Science.gov

Sample records for dpp4 inhibitor improves

  1. [Once-weekly DPP-4 inhibitor].

    PubMed

    Harada, Norio; Inagaki, Nobuya

    2015-12-01

    Trelagliptin is the first once-weekly dipeptidyl peptidase-4(DPP-4) inhibitor in the world. Trelagliptin inhibits DPP-4 activity with lower drug concentration compared with other once- (or twice-) daily DPP-4 inhibitors in in vitro study. More than 70 % of DPP-4 activity is inhibited even 1 week after administration of trelagliptin administration in human study. 24-week trelagliptin monotherapy improved HbA1c(-0.33%) and fasting plasma glucose levels in Japanese patients with type 2 diabetes. Trelagliptin did not affect body weight and frequency of hypoglycemic events in this study. 52-week monotherapy and add-on therapy of trelagliptin also improved HbA1c levels without body weight gain and severe hypoglycemia. Therefore, trelagliptin has high efficacy and safety on glucose control in Japanese patients with type 2 diabetes. PMID:26666159

  2. Reduced DPP4 activity improves insulin signaling in primary human adipocytes.

    PubMed

    Röhrborn, Diana; Brückner, Julia; Sell, Henrike; Eckel, Jürgen

    2016-03-11

    DPP4 is a ubiquitously expressed cell surface protease which is also released to the circulation as soluble DPP4 (sDPP4). Recently, we identified DPP4 as a novel adipokine oversecreted in obesity and thus potentially linking obesity to the metabolic syndrome. Furthermore, sDPP4 impairs insulin signaling in an autocrine and paracrine fashion in different cell types. However, it is still unknown which functional role DPP4 might play in adipocytes. Therefore, primary human adipocytes were treated with a specific DPP4 siRNA. Adipocyte differentiation was not affected by DPP4 silencing. Interestingly, DPP4 reduction improved insulin responsiveness of adipocytes at the level of insulin receptor, proteinkinase B (Akt) and Akt substrate of 160 kDa. To investigate whether the observed effects could be attributed to the enzymatic activity of DPP4, human adipocytes were treated with the DPP4 inhibitors sitagliptin and saxagliptin. Our data show that insulin-stimulated activation of Akt is augmented by DPP4 inhibitor treatment. Based on our previous observation that sDPP4 induces insulin resistance in adipocytes, and that adipose DPP4 levels are higher in obese insulin-resistant patients, we now suggest that the abundance of DPP4 might be a regulator of adipocyte insulin signaling. PMID:26872429

  3. Improved glucose regulation in type 2 diabetic patients with DPP-4 inhibitors: focus on alpha and beta cell function and lipid metabolism.

    PubMed

    Ahrén, Bo; Foley, James E

    2016-05-01

    Inhibition of dipeptidyl peptidase-4 (DPP-4) is an established glucose-lowering strategy for the management of type 2 diabetes mellitus. DPP-4 inhibitors reduce both fasting and postprandial plasma glucose levels, resulting in reduced HbA1c with low risk for hypoglycaemia and weight gain. They act primarily by preventing inactivation of the incretin hormones glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1, thereby prolonging the enhanced endogenous levels of these hormones after meal ingestion. This in turn causes islet and extrapancreatic effects, including increased glucose sensing in islet alpha and beta cells. These effects result in increased insulin secretion and decreased glucagon secretion being more effective in hyperglycaemic states and reduced insulin secretion and increased glucagon secretion being more effective during hypoglycaemia. Other secondary pharmacological actions of DPP-4 inhibitors include mobilisation and burning of fat during meals, decrease in fat extraction from the gut, reduction of fasting lipolysis and liver fat and increase in LDL particle size. These actions contribute to the clinical effects of DPP-4 inhibition, and the reduced demand for insulin could also lead to a durability benefit. This review summarises the current knowledge of the secondary pharmacological actions of DPP-4 inhibitors that lead to improved glucose regulation in patients with type 2 diabetes, focusing on alpha and beta cell function and lipid metabolism. PMID:26894277

  4. DPP-4 inhibitors in diabetic complications: role of DPP-4 beyond glucose control.

    PubMed

    Bae, Eun Ju

    2016-08-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) are an emerging class of antidiabetic drugs that constitutes approximately fifty percent of the market share of the oral hypoglycemic drugs. Its mechanism of action for lowering blood glucose is essentially via inhibition of the rapid degradation of incretin hormones, such as glucagon-like peptide (GLP)-1 and gastric inhibitory polypeptide (GIP), thus the plasma concentration of GLP-1 increases, which promotes insulin secretion from the pancreatic β cells and suppresses glucagon secretion from the α cells. In addition to the direct actions on the pancreas, GLP-1 exhibits diverse actions on different tissues through its action on GLP-1 receptor, which is expressed ubiquitously. Moreover, DPP-4 has multiple substrates besides GLP-1 and GIP, including cytokines, chemokines, neuropeptides, and growth factors, which are involved in many pathophysiological conditions. Recently, it was suggested that DPP-4 is a new adipokine secreted from the adipose tissue, which plays an important role in the regulation of the endocrine function in obesity-associated type 2 diabetes. Consequently, DPP-4 inhibitors have been reported to exhibit cytoprotective functions against various diabetic complications affecting the liver, heart, kidneys, retina, and neurons. This review outlines the current understanding of the effect of DPP-4 inhibitors on the complications associated with type 2 diabetes, such as liver steatosis and inflammation, dysfunction of the adipose tissue and pancreas, cardiovascular diseases, nephropathy, and neuropathy in preclinical and clinical studies. PMID:27502601

  5. Structural Biology and Molecular Modeling in the Design of Novel DPP-4 Inhibitors

    NASA Astrophysics Data System (ADS)

    Scapin, Giovanna

    Inhibition of dipeptidyl peptidase IV (DPP-4) is a promising new approach for the treatment of type 2 diabetes. DPP-4 is the enzyme responsible for inactivating the incretin hormones glucagon-like peptide 1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP), two hormones that play important roles in glucose homeostasis. The potent, orally bioavailable and highly selective small molecule DPP-4 inhibitor sitagliptin has been approved by the FDA as novel drug for the treatment of type 2 diabetes. The comparison between the binding mode of sitagliptin (a β-amino acid) and that of a second class of inhibitors (α-amino acid-based) initially led to the successful identification and design of structurally diverse and highly potent DPP-4 inhibitors. Further analysis of the crystal structure of sitagliptin bound to DPP-4 suggested that the central β-amino butanoyl moiety could be replaced by a rigid group. This was confirmed by molecular modeling, and the resulting cyclohexylamine analogs were synthesized and found to be potent DPP-4 inhibitors. However, the triazolopyrazine was predicted to be distorted in order to fit in the binding pocket, and the crystal structure showed that multiple conformations exist for this moiety. Additional molecular modeling studies were then used to improve potency of the cyclohexylamine series. In addition, a 3-D QSAR method was used to gain insight for reducing off-target DPP-8/9 activities. Novel compounds were thus synthesized and found to be potent DPP-4 inhibitors. Two compounds in particular were designed to be highly selective against off-target "DPP-4 Activity- and/or Structure Homologues" (DASH) enzymes while maintaining potency against DPP-4.

  6. The DPP-4 inhibitor linagliptin and the GLP-1 receptor agonist exendin-4 improve endothelium-dependent relaxation of rat mesenteric arteries in the presence of high glucose.

    PubMed

    Salheen, S M; Panchapakesan, U; Pollock, C A; Woodman, O L

    2015-04-01

    The aim of the study was to investigate the effects of the DPP-4 inhibitors and GLP-1R agonist, exendin-4 on the mechanism(s) of endothelium-dependent relaxation in rat mesenteric arteries exposed to high glucose concentration (40 mM). Organ bath techniques were employed to investigate vascular endothelial function in rat mesenteric arteries in the presence of normal (11 mM) or high (40 mM) glucose concentrations. Pharmacological tools (1μM TRAM-34, 1μM apamin, 100 nM Ibtx, 100 μM l-NNA, 10 μM ODQ) were used to distinguish between NO and EDHF-mediated relaxation. Superoxide anion levels were assessed by L-012 and lucigenin enhanced-chemiluminescence techniques. Incubation of mesenteric rings with high glucose for 2 h caused a significant increase in superoxide anion generation and a significant impairment of endothelium-dependent relaxation. Exendin-4 and DPP-4 inhibitor linagliptin, but not sitagliptin or vildagliptin, significantly reduced vascular superoxide and improved endothelium-dependent relaxation in the presence of high glucose. The beneficial actions of exendin-4, but not linagliptin, were attenuated by the GLP-1R antagonist exendin fragment (9-39). Further experiments demonstrated that the presence of high glucose impaired the contribution of both nitric oxide and endothelium-dependent hyperpolarisation to relaxation and that linagliptin improved both mechanisms involved in endothelium-dependent relaxation. These findings demonstrate that high glucose impaired endothelium-dependent relaxation can be improved by exendin-4 and linagliptin, likely due to their antioxidant activity and independently of any glucose lowering effect. PMID:25697548

  7. DPP-4 Inhibitors: Incretin-Based Medicine for Type 2 Diabetes

    MedlinePlus

    ... a slightly different way to achieve the same effect on blood glucose levels. What are DPP-4 inhibitor medicines? DPP-4 ... confused. You can learn what to eat or drink to bring your blood glucose level back up to normal. DPP-4 inhibitors can ...

