viscous medium is viewed. By the developed model, the authors have determined the impact of manometric spring geometric characteristics and damping fluid viscosity on oscillation attenuation parameters, as well as provided evaluation of the impact of the cross-sectional shape on the oscillation attenuation rate.

  1. Fuel oil and kerosene sales 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-08-01

    The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

  2. Occupational Exposures in the Oil and Gas Extraction Industry: State of the Science and Research Recommendations

    PubMed Central

    Witter, Roxana Z.; Tenney, Liliana; Clark, Suzanne; Newman, Lee S.

    2015-01-01

    The oil and gas extraction industry is rapidly growing due to horizontal drilling and high volume hydraulic fracturing (HVHF). This growth has provided new jobs and economic stimulus. The industry occupational fatality rate is 2.5 times higher than the construction industry and 7 times higher than general industry; however injury rates are lower than the construction industry, suggesting injuries are not being reported. Some workers are exposed to crystalline silica at hazardous levels, above occupational health standards. Other hazards (particulate, benzene, noise, radiation) exist. In this article, we review occupational fatality and injury rate data; discuss research looking at root causes of fatal injuries and hazardous exposures; review interventions aimed at improving occupational health and safety; and discuss information gaps and areas of needed research. We also describe Wyoming efforts to improve occupational safety in this industry, as a case example. PMID:24634090

  3. Introduction of a compressed air breathing apparatus for the offshore oil and gas industry.

    PubMed

    Brooks, Chris J; MacDonald, Conor V; Carroll, Joel; Gibbs, Peter N G

    2010-07-01

    When a helicopter ditches the majority of crew and passengers have to make an underwater escape. Some may not be able to hold their breath and will drown. For at least 15 yr, military aircrew have been trained to use a scuba system. In the offshore oil and gas industry, there has been more caution about introducing a compressed air system and a rebreather system has been introduced as an alternative. Recently, Canadian industry and authorities approved the introduction of Helicopter Underwater Emergency Breathing Apparatus (HUEBA) training using compressed air. This communication reports the training of the first 1000 personnel. Training was introduced in both Nova Scotia and Newfoundland concurrently by the same group of instructors. Trainees filled out a questionnaire concerning their perceived ratings of the ease or difficulty of classroom training and the practical use of the HUEBA. Ninety-eight percent of trainees found the classroom and in-water training to be "good/very good". Trainees found it to be "easy/very easy" to clear the HUEBA and breathe underwater in 84% and 64% of cases, respectively. Divers reported a greater ease in learning all the practical uses of the HUEBA except application of the nose clip. There were problems with the nose clip fitting incorrectly, and interference of the survival suit hood with the regulator, which subsequently have been resolved. When carefully applied, the introduction of the HUEBA into training for offshore oil and gas industry helicopter crew and passengers can be safely conducted.

  4. The feasibility of effluent trading in the oil and gas industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veil, J.A.

    1997-09-01

    In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing wastewater effluent trading in watersheds, hoping to promote additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This paper evaluates the feasibility of effluent trading for facilities in the oil and gas industry. The evaluation leads to the conclusion that potential for effluent trading is very low in the exploration and production and distribution and marketing sectors; trading potential is moderate for the refining sector except for intraplant trades,more » for which the potential is high. Good potential also exists for other types of water-related trades that do not directly involve effluents (e.g., wetlands mitigation banking). The potential for effluent trading in the energy industries and in other sectors would be enhanced if Congress amended the Clean Water Act (CWA) to formally authorize such trading.« less

  5. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production

    PubMed Central

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A.; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N.; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J.; Huai, Dongxin; Taylor, David C.; Zhou, Xue-Rong; Green, Allan G.; Shockey, Jay; Klasson, K. Thomas; Mullen, Robert T.; Huang, Bangquan; Dyer, John M.; Cahoon, Edgar B.

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds. PMID:26916792

  6. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.

    PubMed

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B

    2016-02-26

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.

  7. Natural Origin Lycopene and Its "Green" Downstream Processing.

    PubMed

    Papaioannou, Emmanouil H; Liakopoulou-Kyriakides, Maria; Karabelas, Anastasios J

    2016-01-01

    Lycopene is an abundant natural carotenoid pigment with several biological functions (well-known for its antioxidant properties) which is under intensive investigation in recent years. Lycopene chemistry, its natural distribution, bioavailability, biological significance, and toxicological effects are briefly outlined in the first part of this review. The second, major part, deals with various modern downstream processing techniques, which are assessed in order to identify promising approaches for the recovery of lycopene and of similar lipophilic compounds. Natural lycopene is synthesized in plants and by microorganisms, with main representatives of these two categories (for industrial production) tomato and its by-products and the fungus Blakeslea trispora, respectively. Currently, there is a great deal of effort to develop efficient downstream processing for large scale production of natural-origin lycopene, with trends strongly indicating the necessity for "green" and mild extraction conditions. In this review, emphasis is placed on final product safety and ecofriendly processing, which are expected to totally dominate in the field of natural-origin lycopene extraction and purification.

  8. Process integration possibilities for biodiesel production from palm oil using ethanol obtained from lignocellulosic residues of oil palm industry.

    PubMed

    Gutiérrez, Luis F; Sánchez, Oscar J; Cardona, Carlos A

    2009-02-01

    In this paper, integration possibilities for production of biodiesel and bioethanol using a single source of biomass as a feedstock (oil palm) were explored through process simulation. The oil extracted from Fresh Fruit Bunches was considered as the feedstock for biodiesel production. An extractive reaction process is proposed for transesterification reaction using in situ produced ethanol, which is obtained from two types of lignocellulosic residues of palm industry (Empty Fruit Bunches and Palm Press Fiber). Several ways of integration were analyzed. The integration of material flows between ethanol and biodiesel production lines allowed a reduction in unit energy costs down to 3.4%, whereas the material and energy integration leaded to 39.8% decrease of those costs. The proposed integrated configuration is an important option when the technology for ethanol production from biomass reaches such a degree of maturity that its production costs be comparable with those of grain or cane ethanol.

  9. Enterprise Risk Management in the Oil and Gas Industry: An Analysis of Selected Fortune 500 Oil and Gas Companies' Reaction in 2009 and 2010

    ERIC Educational Resources Information Center

    Rogers, Violet C.; Ethridge, Jack R.

    2016-01-01

    In 2009, four of the top ten Fortune 500 companies were classified within the oil and gas industry. Organizations of this size typically have an advanced Enterprise Risk Management system in place to mitigate risk and to achieve their corporations' objectives. The companies and the article utilize the Enterprise Risk Management Integrated…

  10. Recent Warming, Rather than Industrial Emissions of Bioavailable Nutrients, Is the Dominant Driver of Lake Primary Production Shifts across the Athabasca Oil Sands Region

    PubMed Central

    Summers, Jamie C.; Kurek, Joshua; Kirk, Jane L.; Muir, Derek C. G.; Wang, Xiaowa; Wiklund, Johan A.; Cooke, Colin A.; Evans, Marlene S.; Smol, John P.

    2016-01-01

    Freshwaters in the Athabasca Oil Sands Region (AOSR) are vulnerable to the atmospheric emissions and land disturbances caused by the local oil sands industry; however, they are also affected by climate change. Recent observations of increases in aquatic primary production near the main development area have prompted questions about the principal drivers of these limnological changes. Is the enhanced primary production due to deposition of nutrients (nitrogen and phosphorus) from local industry or from recent climatic changes? Here, we use downcore, spectrally-inferred chlorophyll-a (VRS-chla) profiles (including diagenetic products) from 23 limnologically-diverse lakes with undisturbed catchments to characterize the pattern of primary production increases in the AOSR. Our aim is to better understand the relative roles of the local oil sands industry versus climate change in driving aquatic primary production trends. Nutrient deposition maps, generated using geostatistical interpolations of spring-time snowpack measurements from a grid pattern across the AOSR, demonstrate patterns of elevated total phosphorus, total nitrogen, and bioavailable nitrogen deposition around the main area of industrial activity. However, this pattern is not observed for bioavailable phosphorus. Our paleolimnological findings demonstrate consistently greater VRS-chla concentrations compared to pre-oil sands development levels, regardless of morphological and limnological characteristics, landscape position, bioavailable nutrient deposition, and dibenzothiophene (DBT)-inferred industrial impacts. Furthermore, breakpoint analyses on VRS-chla concentrations across a gradient of DBT-inferred industrial impact show limited evidence of a contemporaneous change among lakes. Despite the contribution of bioavailable nitrogen to the landscape from industrial activities, we find no consistency in the spatial pattern and timing of VRS-chla shifts with an industrial fertilizing signal. Instead

  11. Fuel oil and kerosene sales 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-08-01

    The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil andmore » Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.« less

  12. Automotive gear oil lubricant from soybean oil

    USDA-ARS?s Scientific Manuscript database

    The use of lubricants that are based on renewable materials is rapidly increasing. Vegetable oils have good lubricity, wear protection and low volatility which are desired properties for automotive gear lubricant applications. Soybean oil is used widely in the lubricant industry due to its properti...

  13. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    PubMed Central

    Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  14. Africa’s Petroleum Industry

    DTIC Science & Technology

    2005-11-15

    tools -- downstream investment and abundant capital, (4) threats to stability of supply are more internal than external, and (5) increasing political ... stability in producer countries is the key to reducing supply risk. The briefing charts discuss the following topics: why is African oil strategic

  15. Discarded seeds from red pepper (Capsicum annum) processing industry as a sustainable source of high added-value compounds and edible oil.

    PubMed

    Azabou, Samia; Taheur, Fadia Ben; Jridi, Mourad; Bouaziz, Mohamed; Nasri, Moncef

    2017-10-01

    The chemical composition and the antioxidant properties of Capsicum annum discarded seeds from processing industry with their corresponding extracted oil were investigated. C. annum seeds had high levels of crude proteins (18.30%), crude oil (11.04%), and dietary fibers (60.96%). The lipophilic fraction of C. annum seeds showed higher radical scavenging activity compared to their hydrophilic fraction, while this latter exhibited the highest reducing power. The results of fatty acid composition showed that fatty acids present in C. annum seed oil were mainly polyunsaturated (84.23%), with linoleic acid being the major polyunsaturated fatty acid (70.93%). The major monounsaturated fatty acid was oleic acid (12.18%), while the main saturated fatty acid was palmitic acid (11.90%). C. annum seed oil showed high absorbance in the UV-B, UV-A, and visible ranges. Owing to their composition, C. annum seeds discarded from pepper processing industry as by-product could be potentially used as high added-value ingredients in some food or nutraceutical formulations because they are well endowed with essential nutriments required for human health.

  16. Decreased seed oil production in FUSCA3 Brassica napus mutant plants.

    PubMed

    Elahi, Nosheen; Duncan, Robert W; Stasolla, Claudio

    2015-11-01

    Canola (Brassica napus L.) oil is extensively utilized for human consumption and industrial applications. Among the genes regulating seed development and participating in oil accumulation is FUSCA3 (FUS3), a member of the plant-specific B3-domain family of transcription factors. To evaluate the role of this gene during seed storage deposition, three BnFUSCA3 (BnFUS3) TILLING mutants were generated. Mutations occurring downstream of the B3 domain reduced silique number and repressed seed oil level resulting in increased protein content in developing seeds. BnFUS3 mutant seeds also had increased levels of linoleic acid, possibly due to the reduced expression of ω-3 FA DESATURASE (FAD3). These observed phenotypic alterations were accompanied by the decreased expression of genes encoding transcription factors stimulating fatty acid (FA) synthesis: LEAFY COTYLEDON1 and 2 (LEC1 and 2) ABSCISIC ACID-INSENSITIVE 3 (BnABI3) and WRINKLED1 (WRI1). Additionally, expression of genes encoding enzymes involved in sucrose metabolism, glycolysis, and FA modifications were down-regulated in developing seeds of the mutant plants. Collectively, these transcriptional changes support altered sucrose metabolism and reduced glycolytic activity, diminishing the carbon pool available for the synthesis of FA and ultimately seed oil production. Based on these observations, it is suggested that targeted manipulations of BnFUS3 can be used as a tool to influence oil accumulation in the economically important species B. napus. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. A multi-isotope approach for assessing industrial contributions to atmospheric nitrogen deposition in the Athabasca oil sands region in Alberta, Canada

    Treesearch

    Bernadette C. Proemse; Bernhard Mayer; Mark E. Fenn; Christopher S. Ross

    2013-01-01

    Industrial nitrogen (N) emissions in the Athabasca oil sands region (AOSR), Alberta, Canada, affect nitrate (NO3) and ammonium (NH4) deposition rates in close vicinity of industrial emitters. NO3-N and NH4-N open field and throughfall deposition rates were determined at various...

  18. Corporate Diversity Programs and Gender Inequality in the Oil and Gas Industry.

    PubMed

    Williams, Christine L; Kilanski, Kristine; Muller, Chandra

    2014-11-01

    Since the 1980s, major U.S. corporations have embraced diversity as a management strategy to increase the number of women in top jobs. Diversity management programs include targeted recruitment, hiring, and promotions policies; mentoring programs; affinity groups; and diversity training. Few of these programs have proven effective in achieving gender diversity in the corporate world, despite their widespread popularity. To explore the reasons for this, the authors investigate the experiences of women scientists in the oil and gas industry who are targeted by these programs. In-depth interviews reveal possible reasons why these programs fail to achieve their intended goals. The authors find that these programs can paradoxically reinforce gender inequality and male dominance in the industry. The authors discuss alternative approaches for addressing gender inequality in work organizations and conclude with implications of their findings for corporate approaches to promoting diversity and for future research.

  19. Corporate Diversity Programs and Gender Inequality in the Oil and Gas Industry

    PubMed Central

    Williams, Christine L.; Kilanski, Kristine; Muller, Chandra

    2014-01-01

    Since the 1980s, major U.S. corporations have embraced diversity as a management strategy to increase the number of women in top jobs. Diversity management programs include targeted recruitment, hiring, and promotions policies; mentoring programs; affinity groups; and diversity training. Few of these programs have proven effective in achieving gender diversity in the corporate world, despite their widespread popularity. To explore the reasons for this, the authors investigate the experiences of women scientists in the oil and gas industry who are targeted by these programs. In-depth interviews reveal possible reasons why these programs fail to achieve their intended goals. The authors find that these programs can paradoxically reinforce gender inequality and male dominance in the industry. The authors discuss alternative approaches for addressing gender inequality in work organizations and conclude with implications of their findings for corporate approaches to promoting diversity and for future research. PMID:25558125

  20. Impact of industrial hammer mill rotor speed on extraction efficiency and quality of extra virgin olive oil.

    PubMed

    Polari, Juan J; Garcí-Aguirre, David; Olmo-García, Lucía; Carrasco-Pancorbo, Alegría; Wang, Selina C

    2018-03-01

    Crushing is a key step during olive oil extraction. Among commercial crushers, the hammer mill is the most widely used due to its robustness and high throughput. In the present work, the impact of hammer mill rotor speed on extraction yield and overall quality of super-high-density Arbosana olive oils were assessed in an industrial facility. Our results show that increasing the rotor speed from 2400rpm to 3600rpm led to a rise in oil yield of 1.2%, while conserving quality parameters. Sensory analysis showed more pungency with increased rotation speed, while others attributes were unaffected. Volatile compounds showed little variation with the differences in crusher speed; however, total phenols content, two relevant secoiridoids, and triterpenoids levels increased with rotor speed. Hammer mill rotor speed is a processing variable that can be tuned to increase the extraction efficiency and modulate the chemical composition of extra virgin olive oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Petroleum industry in Iran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farideh, A.

    1981-01-01

    This study examines the oil industry in Iran from the early discovery of oil nearly two hundred years ago in Mazandaran (north part) to the development of a giant modern industry in the twentieth century. Chapter I presents a brief historical setting to introduce the reader to the importance of oil in Iran. It focuses on the economic implications of the early oil concessions in the period 1901 to 1951. Chapter II discusses the nationalization of the Iranian oil industry and creation of NIOC in 1951 and the international political and economic implication of these activities. Chapter III explains themore » activities of NIOC in Iran. Exploration and drilling, production, exports, refineries, natural gas, petrochemicals and internal distributions are studied. Chapter IV discusses the role of the development planning of Iran. A brief presentation of the First Development Plan through the Fifth Development Plan is given. Sources and uses of funds by plan organization during these Five Plans is studied. The Iran and Iraq War is also studied briefly, but the uncertainty of its resolution prevents any close analysis of its impact on the Iranian oil industry. One conclusion, however, is certain; oil has been a vital resource in Iran's past and it will remain the lifetime of its economic development in the future.« less

  2. Oil crises and African economies: oil wave on a tidal flood of industrial price inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, W.R.; Wilson, E.J. III

    Escalating oil-import prices have left the developing African economies with high debts, unfinished projects, and bitterness over what they see as economic assassination by OPEC. Much of the blame for their suffering, however, can be placed on African leaders who failed to control internal factors. The authors review the impact of OPEC's pricing changes in terms of its relation to internal financial and energy characteristics and the purchasing and policy choices made by African nations in response to the price increases. They describe the African nations' ability to solve their energy and economic problems as less favorable than other less-developedmore » countries. The richer OPEC and industrial countries can do more than they are to help relieve the economic strain and to diversify African energy sources. 53 references, 7 tables. (DCK)« less

  3. Effect of Pulsed Plasma Jets on the Recovering Boundary Layer Downstream of a Reflected Shock Interaction

    NASA Astrophysics Data System (ADS)

    Greene, Benton; Clemens, Noel; Magari, Patrick; Micka, Daniel; Ueckermann, Mattheus

    2015-11-01

    Shock-induced turbulent boundary layer separation can have many detrimental effects in supersonic inlets including flow distortion and instability, structural fatigue, poor pressure recovery, and unstart. The current study investigates the effect of pulsed plasma jets on the recovering boundary layer downstream of a reflected shock wave-boundary layer interaction. The effects of pitch and skew angle of the jet as well as the heating parameter and discharge time scale are tested using several pulsing frequencies. In addition, the effect of the plasma jets on the undisturbed boundary layer at 6 mm and 11 mm downstream of the jets is measured. A pitot-static pressure probe is used to measure the velocity profile of the boundary layer 35 mm downstream of the plasma jets, and the degree of boundary layer distortion is compared between the different models and run conditions. Additionally, the effect of each actuator configuration on the shape of the mean separated region is investigated using surface oil flow visualization. Previous studies with lower energy showed a weak effect on the downstream boundary layer. The current investigation will attempt to increase this effect using a higher-energy discharge. Funded by AFRL through and SBIR in collaboration with Creare, LLC.

  4. The Mexican Oil Industry: Governance, Resource and Social Concerns

    DTIC Science & Technology

    2011-10-28

    Baker Institute: Mexico could become oil importer by 2010”, Oil & Gas Journal 31 “Mexico unveils new deepwater drilling regulations”, energy-pedia...Efficiency: The Politics of Investment Policies in the Oil Industry”, 17. 56 Ibid 57 “Mexico unveils new deepwater drilling regulations”, energy...Bogan, “With Easy Oil Gone, Pemex Sobers Up” 60 “Mexico unveils new deepwater drilling regulations”, energy-pedia news 61 Jeremy Martin “Oil in

  5. 77 FR 50172 - Expert Forum on the Use of Performance-Based Regulatory Models in the U.S. Oil and Gas Industry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... Transportation, Pipeline and Hazardous Materials Safety Administration (PHMSA) invite interested parties to...] Expert Forum on the Use of Performance-Based Regulatory Models in the U.S. Oil and Gas Industry, Offshore... and gas industry. The meeting will take place at the College of the Mainland, and hosted by the Gulf...

  6. Response and resilience of soil microbial communities inhabiting in edible oil stress/contamination from industrial estates.

    PubMed

    Patel, Vrutika; Sharma, Anukriti; Lal, Rup; Al-Dhabi, Naif Abdullah; Madamwar, Datta

    2016-03-22

    Gauging the microbial community structures and functions become imperative to understand the ecological processes. To understand the impact of long-term oil contamination on microbial community structure soil samples were taken from oil fields located in different industrial regions across Kadi, near Ahmedabad, India. Soil collected was hence used for metagenomic DNA extraction to study the capabilities of intrinsic microbial community in tolerating the oil perturbation. Taxonomic profiling was carried out by two different complementary approaches i.e. 16S rDNA and lowest common ancestor. The community profiling revealed the enrichment of phylum "Proteobacteria" and genus "Chromobacterium," respectively for polluted soil sample. Our results indicated that soil microbial diversity (Shannon diversity index) decreased significantly with contamination. Further, assignment of obtained metagenome reads to Clusters of Orthologous Groups (COG) of protein and Kyoto Encyclopedia of Genes and Genomes (KEGG) hits revealed metabolic potential of indigenous microbial community. Enzymes were mapped on fatty acid biosynthesis pathway to elucidate their roles in possible catalytic reactions. To the best of our knowledge this is first study for influence of edible oil on soil microbial communities via shotgun sequencing. The results indicated that long-term oil contamination significantly affects soil microbial community structure by acting as an environmental filter to decrease the regional differences distinguishing soil microbial communities.

  7. Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) in the Oil and Gas Industry: A Review.

    PubMed

    Doyi, Israel; Essumang, David Kofi; Dampare, Samuel; Glover, Eric Tetteh

    Radiation is part of the natural environment: it is estimated that approximately 80 % of all human exposure comes from naturally occurring or background radiation. Certain extractive industries such as mining and oil logging have the potential to increase the risk of radiation exposure to the environment and humans by concentrating the quantities of naturally occurring radiation beyond normal background levels (Azeri-Chirag-Gunashli 2004).

  8. A novel cell autolysis system for cost-competitive downstream processing.

    PubMed

    Hajnal, Ivan; Chen, Xiangbin; Chen, Guo-Qiang

    2016-11-01

    The industrial production of low value-added biological products poses significant challenges due to cost pressures. In recent years, it has been argued that synthetic biology approaches will lead to breakthroughs that eliminate price bottlenecks for the production of a wide range of biological products including bioplastics and biofuels. One significant bottleneck lies in the necessity to break the tough cell walls of microbes in order to release intracellular products. We here report the implementation of the first synthetic biology standard part based on the lambda phage SRRz genes and a synthetic ribosome binding site (RBS) that works in Escherichia coli and Halomonas campaniensis, which enables the producer strains to induce lysis after the addition of small amounts (1-5 %) of solvents or to spontaneously lyse during the stresses of downstream processing, and thus has the potential to eliminate the mechanical cell disruption step as both an efficiency bottleneck and a significant capex barrier when implementing downstream bioprocesses.

  9. Microfluidic and nanofluidic phase behaviour characterization for industrial CO2, oil and gas.

    PubMed

    Bao, Bo; Riordon, Jason; Mostowfi, Farshid; Sinton, David

    2017-08-08

    Microfluidic systems that leverage unique micro-scale phenomena have been developed to provide rapid, accurate and robust analysis, predominantly for biomedical applications. These attributes, in addition to the ability to access high temperatures and pressures, have motivated recent expanded applications in phase measurements relevant to industrial CO 2 , oil and gas applications. We here present a comprehensive review of this exciting new field, separating microfluidic and nanofluidic approaches. Microfluidics is practical, and provides similar phase properties analysis to established bulk methods with advantages in speed, control and sample size. Nanofluidic phase behaviour can deviate from bulk measurements, which is of particular relevance to emerging unconventional oil and gas production from nanoporous shale. In short, microfluidics offers a practical, compelling replacement of current bulk phase measurement systems, whereas nanofluidics is not practical, but uniquely provides insight into phase change phenomena at nanoscales. Challenges, trends and opportunities for phase measurements at both scales are highlighted.

  10. Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization.

    PubMed

    Torri, Isadora Dalla Vecchia; Paasikallio, Ville; Faccini, Candice Schmitt; Huff, Rafael; Caramão, Elina Bastos; Sacon, Vera; Oasmaa, Anja; Zini, Claudia Alcaraz

    2016-01-01

    Bio-oils were produced through intermediate (IP) and fast pyrolysis (FP), using Eucalyptus sp. (hardwood) and Picea abies (softwood), wood wastes produced in large scale in Pulp and Paper industries. Characterization of these bio-oils was made using GC/qMS and GC×GC/TOFMS. The use of GC×GC provided a broader characterization of bio-oils and it allowed tracing potential markers of hardwood bio-oil, such as dimethoxy-phenols, which might co-elute in 1D-GC. Catalytic FP increased the percentage of aromatic hydrocarbons in P. abies bio-oil, indicating its potential for fuel production. However, the presence of polyaromatic hydrocarbons (PAH) draws attention to the need of a proper management of pyrolysis process in order to avoid the production of toxic compounds and also to the importance of GC×GC/TOFMS use to avoid co-elutions and consequent inaccuracies related to identification and quantification associated with GC/qMS. Ketones and phenols were the major bio-oil compounds and they might be applied to polymer production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Biocompounds from rapeseed oil industry co-stream as active ingredients for skin care applications.

    PubMed

    Rivera, D; Rommi, K; Fernandes, M M; Lantto, R; Tzanov, T

    2015-10-01

    Despite the great number of substances produced by the skincare industry, very few of them seem to truly have an effect on the skin. Therefore, given the social implications surrounding physical appearance, the search for new bioactive compounds to prevent or attenuate skin ageing and enhance self-image is a priority of current research. In this context, being rich in valuable compounds, such as proteins, phenolics, lipids and vitamins, this study is focused on the potential activity of rapeseed press cake hydrolysates to be used as raw materials for skincare applications. In this study, the protein-rich press residue from the rapeseed oil industry was converted enzymatically into short-chain biologically active peptides using four protease products with varying substrate specificity - Alcalase 2.4L FG, Protex 6L, Protamex and Corolase 7089. The antioxidant, anti-wrinkle and anti-inflammatory activities of the obtained hydrolysates were evaluated in vitro while their biocompatibility with human skin fibroblasts was tested. All hydrolysates were biocompatible with skin fibroblasts after 24 h of exposure, while the non-hydrolysed extract induced cell toxicity. Alcalase 2,4L FG and Protex 6L-obtained hydrolysates were the most promising extracts showing improved bioactivities suitable for skin anti-ageing formulations, namely antioxidant activity, inhibiting approximately 80% cellular reactive oxidative species, anti-inflammatory and anti-wrinkle properties, inhibiting around 36% of myeloperoxidase activity and over 83% of elastase activity. The enzymatic technology applied to the rapeseed oil industry costream results in the release of bioactive compounds suitable for skincare applications. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  12. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, R.; Borio, R.W.; Liljedahl, G.

    1995-12-31

    The development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 and the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment. Economics may one day dictate that it makes sense to replace oil or natural gas with coal in boilers that were originally designed to burn these fuels. The objective of the current program is to demonstrate the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronizedmore » coal. In support of this overall objective, the following specific areas were targeted: A coal handling/preparation system that can meet the technical requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; Maintaining boiler thermal performance in accordance with specifications when burning oil or natural gas; Maintaining NOx emissions at or below 0.6 lb/MBtu; Achieving combustion efficiencies of 98% or higher; and Calculating economic payback periods as a function of key variables. The overall program has consisted of five major tasks: (1) A review of current state-of-the-art coal firing system components; (2) Design and experimental testing of a prototype HEACC burner; (3) Installation and testing of a HEACC system in a commercial retrofit application; (4) Economic evaluation of the HEACC concept for retrofit applications; and (5) Long term demonstration under commercial user demand conditions. This paper will summarize the latest key experimental results (Task 3) and the economic evaluation (Task 4) of the HEACC concept for retrofit applications. 28 figs., 6 tabs.« less

  13. Fluid flow analysis of E-glass fiber reinforced pipe joints in oil and gas industry

    NASA Astrophysics Data System (ADS)

    Bobba, Sujith; Leman, Z.; Zainuddin, E. S.; Sapuan, S. M.

    2018-04-01

    Glass Fiber reinforced composites have become increasingly important over the past few years and now they are the first choice materials for fabricating pipes with low weight in combination with high strength and stiffness. In Oil And Gas Industry, The Pipelines transporting heavy crude oil are subjected to variable pressure waves causing fluctuating stress levels in the pipes. Computational Fluid Dynamics (CFD) analysis was performed using solid works flow stimulation software to study the effects of these pressure waves on some specified joints in the pipes. Depending on the type of heavy crude oil being used, the flow behavior indicated a considerable degree of stress levels in certain connecting joints, causing the joints to become weak over a prolonged period of use. This research proposes a new perspective that is still required to be developed regarding the change of the pipe material, fiber winding angle in those specified joints and finally implementing cad wind technology to check the output result of the stress levels so that the life of the pipes can be optimized.

  14. The determination of water in crude oil and transformer oil reference materials.

    PubMed

    Margolis, Sam A; Hagwood, Charles

    2003-05-01

    The measurement of the amount of water in oils is of significant economic importance to the industrial community, particularly to the electric power and crude oil industries. The amount of water in transformer oils is critical to their normal function and the amount of water in crude oils affects the cost of the crude oil at the well head, the pipeline, and the refinery. Water in oil Certified Reference Materials (CRM) are essential for the accurate calibration of instruments that are used by these industries. Three NIST Standard Reference Materials (SRMs) have been prepared for this purpose. The water in these oils has been measured by both coulometric and volumetric Karl Fischer methods. The compounds (such as sulfur compounds) that interfere with the Karl Fischer reaction (interfering substances) and inflate the values for water by also reacting with iodine have been measured coulometrically. The measured water content of Reference Material (RM) 8506a Transformer Oil is 12.1+/-1.9 mg kg(-1) (plus an additional 6.2+/-0.9 mg kg(-1) of interfering substances). The measured water content of SRM 2722 Sweet Crude Oil, is 99+/-6 mg kg(-1) (plus an additional 5+/-2 mg kg(-1) of interfering substances). The measured water content of SRM 2721 Sour Crude Oil, is 134+/-18 mg kg(-1) plus an additional 807+/-43 mg kg(-1) of interfering substances. Interlaboratory studies conducted with these oil samples (using SRM 2890, water saturated 1-octanol, as a calibrant) are reported. Some of the possible sources of bias in these measurements were identified, These include: improperly calibrated instruments, inability to measure the calibrant accurately, Karl Fischer reagent selection, and volatilization of the interfering substances in SRM 2721.

  15. Oil

    USGS Publications Warehouse

    Rocke, T.E.

    1999-01-01

    Each year, an average of 14 million gallons of oil from more than 10,000 accidental spills flow into fresh and saltwater environments in and around the United States. Most accidental oil spills occur when oil is transported by tankers or barges, but oil is also spilled during highway, rail, and pipeline transport, and by nontransportation-related facilities, such as refinery, bulk storage, and marine and land facilities (Fig. 42.1). Accidental releases, however, account for only a small percentage of all oil entering the environment; in heavily used urban estuaries, the total petroleum hydrocarbon contributions due to transportation activities may be 10 percent or less. Most oil is introduced to the environment by intentional discharges from normal transport and refining operations, industrial and municipal discharges, used lubricant and other waste oil disposal, urban runoff, river runoff, atmospheric deposition, and natural seeps. Oil-laden wastewater is often released into settling ponds and wetlands (Fig. 42.2). Discharges of oil field brines are a major source of the petroleum crude oil that enters estuaries in Texas.

  16. Transporting US oil imports: The impact of oil spill legislation on the tanker market. Draft final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowland, P.J.

    1992-05-01

    The Oil Pollution Act of 1990 (``OPA``) and an even more problematic array of State pollution laws have raised the cost, and risk, of carrying oil into and out of the US. This report, prepared under contract to the US Department of energy`s Office of Domestic and International Policy, examines the impact of Federal and State oil spill legislation on the tanker market. It reviews the role of marine transportation in US oil supply, explores the OPA and State oil spill laws, studies reactions to OPA in the tanker and tank barge industries and in related industries such as insurancemore » and ship finance, and finally, discusses the likely developments in the years ahead. US waterborne oil imports amounted to 6.5 million B/D in 1991, three-quarters of which was crude oil. Imports will rise by almost 3 million B/D by 2000 according to US Department of energy forecasts, with most of the crude oil growth after 1995. Tanker demand will grow even faster: most of the US imports and the increased traffic to other world consuming regions will be on long-haul trades. Both the number of US port calls by tankers and the volume of offshore lightering will grow. Every aspect of the tanker industry`s behavior is affected by OPA and a variety of State pollution laws.« less

  17. Transporting US oil imports: The impact of oil spill legislation on the tanker market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowland, P.J.

    1992-05-01

    The Oil Pollution Act of 1990 ( OPA'') and an even more problematic array of State pollution laws have raised the cost, and risk, of carrying oil into and out of the US. This report, prepared under contract to the US Department of energy's Office of Domestic and International Policy, examines the impact of Federal and State oil spill legislation on the tanker market. It reviews the role of marine transportation in US oil supply, explores the OPA and State oil spill laws, studies reactions to OPA in the tanker and tank barge industries and in related industries such asmore » insurance and ship finance, and finally, discusses the likely developments in the years ahead. US waterborne oil imports amounted to 6.5 million B/D in 1991, three-quarters of which was crude oil. Imports will rise by almost 3 million B/D by 2000 according to US Department of energy forecasts, with most of the crude oil growth after 1995. Tanker demand will grow even faster: most of the US imports and the increased traffic to other world consuming regions will be on long-haul trades. Both the number of US port calls by tankers and the volume of offshore lightering will grow. Every aspect of the tanker industry's behavior is affected by OPA and a variety of State pollution laws.« less

  18. Screening of microbes for the production of polyol oils from soybean oil

    USDA-ARS?s Scientific Manuscript database

    Introduction. More than 30.6 million tons of soybean oil were produced worldwide annually and the major use of this oil is for food products. Triacylglycerols (TAG) containing hydroxy fatty acids (FA), e.g., castor oil, have many industrial uses such as the manufacture of aviation lubricant, plasti...

  19. Biotransformation of 1,8-cineole by solid-state fermentation of Eucalyptus waste from the essential oil industry using Pleurotus ostreatus and Favolus tenuiculus.

    PubMed

    Omarini, Alejandra; Dambolena, José Sebastián; Lucini, Enrique; Jaramillo Mejía, Santiago; Albertó, Edgardo; Zygadlo, Julio A

    2016-03-01

    Biotechnological conversion of low-cost agro-industrial by-products, such as industrial waste or terpenes from the distillation of essential oils from plants into more valuable oxygenated derivatives, can be achieved by using microbial cells or enzymes. In Argentina, the essential oil industry produces several tons of waste each year that could be used as raw materials in the production of industrially relevant and value-added compounds. In this study, 1,8-cineole, one of the components remaining in the spent leaves of the Eucalyptus cinerea waste, was transformed by solid-state fermentation (SSF) using the two edible mushrooms Pleurotus ostreatus and Favolus tenuiculus. As a result, two new oxygenated derivatives of 1,8-cineole were identified: 1,3,3-trimethyl-2-oxabicyclo [2.2.2]octan-6-ol and 1,3,3-trimethyl-2-oxabicyclo [2.2.2]octan-6-one. Additionally, changes in the relative percentages of other aroma compounds present in the substrate were observed during SSF. Both fungal strains have the ability to produce aroma compounds with potential applications in the food and pharmaceutical industries.

  20. Effects on bread and oil quality after functionalization with microencapsulated chia oil.

    PubMed

    González, Agustín; Martínez, Marcela L; León, Alberto E; Ribotta, Pablo D

    2018-03-23

    Omega-3 and omega-6 fatty acids-rich oils suffer oxidation reactions that alter their chemical and organoleptic quality. Microencapsulation can be a powerful tool for protection against ambient conditions. In the present study, the addition of microencapsulated chia oil as an ingredient in bread preparations and its effect on the technological and chemical quality of breads was investigated. Microencapsulation of chia oil was carried out by freeze-drying with soy proteins as wall material and oil release was determined under in vitro gastric and intestinal conditions. Encapsulated oil-containing bread showed no differences in specific volume, average cell area, firmness and chewiness with respect to control bread. Unencapsulated oil-containing bread showed a marked increase in hydroperoxide values respect to control, whereas encapsulated oil-containing bread values were not affected by baking and bread storage. The fatty acid profiles showed a decrease of 13% and 16%, respectively, in α-linolenic acid in the encapsulated and unencapsulated oils with respect to bulk chia oil. Sensory analysis showed no significant differences between bread samples. The addition of encapsulated chia oil did not alter the technological quality of breads and prevented the formation of hydroperoxide radicals. A ration of encapsulated oil-containing bread contributes 60% of the recommended dietary intake of omega-3 fatty acids. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  1. Halogens in oil and gas production-associated wastewater.

    NASA Astrophysics Data System (ADS)

    Harkness, J.; Warner, N. R.; Dwyer, G. S.; Mitch, W.; Vengosh, A.

    2014-12-01

    Elevated chloride and bromide in oil and gas wastewaters that are released to the environment are one of the major environmental risks in areas impacted by shale gas development [Olmstead et al.,2013]. In addition to direct contamination of streams, the potential for formation of highly toxic disinfection by-products (DBPs) in drinking water in utilities located downstream from disposal sites poses a serious risk to human health. Here we report on the occurrence of iodide in oil and gas wastewater. We conducted systematic measurements of chloride, bromide, and iodide in (1) produced waters from conventional oil and gas wells from the Appalachian Basin; (2) hydraulic fracturing flowback fluids from unconventional Marcellus and Fayetteville shale gas, (3) effluents from a shale gas spill site in West Virginia; (4) effluents of oil and gas wastewater disposed to surface water from three brine treatment facilities in western Pennsylvania; and (5) surface waters downstream from the brine treatment facilities. Iodide concentration was measured by isotope dilution-inductively coupled plasma-mass spectrometry, which allowed for a more accurate measurement of iodide in a salt-rich matrix. Iodide in both conventional and unconventional oil and gas produced and flowback waters varied from 1 mg/L to 55 mg/L, with no systematic enrichment in hydraulic fracturing fluids. The similarity in iodide content between the unconventional Marcellus flowback waters and the conventional Appalachian produced waters clearly indicate that the hydraulic fracturing process does not induce additional iodide and the iodide content is related to natural variations in the host formations. Our data show that effluents from the brine treatment facilities have elevated iodide (mean = 20.9±1 mg/L) compared to local surface waters (0.03± 0.1 mg/L). These results indicate that iodide, in addition to chloride and bromide in wastewater from oil and gas production, poses an additional risk to downstream

  2. Tracing industrial sulfur emissions in atmospheric sulfate deposition in the Athabasca Oil Sands Region, Alberta, Canada

    Treesearch

    Bernadette C. Proemse; Bernhard Mayer; Mark E. Fenn

    2012-01-01

    Anthropogenic S emissions in the Athabasca oil sands region (AOSR) in Alberta, Canada, affect SO4 deposition in close vicinity of industrial emitters. Between May 2008 and May 2009, SO4-S deposition was monitored using open field bulk collectors at 15 sites and throughfall collectors at 14 sites at distances between 3 and 113 km from one of the major emission stacks in...

  3. Comparison of emerging contaminants in receiving waters downstream of a conventional wastewater treatment plant and a forest-water reuse system.

    PubMed

    McEachran, Andrew D; Hedgespeth, Melanie L; Newton, Seth R; McMahen, Rebecca; Strynar, Mark; Shea, Damian; Nichols, Elizabeth Guthrie

    2018-05-01

    Forest-water reuse (FWR) systems treat municipal, industrial, and agricultural wastewaters via land application to forest soils. Previous studies have shown that both large-scale conventional wastewater treatment plants (WWTPs) and FWR systems do not completely remove many contaminants of emerging concern (CECs) before release of treated wastewater. To better characterize CECs and potential for increased implementation of FWR systems, FWR systems need to be directly compared to conventional WWTPs. In this study, both a quantitative, targeted analysis and a nontargeted analysis were utilized to better understand how CECs release to waterways from an FWR system compared to a conventional treatment system. Quantitatively, greater concentrations and total mass load of CECs was exhibited downstream of the conventional WWTP compared to the FWR. Average summed concentrations of 33 targeted CECs downstream of the conventional system were ~ 1000 ng/L and downstream of the FWR were ~ 30 ng/L. From a nontargeted chemical standpoint, more tentatively identified chemicals were present, and at a greater relative abundance, downstream of the conventional system as well. Frequently occurring contaminants included phthalates, pharmaceuticals, and industrial chemicals. These data indicate that FWR systems represent a sustainable wastewater treatment alternative and that emerging contaminant release to waterways was lower at a FWR system than a conventional WWTP.

  4. Double throat pressure pulsation dampener for oil-free screw compressors

    NASA Astrophysics Data System (ADS)

    Lucas, Michael J.

    2005-09-01

    This paper describes a recent invention at Ingersoll-Rand for reducing the pressure pulsations in an oil-free screw compressor. Pressure pulsation is a term used in the air compressor industry to describe the rapid change in pressure with time measured in the downstream piping of the air compressor. The pulsations are due to the rapid opening and closing of the screws as the compressed air is eject from the compressor into the piping system. The pulsations are known to produce excessive noise levels and high levels of vibration in the piping system. Reducing these pulsations is critical to achieving a quiet running compressor. This paper will describe the methodology used to analyze the data and show both computational and experimental results achieved using the pulsation dampener. A patent for this design has been filed with the US patent office.

  5. Effects of small impoundments on downstream crayfish assemblages

    Treesearch

    Susan B. Adams

    2013-01-01

    Dams and impoundments, both large and small, affect downstream physicochemical characteristics and up- and downstream biotic communities. I tested whether small dams and their impoundments altered downstream crayfish assemblages in northern Mississippi. I sampled crayfish and measured physicochemical variables at 4 sites downstream of impoundments (outlet sites) and 4...

  6. Oil cooling system for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.; Kast, H. B. (Inventor)

    1977-01-01

    A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess fuel control requirements back to the aircraft fuel tank. This increases the fuel pump heat sink and decreases the pump temperature rise without the addition of valving other than normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. In one embodiment, a divider valve is provided to take all excess fuel from either upstream or downstream of the fuel filter and route it back to the tanks, the ratio of upstream to downstream extraction being a function of fuel pump discharge pressure.

  7. Epidemiology and man-days loss in burn injuries amongst workers in an oil industry.

    PubMed

    Sarma, B P

    2001-08-01

    This retrospective study, conducted at the Indian Oil Corporation Ltd. (Assam Oil Division) Hospital, Digboi, in a period of 5 yr amongst workers of IOC Ltd. (AOD) describes work-associated injuries. Out of 2320 cases of different types of injuries involving workers over this period, 820 (35.3%) occurred at the workplace. 1430 (61.6%) at home or other places and 70 (3.1%) occurred on way to the workplace. Burn injuries were found in 132 cases (5.8% of the total injuries), but constituted 12.6% of the accidents at the workplace. The majority of the other injuries were soft tissue injuries, including sprains 1288 (55.5%) and hand injuries 688 (29.5%). Major burns (above 20% BSB) were found only in 5 cases. The most common sites of involvement in minor burns were the hands (45 cases), the legs (35 cases) and face (20 cases) with the remaining involving the chest and abdomen. Scald injury was observed in 66/132 (50%) cases, contact burns in 13/132 (10%) cases, flame burns in 33/132 (25%) cases, chemical burns in 11/132 (8.3%), and electrical burns in 9/132 (7%) cases. Mortality was 1.5%. Working days lost (man-days loss) in burn injuries was found to be higher in comparison to other injuries of similar severity. Causation of industrial burns is discussed and importance of prevention of burns in industries has been emphasised.

  8. Offshore industry: management of health hazards in the upstream petroleum industry.

    PubMed

    Niven, Karen; McLeod, Ron

    2009-08-01

    Upstream oil and gas operations involve a range of activities, including exploration and drilling, conventional oil and gas production, extraction and processing of 'tar sands', heavy oil processing and pipeline operations. Firstly, to outline the nature of health risks in the offshore oil and gas industry to date. Secondly, to outline the commercial, technical and social challenges that could influence the future context of health management in the industry. Thirdly, to speculate how the health function within the industry needs to respond to these challenges. A review of the published literature was supplemented with industry subject matter and expert opinion. There was a relatively light peer-reviewed published literature base in an industry which is perceived as having changed little over three decades, so far as offshore health hazards for physical, chemical, biological hazards are concerned. Recent focus has been on musculoskeletal disorders and stress. The relative stability of the knowledge base regarding health hazards offshore may change as more innovative methods are employed to develop hydrocarbon resources in more 'difficult' environments. Society's willingness to accept risk is changing. Addressing potential health risks should be done much earlier in the planning process of major projects. This may reveal a skills gap in health professionals as a consequence of needing to employ more anticipatory tools, such as modelling exposure estimations and the skills and willingness to engage effectively with engineers and other HSSE professionals.

  9. Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry-Overview and a North Sea case study.

    PubMed

    Skovhus, Torben Lund; Eckert, Richard B; Rodrigues, Edgar

    2017-08-20

    Microbiologically influenced corrosion (MIC) is the terminology applied where the actions of microorganisms influence the corrosion process. In literature, terms such as microbial corrosion, biocorrosion, microbially influenced/induced corrosion, and biodegradation are often applied. MIC research in the oil and gas industry has seen a revolution over the past decade, with the introduction of molecular microbiological methods: (MMM) as well as new industry standards and procedures of sampling biofilm and corrosion products from the process system. This review aims to capture the most important trends the oil and gas industry has seen regarding MIC research over the past decade. The paper starts out with an overview of where in the process stream MIC occurs - from the oil reservoir to the consumer. Both biotic and abiotic corrosion mechanisms are explained in the context of managing MIC using a structured corrosion management (CM) approach. The corrosion management approach employs the elements of a management system to ensure that essential corrosion control activities are carried out in an effective, sustainable, well-planned and properly executed manner. The 3-phase corrosion management approach covering of both biotic and abiotic internal corrosion mechanisms consists of 1) corrosion assessment, 2) corrosion mitigation and 3) corrosion monitoring. Each of the three phases are described in detail with links to recent field cases, methods, industry standards and sampling protocols. In order to manage the corrosion threat, operators commonly use models to support decision making. The models use qualitative, semi-quantitative or quantitative measures to help assess the rate of degradation caused by MIC. The paper reviews four existing models for MIC Threat Assessment and describe a new model that links the threat of MIC in the oil processing system located on an offshore platform with a Risk Based Inspection (RBI) approach. A recent field case highlights and explains

  10. A transgene design for enhancing oil content in Arabidopsis and Camelina seeds

    DOE PAGES

    Zhu, Yerong; Xie, Linan; Chen, Grace Q.; ...