  8. Clinical trial simulation methods for estimating the impact of DPP-4 inhibitors on cardiovascular disease

    PubMed Central

    Schuetz, Charles Andy; Ong, Siew Hwa; Blüher, Matthias

    2015-01-01

    Introduction Dipeptidyl peptidase-4 (DPP-4) inhibitors are a class of oral antidiabetic agents for the treatment of type 2 diabetes mellitus, which lower blood glucose without causing severe hypoglycemia. However, the first cardiovascular (CV) safety trials have only recently reported their results, and our understanding of these therapies remains incomplete. Using clinical trial simulations, we estimated the effectiveness of DPP-4 inhibitors in preventing major adverse cardiovascular events (MACE) in a population like that enrolled in the SAVOR-TIMI (the Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus – Thrombolysis in Myocardial Infarction) 53 trial. Methods We used the Archimedes Model to simulate a clinical trial of individuals (N=11,000) with diagnosed type 2 diabetes and elevated CV risk, based on established disease or multiple risk factors. The DPP-4 class was modeled with a meta-analysis of HbA1c and weight change, pooling results from published trials of alogliptin, linagliptin, saxagliptin, sitagliptin, and vildagliptin. The study treatments were added-on to standard care, and outcomes were tracked for 20 years. Results The DPP-4 class was associated with an HbA1c drop of 0.66% (0.71%, 0.62%) and a weight drop of 0.14 (−0.07, 0.36) kg. These biomarker improvements produced a relative risk (RR) for MACE at 5 years of 0.977 (0.968, 0.986). The number needed to treat to prevent one occurrence of MACE at 5 years was 327 (233, 550) in the elevated CV risk population. Conclusion Consistent with recent trial publications, our analysis indicates that DPP-4 inhibitors do not increase the risk of MACE relative to the standard of care. This study provides insights about the long-term benefits of DPP-4 inhibitors and supports the interpretation of the published CV safety trial results. PMID:26089691

  9. Design, Synthesis, and Pharmacological Evaluation of Fused β-Homophenylalanine Derivatives as Potent DPP-4 Inhibitors

    PubMed Central

    2015-01-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are accepted as a favorable class of agents for the treatment of type 2 diabetes. Herein, a series of fused β-homophenylalanine derivatives as novel DPP-4 inhibitors were designed, synthesized, and evaluated for their inhibitory activities against DPP-4. Most of them displayed excellent DPP-4 inhibitory activities and good selectivity. Among them, 9aa, 18a, and 18m also showed good efficacy in an oral glucose tolerance test (OGTT) in ICR mice. Moreover, when dosed 8 h prior to glucose challenge, 18m showed significantly greater potency than sitagliptin. It thus provides potential candidates for the further development into potent drugs targeting DPP-4. PMID:26005541

  10. Targeting Incretins in Type 2 Diabetes: Role of GLP-1 Receptor Agonists and DPP-4 Inhibitors

    PubMed Central

    Pratley, Richard E.; Gilbert, Matthew

    2008-01-01

    Until recently, the pathogenesis of type 2 diabetes mellitus (T2DM) has been conceptualized in terms of the predominant defects in insulin secretion and insulin action. It is now recognized that abnormalities in other hormones also contribute to the development of hyperglycemia. For example, the incretin effect, mediated by glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), is attenuated in T2DM. Intravenous administration of GLP-1 ameliorates hyperglycemia in patients with T2DM, but an extremely short half-life limits its utility as a therapeutic agent. Strategies to leverage the beneficial effects of GLP-1 include GLP-1 receptor agonists or analogs or dipeptidyl peptidase-4 (DPP-4) inhibitors—agents that act by slowing the inactivation of endogenous GLP-1 and GIP. The GLP-1 agonist exenatide has been shown to improve HbA1c and decrease body weight. However, exenatide is limited by its relatively short pharmacologic half-life, various gastrointestinal (GI) side effects, and the development of antibodies. Studies of a long-acting exenatide formulation suggest that it has improved efficacy and also promotes weight loss. Another prospect is liraglutide, a once-daily human GLP-1 analog. In phase 2 studies, liraglutide lowered HbA1c by up to 1.7% and weight by approximately 3 kg, with apparently fewer GI side effects than exenatide. DPP-4 inhibitors such as sitagliptin and vildagliptin result in clinically significant reductions in HbA1c, and are weight neutral with few GI side effects. This review will provide an overview of current and emerging agents that augment the incretin system with a focus on the role of GLP-1 receptor agonists and DPP-4 inhibitors. PMID:18795210

  11. Molecular docking studies and 2D analyses of DPP-4 inhibitors as candidates in the treatment of diabetes.

    PubMed

    Pantaleão, Simone Queiroz; Maltarollo, Vinicius Gonçalves; Araujo, Sheila Cruz; Gertrudes, Jadson Castro; Honorio, Kathia Maria

    2015-11-01

    Dipeptidyl peptidase-4 (DPP-4) is an important biological target related to the treatment of diabetes as DPP-4 inhibitors can lead to an increase in the insulin levels and a prolonged activity of glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP), being effective in glycemic control. Thus, this study analyses the main molecular interactions between DPP-4 and a series of bioactive ligands. The methodology used here employed molecular modeling methods, such as HQSAR (Hologram Quantitative Structure-Activity) analyses and molecular docking, with the aim of understanding the main structural features of the compound series that are essential for the biological activity. Analyses of the main interactions in the active site of DPP-4, in particular, the contribution of the hydroxyl coordination between Tyr547 and Ser630 by the water molecule, which is described in the literature as important for the coordinated interactions in the active site, were performed. Significant correlation coefficients of the best 2D model (r(2) = 0.942 and q(2) = 0.836) were obtained, indicating the predictive power of this model for untested compounds. Therefore, the final model constructed in this study, along with the information from the contribution maps, could be useful in the design of novel DPP-4 ligands with improved activity. PMID:26399297

  12. DPP-4 Inhibitor Reduces Central Blood Pressure in a Diabetic and Hypertensive Patient: A Case Report.

    PubMed

    Cosenso-Martin, Luciana Neves; Giollo-Junior, Luiz Tadeu; Vilela-Martin, José Fernando

    2015-07-01

    Hypertension and type 2 diabetes mellitus (DM) are among the main risk factors for the development of cardiovascular disease. Pharmacotherapy for DM should not only improve blood glucose control, but also provide beneficial glucose-independent cardiovascular effects. The central systolic blood pressure (SBP) has become more important than the brachial SBP in the assessment of cardiovascular risk.This case report describes the effect of vildagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, on the central SBP in a 54-year-old woman with hypertension and DM. She was submitted to applanation tonometry (AT) before and after vildagliptin association. AT of the radial artery is a non-invasive method that indirectly assesses arterial stiffness by calculating the central SBP and the augmentation index (AIx).After 3 months of follow-up using vildagliptin, central SBP and AIx were improved. Moreover, she presented better glycemic control.This case suggests an effect of DPP-4 inhibitor on arterial stiffness parameter (central SBP) in a hypertensive and diabetic patient, which shows a glucose-independent beneficial cardiovascular effect of this group of drugs. PMID:26166078

  13. Suppression of lung metastases by the CD26/DPP4 inhibitor Vildagliptin in mice.

    PubMed

    Jang, Jae-Hwi; Baerts, Lesley; Waumans, Yannick; De Meester, Ingrid; Yamada, Yoshito; Limani, Perparim; Gil-Bazo, Ignacio; Weder, Walter; Jungraithmayr, Wolfgang

    2015-10-01

    Metastases rather than primary cancers determine nowadays the survival of patients. One of the most common primary malignancies is colorectal cancer and this type of tumor is characterized by a high tendency to spread metastases to the lung and liver. CD26/DPP4 is a transmembrane molecule with enzymatic functions which cleaves biologically active peptides. Recently, CD26/DPP4 has become the focus of cancer research and it was shown that CD26/DPP4-positive cancer cells display increased metastatic activity. Here, we tested if the CD26/DPP4-inhibitor Vildagliptin suppresses the development and growth of mouse colorectal lung metastases. This inhibitor of CD26/DPP4 was employed on mouse (C57BL/6) colorectal lung metastases, established by intravenous injection of the syngeneic cell line MC38. For mechanistic analysis, a subcutaneous tumor model was used. The treatment with Vildagliptin significantly suppressed both, the incidence and growth of lung metastases. Autophagy markers (LC3, p62, and ATF4) decreased, apoptosis increased (TUNEL, pH3/Ki-76), and the cell cycle regulator pCDC2 was inhibited. In conclusion, we here showed an anti-tumor effect of Vildagliptin via downregulation of autophagy resulting in increased apoptosis and modulation of the cell cycle. We therefore propose Vildagliptin for the evaluation as a new therapeutic approach for the treatment of colorectal cancer lung metastases. PMID:26233333

  14. Discovery of Novel Tricyclic Heterocycles as Potent and Selective DPP-4 Inhibitors for the Treatment of Type 2 Diabetes.

    PubMed

    Wu, Wen-Lian; Hao, Jinsong; Domalski, Martin; Burnett, Duane A; Pissarnitski, Dmitri; Zhao, Zhiqiang; Stamford, Andrew; Scapin, Giovanna; Gao, Ying-Duo; Soriano, Aileen; Kelly, Terri M; Yao, Zuliang; Powles, Mary Ann; Chen, Shiying; Mei, Hong; Hwa, Joyce

    2016-05-12

    In our efforts to develop second generation DPP-4 inhibitors, we endeavored to identify distinct structures with long-acting (once weekly) potential. Taking advantage of X-ray cocrystal structures of sitagliptin and other DPP-4 inhibitors, such as alogliptin and linagliptin bound to DPP-4, and aided by molecular modeling, we designed several series of heterocyclic compounds as initial targets. During their synthesis, an unexpected chemical transformation provided a novel tricyclic scaffold that was beyond our original design. Capitalizing on this serendipitous discovery, we have elaborated this scaffold into a very potent and selective DPP-4 inhibitor lead series, as highlighted by compound 17c. PMID:27190600

  15. The discovery of novel 5,6,5- and 5,5,6-tricyclic pyrrolidines as potent and selective DPP-4 inhibitors.

    PubMed

    Cox, Jason M; Chu, Hong D; Kuethe, Jeffrey T; Gao, Ying-Duo; Scapin, Giovanna; Eiermann, George; He, Huaibing; Li, Xiaohua; Lyons, Kathryn A; Metzger, Joseph; Petrov, Aleksandr; Wu, Joseph K; Xu, Shiyao; Sinha-Roy, Ranabir; Weber, Ann E; Biftu, Tesfaye

    2016-06-01

    Novel potent and selective 5,6,5- and 5,5,6-tricyclic pyrrolidine dipeptidyl peptidase IV (DPP-4) inhibitors were identified. Structure-activity relationship (SAR) efforts focused on improving the intrinsic DPP-4 inhibition potency, increasing protease selectivity, and demonstrating clean ion channel and cytochrome P450 profiles while trying to achieve a pharmacokinetic profile suitable for once weekly dosing in humans. PMID:27106708

  16. Lessons learned from cardiovascular outcome clinical trials with dipeptidyl peptidase 4 (DPP-4) inhibitors.

    PubMed

    Fiorentino, Teresa Vanessa; Sesti, Giorgio

    2016-08-01

    Previous trials of glucose-lowering strategies in subjects with type 2 diabetes have demonstrated a beneficial effect of intensive glycemic control on microvascular complications but failed to show a clear benefit on cardiovascular complications. The findings of meta-analyses of rosiglitazone trials suggesting that rosiglitazone might increase the risk of myocardial infarction have cast doubt on the cardiovascular safety of glucose-lowering drugs. In 2008, the US Food and Drug Administration has implemented rigorous criteria to approve new glucose-lowering drugs, requiring proof of cardiovascular safety. These regulatory requirements have led to a considerable increase in the number of cardiovascular outcome trials in type 2 diabetes to ensure that newer glucose-lowering drugs are not associated with increased cardiovascular risk. Incretin-based therapies including dipeptidyl peptidase 4 (DPP-4) inhibitors, and injectable glucagon-like peptide 1 (GLP-1) receptor agonists are novel treatment options for patients with inadequate glucose control. Although DPP-4 inhibitors have shown neutral effects on risk factors for cardiovascular diseases, it remains unclear whether treatment with these new glucose-lowering agents might be associated with a reduction in cardiovascular events. The results of the three cardiovascular outcome trials comparing DPP-4 inhibitors treatment to placebo in addition to other glucose-lowering drugs have been published. All the three DPP-4 inhibitor cardiovascular outcome trials have shown non-inferiority with regard to cardiovascular safety, compared with placebo, when added to usual care. In this review, we summarize cardiovascular outcome trials of DPP-4 inhibitors, and provide an overview of these trials and their limitations. PMID:26611248

  17. Evaluation of Anti Cancer Effects of DPP-4 Inhibitors in Colon Cancer- An Invitro Study

    PubMed Central

    Kumaravelu, Punnagai; Chellathai, D. Darling

    2015-01-01

    Introduction Among the oral anti-diabetic drugs, Dipeptidyl peptidase - 4(DPP-4) inhibitor is an emerging class of drugs. Inhibitors of DPP-4 enzyme like Sitagliptin and Vildagliptin have shown Anti-oxidant properties in many studies, both invivo and invitro. It has also been characterized as an apoptotic agent on pancreatic cancer cells. In the following study, Anticancer effect of DPP 4 inhibitors on colon cell lines (HT-29) using MTT assay— {3 -4, 5-dimethyl (thiazol – 2 -yl) -3, 5- dimethyl tetrazolium bromide} assay was elucidated. Aim To elucidate and compare the anticancer potential of two DPP 4 inhibitors using in-vitro MTT assay on colorectal cell lines (HT-29). Materials and Methods We treated HT-29 cell lines with two DPP 4 inhibitors. HT-29 cells were incubated at 370C and drug samples were added in various concentrations and incubated for 24 hours. MTT dye was added to the sample and it was incubated for 4 hours. One ml of DMSO was added Using an Ultraviolet-Spectrophotometer, measurement of absorbance was done at 570nm following which the half maximal inhibitory concentration was graphically estimated in relation to the percentage of viability of the cell and the sample concentration. Results We found that both the drugs have shown anticancer activity starting from low to high concentrations when compared with the control using MTT assay. The IC 50 value of Sitagliptin is 31.2 mcg/ml and Vildagliptin is 125 mcg/ml. Conclusion: From this study, we found that the drugs have significant Anti-Cancer property, which would probably play a role as cytotoxic agent in tumour cells. Sitagliptin was found to be more potent than Vildagliptin in colon cancer cell lines. PMID:26816911

  18. DPP-4 inhibitors, heart failure and type 2 diabetes: all eyes on safety

    PubMed Central

    2015-01-01

    Epidemiological analyses have clearly outlined the association between heart failure (HF) and diabetes (DM). HF patients with concomitant DM show a further increase in morbidity and mortality due to coexistence of several mechanisms including disturbed neurohormonal axis as well as structural and functional abnormalities occurring in the diabetic myocardium. Although several studies have shown that poor glycemic control—as indicated by HbA1c levels—may be associated with an increased risk of HF, this issue remains poorly understood and further evidence is required to show unequivocal benefits of this approach. In the attempt to explore the effects of new anti-hyperglycemic therapies, randomized trials have shown that some glucose-lowering drugs—thought not affecting cardiovascular (CV) death or ischemic complications—might significantly increase the risk of HF-hospitalizations in DM patients. Specifically, the use of dipeptidyl-peptidase-4 (DDP-4) inhibitors (DPP-4i) has recently raised a major safety concern owing to an increase of HF hospitalizations in SAVOR-TIMI 53 trial. In contrast with these findings, the more recent TECOS study as well as new TECOS sub-analyses presented at the last ESC Congress—have yielded to the conclusion that the DPP-4i sitagliptin is not associated with any sort of HF risk. Therefore, increased risk of HF hospitalizations does not seem to be a class effect of DPP-4i. The present article critically discusses available evidence concerning DPP-4i and risk of HF in patients with type 2 diabetes (T2D). The use of DPP-4i in combination therapy is also discussed, in light of the recent EMPA-REG trial. PMID:26672798

  19. DPP-4 inhibitors, heart failure and type 2 diabetes: all eyes on safety.

    PubMed

    Paneni, Francesco

    2015-12-01

    Epidemiological analyses have clearly outlined the association between heart failure (HF) and diabetes (DM). HF patients with concomitant DM show a further increase in morbidity and mortality due to coexistence of several mechanisms including disturbed neurohormonal axis as well as structural and functional abnormalities occurring in the diabetic myocardium. Although several studies have shown that poor glycemic control-as indicated by HbA1c levels-may be associated with an increased risk of HF, this issue remains poorly understood and further evidence is required to show unequivocal benefits of this approach. In the attempt to explore the effects of new anti-hyperglycemic therapies, randomized trials have shown that some glucose-lowering drugs-thought not affecting cardiovascular (CV) death or ischemic complications-might significantly increase the risk of HF-hospitalizations in DM patients. Specifically, the use of dipeptidyl-peptidase-4 (DDP-4) inhibitors (DPP-4i) has recently raised a major safety concern owing to an increase of HF hospitalizations in SAVOR-TIMI 53 trial. In contrast with these findings, the more recent TECOS study as well as new TECOS sub-analyses presented at the last ESC Congress-have yielded to the conclusion that the DPP-4i sitagliptin is not associated with any sort of HF risk. Therefore, increased risk of HF hospitalizations does not seem to be a class effect of DPP-4i. The present article critically discusses available evidence concerning DPP-4i and risk of HF in patients with type 2 diabetes (T2D). The use of DPP-4i in combination therapy is also discussed, in light of the recent EMPA-REG trial. PMID:26672798