    2018-02-21

    Background: Increasing the oil yield is a major objective for oilseed crop improvement. Oil biosynthesis and accumulation are influenced by multiple genes involved in embryo and seed development. The leafy cotyledon1 (LEC1) is a master regulator of embryo development that also enhances the expression of genes involved in fatty acid biosynthesis. We speculated that seed oil could be increased by targeted overexpression of a master regulating transcription factor for oil biosynthesis, using a downstream promoter for a gene in the oil biosynthesis pathway. To verify the effect of such a combination on seed oil content, we made constructs with maizemore » (Zea mays) ZmLEC1 driven by serine carboxypeptidase-like (SCPL17) and acyl carrier protein (ACP5) promoters, respectively, for expression in transgenic Arabidopsis thaliana and Camelina sativa. Results: Agrobacterium-mediated transformation successfully generated Arabidopsis and Camelina lines that overexpressed ZmLEC1 under the control of a seed-specific promoter. This overexpression does not appear to be detrimental to seed vigor under laboratory conditions and did not cause observable abnormal growth phenotypes throughout the life cycle of the plants. Overexpression of ZmLEC1 increased the oil content in mature seeds by more than 20% in Arabidopsis and 26% in Camelina. In conclusion: The findings suggested that the maize master regulator, ZmLEC1, driven by a downstream seed-specific promoter, can be used to increase oil production in Arabidopsis and Camelina and might be a promising target for increasing oil yield in oilseed crops.0« less

  11. A transgene design for enhancing oil content in Arabidopsis and Camelina seeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yerong; Xie, Linan; Chen, Grace Q.

    Background: Increasing the oil yield is a major objective for oilseed crop improvement. Oil biosynthesis and accumulation are influenced by multiple genes involved in embryo and seed development. The leafy cotyledon1 (LEC1) is a master regulator of embryo development that also enhances the expression of genes involved in fatty acid biosynthesis. We speculated that seed oil could be increased by targeted overexpression of a master regulating transcription factor for oil biosynthesis, using a downstream promoter for a gene in the oil biosynthesis pathway. To verify the effect of such a combination on seed oil content, we made constructs with maizemore » (Zea mays) ZmLEC1 driven by serine carboxypeptidase-like (SCPL17) and acyl carrier protein (ACP5) promoters, respectively, for expression in transgenic Arabidopsis thaliana and Camelina sativa. Results: Agrobacterium-mediated transformation successfully generated Arabidopsis and Camelina lines that overexpressed ZmLEC1 under the control of a seed-specific promoter. This overexpression does not appear to be detrimental to seed vigor under laboratory conditions and did not cause observable abnormal growth phenotypes throughout the life cycle of the plants. Overexpression of ZmLEC1 increased the oil content in mature seeds by more than 20% in Arabidopsis and 26% in Camelina. In conclusion: The findings suggested that the maize master regulator, ZmLEC1, driven by a downstream seed-specific promoter, can be used to increase oil production in Arabidopsis and Camelina and might be a promising target for increasing oil yield in oilseed crops.0« less

  12. Recovery potential of cold press byproducts obtained from the edible oil industry: physicochemical, bioactive, and antimicrobial properties.

    PubMed

    Karaman, Safa; Karasu, Salih; Tornuk, Fatih; Toker, Omer Said; Geçgel, Ümit; Sagdic, Osman; Ozcan, Nihat; Gül, Osman

    2015-03-04

    Physicochemical, bioactive, and antimicrobial properties of different cold press edible oil byproducts (almond (AOB), walnut (WOB), pomegranate (POB), and grape (GOB)) were investigated. Oil, protein, and crude fiber content of the byproducts were found between 4.82 and 12.57%, between 9.38 and 49.05%, and between 5.87 and 45.83%, respectively. GOB had very high crude fiber content; therefore, it may have potential for use as a new dietary fiber source in the food industry. As GOB, POB, and WOB oils were rich in polyunsaturated fatty acids, AOB was rich in monounsaturated fatty acids. Oil byproducts were also found to be rich in dietary mineral contents, especially potassium, calcium, phosphorus, and magnesium. WOB had highest total phenolic (802 ppm), flavonoid (216 ppm), and total hydrolyzed tannin (2185 ppm) contents among the other byproducts. Volatile compounds of all the byproducts are mainly composed of terpenes in concentration of approximately 95%. Limonene was the dominant volatile compound in all of the byproducts. Almond and pomegranate byproduct extracts showed antibacterial activity depending on their concentration, whereas those of walnut and grape byproducts showed no antibacterial activity against any pathogenic bacteria tested. According to the results of the present study, walnut, almond, pomegranate, and grape seed oil byproducts possess valuable properties that can be taken into consideration for improvement of nutritional and functional properties of many food products.

  13. Potential Development Essential Oil Production of Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Alighiri, D.; Eden, W. T.; Supardi, K. I.; Masturi; Purwinarko, A.

    2017-04-01

    Indonesia is the source of raw essential oil in the world. Essential oils are used in various types of industries such as food and beverage, flavour, fragrance, perfumery, pharmaceuticals, and cosmetics. However, the development of Indonesian essential oil industry has not been encouraging for the production of essential oils, further it is unable to meet global demand. Besides that, the quality of volatile oil resulted cannot meet the international market standards. Based on the facts, the potential of Indonesian essential oils needs to be developed to provide added value, through increased production, improved quality and product diversification. One part of Indonesia having abundant of raw essential oil source is Central Java. Central Java has the quite large potential production of essential oils. Some essential oils produced from refining industry owned by the government, private and community sectors include cananga oils (Boyolali district), clove oils (Semarang district), patchouli oils (Brebes district, Pemalang district, and Klaten district). The main problem in the development of plants industries that producing essential oil in Central Java is low crops production, farming properties, quality of essential oils are diverse, providing poor-quality products and volatile oil price fluctuations. Marketing constraints of Central Java essential oils are quite complex supply chain. In general, marketing constraints of essential oils due to three factors, namely the low quality due to type of essential oil business that generally shaped small businesses with different capital and technology, domestic marketing is still a buyer-market (price determined by the buyer) because of weak bargaining position processors businessman, and prices fluctuate (domestic and foreign) due to uncontrolled domestic production and inter-country competition among manufacturers.

  14. 75 FR 75995 - Request for Comments on Helium-3 Use in the Oil and Natural Gas Well Logging Industry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... manufacture neutron detectors used by the well logging industry or wireline or Logging-While-Drilling tools incorporating neutron detectors, and whether companies purchase or lease logging tools that contain neutron detectors. DOE also seeks information on the volumes of Helium-3 anticipated by the oil and gas well logging...

  15. How Specific Microbial Communities Benefit the Oil Industry: Dynamics of Alcanivorax spp. in Oil-Contaminated Intertidal Beach Sediments Undergoing Bioremediation

    NASA Astrophysics Data System (ADS)

    Singh, Arvind K.; Sherry, Angela; Gray, Neil D.; Jones, Martin D.; Röling, Wilfred F. M.; Head, Ian M.

    The industrial revolution has led to significant increases in the consumption of petroleum hydrocarbons. Concomitant with this increase, hydrocarbon pollution has become a global problem resulting from emissions related to operational use, releases during production, pipeline failures and tanker spills. Importantly, in addition to these anthropogenic sources of hydrocarbon pollution, natural seeps alone account for about 50% of total petroleum hydrocarbon releases in the aquatic environment (National Research Council, 2003). The annual input from natural seeps would form a layer of hydrocarbons 20 molecules thick on the sea surface globally if it remained un-degraded (Prince, 2005). By contrast with natural seeps, many oil spills, e.g. Sea Empress (Milford Haven, UK), Prestige (Galicia, Spain), EXXON Valdez (Prince William Sound, Alaska, USA), released huge amounts of oil (thousands to hundreds of thousand tonnes; Table 24.1) in a locally confined area over a short period of time with a huge acute impact on the marine environment. These incidents have attracted the attention of both the general public and the scientific community due to their great impact on coastal ecosystems. Although many petroleum hydrocarbons are toxic, they are degraded by microbial consortia naturally present in marine ecosystems.

  16. Oil industry and road traffic fatalities in contemporary Colombia.

    PubMed

    Tasciotti, Luca; Alejo, Didier; Romero, Andrés

    2016-12-01

    This paper studies the effects that oil extraction activities in Colombia have on the number of dead/injured people as a consequence of road-related accidents. Starting in 2004, the increasing exploitation of oil wells in some Colombian departments has worsened the traffic conditions due to the increased presence of trucks transporting crude oil from the wells to the refineries; this phenomenon has not been accompanied by an improvement in the road system with dramatic consequences in terms of road viability. The descriptive and empirical analysis presented here focuses on the period 2004-2011; results from descriptive statistics indicate a positive relationship between the presence of oil extraction activities and the number of either dead/injured people. Panel regressions for the period 2004-2011 confirm that, among other factors, the presence of oil-extraction activities did play a positive and statistical significant role in increasing the number of dead/injured people.

  17. Non-tenera Contamination and the Economic Impact of SHELL Genetic Testing in the Malaysian Independent Oil Palm Industry.

    PubMed

    Ooi, Leslie C-L; Low, Eng-Ti L; Abdullah, Meilina O; Nookiah, Rajanaidu; Ting, Ngoot C; Nagappan, Jayanthi; Manaf, Mohamad A A; Chan, Kuang-Lim; Halim, Mohd A; Azizi, Norazah; Omar, Wahid; Murad, Abdul J; Lakey, Nathan; Ordway, Jared M; Favello, Anthony; Budiman, Muhammad A; Van Brunt, Andrew; Beil, Melissa; Leininger, Michael T; Jiang, Nan; Smith, Steven W; Brown, Clyde R; Kuek, Alex C S; Bahrain, Shabani; Hoynes-O'Connor, Allison; Nguyen, Amelia Y; Chaudhari, Hemangi G; Shah, Shivam A; Choo, Yuen-May; Sambanthamurthi, Ravigadevi; Singh, Rajinder

    2016-01-01

    Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian

  18. Politics of oil: multinational oil corporations and United States foreign policy, 1941-1954

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Painter, D.S.

    1982-01-01

    The energy crises of the 1970s highlighted the importance of foreign oil to United States security and prosperity and focused attention on the relationship between multinational oil corporations and United States foreign policy. Important roots of present problems reach back to the period 1941 to 1954 when United States policymakers became aware that the nation's historic self-sufficiency in oil would soon come to an end. This realization led to plans to assure United States access to foreign oil reserves. During the early years of this period, the oil industry and its allies in congress defeated attempts by the government tomore » play an active role in foreign oil matters. With the government's role limited, the United States fell back to its traditional policy of supporting the foreign operations of United States corporations. Although this policy minimized government intervention in the internal operations of the oil industry, it nevertheless required the government to become actively involved in maintaining the security and stability of the Middle East and in working to contain economic nationalism in Latin America. Moreover, the policy resulted in the government acquiescing in private arrangements by the major companies to control the world oil economy. The most important factor shaping public policy on foreign oil was the overall hegemony of business in American society.« less

  19. Development of the Oil Industry in Cameroon and Its Implications for Education and Training. IIEP Research Report No. 79.

    ERIC Educational Resources Information Center

    Sanyal, Bikas C.; And Others

    A study analyzed how the oil industry in Cameroon developed and influenced the expansion, structure, and content of Cameroon's formal and nonformal education and training system. A survey of 213 employees and 8 enterprises was supplemented by a review of government reports and official published and unpublished documents. The economy of Cameroon…

  20. Oil cakes - a by-product of agriculture industry as a fortificant in bakery products.

    PubMed

    Behera, Satyabadi; Indumathi, K; Mahadevamma, S; Sudha, M L

    2013-11-01

    Groundnut cake (GNC) and soybean cake (SBC) by-product of agriculture industry had protein and protein digestibility in the range of 42.7-50.5 and 71.3-76.8%, respectively. Polyphenols present in GNC and SBC were cholorogenic acid, syringic acid and p-coumaric acid. The number of bands separated in soybean meal was greater than the bands observed in GNC flour as seen in SDS-PAGE pattern, respectively. SEM of groundnut flour showed distension of protein bodies due to roasting of the oil cakes. The water absorption of wheat flour GNC blends decreased from 59.2 to 57.3% and increased in wheat flour SBC blends from 59.2 to 68.3% with an increase in oil cake from 0 to 20%. With increase in either GNC or SBC, the biscuits became harder. Addition of glycerol monostearate and sodium stearoyl lactylate in combination with 20% blend of GNC/SBC decreased the breaking strength values and increased the sensory parameters of the biscuits. Nutritionally rich biscuits were thus prepared by incorporating GNC/SBC.

  1. Utilization of agro-industrial waste for biosurfactant production under submerged fermentation and its application in oil recovery from sand matrix.

    PubMed

    Das, Amar Jyoti; Kumar, Rajesh

    2018-07-01

    This study reports biosurfactant production by Pseudomonas azotoformans AJ15 under submerged fermentation via utilizing the agro-industrial wastes (bagasse and potato peels). The extracted biosurfactant was characterized for its classification (nature, group, and class) and stability against environmental stresses. Further, the biosurfactant was employed to explore its oil recovery efficiency from the sand matrix with 2000 ppm salt concentration. Results revealed that substrates developed by mixing both the agro-industrial wastes account for high yield of biosurfactant. The subsequent experimental studies demonstrated that the biosurfactant might belong to glycolipid group and rhamnolipid class. Moreover, the biosurfactant was stable at a high temperature of 90 °C and enable to persist its activity in the high salt concentration of 6% and varying pH. The biosurfactant was found to be effective in recovering up to 36.56% of trapped oil under saline condition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Politics of oil in Venezuela: A decision-making analysis of PDVSA's internationalisation policy

    NASA Astrophysics Data System (ADS)

    Baena, Cesar E.

    The high degree of international vertical integration achieved by the Venezuelan state oil enterprise, Petroleos de Venezuela S.A. (PDVSA), has placed it among the most important oil multinationals (MNs). The policy of creating downstream outlets through the establishment of foreign direct investments (FDIs) in the form of refinery assets was given the term of 'internationalisation'. By analysing PDVSA's internationalisation policy, the thesis explores the difficulties encountered by a major state-owned enterprise (SOE) from a developing country in its efforts to grow beyond national borders. The study focuses on the impact of democratic bargaining on the process of oil policymaking in Venezuela, stressing the constraints posed by politics on PDVSA's efforts to expand its foreign operations. Specifically, the study examines the intricate policymaking process that shaped the origins and the development of PDVSA's internationalisation policy, underlying the events and factors that influenced each one of its three distinguishable phases: adoption, formulation, and implementation. The tensions between politics and corporate strategy are highlighted at the core of the policymaking process. The study also looks at the relationship between the oil industry and the other two key decision-making centres involved in the oil policymaking process: the executive and Congress. In exploring the ways in which each one of them sought to influence policy outcome, the study attempts to gain insight into the main factors that prompted the tensions among the policy actors involved. Three environments, or pressure-generating centres, constantly exert influence on the oil industry: the oil market, the political context and the government's financial situation. By seeking to determine the industry's response to their pervasive influence on policy formulation and implementation, this research ascertains the extent to which these variables influenced the decision-making process that

  3. The offshore petroleum industry: The formative years, 1945-1962

    NASA Astrophysics Data System (ADS)

    Kreidler, Tai Deckner

    1997-12-01

    This dissertation is the first to examine the offshore oil industry that was born in the calm waters of the Gulf of Mexico. It describes the industry's origins and tracks its development as a consequence of a search for new oil frontiers. In addition, it elaborates how the oil industry moved into the marine province using available technology, and was driven by the economic urgency to compete and develop new territories. Enterprising drilling contractors and operators seized the offshore gamble, finding it possible to lower the economic and technological threshold by drawing directly from wartime research and surplus equipment. Though large oil companies had placed its indelible stamp upon the industry, the smaller, independent oil operators set the pace of early offshore development. As a technological frontier, offshore development depended upon creative and unconventional engineering. Unfamiliar marine conditions tested the imagination of oil industry engineering. The unorthodox methods of John Hayward of Barnsdall Oil and R. G. LeTourneau of LeTourneau, Inc. among others transformed the industry by blending petroleum and marine engineering. Grappling with alien marine conditions and lacking formal training, Hayward and LeTourneau merged a century of practical oil field knowledge and petroleum engineering with 2,000 years of shipbuilding experience. The Gulf of Mexico served as a fertile and protective environment for the development of a fledgling industry. With calm waters, lacking the tempestuous and stormy character of the Atlantic Ocean, with a gradual sea-floor slope and saturated with the highly productive salt dome reservoirs, the Gulf became the birth place of the modern offshore oil industry. Within its protective sphere, companies experimented and developed various technical and business adaptations. Operators used technology and business strategies that increased the opportunity for success. In addition, regional academic research institutes arose as

  4. Characterization and distribution of metal and nonmetal elements in the Alberta oil sands region of Canada.

    PubMed

    Huang, Rongfu; McPhedran, Kerry N; Yang, Lingling; El-Din, Mohamed Gamal

    2016-03-01

    This review covers the characterization and distribution of metals and nonmetals in the Alberta oil sands region (AOSR) of Canada. The development of the oil sands industry has resulted in the release of organic, metal and nonmetal contaminants via air and water to the AOSR. For air, studies have found that atmospheric deposition of metals in the AOSR decreased exponentially with distance from the industrial emission sources. For water, toxic metal concentrations often exceeded safe levels leading to the potential for negative impacts to the receiving aquatic environments. Interestingly, although atmospheric deposition, surface waters, fish tissues, and aquatic bird eggs exhibited increasing level of metals in the AOSR, reported results from river sediments showed no increases over time. This could be attributed to physical and/or chemical dynamics of the river system to transport metals to downstream. The monitoring of the airborne emissions of relevant nonmetals (nitrogen and sulphur species) was also considered over the AOSR. These species were found to be increasing along with the oil sands developments with the resultant depositions contributing to nitrogen and sulphur accumulations resulting in ecosystem acidification and eutrophication impacts. In addition to direct monitoring of metals/nonmetals, tracing of air emissions using isotopes was also discussed. Further investigation and characterization of metals/nonmetals emissions in the AOSR are needed to determine their impacts to the ecosystem and to assess the need for further treatment measures to limit their continued output into the receiving environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Western Canada study of animal health effects associated with exposure to emissions from oil and natural gas field facilities. Study design and data collection II. Location of study herds relative to the oil and gas industry in Western Canada.

    PubMed

    Waldner, Cheryl L

    2008-01-01

    During the late part of 2000 and early months of 2001, project veterinarians recruited 205 beef herds to participate in a study of the effects of emissions from the upstream oil and gas industry on cattle reproduction and health. Researchers developed herd-selection criteria to optimize the range of exposure to facilities, including oil and gas wells, battery sites, and gas-gathering and gas-processing facilities across the major cattle-producing areas of Western Canada. Herds were initially selected on the basis of a ranking system of exposure potential on the basis of herd-owner reports of the locations of their operations in relation to oil and gas industry facilities. At the end of the study, researchers summarized data obtained from provincial regulatory agencies on facility location and reported flaring and venting volumes for each herd and compared these data to the original rankings of herd-exposure potential. Through this selection process, the researchers were successful in obtaining statistically significant differences in exposure to various types of oil and gas facility types and reported emissions among herds recruited for the study.

  6. Kinetics of coffee industrial residue pyrolysis using distributed activation energy model and components separation of bio-oil by sequencing temperature-raising pyrolysis.

    PubMed

    Chen, Nanwei; Ren, Jie; Ye, Ziwei; Xu, Qizhi; Liu, Jingyong; Sun, Shuiyu

    2016-12-01

    This study was carried out to investigate the kinetics of coffee industrial residue (CIR) pyrolysis, the effect of pyrolysis factors on yield of bio-oil component and components separation of bio-oil. The kinetics of CIR pyrolysis was analyzed using distributed activation energy model (DAEM), based on the experiments in thermogravimetric analyzer (TGA), and it indicated that the average of activation energy (E) is 187.86kJ·mol -1 . The bio-oils were prepared from CIR pyrolysis in vacuum tube furnace, and its components were determined by gas chromatography/mass spectrometry (GC-MS). Among pyrolysis factors, pyrolysis temperature is the most influential factor on components yield of bio-oil, directly concerned with the volatilization and yield of components (palmitic acid, linoleic acid, oleic acid, octadecanoic acid and caffeine). Furthermore, a new method (sequencing temperature-raising pyrolysis) was put forward and applied to the components separation of bio-oil. Based on experiments, a solution of components separation of bio-oil was come out. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The "WFD-effect" on upstream-downstream relations in international river basins - insights from the Rhine and the Elbe basins

    NASA Astrophysics Data System (ADS)

    Moellenkamp, S.

    2007-06-01

    The upstream-downstream relationship in international river basins is a traditional challenge in water management. Water use in upstream countries often has a negative impact on water use in downstream countries. This is most evident in the classical example of industrial pollution in upstream countries hindering drinking water production downstream. The European Water Framework Directive (WFD) gives new impetus to the river basin approach and to international co-operation in European catchments. It aims at transforming a mainly water quality oriented management into a more integrated approach of ecosystem management. After discussing the traditional upstream-downstream relationship, this article shows that the WFD has a balancing effect on upstream-downstream problems and that it enhances river basin solidarity in international basins. While it lifts the downstream countries to the same level as the upstream countries, it also leads to new duties for the downstream states. Following the ecosystem approach, measures taken by downstream countries become increasingly more important. For example, downstream countries need to take measures to allow for migrating fish species to reach upstream stretches of river systems. With the WFD, fish populations receive increased attention, as they are an important indicator for the ecological status. The European Commission acquires a new role of inspection and control in river basin management, which finally also leads to enhanced cooperation and solidarity among the states in a basin. In order to achieve better water quality and to mitigate upstream-downstream problems, also economic instruments can be applied and the WFD does not exclude the possibility of making use of financial compensations, if at the same time the polluter pays principle is taken into account. The results presented in this article originate from a broader study on integrated water resources management conducted at Bonn University and refer to the Rhine and

  8. The Poisoned Chalice: Oil and Macroeconomics in Brazil (1967-2003)

    NASA Astrophysics Data System (ADS)

    Biasetto, Bruno Henz

    This dissertation analyzes the development of the Brazilian oil industry and its impact on the economic development of Brazil from the beginning of the "Brazilian Miracle" (1968-1973) to the end of the Fernando Henrique Cardoso's second term as president (1995-2002). The dissertation explores the closely intertwined nature of Brazil's oil industry and its macroeconomic development, shedding new light on the history of Petrobras (the Brazilian state oil company), and on other key topics of Brazilian economic history, including the Debt Crisis of the 1980s and the role of neoliberalism in Brazil. The argument is that oil policy shaped the national economy and the Brazilian state in this period. Attention to the oil industry, and to Petrobras in particular, was crucial to the establishment of diplomatic and economic policy, and to conflict within the Brazilian state. Finally, this dissertation seeks to illuminate Brazil's place in the global oil industry and how that has shaped Brazil's global economic standing.

  9. Occupational Fatalities Resulting from Falls in the Oil and Gas Extraction Industry, United States, 2005-2014.

    PubMed

    Mason, Krystal L; Retzer, Kyla D; Hill, Ryan; Lincoln, Jennifer M

    2017-04-28

    During 2003-2013, fatality rates for oil and gas extraction workers decreased for all causes of death except those associated with fall events, which increased 2% annually during 2003-2013 (1). To better understand risk factors for these events, CDC examined fatal fall events in the oil and gas extraction industry during 2005-2014 using data from case investigations conducted by the Occupational Safety and Health Administration (OSHA). Sixty-three fatal falls were identified, accounting for 15% of all fatal events. Among fatal falls, 33 (52%) workers fell from a height of >30 feet (9 meters), and 22 (35%) fell from the derrick board, the elevated work platform located in the derrick (structure used to support machinery on a drilling rig). Fall fatalities occurred most frequently when drilling rigs were being assembled or disassembled at the well site (rigging up or rigging down) (14; 22%) or when workers were removing or inserting drill pipe into the wellbore (14; 22%). Measures that target derrickmen and workers engaged in assembling and disassembling drilling rigs (rigging up and down) could reduce falls in this industry. Companies should annually update their fall protection plans and ensure effective fall prevention programs are in place for workers at highest risk for falls, including providing trainings on proper use, fit, and inspection of personal protective equipment.

  10. Numerical Simulation of an Industrial Cumulus Affected by Heat, Moisture, and CCN Released from an Oil Refinery.

    NASA Astrophysics Data System (ADS)

    Guan, S.; Reuter, G. W.

    1996-08-01

    Large oil refineries emit heat, vapor, and cloud condensation nuclei (CCN), all of which can affect the formation of cloud and precipitation. This study quantities the relative contributions of the three factors on cloud development in calm wind conditions using an axisymmetric cloud model. The factor separation technique is applied to isolate the net contributions of waste heat, vapor, and CCN on the rainfall of a cumulus developing in the industrial plume. The mutual-interactive contributions of two or three of the factors are also computed.The simulations for midlatitude and tropical conditions indicate that the sensible heat provides the major stimulus for cloud development and rain formation. The pure contribution of the industrial CCN is to enhance the condensation, causing an increase in the mass of total cloud water. The simulation results indicate that mutual interactions between waste heat and industrial CCN are large for both cases considered.

  11. Effects of an oil spill on leafpack-inhabiting macroinvertebrates in the Chariton river, Missouri

    USGS Publications Warehouse

    Poulton, B.C.; Callahan, E.V.; Hurtubise, R.D.; Mueller, B.G.

    1998-01-01

    Artificial leaf packs were used to determine the effects of an oil spill on stream macroinvertebrate communities in the Chariton River, Missouri. Plastic mesh leaf retainers with approximately 10 g of leaves from five tree species were deployed at five sites (two upstream of the spill and three downstream) immediately after the spill and one year later. Four macroinvertebrate species dominating the community at upstream sites were virtually eliminated below the spill, including the stonefly Isoperla bilineata, the caddisfly Potamyia flava, the midge Thienemanniella xena, and blackfly larvae (Simulium sp.). Density of collector and shredder functional groups, and number of shredder taxa differed between upstream sites and the two furthest downstream sites during the 1990 sample period (Kruskal-Wallis w/Bonferroni paired comparisons, experiment wise error rate = 0.05). With one exception, no differences between sites were detected in the 1991-1992 sample period, indicating that the benthic community had at least partially recovered from the oil spill after one year. The odds of obtaining a sample with a small abundance of shredders (abundance < median) in 1990 was significantly greater downstream of the spill than upstream, and the odds of obtaining a sample with a small abundance of shredders at downstream sites was greater in 1990 than in 1991-1992. A similar pattern was observed in abundance and taxa richness of the collector functional group. No significant differences between the two sampling periods were detected at upstream sites. Observed effects appeared to be associated with oil sorption and substrate coating, creating conditions unsuitable for successful colonization.

  12. Applications of Seasat to the offshore oil, gas and mining industries

    NASA Technical Reports Server (NTRS)

    Mourad, A. G.; Robinson, A. C.

    1977-01-01

    The NASA satellite Seasat-A (to be launched in 1978) has applications to the offshore oil, gas, and mining industries including: (1) improvements in weather and wave forecasting, (2) studies of past wind and wave statistics for planning design requirements, and (3) monitoring ice formation, breakup, and movement in arctic regions. The primary geographic areas which will be monitored by Seasat-A include: the Beaufort Sea, the Labrador Sea, the Gulf of Mexico, the U.S. east coast, West Africa, Equatorial East Pacific, the Gulf of Alaska, and the North Sea. Seasat-A instrumentation used in ocean monitoring consists of a radar altimeter, a radar scatterometer, a synthetic aperture radar, a microwave radiometer, and a visible and infrared radiometer. The future outlook of the Seasat program is planned in three phases: measurement feasibility demonstration (1978-1980), data accessibility/utility demonstration (1980-1983), and operational system demonstration (1983-1985).

  13. Oil Industry Aids

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The accompanying photos show two types of offshore oil platforms used by Exxon Corporation. In the upper photo is a leg-supported gravity platform; the other structure is a "jackettype" platform, built in sections, towed to sea and assembled on-site. In construction of platforms like these, Exxon Production Research Company, Houston, Texas, conducts extensive structural investigations of decks, supporting members and other platform components, making use of the NASTRAN @ (NASA Structural Analysis) computer program. NASTRAN is a predictive tool which analyzes a computerized design and reports how the structure will react to a great many conditions it will encounter in its operational environment; in this case, NASTRAN studies the effects of waves, winds, ocean storms and other stress-inducing factors. NASTRAN allows Exxon Production Research to perform more complex and more detailed analysis than was possible with previous programs. The same program has also been used by Exxon Research and Engineering Company, Florham Park, New Jersey, in analysis of pressure vessels, turbine components and composite building boards.

  14. Non-tenera Contamination and the Economic Impact of SHELL Genetic Testing in the Malaysian Independent Oil Palm Industry

    PubMed Central

    Ooi, Leslie C.-L.; Low, Eng-Ti L.; Abdullah, Meilina O.; Nookiah, Rajanaidu; Ting, Ngoot C.; Nagappan, Jayanthi; Manaf, Mohamad A. A.; Chan, Kuang-Lim; Halim, Mohd A.; Azizi, Norazah; Omar, Wahid; Murad, Abdul J.; Lakey, Nathan; Ordway, Jared M.; Favello, Anthony; Budiman, Muhammad A.; Van Brunt, Andrew; Beil, Melissa; Leininger, Michael T.; Jiang, Nan; Smith, Steven W.; Brown, Clyde R.; Kuek, Alex C. S.; Bahrain, Shabani; Hoynes-O’Connor, Allison; Nguyen, Amelia Y.; Chaudhari, Hemangi G.; Shah, Shivam A.; Choo, Yuen-May; Sambanthamurthi, Ravigadevi; Singh, Rajinder

    2016-01-01

    Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian

  15. Polymercaptanized soybean oil – properties and tribological characterization

    USDA-ARS?s Scientific Manuscript database

    Polymercaptanized vegetable oils are produced in industrial scale by the addition of hydrogen sulfide across double bonds or epoxides of vegetable oils, in the presence of UV-light. To date, soybean oil, epoxidized soybean oil, and castor oil has been mercaptanized using such a procedure. Depending ...

  16. Environmental signatures and effects of an oil and gas wastewater spill in the Williston Basin, North Dakota.

    PubMed

    Cozzarelli, I M; Skalak, K J; Kent, D B; Engle, M A; Benthem, A; Mumford, A C; Haase, K; Farag, A; Harper, D; Nagel, S C; Iwanowicz, L R; Orem, W H; Akob, D M; Jaeschke, J B; Galloway, J; Kohler, M; Stoliker, D L; Jolly, G D

    2017-02-01

    Wastewaters from oil and gas development pose largely unknown risks to environmental resources. In January 2015, 11.4ML (million liters) of wastewater (300g/L TDS) from oil production in the Williston Basin was reported to have leaked from a pipeline, spilling into Blacktail Creek, North Dakota. Geochemical and biological samples were collected in February and June 2015 to identify geochemical signatures of spilled wastewaters as well as biological responses along a 44-km river reach. February water samples had elevated chloride (1030mg/L) and bromide (7.8mg/L) downstream from the spill, compared to upstream levels (11mg/L and <0.4mg/L, respectively). Lithium (0.25mg/L), boron (1.75mg/L) and strontium (7.1mg/L) were present downstream at 5-10 times upstream concentrations. Light hydrocarbon measurements indicated a persistent thermogenic source of methane in the stream. Semi-volatile hydrocarbons indicative of oil were not detected in filtered samples but low levels, including tetramethylbenzenes and di-methylnaphthalenes, were detected in unfiltered water samples downstream from the spill. Labile sediment-bound barium and strontium concentrations (June 2015) were higher downstream from the Spill Site. Radium activities in sediment downstream from the Spill Site were up to 15 times the upstream activities and, combined with Sr isotope ratios, suggest contributions from the pipeline fluid and support the conclusion that elevated concentrations in Blacktail Creek water are from the leaking pipeline. Results from June 2015 demonstrate the persistence of wastewater effects in Blacktail Creek several months after remediation efforts started. Aquatic health effects were observed in June 2015; fish bioassays showed only 2.5% survival at 7.1km downstream from the spill compared to 89% at the upstream reference site. Additional potential biological impacts were indicated by estrogenic inhibition in downstream waters. Our findings demonstrate that environmental signatures

  17. Environmental signatures and effects of an oil and gas wastewater spill in the Williston Basin, North Dakota

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.; Skalak, Katherine; Kent, D.B.; Engle, Mark A.; Benthem, Adam J.; Mumford, Adam; Haase, Karl B.; Farag, Aïda M.; Harper, David; Nagel, S. C.; Iwanowicz, Luke R.; Orem, William H.; Akob, Denise M.; Jaeschke, Jeanne B.; Galloway, Joel M.; Kohler, Matthias; Stoliker, Deborah L.; Jolly, Glenn D.

    2017-01-01

    Wastewaters from oil and gas development pose largely unknown risks to environmental resources. In January 2015, 11.4 M L (million liters) of wastewater (300 g/L TDS) from oil production in the Williston Basin was reported to have leaked from a pipeline, spilling into Blacktail Creek, North Dakota. Geochemical and biological samples were collected in February and June 2015 to identify geochemical signatures of spilled wastewaters as well as biological responses along a 44-km river reach. February water samples had elevated chloride (1030 mg/L) and bromide (7.8 mg/L) downstream from the spill, compared to upstream levels (11 mg/L and < 0.4 mg/L, respectively). Lithium (0.25 mg/L), boron (1.75 mg/L) and strontium (7.1 mg/L) were present downstream at 5–10 times upstream concentrations. Light hydrocarbon measurements indicated a persistent thermogenic source of methane in the stream. Semi-volatile hydrocarbons indicative of oil were not detected in filtered samples but low levels, including tetramethylbenzenes and di-methylnaphthalenes, were detected in unfiltered water samples downstream from the spill. Labile sediment-bound barium and strontium concentrations (June 2015) were higher downstream from the Spill Site. Radium activities in sediment downstream from the Spill Site were up to 15 times the upstream activities and, combined with Sr isotope ratios, suggest contributions from the pipeline fluid and support the conclusion that elevated concentrations in Blacktail Creek water are from the leaking pipeline. Results from June 2015 demonstrate the persistence of wastewater effects in Blacktail Creek several months after remediation efforts started. Aquatic health effects were observed in June 2015; fish bioassays showed only 2.5% survival at 7.1 km downstream from the spill compared to 89% at the upstream reference site. Additional potential biological impacts were indicated by estrogenic inhibition in downstream waters. Our findings demonstrate that

  18. Pre-treatment of high oil and grease pet food industrial wastewaters using immobilized lipase hydrolyzation.

    PubMed

    Jeganathan, Jeganaesan; Bassi, Amarjeet; Nakhla, George

    2006-09-01

    Wastewaters generating from pet food industries contain high concentration of oil and grease (O&G), which is difficult to treat through conventional biological treatment systems. In this study, the hydrolysis of O&G originating from pet food industrial wastewater was evaluated. Candida rugosa lipase was immobilized in calcium alginate beads and applied in the hydrolysis experiment. Results showed that approximately 50% of the O&G was hydrolyzed due to the enzyme activity. A significant increment in COD and VFA production was also observed. The immobilized lipase activity was confirmed with p-nitrophenyl palmitate (pNPP) before and after O&G hydrolysis. During the 3-day experiment, approximately 65% of the beads were recovered and after the hydrolysis, approximately 70% of the enzyme activity remained in the beads. This study shows the potential of immobilized lipase as a pre-treatment step in biological treatment of pet food manufacturing wastewater.

  19. Safety compliance and safety climate: A repeated cross-sectional study in the oil and gas industry.

    PubMed

    Kvalheim, Sverre A; Dahl, Øyvind

    2016-12-01

    Violations of safety rules and procedures are commonly identified as a causal factor in accidents in the oil and gas industry. Extensive knowledge on effective management practices related to improved compliance with safety procedures is therefore needed. Previous studies of the causal relationship between safety climate and safety compliance demonstrate that the propensity to act in accordance with prevailing rules and procedures is influenced to a large degree by workers' safety climate. Commonly, the climate measures employed differ from one study to another and identical measures of safety climate are seldom tested repeatedly over extended periods of time. This research gap is addressed in the present study. The study is based on a survey conducted four times among sharp-end workers of the Norwegian oil and gas industry (N=31,350). This is done by performing multiple tests (regression analysis) over a period of 7years of the causal relationship between safety climate and safety compliance. The safety climate measure employed is identical across the 7-year period. Taking all periods together, the employed safety climate model explained roughly 27% of the variance in safety compliance. The causal relationship was found to be stable across the period, thereby increasing the reliability and the predictive validity of the factor structure. The safety climate factor that had the most powerful effect on safety compliance was work pressure. The factor structure employed shows high predictive validity and should therefore be relevant to organizations seeking to improve safety in the petroleum sector. The findings should also be relevant to other high-hazard industries where safety rules and procedures constitute a central part of the approach to managing safety. Copyright © 2016 Elsevier Ltd and National Safety Council. All rights reserved.

  20. Oil turmoil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    A review of US oil production, refining, and retailing reveals the severity of the energy problem and illustrates the confusion over what can be accomplished by decontrolling oil prices. Conflicting statements from members of Congress, the President, and the oil industry have further confused the public. The shortages can be traced to a decline in domestic production incentives and foreign production, a slowdown in refinery expansion because of environmental constraints, competition between home heating oil and gasoline for priority, the failure of states to enforce speed limits, and a national preoccupation with oil profits. Senator Kennedy, for example, advocates continuedmore » price controls with a world-wide drilling program funded by the World Bank, while decontrol advocates feel price controls will only artifically restrain US production. The economic effects of decontrol on inflation are unclear, but conservation efforts, the development of alternative energy sources, and oil development from shale and tar sands are predicted to increase as political rhetoric declines.« less

  1. Arab tankers move downstream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oppenheim, V.H.

    A second oil embargo is expected to be even more effective than the one of 1973 because heavy Arab investment in tankers gives them greater control over the transportation as well as the supply and price of crude oil. The Organization of Petroleum Exporting Countries (OPEC) nations, having used their surplus capital to buy a tanker fleet, can route oil onto their own ships rather than those of competing companies. Faced with increasing vertical integration of the OPEC nations, the International Energy Authority (IEA) finds its emergency plans for oil sharing threatened. Actual size of the Arab tanker fleet ismore » unknown because of joint ventures and the practice of sailing under flags of convenience, but Saudi Arabia is estimated to have enough ships to carry 50 percent of her oil and Arab control to be about 10 percent of the world tanker capacity. Military action in the event of another embargo is more likely if Arab tankers are present in world sea lanes. Involvement of the major international companies with OPEC allocations divides company loyalties between their suppliers and customers. Joint ventures between Arab oil companies and financial lending institutions are increasing, but could be somewhat balanced if legislation were passed requiring that oil for U.S. markets be transported by secure carriers. The use of surplus tankers as mobile storage units has been proposed as a means of stock-piling oil supplies against a future cutback. (DCK)« less

  2. The origin of aliphatic hydrocarbons in olive oil.

    PubMed

    Pineda, Manuel; Rojas, María; Gálvez-Valdivieso, Gregorio; Aguilar, Miguel

    2017-11-01

    There are many substances that can interfere with olive oil quality. Some of them are well characterized, but many others have an unknown origin. Saturated hydrocarbons make an extraordinary complex family of numerous molecules, some of them present naturally in vegetable oils. When major natural saturated hydrocarbons are analyzed by standard chromatographic methods, this complex mixture of saturated hydrocarbons appears as a hump in the chromatogram and is commonly named as unresolved complex mixture (UCM), whose origin remains unknown. In this work we studied the occurrence and the origin of aliphatic saturated hydrocarbons in olive oil. Hydrocarbons were analyzed in olive oil and along the industrial process of oil extraction. We also analyzed n-alkanes and the UCM fraction of hydrocarbons in leaf, fruit and oil from different varieties and different locations, and we also analyzed the soils at these locations. We conclude that the hydrocarbons present in olive oil do not necessarily have their origin in a contamination during olive oil elaboration; they seem to have a natural origin, as a result of olive tree metabolism and/or as the result of an intake and accumulation by the olive tree directly from the environment during its entire life cycle. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Wage Inequality and Violent Protests in Oil/Gas Producing Countries

    NASA Astrophysics Data System (ADS)

    Nuraliyev, Nurlan

    This work examines contrasting claims made by academic scholars on the relationship between income inequality and political discontent. Does income inequality directly cause social unrest or is this relationship conditional on the level of democratic development? Using the data from 55 oil/gas producing countries between 2010-2013, the author finds: 1) income disparity between an average income per capita of local population and an average income of foreign labor employed in the oil/gas industry results in higher number of violent protests in more democratic oil/gas producing societies; 2) wage disparity between local and foreign labor in the oil/gas industry is associated with higher number of protests in this industry in more democratic oil/gas producing states.

  4. Eagle Ford Shale BTEX and NOx concentrations are dominated by oil and gas industry emissions

    NASA Astrophysics Data System (ADS)

    Schade, G. W.; Roest, G. S.

    2017-12-01

    US shale oil and gas exploration has been identified as a major source of greenhouse gases and non-methane hydrocarbon (NMHC) emissions to the atmosphere. Here, we present a detailed analysis of 2015 air quality data acquired by the Texas Commission on Environmental Quality (TCEQ) at an air quality monitoring station in Karnes County, TX, central to Texas' Eagle Ford shale area. Data include time series of hourly measured NMHCs, nitrogen oxides (NOx), and hydrogen sulfide (H2S) alongside meteorological measurements. The monitor was located in Karnes City, and thus affected by various anthropogenic emissions, including traffic and oil and gas exploration sources. Highest mixing ratios measured in 2015 included nearly 1 ppm ethane, 0.8 ppm propane, alongside 4 ppb benzene. A least-squares minimization non-negative matrix factorization (NMF) analysis, tested with prior data analyzed using standard PMF-2 software, showed six major emission sources: an evaporative and fugitive source, a flaring source, a traffic source, an oil field source, a diesel source, and an industrial manufacturing source, together accounting for more than 95% of data set variability, and interpreted using NMHC composition and meteorological data. Factor scores strongly suggest that NOx emissions are dominated by flaring and associated sources, such as diesel compressor engines, likely at midstream facilities, while traffic in this rural area is a minor NOx source. The results support, but exceed existing 2012 emission inventories estimating that local traffic emitted seven times fewer NOx than oil and gas exploration sources in the county. Sources of air toxics such as the BTEX compounds are also dominated by oil and gas exploration sources, but are more equally distributed between the associated factors. Benzene abundance is only 20-40% associated with traffic sources, and may thus be 2.5-5 times higher now than prior to the shale boom in this area. Although the monitor was located relatively

  5. Dynamic investigation of nutrient consumption and injection strategy in microbial enhanced oil recovery (MEOR) by means of large-scale experiments.

    PubMed

    Song, Zhiyong; Zhu, Weiyao; Sun, Gangzheng; Blanckaert, Koen

    2015-08-01

    Microbial enhanced oil recovery (MEOR) depends on the in situ microbial activity to release trapped oil in reservoirs. In practice, undesired consumption is a universal phenomenon but cannot be observed effectively in small-scale physical simulations due to the scale effect. The present paper investigates the dynamics of oil recovery, biomass and nutrient consumption in a series of flooding experiments in a dedicated large-scale sand-pack column. First, control experiments of nutrient transportation with and without microbial consumption were conducted, which characterized the nutrient loss during transportation. Then, a standard microbial flooding experiment was performed recovering additional oil (4.9 % Original Oil in Place, OOIP), during which microbial activity mostly occurred upstream, where oil saturation declined earlier and steeper than downstream in the column. Subsequently, more oil remained downstream due to nutrient shortage. Finally, further research was conducted to enhance the ultimate recovery by optimizing the injection strategy. An extra 3.5 % OOIP was recovered when the nutrients were injected in the middle of the column, and another additional 11.9 % OOIP were recovered by altering the timing of nutrient injection.

  6. Properties of macerated herbal oil

    PubMed Central

    Kantawong, Fahsai; Singhatong, Supawatchara; Srilamay, Aomjai; Boonyuen, Kantarose; Mooti, Niroot; Wanachantararak, Phenphichar; Kuboki, Thasaneeya

    2017-01-01

    Introduction: The addition of herbs into hot sesame oil could increase the oil-pulling efficiency of sesame oil. The aim of present study was to modify the proportion of herbs and sesame oil with the addition of other ingredients including menthol, camphor, and borneol and improve the medicinal properties and the scent of the oil. Methods: Macerated herbal oil was prepared by heat extraction of five species of herbs (Zingiber cassumunar, Zingiber zerumbet, Plantago major Linn, Citrus hystrix, and Amomum biflorum) with hot sesame oil. The study was performed to evaluate the anti-oxidant, anti-inflammatory, and anti-bacterial properties of this macerated herbal oil. Results: Macerated herbal oil was evaluated for antioxidant activity using DPPH and ABTS assays. It was shown that at dilution 1:2 in DMSO, the macerated herbal oil had DPPH and ABTS radical scavenging activities equal to 63% and 22%, respectively. Macerated herbal oil dilution 1:8 in DMSO demonstrated ferric reducing capacity equivalent to ascorbic acid (0.208 µM) and had reducing power equivalent to butylated hydroxytoluene (BHT) 7.41 µg/mL. MTT assay was performed using immortalized human mesenchymal stem cells (HMSCs) as a cell culture model. The result indicated that the cytotoxic concentration of the macerated herbal oil was ≥ 2.5 µL/mL in complete DMEM. Anti-inflammatory effects were evaluated using the nitrite assay and RT-PCR. It was found that the macerated herbal oil could inhibit nitrite accumulation in culture media. Change in the expression of COX-2, Nrf2, and NF-kB in RT-PCR confirmed the anti-inflammatory activity of the macerated herbal oil. Conclusion: It could be concluded that the macerated herbal oil could inhibit nitrite accumulation in culture media, which might be the inhibitory effect of the macerated herbal oil on COX-2 or Nrf2, the downstream modulator of the COX-2 pathway. Further intensive studies are needed for the optimization before bringing this macerated herbal oil

  7. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: a review.