  20. DPP4 in Diabetes

    PubMed Central

    Röhrborn, Diana; Wronkowitz, Nina; Eckel, Juergen

    2015-01-01

    Dipeptidyl-peptidase 4 (DPP4) is a glycoprotein of 110 kDa, which is ubiquitously expressed on the surface of a variety of cells. This exopeptidase selectively cleaves N-terminal dipeptides from a variety of substrates, including cytokines, growth factors, neuropeptides, and the incretin hormones. Expression of DPP4 is substantially dysregulated in a variety of disease states including inflammation, cancer, obesity, and diabetes. Since the incretin hormones, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide (GIP), are major regulators of post-prandial insulin secretion, inhibition of DPP4 by the gliptin family of drugs has gained considerable interest for the therapy of type 2 diabetic patients. In this review, we summarize the current knowledge on the DPP4–incretin axis and evaluate most recent findings on DPP4 inhibitors. Furthermore, DPP4 as a type II transmembrane protein is also known to be cleaved from the cell membrane involving different metalloproteases in a cell-type-specific manner. Circulating, soluble DPP4 has been identified as a new adipokine, which exerts both para- and endocrine effects. Recently, a novel receptor for soluble DPP4 has been identified, and data are accumulating that the adipokine-related effects of DPP4 may play an important role in the pathogenesis of cardiovascular disease. Importantly, circulating DPP4 is augmented in obese and type 2 diabetic subjects, and it may represent a molecular link between obesity and vascular dysfunction. A critical evaluation of the impact of circulating DPP4 is presented, and the potential role of DPP4 inhibition at this level is also discussed. PMID:26284071

  1. DPP-4 inhibitor des-F-sitagliptin treatment increased insulin exocytosis from db/db mice {beta} cells

    SciTech Connect

    Nagamatsu, Shinya; Ohara-Imaizumi, Mica; Nakamichi, Yoko; Aoyagi, Kyota; Nishiwaki, Chiyono

    2011-09-09

    Highlights: {yields} Anti-diabetic new drug, DPP-4 inhibitor, can affect the insulin exocytosis. {yields} DPP-4 inhibitor treatment altered syntaxin 1 expression. {yields} Treatment of db/db mice with DPP-4 inhibitor increased insulin release. -- Abstract: Incretin promotes insulin secretion acutely. Recently, orally-administered DPP-4 inhibitors represent a new class of anti-hyperglycemic agents. Indeed, inhibitors of dipeptidyl peptidase-IV (DPP-4), sitagliptin, has just begun to be widely used as therapeutics for type 2 diabetes. However, the effects of sitagliptin-treatment on insulin exocytosis from single {beta}-cells are yet unknown. We therefore investigated how sitagliptin-treatment in db/db mice affects insulin exocytosis by treating db/db mice with des-F-sitagliptin for 2 weeks. Perfusion studies showed that 2 weeks-sitagliptin treatment potentiated insulin secretion. We then analyzed insulin granule motion and SNARE protein, syntaxin 1, by TIRF imaging system. TIRF imaging of insulin exocytosis showed the increased number of docked insulin granules and increased fusion events from them during first-phase release. In accord with insulin exocytosis data, des-F-sitagliptin-treatment increased the number of syntaxin 1 clusters on the plasma membrane. Thus, our data demonstrated that 2-weeks des-F-sitagliptin-treatment increased the fusion events of insulin granules, probably via increased number of docked insulin granules and that of syntaxin 1 clusters.

  2. Choosing between GLP-1 Receptor Agonists and DPP-4 Inhibitors: A Pharmacological Perspective

    PubMed Central

    Brown, Dominique Xavier; Evans, Marc

    2012-01-01

    In recent years the incretin therapies have provided a new treatment option for patients with type 2 diabetes mellitus (T2DM). The incretin therapies focus on the increasing levels of the two incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). This results in increased glucose dependent insulin synthesis and release. GLP-1 receptor agonists such as liraglutide and exenatide exert an intrinsic biological effect on GLP-1 receptors directly stimulating the release of insulin from pancreatic beta cells. DPP-4 inhibitors such as sitagliptin and linagliptin prevent the inactivation of endogenous GLP-1 and GIP through competitive inhibition of the DPP-4 enzyme. Both incretin therapies have good safety and tolerability profiles and interact minimally with a number of medications commonly prescribed in T2DM. This paper focuses on the pharmacological basis by which the incretin therapies function and how this knowledge can inform and benefit clinical decisions. Each individual incretin agent has benefits and pitfalls relating to aspects such as glycaemic and nonglycaemic efficacy, safety and tolerability, ease of administration, and cost. Overall, a personalized medicine approach has been found to be favourable, tailoring the incretin agent to benefit and suit patient's needs such as renal impairment (RI) or hepatic impairment (HI). PMID:23125920

  3. Oral hypoglycaemic effect of GLP-1 and DPP4 inhibitor based nanocomposites in a diabetic animal model.

    PubMed

    Shrestha, Neha; Araújo, Francisca; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Gomes, Maria João; Airavaara, Mikko; Kauppinen, Esko I; Raula, Janne; Salonen, Jarno; Hirvonen, Jouni; Sarmento, Bruno; Santos, Hélder A

    2016-06-28

    Glucagon-like peptide-1 (GLP-1), an incretin hormone, is used for type 2 diabetes mellitus (T2DM) treatment because of its ability to stimulate insulin secretion and release in a glucose-dependent manner. Despite of its potent insulinotropic effect, oral GLP-1 delivery is greatly limited by its instability in the gastrointestinal tract, poor absorption efficiency and rapid degradation by dipeptidylpeptidase-4 (DPP4) enzyme leading to a short half-life (~2min). Thus, a multistage dual-drug delivery nanosystem was developed to deliver GLP-1 and DPP4 inhibitor simultaneously. The system comprised of chitosan-modified porous silicon (CSUn) nanoparticles, which were coated by an enteric polymer, hydroxypropylmethylcellulose acetate succinate MF, using aerosol flow reactor technology. A non-obese T2DM rat model induced by co-administration of nicotinamide and streptozotocin was used to evaluate the in vivo efficacy of the nanosystem. The oral administration of H-CSUn nanoparticles resulted in 32% reduction in blood glucose levels and ~6.0-fold enhancement in pancreatic insulin content, as compared to the GLP-1+DPP4 inhibitor solution. Overall, these results present a promising system for oral co-delivery of GLP-1 and DPP4 inhibitor that could be further evaluated in a chronic diabetic study. PMID:27091697

  4. Efficacy of different dipeptidyl peptidase-4 (DPP-4) inhibitors on metabolic parameters in patients with type 2 diabetes undergoing dialysis.

    PubMed

    Park, Se Hee; Nam, Joo Young; Han, Eugene; Lee, Yong-Ho; Lee, Byung-Wan; Kim, Beom Seok; Cha, Bong-Soo; Kim, Chul Sik; Kang, Eun Seok

    2016-08-01

    Hyperglycemia is associated with increased mortality and morbidity in patients with type 2 diabetes mellitus (T2DM) who are undergoing dialysis. Although dipeptidyl peptidase-4 (DPP-4) inhibitors have been widely used in end-stage renal disease (ESRD) patients with T2DM, there are few studies on their efficacy in this population. We studied the effect of 3 different DPP-4 inhibitors on metabolic parameters in ESRD patients with T2DM.Two hundred ESRD patients with T2DM who were treated with DPP-4 inhibitors (sitagliptin, vildagliptin, or linagliptin) were enrolled and analyzed retrospectively. The changes in glycated hemoglobin (HbA1c), fasting plasma glucose, and lipid profiles were assessed before and after 3 months of treatment with DPP-4 inhibitors. Subgroup analysis was done for each hemodialysis (HD) and peritoneal dialysis (PD) group.There was no significant difference in the decrease in the HbA1c level among sitagliptin, vildagliptin, and linagliptin treatment groups (-0.74 ± 1.57, -0.39 ± 1.45, and -0.08 ± 1.40, respectively, P = 0.076). The changes in fasting blood glucose and lipid profiles were also not significantly different. In HD patients (n = 115), there was no difference in the HbA1c level among the 3 groups. In contrast, in PD patients (n = 85), HbA1c was reduced more after 3 months of treatment with sitagliptin compared with vildagliptin and linagliptin (-1.58 ± 0.95, -0.46 ± 0.98, -0.04 ± 1.22, respectively, P = 0.001).There was no significant difference in the glucose-lowering effect between the different DPP-4 inhibitors tested in ESRD patients. In PD patients, sitagliptin tends to lower the HbA1c level more than the other inhibitors. The glucose-lowering efficacy of the 3 DPP-4 inhibitors was comparable. PMID:27512877

  5. Efficacy of different dipeptidyl peptidase-4 (DPP-4) inhibitors on metabolic parameters in patients with type 2 diabetes undergoing dialysis

    PubMed Central

    Park, Se Hee; Nam, Joo Young; Han, Eugene; Lee, Yong-ho; Lee, Byung-Wan; Kim, Beom Seok; Cha, Bong-Soo; Kim, Chul Sik; Kang, Eun Seok

    2016-01-01

    Abstract Hyperglycemia is associated with increased mortality and morbidity in patients with type 2 diabetes mellitus (T2DM) who are undergoing dialysis. Although dipeptidyl peptidase-4 (DPP-4) inhibitors have been widely used in end-stage renal disease (ESRD) patients with T2DM, there are few studies on their efficacy in this population. We studied the effect of 3 different DPP-4 inhibitors on metabolic parameters in ESRD patients with T2DM. Two hundred ESRD patients with T2DM who were treated with DPP-4 inhibitors (sitagliptin, vildagliptin, or linagliptin) were enrolled and analyzed retrospectively. The changes in glycated hemoglobin (HbA1c), fasting plasma glucose, and lipid profiles were assessed before and after 3 months of treatment with DPP-4 inhibitors. Subgroup analysis was done for each hemodialysis (HD) and peritoneal dialysis (PD) group. There was no significant difference in the decrease in the HbA1c level among sitagliptin, vildagliptin, and linagliptin treatment groups (−0.74 ± 1.57, −0.39 ± 1.45, and −0.08 ± 1.40, respectively, P = 0.076). The changes in fasting blood glucose and lipid profiles were also not significantly different. In HD patients (n = 115), there was no difference in the HbA1c level among the 3 groups. In contrast, in PD patients (n = 85), HbA1c was reduced more after 3 months of treatment with sitagliptin compared with vildagliptin and linagliptin (−1.58 ± 0.95, −0.46 ± 0.98, −0.04 ± 1.22, respectively, P = 0.001). There was no significant difference in the glucose-lowering effect between the different DPP-4 inhibitors tested in ESRD patients. In PD patients, sitagliptin tends to lower the HbA1c level more than the other inhibitors. The glucose-lowering efficacy of the 3 DPP-4 inhibitors was comparable. PMID:27512877

  6. The effects of GLP-1 analogues, DPP-4 inhibitors and SGLT2 inhibitors on the renal system.

    PubMed

    Schernthaner, Guntram; Mogensen, Carl Erik; Schernthaner, Gerit-Holger

    2014-09-01

    Diabetic nephropathy (DN) affects an estimated 20%-40% of patients with type 2 diabetes mellitus (T2DM). Key modifiable risk factors for DN are albuminuria, anaemia, dyslipidaemia, hyperglycaemia and hypertension, together with lifestyle factors, such as smoking and obesity. Early detection and treatment of these risk factors can prevent DN or slow its progression, and may even induce remission in some patients. DN is generally preceded by albuminuria, which frequently remains elevated despite treatment in patients with T2DM. Optimal treatment and prevention of DN may require an early, intensive, multifactorial approach, tailored to simultaneously target all modifiable risk factors. Regular monitoring of renal function, including urinary albumin excretion, creatinine clearance and glomerular filtration rate, is critical for following any disease progression and making treatment adjustments. Dipeptidyl peptidase (DPP)-4 inhibitors and sodium-glucose cotransporter 2 (SGLT2) inhibitors lower blood glucose levels without additional risk of hypoglycaemia, and may also reduce albuminuria. Further investigation of the potential renal benefits of DPP-4 and SGLT2 inhibitors is underway. PMID:25116004

  7. The effects of GLP-1 analogues, DPP-4 inhibitors and SGLT2 inhibitors on the renal system

    PubMed Central

    Mogensen, Carl Erik; Schernthaner, Gerit-Holger

    2014-01-01

    Diabetic nephropathy (DN) affects an estimated 20%–40% of patients with type 2 diabetes mellitus (T2DM). Key modifiable risk factors for DN are albuminuria, anaemia, dyslipidaemia, hyperglycaemia and hypertension, together with lifestyle factors, such as smoking and obesity. Early detection and treatment of these risk factors can prevent DN or slow its progression, and may even induce remission in some patients. DN is generally preceded by albuminuria, which frequently remains elevated despite treatment in patients with T2DM. Optimal treatment and prevention of DN may require an early, intensive, multifactorial approach, tailored to simultaneously target all modifiable risk factors. Regular monitoring of renal function, including urinary albumin excretion, creatinine clearance and glomerular filtration rate, is critical for following any disease progression and making treatment adjustments. Dipeptidyl peptidase (DPP)-4 inhibitors and sodium-glucose cotransporter 2 (SGLT2) inhibitors lower blood glucose levels without additional risk of hypoglycaemia, and may also reduce albuminuria. Further investigation of the potential renal benefits of DPP-4 and SGLT2 inhibitors is underway. PMID:25116004

  8. Renoprotective effect of DPP-4 inhibitors against free fatty acid-bound albumin-induced renal proximal tubular cell injury.

    PubMed

    Tanaka, Yuki; Kume, Shinji; Chin-Kanasaki, Masami; Araki, Hisazumi; Araki, Shin-ichi; Ugi, Satoshi; Sugaya, Takeshi; Uzu, Takashi; Maegawa, Hiroshi

    2016-02-12

    Dipeptidyl peptidase (DPP)-4 inhibitors, a new class of antidiabetic agent, have recently been suggested to exert pleiotropic effects beyond glucose lowering. Renal prognosis in patients with diabetic nephropathy depends on the severity of tubulointerstitial injury induced by massive proteinuria. We thus examined the renoprotective effect of DPP-4 inhibitors on inflammation in cultured mouse proximal tubular cells stimulated with free fatty acid (FFA)-bound albumin. Linagliptin and higher concentrations of sitagliptin, vildagliptin, and alogliptin all inhibited FFA-bound albumin-induced increases in mRNA expression of MCP-1 in cultured mouse proximal tubular cells. Furthermore, linagliptin significantly inhibited tubulointerstitial injury induced by peritoneal injection of FFA-bound albumin, such as inflammation, fibrosis, and apoptosis, in mice without altering systemic characteristics including body weight, fasting blood glucose, and food intake. These results indicate that DPP-4 inhibitors pleiotropically exert a direct renoprotective effect, and may serve as an additional therapeutic strategy to protect proximal tubular cells against proteinuria in patients with diabetic nephropathy. PMID:26802469

  9. Experience with DPP-4 inhibitors in the management of patients with type 2 diabetes fasting during Ramadan.

    PubMed

    Schweizer, Anja; Halimi, Serge; Dejager, Sylvie

    2014-01-01

    A large proportion of Muslim patients with type 2 diabetes mellitus (T2DM) elect to fast during the holy month of Ramadan. For these patients hypo- and hyperglycemia constitute two major complications associated with the profound changes in food pattern during the Ramadan fast, and efficacious treatment options with a low risk of hypoglycemia are therefore needed to manage their T2DM as effectively and safely as possible. Dipeptidyl peptidase-4 (DPP-4) inhibitors modulate insulin and glucagon secretion in a glucose-dependent manner, and consequently a low propensity of hypoglycemia has consistently been reported across different patient populations with these agents. Promising data with DPP-4 inhibitors have now also started to emerge in patients with T2DM fasting during Ramadan. The objective of this review is to provide a comprehensive overview of the currently available evidence and potential role of DPP-4 inhibitors in the management of patients with T2DM fasting during Ramadan whose diabetes is treated with oral antidiabetic drugs, and to discuss the mechanistic basis for their beneficial effects in this setting. PMID:24391442

  10. Quantitative Evaluation of Compliance with Recommendation for Sulfonylurea Dose Co-Administered with DPP-4 Inhibitors in Japan.

    PubMed

    Kimura, Tomomi; Shiosakai, Kazuhito; Takeda, Yasuaki; Takahashi, Shinji; Kobayashi, Masahiko; Sakaguchi, Motonobu

    2012-01-01

    After the launch of dipeptidyl peptidase-4 (DPP-4), a new oral hypoglycemic drug (OHD), in December 2009, severe hypoglycemia cases were reported in Japan. Although the definite cause was unknown, co-administration with sulfonylureas (SU) was suspected as one of the potential risk factors. The Japan Association for Diabetes Education and Care (JADEC) released a recommendation in April 2010 to lower the dose of three major SUs (glimepiride, glibenclamide, and gliclazide) when adding a DPP-4 inhibitor. To evaluate the effectiveness of this risk minimization action along with labeling changes, dispensing records for 114,263 patients prescribed OHDs between December 2008 and December 2010 were identified in the Nihon-Chouzai pharmacy claims database. The adherence to the recommended dosing of SU co-prescribed with DPP-4 inhibitors increased from 46.3% before to 63.8% after the JADEC recommendation (p < 0.01 by time-series analysis), while no change was found in those for SU monotherapy and SU with other OHD co-prescriptions. The adherence was significantly worse for those receiving a glibenclamide prescription. The JADEC recommendation, along with labeling changes, appeared to have a favorable effect on the risk minimization action in Japan. In these instances, a pharmacy claims database can be a useful tool to evaluate risk minimization actions. PMID:24300302

  11. A concise review of the bioanalytical methods for the quantitation of sitagliptin, an important dipeptidyl peptidase-4 (DPP4) inhibitor, utilized for the characterization of the drug.

    PubMed

    Suresh, P S; Srinivas, Nuggehally R; Mullangi, Ramesh

    2016-05-01

    Inhibition of dipeptidyl peptidase-4 (DPP4) is an emerging therapeutic approach for treating type 2 diabetes and has revolutionized the concept of diabetes management. Sitagliptin is the first approved orally active, potent, selective and nonpeptidomimetic DPP4 inhibitor. Incidence of hypoglycemia and weight gain is negligible with sitagliptin treatment. It is used as monotherapy or in combination with other anti-diabetic drugs to treat type 2 diabetes. There are numerous bioanalytical methods published for the analysis of sitagliptin in preclinical and clinical samples. This review focuses on the various HPLC and LC-MS/MS methods that have been used to analyze sitagliptin in various biological matrices. A small section is devoted to the bioanalysis of other DPP4 inhibitors such as vildagliptin, saxagliptin and linagliptin. This review provides key information in a concise manner regarding sample processing options, chromatographic/detection conditions and validation parameters of the chosen methods for sitagliptin and other DPP4 inhibitors. PMID:26873580

  12. [How I TREAT ... THE ROLE OF DPP-4 INHIBITORS (GLIPTINS) IN THE TREATMENT OF TYPE 2 DIABETES].