    PubMed

    Şahin, Selin; Bilgin, Mehmet

    2018-03-01

    Research into finding new uses for by-products of table olive and olive oil industry are of great value not only to the economy but also to the environment where olives are grown and to the human health. Since leaves represent around 10% of the total weight of olives arriving at the mill, it is worth obtaining high added-value compounds from those materials for the preparation of dietary supplements, nutraceuticals, functional food ingredients or cosmeceuticals. In this review article, olive tree (Olea europaea L.) leaf is reviewed as being a potential inexpensive, renewable and abundant source of biophenols. The importance of this agricultural and industrial waste is emphasised by means of describing its availability, nutritional and therapeutic effects and studies conducted on this field. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Pennsylvania's technologically enhanced, naturally occurring radioactive material experiences and studies of the oil and gas industry.

    PubMed

    Allard, David J

    2015-02-01

    This presentation provides an overview of the Commonwealth of Pennsylvania's experiences and ongoing studies related to technologically enhanced, naturally occurring radioactive material (TENORM) in the oil and gas industry. It has been known for many years that Pennsylvania's geology is unique, with several areas having relatively high levels of natural uranium and thorium. In the 1950s, a few areas of the state were evaluated for commercial uranium production. In the late 1970s, scoping studies of radon in homes prompted the Pennsylvania Department of Environmental Protection (DEP) Bureau of Radiation Protection (BRP) to begin planning for a larger state-wide radon study. The BRP and Oil and Gas Bureau also performed a TENORM study of produced water in the early 1990s for a number of conventional oil and gas wells. More recently, BRP and the Bureau of Solid Waste developed radiation monitoring regulations for all Pennsylvania solid waste disposal facilities. These were implemented in 2001, prompting another evaluation of oil and gas operations and sludge generated from the treatment of conventionally produced water and brine but mainly focused on the disposal of TENORM solid waste in the state's Resource Conservation and Recovery Act Subtitle D landfills. However, since 2008, the increase in volumes of gas well wastewater and levels of Ra observed in the unconventional shale gas well flow-back fracking water has compelled DEP to fully re-examine these oil and gas operations. Specifically, with BRP in the lead, a new TENORM study of oil and gas operations and related wastewater treatment operations has been initiated (), supported by an American National Standards Institute standard on TENORM () and a U.S. Government Accountability Office report on shale resource development and risks (). This study began in early 2013 and will examine the potential public and worker radiation exposure and environmental impact as well as re-evaluate TENORM waste disposal. This

  9. The political economy of oil in post-Soviet Kazakhstan

    NASA Astrophysics Data System (ADS)

    Omarova, Saule Tarikhovna

    This dissertation examines the way in which the Kazakhstani state redefined its role in managing oil and gas resources between 1992 and 1998. The governments of hydrocarbon-rich post-Soviet republics such as Russia, Kazakhstan, Azerbaijan, and Turkmenistan faced the common challenge of restructuring their petroleum industries to boost the export of oil and gas. This study argues that by 1998 three patterns have emerged, ranging from a more radical state retrenchment in Russia, to reinforced state monopoly in Azerbaijan and Turkmenistan, to a "mixed" pattern of state participation in Kazakhstan, consisting of both large-scale privatization of oil assets and the formation of a fully state-owned national oil company, Kazakhoil. This dissertation analyzes the process of restructuring Kazakhstan's oil sector through comparison with the Russian petroleum industry. In Russia, several private, vertically integrated oil companies (VICs) were formed on the basis of existing oil-producing units and soon emerged as essential players in the Russian oil sector. By contrast, Kazakhstan's marginalized status within the Soviet system of oil production resulted in the absence of organizationally strong sectoral interests capable of claiming control over the industry after the independence. Privatization of Kazakhstan's oil enterprises, conducted by the government in spite of the resistance from local oil managers, transferred controlling stakes to foreign investors and further weakened domestic oil interests. Unencumbered state autonomy allowed the increasingly authoritarian Kazakhstani government to adopt relatively modern and investor-friendly petroleum legislation by decree. In Russia, the government's efforts to reform oil-related legislation were blocked by the leftist-dominated Duma, the democratically elected lower chamber of the Russian parliament. On the basis of these findings, this dissertation concludes that the dynamics of state withdrawal from the oil sector in post

  10. Determination of Calorific Ability of Fuel Briquettes on the Basis of Oil and Oil Slimes

    NASA Astrophysics Data System (ADS)

    Fedyaeva, O. A.; Poshelyuzhnaya, E. G.; Rakhmatulina, E. M.; Zakharov, V. A.; Fisenko, T. E.

    2018-01-01

    Utilization and neutralization of oil slimes is one of important environmental problems of the oil-extracting, oil-processing and petrochemical industry. The easiest and economic way of utilization of oil slimes is their use as a part of the bricketed boiler fuel. In this work the highest calorific ability of crude oil, the oil slimes and fuel briquettes made on their basis is defined. A research problem was carrying out the technical analysis of oil fuels on the content in them analytical moisture, the cindery rest and volatiles. It is established that in comparison with oil slimes crude oil possesses bigger highest calorific ability, has smaller humidity and an ash-content. The highest calorific abilities of the boiler briquettes made of samples of crude oil, oil slimes and peat made 14 - 26 MJ/kg.

  11. An air quality emission inventory of offshore operations for the exploration and production of petroleum by the Mexican oil industry

    NASA Astrophysics Data System (ADS)

    Villasenor, R.; Magdaleno, M.; Quintanar, A.; Gallardo, J. C.; López, M. T.; Jurado, R.; Miranda, A.; Aguilar, M.; Melgarejo, L. A.; Palmerín, E.; Vallejo, C. J.; Barchet, W. R.

    An air quality screening study was performed to assess the impacts of emissions from the offshore operations of the oil and gas exploration and production by Mexican industry in the Campeche Sound, which includes the states of Tabasco and Campeche in southeast Mexico. The major goal of this study was the compilation of an emission inventory (EI) for elevated, boom and ground level flares, processes, internal combustion engines and fugitive emissions. This inventory is so far the most comprehensive emission register that has ever been developed for the Mexican petroleum industry in this area. The EI considered 174 offshore platforms, the compression station at Atasta, and the Maritime Ports at Dos Bocas and Cayo Arcas. The offshore facilities identified as potential emitters in the area were the following: (1) trans-shipment stations, (2) a maritime floating port terminal, (3) drilling platforms, (4) crude oil recovering platforms, (5) crude oil production platforms, (6) linking platforms, (7) water injection platforms, (8) pumping platforms, (9) shelter platforms, (10) telecommunication platforms, (11) crude oil measurement platforms, and (12) flaring platforms. Crude oil storage tanks, helicopters and marine ship tankers were also considered to have an EI accurate enough for air quality regulations and mesoscale modeling of atmospheric pollutants. Historical ambient data measure at two onshore petroleum facilities were analyzed to measure air quality impacts on nearby inhabited coastal areas, and a source-receptor relationship for flares at the Ixtoc marine complex was performed to investigate health-based standards for offshore workers. A preliminary air quality model simulation was performed to observe the transport and dispersion patterns of SO 2, which is the main pollutant emitted from the offshore platforms. The meteorological wind and temperature fields were generated with CALMET, a diagnostic meteorological model that used surface observations and upper

  12. Novel Strategies for Upstream and Downstream Processing of Tannin Acyl Hydrolase

    PubMed Central

    Rodríguez-Durán, Luis V.; Valdivia-Urdiales, Blanca; Contreras-Esquivel, Juan C.; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal N.

    2011-01-01

    Tannin acyl hydrolase also referred as tannase is an enzyme with important applications in several science and technology fields. Due to its hydrolytic and synthetic properties, tannase could be used to reduce the negative effects of tannins in beverages, food, feed, and tannery effluents, for the production of gallic acid from tannin-rich materials, the elucidation of tannin structure, and the synthesis of gallic acid esters in nonaqueous media. However, industrial applications of tannase are still very limited due to its high production cost. Thus, there is a growing interest in the production, recovery, and purification of this enzyme. Recently, there have been published a number of papers on the improvement of upstream and downstream processing of the enzyme. These papers dealt with the search for new tannase producing microorganisms, the application of novel fermentation systems, optimization of culture conditions, the production of the enzyme by recombinant microorganism, and the design of efficient protocols for tannase recovery and purification. The present work reviews the state of the art of basic and biotechnological aspects of tannin acyl hydrolase, focusing on the recent advances in the upstream and downstream processing of the enzyme. PMID:21941633

  13. Motor vehicle fatalities among oil and gas extraction workers.

    PubMed

    Retzer, Kyla D; Hill, Ryan D; Pratt, Stephanie G

    2013-03-01

    Motor vehicle crashes are the leading cause of work-related fatality in the U.S. as well as in the oil and gas extraction industry. This study describes the characteristics of motor vehicle-related fatalities in the oil and gas extraction industry using data from the U.S. Bureau of Labor Statistics' Census of Fatal Occupational Injuries. It compares the risk of dying in a motor vehicle crash in this industry to other major industries and among different types and sizes of oil and gas extraction companies. There were 202 oil and gas extraction workers who died in a work-related motor vehicle crash from 2003 to 2009. The motor vehicle fatality rate for workers in this industry was 8.5 times that of all private wage and salary workers (7.6 vs. 0.9, p<.0001). Workers from small oil and gas establishments (<20 workers) and workers from well-servicing companies were at greatest risk of dying in a motor vehicle crash. Pick-up trucks were the most frequent type of vehicle occupied by the fatally injured worker (n=104, 51.5%). Safety belt non-use was identified in 38.1% (n=77) of the cases. Increased focus on motor vehicle safety in this industry is needed, in particular among small establishments. Extraction workers who drive light duty vehicles need to be a specific focus. Published by Elsevier Ltd.

  14. [Integral methodologic approach to occupational health maintenance for oil industry workers in North-West Siberia (exemplified by JSC "Novosibirsknephtegaz" model)].

    PubMed

    Logvinenko, I I; Voevoda, M I; Samadova, D T; Kulinich, V N; Kopylova, O S

    2011-01-01

    The authors analyzed work conditions and health of workers in oil-extracting industry of Novosibirsk region. Findings are that work safety system based on workplace certification concerning work conditions and on occupational safety activities certification is the most important component in primary prevention of occupational hazardous effects on life and health of workers during the occupational activities.

  15. Developing a green lending model for renewable energy project (case study electricity from biogas fuel at Palm Oil Industry)

    NASA Astrophysics Data System (ADS)

    Sukirman, Y. A.

    2018-03-01

    In the last two decades, development initiatives solely aimed to generate economic growth has been placed under scrutiny, particularly amidst the rampant discussion on the quality decline of the environment, growing social divide and climate change along with its implications thereof. Considerations of the negative impacts brought about by the economic development process prompted the move to adopt the sustainable financing model that gives precedence to economic, environmental and social aspects. We introduced Green Lending Model for Renewable Energy Project (Case Study Electricity From Biogas at Palm Oil Industry) based on sustainability financing, which is used as variable to implementing financial institutions’ lending policies. There are two major trends in the literature relating to sustainability and the banking industry: external and internal practices. The external practices strand analyzes the relevance of sustainability to the bank’s communication with shareholders and other stakeholders, and how investors use it as a measure to help achieve optimal portfolio allocation. The internal practices literature, more relevant to the present work, studies how sustainability criteria are integrated into risk management models and lending practices. Its first implementation is in the Palm Oil industry at South Sumatera. The results explained that sustainability is not related to profit either from a short- or long-term perspective. The Sustainable Green Lending Model is related to the Equator Principles and its application is driven to project financing. It also related with short- and long-term risks and opportunities, instead of short-term sustainability impacts.

  16. Essential Oils: Sources of Antimicrobials and Food Preservatives

    PubMed Central

    Pandey, Abhay K.; Kumar, Pradeep; Singh, Pooja; Tripathi, Nijendra N.; Bajpai, Vivek K.

    2017-01-01

    Aromatic and medicinal plants produce essential oils in the form of secondary metabolites. These essential oils can be used in diverse applications in food, perfume, and cosmetic industries. The use of essential oils as antimicrobials and food preservative agents is of concern because of several reported side effects of synthetic oils. Essential oils have the potential to be used as a food preservative for cereals, grains, pulses, fruits, and vegetables. In this review, we briefly describe the results in relevant literature and summarize the uses of essential oils with special emphasis on their antibacterial, bactericidal, antifungal, fungicidal, and food preservative properties. Essential oils have pronounced antimicrobial and food preservative properties because they consist of a variety of active constituents (e.g., terpenes, terpenoids, carotenoids, coumarins, curcumins) that have great significance in the food industry. Thus, the various properties of essential oils offer the possibility of using natural, safe, eco-friendly, cost-effective, renewable, and easily biodegradable antimicrobials for food commodity preservation in the near future. PMID:28138324

  17. Applications for fiber optic sensing in the upstream oil and gas industry

    NASA Astrophysics Data System (ADS)

    Baldwin, Chris S.

    2015-05-01

    Fiber optic sensing has been used in an increasing number of applications in the upstream oil and gas industry over the past 20 years. In some cases, fiber optic sensing is providing measurements where traditional measurement technologies could not. This paper will provide a general overview of these applications and describe how the use of fiber optic sensing is enabling these applications. Technologies such as Bragg gratings, distributed temperature and acoustic sensing, interferometric sensing, and Brillouin scattering will be discussed. Applications for optic sensing include a range of possibilities from a single pressure measurement point in the wellbore to multizone pressure and flow monitoring. Some applications make use of fully distributed measurements including thermal profiling of the well. Outside of the wellbore, fiber optic sensors are used in applications for flowline and pipeline monitoring and for riser integrity monitoring. Applications to be described in this paper include in-flow profiling, well integrity, production monitoring, and steam chamber growth. These applications will cover well types such as injectors, producers, hydraulic fracturing, and thermal recovery. Many of these applications use the measurements provided by fiber optic sensing to improve enhanced oil recovery operations. The growing use of fiber optic sensors is providing improved measurement capabilities leading to the generation of actionable data for enhanced production optimization. This not only increases the recovered amount of production fluids but can also enhance wellbore integrity and safety.

  18. Fish burger enriched by olive oil industrial by-product.

    PubMed

    Cedola, Annamaria; Cardinali, Angela; Del Nobile, Matteo Alessandro; Conte, Amalia

    2017-07-01

    Oil industry produces large volume of waste, which represents a disposal and a potential environmental pollution problem. Nevertheless, they are also promising sources of compounds that can be recovered and used as valuable substances. The aim of this work is to exploit solid olive by-products, in particular dry olive paste flour (DOPF) coming from Coratina cultivar, to enrich fish burger and enhance the quality characteristics. In particular, the addition of olive by-products leads to an increase of the phenolic content and the antioxidant activity; however, it also provokes a deterioration of sensory quality. Therefore, to balance quality and sensory characteristics of fish burgers, three subsequent phases have been carried out: first, the quality of DOPF in terms of phenolic compounds content and antioxidant activity has been assessed; afterward, DOPF has been properly added to fish burgers and, finally, the formulation of the enriched fish burgers has been optimized in order to improve the sensory quality. Results suggested that the enriched burgers with 10% DOPF showed considerable amounts of polyphenols and antioxidant activity, even though they are not very acceptable from the sensory point of view. Pre-treating DOPF by hydration/extraction with milk, significantly improved the burger sensory quality by reducing the concentration of bitter components.

  19. Metal bioaccumulation and biomarkers of effects in caged mussels exposed in the Athabasca oil sands area.

    PubMed

    Pilote, M; André, C; Turcotte, P; Gagné, F; Gagnon, C

    2018-01-01

    The Athabasca oil sands deposit is the world's largest known reservoir of crude bitumen and the third-largest proven crude oil reserve. Mining activity is known to release contaminants, including metals, and to potentially impact the aquatic environment. The purpose of this study was to determine the impacts of oil sands mining on water quality and metal bioaccumulation in mussels from the Fort McMurray area in northern Alberta, Canada. The study presents two consecutive years of contrasting mussel exposure conditions (low and high flows). Native freshwater mussels (Pyganodon grandis) were placed in cages and exposed in situ in the Athabasca River for four weeks. Metals and inorganic elements were then analyzed in water and in mussel gills and digestive glands to evaluate bioaccumulation, estimate the bioconcentration factor (BCF), and determine the effects of exposure by measuring stress biomarkers. This study shows a potential environmental risk to aquatic life from metal exposure associated with oil sands development along with the release of wastewater from a municipal treatment plant nearby. Increased bioaccumulation of Be, V, Ni and Pb was observed in mussel digestive glands in the Steepbank River, which flows directly through the oil sands mining area. Increased bioaccumulation of Al, V, Cr, Co, Ni, Mo and Ni was also observed in mussel gills from the Steepbank River. These metals are naturally present in oil sands and generally concentrate and increase with the extraction process. The results also showed different pathways of exposure (particulate or dissolved forms) for V and Ni resulting from different river water flows, distribution coefficient (K d ) and BCF. Increasing metal exposure downstream of the oil sands mining area had an impact on metallothionein and lipid peroxidation in mussels, posing a potential environmental risk to aquatic life. These results confirm the bioavailability of some metals in mussel tissues associated with detoxification of

  20. Utilization of Palm Oil Clinker as Cement Replacement Material

    PubMed Central

    Kanadasan, Jegathish; Abdul Razak, Hashim

    2015-01-01

    The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized. PMID:28793748

  1. Utilization of Palm Oil Clinker as Cement Replacement Material.

    PubMed

    Kanadasan, Jegathish; Abdul Razak, Hashim

    2015-12-16

    The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized.

  2. Kolkhoung (Pistacia khinjuk) Hull Oil and Kernel Oil as Antioxidative Vegetable Oils with High Oxidative Stability 
and Nutritional Value.

    PubMed

    Asnaashari, Maryam; Hashemi, Seyed Mohammad Bagher; Mehr, Hamed Mahdavian; Yousefabad, Seyed Hossein Asadi

    2015-03-01

    In this study, in order to introduce natural antioxidative vegetable oil in food industry, the kolkhoung hull oil and kernel oil were extracted. To evaluate their antioxidant efficiency, gas chromatography analysis of the composition of kolkhoung hull and kernel oil fatty acids and high-performance liquid chromatography analysis of tocopherols were done. Also, the oxidative stability of the oil was considered based on the peroxide value and anisidine value during heating at 100, 110 and 120 °C. Gas chromatography analysis showed that oleic acid was the major fatty acid of both types of oil (hull and kernel) and based on a low content of saturated fatty acids, high content of monounsaturated fatty acids, and the ratio of ω-6 and ω-3 polyunsaturated fatty acids, they were nutritionally well--balanced. Moreover, both hull and kernel oil showed high oxidative stability during heating, which can be attributed to high content of tocotrienols. Based on the results, kolkhoung hull oil acted slightly better than its kernel oil. However, both of them can be added to oxidation-sensitive oils to improve their shelf life.

  3. Shale Oil Value Enhancement Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James W. Bunger

    2006-11-30

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is nowmore » ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.« less

  4. Countermeasure Study on Deep-sea Oil Exploitation in the South China Sea——A Comparison between Deep-sea Oil Exploitation in the South China Sea and the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Qiu, Weiting; Qu, Weilu

    2018-02-01

    The unpromising situation of terrestrial oil resources makes the deep-sea oil industry become an important development strategy. The South China Sea has a vast sea area with a wide distribution of oil and gas resources, but there is a phenomenon that exploration and census rates and oil exploitation are low. In order to solve the above problems, this article analyzes the geology, oil and gas exploration and exploration equipment in the South China Sea and the Gulf of Mexico. Comparing the political environment of China and the United States energy industry and the economic environment of oil companies, this article points out China’s deep-sea oil exploration and mining problems that may exist. Finally, the feasibility of oil exploration and exploitation in the South China Sea is put forward, which will provide reference to improve the conditions of oil exploration in the South China Sea and promoting the stable development of China’s oil industry.

  5. Catalytic deoxygenation of microalgae oil to green hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Chen; Bruck, Thomas; Lercher, Johannes A.

    2013-05-14

    Microalgae are high potential raw biomass material for triglyceride feedstock, due to their high oil content and rapid growth rate, and because algae cultivation does not compete with edible food on arable land. This review addresses first the microalgae cultivation with an overview of the productivity and growth of microalgae, the recovery of lipids from the microalgae, and chemical compositions of microalgae biomass and microalgal oil. Second, three basic approaches are discussed to downstream processing for the production of green gasoline and diesel hydrocarbons from microalgae oil, including cracking with zeolite, hydrotreating with supported sulfided catalysts and hydrodeoxygenation with non-sulfidemore » metal catalysts. For the triglyceride derived bio-fuels, only “drop-in” gasoline and diesel range components are discussed in this review.« less

  6. Partial Reform Equilibrium in Russia: A Case Study of the Political Interests of and in the Russian Gas and Oil Industry

    NASA Astrophysics Data System (ADS)

    Everett, Rabekah

    While several theories abound that attempt to explain the obstacles to democracy in Russia, Joel Hellman's partial reform equilibrium model is an institutional theory that illustrates how weak institutions, combined with an instrumentalist cultural approach to the law and authoritarian-minded leadership, allowed the struggle over interests to craft and determine the nature of Russia's political structure. This thesis builds on the work of Hellman by using the partial reform theory to understand the evolution of interest infiltration and their impact on the formation of policies and institutions in favour of the elites or winners from 2004 to the present time period that allow them to wield law as a political weapon. The hypothesis posits that through their vested interests in state politics, the political and economic elites of the oil and gas industry have successfully stalled reform in Russia resulting in partial reform equilibrium. This is illustrated in a case study that was designed to collect the names, backgrounds, and social networks of gas and oil executives in order to determine how many of them have a history of, or are currently working as, ministers in the government or representatives in the Federation Council. The objective being to measure the degree to which gas and oil interests are present in government decision-making and conversely, the degree to which the government is present in the gas and oil industry. The thesis stresses the importance of institutional structure in determining Russia's political evolution, and uses vested interests as a primary source of structural institutional change, while also stressing on the social and international implications of this evolution.

  7. How Specific Microbial Communities Benefit the Oil Industry: Biorefining and Bioprocessing for Upgrading Petroleum Oil

    NASA Astrophysics Data System (ADS)

    Singh, Ajay

    Recent advances in molecular biology of microbes have made possible in exploring and engineering improved biocatalysts (microbes and enzymes) suitable for the oil biorefining and recovery processes (Monticello, 2000; Van Hamme et al., 2003; Kilbane, 2006). Crude oil contains about 0.05-5% sulphur, 0.5-2.1% nitrogen and heavy metals such as nickel and vanadium associated with the asphaltene fraction. High temperature- and pressure-requiring expensive hydrotreatment processes are generally used to remove sulphur and nitrogen compounds from petroleum. Biorefining processes to improve oil quality have gained lots of interest and made a significant progress in the last two decades (Le Borgne and Quintero, 2003) and is the focus of this chapter.

  8. Wind Turbine Gearbox Oil Filtration and Condition Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Shuangwen

    This is an invited presentation for a pre-conference workshop, titled advances and opportunities in lubrication: wind turbine, at the 2015 Society of Tribologists and Lubrication Engineers (STLE) Tribology Frontiers Conference held in Denver, CO. It gives a brief overview of wind turbine gearbox oil filtration and condition monitoring by highlighting typical industry practices and challenges. The presentation starts with an introduction by covering recent growth of global wind industry, reliability challenges, benefits of oil filtration and condition monitoring, and financial incentives to conduct wind operation and maintenance research, which includes gearbox oil filtration and condition monitoring work presented herein. Then,more » the presentation moves on to oil filtration by stressing the benefits of filtration, discussing typical main- and offline-loop practices, highlighting important factors considered when specifying a filtration system, and illustrating real-world application challenges through a cold-start example. In the next section on oil condition monitoring, a discussion on oil sample analysis, oil debris monitoring, oil cleanliness measurements and filter analysis is given based on testing results mostly obtained by and at NREL, and by pointing out a few challenges with oil sample analysis. The presentation concludes with a brief touch on future research and development (R and D) opportunities. It is hoping that the information presented can inform the STLE community to start or redirect their R and D work to help the wind industry advance.« less

  9. Gas phase oxidation downstream of a catalytic combustor

    NASA Technical Reports Server (NTRS)

    Tien, J. S.; Anderson, D. N.

    1979-01-01

    Effect of the length available for gas-phase reactions downstream of the catalytic reactor on the emission of CO and unburned hydrocarbons was investigated. A premixed, prevaporized propane/air feed to a 12/cm/diameter catalytic/reactor test section was used. The catalytic reactor was made of four 2.5 cm long monolithic catalyst elements. Four water cooled gas sampling probes were located at positions between 0 and 22 cm downstream of the catalytic reactor. Measurements of unburned hydrocarbon, CO, and CO2 were made. Tests were performed with an inlet air temperature of 800 K, a reference velocity of 10 m/s, pressures of 3 and 600,000 Pa, and fuel air equivalence ratios of 0.14 to 0.24. For very lean mixtures, hydrocarbon emissions were high and CO continued to be formed downstream of the catalytic reactor. At the highest equivalence ratios tested, hydrocarbon levels were much lower and CO was oxidized to CO2 in the gas phase downstream. To achieve acceptable emissions, a downstream region several times longer than the catalytic reactor could be required.

  10. Transgenic oil palm: production and projection.

    PubMed

    Parveez, G K; Masri, M M; Zainal, A; Majid, N A; Yunus, A M; Fadilah, H H; Rasid, O; Cheah, S C

    2000-12-01

    Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020.

  11. Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production

    USDA-ARS?s Scientific Manuscript database

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemi...

  12. Oil, Japan, and globalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bina, C.

    Today, the globalization of the international economy is nowhere as evident and complete as in the oil industry. Indeed, the production, distribution, and pricing of oil have already been infused into a transnational network of interconnected, transparent, and competitive markets. This sort of market arrangement, unlike its previous cartelized counterpart, rests upon a highly globalized economic framework whose very existence discourages a need for Western military intervention for the sake of oil. Returning to the bygone era, and judging the oil business accordingly, would create an impression that nothing has changed. This article describes the conflict of hegemony between themore » U.S. and Japan in the context of the global oil market.« less

  13. Estimation of oil spill risk from Alaska North Slope, Trans-Alaska Pipeline, and Arctic Canada oil spill data sets

    DOT National Transportation Integrated Search

    2000-04-01

    The study gathered (1)data on oil spills of 100 barrels of greater in volume that occurred in the Alaskan or Canadian study areas and which were associated with oil industry, (2)documentation for spills of 500 bbl or greater, (3) data on crude oil pr...

  14. Resources Work: Careers in Mining, Oil, and Gas

    ERIC Educational Resources Information Center

    Torpey, Elka

    2013-01-01

    This article describes occupations in the mining, oil, and gas extraction industry. The first section covers the industry's employment and outlook. The second section highlights some common occupations. The third section discusses pros and cons of the work. The fourth section describes how to start a career in mining or oil and gas. And the fifth…

  15. The impact of commercially treated oil and gas produced water discharges on bromide concentrations and modeled brominated trihalomethane disinfection byproducts at two downstream municipal drinking water plants in the upper Allegheny River, Pennsylvania, USA.

    PubMed

    Landis, Matthew S; Kamal, Ali S; Kovalcik, Kasey D; Croghan, Carry; Norris, Gary A; Bergdale, Amy

    2016-01-15

    In 2010, a dramatic increase in the levels of total trihalomethane (THM) and the relative proportion of brominated species was observed in finished water at several Pennsylvania water utilities (PDW) using the Allegheny River as their raw water supply. An increase in bromide (Br(-)) concentrations in the Allegheny River was implicated to be the cause of the elevated water disinfection byproducts. This study focused on quantifying the contribution of Br(-) from a commercial wastewater treatment facility (CWTF) that solely treats wastes from oil and gas producers and discharges into the upper reaches of the Allegheny River, and impacts on two downstream PDWs. In 2012, automated daily integrated samples were collected on the Allegheny River at six sites during three seasonal two-week sampling campaigns to characterize Br(-) concentrations and river dispersion characteristics during periods of high and low river discharges. The CWTF discharges resulted in significant increases in Br(-) compared to upstream baseline values in PDW raw drinking water intakes during periods of low river discharge. During high river discharge, the assimilative dilution capacity of the river resulted in lower absolute halide concentrations, but significant elevations Br(-) concentrations were still observed at the nearest downstream PDW intake over baseline river levels. On days with active CWTF effluent discharge the magnitude of bromide impact increased by 39 ppb (53%) and 7 ppb (22%) for low and high river discharge campaigns, respectively. Despite a declining trend in Allegheny River Br(-) (2009-2014), significant impacts from CWTF and coal-fired power plant discharges to Br(-) concentrations during the low river discharge regime at downstream PDW intakes was observed, resulting in small modeled increases in total THM (3%), and estimated positive shifts (41-47%) to more toxic brominated THM analogs. The lack of available coincident measurements of THM, precursors, and physical parameters

  16. Alkylphenol metabolites in fish bile as biomarkers of exposure to offshore oil industry produced water in feral fish.

    PubMed

    Beyer, Jonny; Sundt, Rolf C; Sanni, Steinar; Sydnes, Magne O; Jonsson, Grete

    2011-01-01

    The measurement of low-concentration alkylphenol (AP) exposure in fish is relevant in connection with monitoring and risk assessment of offshore oil industry produced water (PW) discharges. Detection of AP markers in fish bile offers significantly greater sensitivity than detection of AP in tissues such as liver. Recent studies revealed that gas chromatography-mass spectrometry in electron ionization mode (GC-EI-MS) enabled a selective and sensitive analytical detection of PW AP in mixtures with unknown composition. A procedure consisting of enzymatic deconjugation of metabolites in fish bile followed by derivatization with bis(trimethylsilyl)trifluoroacetamide and then separation and quantification of derivatized AP using GC-EI-MS is presented. The use of this procedure as a possible recommended approach for assessment and biomonitoring of AP contamination in fish populations living down-current from offshore oil production fields is presented.

  17. Model-centered approach to early planning and design of an eco-industrial park around an oil refinery.

    PubMed

    Zhang, Xiangping; Strømman, Anders H; Solli, Christian; Hertwich, Edgar G

    2008-07-01

    Industrial symbiosis promises environmental and economic gains through a utilization of the waste of some processes as a resource for other processes. Because of the costs and difficulties of transporting some wastes, the largest theoretical potential for industrial symbiosis is given when facilities are colocated in an eco-industrial park (EIP). This study proposes a model-centered approach with an eight-step procedure for the early planning and design of an eco-industrial park considering technical and environmental factors. Chemical process simulation software was used to model the energy and material flows among the prospective members and to quantify the benefits of integration among different firms in terms of energy and resources saved as compared to a reference situation. Process simulation was based on a combination of physical models of industrial processes and empirical models. The modeling allows for the development and evaluation of different collaboration opportunities and configurations. It also enables testing chosen configurations under hypothetical situations or external conditions. We present a case study around an existing oil and gas refinery in Mongstad, Norway. We used the approach to propose the colocation of a number of industrial facilities around the refinery, focused on integrating energy use among the facilities. An EIP with six main members was designed and simulated, matching new hypothetical members in size to the existing operations, modeling material and energy flows in the EIP, and assessing these in terms of carbon and hydrogen flows.

  18. Influence of the processed sunflower oil on the cement properties

    NASA Astrophysics Data System (ADS)

    Fleysher, A. U.; Tokarchuk, V. V.; Sviderskiy, V. A.

    2015-01-01

    Used oils (vegetable oil, animal oil, engine oil, etc.), which are essentially industrial wastes, have found application as secondary raw materials in some braches of industry. In particular, the only well-known and commonly-used way of utilizing wastes of vegetable oils is to apply them as raw materials in the production of biodiesel. The goal of the present study is to develop a conceptually new way of vegetable oil wastes utilization in the building industry. The test admixture D-148 was obtained from the processing of wastes of sunflower oil and it mainly consists of fatty acid diethanolamide. The test admixture was added to the cement system for the purpose of studying its influence on water demand, flowability, setting times, compressive strength and moisture adsorption. The test admixture D-148 at the optimal content 0. 2 weight % causes 10% decrease in water demand, 1.7 time increase in flowability (namely spread diameter), 23% increase in grade strength and 34% decrease in moisture adsorption. The results of the present investigation make it possible to consider the final product of the waste sunflower oil processing as multifunctional plasticizing-waterproofing admixture.

  19. Oil-Free Turbomachinery Being Developed

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2001-01-01

    NASA and the Army Research Laboratory (ARL) along with industry and university researchers, are developing Oil-Free technology that will have a revolutionary impact on turbomachinery systems used in commercial and military applications. System studies have shown that eliminating an engine's oil system can yield significant savings in weight, maintenance, and operational costs. The Oil-Free technology (foil air bearings, high-temperature coatings, and advanced modeling) is being developed to eliminate the need for oil lubrication systems on high-speed turbomachinery such as turbochargers and gas turbine engines that are used in aircraft propulsion systems. The Oil-Free technology is enabled by recent breakthroughs in foil bearing load capacity, solid lubricant coatings, and computer-based analytical modeling. During the past fiscal year, a U.S. patent was awarded for the NASA PS300 solid lubricant coating, which was developed at the NASA Glenn Research Center. PS300 has enabled the successful operation of foil air bearings to temperatures over 650 C and has resulted in wear lives in excess of 100,000 start/stop cycles. This leapfrog improvement in performance over conventional solid lubricants (limited to 300 C) creates new application opportunities for high-speed, high-temperature Oil-Free gas turbine engines. On the basis of this break-through coating technology and the world's first successful demonstration of an Oil-Free turbocharger in fiscal year 1999, industry is partnering with NASA on a 3-year project to demonstrate a small, Oil-Free turbofan engine for aeropropulsion.

  20. The carbonaceous sorbent based on the secondary silica-containing material from oil extraction industry

    NASA Astrophysics Data System (ADS)

    Starostina, I. V.; Stolyarov, D. V.; Anichina, Ya N.; Porozhnyuk, E. V.

    2018-01-01

    The object of research in this work is the silica-containing waste of oil extraction industry - the waste kieselghur (diatomite) sludge from precoat filtering units, used for the purification of vegetable oils from organic impurities. As a result of the thermal modification of the sludge, which contains up to 70% of organic impurities, a finely-dispersed low-porous carbonaceous mineral sorption material is formed. The modification of the sludge particles surface causes the substantial alteration of its physical, chemical, adsorption and structural properties - the organic matter is charred, the particle size is reduced, and on the surface of diatomite particles a carbon layer is formed, which deposits in macropores and partially occludes them. The amount of mesopores is increased, along with the specific surface of the obtained product. The optimal temperature of sludge modification is 500°C. The synthesized carbonaceous material can be used as an adsorbing agent for the purification of wastewater from heavy metal ions. The sorption capacity of Cu2+ ions amounted to 14.2 mg·g-1 and for Ni2+ ions - 17.0 mg·g-1. The obtained values exceed the sorption capacity values of the initial kieselghur, used as a filtering charge, for the researched metal ions.

  1. Essential Oils, Part I: Introduction.

    PubMed

    de Groot, Anton C; Schmidt, Erich

    2016-01-01

    Essential oils are widely used in the flavor, food, fragrance, and cosmetic industries in many applications. Contact allergy to them is well known and has been described for 80 essential oils. The relevance of positive patch test reactions often remains unknown. Knowledge of the chemical composition of essential oils among dermatologists is suspected to be limited, as such data are published in journals not read by the dermatological community. Therefore, the authors have fully reviewed and published the literature on contact allergy to and chemical composition of essential oils. Selected topics from this publication will be presented in abbreviated form in Dermatitis starting with this issue, including I. Introduction; II. General aspects; III. Chemistry; IV. General aspects of contact allergy; V. Peppermint oil, lavender oil and lemongrass oil; VI: Sandalwood oil, ylang-ylang oil, and jasmine absolute.

  2. Functional assessment of plant and microalgal lipid pathway genes in yeast to enhance microbial industrial oil production.

    PubMed

    Peng, Huadong; Moghaddam, Lalehvash; Brinin, Anthony; Williams, Brett; Mundree, Sagadevan; Haritos, Victoria S

    2018-03-01

    As promising alternatives to fossil-derived oils, microbial lipids are important as industrial feedstocks for biofuels and oleochemicals. Our broad aim is to increase lipid content in oleaginous yeast through expression of lipid accumulation genes and use Saccharomyces cerevisiae to functionally assess genes obtained from oil-producing plants and microalgae. Lipid accumulation genes DGAT (diacylglycerol acyltransferase), PDAT (phospholipid: diacylglycerol acyltransferase), and ROD1 (phosphatidylcholine: diacylglycerol choline-phosphotransferase) were separately expressed in yeast and lipid production measured by fluorescence, solvent extraction, thin layer chromatography, and gas chromatography (GC) of fatty acid methyl esters. Expression of DGAT1 from Arabidopsis thaliana effectively increased total fatty acids by 1.81-fold above control, and ROD1 led to increased unsaturated fatty acid content of yeast lipid. The functional assessment approach enabled the fast selection of candidate genes for metabolic engineering of yeast for production of lipid feedstocks. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  3. Industry turns its attention south

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marhefka, D.

    1997-08-01

    The paper discusses the outlook for the gas and oil industries in the Former Soviet Union and Eastern Europe. Significant foreign investment continues to elude Russia`s oil and gas industry, so the Caspian nations of Kazakhstan and Azerbaijan are picking up the slack, welcoming the flow of foreign capital to their energy projects. Separate evaluations are given for Russia, Azerbaijan, Kazakhstan, Turkmenistan, Ukraine, Armenia, Belarus, Georgia, Lithuania, Latvia, Estonia, Moldova, Tajikstan, Uzbekistan, Albania, Bulgaria, Croatia, Czech Republic, Hungary, Poland, Romania, Slovakia, Slovenia, and Serbia.

  4. Effects of stream-adjacent logging in fishless headwaters on downstream coastal cutthroat trout

    USGS Publications Warehouse

    Bateman, Douglas S.; Sloat, Matthew R.; Gresswell, Robert E.; Berger, Aaron M.; Hockman-Wert, David; Leer, David W.; Skaugset, Arne E.

    2016-01-01

    To investigate effects of headwater logging on downstream coastal cutthroat trout (Oncorhynchus clarkii clarkii) populations, we monitored stream habitat and biotic indicators including biomass, abundance, growth, movement, and survival over 8 years using a paired-watershed approach. Reference and logged catchments were located on private industrial forestland on ∼60-year harvest rotation. Five clearcuts (14% of the logged catchment area) were adjacent to fishless portions of the headwater streams, and contemporary regulations did not require riparian forest buffers in the treatment catchment. Logging did not have significant negative effects on downstream coastal cutthroat trout populations for the duration of the sample period. Indeed, the only statistically significant response of fish populations following logging in fishless headwaters was an increase in late-summer biomass (g·m−2) of age-1+ coastal cutthroat trout in tributaries. Ultimately, the ability to make broad generalizations concerning effects of timber harvest is difficult because response to disturbance (anthropogenically influenced or not) in aquatic systems is complex and context-dependent, but our findings provide one example of environmentally compatible commercial logging in a regenerated forest setting.

  5. The impact of the Sarbanes Oxley Act on auditing fees: An empirical study of the oil and gas industry

    NASA Astrophysics Data System (ADS)

    Ezelle, Ralph Wayne, Jr.

    2011-12-01

    This study examines auditing of energy firms prior and post Sarbanes Oxley Act of 2002. The research explores factors impacting the asset adjusted audit fee of oil and gas companies and specifically examines the effect of the Sarbanes Oxley Act. This research analyzes multiple year audit fees of the firms engaged in the oil and gas industry. Pooled samples were created to improve statistical power with sample sizes sufficient to test for medium and large effect size. The Sarbanes Oxley Act significantly increases a firm's asset adjusted audit fees. Additional findings are that part of the variance in audit fees was attributable to the market value of the enterprise, the number of subsidiaries, the receivables and inventory, debt ratio, non-profitability, and receipt of a going concern report.

  6. Oil field experiments of microbial improved oil recovery in Vyngapour, West Siberia, Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murygina, V.P.; Mats, A.A.; Arinbasarov, M.U.

    1995-12-31

    Experiments on microbial improved oil recovery (MIOR) have been performed in the Vyngapour oil field in West Siberia for two years. Now, the product of some producing wells of the Vyngapour oil field is 98-99% water cut. The operation of such wells approaches an economic limit. The nutritious composition containing local industry wastes and sources of nitrogen, phosphorus and potassium was pumped into an injection well on the pilot area. This method is called {open_quotes}nutritional flooding.{close_quotes} The mechanism of nutritional flooding is based on intensification of biosynthesis of oil-displacing metabolites by indigenous bacteria and bacteria from food industry wastes inmore » the stratum. 272.5 m{sup 3} of nutritious composition was introduced into the reservoir during the summer of 1993, and 450 m3 of nutritious composition-in 1994. The positive effect of the injections in 1993 showed up in 2-2.5 months and reached its maximum in 7 months after the injections were stopped. By July 1, 1994, 2,268.6 tons of oil was produced over the base variant, and the simultaneous water extraction reduced by 33,902 m{sup 3} as compared with the base variant. The injections in 1994 were carried out on the same pilot area.« less

  7. Opportunities for the power industry in South Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, R.W.; Pinkney, C.; Feld, L.

    1996-11-01

    South Africa is a country in the midst of transformation. Political changes within the country, and the ensuing empowerment of the black majority, have created a situation where dramatic improvements are needed in the country`s infrastructure in order to enable it to meet the needs of all its people over the coming decades. Largely as a result of the international embargo placed on South Africa during the apartheid era, the South African government became heavily involved in the country`s energy sector. This involvement included development of a synfuels program, price controls in the oil sector, monopolies in both upstream andmore » downstream oil sectors, and a strong centralized electric power company. In 1994, South Africa became the eleventh member of the Southern Africa Development Community (SADC), an organization which was established in 1980 to synchronize development plans for its member countries. SADC is presently working to formulate a regional energy development plan, and coordinate technical information exchanges and joint research needs. Each of the SADC nations have also begun to develop their regional electricity grids and other parts of their energy infrastructure to plan for the growing needs of the 500 million people who live in sub-Saharan Africa. South Africa, in particular, must make significant changes in each of its energy sectors in the near future, to keep up with its growing energy requirements. These changes translate to opportunity for the US Power Industry.« less

  8. Study on Inland River Vessel Fuel-oil Spillage and Emergency Response Strategies

    NASA Astrophysics Data System (ADS)

    Chen, R. C.; Shi, N.; Wang, K. S.

    2017-12-01

    by making statistics and conducting regression analysis on the carrying volume of vessels navigating on inland rivers and coastal waters, the linear relation between the oil volume carried by a vessel and its gross tonnage (GT) is found. Based on the linear relation, the possible spillage of a 10,000 GT vessel is estimated by using the empirical formula method which is commonly used to measure oil spillage from any vessel spill incident. In the waters downstream of Yangtze River, the trajectory and fates model is used to predict the drifting paths and fates of the spilled oil under three weather scenarios, and then, the emergency response strategies for vessel oil spills are put forth. The results of the research can be used to develop an empirical method to quickly estimate oil spillage and provide recommendations on oil spill emergency response strategies for decision-makers.

  9. Microfluidic Assessment of Frying Oil Degradation

    PubMed Central

    Liu, Mei; Xie, Shaorong; Ge, Ji; Xu, Zhensong; Wu, Zhizheng; Ru, Changhai; Luo, Jun; Sun, Yu

    2016-01-01

    Monitoring the quality of frying oil is important for the health of consumers. This paper reports a microfluidic technique for rapidly quantifying the degradation of frying oil. The microfluidic device generates monodispersed water-in-oil droplets and exploits viscosity and interfacial tension changes of frying oil samples over their frying/degradation process. The measured parameters were correlated to the total polar material percentage that is widely used in the food industry. The results reveal that the steady-state length of droplets can be used for unambiguously assessing frying oil quality degradation. PMID:27312884

  10. Development of karanja oil based offset printing ink in comparison with linseed oil.

    PubMed

    Bhattacharjee, Moumita; Roy, Ananda Sankar; Ghosh, Santinath; Dey, Munmun

    2011-01-01

    The conventional offset lithographic printing ink is mainly based on linseed oil. But in recent years, due to stiff competition from synthetic substitutes mainly from petroleum products, the crop production shrinks down to an unsustainable level, which increases the price of linseed oil. Though soyabean oil has replaced a major portion of linseed oil, it is also necessary to develop alternate cost effective vegetable oils for printing ink industry. The present study aims to evaluate the performance of karanja oil (Pongamia glabra) as an alternative of linseed oil in the formulation of offset printing ink because karanja oil is easily available in rural India. Physical properties of raw karanja oil are measured and compared with that of alkali refined linseed oil. Rosin modified phenolic resin based varnishes were made with linseed oil as well as with karanja oil and their properties are compared. Sheetfed offset inks of process colour yellow and cyan is chosen to evaluate the effect of karanja oil in ink properties. In conclusion, karanja oil can be accepted as an alternate vegetable oil source with its noticeable effect on print and post print properties with slower drying time on paper. However, the colour and odour of the oil will restrict its usage on offset inks.

  11. Modeling Neutral Densities Downstream of a Gridded Ion Thruster

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2010-01-01

    The details of a model for determining the neutral density downstream of a gridded ion thruster are presented. An investigation of the possible sources of neutrals emanating from and surrounding a NEXT ion thruster determined that the most significant contributors to the downstream neutral density include discharge chamber neutrals escaping through the perforated grids, neutrals escaping from the neutralizer, and vacuum facility background neutrals. For the neutral flux through the grids, near- and far-field equations are presented for rigorously determining the neutral density downstream of a cylindrical aperture. These equations are integrated into a spherically-domed convex grid geometry with a hexagonal array of apertures for determining neutral densities downstream of the ion thruster grids. The neutrals escaping from an off-center neutralizer are also modeled assuming diffuse neutral emission from the neutralizer keeper orifice. Finally, the effect of the surrounding vacuum facility neutrals is included and assumed to be constant. The model is used to predict the neutral density downstream of a NEXT ion thruster with and without neutralizer flow and a vacuum facility background pressure. The impacts of past simplifying assumptions for predicting downstream neutral densities are also examined for a NEXT ion thruster.

  12. "Gold" Pressed Essential Oil: An Essay on the Volatile Fragment from Citrus Juice Industry By-Products Chemistry and Bioactivity.

    PubMed

    Kapsaski-Kanelli, V N; Evergetis, E; Michaelakis, A; Papachristos, D P; Myrtsi, E D; Koulocheri, S D; Haroutounian, S A

    2017-01-01

    Present essay explores the potentials of Citrus juice industry's by-products as alternative bioactive natural products resources. Four crude Cold Pressed Essential Oils (CPEOs), derived from orange, lemon, grapefruit, and mandarin, were studied. All CPEOs were subjected to water distillation, in order to obtain the volatile fragment, which was further fractionated with respect to distillation period in two parts, concluding to eight samples. These samples along with the four original CPEOs were assessed in relation to their phytochemical content and their repellent and larvicidal properties against Asian Tiger Mosquito. The volatiles recovery rates ranged from 74% to 88% of the CPEO. Limonene presented a significant increase in all samples ranging from 8% to 52% of the respective CPEO's content and peaked in mandarin's 2nd volatile fragment which comprised 97% of the essential oil. The refinement process presented clear impacts on both bioassays: a significant increase in larvicidal potency was observed, annotated best by the improvement by 1100% and 1300% of the grapefruit volatile fractions; repellence testing provided only one significant result, the decrease of landings by 50% as a response to mandarin's second volatile fraction. The applied methodology thus may be considered for the improvement of Citrus juice industry's by-products chemistry and bioactivity.

  13. Effect of mineral oil, sunflower oil, and coconut oil on prevention of hair damage.

    PubMed

    Rele, Aarti S; Mohile, R B

    2003-01-01

    Previously published results showed that both in vitro and in vivo coconut oil (CNO) treatments prevented combing damage of various hair types. Using the same methodology, an attempt was made to study the properties of mineral oil and sunflower oil on hair. Mineral oil (MO) was selected because it is extensively used in hair oil formulations in India, because it is non-greasy in nature, and because it is cheaper than vegetable oils like coconut and sunflower oils. The study was extended to sunflower oil (SFO) because it is the second most utilized base oil in the hair oil industry on account of its non-freezing property and its odorlessness at ambient temperature. As the aim was to cover different treatments, and the effect of these treatments on various hair types using the above oils, the number of experiments to be conducted was a very high number and a technique termed as the Taguchi Design of Experimentation was used. The findings clearly indicate the strong impact that coconut oil application has to hair as compared to application of both sunflower and mineral oils. Among three oils, coconut oil was the only oil found to reduce the protein loss remarkably for both undamaged and damaged hair when used as a pre-wash and post-wash grooming product. Both sunflower and mineral oils do not help at all in reducing the protein loss from hair. This difference in results could arise from the composition of each of these oils. Coconut oil, being a triglyceride of lauric acid (principal fatty acid), has a high affinity for hair proteins and, because of its low molecular weight and straight linear chain, is able to penetrate inside the hair shaft. Mineral oil, being a hydrocarbon, has no affinity for proteins and therefore is not able to penetrate and yield better results. In the case of sunflower oil, although it is a triglyceride of linoleic acid, because of its bulky structure due to the presence of double bonds, it does not penetrate the fiber, consequently resulting

  14. Human Resource Local Content in Ghana's Upstream Petroleum Industry

    NASA Astrophysics Data System (ADS)

    Benin, Papa

    Enactment of Ghana's Petroleum (Local Content and Local Participation) Regulations, 2013 (L.I. 2204) was intended to regulate the percentage of local products, personnel, financing, and goods and services rendered within Ghana's upstream petroleum industry value chain. Five years after the inception of Ghana's upstream oil and gas industry, a gap is evident between the requirements of L.I. 2204 and professional practice. Drawing on Lewin's change theory, a cross-sectional study was conducted to examine the extent of differences between the prevailing human resource local content and the requirements of L.I. 2204 in Ghana's upstream petroleum industry. The extent to which training acquired by indigenous Ghanaians seeking jobs in Ghana's oil fields affects the prevalent local content in its upstream petroleum industry was also examined. Survey data were collected from 97 management, technical, and other staff in 2 multinational petroleum companies whose oil and gas development plans have been approved by the Petroleum Commission of Ghana. To answer the research questions and test their hypotheses, one-way ANOVA was performed with staff category (management, technical, and other) as the independent variable and prevalent local content as the dependent variable. Results indicated that prevailing local content in Ghana's upstream petroleum industry meets the requirements of L.I. 2204. Further, training acquired by indigenous Ghanaians seeking jobs in Ghana's oil fields affects the prevalent local content in its offshore petroleum industry. Findings may encourage leaders within multinational oil companies and the Petroleum Commission of Ghana to organize educational seminars that equip indigenous Ghanaians with specialized skills for working in Ghana's upstream petroleum industry.

  15. Ecological policy in oil-gas complexes, HSE MS implementation in oil and gas company

    NASA Astrophysics Data System (ADS)

    Kochetkova, O. P.; Glyzina, T. S.; Vazim, A. A.; Tugutova, S. S.

    2016-09-01

    The paper considers the following issues: HSE MS international standard implementation in oil and gas industry, taking into account international practices; implementation of standards in oil and gas companies; policy in the field of environmental protection and occupational health and safety; achievement of planned indicators and targets in environmental protection and occupational health and safety.

  16. Mineral Oils: Untreated and Mildly Treated

    Cancer.gov

    Learn about mineral oils, which can raise the risk of nonmelanoma skin cancer, particularly of the scrotum. Workers in a variety of manufacturing industries are most commonly exposed to mineral oils, as are workers in engine repair, copper mining, and commercial printing.

  17. National Association Links, Alaska Oil and Gas Conservation Commission,

    Science.gov Websites

    Oil and Gas Conservation Commission Alaska Department of Administration, Alaska Oil and Gas Guidelines Regulatory Regulations Statutes Industry Guidance Bulletins Memorandums of Agreement Links Oil Field Terms (Schlumberger) Spot Price Information (DOE) West Coast Price - NS Oil (DOR) Calendar State

  18. Triacylglycerols profiling in plant oils important in food industry, dietetics and cosmetics using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Lísa, Miroslav; Holcapek, Michal

    2008-07-11

    Optimized non-aqueous reversed-phase high-performance liquid chromatography method using acetonitrile-2-propanol gradient elution and the column coupling in the total length of 45 cm has been applied for the high resolution separation of plant oils important in food industry, dietetics and cosmetics. Positive-ion atmospheric pressure chemical ionization mass spectrometry is used for the unambiguous identification and also the reliable quantitation with the response factors approach. Based on the precise determination of individual triacyglycerol concentrations, the calculation of average parameters important in the nutrition is performed, i.e. average carbon number, average double bond number, relative concentrations of essential, saturated, monounsaturated and polyunsaturated fatty acids. Results are reported in the form of both chromatographic fingerprints and tables containing relative concentrations for all triacylglycerols and fatty acids in individual samples. In total, 264 triacylglycerols consisting of 28 fatty acids with the alkyl chain length from 6 to 26 carbon atoms and 0 to 4 double bonds have been identified in 26 industrial important plant oils.

  19. Middle-Skilled Workforce Needs in a Changing Oil and Gas Industry: the Role of Flexibility. As the Oil Industry continues to shed jobs due to the global downturn in oil prices, one of the most vulnerable sectors to job loss are the middle-skilled workers such as the technicians and drill operators. We present options and ideas to mitigate the problem.

    NASA Astrophysics Data System (ADS)

    Waddell, K.

    2015-12-01

    Middle-skilled workers are those whose jobs require considerable skill but not an advanced degree. Nationwide, one-third of the projected job growth for 2010-2020 will require middle-skilled workers. The educational paths to these jobs include career and technical education (CTE), certificates and associate's degrees from community colleges, apprenticeship programs, and training provided by employers. In the oil industry, the demand is expected to about 150,000 jobs. In environmental restoration and monitoring, there will be a need for at least 15,000 middle-skilled workers. Examples of the types of jobs include geological and petroleum technicians, derrick and drill operators, and pump system and refinery operators for the oil and gas sector. For the environmental restoration and monitoring sector, the types of jobs include environmental science technicians, and forest (and coastal) conservation technicians and workers. However, all of these numbers will be influenced by the growth and contraction of the regional or national economy that is not uncommon in the private sector. Over the past year, for example, the oil and gas industry has shed approximately 75,000 jobs (out of a workforce of 600,000) here in the United States, due almost exclusively to the drop of oil prices globally. A disproportionate number of the lost jobs were among the middle-skilled workforce. Meanwhile, the recent settlements stemming from the Deepwater Horizon oil spill are expected to create a surge of environmental restoration activity in the Gulf of Mexico region that has the potential to create thousands of new jobs over the next decade and beyond. Consequently, there is a need to develop education, training and apprenticeship programs that will help develop flexibility and complementary skill sets among middle-skilled workers that could help reduce the impacts of economic downturns and meet the needs of newly expanding sectors such as the environmental restoration field. This

  20. Nylon 6,6 Nonwoven Fabric Separates Oil Contaminates from Oil-in-Water Emulsions.

    PubMed

    Ortega, Ryan A; Carter, Erin S; Ortega, Albert E

    2016-01-01

    Industrial oil spills into aquatic environments can have catastrophic environmental effects. First responders to oil spills along the coast of the Gulf of Mexico in the southern United States have used spunbond nylon fabric bags and fences to separate spilled oil and oil waste from contaminated water. Low area mass density spunbond nylon is capable of sorbing more than 16 times its mass in low viscosity crude oil and more than 26 times its mass in higher viscosity gear lube oil. Nylon bags separated more than 95% of gear lube oil contaminate from a 4.5% oil-in-water emulsion. Field testing of spunbond nylon fences by oil spill first responders has demonstrated the ability of this material to contain the oily contaminate while allowing water to flow through. We hypothesize that the effectiveness of nylon as an oil filter is due to the fact that it is both more oleophilic and more hydrophilic than other commonly used oil separation materials. The nylon traps oil droplets within the fabric or on the surface, while water droplets are free to flow through the fabric to the water on the opposite side of the fabric.

  1. Nylon 6,6 Nonwoven Fabric Separates Oil Contaminates from Oil-in-Water Emulsions

    PubMed Central

    Carter, Erin S.; Ortega, Albert E.

    2016-01-01

    Industrial oil spills into aquatic environments can have catastrophic environmental effects. First responders to oil spills along the coast of the Gulf of Mexico in the southern United States have used spunbond nylon fabric bags and fences to separate spilled oil and oil waste from contaminated water. Low area mass density spunbond nylon is capable of sorbing more than 16 times its mass in low viscosity crude oil and more than 26 times its mass in higher viscosity gear lube oil. Nylon bags separated more than 95% of gear lube oil contaminate from a 4.5% oil-in-water emulsion. Field testing of spunbond nylon fences by oil spill first responders has demonstrated the ability of this material to contain the oily contaminate while allowing water to flow through. We hypothesize that the effectiveness of nylon as an oil filter is due to the fact that it is both more oleophilic and more hydrophilic than other commonly used oil separation materials. The nylon traps oil droplets within the fabric or on the surface, while water droplets are free to flow through the fabric to the water on the opposite side of the fabric. PMID:27411088

  2. Catalytic hydroprocessing of heavy oil feedstocks

    NASA Astrophysics Data System (ADS)

    Okunev, A. G.; Parkhomchuk, E. V.; Lysikov, A. I.; Parunin, P. D.; Semeikina, V. S.; Parmon, V. N.

    2015-09-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references.

  3. Control of Delta Avulsion by Downstream Sediment Sinks

    NASA Astrophysics Data System (ADS)

    Salter, Gerard; Paola, Chris; Voller, Vaughan R.

    2018-01-01

    Understanding how fluxes are partitioned at delta bifurcations is critical for predicting patterns of land loss and gain in deltas worldwide. Although the dynamics of river deltas are influenced from both upstream and downstream, previous studies of bifurcations have focused on upstream controls. Using a quasi-1-D bifurcation model, we show that flow switching in bifurcations is strongly influenced by downstream sediment sinks. We find that coupling between upstream and downstream feedbacks can lead to oscillations in water and sediment flux partitioning. The frequency and initial rate of growth/decay of the oscillations depend on both upstream and downstream conditions, with dimensionless bifurcate length and bypass fraction emerging as key downstream parameters. With a strong offshore sink, causing bypass in the bifurcate branches, we find that bifurcation dynamics become "frozen"; that is, the bifurcation settles on a permanent discharge ratio. In contrast, under depositional conditions, we identify three dynamical regimes: symmetric; soft avulsion, where both branches remain open but the dominant branch switches; and full avulsion. Finally, we show that differential subsidence alters these regimes, with the difference in average sediment supply to each branch exactly compensating for the difference in accommodation generation. Additionally, the model predicts that bifurcations with shorter branches are less asymmetric than bifurcations with longer branches, all else equal, providing a possible explanation for the difference between backwater length distributaries, which tend to be avulsive, and relatively stable mouth-bar-scale networks. We conclude that bifurcations are sensitive both quantitatively and qualitatively to downstream sinks.

  4. Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries

    PubMed Central

    Kelly, Erin N.; Short, Jeffrey W.; Schindler, David W.; Hodson, Peter V.; Ma, Mingsheng; Kwan, Alvin K.; Fortin, Barbra L.

    2009-01-01

    For over a decade, the contribution of oil sands mining and processing to the pollution of the Athabasca River has been controversial. We show that the oil sands development is a greater source of contamination than previously realized. In 2008, within 50 km of oil sands upgrading facilities, the loading to the snowpack of airborne particulates was 11,400 T over 4 months and included 391 kg of polycyclic aromatic compounds (PAC), equivalent to 600 T of bitumen, while 168 kg of dissolved PAC was also deposited. Dissolved PAC concentrations in tributaries to the Athabasca increased from 0.009 μg/L upstream of oil sands development to 0.023 μg/L in winter and to 0.202 μg/L in summer downstream. In the Athabasca, dissolved PAC concentrations were mostly <0.025 μg/L in winter and 0.030 μg/L in summer, except near oil sands upgrading facilities and tailings ponds in winter (0.031–0.083 μg/L) and downstream of new development in summer (0.063–0.135 μg/L). In the Athabasca and its tributaries, development within the past 2 years was related to elevated dissolved PAC concentrations that were likely toxic to fish embryos. In melted snow, dissolved PAC concentrations were up to 4.8 μg/L, thus, spring snowmelt and washout during rain events are important unknowns. These results indicate that major changes are needed to the way that environmental impacts of oil sands development are monitored and managed. PMID:19995964

  5. OIL AND GAS FIELD EMISSIONS SURVEY

    EPA Science Inventory

    The report gives results of an oil and gas field emissions survey. The production segment of the oil and gas industry has been identified as a source category that requires the development of more reliable emissions inventory methodologies. The overall purpose of the project was ...

  6. The impact of oil revenues on Arab Gulf development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Azhary, M.S.

    1984-01-01

    This book presents papers on Middle East oil policy. Topics considered include oil production policies in the Gulf States, oil planning, the philosophy of state development planning, prospects for Gulf economic coordination, the philosophy of infrastructural development, industrialization in the Arab Gulf, the agricultural potential of the Arab Gulf states, the future of banking as a Gulf industry, manpower problems and projections in the Gulf, education as an instrument of progress in the Arab Gulf states, and the impact of development on Gulf society.

  7. Analysis of river pollution data from low-flow period by means of multivariate techniques: a case study from the oil-shale industry region, northeastern Estonia.

    PubMed

    Truu, Jaak; Heinaru, Eeva; Talpsep, Ene; Heinaru, Ain

    2002-01-01

    The oil-shale industry has created serious pollution problems in northeastern Estonia. Untreated, phenol-rich leachate from semi-coke mounds formed as a by-product of oil-shale processing is discharged into the Baltic Sea via channels and rivers. An exploratory analysis of water chemical and microbiological data sets from the low-flow period was carried out using different multivariate analysis techniques. Principal component analysis allowed us to distinguish different locations in the river system. The riverine microbial community response to water chemical parameters was assessed by co-inertia analysis. Water pH, COD and total nitrogen were negatively related to the number of biodegradative bacteria, while oxygen concentration promoted the abundance of these bacteria. The results demonstrate the utility of multivariate statistical techniques as tools for estimating the magnitude and extent of pollution based on river water chemical and microbiological parameters. An evaluation of river chemical and microbiological data suggests that the ambient natural attenuation mechanisms only partly eliminate pollutants from river water, and that a sufficient reduction of more recalcitrant compounds could be achieved through the reduction of wastewater discharge from the oil-shale chemical industry into the rivers.

  8. Oil: Lessons from Comparative Perspectives for Ghana

    NASA Astrophysics Data System (ADS)

    Osei-Boakye, Maame Frema

    Oil as it relates to maintenance of energy consumption is becoming a very important acquired resource all around the world. This thesis focuses on Ghana as a place where recent oil discoveries have taken place, to assess the current policies being put in place to avoid the oil pitfalls of their other African counterparts and to examine oil models that could possibly work to reinforce a positive outcome for the new found oil industry in Ghana. These research aims were met through extensive research of relevant literature. The research resulted in the finding that the Ghanaian government would benefit from a combination of economic models that have been used in the past (spend all, save all and spend interest only). The main conclusion that has resulted from this research is that through strong fiscal policies towards the Ghanaian oil industry Ghana should be able to maintain a relatively stable economy which in turn will produce a stable country all around. This research argues that by creating strong policies and using a combination of the econometric oil models this will help Ghana account for the immediate need for things like infrastructure while also saving money for when/if the oil is no longer being produced in the country.

  9. Quenching tank: Accidental drowning in hot quenching oil.

    PubMed

    Mugadlimath, Anand B; Sane, Mandar Ramchandra; Zine, Kailash U; Hiremath, Rekha M

    2017-06-01

    We describe an unusual case of drowning in fluid other than water in an industrial setting. A 26-year-old man was working in an industry which performs surface treatment of mechanical steel parts with quenching oil. He fell into the quenching oil (which was hot due to immersion of red hot metal parts), and as he was working alone in the particular section, there was a fatal outcome. A medico-legal autopsy was performed. The causes of death were found to be multiple, with the association of drowning, extensive superficial burns and asphyxia due to laryngeal oedema. To our knowledge, it is the first report of drowning in hot quenching oil, and only nine previous observations of drowning in industrial environments have been reported in the international literature. Even though rare, these kinds of accidental deaths can be prevented in dangerous industries with proper precautions and strict adherence to standard operating procedures.

  10. Oil spill contamination probability in the southeastern Levantine basin.

    PubMed

    Goldman, Ron; Biton, Eli; Brokovich, Eran; Kark, Salit; Levin, Noam

    2015-02-15

    Recent gas discoveries in the eastern Mediterranean Sea led to multiple operations with substantial economic interest, and with them there is a risk of oil spills and their potential environmental impacts. To examine the potential spatial distribution of this threat, we created seasonal maps of the probability of oil spill pollution reaching an area in the Israeli coastal and exclusive economic zones, given knowledge of its initial sources. We performed simulations of virtual oil spills using realistic atmospheric and oceanic conditions. The resulting maps show dominance of the alongshore northerly current, which causes the high probability areas to be stretched parallel to the coast, increasing contamination probability downstream of source points. The seasonal westerly wind forcing determines how wide the high probability areas are, and may also restrict these to a small coastal region near source points. Seasonal variability in probability distribution, oil state, and pollution time is also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Future of American oil: the experts testify. [Fourteen professors, economists, ang financial experts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyman, H. Jr.; Markun, P.M.

    In this volume, the American Petroleum Institute has gathered from the record the Congressional testimony of fourteen authorities on two burning issues that deeply affect the petroleum industry. One is a bill to legalize divestiture/dismemberment of integrated oil companies of the United States--to limit these companies to just one aspect of petroleum development: exploration/production, transportation, refining, or marketing. The other proposal would prevent the oil companies, the nation's most experienced energy producers, from participating in developing other sources of energy. Ten testimonies on vertical divestiture are included: Legal Consequences of Dismemberment, Bator, Peter A.; The Energy Crisis and the Oilmore » Industry, Erickson, Edward W.; The Effect of Petroleum Divestiture on Price and Supply, Friedman, Barry A.; Twenty Years of Chaos, Gary, Raymond B.; International Aspects of Divestiture, Jacoby, Neil H.; Competition in the Petroleum Industry, Mancke, Richard B.; The Case for Vertical Integration, Mitchell, Edward J.; Pipelines: The Cost of Capital, Myers, Stewart C.; Vertical Integration into Oil Pipelines, Swenson, Gary L.; and Financing the Oil Industry, Wilson, Wallace W. Six testimonials on horizontal divestiture are entitled: Public Policy and the Monopoly Myth, Erickson, Edward W.; Justice Looks at Energy Diversification, Kauper, Thomas E.; Horizontal Diversification by Oil Companies, Moore, Thomas Gale; Oil Companies in the Coal Industry, Moyer, Reed; Oil Companies in the Uranium Industry, Ray, Dixy Lee; and Who's Mining the Coal, Wilson, Wallace W. (MCW)« less

  12. Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: a review.

    PubMed

    Dhakad, Ashok K; Pandey, Vijay V; Beg, Sobia; Rawat, Janhvi M; Singh, Avtar

    2018-02-01

    The genus Eucalyptus L'Heritier comprises about 900 species, of which more than 300 species contain volatile essential oil in their leaves. About 20 species, within these, have a high content of 1,8-cineole (more than 70%), commercially used for the production of essential oils in the pharmaceutical and cosmetic industries. However, Eucalyptus is extensively planted for pulp, plywood and solid wood production, but its leaf aromatic oil has astounding widespread biological activities, including antimicrobial, antiseptic, antioxidant, chemotherapeutic, respiratory and gastrointestinal disorder treatment, wound healing, and insecticidal/insect repellent, herbicidal, acaricidal, nematicidal, and perfumes, soap making and grease remover. In the present review, we have made an attempt to congregate the biological ingredients of leaf essential oil, leaf oil as a natural medicine, and pharmacological and toxicological values of the leaf oil of different Eucalyptus species worldwide. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. PROJECTIONS OF REGIONAL FUEL OIL AND NATURAL GAS PRICES

    EPA Science Inventory

    The report presents delivered regional oil and natural gas price forecasts for the industrial and electric utility sectors. Delivered energy price projections by Federal region through the year 2045 are provided for distillate fuel oil, residual fuel oil, and natural gas. Methodo...

  14. Rapid development of a castor cultivar with increased oil content

    USDA-ARS?s Scientific Manuscript database

    Castor seed oil contains 90% ricinoleic acid which has a wide range of industrial applications. Improvement in oil content would be of great benefit to castor growers and oil processers. Two cycles of phenotypic recurrent selection were conducted through screening for high oil content castor seeds u...

  15. Philippines' downstream sector poised for growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-11

    This paper reports that the Philippines' downstream sector is poised for sharp growth. Despite a slip in refined products demand in recent years, Philippines products demand will rebound sharply by 2000, East-West Center (EWC), Honolulu, predicts. Philippines planned refinery expansions are expected to meet that added demand, EWC Director Fereidun Fesharaki says. Like the rest of the Asia-Pacific region, product specifications are changing, but major refiners in the area expect to meet the changes without major case outlays. At the same time, Fesharaki says, push toward deregulation will further bolster the outlook for the Philippines downstream sector.

  16. Technological change, depletion and environmental policy in the offshore oil and gas industry

    NASA Astrophysics Data System (ADS)

    Managi, Shunsuke

    Technological change is central to maintaining standards of living in modern economies with finite resources and increasingly stringent environmental goals. Successful environmental policies can contribute to efficiency by encouraging, rather than inhibiting, technological innovation. However, little research to date has focused on the design and implementation of environmental regulations that encourage technological progress, or in insuring productivity improvements in the face of depletion of natural resources and increasing stringency of environmental regulations. This study models and measures productivity change, with an application to offshore oil and gas production in the Gulf of Mexico using Data Envelopment Analysis. This is an important application because energy resources are central to sustaining our economy. The net effects of technological progress and depletion on productivity of offshore oil and gas production are measured using a unique field-level set of data of production from all wells in the Gulf of Mexico over the time period from 1946--1998. Results are consistent with the hypothesis that technological progress has mitigated depletion effects over the study period, but the pattern differs from the conventional wisdom for nonrenewable resource industries. The Porter Hypothesis was recast, and revised version was tested. The Porter Hypothesis states that well designed environmental regulations can potentially contribute to productive efficiency in the long run by encouraging innovation. The Porter Hypothesis was recast to include market and nonmarket outputs. Our results support the recast version of Porter hypothesis, which examine productivity of joint production of market and environmental outputs. But we find no evidence for the standard formulation of the Porter hypothesis, that increased stringency of environmental regulation lead to increased productivity of market outputs and therefore increased industry profits. The model is used to

  17. Geochemical signature of NORM waste in Brazilian oil and gas industry.

    PubMed

    De-Paula-Costa, G T; Guerrante, I C; Costa-de-Moura, J; Amorim, F C

    2018-09-01

    The Brazilian Nuclear Energy Agency (CNEN) is responsible for any radioactive waste storage and disposal in the country. The storage of radioactive waste is carried out in the facilities under CNEN regulation and its disposal is operated, managed and controlled by the CNEN. Oil NORM (Naturally Occurring Radioactive Materials) in this article refers to waste coming from oil exploitation. Oil NORM has called much attention during the last decades, mostly because it is not possible to determine its primary source due to the actual absence of a regulatory control mechanism. There is no efficient regulatory tool which allows determining the origin of such NORM wastes even among those facilities under regulatory control. This fact may encourage non-authorized radioactive material transportation, smuggling and terrorism. The aim of this project is to provide a geochemical signature for oil NORM waste using its naturally occurring isotopic composition to identify its origin. The here proposed method is the modeling of radioisotopes normally present in oil pipe contamination such as 228 Ac, 214 Bi and 214 Pb analyzed by gamma spectrometry. The specific activities of elements from different decay series are plotted in a scatter diagram. This method was successfully tested with gamma spectrometry analyses of oil sludge NORM samples from four different sources obtained from Petrobras reports for the Campos Basin/Brazil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Risk Management at NASA and Its Applicability to the Oil and Gas Industry

    NASA Technical Reports Server (NTRS)

    Kaplan, David

    2018-01-01

    NASA has a world-class capability for quantitatively assessing the risk of highly-complex, isolated engineering structures operated in extremely hostile environments. In particular, the International Space Station (ISS) represents a reasonable risk analog for High Pressure, High Temperature drilling and production operations on deepwater rigs. Through a long-term U.S. Government Interagency Agreement, BSEE has partnered with NASA to modify NASA's Probabilistic Risk Assessment (PRA) capabilities for application to deepwater drilling and production operations. The immediate focus of the activity will be to modify NASA PRA Procedure Guides and Methodology Documents to make them applicable to the Oil &Gas Industry. The next step will be for NASA to produce a PRA for a critical drilling system component, such as a Blowout Preventer (BOP). Subsequent activities will be for NASA and industry partners to jointly develop increasingly complex PRA's that analyze other critical drilling and production system components, including both hardware and human reliability. In the presentation, NASA will provide the objectives, schedule, and current status of its PRA activities for BSEE. Additionally, NASA has a Space Act Agreement with Anadarko Petroleum Corporation to develop a PRA for a generic 20K BOP. NASA will summarize some of the preliminary insights gained to date from that 20K BOP PRA as an example of the distinction between quantitative versus qualitative risk assessment.

  19. Quantification of TAG and DAG in lesquerella (Physaria fendleri) oil by HPLC and MS

    USDA-ARS?s Scientific Manuscript database

    Castor oil has many industrial uses because of its high content (90%) of the hydroxy fatty acid, ricinoleic acid (OH1218:19). Lesquerella oil containing lesquerolic acid (Ls, OH1420:111, 56.5%) is potentially useful in industry. Ten diacylglycerols (DAG) and 74 triacylglycerols (TAG) in the seed oil...

  20. “Gold” Pressed Essential Oil: An Essay on the Volatile Fragment from Citrus Juice Industry By-Products Chemistry and Bioactivity

    PubMed Central

    Kapsaski-Kanelli, V. N.; Papachristos, D. P.; Myrtsi, E. D.; Koulocheri, S. D.

    2017-01-01

    Present essay explores the potentials of Citrus juice industry's by-products as alternative bioactive natural products resources. Four crude Cold Pressed Essential Oils (CPEOs), derived from orange, lemon, grapefruit, and mandarin, were studied. All CPEOs were subjected to water distillation, in order to obtain the volatile fragment, which was further fractionated with respect to distillation period in two parts, concluding to eight samples. These samples along with the four original CPEOs were assessed in relation to their phytochemical content and their repellent and larvicidal properties against Asian Tiger Mosquito. The volatiles recovery rates ranged from 74% to 88% of the CPEO. Limonene presented a significant increase in all samples ranging from 8% to 52% of the respective CPEO's content and peaked in mandarin's 2nd volatile fragment which comprised 97% of the essential oil. The refinement process presented clear impacts on both bioassays: a significant increase in larvicidal potency was observed, annotated best by the improvement by 1100% and 1300% of the grapefruit volatile fractions; repellence testing provided only one significant result, the decrease of landings by 50% as a response to mandarin's second volatile fraction. The applied methodology thus may be considered for the improvement of Citrus juice industry's by-products chemistry and bioactivity. PMID:29109957

  1. A floating trap for sampling downstream migrant fishes.

    Treesearch

    Carl E. McLemore; Fred H. Everest; William R. Humphreys; Mario F. Solazzi

    1989-01-01

    Fishery scientists and managers are interested in obtaining information about downstream movements of fish species for biological and economic reasons. Different types of nets and traps have been used for this purpose with only partial success. The floating, self-cleaning downstream migrant trap described here proved successful for sampling several salmoniform and...

  2. Unit 6, downstream from Ferndale Bridge Johnstown Local Flood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 6, downstream from Ferndale Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  3. Unit 2, downstream from Coppersdale Bridge Johnstown Local Flood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 2, downstream from Coppersdale Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  4. Unit 3, downstream from Point Park Johnstown Local Flood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 3, downstream from Point Park - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  5. Unit 1, downstream from Laurel Run Johnstown Local Flood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 1, downstream from Laurel Run - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  6. The analysis of composite properties reinforced with particles from palm oil industry waste produced by casting methods

    NASA Astrophysics Data System (ADS)

    Tugiman; Ariani, F.; Taher, F.; Hasibuan, M. S.; Suprianto

    2017-12-01

    Palm oil processing industries are very attractive because they offer plenty products with high economic value. The CPO factory processes not only produces crude palm oil but also generates fly ash (FA) particles waste in its final process. The purpose of this investigation to analyze and increase the benefits of particles as reinforcement materials for fabricating aluminum matrix composites (AMC’s) by different casting route. Stirring, centrifugal and squeeze casting method was conducted in this study. Further, the chemical composition of FA particles, densities and mechanical properties have been analyzed. The characteristics of composite material were investigated using an Optical microscope, scanning electron microscope (SEM), hardness (Brinell), impact strength (Charpy). The pin on disc method was used to measure the wear rate. The results show that SiO2, Fe2O3, and Al2O3 are the main compounds of fly ash particles. These particles enhanced the hardness and reduce wear resistance of aluminum matrix composites. The squeeze method gives better results than stir and centrifugal casting.

  7. Unit 5, downstream from Hickory Street Bridge Johnstown Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 5, downstream from Hickory Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  8. Unit 6, downstream from Horner Street Bridge Johnstown Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 6, downstream from Horner Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  9. Unit 3, downstream from Fourth Avenue Bridge Johnstown Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 3, downstream from Fourth Avenue Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  10. Unit 5, downstream from Haynes Street Bridge Johnstown Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 5, downstream from Haynes Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  11. Unit 4, downstream from Johns Street Bridge Johnstown Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 4, downstream from Johns Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  12. Unit 4, downstream from First Street Bridge Johnstown Local ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 4, downstream from First Street Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  13. Regulation of above-ground oil and waste containers. Hearing before the Subcommittee on Transportation, Tourism, and Hazardous Materials of the Committee on Energy and Commerce, House of Representatives, One Hundredth Congress, Second Session, January 26, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Representatives from the petroleum industry, US EPA, National Bureau of Standards and Congress were among those testifying at a hearing to discuss one of the worst inland environmental disasters in this Nation's history. The January 2 collapse of the Ashland Oil Co.'s storage tank in Floreffe, Pennsylvania resulted in the release of some 4 million gallons of diesel fuel. Approximately a million gallons escaped the containment structures and spilled over into the Monongahela River. This spill has contaminated the drinking water sources for millions of people downstream, from Pittsburgh to Cincinnati to Louisville, and beyond. Attention is focused on themore » causes of this tank's collapse, the response measures taken by Ashland Oil, the Coast Guard, the EPA, and the need for tighter federal regulations of above-ground tanks used for the storage of petroleum and hazardous substances.« less

  14. Inventories, oil shocks, and aggregate economic behavior

    NASA Astrophysics Data System (ADS)

    Herrera, Ana Maria

    This dissertation examines the relationship between oil price shocks and aggregate economic behavior in the U.S. The first chapter addresses the effects of changes in the price of crude oil on the manufacturing sector in VAR regressions and in a structural linear quadratic inventory model. It finds that oil price increases lead to reductions in manufacturing activity while oil price falls are not followed by booms. This asymmetry in the response of the manufacturing activity, the changes in the composition of the demand, and the large variations in sales of key investment and consumption goods favor a multi-channel transmission mechanism. The analysis shows that differences in the response of the various industrial sectors are determined by the cost structure of the industry as well as by the dynamics of the demand, cost and oil shocks. Positive oil price shocks are first transmitted from the transportation equipment industry to sectors such as primary metals products, rubber and plastics and textiles, later affecting the remaining sectors and the aggregates. In the short run inventories act as a buffer however, one and a half years after the shock significant production cuts do take place. Sluggishness in the response of aggregate output can be accounted by the behavior of inventories as well as by the time lags implied in the propagation from one industry to the remaining sectors and the aggregate. The second chapter studies the role of oil prices and monetary policy in accounting for business cycles in an identified VAR framework. It finds that the slowdown in GDP growth that follows an oil shock can not be solely explained by the response of the Fed's monetary policy. An "exogenous" monetary policy that holds the fed funds rate fixed would exert a large expansionary effect. Nevertheless, conditional on this policy, the reduction in economic activity persists and the price level increases leading to a sharp reduction in the short-term interest rate. In addition

  15. Selective separation of oil and water with mesh membranes by capillarity.

    PubMed

    Yu, Yuanlie; Chen, Hua; Liu, Yun; Craig, Vincent S J; Lai, Zhiping

    2016-09-01

    The separation of oil and water from wastewater generated in the oil-production industries, as well as in frequent oil spillage events, is important in mitigating severe environmental and ecological damage. Additionally, a wide arrange of industrial processes require oils or fats to be removed from aqueous systems. The immiscibility of oil and water allows for the wettability of solid surfaces to be engineered to achieve the separation of oil and water through capillarity. Mesh membranes with extreme, selective wettability can efficiently remove oil or water from oil/water mixtures through a simple filtration process using gravity. A wide range of different types of mesh membranes have been successfully rendered with extreme wettability and applied to oil/water separation in the laboratory. These mesh materials have typically shown good durability, stability as well as reusability, which makes them promising candidates for an ever widening range of practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Wave and particle evolution downstream of quasi-perpendicular shocks

    NASA Technical Reports Server (NTRS)

    Mckean, M. E.; Omidi, N.; Krauss-Varban, D.; Karimabadi, H.

    1995-01-01

    Distributions of ions heated in quasi-perpendicular bow shocks have large perpendicular temperature anisotropies that provide free energy for the growth of Alfven ion cyclotron (AIC) and mirror waves. These modes are often obsreved in the Earth's magnetosheath. Using two-dimensional hybrid simulations, we show that these waves are produced near the shock front and convected downstream rather than being produced locally downstream. The wave activity reduces the proton anisotropy to magnetosheath levels within a few tens of gyroradii of the shock but takes significantly longer to reduce the anisotropy of He(++) ions. The waves are primarily driven by proton anisotropy and the dynamics of the helium ions is controlled by the proton waves. Downstream of high Mach number shocks, mirror waves compete effectively with AIC waves. Downstream of low Mach number shocks, AIC waves dominate.

  17. WRI1-1, ABI5, NF-YA3 and NF-YC2 increase oil biosynthesis in coordination with hormonal signaling during fruit development in oil palm.

    PubMed

    Yeap, Wan-Chin; Lee, Fong-Chin; Shabari Shan, Dilip Kumar; Musa, Hamidah; Appleton, David Ross; Kulaveerasingam, Harikrishna

    2017-07-01

    The oil biosynthesis pathway must be tightly controlled to maximize oil yield. Oil palm accumulates exceptionally high oil content in its mesocarp, suggesting the existence of a unique fruit-specific fatty acid metabolism transcriptional network. We report the complex fruit-specific network of transcription factors responsible for modulation of oil biosynthesis genes in oil palm mesocarp. Transcriptional activation of EgWRI1-1 encoding a key master regulator that activates expression of oil biosynthesis genes, is activated by three ABA-responsive transcription factors, EgNF-YA3, EgNF-YC2 and EgABI5. Overexpression of EgWRI1-1 and its activators in Arabidopsis accelerated flowering, increased seed size and oil content, and altered expression levels of oil biosynthesis genes. Protein-protein interaction experiments demonstrated that EgNF-YA3 interacts directly with EgWRI1-1, forming a transcription complex with EgNF-YC2 and EgABI5 to modulate transcription of oil biosynthesis pathway genes. Furthermore, EgABI5 acts downstream of EgWRKY40, a repressor that interacts with EgWRKY2 to inhibit the transcription of oil biosynthesis genes. We showed that expression of these activators and repressors in oil biosynthesis can be induced by phytohormones coordinating fruit development in oil palm. We propose a model highlighting a hormone signaling network coordinating fruit development and fatty acid biosynthesis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  18. Corporate Social Responsibility in the Oil Industry-Comparative Case Studies Of Chinese Oil Enterprises In Five Latin American Countries

    NASA Astrophysics Data System (ADS)

    Wu, Wenyuan

    This dissertation evaluates and compares social and environmental records of Chinese national oil companies (NOCs) operating in Latin America from the early 21st century to 2015. Five countries representing the entirety of Chinese NOCs' physical presence are selected: Peru, Ecuador, Argentina, Colombia, and Venezuela. The project discovers that Chinese NOCs demonstrate the highest level of social responsibility in Peru and the lowest in Venezuela, with the other three countries constituting intermediate observations. The differences in social responsibility records are then causally traced to variances in the host countries' regulatory frameworks and civil society capacities. Chinese NOCs are found to be most willing to commit to social responsibility under an enabling regulatory environment in which the host government facilitates competitiveness and decentralization in its hydrocarbons industry while upholding inclusive policies regarding its civil society. Moreover, these NOCs are most likely to follow through on their CSR commitments when faced with a unified and collaborative civil society. These major findings yield important policy lessons for both the host government and the civil society in developing countries with abundance in energy resources.

  19. Experimental and analytical investigation of fan flow interaction with downstream struts

    NASA Technical Reports Server (NTRS)

    Olsen, T. L.; Ng, W. F.; Obrien, W. F., Jr.

    1985-01-01

    An investigation which was designed to provide insight into the fundamental aspects of fan rotor-downstream strut interaction was undertaken. High response, miniature pressure transducers were embedded in the rotor blades of an experimental fan rig. Five downstream struts were placed at several downstream locations in the discharge flow annulus of the single-stage machine. Significant interaction of the rotor blade surface pressures with the flow disturbance produced by the downstream struts was measured. Several numerical procedures for calculating the quasi-steady rotor response due to downstream flow obstructions were developed. A preliminary comparison of experimental and calculated fluctuating blade pressures on the rotor blades shows general agreement between the experimental and calculated values.

  20. Hubbert's Peak: the Impending World oil Shortage

    NASA Astrophysics Data System (ADS)

    Deffeyes, K. S.

    2004-12-01

    Global oil production will probably reach a peak sometime during this decade. After the peak, the world's production of crude oil will fall, never to rise again. The world will not run out of energy, but developing alternative energy sources on a large scale will take at least 10 years. The slowdown in oil production may already be beginning; the current price fluctuations for crude oil and natural gas may be the preamble to a major crisis. In 1956, the geologist M. King Hubbert predicted that U.S. oil production would peak in the early 1970s.1 Almost everyone, inside and outside the oil industry, rejected Hubbert's analysis. The controversy raged until 1970, when the U.S. production of crude oil started to fall. Hubbert was right. Around 1995, several analysts began applying Hubbert's method to world oil production, and most of them estimate that the peak year for world oil will be between 2004 and 2008. These analyses were reported in some of the most widely circulated sources: Nature, Science, and Scientific American.2 None of our political leaders seem to be paying attention. If the predictions are correct, there will be enormous effects on the world economy. Even the poorest nations need fuel to run irrigation pumps. The industrialized nations will be bidding against one another for the dwindling oil supply. The good news is that we will put less carbon dioxide into the atmosphere. The bad news is that my pickup truck has a 25-gallon tank.

  1. Spray atomization of bio-oil/ethanol blends with externally mixed nozzles

    USDA-ARS?s Scientific Manuscript database

    Experiments were conducted to investigate the properties of sprays of pyrolysis oil from biomass (bio-oil) using an air assisted atomization nozzle operated without combustion to explore the potential of pyrolysis oil combustion in industrial and home furnaces. Bio-oil was blended with ethanol to im...

  2. Non-destructive fraud detection in rosehip oil by MIR spectroscopy and chemometrics.

    PubMed

    Santana, Felipe Bachion de; Gontijo, Lucas Caixeta; Mitsutake, Hery; Mazivila, Sarmento Júnior; Souza, Leticia Maria de; Borges Neto, Waldomiro

    2016-10-15

    Rosehip oil (Rosa eglanteria L.) is an important oil in the food, pharmaceutical and cosmetic industries. However, due to its high added value, it is liable to adulteration with other cheaper or lower quality oils. With this perspective, this work provides a new simple, fast and accurate methodology using mid-infrared (MIR) spectroscopy and partial least squares discriminant analysis (PLS-DA) as a means to discriminate authentic rosehip oil from adulterated rosehip oil containing soybean, corn and sunflower oils in different proportions. The model showed excellent sensitivity and specificity with 100% correct classification. Therefore, the developed methodology is a viable alternative for use in the laboratory and industry for standard quality analysis of rosehip oil since it is fast, accurate and non-destructive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Comparison of Oxidation Stability and Quenchant Cooling Curve Performance of Soybean Oil and Palm Oil

    NASA Astrophysics Data System (ADS)

    Said, Diego; Belinato, Gabriela; Sarmiento, Gustavo S.; Otero, Rosa L. Simencio; Totten, George E.; Gastón, Analía; Canale, Lauralice C. F.

    2013-07-01

    The potential use of vegetable oil-derived industrial oils continues to be of great interest because vegetable oils are relatively non-toxic, biodegradable, and they are a renewable basestock alternative to petroleum oil. However, the fatty ester components containing conjugated double bonds of the triglyceride structure of vegetable oils typically produce considerably poorer thermal-oxidative stability than that achievable with petroleum basestocks under typical use conditions. Typically, these conditions involve furnace loads of hot steel (850 °C), which are rapidly immersed and cooled to bath temperatures of approximately 50-60 °C. This is especially true when a vegetable oil is held in an open tank with agitation and exposed to air at elevated temperatures for extended periods of time (months or years). This paper will describe the thermal-oxidative stability and quenching performance of soybean oil and palm oil and the resulting impact on the heat transfer coefficient. These results are compared to typical fully formulated, commercially available accelerated (fast) and an unaccelerated (slow) petroleum oil-based quenchants.

  4. A laboratory study of particulate and gaseous emissions from crude oil and crude oil-dispersant contaminated seawater due to breaking waves

    NASA Astrophysics Data System (ADS)

    Afshar-Mohajer, Nima; Li, Cheng; Rule, Ana M.; Katz, Joseph; Koehler, Kirsten

    2018-04-01

    Crude oil spill incidents occur frequently causing a verity of occupational, ecological and environmental problems. Dispersants are applied to enhance the dispersion rate of crude oil slicks into the water column. In this study, the aerosol size distribution from 10 nm to 20 μm, total particle-bound aromatic hydrocarbons (pPAH) and volatile organic compounds (VOCs) are measured in a 6 x 0.3 x 0.6 m tank as plunging breaking waves entrain oil slicks. The experiments are performed for seawater with slicks of crude oil, crude oil-dispersant mixture and dispersant only. The measurements investigate the effects of wave energy and slick properties on the temporal evolution of the emissions. The total number concentrations of particles originating from the oil-dispersant mixture are 1-2 orders of magnitude higher than those of crude oil across the entire nano-scale range, reaching 100x for 20 nm particles. Conversely, the differences in concentration are small in the micron range. The average concentrations of pPAH are variable but similar (150-270 ng/m3). The VOC concentrations for crude oil-dispersant mixtures are 2-3 times lower than those of crude oil, presumably due to the surfactant effect on mass diffusion. The drastic increase in ultrafine particle concentrations may raise concerns about effects of inhalation by cleanup workers and downstream communities though VOC emissions reduce. Findings through this study provide insight into how the spray of dispersant may change the ratio of airborne particulate matter and VOC emissions from seawater due to natural processes.

  5. Self-reported Occupational Exposures Relevant for Cancer among 28,000 Offshore Oil Industry Workers Employed between 1965 and 1999

    PubMed Central

    Stenehjem, Jo S; Friesen, Melissa C; Eggen, Tone; Kjærheim, Kristina; Bråtveit, Magne; Grimsrud, Tom K

    2016-01-01

    The objective of this study was to examine self-reported frequency of occupational exposure reported by 28,000 Norwegian offshore oil workers in a 1998 survey. Predictors of self-reported exposure frequency were identified to aid future refinements of an expert-based job-exposure-time matrix (JEM). We focus here on reported frequencies for skin contact with oil and diesel, exposure to oil vapor from shaker, to exhaust fumes, vapor from mixing chemicals used for drilling, natural gas, chemicals used for water injection and processing, and to solvent vapor. Exposure frequency was reported by participants as the exposed proportion of the work shift, defined by six categories, in their current or last position offshore (between 1965 and 1999). Binary Poisson regression models with robust variance were used to examine the probabilities of reporting frequent exposure (≥¼ vs. <¼ of work shift) according to main activity, time period, supervisory position, type of company, type of installation, work schedule, and education. Holding a non-supervisory position, working shifts, being employed in the early period of the offshore industry, and having only compulsory education increased the probability of reporting frequent exposure. The identified predictors and group-level patterns may aid future refinement of the JEM previously developed for the present cohort. PMID:25671393

  6. Self-reported Occupational Exposures Relevant for Cancer among 28,000 Offshore Oil Industry Workers Employed between 1965 and 1999.