    PubMed

    Scheen, A J

    2015-12-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) are more and more prominent medications in the management of type 2 diabetes (T2D), with five molecules commercialized and as many fixed-dose combinations with metformin. After failure of metformin monotherapy, gliptins compete with old medications such as sulphonylureas, on the one hand, or with new oral antidiabetic agents such as inhibitors of renal sodium-glucose cotransporters type 2 (SGLT2) (gliflozines), on the other hand. Another alternative is the use of an incretin mimetic (agonist of glucagon-like peptide-1 receptors, to be injected subcutaneously) rather than an incretin enhancer such as a gliptin, before considering insulin therapy. This article analyses the arguments in favour of DPP-4 inhibitors. We will mainly consider the use of gliptins in patients with recently diagnosed T2D, in elderly and frail patients and in those with chronic kidney disease. To illustrate the discussion, we will analyze the results of both interventional and observational studies with vildagliptin. Obviously, these various groups of patients represent a large proportion of T2D population. PMID:26867302

  13. Medicinal Chemistry and Applications of Incretins and DPP-4 Inhibitors in the Treatment of Type 2 Diabetes Mellitus

    PubMed Central

    Lotfy, Mohamed; Singh, Jaipaul; Kalász, Huba; Tekes, Kornelia; Adeghate, Ernest

    2011-01-01

    Diabetes mellitus (DM) is a major metabolic disorder currently affecting over 200 million people worldwide. Approximately 90% of all diabetic patients suffer from Type 2 diabetes mellitus (T2DM). The world's economy coughs out billions of dollars annually to diagnose, treat and manage patients with diabetes. It has been shown that the naturally occurring gut hormones incretins, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) can preserve the morphology and function of pancreatic beta cell. In addition, GIP and GLP-1 act on insulin receptors to facilitate insulin-receptor binding, resulting in optimal glucose metabolism. This review examines the medicinal chemistry and roles of incretins, specifically, GLP-1 and drugs which can mimic its actions and prevent its enzymatic degradation. The review discussed GLP-1 agonists such as exenatide, liraglutide, taspoglutide and albiglutide. The paper also identified and reviewed a number of inhibitors, which can block dipeptidyl peptidase 4 (DPP-4), the enzyme responsible for the rapid degradation of GLP-1. These DPP-4 inhibitors include sitagliptin, saxagliptin, vildagliptin and many others which are still in the experimental phase. PMID:21966329

  14. Finding a Potential Dipeptidyl Peptidase-4 (DPP-4) Inhibitor for Type-2 Diabetes Treatment Based on Molecular Docking, Pharmacophore Generation, and Molecular Dynamics Simulation.

    PubMed

    Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J P; Chen, Yu-Ching

    2016-01-01

    Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes. PMID:27304951

  15. Finding a Potential Dipeptidyl Peptidase-4 (DPP-4) Inhibitor for Type-2 Diabetes Treatment Based on Molecular Docking, Pharmacophore Generation, and Molecular Dynamics Simulation

    PubMed Central

    Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J. P.; Chen, Yu-Ching

    2016-01-01

    Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes. PMID:27304951

  16. In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy

    NASA Astrophysics Data System (ADS)

    Araújo, F.; Shrestha, N.; Gomes, M. J.; Herranz-Blanco, B.; Liu, D.; Hirvonen, J. J.; Granja, P. L.; Santos, H. A.; Sarmento, B.

    2016-05-01

    Oral delivery of proteins is still a challenge in the pharmaceutical field. Nanoparticles are among the most promising carrier systems for the oral delivery of proteins by increasing their oral bioavailability. However, most of the existent data regarding nanosystems for oral protein delivery is from in vitro studies, lacking in vivo experiments to evaluate the efficacy of these systems. Herein, a multifunctional composite system, tailored by droplet microfluidics, was used for dual delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 inhibitor (iDPP4) in vivo. Oral delivery of GLP-1 with nano- or micro-systems has been studied before, but the simultaneous nanodelivery of GLP-1 with iDPP4 is a novel strategy presented here. The type 2 diabetes mellitus (T2DM) rat model, induced through the combined administration of streptozotocin and nicotinamide, a non-obese model of T2DM, was used. The combination of both drugs resulted in an increase in the hypoglycemic effects in a sustained, but prolonged manner, where the iDPP4 improved the therapeutic efficacy of GLP-1. Four hours after the oral administration of the system, blood glucose levels were decreased by 44%, and were constant for another 4 h, representing half of the glucose area under the curve when compared to the control. An enhancement of the plasmatic insulin levels was also observed 6 h after the oral administration of the dual-drug composite system and, although no statistically significant differences existed, the amount of pancreatic insulin was also higher. These are promising results for the oral delivery of GLP-1 to be pursued further in a chronic diabetic model study.

  17. [The position of new antidiabetics in clinical practice: SGLT2 vs DPP4 inhibitors].

    PubMed

    Šoupal, Jan; Prázný, Martin

    2015-04-01

    SGLT2 and DPP4 inhibitors are new effective oral antidiabetic drugs with low risk of hypoglycemia and positive or neutral impact on body weight. These characteristics are substantially different from more widely used sulphonyl-ureas. Current treatment of type 2 diabetes is rather complicated. Moreover, the position of new antidabetics in the guidelines has not yet been clearly defined. Personalised treatment on the basis of molecular markers is still not possible. Therefore, the position of new antidiabetics in the treatment of type 2 diabetes is often determined by clinical experience and subsequently modified by new clinical studies. Currently, doctors are asking which of these modern antidabetics to choose. The following text might help in this decision. PMID:25894256

  18. Need for streamlined use of DPP-4 inhibitors in the treatment of type 2 diabetes.

    PubMed

    Vitale, Cristiana; Rosano, Giuseppe M C; Prasad, Krishna

    2016-01-01

    Regulatory agencies request an assessment of cardiovascular safety for all "new" oral anti-diabetic drugs in order to avoid possible negative effects on cardiovascular events. Dipeptidyl peptidase 4 inhibitors have emerged as a new therapeutic alternative for the treatment of type 2 diabetes mellitus, but the several large post-marketing clinical trials have shown only a modest effect in glycaemic control and, more importantly, a neutral effect on total and cardiovascular events. Conversely a recent trial with empagliflozin, a sodium-glucose co-transporter 2 inhibitor, has shown significant effect on overall and cardiovascular mortality. Although glycaemic control is an important aspect of diabetes management, the results of the EMPA-REG outcome trial suggest that it is possible to develop anti-diabetic drugs that may exert an overall beneficial effect beyond the mere improvement of glycaemic control. While the regulatory hurdles should not be increased, there is the need for evaluation of the net clinical impact and cost effectiveness of all anti-diabetic agents. Therefore, a better collaboration among all stakeholders is needed in order to develop studies with endpoints that will be both clinically meaningful including appropriate follow-up, and economically relevant in patients with type 2 diabetes mellitus. PMID:27039303

  19. Treatment of type 2 diabetes, lifestyle, GLP1 agonists and DPP4 inhibitors

    PubMed Central

    Tomkin, Gerald H

    2014-01-01

    In recent years the treatment focus for type 2 diabetes has shifted to prevention by lifestyle change and to more aggressive reduction of blood sugars during the early stage of treatment. Weight reduction is an important goal for many people with type 2 diabetes. Bariatric surgery is no longer considered a last resort treatment. Glucagon-like peptide-1 agonists given by injection are emerging as a useful treatment since they not only lower blood sugar but are associated with a modest weight reduction. The role of the oral dipeptidyl peptidase 4 inhibitors is emerging as second line treatment ahead of sulphonylureas due to a possible beneficial effect on the beta cell and weight neutrality. Drugs which inhibit glucose re-absorption in the kidney, sodium/glucose co-transport 2 inhibitors, may have a role in the treatment of diabetes. Insulin treatment still remains the cornerstone of treatment in many patients with type 2 diabetes. PMID:25317241

  20. Neuroprotective effect of selective DPP-4 inhibitor in experimental vascular dementia.

    PubMed

    Jain, Swati; Sharma, Bhupesh

    2015-12-01

    Vascular risk factors are associated with a higher incidence of dementia. Diabetes mellitus is considered as a main risk factor for Alzheimer's disease and vascular dementia. Both forms of dementia are posing greater risk to the world population and are increasing at a faster rate. In the past we have reported the induction of vascular dementia by experimental diabetes. This study investigates the role of vildagliptin, a dipeptidyl peptidase-4 inhibitor in the pharmacological interdiction of pancreatectomy diabetes induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. Pancreatectomy diabetes rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with increase in brain inflammation, oxidative stress and calcium. Administration of vildagliptin has significantly attenuated pancreatectomy induced impairment of learning, memory, endothelial function, blood brain barrier permeability and biochemical parameters. It may be concluded that vildagliptin, a dipeptidyl peptidase-4 inhibitor may be considered as potential pharmacological agents for the management of pancreatectomy induced endothelial dysfunction and subsequent vascular dementia. The selective modulators of dipeptidyl peptidase-4 may further be explored for their possible benefits in vascular dementia. PMID:26382939

  1. Combining MK626, a novel DPP-4 inhibitor, and low-dose monoclonal CD3 antibody for stable remission of new-onset diabetes in mice.