    PubMed

    Stenehjem, Jo S; Friesen, Melissa C; Eggen, Tone; Kjærheim, Kristina; Bråtveit, Magne; Grimsrud, Tom K

    2015-01-01

    The objective of this study was to examine self-reported frequency of occupational exposure reported by 28,000 Norwegian offshore oil workers in a 1998 survey. Predictors of self-reported exposure frequency were identified to aid future refinements of an expert-based job-exposure-time matrix (JEM). We focus here on reported frequencies for skin contact with oil and diesel; exposure to oil vapor from shaker, to exhaust fumes, vapor from mixing chemicals used for drilling, natural gas, chemicals used for water injection and processing, and to solvent vapor. Exposure frequency was reported by participants as the exposed proportion of the work shift, defined by six categories, in their current or last position offshore (between 1965 and 1999). Binary Poisson regression models with robust variance were used to examine the probabilities of reporting frequent exposure (≥¼ vs. <¼ of work shift) according to main activity, time period, supervisory position, type of company, type of installation, work schedule, and education. Holding a non-supervisory position, working shifts, being employed in the early period of the offshore industry, and having only compulsory education increased the probability of reporting frequent exposure. The identified predictors and group-level patterns may aid future refinement of the JEM previously developed for the present cohort.

  7. Study on nickel and vanadium removal in thermal conversion of oil sludge and oil shale sludge

    NASA Astrophysics Data System (ADS)

    Sombral, L. G. S.; Pickler, A. C.; Aires, J. R.; Riehl, C. A.

    2003-05-01

    The petroleum refining processes and of oil shale industrialization generate solid and semi-solid residues. In those residues heavy metals are found in concentrations that vary according to the production sector. The destination of those residues is encouraging researches looking for new technologies that reach the specifications of environmental organisms, and are being developed and applied to the industry. In this work it is shown that the heavy metals concentrations, previously in the petroleum oily solid residues and in those of the oils shale, treated by low temperature thermal conversion, obtaining in both cases concentrations below Ippm to Nickel and below 5ppm to vanadium.

  8. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    NASA Astrophysics Data System (ADS)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  9. Western oil shale development: a technology assessment. Volume 8. Health effects of oil shale development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotariu, G.J.

    1982-02-01

    Information on the potential health effects of a developing oil shale industry can be derived from two major sources: (1) the historical experience in foreign countries that have had major industries; and (2) the health effects research that has been conducted in the US in recent years. The information presented here is divided into two major sections: one dealing with the experience in foreign countries and the second dealing with the more recent work associated with current oil shale development in the US. As a result of the study, several observations can be made: (1) most of the current andmore » historical data from foreign countries relate to occupational hazards rather than to impacts on regional populations; (2) neither the historical evidence from other countries nor the results of current research have shown pulmonary neoplasia to be a major concern, however, certain types of exposure, particularly such mixed source exposures as dust/diesel or dust/organic-vapor have not been adequately studied and the lung cancer question is not closed; (3) the industry should be alert to the incidence of skin disease in the industrial setting, however, automated techniques, modern industrial hygiene practices and realistic personal hygiene should greatly reduce the hazards associated with skin contact; and (4) the entire question of regional water contamination and any resultant health hazard has not been adequately addressed. The industrial practice of hydrotreating the crude shale oil will diminish the carcinogenic hazard of the product, however, the quantitative reduction of biological activity is dependent on the degree of hydrotreatment. Both Soviet and American experimentalists have demonstrated a correlation betweed carcinogenicity/toxicity and retorting temperature; the higher temperatures producing the more carcinogenic or toxic products.« less

  10. Users' acceptance and attitude in regarding electronic medical record at central polyclinic of oil industry in Isfahan, Iran.

    PubMed

    Tavakoli, Nahid; Shahin, Arash; Jahanbakhsh, Maryam; Mokhtari, Habibollah; Rafiei, Maryam

    2013-01-01

    Simultaneous with the rapid changes in the technology and information systems, hospitals interest in using them. One of the most common systems in hospitals is electronic medical record (EMR) whose one of uses is providing better health care quality via health information technology. Prior to its use, attempts should be put to identifying factors affecting the acceptance, attitude and utilizing of this technology. The current article aimed to study the effective factors of EMR acceptance by technology acceptance model (TAM) at central polyclinic of Oil Industry in Isfahan. This was a practical, descriptive and regression study. The population research were all EMR users at polyclinic of Oil Industry in 2012 and its sampling was simple random with 62 users. The tool of data collection was a research-made questionnaire based on TAM. The validity of questionnaire has been assigned through the strategy of content validity and health information technology experts' views and its reliability by test-retest. The system users have positive attitude toward using EMR (56.6%). Also, users are not very satisfied with effective external (38.14%) and behavioral factors (47.8%) upon using the system. Perceived ease-of-use (PEU) and perceived usefulness (PU) were at a good level. Lack of relative satisfaction with using of EMR derives from factors such as appearance, screen, data and information quality and terminology. In this study, it is suggested to improve the system and the efficiency of the users through software' external factors development. So that PEU and users' attitude to be changed and moved in positive manner.

  11. Opportunities in the industrial biobased products industry.

    PubMed

    Carole, Tracy M; Pellegrino, Joan; Paster, Mark D

    2004-01-01

    Approximately 89 million metric t of organic chemicals and lubricants, the majority of which are fossil based, are produced annually in the United States. The development of new industrial bioproducts, for production in stand-alone facilities or biorefineries, has the potential to reduce our dependence on imported oil and improve energy security. Advances in biotechnology are enabling the optimization of feedstock composition and agronomic characteristics and the development of new and improved fermentation organisms for conversion of biomass to new end products or intermediates. This article reviews recent biotechnology efforts to develop new industrial bioproducts and improve renewable feedstocks and key market opportunities.

  12. R-134a qualification -- industry refrigerator capillary data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVos, R.

    1997-12-31

    With the phaseout of R-12, the use of R-134a and polyolester (POE) oil became the preferred refrigerant/oil combination for the refrigerator appliance industry. Reliability data for this refrigerant/oil combination were minimal, and initial testing showed a propensity for the capillary tubes to clog with a variety of contaminants. A test was designed by an industry group to accelerate the process of contamination and capillary plugging. This paper presents capillary tube stress test data that were developed for this group by its member companies. This study investigated the relationship between capillary tube restriction levels and variables including compressor type, oil type,more » chlorine level, and moisture level. Analysis of the contaminants included a visual description, infrared spectroscopy, scanning electron microscope examination, and measurements of total chlorine content and noncondensable gas content of the refrigerant. Oil samples were measured for moisture level, dissolved iron, and total acid, and an infrared spectral analysis was performed.« less

  13. Antioxidant effects of supercritical fluid garlic extracts in sunflower oil.

    PubMed

    Bravi, Elisabetta; Perretti, Giuseppe; Falconi, Caterina; Marconi, Ombretta; Fantozzi, Paolo

    2017-01-01

    Lipid oxidation causes changes in quality attributes of vegetable oils. Synthetic antioxidants have been used to preserve oils; however, there is interest in replacing them with natural ones. Garlic and its thiosulfinate compound allicin are known for their antioxidant activities. This study assesses a novel formulation, the supercritical fluid extract of garlic, on sunflower oil oxidation during an accelerated shelf-life test. Three quality parameters (free acidity, peroxide values, and p-anisidine values) were evaluated in each of the six oil samples. The samples included sunflower oil alone, sunflower oil supplemented with BHT, the undiluted supercritical fluid extract of garlic, and sunflower oils supplemented with three levels of garlic extract. The oils were also investigated for their antioxidant properties using the DPPH and the FRAP assays. The results were compared with the effect of the synthetic BHT. Our results underlined that the highest level of garlic extract may be superior, or at least comparable, with BHT in preserving sunflower oil. The oxidative degradation of oily samples can be limited by using supercritical fluid extract of garlic as it is a safe and an effective natural antioxidant formulation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Examining Convergence in the Cultural Value Orientations of Norwegians in the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Teague, Jennifer

    There is much debate in Norway as to whether Norwegian cultural values are being diluted by the increasing influx of international organizations. Little empirical work has been done to assess the effect of employment by international organizations on the cultural values of Norwegians. The aim of this study was to determine if individuals retain cultural values closest to their own nationality or the nationality of their employing organization. This objective was accomplished by comparing cultural value dimensions of Norwegians employed in organizations headquartered in one of five countries. Recruitment emails were sent to 612 possible participants and 160 individuals completed the survey completely, resulting in a sample size of N=160, a response rate of 26%. From the completed surveys, cultural dimension scores were calculated for each individual and group in the areas of power distance, individualism, masculinity, and uncertainty avoidance. Using those cultural dimension scores, three groups of one-way ANOVA tests were run in accordance with the parameters of each of three research questions. Comparing Norwegians employed in local government or a Norwegian oil and gas company, a significant difference existed only for uncertainty avoidance (p=.0074). Comparing cultural dimension scores of Norwegians employed in local government with those employed by one of four internationally-headquartered oil companies resulted in significant differences in scores for power distance (p=.0007), individualism (p=.0000), and uncertainty avoidance (p=.0000); however, there was not a statistically significant difference in masculinity scores between the two groups (p=.0792). Comparing cultural dimension scores of Norwegians employed in a Norwegian oil and gas company with those employed by one of four internationally-headquartered oil and gas companies also resulted in statistically significant differences in scores for power distance (p=.0015), individualism (p=.0000), and

  15. Rice brans, rice bran oils, and rice hulls: composition, food and industrial uses, and bioactivities in humans, animals, and cells.

    PubMed

    Friedman, Mendel

    2013-11-13

    Rice plants produce bioactive rice brans and hulls that have been reported to have numerous health-promoting effects in cells, animals, and humans. The main objective of this review is to consolidate and integrate the widely scattered information on the composition and the antioxidative, anti-inflammatory, and immunostimulating effects of rice brans from different rice cultivars, rice bran oils derived from rice brans, rice hulls, liquid rice hull smoke derived from rice hulls, and some of their bioactive compounds. As part of this effort, this paper also presents brief summaries on the preparation of health-promoting foods including bread, corn flakes, frankfurters, ice cream, noodles, pasta, tortillas, and zero-trans-fat shortening as well as industrial products such bioethanol and biodiesel fuels. Also covered are antibiotic, antiallergic, anticarcinogenic, antidiabetic, cardiovascular, allelochemical, and other beneficial effects and the mechanisms of the bioactivities. The results show that food-compatible and safe formulations with desirable nutritional and biological properties can be used to develop new multifunctional foods as well as bioethanol and biodiesel fuel. The overlapping aspects are expected to contribute to a better understanding of the potential impact of the described health-promoting potential of the rice-derived brans, oils, and hulls in food and medicine. Such an understanding will enhance nutrition and health and benefit the agricultural and industrial economies.

  16. An experiment of used palm oil refinery using the value engineering method

    NASA Astrophysics Data System (ADS)

    Sumiati; Waluyo, M.

    2018-01-01

    Palm Oil is one of prime materials which very necessary for Indonesia. In the development of palm oil industry the constraint which faced is raw material availability and the economic crisis that attack Indonesia which cause increasing of cost industry so that the salaes price become very expensive . With using alternative raw material namely used palm oil them be made palm oil design to solve this problems. In the designing which comply the consideration of good pal oil planning aspect be use value engineer study. While the criteria parameter of hygienic palm oil which obtained from the questioner area free fatty acid, water content, Iodine number, peroxide number, odor, taste and the color. The research which use value engineer study is throught any phase that is information phase, analyzes phase, creative phase, development phase and presentation phase. This research began with doing the identification of palm oil demand, continued by methodology development in order to measure oil design. By using creative process could be obtained flow rate position, the amount of adsorbent and the best settling time for palm oil alternative that is in the flow rate 70 ml/sec, 4% of adsorbent and the 70 minute for the settling time with free fatty acid value: 0.299. While the best palm oil alternative are palm oil with free fatty acid value = 0.299, water content = 0.31, Iodine number = 40.08, Peroxide number = 3.72, odor and taste = Normal, the color = Normal. The Evalution which done by value engineer study generate the value from alternative palm oil is 1.330 and market palm oil 1.392. Thus, can be conclude thet the value engineer study can be good implemented in the alternative palm oil planning so that alternative palm oil can be produced largely because they have better value that market palm oil and appropriate for little industries.

  17. Space Telemetry for the Energy Industry

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Space telemetry is the process whereby information acquired in orbit is relayed to Earth. In 1981, Bill Sheen, President of Nu-Tech Industries, Inc., saw a need for a better way of monitoring flow, due to high costs of oil and gas, increasing oil field theft and a mounting requirement for more timely information to speed up accounting procedures. Sheen turned to NASA for assistance which was provided by Kerr Industrial Applications Center (KIAC). The system that emerged from two years of research, now in production at Nu-Tech's Fort Worth Texas facility, is known as the Remote Measurement and Control Network.

  18. World Economic Growth and Oil: a Producers' Perspective

    NASA Astrophysics Data System (ADS)

    Shihab-Eldin, Adnan

    2014-07-01

    This paper examines the following assertions: * A high share of oil price in GDP limits economic growth, * Oil Price shocks trigger recession, * These effects will be escalated by peaked oil supply and rising developing world demand and together with increasing contributions to climate change will result in a global emergency. The role of energy in societal development and economic growth, from primitive man through the industrial revolution and the oil age to the present and the evolution of energy intensity are described. The principle role of oil as a transport fuel and the possibilities of alternatives are examined. It is concluded that oil dependence will continue for the foreseeable future. The history of the industry, market behavior and its economic effects are presented to establish precedent and the assertions are then examined. It is shown that rising oil prices are an unavoidable consequence of economic growth, that they have stimulated efficient minimum functional use and made more difficult conventional and unconventional sources economic. It is then argued that potentially these additional resources eliminate the possibility of supply shortage and that diversification of supply lessens the possibility of shock, together rendering a global emergency less likely than could have been previously envisaged.

  19. Potential oil yield, fatty acid composition, and oxidation stability of the hempseed oil from four Cannabis sativa L. cultivars.

    PubMed

    Da Porto, Carla; Decorti, Deborah; Natolino, Andrea

    2015-03-01

    The cultivation of four industrial hemp cultivars (Felina 32, Chamaeleon, Uso31, and Finola) was investigated for oil production in the north-east of Italy along two years. The oils of all cultivars resulted in rich amount of linoleic acid (ω-6) and α-linolenic acid (ω-3). Felina 32 and Chamaeleon oils exhibited the highest amount of linoleic acid (59%) and α-linolenic acid (18%). Finola and Uso31 oils resulted in the richest of γ-linolenic acid (5-6%). All hempseed oils presented high oxidation stability and an acceptable initial quality. It is suggested that these oils can be used to produce EFA dietary supplements high in ω-6 and ω-3 of vegetal origin.

  20. Decreased fish diversity found near marble industry effluents in River Barandu, Pakistan.

    PubMed

    Mulk, Shahi; Korai, Abdul Latif; Azizullah, Azizullah; Khattak, Muhammad Nasir Khan

    2016-01-01

    In a recently published study we observed that effluents from marble industry affected physicochemical characteristics of River Barandu in District Buner, Pakistan. These changes in water quality due to marble effluents may affect fish community. The present study was therefore conducted to evaluate the impacts of marble industry effluents on fish communities in River Barandu using abundance, richness, diversity and evenness of fish species as end point criteria. The fish samples were collected by local fishermen on monthly basis from three selected sites (upstream, effluents/industrial, and downstream sites). During the study period, a total of 18 fish species were found belonging to 4 orders, 5 families and 11 genera. The Cyprinidae was observed to be the dominant family at all the three selected sites. Lower abundance and species diversity was observed at the industrial (22%) and downstream sites (33%) as compared to the upstream site (45%). Effluents of marble industry were associated with lower abundance of species in River Barandu. It is recommended that industries should be shifted away from the vicinity of river and their effluents must be treated before discharging to prevent further loss of fish abundance and diversity in the River.

  1. OIL AND GAS FACILITY EMERGENCY AWARENESS PARTNERSHIP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tod Bryant

    2002-08-31

    as part of the program. (3) Once the publication and the training program are developed, a video that will be used as an introduction to the actual training class, as a refresher for the class, or in a ''train-the-trainer'' program will be produced. In addition to the above-noted three steps, optional projects were considered by the pilot program states. Two optional projects were considered by the states: (1) Working with the local, regional or state firefighters, a training facility would be created using oil and gas equipment. This part of the project will require cooperation between firefighters and industry, and will assist especially the emergency responders in learning more about oil and gas equipment. (2) Also under consideration was a related web site that would include the location of all oil and gas wells and accessible only by password. The overall ''Oil and Gas Facility Emergency Awareness Program'' has many benefits, some of which are: The process will provide opportunity for key industry leaders to develop relationships with local emergency management agencies. Industry personnel will be able to better understand emergency planning, and emergency personnel will better understand industry operations. Health, safety and environment will be better protected because of training. Better risk management will improve the operating climate for independent oil and gas producers. The ''Oil and Gas Facility Emergency Awareness Program'' benefits the emergency response teams, oil and gas facility owners and operators, state and federal regulators, the environment, and most especially the citizens. All groups must work together for the health, safety and protection of the community and the environment.« less

  2. Production of wheat gluten hydrolysates with reduced antigenicity employing enzymatic hydrolysis combined with downstream unit operations.

    PubMed

    Merz, Michael; Kettner, Lucas; Langolf, Emma; Appel, Daniel; Blank, Imre; Stressler, Timo; Fischer, Lutz

    2016-08-01

    Due to allergies or other health disorders a certain segment of the population is not able to safely consume some plant proteins, which are the main protein support in human nutrition. Coeliac disease is a prominent autoimmune disorder and requires a strict adherence to a gluten-free diet. The aim of this study was to identify suitable combinations of enzymatic hydrolysis and common unit operations in food processing (centrifugation, ultra-filtration) to produce gluten-free wheat gluten hydrolysates for food application. To analyse the hydrolysates, a simple and cheap competitive ELISA protocol was designed and validated in this study as well. The competitive ELISA was validated using gliadin spiked skim milk protein hydrolysates, due to the latter application of the assay. The limit of quantification was 4.19 mg kg(-1) , which allowed the identification of gluten-free (<20 mg kg(-1) ) hydrolysates. Enzymatic hydrolysis, including the type of peptidase, and the downstream processing greatly affected the antigenicity of the hydrolysates. Enzymatic hydrolysis and downstream processing operations, such as centrifugation and ultra-filtration, reduced the antigenicity of wheat gluten hydrolysates. Gluten-free hydrolysates were obtained with Flavourzyme after centrifugation (25 g L(-1) substrate) and after 1 kDa ultra-filtration (100 g L(-1) substrate). A multiple peptidase complex, such as Flavourzyme, seems to be required for the production of gluten-free hydrolysates. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. Technological Change and Its Labor Impact in Five Energy Industries. Coal Mining/Oil and Gas Extraction/Petroleum Refining/Petroleum Pipeline Transportation/Electric and Gas Utilities.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    This bulletin appraises major technological changes emerging in five American industries (coal mining, oil and gas extraction, petroleum refining, petroleum pipeline transportation, and electric and gas utilities) and discusses the impact of these changes on productivity and occupations over the next five to ten years. Its separate reports on each…

  4. Emulsions of crude glycerin from biodiesel processing with fuel oil for industrial heating.

    PubMed

    Mize, Hannah E; Lucio, Anthony J; Fhaner, Cassie J; Pratama, Fredy S; Robbins, Lanny A; Karpovich, David S

    2013-02-13

    There is considerable interest in using crude glycerin from biodiesel production as a heating fuel. In this work crude glycerin was emulsified into fuel oil to address difficulties with ignition and sustained combustion. Emulsions were prepared with several grades of glycerin and two grades of fuel oil using direct and phase inversion emulsification. Our findings reveal unique surfactant requirements for emulsifying glycerin into oil; these depend on the levels of several contaminants, including water, ash, and components in MONG (matter organic non-glycerin). A higher hydrophile-lipophile balance was required for a stable emulsion of crude glycerin in fuel oil compared to water in fuel oil. The high concentration of salts from biodiesel catalysts generally hindered emulsion stability. Geometric close-packing of micelles was carefully balanced to mechanically stabilize emulsions while also enabling low viscosity for pumping and fuel injection. Phase inversion emulsification produced more stable emulsions than direct emulsification. Emulsions were tested successfully as fuel for a waste oil burner.

  5. Fuel oil and kerosene sales, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-22

    Despite the rise in petroleum products prices, a colder-than-normal winter in the latter part of 1989 spurred an increase in demand for distillate fuel oils. The shipping and electric utilities industries contributed to a significant rise in demand for both distillate and residual fuels oils in 1989. A total of 72.9 billion gallons of fuel oil and kerosene were sold to consumers in 1989, an increase of 3.0 percent over 1988 sales volumes. Of all fuel oil sold during 1989, distillate fuel oil accounted for 68.3 percent, which was an increase over 1988 when distillate fuel oil accounted for 67.2more » percent of all fuel oil products sold in the United States. Residual fuel oil's share of total fuel oil sold fell slightly to 29.9 percent from 30.7 percent in 1988. Kerosene followed with a 1.8 percent share, also falling from the previous year when it accounted for a 2.1 percent share of total fuel oil sold. 3 figs., 24 tabs.« less

  6. Connectivity of Streams and Wetlands to Downstream Waters ...

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency's (USEPA) Office of Research and Development has finalized the report Connectivity of Streams and Wetlands to Downstream Waters: A Review and Synthesis of the Scientific Evidence. The report reviews more than 1,200 peer-reviewed publications and summarizes current scientific understanding about the connectivity and mechanisms by which streams and wetlands, singly or in aggregate, affect the physical, chemical, and biological integrity of downstream waters. The focus of the report is on surface and shallow subsurface connections by which small or temporary streams, nontidal wetlands, and open waters affect larger waters such as rivers, lakes, reservoirs, and estuaries. This report represents the state-of-the-science on the connectivity and isolation of waters in the United States. It makes five major conclusions, summarized below, that are drawn from a broad range of peer reviewed scientific literature. The scientific literature unequivocally demonstrates that streams, regardless of their size or frequency of flow, are connected to downstream waters and strongly influence their function. The scientific literature clearly shows that wetlands and open waters in riparian areas (transitional areas between terrestrial and aquatic ecosystems) and floodplains are physically, chemically, and biologically integrated with rivers via functions that improve downstream water quality. These system

  7. Explosion Clad for Upstream Oil and Gas Equipment

    NASA Astrophysics Data System (ADS)

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-01

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO2 and/or H2S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  8. Reshaping the energy industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, F.W.

    1988-01-01

    Our energy industry has gone through the dynamic restructuring. The changes taking place in the energy industry will affect the pocketbooks, thus the lives, of every American, at every level. The geopolitical/militaristic intrigues which surround the international oil segment of this industry must be left to the dubious talents of others. But as motivators, planners, and executors of the powerful changes which are restructuring the other aspects of our industry, the author believes the American people share grave responsibilities. The author defines the scope, the meaning, the results of these changes, and applies the new techniques and technologies they provide.

  9. Single pass tangential flow filtration to debottleneck downstream processing for therapeutic antibody production.

    PubMed

    Dizon-Maspat, Jemelle; Bourret, Justin; D'Agostini, Anna; Li, Feng

    2012-04-01

    As the therapeutic monoclonal antibody (mAb) market continues to grow, optimizing production processes is becoming more critical in improving efficiencies and reducing cost-of-goods in large-scale production. With the recent trends of increasing cell culture titers from upstream process improvements, downstream capacity has become the bottleneck in many existing manufacturing facilities. Single Pass Tangential Flow Filtration (SPTFF) is an emerging technology, which is potentially useful in debottlenecking downstream capacity, especially when the pool tank size is a limiting factor. It can be integrated as part of an existing purification process, after a column chromatography step or a filtration step, without introducing a new unit operation. In this study, SPTFF technology was systematically evaluated for reducing process intermediate volumes from 2× to 10× with multiple mAbs and the impact of SPTFF on product quality, and process yield was analyzed. Finally, the potential fit into the typical 3-column industry platform antibody purification process and its implementation in a commercial scale manufacturing facility were also evaluated. Our data indicate that using SPTFF to concentrate protein pools is a simple, flexible, and robust operation, which can be implemented at various scales to improve antibody purification process capacity. Copyright © 2011 Wiley Periodicals, Inc.

  10. The decline of Arab oil revenues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farid, A.M.

    1986-01-01

    Since 1981, Arab oil revenues have declined by about 40-50%. This has had an enormous impact on the Arab economies as well as on economic and political relations between the Arab world, the industrialised world and the Third world. This book reviews how lower oil revenues have affected Arab countries and the international economy. It also considers the future prospects for Arab oil and the world oil industry. It analyses the various assessment of the life span of oil, the forecasts concerning the development of alternative sources of energy and the factors governing the demand for oil. Although the outlookmore » for the Arab economies appears gloomy in many respects, the book argues that there is potential within the Arab world to overcome the decline in oil revenues. However it will require great efforts in political and economic co-operation amongst Arab states.« less

  11. An evaluation of oil spill responses for offshore oil production projects in Newfoundland and Labrador, Canada: Implications for seabird conservation.

    PubMed

    Fraser, Gail S; Racine, Vincent

    2016-06-15

    Seabirds are vulnerable to oil pollution, particularly in cold-water regions. We investigated the response of small spills (<7.95m(3)) at offshore production platforms in Newfoundland, a region recognized for seabird diversity and abundance. In three environmental assessments for oil production operations Environment Canada requested monitoring and mitigation of small spills potentially impacting seabird populations; suggestions supported by two independent reviews. An industry spill response plan states that operators would collect systematic observations on spills and deploy countermeasures where possible. Operators' spill reports were obtained under an Access to Information request. There were 220 daytime spills with sheens (out of 381 spills; 1997-2010). Of these, six reported time to oil dispersion and eleven the presence or absence of seabirds. Industry self-reporting has not permitted an evaluation of the impact of chronic oil spills on seabirds. We recommend that independent observers be placed on platforms to systematically collect data on spills and seabirds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. PROCEEDINGS OF THE 1999 OIL HEAT TECHNOLOGY CONFERENCE AND WORKSHOP.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCDONALD,R.J.

    1999-04-01

    The 1999 Oil Heat Technology Conference and Workshop, April 15-16 at Brookhaven National Laboratory (BNL) is sponsored by the U. S. Department of Energy, Office of Building Technology, State and Community Programs (DOEBTS). The meeting is also co-sponsored by the: Petroleum Marketers Association of America, New England Fuel Institute, Oilheat Manufacturers Association, National Association of Oil Heat Service Managers, New York State Energy Research and Development Authority, Empire State Petroleum Association, New York Oil Heating Association, Oil Heat Institute of Long Island, and the Pennsylvania Petroleum Association. BNL is proud to acknowledge all of our 1999 co-sponsors, without their helpmore » and support the conference would have been canceled due to budget restrictions. It is quite gratifying to see an industry come together to help support an activity like the technology conference, for the benefit of the industry as a whole. The 1999 Oil Heat Technology Conference and Workshop, will be the thirteenth since 1984, is a very valuable technology transfer activity supported by the ongoing Combustion Equipment Technology (Oilheat R and D) program at BNL. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. They will provide a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector.« less

  13. 75 FR 11841 - Proposed Information Collection; Comment Request; Short Supply Regulations, Petroleum (Crude Oil)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Proposed Information Collection; Comment Request; Short Supply Regulations, Petroleum (Crude Oil) AGENCY: Bureau of Industry and Security. ACTION... supporting documentation for license applications to export petroleum (crude oil) and is used by licensing...

  14. Identification of acylglycerols containing dihydroxy fatty acids in castor oil by mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Ricinoleate, a monohydroxy fatty acid, in castor oil has many industrial uses. Dihydroxy fatty acids can also be used in industry. The C18 HPLC fractions of castor oil were used for mass spectrometry of lithium addicts to identify the acylglycerols containing dihydroxy fatty acids. Four diacylglycer...

  15. Supercritical carbon dioxide extraction of cuphea seed oil

    USDA-ARS?s Scientific Manuscript database

    Cuphea seed oil is being investigated as a potential domestic source of medium chain fatty acids for several industrial uses. Although the oil from cuphea seeds has been obtained using both solvent extraction and screw pressing, both methods suffer from several disadvantages. Petroleum ether extra...

  16. Hydrodistillation time affects dill seed essential oil yield, composition, and bioactivity

    USDA-ARS?s Scientific Manuscript database

    Dill (Anethum graveolens L.) essential oil is widely used by the food and pharmaceutical industries. We hypothesized that the chemical constituents of dill seed essential oil are eluted at different times during the hydrodistillation process, resulting in oils with different composition and bioactiv...

  17. Renewable resources in the chemical industry--breaking away from oil?

    PubMed

    Nordhoff, Stefan; Höcker, Hans; Gebhardt, Henrike

    2007-12-01

    Rising prices for fossil-based raw materials suggest that sooner or later renewable raw materials will, in principle, become economically viable. This paper examines this widespread paradigm. Price linkages like those seen for decades particularly in connection with petrochemical raw materials are now increasingly affecting renewable raw materials. The main driving force is the competing utilisation as an energy source because both fossil-based and renewable raw materials are used primarily for heat, electrical power and mobility. As a result, prices are determined by energy utilisation. Simple observations show how prices for renewable carbon sources are becoming linked to the crude oil price. Whether the application calls for sugar, starch, virgin oils or lignocellulose, the price for the raw material rises with the oil price. Consequently, expectations regarding price trends for fossil-based energy sources can also be utilised for the valuation of alternative processes. However, this seriously calls into question the assumption that a rising crude oil price will favour the economic viability of alternative products and processes based on renewable raw materials. Conversely, it follows that these products and processes must demonstrate economic viability today. Especially in connection with new approaches in white biotechnology, it is evident that, under realistic assumptions, particularly in terms of achievable yields and the optimisation potential of the underlying processes, the route to utilisation is economically viable. This makes the paradigm mentioned at the outset at least very questionable.

  18. A combined microwave pretreatment/solvent extraction process for the production of oil from palm fruit: optimisation, oil quality and effect of prolonged exposure.

    PubMed

    Tan, Jason Cx; Chuah, Cheng-Hock; Cheng, Sit-Foon

    2017-04-01

    Conventional palm oil milling involves multiple stages after fruit collection; in particular, oil clarification introduces water into the pressed oil, which results in a large quantity of wastewater. A combined process of microwave pretreatment and solvent extraction to mill crude palm oil, without introducing water or steam, is described. An excellent yield (up to 30%) of oil was obtained with pretreatment in a 42 L, 1000 W and 2450 MHz microwave oven followed by hexane extraction. The optimum conditions (10 min microwave pretreatment and 12 h solvent extraction) yielded an oil with a low free fatty acid content (<1.0%) and an acceptable anisidine value (<3.0 meq kg -1 ). The oil had a fatty acid composition not resembling those of conventional crude palm oil and crude palm kernel oil. In the pretreatment, the leached oil had 6.3% lauric acid whereas the solvent extracted oil had only 1.5% lauric acid. Among the factors affecting the oil quality, microwave pretreatment affected the oil quality significantly; however, an optimised duration that would ensure high efficiency in solvent extraction also resulted in ruptured fruitlets, although not to the extent of causing excessive oxidation. In fact, microwave pretreatment should exceed 12 min; after only 15 min, the oil had 1-methylcyclopentanol (12.96%), 1-tetradecanol (9.44%), 1-nonadecene (7.22%), nonanal (7.13%) and 1-tridecene (5.09%), which probably arose from the degradation of fibres. Microwave pretreatment represents an alternative milling process for crude palm oil compared with conventional processes in the omission of wet treatment with steam. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. From creekology to geology: Finding and conserving oil on the Southern Plains, 1859--1930

    NASA Astrophysics Data System (ADS)

    Frehner, Brian

    This dissertation tells the story of the oil industry's westward migration from Pennsylvania to the Southern Plains states of Kansas, Oklahoma, and Texas and how different environments in these regions influenced prospectors' methods for finding oil. Petroleum engineers, geologists, and businessmen take center stage throughout the narrative, and I emphasize how their biases, values, and interests influenced the kind of knowledge produced. At the heart of this story lay a contest between professional, university-trained engineers and geologists and so-called practical oil men, or "wildcatters," who received their training less formally from surveying the landscape. Although both groups performed field work in their search for oil, I explore how each learned very different information from that activity. Wildcatters met with so much success that the oil industry failed to take geologists seriously for approximately fifty years after 1860 when the Pennsylvania oil boom started, and I argue that the environment played an important role in this contest for authority between oil prospectors who learned their trade through hands-on experience and those who learned it primarily in the classroom. I continue this theme by showing how the environment actively influenced the growing acceptance of geologists as the oil industry migrated west and companies with interests in Kansas, Oklahoma, and Texas began hiring geologists and establishing their own geological research departments. A pioneer in the use of geology, Henry L. Doherty, controlled Cities Service holding company and dispatched an army of geologists who discovered significant oil strikes in these states. Doherty's embrace of university-trained experts led him to advocate conservation of oil on the basis of geological and engineering principles. Practical men in Oklahoma, however, recognized the need for conservation even earlier and succeeded in lobbying their state legislature for laws which proved effective long

  20. Suitability of online 3D visualization technique in oil palm plantation management

    NASA Astrophysics Data System (ADS)

    Mat, Ruzinoor Che; Nordin, Norani; Zulkifli, Abdul Nasir; Yusof, Shahrul Azmi Mohd

    2016-08-01

    Oil palm industry has been the backbone for the growth of Malaysia economy. The exports of this commodity increasing almost every year. Therefore, there are many studies focusing on how to help this industry increased its productivity. In order to increase the productivity, the management of oil palm plantation need to be improved and strengthen. One of the solution in helping the oil palm manager is by implementing online 3D visualization technique for oil palm plantation using game engine technology. The potential of this application is that it can helps in fertilizer and irrigation management. For this reason, the aim of this paper is to investigate the issues in managing oil palm plantation from the view of oil palm manager by interview. The results from this interview will helps in identifying the suitable issues could be highlight in implementing online 3D visualization technique for oil palm plantation management.

  1. EssOilDB: a database of essential oils reflecting terpene composition and variability in the plant kingdom

    PubMed Central

    Kumari, Sangita; Pundhir, Sachin; Priya, Piyush; Jeena, Ganga; Punetha, Ankita; Chawla, Konika; Firdos Jafaree, Zohra; Mondal, Subhasish; Yadav, Gitanjali

    2014-01-01

    Plant essential oils are complex mixtures of volatile organic compounds, which play indispensable roles in the environment, for the plant itself, as well as for humans. The potential biological information stored in essential oil composition data can provide an insight into the silent language of plants, and the roles of these chemical emissions in defense, communication and pollinator attraction. In order to decipher volatile profile patterns from a global perspective, we have developed the ESSential OIL DataBase (EssOilDB), a continually updated, freely available electronic database designed to provide knowledge resource for plant essential oils, that enables one to address a multitude of queries on volatile profiles of native, invasive, normal or stressed plants, across taxonomic clades, geographical locations and several other biotic and abiotic influences. To our knowledge, EssOilDB is the only database in the public domain providing an opportunity for context based scientific research on volatile patterns in plants. EssOilDB presently contains 123 041 essential oil records spanning a century of published reports on volatile profiles, with data from 92 plant taxonomic families, spread across diverse geographical locations all over the globe. We hope that this huge repository of VOCs will facilitate unraveling of the true significance of volatiles in plants, along with creating potential avenues for industrial applications of essential oils. We also illustrate the use of this database in terpene biology and show how EssOilDB can be used to complement data from computational genomics to gain insights into the diversity and variability of terpenoids in the plant kingdom. EssOilDB would serve as a valuable information resource, for students and researchers in plant biology, in the design and discovery of new odor profiles, as well as for entrepreneurs—the potential for generating consumer specific scents being one of the most attractive and interesting topics

  2. The role of global economic policy uncertainty in long-run volatilities and correlations of U.S. industry-level stock returns and crude oil

    PubMed Central

    Yu, Honghai; Sun, Boyang

    2018-01-01

    We investigate how Global Economic Policy Uncertainty (GEPU) drives the long-run components of volatilities and correlations in crude oil and U.S. industry-level stock markets. Using the modified generalized autoregressive conditional heteroskedasticity mixed data sampling (GARCH-MIDAS) and dynamic conditional correlation mixed data sampling (DCC-MIDAS) specifications, we find that GEPU is positively related to the long-run volatility of Financials and Consumer Discretionary industries; however, it is negatively related to Information Technology, Materials, Telecommunication Services and Energy. Unlike the mixed role of GEPU in the long-run volatilities, the long-run correlations are all positively related to GEPU across the industries. Additionally, the rankings of the correlations of Energy and Materials are time-invariant and classified as high, with the little exception of the latter. The Consumer Staples industry is time-invariant in the low-ranking group. Our results are helpful to policy makers and investors with long-term concerns. PMID:29420645

  3. The role of global economic policy uncertainty in long-run volatilities and correlations of U.S. industry-level stock returns and crude oil.

    PubMed

    Yu, Honghai; Fang, Libing; Sun, Boyang

    2018-01-01

    We investigate how Global Economic Policy Uncertainty (GEPU) drives the long-run components of volatilities and correlations in crude oil and U.S. industry-level stock markets. Using the modified generalized autoregressive conditional heteroskedasticity mixed data sampling (GARCH-MIDAS) and dynamic conditional correlation mixed data sampling (DCC-MIDAS) specifications, we find that GEPU is positively related to the long-run volatility of Financials and Consumer Discretionary industries; however, it is negatively related to Information Technology, Materials, Telecommunication Services and Energy. Unlike the mixed role of GEPU in the long-run volatilities, the long-run correlations are all positively related to GEPU across the industries. Additionally, the rankings of the correlations of Energy and Materials are time-invariant and classified as high, with the little exception of the latter. The Consumer Staples industry is time-invariant in the low-ranking group. Our results are helpful to policy makers and investors with long-term concerns.

  4. New Norwegian HSE standard for the offshore industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huse, J.R.

    1996-12-31

    NORSOK (The competitive standing of the Norwegian offshore sector) is the Norwegian industry initiative to add value, reduce cost and lead time and remove unnecessary activities in offshore field developments and operations. The NORSOK standards are developed by the Norwegian petroleum industry as a part of the NORSOK initiative and are jointly issued by the Norwegian Oil Industry Association and the Federation of Norwegian Engineering Industries. The purpose of the industry standard is to replace the individual oil company specifications for use in existing and future petroleum industry developments, subject to the individual company`s review and application. The NORSOK Health,more » Safety and Environment (HSE) standards covers: Technical Safety, Working Environment, Environmental Care, HSE during Construction. The standards are now being used in ongoing offshore development projects, and the experience with standards shows that the principle aim is being met. The development of standards continues, implementing experience gained.« less

  5. Response to heavy, non-floating oil spilled in a Great Lakes river environment: a multiple-lines-of-evidence approach for submerged oil assessment and recovery

    USGS Publications Warehouse

    Dollhopf, Ralph H.; Fitzpatrick, Faith A.; Kimble, Jeffrey W.; Capone, Daniel M.; Graan, Thomas P.; Zelt, Ronald B.; Johnson, Rex

    2014-01-01

    The Enbridge Line 6B pipeline release of diluted bitumen into the Kalamazoo River downstream of Marshall, MI in July 2010 is one of the largest freshwater oil spills in North American history. The unprecedented scale of impact and massive quantity of oil released required the development and implementation of new approaches for detection and recovery. At the onset of cleanup, conventional recovery techniques were employed for the initially floating oil and were successful. However, volatilization of the lighter diluent, along with mixing of the oil with sediment during flooded, turbulent river conditions caused the oil to sink and collect in natural deposition areas in the river. For more than three years after the spill, recovery of submerged oil has remained the predominant operational focus of the response. The recovery complexities for submerged oil mixed with sediment in depositional areas and long-term oil sheening along approximately 38 miles of the Kalamazoo River led to the development of a multiple-lines-of-evidence approach comprising six major components: geomorphic mapping, field assessments of submerged oil (poling), systematic tracking and mapping of oil sheen, hydrodynamic and sediment transport modeling, forensic oil chemistry, and net environmental benefit analysis. The Federal On-Scene Coordinator (FOSC) considered this information in determining the appropriate course of action for each impacted segment of the river. New sources of heavy crude oils like diluted bitumen and increasing transportation of those oils require changes in the way emergency personnel respond to oil spills in the Great Lakes and other freshwater ecosystems. Strategies to recover heavy oils must consider that the oils may suspend or sink in the water column, mix with fine-grained sediment, and accumulate in depositional areas. Early understanding of the potential fate and behavior of diluted bitumen spills when combined with timely, strong conventional recovery methods can

  6. Downstream promoter interactions of TFIID TAFs facilitate transcription reinitiation

    PubMed Central

    Joo, Yoo Jin; Ficarro, Scott B.; Soares, Luis M.; Chun, Yujin; Marto, Jarrod A.; Buratowski, Stephen

    2017-01-01

    TFIID binds promoter DNA to recruit RNA polymerase II and other basal factors for transcription. Although the TATA-binding protein (TBP) subunit of TFIID is necessary and sufficient for in vitro transcription, the TBP-associated factor (TAF) subunits recognize downstream promoter elements, act as coactivators, and interact with nucleosomes. In yeast nuclear extracts, transcription induces stable TAF binding to downstream promoter DNA, promoting subsequent activator-independent transcription reinitiation. In vivo, promoter responses to TAF mutations correlate with the level of downstream, rather than overall, Taf1 cross-linking. We propose a new model in which TAFs function as reinitiation factors, accounting for the differential responses of promoters to various transcription factor mutations. PMID:29203645

  7. Evaluation of Oil-Industry Stimulation Practices for Engineered Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Van Dyke; Leen Weijers; Ann Robertson-Tait

    injecting fluid below fracturing gradients) (section 4.1 on page 50); b) zonal isolation methods (by use of perforated casing or packers) (section 4.2 on page 57); c) fracture re-orientation and fracture network growth techniques (e.g., by use of alternating high- and low-rate injections) (section 4.4 on page 74); and d) fluid diversion methods (by use of the SurgiFrac technique, the StimGun perforation technique, or stress shadowing). This project task is to be completed in the first project year, enabling the most promising techniques to be field tested and evaluated in the second project year. 3) Study the applicability of the methods listed above by utilizing several techniques (section 5 on page 75) including, but not limited to: a) Hydraulic Impedance Testing (HIT) to determine the location of open hydraulic fractures along a open-hole interval; b) pressure transient testing to determine reservoir permeability, pore pressure, and closure stress; and c) treatment well tilt mapping or microseismic mapping to evaluate fracture coverage. These techniques were reviewed for their potential application for EGS in the first project year (section 5.1 on page 75). This study also includes further analysis of any field testing that will be conducted in the Desert Peak area in Nevada for ORMAT Nevada, Inc. (section 5.2 on page 86), with the aim to close the loop to provide reliable calibrated fracture model results. Developed through its hydraulic fracture consulting business, techniques of Pinnacle Technologies, Inc. for stimulating and analyzing fracture growth have helped the oil and gas industry to improve hydraulic fracturing from both a technical and economic perspective. In addition to more than 30 years of experience in the development of geothermal energy for commercial power generation throughout the world, GeothermEx, Inc. brings to the project: 1) Detailed information about specific developed and potential EGS reservoirs, 2) experience with geothermal well design

  8. [Progress and prospect of bio-jet fuels industry in domestic and overseas].

    PubMed

    Qiao, Kai; Fu, Jie; Zhou, Feng; Ma, Huixia

    2016-10-25

    We reviewed the progress of the bio-jet fuels industry in recent years and systematically analyzed the technical routes that have been approved or in the pipeline for approval by ASTM D7566. In addition, we highlighted a novel pathway to produce drop-in fuel by near-critical hydrolysis of waste cooking oils or algal oils followed by catalytic decarboxylation. Also, we introduced the source of oils and fats feedstock and the domestic bio-jet fuel industry status during the 12th Five-Year-Plan period. Based on our own research, we discussed the prospect of the bio-jet fuel industry and future research needs.

  9. 9. VIEW WEST TOWARD DOWNSTREAM SIDE OF SPILLWAY FROM NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW WEST TOWARD DOWNSTREAM SIDE OF SPILLWAY FROM NORTH SIDE OF DOWNSTREAM BANK OF DAM - Upper Doughty Dam, 200 feet west of Garden State Parkway, 1.7 miles west of Absecon, Egg Harbor City, Atlantic County, NJ

  10. Failing to Fix What is Found: Risk Accommodation in the Oil and Gas Industry.

    PubMed

    Stackhouse, Madelynn R D; Stewart, Robert

    2017-01-01

    The present program of research synthesizes the findings from three studies in line with two goals. First, the present research explores how the oil and gas industry is performing at risk mitigation in terms of finding and fixing errors when they occur. Second, the present research explores what factors in the work environment relate to a risk-accommodating environment. Study 1 presents a descriptive evaluation of high-consequence incidents at 34 oil and gas companies over a 12-month period (N = 873), especially in terms of those companies' effectiveness at investigating and fixing errors. The analysis found that most investigations were fair in terms of quality (mean = 75.50%), with a smaller proportion that were weak (mean = 11.40%) or strong (mean = 13.24%). Furthermore, most companies took at least one corrective action for high-consequence incidents, but few of these corrective actions were confirmed as having been completed (mean = 13.77%). In fact, most corrective actions were secondary interim administrative controls (e.g., having a safety meeting) rather than fair or strong controls (e.g., training, engineering elimination). Study 2a found that several environmental factors explain the 56.41% variance in safety, including management's disengagement from safety concerns, finding and fixing errors, safety management system effectiveness, training, employee safety, procedures, and a production-over-safety culture. Qualitative results from Study 2b suggest that a compliance-based culture of adhering to liability concerns, out-group blame, and a production-over-safety orientation may all impede safety effectiveness. © 2016 Society for Risk Analysis.

  11. Novel multifunctional plant growth-promoting bacteria in co-compost of palm oil industry waste.

    PubMed

    Chin, Clament Fui Seung; Furuya, Yoshihide; Zainudin, Mohd Huzairi Mohd; Ramli, Norhayati; Hassan, Mohd Ali; Tashiro, Yukihiro; Sakai, Kenji

    2017-11-01

    Previously, a unique co-compost produced by composting empty fruit bunch with anaerobic sludge from palm oil mill effluent, which contributed to establishing a zero-emission industry in Malaysia. Little was known about the bacterial functions during the composting process and fertilization capacity of this co-compost. We isolated 100 strains from the co-compost on 7 types of enumeration media and screened 25 strains using in vitro tests for 12 traits, grouping them according to three functions: plant growth promoting (fixation of nitrogen; solubilization of phosphorus, potassium, and silicate; production of 3-indoleacetic acid, ammonia, and siderophore), biocontrolling (production of chitinase and anti-Ganoderma activity), and composting (degradation of lignin, xylan, and cellulose). Using 16S rRNA gene sequence analysis, 25 strains with strong or multi-functional traits were found belong to the genera Bacillus, Paenibacillus, Citrobacter, Enterobacter, and Kosakonia. Furthermore, several strains of Citrobacter sedlakii exhibited a plant growth-stimulation in vivo komatsuna plant cultivation test. In addition, we isolated several multifunctional strains; Bacillus tequilensis CE4 (biocontrolling and composting), Enterobacter cloacae subsp. dissolvens B3 (plant growth promoting and biocontrolling), and C. sedlakii CESi7 (plant growth promoting and composting). Some bacteria in the co-compost play significant roles during the composting process and plant cultivation after fertilization, and some multifunctional strains have potential for use in accelerating the biodegradation of lignocellulosic biomass, protecting against Ganoderma boninense infection, and increasing the yield of palm oil. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. The role of headwater streams in downstream water quality

    USGS Publications Warehouse

    Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwarz, G.E.; Moore, R.B.

    2007-01-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and

  13. Evaluation of chosen fruit seeds oils as potential biofuel

    NASA Astrophysics Data System (ADS)

    Agbede, O. O.; Alade, A. O.; Adebayo, G. A.; Salam, K. K.; Bakare, T.

    2012-04-01

    Oils available in mango, tangerine and African star seeds were extracted and characterized to determine their fuel worthiness for biofuel production. Furthermore, the fuel properties of the three oils were within the range observed for some common oil seeds like rapeseed, soybean and sunflower, which are widely sourced for the production of biodiesel on an industrial scale. The low iodine values of the oil extend their applications as non-drying oil for lubrication purposes, however, the fuel properties exhibited by the oils enlist them as potential oil seeds for the production of biofuel and further research on the improvement of their properties will make them suitable biofuel of high economic values.

  14. Identification of minor acylglycerols less polar than triricinolein in castor oil by mass spectrometry and the proposed biosynthetic pathway of castor oil

    USDA-ARS?s Scientific Manuscript database

    Ricinoleate (OH18:1), a monohydroxy fatty acid, has many industrial uses such as the manufacture of biodegradable plastics, nylon, plasticizers, lubricants, cosmetics and paints. Castor oil is the only commericial source of ricinoleate which occurs as triacylglycerols. Triacylglycerols in castor oil...

  15. Possibilities and challenges for biosurfactants use in petroleum industry.

    PubMed

    Perfumo, Amedea; Rancich, Ivo; Banat, Ibrahim M

    2010-01-01

    Biosurfactants are a group of microbial molecules identified by their unique capabilities to interact with hydrocarbons. Emulsification and de-emulsification, dispersion, foaming, wetting and coating are some of the numerous surface activities that biosurfactants can achieve when applied within systems such as immiscible liquid/liquid (e.g., oil/water), solid/ liquid (e.g., rock/oil and rock/water) and gas/liquid. Therefore, the possibilities of exploiting these bioproducts in oil-related sciences are vast and made petroleum industry their largest possible market at present. The role of biosurfactants in enhancing oil recovery from reservoirs is certainly the best known; however they can be effectively applied in many other fields from transportation of crude oil in pipeline to the clean-up of oil storage tanks and even manufacturing of fine petrochemicals. When properly used, biosurfactants are comparable to traditional chemical analogues in terms of performances and offer advantages with regard to environment protection/conservation. This chapter aims at providing an up-to-date overview of biosurfactant roles, applications and possible future uses related to petroleum industry.

  16. Users’ acceptance and attitude in regarding electronic medical record at central polyclinic of oil industry in Isfahan, Iran

    PubMed Central

    Tavakoli, Nahid; Shahin, Arash; Jahanbakhsh, Maryam; Mokhtari, Habibollah; Rafiei, Maryam

    2013-01-01

    Introduction: Simultaneous with the rapid changes in the technology and information systems, hospitals interest in using them. One of the most common systems in hospitals is electronic medical record (EMR) whose one of uses is providing better health care quality via health information technology. Prior to its use, attempts should be put to identifying factors affecting the acceptance, attitude and utilizing of this technology. The current article aimed to study the effective factors of EMR acceptance by technology acceptance model (TAM) at central polyclinic of Oil Industry in Isfahan. Materials and Methods: This was a practical, descriptive and regression study. The population research were all EMR users at polyclinic of Oil Industry in 2012 and its sampling was simple random with 62 users. The tool of data collection was a research-made questionnaire based on TAM. The validity of questionnaire has been assigned through the strategy of content validity and health information technology experts’ views and its reliability by test-retest. Findings: The system users have positive attitude toward using EMR (56.6%). Also, users are not very satisfied with effective external (38.14%) and behavioral factors (47.8%) upon using the system. Perceived ease-of-use (PEU) and perceived usefulness (PU) were at a good level. Conclusion: Lack of relative satisfaction with using of EMR derives from factors such as appearance, screen, data and information quality and terminology. In this study, it is suggested to improve the system and the efficiency of the users through software’ external factors development. So that PEU and users’ attitude to be changed and moved in positive manner. PMID:24524089

  17. 11. VIEW NORTH ALONG DOWNSTREAM BANK OF DAM FROM SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW NORTH ALONG DOWNSTREAM BANK OF DAM FROM SOUTH SIDE OF CHANNEL ON DOWNSTREAM SIDE OF RESERVOIR - Upper Doughty Dam, 200 feet west of Garden State Parkway, 1.7 miles west of Absecon, Egg Harbor City, Atlantic County, NJ

  18. DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitňa, A.; Šafránková, J.; Němeček, Z.

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those inmore » the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.« less

  19. Fatalities among oil and gas extraction workers--United States, 2003-2006.

    PubMed

    2008-04-25

    Oil and gas extraction (i.e., removing oil and natural gas from the ground) is a growing industry in the United States, employing approximately 380,000 workers in 2006. In recent years, activity in this industry has increased substantially, from an average of 800 actively drilling rigs in the United States during the 1990s to approximately 1,300 during 2003-2006. In August 2005, the U.S. Department of Labor's Bureau of Labor Statistics (BLS) asked CDC to investigate a 15% increase in fatalities among oil and gas extraction workers (from 85 fatalities in 2003 to 98 in 2004). CDC analyzed data from the BLS Census of Fatal Occupational Injuries (CFOI) for the period 2003-2006. This report describes the results of that analysis, which indicated that increases in oil and gas extraction activity were correlated with an increase in the rate of fatal occupational injuries in this industry, with an annual fatality rate of 30.5 per 100,000 workers (404 fatalities) during 2003-2006, approximately seven times the rate for all workers (4.0 per 100,000 workers). Nearly half of all fatal injuries among these workers were attributed to highway motor-vehicle crashes and workers being struck by machinery or equipment. Employers should work with existing industry groups and federal, state, and local government agencies to promote seatbelt use. In addition, researchers and public health officials should collaborate with industry groups to establish engineering and process controls that remove workers from potentially dangerous machinery while drilling and servicing oil and gas wells.

  20. The relationship of crime and oil development in the coastal regions of Louisiana

    NASA Astrophysics Data System (ADS)

    Luthra, Asha D.

    This project examines the relationship between patterns of crime and the development of the oil and gas extraction industry in the coastal regions of Louisiana. The suggestion of a link between these phenomena has often been made, but little systematic research has been conducted to determine if there is indeed a crime-oil development nexus. Limited previous research has focused primarily on the issue of "boom and bust" cycles on some forms of deviant behavior, but the data and the methods used were inadequate, and thus, the resulting conclusions were often misleading or possibly erroneous. During the course of this project, a comprehensive database is constructed that facilitates a longitudinal analysis of concomitant variation in crime patterns and oil extraction activity. Annual crime data are obtained at the parish and county level for all years beginning in 1974 and merged with corresponding social and economic data. This dataset allows for a multivariate pooled time series analysis, with adequate controls, to determine the degree of influence between oil activity and crime patterns. The results from the analysis suggest that changes in oil activity and high levels of labor market involvement in the offshore oil industry are not strongly associated with community disruption in the form of crime. The only statistically significant effects due to changes in oil activity are decreased levels of homicide and aggravated assault. Oil development is not associated with any other crime in the analysis despite accounting for the boom and bust cycles of the oil industry over a 25 year period for 12 parishes that are highly involved in the industry. As the industry becomes more active and undergoes an increased labor demand, incidents of homicide and assault decline in the community. This finding does not support some previous boomtown model research that argues that energy development causes higher rates of social disruption, including higher crime rates (Seydlitz et al

  1. Utah Heavy Oil Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Bauman; S. Burian; M. Deo

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987more » technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.« less

  2. A review on applications of nanotechnology in the enhanced oil recovery part B: effects of nanoparticles on flooding

    NASA Astrophysics Data System (ADS)

    Cheraghian, Goshtasp; Hendraningrat, Luky

    2016-11-01

    Chemical flooding is of increasing interest and importance due to high oil prices and the need to increase oil production. Research in nanotechnology in the petroleum industry is advancing rapidly, and an enormous progress in the application of nanotechnology in this area is to be expected. The nanotechnology has been widely used in several other industries, and the interest in the oil industry is increasing. Nanotechnology has the potential to profoundly change enhanced oil recovery and to improve mechanism of recovery, and it is chosen as an alternative method to unlock the remaining oil resources and applied as a new enhanced oil recovery method in last decade. This paper therefore focuses on the reviews of the application of nanotechnology in chemical flooding process in oil recovery and reviews the applications of nanomaterials for improving oil recovery that have been proposed to explain oil displacement by polymer flooding within oil reservoirs, and also this paper highlights the research advances of polymer in oil recovery. Nanochemical flooding is an immature method from an application point of view.

  3. Hydrodistillation extraction time effect on essential oil yield, composition, and bioactivity of coriander oil.

    PubMed

    Zheljazkov, Valtcho D; Astatkie, Tess; Schlegel, Vicki

    2014-01-01

    Coriander (Coriandrum sativum L.) is a major essential oil crop grown throughout the world. Coriander essential oil is extracted from coriander fruits via hydrodistillation, with the industry using 180-240 min of distillation time (DT), but the optimum DT for maximizing essential oil yield, composition of constituents, and antioxidant activities are not known. This research was conducted to determine the effect of DT on coriander oil yield, composition, and bioactivity. The results show that essential oil yield at the shorter DT was low and generally increased with increasing DT with the maximum yields achieved at DT between 40 and 160 min. The concentrations of the low-boiling point essential oil constituents: α-pinene, camphene, β-pinene, myrcene, para-cymene, limonene, and γ-terpinene were higher at shorter DT (< 2.5 min) and decreased with increasing DT; but the trend reversed for the high-boiling point constituents: geraniol and geranyl-acetate. The concentration of the major essential oil constituent, linalool, was 51% at DT 1.15 min, and increased steadily to 68% with increasing DT. In conclusion, 40 min DT is sufficient to maximize yield of essential oil; and different DT can be used to obtain essential oil with differential composition. Its antioxidant capacity was affected by the DT, with 20 and 240 min DT showing higher antioxidant activity. Comparisons of coriander essential oil composition must consider the length of the DT.

  4. Lipase pre-hydrolysis enhance anaerobic biodigestion of soap stock from an oil refining industry.

    PubMed

    Cherif, Slim; Aloui, Fathi; Carrière, Frédéric; Sayadi, Sami

    2014-01-01

    A novel alcalophilic Staphylococcus haemolyticus strain with the lipolytic activity was used to perform enzymatic hydrolysis pretreatment of soap stock: a lipid rich solid waste from an oil refining industry. The culture liquid of the selected bacteria and an enzymatic preparation obtained by precipitation with ammonium sulphate from a filtrate of the same culture liquid were used for enzymatic pretreatment. The hydrolysis was carried with different incubation concentrations (10, 20 and 30%) of soap stock and the pretreatment efficiency was verified by running comparative biodegradability tests (crude and treated lipid waste). All pretreated assays showed higher reaction rate compared to crude lipid waste, which was confirmed by the increased levels of biogas production. The pretreatment of solutions containing 10% emulsified soap stock was optimized for 24 h hydrolysis time, enabling high-biogaz formation (800 ml). The use of enzymatic pre-treatment seemed to be a very promising alternative for treating soap stock having high fat contents.

  5. Waste incineration industry and development policies in China.

    PubMed

    Li, Yun; Zhao, Xingang; Li, Yanbin; Li, Xiaoyu

    2015-12-01

    The growing pollution from municipal solid waste due to economic growth and urbanization has brought great challenge to China. The main method of waste disposal has gradually changed from landfill to incineration, because of the enormous land occupation by landfills. The paper presents the results of a study of the development status of the upstream and downstream of the waste incineration industry chain in China, reviews the government policies for the waste incineration power industry, and provides a forecast of the development trend of the waste incineration industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Oil Based Drilling Fluid Waste: An Overview on Environmentally Persistent Pollutants

    NASA Astrophysics Data System (ADS)

    Siddique, Shohel; Kwoffie, Lorraine; Addae-Afoakwa, Kofi; Yates, Kyari; Njuguna, James

    2017-05-01

    Operational discharges of spent drilling fluid, produced water, and accumulated drill cuttings from oil and gas industry are a continuous point source of environmental pollution. To meet the strict environmental standard for waste disposal, oil and gas industry is facing a numerous challenges in technological development to ensure a clean and safe environment. Oil and gas industry generates a large amount of spent drilling fluid, produced water, and drill cuttings, which are very different in every drilling operation in terms of composition and characterisation. This review article highlights the knowledge gap in identifying the different sources of waste streams in combined drilling waste. This paper also emphasises how different chemicals turn into environmentally significant pollutants after serving great performance in oil and gas drilling operations. For instance, oil based drilling fluid performs excellent in deeper drilling and drilling in the harsh geological conditions, but ended with (produces) a significant amount of persistent toxic pollutants in the environment. This review paper provides an overview on the basic concepts of drilling fluids and their functions, sources and characterisation of drilling wastes, and highlights some environmentally significant elements including different minerals present in drilling waste stream.

  7. Middle East oil and gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-12-01

    The following subjects are covered in this publication: (1) position of preeminence of the Middle East; (2) history of area's oil operations for Iran, Iraq, Bahrain, Kuwait, Saudi Arabia, neutral zone, Qatar, United Arab Emirates, Oman and Egypt; (3) gas operations of Saudi Arabia, Iran, Kuwait, Qatar, Iraq and United Arab Emirates; (4) changing relationships with producing countries; (5) a new oil pricing environment; (6) refining and other industrial activities; and (7) change and progress. 10 figs., 12 tabs.

  8. Oil and gas field code master list, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.

  9. Mortality of zebra mussel, Dreissena polymorpha, veligers during downstream transport

    USGS Publications Warehouse

    Horvath, T.G.; Lamberti, G.A.

    1999-01-01

    1. Streams flowing from lakes which contain zebra mussels, Dreissena polymorpha, provide apparently suitable habitats for mussel colonization and downstream range expansion, yet most such streams contain few adult mussels. We postulated that mussel veligers experience high mortality during dispersal via downstream transport. They tested this hypothesis in Christiana Creek, a lake-outlet stream in south-western Michigan, U.S.A., in which adult mussel density declined exponentially with distance downstream. 2. A staining technique using neutral red was developed and tested to distinguish quickly live and dead veligers. Live and dead veligers were distinguishable after an exposure of fresh samples to 13.3 mg L-1 of neutral red for 3 h. 3. Neutral red was used to determine the proportion of live veligers in samples taken longitudinally along Christiana Creek. The proportion of live veligers (mean ?? SE) declined from 90 ?? 3% at the lake outlet to 40 ?? 8% 18 km downstream. 4. Veligers appear to be highly susceptible to damage by physical forces (e.g. shear), and therefore, mortality in turbulent streams could be an important mechanism limiting zebra mussel dispersal to downstream reaches. Predictions of zebra mussel spread and population growth should consider lake-stream linkages and high mortality in running waters.

  10. Future Oil Spills and Possibilities for Intervention: A Model for the Coupled Human-Environmental Resource Extraction System

    NASA Astrophysics Data System (ADS)

    Shughrue, C. M.; Werner, B.; Nugnug, P. T.

    2010-12-01

    The catastrophic Deepwater Horizon oil spill highlights the risks for widespread environmental damage resulting from petroleum resource extraction. Possibilities for amelioration of these risks depend critically on understanding the dynamics and nonlinear interactions between various components of the coupled human-environmental resource extraction system. We use a complexity analysis to identify the levels of description and time scales at which these interactions are strongest, and then use the analysis as the basis for an agent-based numerical model with which decadal trends can be analyzed. Oil industry economic and technological activity and associated oil spills are components of a complex system that is coupled to natural environment, legislation, regulation, media, and resistance systems over annual to decadal time scales. In the model, oil spills are produced stochastically with a range of magnitudes depending on a reliability-engineering-based assessment of failure for the technology employed, human factors including compliance with operating procedures, and risks associated with the drilling environment. Oil industry agents determine drilling location and technological investment using a cost-benefit analysis relating projected revenue from added production to technology cost and government regulation. Media outlet agents reporting on the oil industry and environmental damage from oil spills assess the impacts of aggressively covering a story on circulation increases, advertiser concerns and potential loss of information sources. Environmental advocacy group agents increase public awareness of environmental damage (through media and public contact), solicit memberships and donations, and apply direct pressure on legislators for policy change. Heterogeneous general public agents adjust their desire for change in the level of regulation, contact their representatives or participate in resistance via protest by considering media sources, personal

  11. Effects of the Oil Spill on Alaskan Education.

    ERIC Educational Resources Information Center

    Oldaker, Lawrence Lee

    Oil-industry-produced revenues, help finance Alaskan state and local governmental services including education. Capital losses incurred by the Exxon Corporation and by commerical fisheries as a consequence of the Exxon Valdez oil spill caused an economic recession, the result being diminished financing for a number of governmental programs and…

  12. Critical challenges in ERP implementation: A qualitative case study in the Canadian oil and gas industry

    NASA Astrophysics Data System (ADS)

    Menon, Sreekumar A.

    This exploratory qualitative single-case study examines critical challenges encountered during ERP implementation based on individual perspectives in four project roles: senior leaders, project managers, project team members, and business users, all specifically in Canadian oil and gas industry. Data was collected by interviewing participants belonging to these categories, and by analyzing project documentation about ERP implementation. The organization for the case study was a leading multinational oil and gas company having a substantial presence in the energy sector in Canada. The study results were aligned with the six management questions regarding critical challenges in ERP: (a) circumstances to implement ERP, (b) benefits and process improvements achieved, (c) best practices implemented, (d) critical challenges encountered, (e) strategies and mitigating actions used, and (f) recommendations to improve future ERP implementations. The study results highlight six key findings. First, the study provided valid circumstances for implementing ERP systems. Second, the study underscored the importance of benefits and process improvements in ERP implementation. Third, the study highlighted that adoption of best practices is crucial for ERP Implementation. Fourth, the study found that critical challenges are encountered in ERP Implementation and are significant during ERP implementation. Fifth, the study found that strategies and mitigating actions can overcome challenges in ERP implementation. Finally, the study provided ten major recommendations on how to improve future ERP implementations.

  13. Quantitative and qualitative analysis of naphthenic acids in natural waters surrounding the Canadian oil sands industry.

    PubMed

    Ross, Matthew S; Pereira, Alberto dos Santos; Fennell, Jon; Davies, Martin; Johnson, James; Sliva, Lucie; Martin, Jonathan W

    2012-12-04

    The Canadian oil sands industry stores toxic oil sands process-affected water (OSPW) in large tailings ponds adjacent to the Athabasca River or its tributaries, raising concerns over potential seepage. Naphthenic acids (NAs; C(n)H(2n-Z)O(2)) are toxic components of OSPW, but are also natural components of bitumen and regional groundwaters, and may enter surface waters through anthropogenic or natural sources. This study used a selective high-resolution mass spectrometry method to examine total NA concentrations and NA profiles in OSPW (n = 2), Athabasca River pore water (n = 6, representing groundwater contributions) and surface waters (n = 58) from the Lower Athabasca Region. NA concentrations in surface water (< 2-80.8 μg/L) were 100-fold lower than previously estimated. Principal components analysis (PCA) distinguished sample types based on NA profile, and correlations to water quality variables identified two sources of NAs: natural fatty acids, and bitumen-derived NAs. Analysis of NA data with water quality variables highlighted two tributaries to the Athabasca River-Beaver River and McLean Creek-as possibly receiving OSPW seepage. This study is the first comprehensive analysis of NA profiles in surface waters of the region, and demonstrates the need for highly selective analytical methods for source identification and in monitoring for potential effects of development on ambient water quality.

  14. Production of bioethanol by direct bioconversion of oil-palm industrial effluent in a stirred-tank bioreactor.

    PubMed

    Alam, Md Zahangir; Kabbashi, Nassereldeen A; Hussin, S Nahdatul I S

    2009-06-01

    The purpose of this study was to evaluate the feasibility of producing bioethanol from palm-oil mill effluent generated by the oil-palm industries through direct bioconversion process. The bioethanol production was carried out through the treatment of compatible mixed cultures such as Thrichoderma harzianum, Phanerochaete chrysosporium, Mucor hiemalis, and yeast, Saccharomyces cerevisiae. Simultaneous inoculation of T. harzianum and S. cerevisiae was found to be the mixed culture that yielded the highest ethanol production (4% v/v or 31.6 g/l). Statistical optimization was carried out to determine the operating conditions of the stirred-tank bioreactor for maximum bioethanol production by a two-level fractional factorial design with a single central point. The factors involved were oxygen saturation level (pO(2)%), temperature, and pH. A polynomial regression model was developed using the experimental data including the linear, quadratic, and interaction effects. Statistical analysis showed that the maximum ethanol production of 4.6% (v/v) or 36.3 g/l was achieved at a temperature of 32 degrees C, pH of 6, and pO(2) of 30%. The results of the model validation test under the developed optimum process conditions indicated that the maximum production was increased from 4.6% (v/v) to 6.5% (v/v) or 51.3 g/l with 89.1% chemical-oxygen-demand removal.

  15. Future for oil and gas in the EEC. I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1974-03-01

    This study by UNICE (Union of Industries of the EEC), prepared prior to the October 1973 Mideast conflict, shows remarkable foresight in the light of subsequent events. Of the 3 major industrial units (the U.S., Europe, and Japan), Europe would be in the weakest position in the event of an energy shortage. During the 1973-85 period, the techncal risks threatening the security of Europe's oil supplies are subordinate to the political and economic risks: (1) Certain producing countries may be tempted to use their oil potential as a means of influencing foreign policy by limiting production, (2) international monetary problemsmore » and worldwide inflation may give rise to producer-country reactions which are not confined to the technical field, and (3) the utilization of the vast financial resources of some producer countries may prove a serious problem. UNICE considers it imperative for the EEC, in collaboration with industry and with due regard for the fundamental importance of competition, to arrive at a common energy policy as soon as possible and to take the decisions necessary to ensure the long-term security of energy supplies on satisfactory economic terms. The EEC and the national governments must seek to promote the security of energy supplies in all forms, ensure an adequate profitability level to finance investment, deal more flexibly with environmental problems, adopt a more homogenous attitude, and encourage the development of alternative energy sources. For oil specifically, there are 4 ways of reducing the political and economic risks threatening exploration and production: limiting demand for oil products, increasing energy supplies, facilitating the oil industry's activities, and encouraging action by governments.« less

  16. Chemical compositions and antimicrobial potential of Actinodaphne macrophylla leaves oils from East Kalimantan

    NASA Astrophysics Data System (ADS)

    Putri, A. S.; Purba, F. F.; Kusuma, I. W.; Kuspradini, H.

    2018-04-01

    Essential oils producing plants comprises about 160-200 species, one of which belongs to Lauraceae family. Actinodaphne macrophylla is a plant of the Lauraceae family and widely spread on Kalimantan island. For humans, essential oils are used in cosmetics industry, food industry, and pharmaceutical industry. This research aimed to analyze the characteristics of essential oil and potential of antimicrobial activity from A. macrophylla leaves oils. Essential oils were obtained by steam distillation method. Antimicrobial activity was assayed using agar diffusion method which compared with two synthetic standards including chlorhexidine and chloramphenicol. Four microorganisms were used in this study were Candida albicans, Staphylococcus aureus, Streptococcus mutans, and Streptococcus sobrinus. The obtained oil was determined for its characteristics including the yield, refractive index, and chemical components. The attained components were analyzed using GC-MS. The results of this study showed that essential oils of A. macrophylla leaves contained 0.1051% of yield, clearless, and refractive index was 1.425. Based on GC-MS analysis result, it showed chemical components including spathulenol, 2-monopalmitin, (+)-sabinene, copaen, camphene, and β-pinene. This plant potentially can inhibit the growth of S. aureus, C. albicans, S. sobrinus, and S. mutans with inhibition zones of 17.22, 20.89, 22.34 and 22.89 mm, respectively.

  17. Current progress towards the metabolic engineering of plant oil for hydroxy fatty acids production

    USDA-ARS?s Scientific Manuscript database

    Vegetable oil is not only edible but also can be used for industrial purposes. The industrial demand for vegetable oil will increase with the future depletion of fossil fuels and environmental problems such as climate change, caused by increased carbon dioxide in the air. Some plants accumulate high...

  18. Oil and Natural Gas Industry Sources Covered by the 2012 New Source Performance Standards (NSPS) for Volatile Organic Compounds (VOCs) and the 2016 NSPS for Methane and VOCs, by Site

    EPA Pesticide Factsheets

    This is a 2016 table that looks at oil and natural gas industry site types and lists the applicable rules for the 2012 and 2016 new source performance standards (NSPS) and Volatile Organic Compounds (VOC) rules.

  19. Biobased composites from thermoplastic polyurethane elastomer and cross-linked acrylated-epoxidized soybean oil

    USDA-ARS?s Scientific Manuscript database

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle without flexibility and the incorporation of thermoplastic polyurethane improves its toughness for industrial applications. The hydrophilic functional groups from both oil and polyurethan...

  20. Kinetics of Hydrogen Oxidation Downstream of Lean Propane and Hydrogen Flames

    NASA Technical Reports Server (NTRS)

    Fine, Burton

    1961-01-01

    The decay of hydrogen was measured downstream of lean, flat, premixed hydrogen and propane-air flames seated on cooled porous burners. Experimental variables included temperature, pressure, initial equivalence ratio and diluent. Sampling of burned gas was done through uncooled quartz orifice probes, and the analysis was based on gas chromatography. An approximate treatment of the data in which diffusion was neglected led to the following rate expression for the zone downstream of hydrogen flames d[H (sub 2)] divided by (d times t) equals 1.7 times 10 (sup 10) [H (sub 2)] (sup 3) divided by (sub 2) [O (sub 2)]e (sup (-8100 divided by RT)) moles per liters per second. On the basis of a rate expression of this form, the specific rate constant for the reaction downstream of hydrogen flames was about three times as great as that determined downstream of propane flames. This result was explained on the basis of the existence of a steady state between hydrogen and carbon monoxide in the burned gas downstream of propane flames.

  1. Ecofriendly demulsification of water in oil emulsions by an efficient biodemulsifier producing bacterium isolated from oil contaminated environment.

    PubMed

    Sabati, Hoda; Motamedi, Hossein

    2018-05-15

    Water in oil emulsions increase oil processing costs and cause damage to refinery equipment which necessitates demulsification. Since chemical demulsifiers cause environmental pollution, biodemulsifiers have been paid more attention. This study aims to identify biodemulsifier-producing bacteria from petroleum contaminated environments. As a result, several biodemulsifier producing strains were found that Stenotrophomonas sp. strain HS7 (accession number: MF445088) which produced a cell associated biodemulsifier showed the highest demulsifying ratio, 98.57% for water in kerosene and 66.28% for water in crude oil emulsion after 48 h. 35 °C, pH 7, 48 h incubation and ammonium nitrate as nitrogen source were optimum conditions for biodemulsifier production. Furthermore, it was found that hydrophobic carbon sources like as liquid paraffin is not preferred as the sole carbon source while a combination of various carbon sources including liquid paraffin will increase demulsification efficiency of the biodemulsifier. The appropriate potential of this biodemulsifier strengthens the possibility of its application in industries especially petroleum industry.

  2. Hydrogeomorphological and water quality impacts of oil palm conversion and logging in Sabah, Malaysian Borneo: a multi-catchment approach

    NASA Astrophysics Data System (ADS)

    Walsh, Rory; Nainar, Anand; Bidin, Kawi; Higton, Sam; Annammala, Kogilavani; Blake, William; Luke, Sarah; Murphy, Laura; Perryman, Emily; Wall, Katy; Hanapi, Jamil

    2016-04-01

    The last three decades have seen a combination of logging and land-use change across most of the rainforest tropics. This has involved conversion to oil palm across large parts of SE Asia. Although much is now known about the hydrological and sediment transport impacts of logging, relatively little is known about how impacts of oil palm conversion compare with those of logging. Furthermore little is known about the impacts of both on river morphology and water quality. This paper reports some findings of the first phase of a ten-year large-scale manipulative multi-catchment experiment (part of the SAFE - Stability of Altered Forest Ecosystems - Project), based in the upper part of the Brantian Catchment in Sabah, Malaysian Borneo; the project is designed to assess the degree to which adverse impacts of oil palm conversion (on erosion, downstream channel change, water quality and river ecology) might be reduced by retaining buffer zones of riparian forest of varying width from zero to 120 metres. Ten 2 km2 catchments of contrasting land use history have been instrumented since 2011 to record discharge, turbidity, conductivity and water temperature at 5-minute intervals. These comprise 6 repeat-logged catchments being subjected in 2015-16 to conversion to oil palm with varying riparian forest widths; a repeat-logged 'control' catchment; an old regrowth catchment; an oil palm catchment; and a primary forest catchment. In addition, (1) monthly water samples from the catchments have been analysed for nitrates and phosphates, (2) channel cross-sectional change along each stream has been monitored at six-monthly intervals and (3) supplementary surveys have been made of downstream bankfull channel cross-sectional size and water chemistry at a wider range of catchment sites, and (4) sediment cores have been taken and contemporary deposition monitored at a hierarchical network of sites in the large Brantian catchment for geochemical analysis and dating to establish the

  3. 1. VIEW OF DOWNSTREAM SIDE OF DIVERSION DAM ON THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF DOWNSTREAM SIDE OF DIVERSION DAM ON THE SNAKE RIVER, LOOKING NORTHEAST. NOTE HEADGATE STRUCTURE ON NORTH BANK, SPILLWAY ON LEFT SIDE OF DAM, AND SPLASH LOGS ON DOWNSTREAM SIDE OF DAM. - Snake River Ditch, Headgate on north bank of Snake River, Dillon, Summit County, CO

  4. Analytical filtration model for nonlinear viscoplastic oil in the theory of oil production stimulation and heating of oil reservoir in a dual-well system

    NASA Astrophysics Data System (ADS)

    Ivanovich Astafev, Vladimir; Igorevich Gubanov, Sergey; Alexandrovna Olkhovskaya, Valeria; Mikhailovna Sylantyeva, Anastasia; Mikhailovich Zinovyev, Alexey

    2018-02-01

    Production of high-viscosity oil and design of field development systems for such oil is one of the most promising directions in the development of world oil industry. The ability of high-viscosity oil to show in filtration process properties typical for non-Newtonian systems is proven by experimental studies. Nonlinear relationship between the pressure gradient and the rate of oil flow is due to interaction of high-molecular substances, in particular, asphaltenes and tars that form a plastic structure in it. The authors of this article have used the analytical model of stationary influx of nonlinear viscoplastic oil to the well bottom in order to provide rationale for the intensifying impact on a reservoir. They also have analyzed the method of periodic heating of productive reservoir by means of dual-wells. The high-temperature source is placed at the bottom of the vertical well, very close to the reservoir; at the same time the side well, located outside the zone of expected rock damage, is used for production. Suggested method of systemic treatment of reservoirs with dual wells can be useful for small fields of high-viscosity oil. The effect is based on the opportunity to control the structural and mechanical properties of high-viscosity oil and to increase depletion of reserves.

  5. Chemical Industry Analysis Brief

    EIA Publications

    2005-01-01

    The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals into thousands of various products. Chemicals are key materials for producing an extensive assortment of consumer goods.

  6. Peak Oil, Food Systems, and Public Health

    PubMed Central

    Parker, Cindy L.; Kirschenmann, Frederick L.; Tinch, Jennifer; Lawrence, Robert S.

    2011-01-01

    Peak oil is the phenomenon whereby global oil supplies will peak, then decline, with extraction growing increasingly costly. Today's globalized industrial food system depends on oil for fueling farm machinery, producing pesticides, and transporting goods. Biofuels production links oil prices to food prices. We examined food system vulnerability to rising oil prices and the public health consequences. In the short term, high food prices harm food security and equity. Over time, high prices will force the entire food system to adapt. Strong preparation and advance investment may mitigate the extent of dislocation and hunger. Certain social and policy changes could smooth adaptation; public health has an essential role in promoting a proactive, smart, and equitable transition that increases resilience and enables adequate food for all. PMID:21778492

  7. Multi-interface Level Sensors and New Development in Monitoring and Control of Oil Separators

    PubMed Central

    Bukhari, Syed Faisal Ahmed; Yang, Wuqiang

    2006-01-01

    In the oil industry, huge saving may be made if suitable multi-interface level measurement systems are employed for effectively monitoring crude oil separators and efficient control of their operation. A number of techniques, e.g. externally mounted displacers, differential pressure transmitters and capacitance rod devices, have been developed to measure the separation process with gas, oil, water and other components. Because of the unavailability of suitable multi-interface level measurement systems, oil separators are currently operated by the trial-and-error approach. In this paper some conventional techniques, which have been used for level measurement in industry, and new development are discussed.

  8. Fish oil: what the prescriber needs to know

    PubMed Central

    Cleland, Leslie G; James, Michael J; Proudman, Susanna M

    2006-01-01

    There is a general belief among doctors, in part grounded in experience, that patients with arthritis need nonsteroidal anti-inflammatory drugs (NSAIDs). Implicit in this view is that these patients require the symptomatic relief provided by inhibiting synthesis of nociceptive prostaglandin E2, a downstream product of the enzyme cyclo-oxygenase (COX), which is inhibited by NSAIDs. However, the concept of 'safe' NSAIDs has collapsed following a multiplicity of observations establishing increased risk for cardiovascular events associated with NSAID use, especially but not uniquely with the new COX-2-selective NSAIDs. This mandates greater parsimony in the use of these agents. Fish oils contain a natural inhibitor of COX, reduce reliance on NSAIDs, and reduce cardiovascular risk through multiple mechanisms. Fish oil thus warrants consideration as a component of therapy for arthritis, especially rheumatoid arthritis, in which its symptomatic benefits are well established. A major barrier to the therapeutic use of fish oil in inflammatory diseases is ignorance of its mechanism, range of beneficial effects, safety profile, availability of suitable products, effective dose, latency of effects and instructions for administration. This review provides an evidence-based resource for doctors and patients who may choose to prescribe or take fish oil. PMID:16542466

  9. Studies on marine oil spills and their ecological damage

    NASA Astrophysics Data System (ADS)

    Mei, Hong; Yin, Yanjie

    2009-09-01

    The sources of marine oil spills are mainly from accidents of marine oil tankers or freighters, marine oil-drilling platforms, marine oil pipelines, marine oilfields, terrestrial pollution, oil-bearing atmosphere, and offshore oil production equipment. It is concluded upon analysis that there are two main reasons for marine oil spills: (I) The motive for huge economic benefits of oil industry owners and oil shipping agents far surpasses their sense of ecological risks. (II) Marine ecological safety has not become the main concern of national security. Oil spills are disasters because humans spare no efforts to get economic benefits from oil. The present paper draws another conclusion that marine ecological damage caused by oil spills can be roughly divided into two categories: damage to marine resource value (direct value) and damage to marine ecosystem service value (indirect value). Marine oil spills cause damage to marine biological, fishery, seawater, tourism and mineral resources to various extents, which contributes to the lower quality and value of marine resources.

  10. Feasibility study of utilizing jatropha curcas oil as bio-diesel in an oil firing burner system

    NASA Astrophysics Data System (ADS)

    Shaiful, A. I. M.; Jaafar, M. N. Mohd; Sahar, A. M.

    2017-09-01

    Jatropha oil derived from the Jatropha Curcas Linnaeus is one of the high potential plants to be use as bio-diesel. The purpose of this research is to carry out a feasibility study of using jatropha oil as bio-diesel on oil firing burner system. Like other bio-diesels, jatropha oil can also be used in any combustion engine and the performance and emissions such as NOx, SO2, CO and CO2 as well as unburned hydocarbon (UHC) from the engine will vary depending on the bio-diesel blends. The properties of Conventional Diesel Fuel (CDF) obtained will be used as baseline and the jatropha oil properties will be compared as well as other bio-diesels. From several researches, the properties of jatropha oil was found to be quite similar with other bio-diesel such as palm oil, neem, keranja and pongamia bio-diesel and complying with the ASTM standard for bio-diesel. Still, there are factors and issues concerning the use of jatropha oil such as technology, economy, legislation and resource. Plus, there several challenges to the growth of bio-diesel industry development since the world right now do not totally depend on the bio-diesel.

  11. Chemical composition and bioactivity of different oregano (Origanum vulgare) extracts and essential oil.

    PubMed

    Teixeira, Bárbara; Marques, António; Ramos, Cristina; Serrano, Carmo; Matos, Olívia; Neng, Nuno R; Nogueira, José M F; Saraiva, Jorge Alexandre; Nunes, Maria Leonor

    2013-08-30

    There is a growing interest in industry to replace synthetic chemicals by natural products with bioactive properties. Aromatic plants are excellent sources of bioactive compounds that can be extracted using several processes. As far as oregano is concerned, studies are lacking addressing the effect of extraction processes in bioactivity of extracts. This study aimed to characterise the in vitro antioxidant and antibacterial properties of oregano (Origanum vulgare) essential oil and extracts (in hot and cold water, and ethanol), and the chemical composition of its essential oil. The major components of oregano essential oil were carvacrol, β-fenchyl alcohol, thymol, and γ-terpinene. Hot water extract had the strongest antioxidant properties and the highest phenolic content. All extracts were ineffective in inhibiting the growth of the seven tested bacteria. In contrast, the essential oil inhibited the growth of all bacteria, causing greater reductions on both Listeria strains (L. monocytogenes and L. innocua). O. vulgare extracts and essential oil from Portuguese origin are strong candidates to replace synthetic chemicals used by the industry. © 2013 Society of Chemical Industry.

  12. Meta-analyses of oil yield in Cuphea PSR23

    USDA-ARS?s Scientific Manuscript database

    Oil content and composition of Cuphea seed are of special economic value as raw materials for industrial and food applications. The inherent unpredictability in determining and predicting Cuphea’s oil yield is attributed, in part, to the indeterminate growth habit and the persistence of the domestic...

  13. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOEpatents

    Butcher, Thomas A.; Celebi, Yusuf; Fisher, Leonard

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  14. Engineering Ashbya gossypii strains for de novo lipid production using industrial by-products.

    PubMed

    Lozano-Martínez, Patricia; Buey, Rubén M; Ledesma-Amaro, Rodrigo; Jiménez, Alberto; Revuelta, José Luis

    2017-03-01

    Ashbya gossypii is a filamentous fungus that naturally overproduces riboflavin, and it is currently exploited for the industrial production of this vitamin. The utilization of A. gossypii for biotechnological applications presents important advantages such as the utilization of low-cost culture media, inexpensive downstream processing and a wide range of molecular tools for genetic manipulation, thus making A. gossypii a valuable biotechnological chassis for metabolic engineering. A. gossypii has been shown to accumulate high levels of lipids in oil-based culture media; however, the lipid biosynthesis capacity is rather limited when grown in sugar-based culture media. In this study, by altering the fatty acyl-CoA pool and manipulating the regulation of the main ∆9 desaturase gene, we have obtained A. gossypii strains with significantly increased (up to fourfold) de novo lipid biosynthesis using glucose as the only carbon source in the fermentation broth. Moreover, these strains were efficient biocatalysts for the conversion of carbohydrates from sugarcane molasses to biolipids, able to accumulate lipids up to 25% of its cell dry weight. Our results represent a proof of principle showing the promising potential of A. gossypii as a competitive microorganism for industrial biolipid production using cost-effective feed stocks. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. Performance evaluation of NEEM oil and HONGE Oil as cutting fluid in drilling operation of mild steel

    NASA Astrophysics Data System (ADS)

    Jyothi, P. N.; Susmitha, M.; Sharan, P.

    2017-04-01

    Cutting fluids are used in machining industries for improving tool life, reducing work piece and thermal deformation, improving surface finish and flushing away chips from the cutting zone. Although the application of cutting fluids increases the tool life and Machining efficiency, but it has many major problems related to environmental impacts and health hazards along with recycling & disposal. These problems gave provision for the introduction of mineral, vegetable and animal oils. These oils play an important role in improving various machining properties, including corrosion protection, lubricity, antibacterial protection, even emulsibility and chemical stability. Compared to mineral oils, vegetable oils in general possess high viscosity index, high flash point, high lubricity and low evaporative losses. Vegetable oils can be edible or non-edible oils and Various researchers have proved that edible vegetable oils viz., palm oil, coconut oil, canola oil, soya bean oil can be effectively used as eco-friendly cutting fluid in machining operations. But in present situations harnessing edible oils for lubricants formation restricts the use due to increased demands of growing population worldwide and availability. In the present work, Non-edible vegetable oil like Neem and Honge are been used as cutting fluid for drilling of Mild steel and its effect on cutting temperature, hardness and surface roughness are been investigated. Results obtained are compared with SAE 20W40 (petroleum based cutting fluid)and dry cutting condition.

  16. Extraction methods of Amaranthus sp. grain oil isolation.

    PubMed

    Krulj, Jelena; Brlek, Tea; Pezo, Lato; Brkljača, Jovana; Popović, Sanja; Zeković, Zoran; Bodroža Solarov, Marija

    2016-08-01

    Amaranthus sp. is a fast-growing crop with well-known beneficial nutritional values (rich in protein, fat, dietary fiber, ash, and minerals, especially calcium and sodium, and containing a higher amount of lysine than conventional cereals). Amaranthus sp. is an underexploited plant source of squalene, a compound of high importance in the food, cosmetic and pharmaceutical industries. This paper has examined the effects of the different extraction methods (Soxhlet, supercritical fluid and accelerated solvent extraction) on the oil and squalene yield of three genotypes of Amaranthus sp. grain. The highest yield of the extracted oil (78.1 g kg(-1) ) and squalene (4.7 g kg(-1) ) in grain was obtained by accelerated solvent extraction (ASE) in genotype 16. Post hoc Tukey's HSD test at 95% confidence limit showed significant differences between observed samples. Principal component analysis (PCA) and cluster analysis (CA) were used for assessing the effect of different genotypes and extraction methods on oil and squalene yield, and also the fatty acid composition profile. Using coupled PCA and CA of observed samples, possible directions for improving the quality of product can be realized. The results of this study indicate that it is very important to choose both the right genotype and the right method of extraction for optimal oil and squalene yield. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  17. Unconventional Oil and Gas Resources in Texas and Other Mining Activities: the Water Challenge

    NASA Astrophysics Data System (ADS)

    Nicot, J.

    2011-12-01

    A recent study, sponsored by the Texas Water Development Board, considered current and projected water use in the mining industry. It looked at the upstream segment of the oil and gas industry (that is, water used to extract the commodity until it leaves the wellhead), the aggregate, and coal industry, and other substances (industrial sand, lime, etc.). We obtained data through state databases, data collection from private vendors, and direct surveys of the various sectors of the industry. Overall, in 2008, we estimated that the state consumed ~160 thousand acre-feet (AF) in the mining industry, including 35.8 thousand AF for fracing wells (mostly in the Barnett Shale/Fort Worth area) and ~21.0 thousand AF for other purposes in the oil and gas industry, although more spread out across the state, with a higher demand in the Permian Basin area in West Texas. The coal industry used 20.0 thousand AF along the lignite belt from Central to East Texas. The 71.6 thousand AF used by the aggregate industry is distributed over most of the state, but with a clear concentration around major metropolitan areas. The remainder amounts to 11.0 thousand AF and is dominated by industrial sand production (~80% of total). Water is used mostly for drilling wells, stimulating/fracing wells, and secondary and tertiary recovery processes (oil and gas industry); for dewatering and depressurizing pits, with a small amount used for dust control (coal industry); and for dust control and washing (aggregate industry and industrial sand). Reuse/recycling has already been accounted for in water-use values, as well as opportunity usages, such as stormwater collection (aggregates). The split between surface water and groundwater is difficult to assess but it is estimated at ~56% groundwater in 2008. Projections for future use were done by extrapolating current trends, mainly for coal (same energy mix) and aggregates (following population growth). Projections for the oil and gas industry (Barnett

  18. 75 FR 39934 - Oil and Natural Gas Sector-Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OAR-2010-0505; FRL-9174-8] Oil and Natural Gas Sector... EPA's review of air regulations affecting the oil and natural gas industry. The review in progress covers oil and natural gas exploration and production, as well as natural gas processing, transmission...