    PubMed

    Ding, Lei; Gysemans, Conny A; Stangé, Geert; Heremans, Yves; Yuchi, Yixing; Takiishi, Tatiana; Korf, Hannelie; Chintinne, Marie; Carr, Richard D; Heimberg, Harry; Pipeleers, Daniel; Mathieu, Chantal

    2014-01-01

    Combining immune intervention with therapies that directly influence the functional state of the β-cells is an interesting strategy in type 1 diabetes cure. Dipeptidyl peptidase-4 (DPP-4) inhibitors elevate circulating levels of active incretins, which have been reported to enhance insulin secretion and synthesis, can support β-cell survival and possibly stimulate β-cell proliferation and neogenesis. In the current study, we demonstrate that the DPP-4 inhibitor MK626, which has appropriate pharmacokinetics in mice, preceded by a short-course of low-dose anti-CD3 generated durable diabetes remission in new-onset diabetic non-obese diabetic (NOD) mice. Induction of remission involved recovery of β-cell secretory function with resolution of destructive insulitis and preservation of β-cell volume/mass, along with repair of the islet angioarchitecture via SDF-1- and VEGF-dependent actions. Combination therapy temporarily reduced the CD4-to-CD8 distribution in spleen although not in pancreatic draining lymph nodes (PLN) and increased the proportion of effector/memory T cells as did anti-CD3 alone. In contrast, only combination therapy amplified Foxp3+ regulatory T cells in PLN and locally in pancreas. These findings open new opportunities for the treatment of new-onset type 1 diabetes by introducing DPP-4 inhibitors in human CD3-directed clinical trials. PMID:25268801

  2. Combining MK626, a Novel DPP-4 Inhibitor, and Low-Dose Monoclonal CD3 Antibody for Stable Remission of New-Onset Diabetes in Mice

    PubMed Central

    Ding, Lei; Gysemans, Conny A.; Stangé, Geert; Heremans, Yves; Yuchi, Yixing; Takiishi, Tatiana; Korf, Hannelie; Chintinne, Marie; Carr, Richard D.; Heimberg, Harry; Pipeleers, Daniel; Mathieu, Chantal

    2014-01-01

    Combining immune intervention with therapies that directly influence the functional state of the β-cells is an interesting strategy in type 1 diabetes cure. Dipeptidyl peptidase-4 (DPP-4) inhibitors elevate circulating levels of active incretins, which have been reported to enhance insulin secretion and synthesis, can support β-cell survival and possibly stimulate β-cell proliferation and neogenesis. In the current study, we demonstrate that the DPP-4 inhibitor MK626, which has appropriate pharmacokinetics in mice, preceded by a short-course of low-dose anti-CD3 generated durable diabetes remission in new-onset diabetic non-obese diabetic (NOD) mice. Induction of remission involved recovery of β-cell secretory function with resolution of destructive insulitis and preservation of β-cell volume/mass, along with repair of the islet angioarchitecture via SDF-1- and VEGF-dependent actions. Combination therapy temporarily reduced the CD4-to-CD8 distribution in spleen although not in pancreatic draining lymph nodes (PLN) and increased the proportion of effector/memory T cells as did anti-CD3 alone. In contrast, only combination therapy amplified Foxp3+ regulatory T cells in PLN and locally in pancreas. These findings open new opportunities for the treatment of new-onset type 1 diabetes by introducing DPP-4 inhibitors in human CD3-directed clinical trials. PMID:25268801

  3. Use of the Japanese health insurance claims database to assess the risk of acute pancreatitis in patients with diabetes: comparison of DPP-4 inhibitors with other oral antidiabetic drugs.

    PubMed

    Yabe, D; Kuwata, H; Kaneko, M; Ito, C; Nishikino, R; Murorani, K; Kurose, T; Seino, Y

    2015-04-01

    This study was initiated to evaluate the association of acute pancreatitis (AP) with the use of dipeptidyl peptidase-4 (DPP-4) inhibitors among patients with diabetes in Japan. A retrospective cohort study of a large medical and pharmacy claims database was performed to compare the incidence of AP among those receiving DPP-4 inhibitors and those receiving other oral antidiabetic drugs. The incidence of all AP and hospitalizations for AP was similar between the two groups. Previous exposure to DPP-4 inhibitors did not affect occurrence of AP in patients on other oral antidiabetic drugs. The Kaplan-Meier curve for time to AP was similar between the two groups, and was not affected by previous exposure to DPP-4 inhibitors. The Cox proportional hazard models showed the incidence of AP was not significantly higher in those receiving DPP-4 inhibitors. Despite numerous, important limitations related to claims database-based analyses, our results indicate that there is no increased risk of AP with use of DPP-4 inhibitors among patients with diabetes in Japan. PMID:25146418

  4. No Additional Effect of DPP-4 Inhibitor on Preventing Atrial Fibrosis in Streptozotocin-Induced Diabetic Rat as Compared With Sulfonylurea.

    PubMed

    Hayami, Noriyuki; Sekiguchi, Akiko; Iwasaki, Yu-Ki; Murakawa, Yuji; Yamashita, Takeshi

    2016-05-25

    Chronic inflammation is known to occur in diabetes mellitus (DM) and contributes to atrial fibrosis, possible substrates for atrial fibrillation. We tested the hypothesis that dipeptidyl peptidase (DPP)-4 inhibitors prevent the formation of atrial fibrosis through their anti-inflammatory activity, beyond the effects of controlling blood glucose.DM models obtained by administration of streptozotocin (STZ) were divided into 3 groups: with PKF275-055, a DPP-4 inhibitor in group D, glibenclamide in group SU, and no additional drug in group P. At 8 weeks after STZ administration, the heart was subjected to Masson trichrome staining and immunohistochemistry with anti-ED2, ED3, and smooth muscle actin antibody.The % area of fibrosis in atria of group P accounted for 14.7% ± 4.1%, showing a significant increase in fibrosis when compared with the control group. In group SU, the % area accounted for 7.9% ± 2.9%, indicating significant deceased fibrosis by sulfonylurea. Meanwhile, we could not find significant differences in group D when compared to group P or group SU. While ED3-positive cells increased in group P (1.12% ± 0.24%), they were significantly decreased in groups D and SU (0.41% ± 0.22% and 0.55% ± 0.29%, respectively). Between group D and SU, however, there were no significant differences in the amount of cells positive to ED2, ED3, and smooth muscle actin antibodies.In STZ-induced DM rats, administration of sulfonylurea and DPP-4 inhibitors inhibited inflammation and fibrosis of the atria. However, no significant differences were observed between the 2 antidiabetic drugs. PMID:27149999

  5. Analyses of Results From Cardiovascular Safety Trials With DPP-4 Inhibitors: Cardiovascular Outcomes, Predefined Safety Outcomes, and Pooled Analysis and Meta-analysis.

    PubMed

    Mannucci, Edoardo; Mosenzon, Ofri; Avogaro, Angelo

    2016-08-01

    The U.S. Food and Drug Administration requires that the cardiovascular (CV) safety of all new drugs for diabetes be demonstrated through pooled analyses of phase III studies or specifically designed trials. This requirement prompted several placebo-controlled, noninferiority CV safety trials in high-risk patients; to date, all completed trials showed that dipeptidyl peptidase (DPP)-4 inhibitors do not increase or reduce the risk of major CV events. These results apparently contrast with those of pooled analyses and meta-analyses of previous, smaller trials with metabolic end points, which had suggested a reduction of risk. However, the design of CV trials, which were required to demonstrate safety, is not adequate (for duration, management of concurrent therapies, etc.) for the assessment of potential therapeutic benefits. In addition, CV safety trials enroll patients at high risk of CV events, who are different from those included in earlier trials with metabolic end points. Differences in characteristics of patients enrolled probably account for most of the discrepancy in CV outcomes between CV safety studies and earlier trials. The availability of several large-scale trials with longer duration provides the unique opportunity for assessment of the safety of DPP-4 inhibitors not only with respect to major CV events but also with reference to other safety issues. For example, CV safety trials can be a source of information for pancreatitis, cancer, or hypoglycemia. PMID:27440833

  6. A Common Susceptibility Gene for Type 2 Diabetes Is Associated with Drug Response to a DPP-4 Inhibitor: Pharmacogenomic Cohort in Okinawa Japan

    PubMed Central

    Osada, Uru Nezu; Sunagawa, Hiroshi; Terauchi, Yasuo; Ueda, Shinichiro

    2016-01-01

    We investigated the association between common type 2 susceptibility variants of CDK5 regulatory subunit associated protein 1-like 1(CDKAL1) and therapeutic responses to anti-diabetic agents among patients with type 2 diabetes. Two SNPs (rs7754840: C>G, rs7756992: A>G) were genotyped via the Taqman PCR method. A total of 798 type 2 diabetic patients were included. HbA1c reduction after use of DPP-4 inhibitors for 3 months was significantly greater in patients with a risk allele for type 2 diabetes (GG -0.4%, CG -0.5%, CC -0.8%, p = 0.02 for rs7754840 and AA -0.4%, AG -0.5%, GG -0.8%, p = 0.01 for rs7756992). Linear regression analysis showed that per allele reductions of hemoglobin A1c (HbA1c) after 3 months were -0.10% for rs7754840 (p = 0.02) and -0.13% for rs7756992 (p = 0.0008) after adjusting for clinically influential covariates such as age, sex, BMI, duration of diabetes, baseline HbA1c and concomitant anti-diabetic agents. The results suggested that common variants of CDKAL1 are associated with therapeutic response to DPP-4 inhibitors. PMID:27139004