  19. Electronic Medical Record in Central Polyclinic of Isfahan Oil Industry: A Case Study Based on Technology Acceptance Model

    PubMed Central

    Tavakoli, Nahid; Jahanbakhsh, Maryam; Shahin, Arash; Mokhtari, Habibollah; Rafiei, Maryam

    2013-01-01

    Introduction Today, health information technologies are base of health services and Electronic Medical Record is one of them. The purpose of this paper is to investigate the Technology Acceptance Model (TAM) on EMR at Central Polyclinic Oil Industry that is a pioneer in implementation of EMR in Isfahan. Methods This study was an applied and analytical survey that it was done at the Central Polyclinic Oil Industry. Because statistical population were limited, sampling bas been done by conducting the census and the sample was according to the population. The data was collected by a researcher-made questionnaire that it was validated by experts and its reliability was confirmed by test retest. The questionnaire was developed in 5 scopes including external factors (data quality and user interface), perceived usefulness, perceived ease of usefulness, attitude toward using, and behavioral intention to use. The Results analyzed by SPSS. Results There was a significant relationship between data quality with PU(r=/295, p/005). Discussion The survey of the scopes in the polyclinic showed that there is relationship among user interface, perceived usefulness, perceived ease of usefulness, attitude toward using, and behavioral intention to use, but data quality has no relationship with attitude. It seems the system designers didn’t consider to data quality characteristics. It is proposed that they consult with health information management professionals for improvement the existing system. PMID:23572857

  20. Electronic medical record in central polyclinic of isfahan oil industry: a case study based on technology acceptance model.

    PubMed

    Tavakoli, Nahid; Jahanbakhsh, Maryam; Shahin, Arash; Mokhtari, Habibollah; Rafiei, Maryam

    2013-03-01

    Today, health information technologies are base of health services and Electronic Medical Record is one of them. The purpose of this paper is to investigate the Technology Acceptance Model (TAM) on EMR at Central Polyclinic Oil Industry that is a pioneer in implementation of EMR in Isfahan. This study was an applied and analytical survey that it was done at the Central Polyclinic Oil Industry. Because statistical population were limited, sampling bas been done by conducting the census and the sample was according to the population. The data was collected by a researcher-made questionnaire that it was validated by experts and its reliability was confirmed by test retest. The questionnaire was developed in 5 scopes including external factors (data quality and user interface), perceived usefulness, perceived ease of usefulness, attitude toward using, and behavioral intention to use. The Results analyzed by SPSS. There was a significant relationship between data quality with PU(r=/295, p/005). The survey of the scopes in the polyclinic showed that there is relationship among user interface, perceived usefulness, perceived ease of usefulness, attitude toward using, and behavioral intention to use, but data quality has no relationship with attitude. It seems the system designers didn't consider to data quality characteristics. It is proposed that they consult with health information management professionals for improvement the existing system.

  1. Sarcoidal granuloma developing not only at the entry site of industrial lubricating oil, but also at a regional lymph node and entry points of venepuncture.

    PubMed

    Kogushi, Hazuki; Egawa, Kiyofumi; Ono, Tomomichi

    2006-01-01

    We describe a 40-year-old male who presented with sarcoidal granulomas not only at the entry site of an industrial lubricating oil containing silicone in the right thumb, but also in a regional lymph node and at the entry points of venepuncture in both forearms. Laboratory tests and chest X-ray showed no evidence of sarcoidosis. 2006 S. Karger AG, Basel

  2. [Intervertebral disk disease among oil drilling workers].

    PubMed

    Fernandes, R C; Carvalho, F M

    2000-01-01

    A cross-sectional study among 1,026 oil drilling workers in Northeast Brazil found a prevalence rate of 5% for intervertebral disk disease, varying from 1.8% (activities without heavy lifting) and 4.5% (occasional lifting) to 7.2% (routine lifting). Disease prevalence was 10.5% among drilling workers with more than 15 years in the industry and 11.3% among those over 40 years of age. Prevalence ratio (PR) for the association between working in oil drilling operations and intervertebral disk disease was 2.3 (95% CI: 1.3-4.0). Retrospective information about exposure was collected to minimize the healthy worker survival effect. Using information on current occupation instead of occupational life history would cause an underestimated PR of 1.1 (95% CI: 0.6-1.9). Logistic regression showed results similar to the tabular analysis. Neither confounding nor interaction was evident. Growth of the Brazilian oil industry and recent changes in the work force contract and management, involving changes in risk management and health control, indicate a need for prompt ergonomic intervention in order to control intervertebral disk disease among oil drilling workers.

  3. Evaluating the effectiveness of palm oil certification in delivering multiple sustainability objectives

    NASA Astrophysics Data System (ADS)

    Morgans, Courtney L.; Meijaard, Erik; Santika, Truly; Law, Elizabeth; Budiharta, Sugeng; Ancrenaz, Marc; Wilson, Kerrie A.

    2018-06-01

    Industrial oil palm plantations in South East Asia have caused significant biodiversity losses and perverse social outcomes. To address concerns over plantation practices and in an attempt to improve sustainability through market mechanisms, civil society organisations and industry representatives developed the Roundtable on Sustainable Palm Oil (RSPO) in 2004. The effectiveness of RSPO in improving the sustainability of the palm oil industry is frequently debated and to date, few quantitative analyses have been undertaken to assess how successful RSPO has been in delivering the social, economic and environmental sustainability outcomes it aims to address. With the palm oil industry continuing to expand in South East Asia and significant estates being planted in Africa and South America, this paper evaluates the effectiveness of RSPO plantations compared to non-certified plantations by assessing the relative performance of several key sustainability metrics compared to business as usual practices. Using Indonesian Borneo (Kalimantan) as a case study, a novel dataset of RSPO concessions was developed and causal analysis methodologies employed to evaluate the environmental, social and economic sustainability of the industry. No significant difference was found between certified and non-certified plantations for any of the sustainability metrics investigated, however positive economic trends including greater fresh fruit bunch yields were revealed. To achieve intended outcomes, RSPO principles and criteria are in need of substantial improvement and rigorous enforcement.

  4. Downstream anastomotic hyperplasia. A mechanism of failure in Dacron arterial grafts.

    PubMed Central

    LoGerfo, F W; Quist, W C; Nowak, M D; Crawshaw, H M; Haudenschild, C C

    1983-01-01

    The precise location and progression of anastomotic hyperplasia and its possible relationship to flow disturbances was investigated in femoro-femoral Dacron grafts in 28 dogs. In 13 grafts, the outflow from the end-to-side downstream anastomosis was bidirectional (BDO), and in 15 it was unidirectional (UDO) (distally). Grafts were electively removed at intervals of two to 196 days or at the time of thrombosis. Each anastomosis and adjacent artery was perfusion-fixed and sectioned sagittally. The mean sagittal section was projected onto a digitized pad, and the total area of hyperplasia internal to the arterial internal elastic lamina and within the adjacent graft was integrated by computer. The location of the hyperplasia was compared with previously established sites of flow separation and stagnation. The observation was made that hyperplasia is significantly greater at the downstream, as compared with the upstream, anastomosis in both groups (BDO = p less than 0.001 and UDO = p less than 0.001) (analysis of variance for independent groups). Furthermore, this downstream hyperplasia was progressive with time (BDO p less than 0.01) (UDO p less than 0.01); Spearman Rank Correlation. There was no significant increase in the extent of downstream hyperplasia where flow separation was known to be greater (BDO). Five grafts failed (three BDO, two UDO), as a result of complete occlusion of the downstream anastomosis by fibrous hyperplasia. Transmission electron microscopy showed the hyperplasia to consist of collagen-producing smooth muscle cells. Anastomotic hyperplasia is significantly greater at the downstream anastomosis, is progressive with time, and is the primary cause of failure of Dacron arterial grafts in this model. Quantitative analysis of downstream anastomotic hyperplasia may be a valuable measure of the biocompatibility of Dacron grafts. Images Fig. 2. Fig. 3. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:6219641

  5. Making democracy safe for oil. Oilmen and the Islamic East

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rand, C.T.

    1975-01-01

    Here is a devastating expose of what, according to Mr. Rand, is the most powerful conglomerate of wealth in America: the oil industry. Mr. Rand, a Persian and Arabic expert as well as a former oil industry employee who has lived in the Middle East, combines research with knowledge acquired firsthand. His analysis shows that the oil crisis, far from being a recent phenomenon, was years in developing. For the first time we learn just how energy is provided for--or withheld from--the public. Armed with facts, figures, and case histories, Rand divulges the full story behind Aramco, SoCal, Exxon, andmore » the other oil producers. He uncovers the political ramifications of ''oil diplomacy'' in both the Arab world and in America, revealing the Executive Branch's reluctance to intervene as well as Congress's inability to do so. And he discusses what we can expect in the future, including suggestions about how we might cope with the problem. ''Making Democracy Safe for Oil,'' startling, timely, is a critique no one can afford to ignore, for the explosive situation continues to affect each one of us directly. (From book jacket)« less

  6. Research on the competitiveness and development strategy of china's modern coal chemical industry

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Han, Y. J.; Yu, Z. F.

    2016-08-01

    China's modern coal chemical industry has grown into a certain scale after over a decade of development, and remarkable progress has been made in key technologies. But as oil price collapsed since 2015, the economic benefit of the industry also slumped, with loud controversies in China over the necessity of modern coal chemical industry. The research believes that the modern coal chemical industry plays a positive role in the clean and sustainable exploitation of coal in China. It makes profit when oil price is no lower than 60/bbl, and outperforms petrochemical in terms of cost effectiveness when the price is between 60/bbl and 80/bbl. Given the low oil price and challenges posed by environmental protection and water restraints, we suggest that the state announce a guideline quickly, with adjusted tax policies and an encouragement to technological innovation, so that the modern coal chemical industry in China can grow sound and stable.

  7. Safety assessment of sandalwood oil (Santalum album L.).

    PubMed

    Burdock, George A; Carabin, Ioana G

    2008-02-01

    Sandalwood (Santalum album L.) is a fragrant wood from which oil is derived for use in food and cosmetics. Sandalwood oil is used in the food industry as a flavor ingredient with a daily consumption of 0.0074 mg/kg. Over 100 constituents have been identified in sandalwood oil with the major constituent being alpha-santalol. Sandalwood oil and its major constituent have low acute oral and dermal toxicity in laboratory animals. Sandalwood oil was not mutagenic in spore Rec assay and was found to have anticarcinogenic, antiviral and bactericidal activity. Occasional cases of irritation or sensitization reactions to sandalwood oil in humans are reported in the literature. Although the available information on toxicity of sandalwood oil is limited, it has a long history of oral use without any reported adverse effects and is considered safe at present use levels.

  8. Fatty acid composition, physicochemical properties, antioxidant and cytotoxic activity of apple seed oil obtained from apple pomace.

    PubMed

    Walia, Mayanka; Rawat, Kiran; Bhushan, Shashi; Padwad, Yogendra S; Singh, Bikram

    2014-03-30

    Apple pomace is generated in huge quantities in juice-processing industries the world over and continuous efforts are being made for its inclusive utilization. In this study, apple seeds separated from industrial pomace were used for extraction of oil. The fatty acid composition, physicochemical and antioxidant as well as in vitro anticancer properties of extracted oil were studied to assess its suitability in food and therapeutic applications. The fatty acid composition of seed oil revealed the dominance of oleic (46.50%) and linoleic acid (43.81%). It had high iodine (121.8 g I 100 g⁻¹) and saponification value (184.91 mg KOH g⁻¹ oil). The acid value, refractive index and relative density were 4.28 mg KOH g⁻¹, 1.47 and 0.97 mg mL⁻¹, respectively. The antioxidant potential (IC₅₀) of apple seed oil was 40.06 µg mL⁻¹. Cytotoxicity of apple seed oil against CHOK1, SiHa and A549 cancer cell lines ranged between 0.5 ± 0.06% and 88.6 ± 0.3%. The physicochemical properties of apple seed oil were comparable with edible food oil, indicating its better stability and broad application in the food and pharmaceutical industries. Apple seed oil could be a good source of natural antioxidants. Also, the in vitro cytotoxic activity against specific cell lines exhibited its potential as an anticancer agent. © 2013 Society of Chemical Industry.

  9. Oil-Free Turbomachinery Research Enhanced by Thrust Bearing Test Capability

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.

    2003-01-01

    NASA Glenn Research Center s Oil-Free Turbomachinery research team is developing aircraft turbine engines that will not require an oil lubrication system. Oil systems are required today to lubricate rolling-element bearings used by the turbine and fan shafts. For the Oil-Free Turbomachinery concept, researchers combined the most advanced foil (air) bearings from industry with NASA-developed high-temperature solid lubricant technology. In 1999, the world s first Oil-Free turbocharger was demonstrated using these technologies. Now we are working with industry to demonstrate Oil-Free turbomachinery technology in a small business jet engine, the EJ-22 produced by Williams International and developed during Glenn s recently concluded General Aviation Propulsion (GAP) program. Eliminating the oil system in this engine will make it simpler, lighter (approximately 15 percent), more reliable, and less costly to purchase and maintain. Propulsion gas turbines will place high demands on foil air bearings, especially the thrust bearings. Up until now, the Oil-Free Turbomachinery research team only had the capability to test radial, journal bearings. This research has resulted in major improvements in the bearings performance, but journal bearings are cylindrical, and can only support radial shaft loads. To counteract axial thrust loads, thrust foil bearings, which are disk shaped, are required. Since relatively little research has been conducted on thrust foil air bearings, their performance lags behind that of journal bearings.

  10. Defense Industry Consolidation and Weapon Systems Cost Growth

    DTIC Science & Technology

    2008-06-01

    consolidation in the industry. Year Buyer Target Price ($Billions) 1988 Kohlberg Kravis RJR Nabisco 25.1 1984 Chevron Gulf Oil 13.3 1988 Philip Morris Kraft...Steel Marathon Oil 6.6 1988 Campeau Federated Stores 6.5 1986 Kohlberg Kravis Beatrice 6.2 Table 7. Ten Largest Acquisitions 1981 – 1989 (Aftrer54

  11. Has the use of talc an effect on yield and extra virgin olive oil quality?

    PubMed

    Caponio, Francesco; Squeo, Giacomo; Difonzo, Graziana; Pasqualone, Antonella; Summo, Carmine; Paradiso, Vito Michele

    2016-08-01

    The maximization of both extraction yield and extra virgin olive oil quality during olive processing are the main objectives of the olive oil industry. As regards extraction yield, it can be improved by both acting on time/temperature of malaxation and using physical coadjuvants. It is well known that, generally, increasing temperature of malaxation gives an increase in oil extraction yield due to a reduction in oily phase viscosity; however, high malaxation temperature can compromise the nutritional and health values of extra virgin olive oil, leading to undesirable effects such as accelerated oxidative process and loss of volatile compounds responsible for oil flavor and fragrance. The addition of physical coadjuvants in olive oil processing during the malaxation phase, not excluded by EC regulations owing to its exclusively physical action, is well known to promote the breakdown of oil/water emulsions and consequently make oil extraction easier, thus increasing the yield. Among physical coadjuvants, micronized natural talc is used for olive oil processing above all for Spanish and Italian olive cultivars. The quality of extra virgin olive oil depends on numerous variables such as olive cultivar, ripeness degree and quality, machines utilized for processing, oil storage conditions, etc. However, the coadjuvants utilized in olive processing can also influence virgin olive oil characteristics. The literature highlights an increase in oil yield by micronized natural talc addition during olive processing, whereas no clear trend was observed as regards the chemical, nutritional and sensory characteristics of extra virgin olive oil. Although an increase in oil stability was reported, no effect of talc was found on the evolution of virgin olive oil quality indices during storage. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. The Role of Headwater Streams in Downstream Water Quality1

    PubMed Central

    Alexander, Richard B; Boyer, Elizabeth W; Smith, Richard A; Schwarz, Gregory E; Moore, Richard B

    2007-01-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and

  13. Strategic oil reserves catch fire too

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crull, A.W.

    The Federal strategic oil storage site at West Hackberry Dome in Louisiana caught fire in spite of DOE assurances that this is the safest way to store oil. Most of the oil was recovered, although confusion at the site aggravated the problem in getting the fire under control. DOE called the incident an industrial accident, but has not acknowledged the risks involved in all aspects of petroleum drilling or handling -- and the drastic limits of personnel able to handle resulting accidents. Inteviews with Boots and Coots, a team of fire fighters in Houston, provided the author with details ofmore » oil fires and ways to deal with them. The oil fire fighters point out that all energy source development and storage involves some risk and that steps should be taken to train personnel to deal with the negative aspects of petroleum.« less

  14. Wave and ion evolution downstream of quasi-perpendicular bow shocks

    NASA Technical Reports Server (NTRS)

    Mckean, M. E.; Omidi, N.; Krauss-Varban, D.

    1995-01-01

    Distribution functions of ions heated in quasi-perpendicular bow shocks have a large perpendicular temperature anisotropy that provides free energy for the growth of Alfven ion cyclotron (AIC) waves and mirror waves. Both types of waves have been observed in the Earth's magnetosheath downstream of quasi-perpendicular shocks. We use a two-dimensional hybrid simulations to give a self-consistent description of the evolution of the wave spectra downstream of quasi-perpendicular shocks. Both mirror and AIC waves are identified in the simulated magnetosheath. They are generated at or near the shock front and convected away from it by the sheath plasma. Near the shock, the waves have a broad spectrum, but downstream of the shock, shorter-wavelength modes are heavily damped and only longer-wavelength modes persist. The characteristics of these surviving modes can be predicted with reasonable accuracy by linear kinetic theory appropriate for downstream conditions. We also follow the evolution of the ion distribution function. The shocked ions that provide the free energy for wave growth have a two-component distribution function. The halo is initially gyrophase-bunched and extremely anisotropic. Within a relatively short distance downstream of the shock (of the order of 10 ion inertial lengths), wave-particle interactions remove these features from the halo and reduce the anisotropy of the distribution to near-threshold levels for the mirror and AIC instabilities. A similar evolution has been observed for ions at the Earth's bow shock.

  15. Improved extraction of avocado oil by application of sono-physical processes.

    PubMed

    Martínez-Padilla, Laura Patricia; Franke, Lisa; Xu, Xin-Qing; Juliano, Pablo

    2018-01-01

    Ultrasound treatment is known to increase the oil extractability in olive and palm oil processes. This work examined the effect of ultrasound conditioning of avocado puree on oil extractability and quality, at low (18+40kHz) and high (2MHz) frequencies, at litre-scale. Other ultrasound parameters evaluated included high frequency effect (0.4, 0.6, and 2MHz; 5min; 90kJ/kg) and sonication time (2.5-10min at 2MHz), without malaxation. Finally, a megasonic post-malaxation intervention was assessed at selected malaxation times (15, 30, and 60min). Both low and high frequency ultrasound treatments of the non-malaxed avocado puree improved extractability by 15-24% additional oil recovery, with the highest extractability achieved after 2MHz treatments, depending on the fruit maturity and oil content. There was no preferential improvement on oil extractability observed across high frequencies, even though extractability increased with sonication time. Ultrasound treatment also showed a positive effect after puree malaxation. Oils obtained from sonicated purees showed peroxide and free fatty acid values below the industrial specification levels and an increase in total phenolic compounds after 2MHz treatment. High frequency ultrasound conditioning of avocado puree can enhance oil separation and potentially decrease the malaxation time in industrial processes without impacting on oil quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Nutrition, sensory evaluation, and performance analysis of hydrogenated frying oils.

    PubMed

    Hack, Danielle M; Bordi, Peter L; Hessert, S William

    2009-12-01

    The Food and Drug Administration now requires labeling of trans fats on nutrition labels, a decision that has created a push to reformulate deep-fat frying oils. Prior to the passage of this law, frying oils contained trans fats because trans fats made the oils more stable and thus allowing for longer frying usage. In the present study, oil performance, sensory evaluation and nutritional analysis was conducted on trans fat-free oils through a 10-day degradation process using French fries to break down the oil. The goal of the study was to test oil stability and nutrition analysis and to learn consumer preference between trans fat and trans fat-free oils. Sensory evaluation indicated a preference for fries composed from trans fat-free oil mixtures. The most stable oils were also combination oils. Based on these findings, industry representatives considering using the trans fat-free frying oils should consider using blended oils instead, which met customers' taste preference and minimized oil rancidity and usage.

  17. Wet separation processes as method to separate limestone and oil shale

    NASA Astrophysics Data System (ADS)

    Nurme, Martin; Karu, Veiko

    2015-04-01

    Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/

  18. Synthesis and characterization of corn oil polyhydroxy fatty acids designed as additive agent for many applications

    USDA-ARS?s Scientific Manuscript database

    Before the advent of the modern food industry, vegetable oils (triglycerides) from many sources had a long history of use as condiments in cooking, personal care and other therapeutic applications. Industrial applications of vegetable oils, on the other hand, have been limited on account of the shor...

  19. Storage stability of cooked sausages containing vegetable oils.

    PubMed

    Papavergou, E J; Ambrosiadis, J A; Psomas, J

    1995-01-01

    Comminuted cooked sausages were produced using standard industrial practices, by substituting corn oil, sunflower oil, cotton seed oil, soybean oil and hydrogenated vegetable fat for animal fat. When processed, products were assessed for their stability with respect to autoxidation and change in organoleptic properties during vacuum-packed storage in a domestic refrigerator at 4 degrees C. Data obtained indicated that changes in thiobarbituric acid (TBA) values and organoleptic properties of products produced using corn oil, sunflower oil and hydrogenated vegetable fat were similar to those observed for reference material produced using lard. In the case of samples produced using soybean and cotton seed oil, TBA value changes were more pronounced, but did not exceed acceptable limits. A more rapid deterioration of organoleptic characteristics was also observed for the same samples, which showed flavour problems after 3 months of storage at 4 degrees C. Substitution of plant oils for lard considerably reduced the cholesterol content and increased the ratio of unsaturated to saturated fatty acids of cooked sausages.

  20. Short-term scheduling of crude oil operations in refinery with high-fusion-point oil and two transportation pipelines

    NASA Astrophysics Data System (ADS)

    Wu, NaiQi; Zhu, MengChu; Bai, LiPing; Li, ZhiWu

    2016-07-01

    In some refineries, storage tanks are located at two different sites, one for low-fusion-point crude oil and the other for high one. Two pipelines are used to transport different oil types. Due to the constraints resulting from the high-fusion-point oil transportation, it is challenging to schedule such a system. This work studies the scheduling problem from a control-theoretic perspective. It proposes to use a hybrid Petri net method to model the system. It then finds the schedulability conditions by analysing the dynamic behaviour of the net model. Next, it proposes an efficient scheduling method to minimize the cost of high-fusion-point oil transportation. Finally, it gives a complex industrial case study to show its application.

  1. Photoperiod control of downstream movements of Atlantic salmon Salmo salar smolts

    USGS Publications Warehouse

    Zydlewski, Gayle B.; Stich, Daniel S.; McCormick, Stephen D.

    2014-01-01

    This study provides the first direct observations that photoperiod controls the initiation of downstream movement in Atlantic salmon Salmo salar smolts. Under simulated natural day length (LDN) conditions and seasonal increases in temperature, smolts increased their downstream movements five-fold for a period of 1 month in late spring. Under the same conditions, parr did not show changes in downstream movement behaviour. When given a shortened day length (10L:14D) beginning in late winter, smolts did not increase the number of downstream movements. An early increase in day length (16L:8D) in late winter resulted in earlier initiation and termination of downstream movements compared to the LDN group. Physiological status and behaviour were related but not completely coincident: gill Na+/K+-ATPase activity increased in all treatments and thyroid hormone was elevated prior to movement in 16L:8D treatment. The most parsimonious model describing downstream movement of smolts included synergistic effects of photoperiod treatment and temperature, indicating that peak movements occurred at colder temperatures in the 16L:8D treatment than in LDN, and temperature did not influence movement of smolts in the 10L:14D treatment. The complicated interactions of photoperiod and temperature are not surprising since many organisms have evolved to rely on correlations among environmental cues and windows of opportunity to time behaviours associated with life-history transitions. These complicated interactions, however, have serious implications for phenological adjustments and persistence ofS. salar populations in response to climate change.

  2. Osage orange (Maclura pomifera L) seed oil poly-(-a-hydroxy dibutylamine) triglycerides: Synthesis and characterization

    USDA-ARS?s Scientific Manuscript database

    In exploring alternative vegetable oils for non-food industrial applications, especially in temperate climates, tree seed oils that are not commonly seen as competitors to soybean, peanut, and corn oils can become valuable sources of new oils. Many trees produce edible fruits and seeds while others ...

  3. The impact of oil revenues on Arab Gulf development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Azhary, M.S.

    1984-01-01

    As the price of oil falls the pressures on the Arab Gulf States to speed up the diversification of their economies into non-oil sectors increases. This book examines this problem and other issues connected with the impact of oil revenues on development in the Gulf States. It considers changing oil production policies and developments in other sectors of the economy including agriculture, industry and banking. It explores population problems, moves toward Gulf economic co-ordination and the impact of oil on society, culture and education. The book provides an assessment of how much the region depends on oil for its economicmore » prosperity and its development and it provides some indication of the problems that would face the region should the demand for oil decrease still further.« less

  4. Utilization of sulphurized palm oil as cutting fluid base oil for broaching process

    NASA Astrophysics Data System (ADS)

    Sukirno; Ningsih, Y. R.

    2017-03-01

    Broaching is one of the most severe metal cutting operation that requires the use of cutting fluids formulated with extreme pressure (EP) additives to minimize metal-to-metal contact and improve tool life. Enhancement of EP performances of the cutting fluids can be achieved by addition of sulphur containing compounds that will allow the formation of metal sulfide film that has low shear strength and good antiweld properties and acts as protection layer from wear and seizure. Most of the cutting fluids are mineral oil based. However, as regards to health and environmental issues, reseach on vegetable oil based cutting fluid have been increased recently. This paper reports a study on the sulphurization of palm oil derivatives and its usage as broaching oil. Sulphurization of the palm oil derivative was conducted via non-catalytic sulphurization using elemental sulphur at various composition and under heating of 150-160°C for 3 hr. Broaching oil was made by blending the sulphurized palm oil and additive packages. The performance parameters of the broaching oil that has been observed including load carrying capacity, wear scar diameter, corrosion protection, oxidative stability, and surface finish of workpiece. From this research, it was found that sulphurized FAME based broaching oil has excellent EP properties. The optimum formulation was obtained on composition of sulphurized FAME-mineral oil with 6% wt of sulphur. The result from the test showed that kinematic viscosity of sulphurized palm oil was about 25.3 cSt (at 40 °C), load carrying capacity was 400 kgf, and wear scar diameter was 0.407 mm. In addition, it can be concluded that the class of corrosion protection of modified palm oil was 1.b (slight tarnish category), oxidative stability at 160 °C was obtained for 0.11 hr, and the surface roughness of workpiece was about 0.0418-0.0579 μm. These performances are comparable to commercial broaching oil. By this result, it indicates that sulphurized palm oil is

  5. Oil on the water: Government regulation of a carcinogen in the twentieth-century Lancashire cotton spinning industry.

    PubMed

    Higgins, David; Tweedale, Geoffrey

    2010-01-01

    In the Lancashire cotton textile industry, mule spinners were prone to a chronic and sometimes fatal skin cancer (often affecting the groin). The disease had reached epidemic proportions by the 1920s, which necessitated action by the government, employers, and trade unions. In contrast to previous accounts, this article focuses on the government's reaction to mule spinners' cancer. Using official records in the National Archives, the slow introduction of health and safety measures by the government is explored in detail. Although obstructionism by the employers played a key role, one of the reasons for government inaction was the ambiguity of scientific research on engineering oils. On the other hand, prolonged scientific research suited a government policy that was framed around self regulation - a policy that had proved largely ineffective by the 1950s.

  6. Green technological approach to synthesis hydrophobic stable crystalline calcite particles with one-pot synthesis for oil-water separation during oil spill cleanup.

    PubMed

    Wu, Min-Nan; Maity, Jyoti Prakash; Bundschuh, Jochen; Li, Che-Feng; Lee, Chin-Rong; Hsu, Chun-Mei; Lee, Wen-Chien; Huang, Chung-Ho; Chen, Chien-Yen

    2017-10-15

    The process of separating oil and water from oil/water mixtures is an attractive strategy to answer the menace caused by industrial oil spills and oily wastewater. In addition, water coproduced during hydrocarbon exploitation, which can be an economic burden and risk for freshwater resources, can become an important freshwater source after suitable water-oil separation. For oil-water separation purposes, considerable attention has been paid to the preparation of hydrophobic-oleophilic materials with modified surface roughness. However, due to issues of thermodynamic instability, costly and complex methods as well as lack of ecofriendly compounds, most of hydrophobic surface modified particles are of limited practical application. The study presents a facile procedure, to synthesize crystalline particles of calcite, which is the most stable polymorph of CaCO 3 from industrial CaCO 3 using oleic acid as an additive in a one-pot synthesis method. The XRD results show that the synthesized particles were a well-crystallized form of calcite. The FTIR results reflect the appearance of the alkyl groups from the oleic acid in synthesized particles which promotes the production of calcite with 'rice shape' (1.64 μm) (aggregated by spherical nanoparticle of 19.56 nm) morphology with concomitant changes in its surface wettability from hydrophilic to hydrophobic. The synthesized particles exhibited near to super hydrophobicity with ∼99% active ratio and a contact angle of 143.8°. The synthesized hydrophobic calcite particles had an oleophilic nature where waste diesel oil adsorption capacity of synthesized calcium carbonate (HCF) showed a very high (>99%) and fast (7 s) oil removal from oil-water mixture. The functional group of long alkyl chain including of CO bounds may play critical roles for adsorption of diesel oils. Moreover, the thermodynamically stable crystalline polymorph calcite (compared to vaterite) exhibited excellent recyclability. The isothermal study

  7. DOWNSTREAM-WATER-LEVEL CONTROL TEST RESULTS ON THE WM LATERAL CANAL

    USDA-ARS?s Scientific Manuscript database

    On steep canals, distant downstream water-level control can be challenging. SacMan (Software for Automated Canal Management) was developed, in part, to test various distant downstream water level controllers. It was implemented on the WM canal of the Maricopa Stanfield Irrigation and Drainage Distri...

  8. 42 CFR § 512.510 - Downstream distribution arrangements under the EPM.

    Code of Federal Regulations, 2010 CFR

    2017-10-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) HEALTH CARE INFRASTRUCTURE AND MODEL PROGRAMS EPISODE PAYMENT MODEL... distribution payment it receives from the EPM collaborator only in accordance with a downstream distribution... make or receive a downstream distribution payment must not be conditioned directly or indirectly on the...

  9. Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: current advances.

    PubMed

    Vicente, Tiago; Mota, José P B; Peixoto, Cristina; Alves, Paula M; Carrondo, Manuel J T

    2011-01-01

    The advent of advanced therapies in the pharmaceutical industry has moved the spotlight into virus-like particles and viral vectors produced in cell culture holding great promise in a myriad of clinical targets, including cancer prophylaxis and treatment. Even though a couple of cases have reached the clinic, these products have yet to overcome a number of biological and technological challenges before broad utilization. Concerning the manufacturing processes, there is significant research focusing on the optimization of current cell culture systems and, more recently, on developing scalable downstream processes to generate material for pre-clinical and clinical trials. We review the current options for downstream processing of these complex biopharmaceuticals and underline current advances on knowledge-based toolboxes proposed for rational optimization of their processing. Rational tools developed to increase the yet scarce knowledge on the purification processes of complex biologicals are discussed as alternative to empirical, "black-boxed" based strategies classically used for process development. Innovative methodologies based on surface plasmon resonance, dynamic light scattering, scale-down high-throughput screening and mathematical modeling for supporting ion-exchange chromatography show great potential for a more efficient and cost-effective process design, optimization and equipment prototyping. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Influence of genotype and crop year in the chemometrics of almond and pistachio oils.

    PubMed

    Rabadán, Adrián; Álvarez-Ortí, Manuel; Gómez, Ricardo; de Miguel, Concepción; Pardo, José E

    2018-04-01

    Almond and pistachio oils can be considered as interesting products to produce and commercialize owing to their health-promoting properties. However, these properties are not consistent because of the differences that appear in oils as a result of the genotype and the crop year. The analysis of these variations and their origin is decisive in ensuring the commercial future prospects of these nut oils. Although significant variability has been reported in almond and pistachio oils as a result of the crop year and the interaction between crop year and genotype, the genotype itself remains the main factor determining oil chemometrics. Oil fatty acid profile has been mainly determined by the genotype, with the exception of palmitic fatty acid in pistachio oil. However, the crop year affects the concentration of some minor components of crucial nutritional interest as total polyphenols and phytosterols. Regarding reported differences in oil, some almond and pistachio genotypes should be prioritized for oil extraction. Breeding programmes focused on the improvement of specific characteristics of almond and pistachio oils should focus on chemical parameters mainly determined by the genotype. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers.

    PubMed

    Lin, Angela Yu-Chen; Panchangam, Sri Chandana; Lo, Chao-Chun

    2009-04-01

    This study provides the first evidence on the influence of the semiconductor and electronics industries on perfluorinated chemicals (PFCs) contamination in receiving rivers. We have quantified ten PFCs, including perfluoroalkyl sulfonates (PFASs: PFBS, PFHxS, PFOS) and perfluoroalkyl carboxylates (PFCAs: PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA) in semiconductor, electronic, and optoelectronic industrial wastewaters and their receiving water bodies (Taiwan's Keya, Touchien, and Xiaoli rivers). PFOS was found to be the major constituent in semiconductor wastewaters (up to 0.13 mg/L). However, different PFC distributions were found in electronics plant wastewaters; PFOA was the most significant PFC, contributing on average 72% to the effluent water samples, followed by PFOS (16%) and PFDA (9%). The distribution of PFCs in the receiving rivers was greatly impacted by industrial sources. PFOS, PFOA and PFDA were predominant and prevalent in all the river samples, with PFOS detected at the highest concentrations (up to 5.4 microg/L).

  12. Stabilizing Smoked Salmon (Oncorhynchus gorbuscha) Tissue after Extraction of Oil

    USDA-ARS?s Scientific Manuscript database

    Alaska salmon oils are rich in n-3 polyunsaturated fatty acids and are prized by the food and pharmaceutical industries. However, the tissue that remains after oil extraction does not have an established market. Discarded salmon tissues were preserved using a combination of smoke-processing and acid...

  13. Oil goldenberry (Physalis peruviana L.).

    PubMed

    Ramadan, Mohamed F; Mörsel, Jörg-T

    2003-02-12

    Whole berries, seeds, and pulp/peel of goldenberry (Physalis peruviana L.) were compared in terms of fatty acids, lipid classes, triacylglyerols, phytosterols, fat-soluble vitamins, and beta-carotene. The total lipid contents in the whole berries, seeds, and seedless parts were 2.0, 1.8, and 0.2% (on a fresh weight basis), respectively. Linoleic acid was the dominating fatty acid followed by oleic acid as the second major fatty acid. Palmitic and stearic acids were the major saturates. In pulp/peel oil, the fatty acid profile was characterized by higher amounts of saturates, monoenes, and trienes than in whole berry and seed oils. Neutral lipids comprised >95% of total lipids in whole berry oil and seed oil, while neutral lipids separated in lower level in pulp/peel oil. Triacylglycerols were the predominant neutral lipid subclass and constituted ca. 81.6, 86.6, and 65.1% of total neutral lipids in whole berry, seed, and pulp/peel oils, respectively. Nine triacylglycerol molecular species were detected, wherein three species, C54:3, C52:2, and C54:6, were presented to the extent of approximately 91% or above. The highest level of phytosterols was estimated in pulp/peel oil that contained the highest level of unsaponifiables. In both whole berry and seed oils, campesterol and beta-sitosterol were the sterol markers, whereas Delta5-avenasterol and campesterol were the main 4-desmethylsterols in pulp/peel oil. The tocopherols level was much higher in pulp/peel oil than in whole berry and seed oils. beta- and gamma-tocopherols were the major components in whole berry and seed oils, whereas gamma- and alpha-tocopherols were the main constituents in pulp/peel oil. beta-Carotene and vitamin K(1) were also measured in markedly high levels in pulp/peel oil followed by whole berry oil and seed oil, respectively. Information provided by the present work is of importance for further chemical investigation of goldenberry oil and industrial utilization of the berries as a raw

  14. Strategies for restoration of deep-water coral ecosystems based on a global survey of oil and gas regulations

    NASA Astrophysics Data System (ADS)

    Cordes, E. E.; Jones, D.; Levin, L. A.

    2016-02-01

    The oil and gas industry is one of the most active agents of the global industrialization of the deep sea. The wide array of impacts following the Deepwater Horizon oil spill highlighted the need for a systematic review of existing regulations both in US waters and internationally. Within different exclusive economic zones, there are a wide variety of regulations regarding the survey of deep-water areas prior to leasing and the acceptable set-back distances from vulnerable marine ecosystems once they are discovered. There are also varying mitigation strategies for accidental release of oil and gas, including active monitoring systems, temporary closings of oil and gas production, and marine protected areas. The majority of these regulations are based on previous studies of typical impacts from oil and gas drilling, rather than accidental releases. However, the probability of an accident from standard operations increases significantly with depth. The Oil & Gas working group of the Deep Ocean Stewardship Initiative is an international partnership of scientists, managers, non-governmental organizations, and industry professionals whose goal is to review existing regulations for the oil & gas industry and produce a best practices document to advise both developed and developing nations on their regulatory structure as energy development moves into deeper waters.

  15. Transition duct with divided upstream and downstream portions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahan, Kevin Weston; LeBegue, Jeffrey Scott; Maldonado, Jaime Javier

    2015-07-14

    Turbine systems are provided. In one embodiment, a turbine system includes a transition duct comprising an inlet, an outlet, and a duct passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The duct passage includes an upstream portion extending from the inlet and a downstream portion extending from the outlet. The turbine system further includes a rib extending from an outer surface of the duct passage, the rib dividing themore » upstream portion and the downstream portion.« less

  16. Oil and gas impacts on transportation.

    DOT National Transportation Integrated Search

    2015-01-01

    Colorados oil and gas industry is continually evolving, and there have been considerable changes in drilling techniques and geographic focus since the 2010 CDOT research study on Energy Development and the Transportation System. This research stud...

  17. NPDES permit compliance and enforcement: A resource guide for oil and gas operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    During the fall of 1996, the Interstate Oil and Gas Compact Commission sponsored sessions for government and industry representatives to discuss concerns about the National Pollution Discharge Elimination System (NPDES) program under the Clean Water Act. In January 1997, the NPDES Education/Communication/Training Workgroup (ECT Workgroup) was established with co-leaders from the Environmental Protection Agency (EPA) and industry. The ECT Workgroup`s purpose was to develop ideas that would improve communication between NPDES regulators and the oil and gas industry regarding NPDES compliance issues. The Workgroup focused on several areas, including permit compliance monitoring and reporting, enforcement activity and options, and treatmentmore » technology. The ECT Workgroup also discussed the need for materials and information to help NPDES regulatory agency personnel understand more about oil and gas industry exploration and extraction operations and treatment processes. This report represents a compendium of the ECT Workgroup`s efforts.« less

  18. Unique variability of tocopherol composition in various seed oils recovered from by-products of apple industry: rapid and simple determination of all four homologues (α, β, γ and δ) by RP-HPLC/FLD.

    PubMed

    Górnaś, Paweł

    2015-04-01

    The tocochromanol profile was studied in seed oils recovered from by-products of fruit industry, five dessert and seven crab apple varieties grown in Eastern Europe (Latvia). The seed oils obtained from dessert apples were characterized by higher contents of tocopherols (191.05-379.08 mg/100g oil) when compared to seed oils recovered from crab apples (130.55-202.54 mg/100g oil). The predominant homologues of tocopherol in all the studied samples were α and β over γ and δ. However, seed oils recovered from the apple cultivars 'Antej' and 'Beforest' had a unique profile of four tocopherol homologues (α:β:γ:δ) 91.41:80.55:72.46:79.03 and 114.55:112.84:78.69:73.00 mg/100g oil, respectively. A single dilution of seed oils in 2-propanol facilitated the direct use samples in the DPPH assay as well as injection into the RP-HPLC system containing a PFP (pentafluorophenyl) column, which resulted in a rapid separation of all four tocopherol homologues with excellent repeatability and reproducibility. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Selling 'Fracking': Legitimation of High Speed Oil and Gas Extraction in the Marcellus Shale Region

    NASA Astrophysics Data System (ADS)

    Matz, Jacob R.

    The advent of horizontal hydraulic fracture drilling, or 'fracking,' a technology used to access oil and natural gas deposits, has allowed for the extraction of deep, unconventional shale gas and oil deposits in various shale seams throughout the United States and world. One such shale seam, the Marcellus shale, extends from New York State, across Pennsylvania, and throughout West Virginia, where shale gas development has significantly increased within the last decade. This boom has created a massive amount of economic activity surrounding the energy industry, creating jobs for workers, income from leases and royalties for landowners, and profits for energy conglomerates. However, this bounty comes with risks to environmental and public health, and has led to divisive community polarization over the issue in the Marcellus shale region. In the face of potential environmental and social disruption, and a great deal of controversy surrounding 'fracking,' the oil and gas industry has had to undertake a myriad of public relations campaigns and initiatives to legitimize their extraction efforts in the Marcellus shale region, and to project the oil and gas industry in a positive light to residents, policy makers, and landowners. This thesis describes one such public relations initiative, the Energy in Depth Northeast Marcellus Initiative. Through qualitative content analysis of Energy in Depth's online web material, this thesis examines the ways in which the oil and gas industry narrates the shale gas boom in the Marcellus shale region, and the ways in which the industry frames the discourse surrounding natural gas development. Through the use of environmental imagery, appeals to scientific reason, and appeals to patriotism, the oil and gas industry uses Energy in Depth to frame the shale gas extraction process in a positive way, all the while framing those who question or oppose the processes of shale gas extraction as irrational obstructionists.

  20. Identification of Critical Operation Conditions of Industrial Gearboxes by 24/7 Monitoring of Oil Quality, Oil Aging, and Additive Consumption

    NASA Astrophysics Data System (ADS)

    Mauntz, M.; Peuser, J.

    2017-05-01

    The demand for wind energy grows at exponential rates. At the same time improving reliability, reduced operation and maintenance costs are the key priorities in wind tur-bine maintenance strategies [1]. This paper provides information about a novel online oil condition monitoring system to give a solution to the mentioned priorities. The presented sensor system enables damage prevention of the wind turbine gear-box by an advanced warning time of critical operation conditions and an enhanced oil exchange interval realized by a precise measurement of the electrical conductivity, the relative permittivity and the oil temperature. A new parameter, the WearSens® Index (WSi) is introduced. The mathematical model of the WSi combines all measured values and its gradients in one single parameter for a comprehensive monitoring to prevent wind turbines from damage. Furthermore, the WSi enables a long-term prognosis on the next oil change by 24/7 server data logging. Corrective procedures and/or maintenance can be carried out before actual damage occurs. First WSi results of an onshore wind turbine installation compared to traditional vibration monitoring are shown.

  1. Production of white oil from West Siberian crudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasenkov, L.A.; Popova, L.V.; Radchenko, K.A.

    White oils, such as pharmaceutical white mineral oil, perfume oil, solvent for initiator of ethylene polymerization reaction, oil for the lubrication of high-pressure compressors in polyethylene production, and cable oils, are finding more and more industrial applications. The distinguishing feature of all of these oils is their high degree of dearomatization. The content of naphthenes plus paraffins, as determined by adsorptive separation on silica gel, is at least 98%. White oils are produced by multistage sulfonation of the original raw material (oil) with oleum or gaseous sulfur trioxide with subsequent neutralization and clay contact finishing. The advantages of gaseous sulfurmore » trioxide over oleum are the lower consumption of sulfonating agent and the smaller amount of acid tar that is formed, giving higher yields of sulfonic acid that are in turn a raw material for the production of sulfonate additives. This paper presents results of a research program in which crude from West Siberia was tested as raw materials for the production of white oils. Results are presented which demonstrate suitability of crude tested for the production of perfume oil, pharmaceutical white mineral oil, S-220 cable oil, oil for use in polyethylene production (solvent for initiator of ethylene polymerization reaction), and compressor oil. 9 refs.« less

  2. Biotechnology of oil palm: strategies towards manipulation of lipid content and composition.

    PubMed

    Parveez, Ghulam Kadir Ahmad; Rasid, Omar Abdul; Masani, Mat Yunus Abdul; Sambanthamurthi, Ravigadevi

    2015-04-01

    Oil palm is a major economic crop for Malaysia. The major challenges faced by the industry are labor shortage, availability of arable land and unstable commodity price. This has caused the industry to diversify its applications into higher value products besides increasing its yield. While conventional breeding has its limitations, biotechnology was identified as one of the tools for overcoming the above challenges. Research on biotechnology of oil palm began more than two decades ago leveraging a multidisciplinary approach involving biochemical studies, gene and promoter isolation, transformation vector construction and finally genetic transformation to produce the targeted products. The main target of oil palm biotechnology research is to increase oleic acid in the mesocarp. Other targets are stearic acid, palmitoleic acid, ricinoleic acid, lycopene (carotenoid) and biodegradable plastics. Significant achievements were reported for the biochemical studies, isolation of useful oil palm genes and characterization of important promoters. A large number of transformation constructs for various targeted products were successfully produced using the isolated oil palm genes and promoters. Finally transformation of these constructs into oil palm embryogenic calli was carried out while the regeneration of transgenic oil palm harboring the useful genes is in progress.

  3. Methylation of Hg downstream from the Bonanza Hg mine, Oregon

    USGS Publications Warehouse

    Gray, John E.; Hines, Mark E.; Krabbenhoft, David P.; Thoms, Bryn

    2012-01-01

    Speciation of Hg and conversion to methyl-Hg were evaluated in stream sediment, stream water, and aquatic snails collected downstream from the Bonanza Hg mine, Oregon. Total production from the Bonanza mine was >1360t of Hg, during mining from the late 1800s to 1960, ranking it as an intermediate sized Hg mine on an international scale. The primary objective of this study was to evaluate the distribution, transport, and methylation of Hg downstream from a Hg mine in a coastal temperate climatic zone. Data shown here for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from this area. Stream sediment collected from Foster Creek flowing downstream from the Bonanza mine contained elevated Hg concentrations that ranged from 590 to 71,000ng/g, all of which (except the most distal sample) exceeded the probable effect concentration (PEC) of 1060ng/g, the Hg concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in stream sediment collected from Foster Creek varied from 11 to 62ng/g and were highly elevated compared to regional baseline concentrations (0.11-0.82ng/g) established in this study. Methyl-Hg concentrations in stream sediment collected in this study showed a significant correlation with total organic C (TOC, R2=0.62), generally indicating increased methyl-Hg formation with increasing TOC in sediment. Isotopic-tracer methods indicated that several samples of Foster Creek sediment exhibited high rates of Hg-methylation. Concentrations of Hg in water collected downstream from the mine varied from 17 to 270ng/L and were also elevated compared to baselines, but all were below the 770ng/L Hg standard recommended by the USEPA to protect against chronic effects to aquatic wildlife. Concentrations of methyl-Hg in the water collected from Foster Creek ranged from 0.17 to 1.8ng/L, which were elevated compared to regional baseline sites upstream and downstream

  4. CO2 Enhanced Oil Recovery from the Residual Zone - A Sustainable Vision for North Sea Oil Production

    NASA Astrophysics Data System (ADS)

    Stewart, Jamie; Haszeldine, Stuart; Wilkinson, Mark; Johnson, Gareth

    2014-05-01

    This paper presents a 'new vision for North Sea oil production' where previously unattainable residual oil can be produced with the injection of CO2 that has been captured at power stations or other large industrial emitters. Not only could this process produce incremental oil from a maturing basin, reducing imports, it also has the capability to store large volumes of CO2 which can offset the emissions of additional carbon produced. Around the world oil production from mature basins is in decline and production from UK oil fields peaked in 1998. Other basins around the world have a similar story. Although in the UK a number of tax regimes, such as 'brown field allowances' and 'new field allowances' have been put in place to re-encourage investment, it is recognised that the majority of large discoveries have already been made. However, as a nation our demand for oil remains high and in the last decade imports of crude oil have been steadily increasing. The UK is dependent on crude oil for transport and feedstock for chemical and plastics production. Combined with the necessity to provide energy security, there is a demand to re-assess the potential for CO2 Enhanced Oil Recovery (CO2-EOR) in the UK offshore. Residual oil zones (ROZ) exist where one of a number of natural conditions beyond normal capillary forces have caused the geometry of a field's oil column to be altered after filling [1]. When this re-structuring happens the primary interest to the hydrocarbon industry has in the past been in where the mobile oil has migrated to. However it is now considered that significant oil resource may exist in the residual zone play where the main oil column has been displaced. Saturations within this play are predominantly close to residual saturation (Sr) and would be similar to that of a water-flooded field [2]. Evidence from a number of hydrocarbon fairways shows that, under certain circumstances, these residual zones in US fields are comparable in thickness to the

  5. Passive wide spectrum harmonic filter for adjustable speed drives in oil and gas industry

    NASA Astrophysics Data System (ADS)

    Al Jaafari, Khaled Ali

    Non-linear loads such as variable speed drives constitute the bulky load of oil and gas industry power systems. They are widely used in driving induction and permanent magnet motors for variable speed applications. That is because variable speed drives provide high static and dynamic performance. Moreover, they are known of their high energy efficiency and high motion quality, and high starting torque. However, these non-linear loads are main sources of current and voltage harmonics and lower the quality of electric power system. In fact, it is the six-pulse and twelve-pulse diode and thyristor rectifiers that spoil the AC power line with the dominant harmonics (5th, 7th, 11th). They provide DC voltage to the inverter of the variable speed drives. Typical problems that arise from these harmonics are Harmonic resonances', harmonic losses, interference with electronic equipment, and line voltage distortion at the Point of Common Coupling (PCC). Thus, it is necessary to find efficient, reliable, and economical harmonic filters. The passive filters have definite advantage over active filters in terms of components count, cost and reliability. Reliability and maintenance is a serious issue in drilling rigs which are located in offshore and onshore with extreme operating conditions. Passive filters are tuned to eliminate a certain frequency and therefore there is a need to equip the system with more than one passive filter to eliminate all unwanted frequencies. An alternative solution is Wide Spectrum Harmonic passive filter. The wide spectrum harmonic filters are becoming increasingly popular in these applications and found to overcome some of the limitations of conventional tuned passive filter. The most important feature of wide spectrum harmonic passive filters is that only one capacitor is required to filter a wide range of harmonics. Wide spectrum filter is essentially a low-pass filter for the harmonic at fundamental frequency. It can also be considered as a

  6. Downstream Migration of Masu Salmon Smolt at a Diversion Facility of Dam

    NASA Astrophysics Data System (ADS)

    Hayashida, K.; Nii, H.; Kasuga, K.; Watanabe, K.

    2014-12-01

    A diversion facility was installed on the upstream of Pirika Dam in Northern Japan that produced a downstream flow into the fishway, thus allowing the fish to migrate to the sea. On the other hand, if the flow rate in the river was more than 7.00 m 3/s (design flow rate of diversion facility), masu salmon smolt were concerned about accessing the dam reservoir, because the smolt can't migrate to the sea through the diversion facility unfortunately. Therefore, the downstream migration of smolt was investigated around the diversion facility. The PIT tag system and radio transmitters as the biotelemetry were used to determine 1) whether masu salmon smolt were able to migrate downstream through the diversion facility and fishway at Pirika Dam, 2) when the smolt started to migrate downstream, 3) whether the downstream migration of smolt were affected by the flow increase in the river. It was clarified that 88% of the smolt were able to enter the diversion facility, and then 81% of the smolt were able to access the fishway. It was also clarified that smolt downstream migration had two peaks in a day (5:00 and 18:00). During the study period, although the flow rate was in the 2.21 m3/s to 30.44 m3/s range (average 6.70 m3/s), it was revealed that the diversion facility has a satisfactory function for the downstream migration of smolt as presented above. The survey clarified the downstream migration behavior of masu salmon by using two types of biotelemetry equipment. PIT tag and radio transmitter were found to be very effective in tracking the behavior of small fish such as smolt. PIT tags, in particular, require very little operating cost, because once they are inserted in the fish, they do not need human labor for tracking. It is desirable to actively introduce the biotelemetry as tracking equipment when surveying the fish migration in the river.

  7. Development of the oil-water monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, C.

    1990-04-02

    The oil-water monitor is a device invented by Dr. Claude Swanson of Applied Physics Technology to respond to the petroleum-loss problem in crude oil transfers. It is a device which measures water content in crude oil and other petroleum products, in a flowing pipe such as a pipeline or tanker manifold. It is capable of accurately measuring the water contamination levels in crude oil shipments, in real time as the crude oil flows through the loading manifold into the tanker, or at the receiving point as the oil is off-loaded It has application in the verification of oil volumes andmore » concentration of contaminants at petroleum transfer points. The industry-estimated level of water loss at transfer points due to inadequate monitoring technology amounts to several billion dollars per year, so there is a definite perceived need within the petroleum community for this type of accurate water monitoring technology. The device has been patented, and initial feasibility experiments have been conducted. The present research is directed toward developing and demonstrating a bench model prototype of the oil-water monitor, complete with the computer software and automated microwave equipment and electronics which will demonstrate the performance of the invention, for implementation in full-scale fielded systems. 3 figs.« less

  8. Downstream energetic proton and alpha particles during quasi-parallel interplanetary shock events

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.

    1988-01-01

    This paper considers the energetic particle populations in the downstream region of three quasi-parallel interplanetary shock events, which was explored using the ISEE 3 Ultra Low Energy Charge Analyzer sensor, which unambiguously identifies protons and alpha particles using the electrostatic deflection versus residual energy technique. The downstream particles were found to exhibit anisotropies due largely to convection in the solar wind. The spectral indices of the proton and the alpha-particle distribution functions were found to be remarkably constant during the downstream period, being generally insensitive to changes in particle flux levels, magnetic field direction, and solar wind densities. In two of the three events, the proton and the alpha spectra were the same throughout the entire downstream period, supporting the prediction of diffusive shock acceleration theory.

  9. The Fossil Fueled Metropolis: Los Angeles and the Emergence of Oil-Based Energy in North America, 1865--1930

    NASA Astrophysics Data System (ADS)

    Cooke, Jason Arthur

    Beginning with coal in the nineteenth century, the mass production and intensive consumption of fossil fuel energy fundamentally changed patterns of urban and industrial development in North America. Focusing on the metropolitan development of Los Angeles, this dissertation examines how the emergence of oil-based capitalism in the first three decades of the twentieth century was sustained and made increasingly resilient through the production of urban and industrial space. In a region where coal was scarce, the development of oil-based energy was predicated on long-term investments into conversion technologies, storage systems and distribution networks that facilitated the efficient and economical flow of liquefied fossil fuel. In this dissertation, I argue that the historical and geographical significance of the Southern California petroleum industry is derived from how its distinctive market expansion in the first three decades of the twentieth century helped establish the dominance of oil-based energy as the primary fuel for transportation in capitalist society. In North America, the origins of oil-based capitalism can be traced to the turn of the twentieth century when California was the largest oil-producing economy in the United States and Los Angeles was the fastest growing metropolitan region. This dissertation traces how Los Angeles became the first city in North America where oil became a formative element of urban and industrial development: not only as fuel for transportation, but also in the infrastructures, landscapes and networks that sustain a critical dependence on oil-based energy. With a distinctive metropolitan geography, decentralized and automobile-dependent, Los Angeles became the first oil-based city in North America and thus provides an ideal case study for examining the regional dynamics of energy transition, establishment and dependence. Interwoven with the production of urban and industrial space, oil remains the primary fuel that

  10. Dechlorination of polychlorinated biphenyls in industrial transformer oil by radiolytic and photolytic methods.

    PubMed

    Jones, Cynthia G; Silverman, Joseph; Al-Sheikhly, Mohamad; Neta, Pedatsur; Poster, Dianne L

    2003-12-15

    Used electrical transformer oils containing low or high concentrations of polychlorinated biphenyls (PCBs) were treated using electron, gamma, and ultraviolet radiation, and the conditions for complete dechlorination were developed. Dechlorination was determined by analysis of the inorganic chloride formed and the concentrations of remaining PCBs. Transformer oil containing approximately 95 microg g(-1) PCB (approximately 3.5 mmol L(-1) Cl) is completely dechlorinated by irradiation with 600 kGy after the addition of 10% triethylamine (TEA). Transformer oil containing >800,000 microg g(-1) PCB (17.7 mol L(-1) Cl) requires an additional solvent to prevent solidification. When this oil is diluted with 2-propanol (2-PrOH) and TEA (v/v/v, 1/79/20), complete dechlorination is achieved with a dose of 2500 kGy. Ultraviolet photolysis of the same oil/2-PrOH/TEA solutions led to 90% dechlorination after exposure for 120 h in our experimental setup. Such yields were obtained by radiolysis with a dose of 2000 kGy (300 h in our Gammacell). Replacing TEA with KOH in 2-PrOH solutions greatly increases the yield of dechlorination in both the radiolytic and the photolytic experiments, demonstrating that a chain reaction plays a role in both of these treatment methods and suggesting that both methods deserve further consideration for large-scale application.

  11. Lipophilic bioactive compounds in the oils recovered from cereal by-products.

    PubMed

    Górnaś, Paweł; Rudzińska, Magdalena; Raczyk, Marianna; Soliven, Arianne

    2016-07-01

    The by-products of seven different cereal grains were investigated as a source of extractable oil, rich in lipophilic bioactive compounds. Oil yields (g kg(-1) DW) recovered from cereal by-products were as follows: 189 (rice bran) > 112 (wheat germ) > 74 (corn bran) > 58 (oat bran) > 41 (buckwheat bran) > 39 (spelt bran) > 33 (wheat bran) > 27 (rye bran). The main fatty acids identified in the studied oil samples were palmitic acid (11.39-17.23%), oleic acid (11.76-42.73%), linoleic acid (35.54-62.65%) and α-linolenic acid (1.05-9.46%). The range of total tocochromanols and phytosterols in the obtained oils was 0.369-3.763 and 1.19-35.24 g kg(-1) of oil, respectively. The oils recovered from buckwheat and corn bran, and wheat germ were dominated by tocopherols (99.9, 84.2 and 96.5%, respectively), whereas the oat, rice, rye, spelt, wheat bran oils were rich in tocotrienols (73.9, 79.6, 78.1, 90.6 and 73.8%, respectively). The campesterol and β-sitosterol constituted 10.1-32.5 and 30.4-63.7%, respectively, of total phytosterols contents identified in all of the studied samples. The present study demonstrated that oils recovered from the cereal by-products are richer sources of bioactive compounds, compared with traditional oils. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  12. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spinti, Jennifer; Birgenheier, Lauren; Deo, Milind

    This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology Laboratory. There were four principle areas of research; Environmental, legal, and policy issues related to development of oil shale and oil sands resources; Economic and environmental assessment of domestic unconventional fuels industry; Basin-scale assessment of conventional and unconventional fuel development impacts; and Liquid fuel production by in situ thermal processing of oil shale Multiple research projects were conducted in each area and the results have been communicated viamore » sponsored conferences, conference presentations, invited talks, interviews with the media, numerous topical reports, journal publications, and a book that summarizes much of the oil shale research relating to Utah’s Uinta Basin. In addition, a repository of materials related to oil shale and oil sands has been created within the University of Utah’s Institutional Repository, including the materials generated during this research program. Below is a listing of all topical and progress reports generated by this project and submitted to the Office of Science and Technical Information (OSTI). A listing of all peer-reviewed publications generated as a result of this project is included at the end of this report; Geomechanical and Fluid Transport Properties 1 (December, 2015); Validation Results for Core-Scale Oil Shale Pyrolysis (February, 2015); and Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach (November, 2014); Policy Issues Associated With Using Simulation to Assess Environmental Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience (September, 2013); V-UQ of Generation 1 Simulator with AMSO Experimental Data (August, 2013); Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land

  13. Recovery Act: Develop a Modular Curriculum for Training University Students in Industry Standard CO{sub 2} Sequestration and Enhanced Oil Recovery Methodologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trentham, R. C.; Stoudt, E. L.

    CO{sub 2} Enhanced Oil Recovery, Sequestration, & Monitoring Measuring & Verification are topics that are not typically covered in Geoscience, Land Management, and Petroleum Engineering curriculum. Students are not typically exposed to the level of training that would prepare them for CO{sub 2} reservoir and aquifer sequestration related projects when they begin assignments in industry. As a result, industry training, schools & conferences are essential training venues for new & experienced personnel working on CO{sub 2} projects for the first time. This project collected and/or generated industry level CO{sub 2} training to create modules which faculties can utilize as presentations,more » projects, field trips and site visits for undergrad and grad students and prepare them to "hit the ground running" & be contributing participants in CO{sub 2} projects with minimal additional training. In order to create the modules, UTPB/CEED utilized a variety of sources. Data & presentations from industry CO{sub 2} Flooding Schools & Conferences, Carbon Management Workshops, UTPB Classes, and other venues was tailored to provide introductory reservoir & aquifer training, state-of-the-art methodologies, field seminars and road logs, site visits, and case studies for students. After discussions with faculty at UTPB, Sul Ross, Midland College, other universities, and petroleum industry professionals, it was decided to base the module sets on a series of road logs from Midland to, and through, a number of Permian Basin CO{sub 2} Enhanced Oil Recovery (EOR) projects, CO{sub 2} Carbon Capture and Storage (CCUS) projects and outcrop equivalents of the formations where CO{sub 2} is being utilized or will be utilized, in EOR projects in the Permian Basin. Although road logs to and through these projects exist, none of them included CO{sub 2} specific information. Over 1400 miles of road logs were created, or revised specifically to highlight CO{sub 2} EOR projects. After testing a

  14. A novel virtual hub approach for multisource downstream service integration

    NASA Astrophysics Data System (ADS)

    Previtali, Mattia; Cuca, Branka; Barazzetti, Luigi

    2016-08-01

    A large development of downstream services is expected to be stimulated starting from earth observations (EO) datasets acquired by Copernicus satellites. An important challenge connected with the availability of downstream services is the possibility for their integration in order to create innovative applications with added values for users of different categories level. At the moment, the world of geo-information (GI) is extremely heterogeneous in terms of standards and formats used, thus preventing a facilitated access and integration of downstream services. Indeed, different users and data providers have also different requirements in terms of communication protocols and technology advancement. In recent years, many important programs and initiatives have tried to address this issue even on trans-regional and international level (e.g. INSPIRE Directive, GEOSS, Eye on Earth and SEIS). However, a lack of interoperability between systems and services still exists. In order to facilitate the interaction between different downstream services, a new architectural approach (developed within the European project ENERGIC OD) is proposed in this paper. The brokering-oriented architecture introduces a new mediation layer (the Virtual Hub) which works as an intermediary to bridge the gaps linked to interoperability issues. This intermediation layer de-couples the server and the client allowing a facilitated access to multiple downstream services and also Open Data provided by national and local SDIs. In particular, in this paper an application is presented integrating four services on the topic of agriculture: (i) the service given by Space4Agri (providing services based on MODIS and Landsat data); (ii) Gicarus Lab (providing sample services based on Landsat datasets) and (iii) FRESHMON (providing sample services for water quality) and services from a several regional SDIs.

  15. Data collection and documentation of flooding downstream of a dam failure in Mississippi

    USGS Publications Warehouse

    Van Wilson, K.; ,

    2005-01-01

    On March 12, 2004, the Big Bay Lake dam failed, releasing water and affecting lives and property downstream in southern Mississippi. The dam is located near Purvis, Mississippi, on Bay Creek, which flows into Lower Little Creek about 1.9 miles downstream from the dam. Lower Little Creek flows into Pearl River about 16.9 miles downstream from the dam. Knowledge of the hydrology and hydraulics of floods caused by dam breaks is essential to the design of dams. A better understanding of the risks associated with possible dam failures may help limit the loss of life and property that often occurs downstream of a dam failure. The USGS recovered flood marks at the one crossing of Bay Creek and eight crossings of Lower Little Creek. Additional flood marks were also flagged at three other bridges crossing tributaries where backwater occurred. Flood marks were recovered throughout the stream reach of about 3/4 to 15 miles downstream of the dam. Flood marks that were flagged will be surveyed so that a flood profile can be documented downstream of the Big Bay Lake dam failure. Peak discharges are also to be estimated where possible. News reports stated that the peak discharge at the dam was about 67,000 cubic feet per second. Preliminary data suggest the peak discharge from the dam failure attenuated to about 13,000 cubic feet per second at Lower Little Creek at State Highway 43, about 15 miles downstream of the dam.

  16. UV-responsive nano-sponge for oil absorption and desorption

    PubMed Central

    Kim, Do Hyun; Jung, Min Chan; Cho, So-Hye; Kim, Sang Hoon; Kim, Ho-Young; Lee, Heon Ju; Oh, Kyu Hwan; Moon, Myoung-Woon

    2015-01-01

    Controlled surface wettability for oil has been intensively studied to remove industrial oil waste or oil spill pollution from seas or rivers. In particular, external stimuli-induced special wetting materials, such as photo-responsive TiO2, have attracted considerable attention for oil-water separation. In this study, a novel method is reported to fabricate a nano-sponge which is composed of hydrophobic hydrocarbon and hydrophilic TiO2 nanoparticles for oil absorption or desorption that are responsive to UV irradiation. The hydrocarbon in the nano-sponge could selectively absorb oil from water, whereas the absorbed oil is released into the water by TiO2 in response to UV irradiation. The nano-sponge functionalized porous polydimethylsiloxane released more than 98% of the absorbed crude oil with UV irradiation and air-bubbling. It could be continuously reused while maintaining a high absorption capacity and desorption efficiency without incurring secondary air or water pollution. This smart oil absorption/desorption methodology with excellent selectivity and recyclability with almost perfect removal of absorbed oil can be applied for oil-water separation, oil spill cleanup and reuse of spilled oil. PMID:26260470

  17. Oil palm natural diversity and the potential for yield improvement

    PubMed Central

    Barcelos, Edson; Rios, Sara de Almeida; Cunha, Raimundo N. V.; Lopes, Ricardo; Motoike, Sérgio Y.; Babiychuk, Elena; Skirycz, Aleksandra; Kushnir, Sergei

    2015-01-01

    African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25–30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11–18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop. PMID:25870604

  18. Oil palm natural diversity and the potential for yield improvement.

    PubMed

    Barcelos, Edson; Rios, Sara de Almeida; Cunha, Raimundo N V; Lopes, Ricardo; Motoike, Sérgio Y; Babiychuk, Elena; Skirycz, Aleksandra; Kushnir, Sergei

    2015-01-01

    African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25-30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11-18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop.

  19. Ricinus communis L. (castor bean) as a potential candidate for revegetating industrial waste contaminated sites in peri-urban Greater Hyderabad: remarks on seed oil.

    PubMed

    Boda, Ravi Kiran; Majeti, Narasimha Vara Prasad; Suthari, Sateesh

    2017-08-01

    Ricinus communis L. (castor bean or castor oil plant) was found growing on metal-contaminated sites (4) of peri-urban Greater Hyderabad comprises of erstwhile industrial areas viz Bollaram, Patancheru, Bharatnagar, and Kattedan industrial areas. During 2013-2017, about 60 research papers have appeared focusing the role of castor bean in phytoremediation of co-contaminated soils, co-generation of biomaterials, and environmental cleanup, as bioenergy crop and sustainable development. The present study is focused on its use as a multipurpose phytoremediation crop for phytostabilization and revegetation of waste disposed peri-urban contaminated soils. To determine the plant tolerance level, metal accumulation, chlorophyll, protein, proline, lipid peroxidation, oil content, and soil properties were characterized. It was noticed that the castor plant and soils have high concentration of metals such as cadmium (Cd), lead (Pb), iron (Fe), manganese (Mn), and zinc (Zn). The soils have high phosphorous (P), adequate nitrogen (N), and low concentration of potassium (K). Iron (Fe) concentrations ranged from1672±50.91 to 2166±155.78 mg kg -1 in the soil. The trend of metal accumulation Fe>Zn>Mn>Pb>Cd was found in different plant parts at polluted sites. The translocation of Cd and Pb showed values more than one in industrial areas viz Bollaram, Kattedan, and Bharatnagar indicating the plants resistance to metal toxicity. Chlorophyll and protein content reduced while proline and malondialdehyde increased due to its tolerance level under metal exposure. The content of ricinoleic acid was higher, and the fatty acids composition of polluted areas was almost similar to that of the control area. Thus, R. communis L. can be employed for reclamation of heavy metal contaminated soils.

  20. The future of oil supply

    PubMed Central

    Miller, Richard G.; Sorrell, Steven R.

    2014-01-01

    Abundant supplies of oil form the foundation of modern industrial economies, but the capacity to maintain and grow global supply is attracting increasing concern. Some commentators forecast a peak in the near future and a subsequent terminal decline in global oil production, while others highlight the recent growth in ‘tight oil’ production and the scope for developing unconventional resources. There are disagreements over the size, cost and recoverability of different resources, the technical and economic potential of different technologies, the contribution of different factors to market trends and the economic implications of reduced supply. Few debates are more important, more contentious, more wide-ranging or more confused. This paper summarizes the main concepts, terms, issues and evidence that are necessary to understand the ‘peak oil’ debate. These include: the origin, nature and classification of oil resources; the trends in oil production and discoveries; the typical production profiles of oil fields, basins and producing regions; the mechanisms underlying those profiles; the extent of depletion of conventional oil; the risk of an approaching peak in global production; and the potential of various mitigation options. The aim is to introduce the subject to non-specialist readers and provide a basis for the subsequent papers in this Theme Issue. PMID:24298085

  1. Population, petroleum, and politics: Mexico at the crossroads. Part 2. The potentials and problems of Mexican oil resources.

    PubMed

    Gallagher, C F

    1980-01-01

    The 2 most important factors which will influence Mexico's future economic development are the country's overpopulation problem and the manner in which the country's oil reserves are exploited. This document describes the historical development of Mexico's oil industry and the current struggle of the government to ensure that the oil resources contribute toward the sound economic development of the country. The government expropriated foreign oil companies in 1938 and today most of the oil operations in Mexico are conducted by the state controlled Pemex Company. In recent years extensive oil reserves were discovered in Mexico and the country is now in the position of having large oil reserves at a time when oil prices are increasing. Known crude oil reserves are estimated at 31 billion barrels; however, an unconfirmed report by Pemex in 1980 placed the known reserves at 50 billion barrels. In the past the management of Pemex was corrupt and inefficient and many top positions in the company were filled by retired politicians. The recent appointment of Jose Andres de Oteyza as Chairman of the Board and of Jorge Diaz Serrano as the Director-General should greatly improve Pemex operations. In developing the country's oil industry the government wants 1) to keep production low enough to offset inflation and to preserve the resource but 2) to produce enough oil so that the country has sufficient funds for investment and for operating needed social programs. The government may not be able to keep oil production down to acceptable levels. It may be forced to increase oil exports to compensate for its growing reliance on imported food and other imported products. In recent years Mexico's industrial productivity and its agricultural production declined. The government wants to avoid being placed in the position where it will be forced to trade large quantities of oil for needed food. The current government is promoting investment in agriculture and industrial development in

  2. Institute on oil and gas law and taxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, A.C.

    1979-01-01

    This volume contains discussions, by acknowledged authorities, of important legal and tax problems of the oil and gas industries. The articles were delivered in condensed form as lectures during the Thirtieth Annual Institute on Oil and Gas Law and Taxation held by the Southwest Legal Foundation. The following topics are discussed: crude oil issues; natural gas liquid-selected problems in regulation; recent developments in DOE audits of refiners and marketers; contrasting administrative procedures before the DOE, DOE organization - the limit of regulatory power, current major developments in federal natural gas legislation and regulation; dedication and abandonment - problems under sectionmore » 7(b) of the Natural Gas Act; Natural gas pipelines - their regulation and their current problems, current antitrust developments in oil and gas exploration and production; developments in nonregulatory oil and gas law; recent developments in oil and gas taxation; entity selection - an experience in alchemy - a comparison of corporations, partnerships, and joint ventures; foreign money and US oil and gas - tax considerations; 1978 legislative developments in oil and gas taxation; and recapture of intangibles under section 1254. (DC)« less

  3. Characterization of organic composition in snow and surface waters in the Athabasca Oil Sands Region, using ultrahigh resolution Fourier transform mass spectrometry.

    PubMed

    Yi, Y; Birks, S J; Cho, S; Gibson, J J

    2015-06-15

    This study was conducted to characterize the composition of dissolved organic compounds present in snow and surface waters in the Athabasca Oil Sands Region (AOSR) with the goal of identifying whether atmospherically-derived organic compounds present in snow are a significant contributor to the compounds detected in surface waters (i.e., rivers and lakes). We used electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS) to characterize the dissolved organic compound compositions of snow and surface water samples. The organic profiles obtained for the snow samples show compositional differences between samples from near-field sites (<5 km from oil sands activities) and those from more distant locations (i.e., far-field sites). There are also significant compositional differences between samples collected in near-field sites and surface water samples in the AOSR. The composition of dissolved organic compounds at the upstream Athabasca River site (i.e., Athabasca River at Athabasca) is found to be different from samples obtained from downstream sites in the vicinity of oil sands operations (i.e., Athabasca River at Fort McMurray and Athabasca River at Firebag confluence). The upstream Athabasca River sites tended to share some compositional similarities with far-field snow deposition, while the downstream Athabasca River sites are more similar to local lakes and tributaries. This contrast likely indicates the relative role of regional snowmelt contributions to the Athabasca River vs inputs from local catchments in the reach downstream of Fort McMurray. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Virtual industrial water usage and wastewater generation in the Middle East/North African region

    NASA Astrophysics Data System (ADS)

    Sakhel, S. R.; Geissen, S.-U.; Vogelpohl, A.

    2013-01-01

    This study deals with the quantification of volumes of water usage, wastewater generation, virtual water export, and wastewater generation from export for eight export relevant industries present in the Middle East/North Africa (MENA). It shows that about 3400 million m3 of water is used per annum while around 793 million m3 of wastewater is generated from products that are meant for domestic consumption and export. The difference between volumes of water usage and wastewater generation is due to water evaporation or injecting underground (oil wells pressure maintenance). The wastewater volume generated from production represents a population equivalent of 15.5 million in terms of wastewater quantity and 30.4 million in terms of BOD. About 409 million m3 of virtual water flows from MENA to EU27 (resulting from export of eight commodities) which is equivalent to 12.1% of the water usage of those industries and Libya is the largest virtual water exporter (about 87 million m3). Crude oil and refined petroleum products represent about 89% of the total virtual water flow, fertilizers represent around 10% and 1% remaining industries. EU27 poses the greatest indirect pressure on the Kuwaiti hydrological system where the virtual water export represents about 96% of the actual renewable water resources in this country. The Kuwaiti crude oil water use in relation to domestic water withdrawal is about 89% which is highest among MENA countries. Pollution of water bodies, in terms of BOD, due to production is very relevant for crude oil, slaughterhouses, refineries, olive oil, and tanneries while pollution due to export to EU27 is most relevant for crude oil industry and olive oil mills.

  5. The Future of the Automobile in an Oil-Short World. Worldwatch Paper 32.

    ERIC Educational Resources Information Center

    Brown, Lester R.; And Others

    Possible future roles and designs of cars are examined in light of depletion of the earth's oil reserves. A major problem with regard to the rapidly changing world oil outlook is that cars will be competing with more essential claiments for scarce oil supplies including food production, industrial power, home heating, and running trucks and…

  6. Novel approaches to microbial enhancement of oil recovery.

    PubMed

    Kryachko, Yuriy

    2018-01-20

    Microbially enhanced oil recovery (MEOR) was shown to be feasible in a number of laboratory experiments and field trials. However, it has not been widely used in the oil industry because necessary conditions cannot always be easily established in an oil reservoir. Novel approaches to MEOR, which are based on newly discovered biosurfactant-mediated MEOR-mechanisms, are discussed in this review. Particularly, the possibility of combining MEOR with chemical enhancement of oil recovery in heterogeneous oil reservoirs, which involves rock surface wettability shifts and emulsion inversions, is discussed. In wider (centimeter/millimeter-scale) rock pores, the activity of (bio)surfactants and microbial cells attached to oil may allow releasing trapped oil blobs through oil-in-water emulsification. After no more oil can be emulsified, the addition of alkali or surfactants, which turn rock surface oil-wet, may help release oil droplets trapped in narrow (micrometer-scale) pores through coalescence of the droplets and water-in-oil emulsification. Experiments demonstrating the possibility of (bio)surfactant-mediated enhancement of immiscible gas-driven oil recovery are also reviewed. Interestingly, very low (bio)surfactant concentrations were shown to be needed for enhancement of immiscible gas-driven oil recovery. Some possible side effects of MEOR, such as unintended bioplugging and microbially influenced corrosion (MIC), are discussed as well. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  7. Inhibitory effects of some plant essential oils against Arcobacter butzleri and potential for rosemary oil as a natural food preservative.

    PubMed

    Irkin, Reyhan; Abay, Secil; Aydin, Fuat

    2011-03-01

    We investigated the inhibitory activity of commercially marketed essential oils of mint, rosemary, orange, sage, cinnamon, bay, clove, and cumin against Arcobacter butzleri and Arcobacter skirrowii and the effects of the essential oil of rosemary against A. butzleri in a cooked minced beef system. Using the disc diffusion method to determine the inhibitory activities of these plant essential oils against strains of Arcobacter, we found that those of rosemary, bay, cinnamon, and clove had strong inhibitory activity against these organisms, whereas the essential oils of cumin, mint, and sage failed to show inhibitory activity against most of the Arcobacter strains tested. The 0.5% (vol/wt) essential oil of rosemary was completely inhibitory against A. butzleri in the cooked minced beef system at 4°C. These essential oils may be further investigated as a natural solution to the food industry by creating an additional barrier (hurdle technology) to inhibit the growth of Arcobacter strains.

  8. Microbial diversity of an oil-water processing site and its associated oil field: the possible role of microorganisms as information carriers from oil-associated environments.

    PubMed

    van der Kraan, Geert M; Bruining, Johannes; Lomans, Bart P; van Loosdrecht, Mark C M; Muyzer, Gerard

    2010-03-01

    The phylogenetic diversity of Bacteria and Archaea in water retrieved from a Dutch oil field and units of the associated oil-water separation site were determined using two culture-independent methods. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments was used to scan the microbial diversity in (1) the oil-water emulsion produced, (2) two different oil-water separator tanks, (3) a wash tank and (4) a water injector. Longer 16S rRNA gene fragments were amplified, cloned and sequenced to determine the diversity in more detail. One of the questions addressed was whether the detected microorganisms could serve as indicators for the environments from which they were retrieved. It was observed that the community found in the production water resembled those reported previously in oil reservoirs, indicating that these ecosystems harbor specific microbial communities. It was shown that changes, like a decrease in temperature, cause a distinctive shift in these communities. The addition of SO(3)(2-) to the wash tank as ammonium bisulphite, used in the oil industry to scavenge oxygen, resulted in a complete community change, giving rise to an unwanted sulphate-reducing community. The fact that these changes in the community can be linked to changes in their environment might indicate that these tools can be used for the monitoring of changing conditions in oil reservoirs upon, for example, water flooding.

  9. Mycorrhizal inoculum potentials of pure reclamation materials and revegetated tailing sands from the Canadian oil sand industry.

    PubMed

    Bois, G; Piché, Y; Fung, M Y P; Khasa, D P

    2005-05-01

    Recent improvements in the management of oil sand tailings used by the Canadian oil sand industry have resulted in the production of composite tailing sands (CT): a new challenging material for reclamation work. Jack pine (Pinus banksiana Lamb.), hybrid poplar (Populus deltoides Bartr. ex Marsh. xPopulus nigra L.) and red clover (Trifolium pratense L.) plants were used in an 8-week greenhouse bioassay to evaluate the mycorrhizal inoculum potential of CT. This inoculum potential was compared with that of three other reclamation materials [common tailing sands (TS), deep overburden (OB) and muskeg peat (MK)], and with three sites reclaimed in 1982 (R82), 1988 (R88) and 1999 (R99). CT was devoid of active mycorrhizal propagules while all other materials showed some level of inoculum potential. Arbuscular mycorrhizal fungi were observed on roots of clover or poplar grown in TS, OB, and all substrates containing peat (MK, R82, R88 and R99). Pine roots were also colonized by vesicle-forming hyphae of an unidentified fine endophyte and by dark septate fungi. Ectomycorrhizas (ECM) were observed on pine and poplar grown in OB, MK, and in soils from the two older reclaimed sites (R82 and R88). Using morpho- and molecular typing, six ECM fungi were identified to the genus or species level: Laccaria sp., Thelephora americana, Wilcoxina sp. (E-strain), Tuber sp. (I-type), a Sebacinoid, and a Pezizales species. Laccaria sp. and Wilcoxina sp. were the most frequently observed ECM species.

  10. Positive and Negative Impacts of Oil Palm Expansion in Indonesia and the Prospect to Achieve Sustainable Palm Oil

    NASA Astrophysics Data System (ADS)

    Shahputra, M. A.; Zen, Z.

    2018-02-01

    The aim of the study is to deepen understanding the role of palm oil on Indonesian economy, poverty elevation and to investigate the positive and negative impacts of oil palm expansion, due to the burden of GHG emissions; and prospect to be more sustainable palm oil industry. The statistics show that average rural poverty tends to be lower and Gross Regional Product tends to be higher in provinces which have greater levels of oil palm cultivation. Indonesian oil palm will grow from 10.6 in 2013 to 13.7 million ha by 2020. This will release 135.59 million tons of CO2 if nothing is done to mitigate BAU emissions. Unless there are sustained efforts to redirect development and expansion of oil palm, plantation growth will continue to encroach on intact forest and peat land.. In fact Indonesia has large areas of degraded land, an estimated total 19,144,000 ha is available for planting oil palm and other crops. A large-scale expansion program driven by estate companies needs to be accompanied by effective smallholder development program in order to achieve the best outcome for local farmers and avoid the conflicts.

  11. Experimental study on immiscible jet breakup using refractive index matched oil-water pair

    NASA Astrophysics Data System (ADS)

    Xue, Xinzhi; Katz, Joseph

    2016-11-01

    A subsea oil well blowout creates an immiscible crude oil jet. This jet fragments shortly after injection, resulting in generation of a droplet cloud. Detailed understanding of the processes involved is crucial for modeling the fragmentation and for predicting the droplet size distribution. High density of opaque droplets near nozzle limits our ability to visualize and quantify the breakup process. To overcome this challenge, two immiscible fluids: silicone oil and sugar water with the same index of refraction (1.4015) are used as surrogates for crude oil and seawater, respectively. Their ratios of kinematic viscosity (5.64), density (0.83) and interfacial tension are closely matched with those of crude oil and seawater. Distribution of the oil phase is visualized by fluorescent tagging. Both phases are also seeded with particles for simultaneous PIV measurements. The measurements are performed within atomization range of Ohnesorge and Reynolds numbers. Index matching facilitates undistorted view of the phase distribution in illuminated section. Ongoing tests show that the jet surface initially rolls up into Kelvin-Helmholtz rings, followed by development of dispersed phase ligaments further downstream, which then break into droplets. Some of these droplets are re-entrained into the high momentum core, resulting in secondary breakup. As the oil layer and ligaments evolve, they often entrain water, resulting in generation of multiple secondary water droplets encapsulated within the oil droplets. This research is made possible by a Grant from Gulf of Mexico Research Initiative.

  12. Eri silkworm: a source of edible oil with a high content of α-linolenic acid and of significant nutritional value.

    PubMed

    Longvah, Thingnganing; Manghtya, Korra; Qadri, Syed S Y H

    2012-07-01

    The study was undertaken to provide value addition to spent eri silkworm as an alternative source of edible oil for the food and feed industry by carrying out a short-term nutritional and toxicological evaluation of eri silkworm pupae oil using Wistar NIN rats. Growth performance of rats fed either sunflower oil (Control) or eri silkworm pupae oil (Experimental) was comparable. Histopathological examination of the various tissues showed no signs of toxicity even after feeding the eri silkworm oil for 18 weeks. Serum cholesterol and triglyceride was significantly reduced (P < 0.05) while high-density lipoprotein cholesterol was significantly increased (P < 0.05) which is attributed to the high α-linolenic acid content of eri silkworm oil. The study showed that eri silkworm pupae oil is safe and nutritionally equivalent to commonly used vegetable oils. Eri silkworm pupae can be harvested to provide a cost effective alternative edible oil that can be used to nutritional advantage in the food and feed industry. Therefore eri silkworm and its host plants offer an excellent example of multiple product crops and of sustainable agricultural practice with excellent opportunity for economic and nutritional benefits. Copyright © 2012 Society of Chemical Industry.

  13. Examples of oil cavitation erosion in positive displacement pumps

    NASA Technical Reports Server (NTRS)

    Halat, J. A.; Ellis, G. O.

    1974-01-01

    The effects of cavitation flow on piston type, positive displacement, hydraulic pumps are discussed. The operating principles of the pump and the components which are most subject to erosion effects are described. The mechanisms of cavitation phenomena are identified from photographic records. Curves are developed to show the solubility of air in water, oil-water emulsion, and industrial hydraulic oil.

  14. Oil shale development and its environmental considerations

    USGS Publications Warehouse

    Stone, R.T.; Johnson, H.; Decora, A.

    1974-01-01

    The petroleum shortage recently experienced by many nations throughout the world has created an intense interest in obtaining new and supplemental energy sources. In the United States, this interest has been centered on oil shale. Any major action by the federal government having significant environmental effects requires compliance with the National Environmental Policy Act of 1969 (NEPA). Since most oil shale is found on federal lands, and since its development involves significant environmental impacts, leasing oil shale lands to private interests must be in compliance with NEPA. For oil shale, program planning began at approximately the same time that NEPA was signed into law. By structuring the program to permit a resource and technological inventory by industry and the federal agencies, the Department of the Interior was able simultaneously to conduct the environmental assessments required by the act. This required: 1. Clearly defined program objections; 2. An organization which could integrate public policy with diverse scientific disciplines and environmental concerns; and 3. Flexible decisionmaking to adjust to policy changes as well as to evolving interpretations on EPA as clarified by court decisions. This paper outlines the program, the organization structure that was created for this specific task, and the environmental concerns which were investigated. The success of the program has been demonstrated by meeting the requirements of NEPA, without court challenge, and by industry's acceptance of a leasing program that included the most stringent environmental protection provisions ever required. The need for energy development has spurred the acceptance of the program. However, by its awareness and willingness to meet the environmental challenges of the future, industry has shown a reasonable understanding of its commitments. The pros and cons of development were publicly considered in hearings and analyzed in the final environmental statement. This

  15. Microfluidics: an enabling screening technology for enhanced oil recovery (EOR).

    PubMed

    Lifton, Victor A

    2016-05-21

    Oil production is a critical industrial process that affects the entire world population and any improvements in its efficiency while reducing its environmental impact are of utmost societal importance. The paper reviews recent applications of microfluidics and microtechnology to study processes of oil extraction and recovery. It shows that microfluidic devices can be useful tools in investigation and visualization of such processes used in the oil & gas industry as fluid propagation, flooding, fracturing, emulsification and many others. Critical macro-scale processes that define oil extraction and recovery are controlled by the micro-scale processes based on wetting, adhesion, surface tension, colloids and other concepts of microfluidics. A growing number of research efforts demonstrates that microfluidics is becoming, albeit slowly, an accepted methodology in this area. We propose several areas of development where implementation of microfluidics may bring about deeper understanding and hence better control over the processes of oil recovery based on fluid propagation, droplet generation, wettability control. Studies of processes such as hydraulic fracturing, sand particle propagation in porous networks, high throughput screening of chemicals (for example, emulsifiers and surfactants) in microfluidic devices that simulate oil reservoirs are proposed to improve our understanding of these complicated physico-chemical systems. We also discuss why methods of additive manufacturing (3D printing) should be evaluated for quick prototyping and modification of the three-dimensional structures replicating natural oil-bearing rock formations for studies accessible to a wider audience of researchers.

  16. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature.

    PubMed

    Wang, Ben; Liang, Weixin; Guo, Zhiguang; Liu, Weimin

    2015-01-07

    Oil spills and industrial organic pollutants have induced severe water pollution and threatened every species in the ecological system. To deal with oily water, special wettability stimulated materials have been developed over the past decade to separate oil-and-water mixtures. Basically, synergy between the surface chemical composition and surface topography are commonly known as the key factors to realize the opposite wettability to oils and water and dominate the selective wetting or absorption of oils/water. In this review, we mainly focus on the development of materials with either super-lyophobicity or super-lyophilicity properties in oil/water separation applications where they can be classified into four kinds as follows (in terms of the surface wettability of water and oils): (i) superhydrophobic and superoleophilic materials, (ii) superhydrophilic and under water superoleophobic materials, (iii) superhydrophilic and superoleophobic materials, and (iv) smart oil/water separation materials with switchable wettability. These materials have already been applied to the separation of oil-and-water mixtures: from simple oil/water layered mixtures to oil/water emulsions (including oil-in-water emulsions and water-in-oil emulsions), and from non-intelligent materials to intelligent materials. Moreover, they also exhibit high absorption capacity or separation efficiency and selectivity, simple and fast separation/absorption ability, excellent recyclability, economical efficiency and outstanding durability under harsh conditions. Then, related theories are proposed to understand the physical mechanisms that occur during the oil/water separation process. Finally, some challenges and promising breakthroughs in this field are also discussed. It is expected that special wettability stimulated oil/water separation materials can achieve industrial scale production and be put into use for oil spills and industrial oily wastewater treatment in the near future.

  17. Characterization and oxidative stability of purslane seed oil microencapsulated in yeast cells biocapsules.

    PubMed

    Kavosi, Maryam; Mohammadi, Abdorreza; Shojaee-Aliabadi, Saeedeh; Khaksar, Ramin; Hosseini, Seyede Marzieh

    2018-05-01

    Purslane seed oil, as a potential nutritious source of omega-3 fatty acid, is susceptible to oxidation. Encapsulation in yeast cells is a possible approach for overcoming this problem. In the present study, purslane seed oil was encapsulated in non-plasmolysed, plasmolysed and plasmolysed carboxy methyl cellulose (CMC)-coated Saccharomyces cerevisiae cells and measurements of oil loading capacity (LC), encapsulation efficiency (EE), oxidative stability and the fatty acid composition of oil-loaded microcapsules were made. Furthermore, investigations of morphology and thermal behavior, as well as a Fourier transform-infrared (FTIR) analyses of microcapsules, were performed. The values of EE, LC were approximately 53-65% and 187-231 g kg -1 , respectively. Studies found that the plasmolysis treatment increased EE and LC and decreased the mean peroxide value (PV) of microencapsulated oil. The presence of purslane seed oil in yeast microcapsules was confirmed by FTIR spectroscopy and differential scanning calorimetry analyses. The lowest rate of oxidation belonged to the oil-loaded plasmolysed CMC-coated microcapsules (16.73 meqvO 2 kg -1 ), whereas the highest amount of oxidation regardless of native oil referred to the oil-loaded in non-plasmolysed cells (28.15 meqvO 2 kg -1 ). The encapsulation of purslane seed oil in the yeast cells of S. cerevisiae can be considered as an efficient approach for extending the oxidative stability of this nutritious oil and facilitating its application in food products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis.

    PubMed

    Kapelko, Magdalena; Oude Lansink, Alfons; Stefanou, Spiro E

    2015-01-01

    This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change.

  19. Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis

    PubMed Central

    Kapelko, Magdalena; Lansink, Alfons Oude; Stefanou, Spiro E.

    2015-01-01

    This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change. PMID:26057878

  20. Effect of unground oil palm ash as mixing ingredient towards properties of concrete

    NASA Astrophysics Data System (ADS)

    Sulaiman, M. A.; Muthusamy, K.; Mat Aris, S.; Rasid, M. H. Mohd; Paramasivam, R.; Othman, R.

    2018-04-01

    Malaysia being one of the world largest palm oil producers generates palm oil fuel ash (POFA), a by-product in increasing quantity. This material which usually disposed as solid waste causes pollution to the environment. Success in converting this waste material into benefitting product would reduce amount of waste disposed and contributes towards cleaner environment. This research explores the potential of unground oil palm ash being used as partial sand replacement in normal concrete production. Experimental work has been conducted to determine the workability, compressive strength and flexural strength of concrete when unground oil palm ash is added as partial sand replacement. A total of five mixes containing various percentage of oil palm ash, which are 0%, 5%, 10%, 15% and 20% have been prepared. All specimens were water cured until the testing date. The slump test, compressive strength test and flexural strength test was conducted. The findings show that mix produced using 10% of palm oil fuel ash exhibit higher compressive strength and flexural strength as compared to control specimen. Utilization of unground oil palm ash as partial sand replacement would be able to reduce dependency of construction industry on natural sand supply and also as one of the solution to reuse palm oil industry waste.