  7. Assessing the efficacy and safety of combined DPP-4 inhibitor and insulin treatment in patients with type 2 diabetes: a meta-analysis

    PubMed Central

    Chen, Cai; Yu, Qilin; Zhang, Shu; Yang, Ping; Wang, Cong-Yi

    2015-01-01

    The use of DPP-4 inhibitors in combination with insulin has been proposed as an alternative therapeutic option for poorly controlled type 2 diabetes (T2D) patients. We thus performed a meta-analysis of randomized controlled trials (RCTs) to assess the efficacy and safety of this combination therapy in adult T2D patients. Seven eligible studies involving 3,384 participants were included for the study. The resulting data revealed that the combination therapy of DPP-4 inhibitor and insulin is associated with a modest reduction in HbA1c (-0.52%; 95% CI -0.59 to -0.44), a decrease in 2h-PPG (-1.81 mmol/l; -2.23 to -1.38), and an increase in the proportion of patients reaching the target HbA1c of ≤ 7% (RR 2.24; 95% CI 1.80 to 2.77) without increasing the risk of hypoglycemia (RR 1.04; 0.83 to 1.31) or body weight (-0.11 kg; -0.56 to 0.33), as compared with other anti-diabetic treatments. These results support that this combination therapy could serve as a potential therapeutic strategy that offers an alternative option for patients inadequately controlled on other anti-diabetic agents in clinical practice. PMID:26823727

  8. Discovery and Rational Design of Natural-Product-Derived 2-Phenyl-3,4-dihydro-2H-benzo[f]chromen-3-amine Analogs as Novel and Potent Dipeptidyl Peptidase 4 (DPP-4) Inhibitors for the Treatment of Type 2 Diabetes.

    PubMed

    Li, Shiliang; Xu, Hongling; Cui, Shichao; Wu, Fangshu; Zhang, Youli; Su, Mingbo; Gong, Yinghui; Qiu, Shaobing; Jiao, Qian; Qin, Chun; Shan, Jiwei; Zhang, Ming; Wang, Jiawei; Yin, Qiao; Xu, Minghao; Liu, Xiaofeng; Wang, Rui; Zhu, Lili; Li, Jia; Xu, Yufang; Jiang, Hualiang; Zhao, Zhenjiang; Li, Jingya; Li, Honglin

    2016-07-28

    Starting from the lead isodaphnetin, a natural product inhibitor of DPP-4 discovered through a target fishing docking based approach, a series of novel 2-phenyl-3,4-dihydro-2H-benzo[f]chromen-3-amine derivatives as potent DPP-4 inhibitors are rationally designed utilizing highly efficient 3D molecular similarity based scaffold hopping as well as electrostatic complementary methods. Those ingenious drug design strategies bring us approximate 7400-fold boost in potency. Compounds 22a and 24a are the most potent ones (IC50 ≈ 2.0 nM) with good pharmacokinetic profiles. Compound 22a demonstrated stable pharmacological effect. A 3 mg/kg oral dose provided >80% inhibition of DPP-4 activity within 24 h, which is comparable to the performance of the long-acting control omarigliptin. Moreover, the efficacy of 22a in improving the glucose tolerance is also comparable with omarigliptin. In this study, not only promising DPP-4 inhibitors as long acting antidiabetic that are clinically on demand are identified, but the target fish docking and medicinal chemistry strategies were successfully implemented. PMID:27396490

  9. DPP4 IN CARDIOMETABOLIC DISEASE: RECENT INSIGHTS FROM THE LABORATORY AND CLINICAL TRIALS OF DPP4 INHIBITION

    PubMed Central

    Zhong, Jixin; Maiseyeu, Andrei; Davis, Stephen N.; Rajagopalan, Sanjay

    2015-01-01

    The discovery of incretin-based medications represents a major therapeutic advance in the pharmacologic management of Type 2 diabetes (T2DM), as these agents avoid hypoglycemia, weight gain and simplify the management of T2DM. Dipeptidyl peptidase-4 (CD26, DPP4) inhibitors (DPP4i) are the most widely used incretin-based therapy for the treatment of T2DM globally. DPP4i are modestly effective in reducing HbA1c (≈0.5%) and while these agents were synthesized with the understanding of the role that DPP4 plays in prolonging the half-life of incretins such as glucagon like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), it is now recognized that incretins are only one of many targets of DPP4. The widespread expression of DPP4 on blood vessels, myocardium and myeloid cells and the non-enzymatic function of CD26 as a signaling and binding protein, across a wide range of species, suggest a teleological role in cardiovascular regulation and inflammation. Indeed, DPP4 is up regulated in pro-inflammatory states including obesity, T2DM and atherosclerosis. Consistent with this maladaptive role, the effects of DPP4 inhibition appear to exert a protective role in cardiovascular disease at least in pre-clinical animal models. Although 2 large clinical trials suggest a neutral effect on cardiovascular end-points, current limitations of performing trials in T2DM over a limited time horizon on top of maximal medical therapy, must be acknowledged before rendering judgment on the cardiovascular efficacy of these agents. This review will critically review the science of DPP4 and the effects of DPP4i on the cardiovascular system. PMID:25858071

  10. Effects of Inhibiting Dipeptidyl Peptidase-4 (DPP4) in Cows with Subclinical Ketosis

    PubMed Central

    Schulz, Kirsten; Frahm, Jana; Kersten, Susanne; Meyer, Ulrich; Rehage, Jürgen; Piechotta, Marion; Meyerholz, Maria; Breves, Gerhard; Reiche, Dania; Sauerwein, Helga; Dänicke, Sven

    2015-01-01

    The inhibition of dipeptidyl peptidase-4 (DPP4) via specific inhibitors is known to result in improved glucose tolerance and insulin sensitivity and decreased accumulation of hepatic fat in type II diabetic human patients. The metabolic situation of dairy cows can easily be compared to the status of human diabetes and non-alcoholic fatty liver. For both, insulin sensitivity is reduced, while hepatic fat accumulation increases, characterized by high levels of non-esterified fatty acids (NEFA) and ketone bodies.Therefore, in the present study, a DPP4 inhibitor was employed (BI 14332) for the first time in cows. In a first investigation BI 14332 treatment (intravenous injection at dosages of up to 3 mg/kg body weight) was well tolerated in healthy lactating pluriparous cows (n = 6) with a significant inhibition of DPP4 in plasma and liver. Further testing included primi- and pluriparous lactating cows suffering from subclinical ketosis (β-hydroxybutyrate concentrations in serum > 1.2 mM; n = 12). The intension was to offer effects of DPP4 inhibition during comprehensive lipomobilisation and hepatosteatosis. The cows of subclinical ketosis were evenly allocated to either the treatment group (daily injections, 0.3 mg BI 14332/kg body weight, 7 days) or the control group. Under condition of subclinical ketosis, the impact of DPP4 inhibition via BI 14332 was less, as in particular β-hydroxybutyrate and the hepatic lipid content remained unaffected, but NEFA and triglyceride concentrations were decreased after treatment. Owing to lower NEFA, the revised quantitative insulin sensitivity check index (surrogate marker for insulin sensitivity) increased. Therefore, a positive influence on energy metabolism might be quite possible. Minor impacts on immune-modulating variables were limited to the lymphocyte CD4+/CD8+ ratio for which a trend to decreased values in treated versus control animals was noted. In sum, the DPP4 inhibition in cows did not affect glycaemic control like

  11. Modeling Sitagliptin Effect on Dipeptidyl Peptidase 4 (DPP4) Activity in Adults with Hematological Malignancies After Umbilical Cord Blood (UCB) Hematopoietic Cell Transplant (HCT)

    PubMed Central

    de Mendizábal, Nieves Vélez; Strother, Robert M.; Farag, Sherif S.; Broxmeyer, Hal E.; Messina-Graham, Steven; Chitnis, Shripad D.; Bies, Robert R.

    2014-01-01

    Background and Objectives Dipeptidyl peptidase-4 (DPP4) inhibition is a potential strategy to increase the engraftment rate of hematopoietic stem/progenitor cells. A recent clinical trial using sitagliptin, a DPP4 inhibitor approved for type 2 diabetes mellitus, has shown to be a promising approach in adults with hematological malignancies after umbilical cord blood (UCB) hematopoietic cell transplant (HCT). Based on data from this clinical trial, a semi-mechanistic model was developed to simultaneously describe DPP4 activity after multiple doses of sitagliptin in subjects with hematological malignancies after a single-unit UCB HCT. Methods The clinical study included 24 patients that received myeloablative conditioning followed by 4 oral sitagliptin 600mg with single-unit UCB HCT. Using a nonlinear mixed effects approach, a semi-mechanistic pharmacokinetic/pharmacodynamic model was developed to describe DPP4 activity from this trial data using NONMEM 7.2. The model was used to drive Monte-Carlo simulations to probe various dosage schedules and the attendant DPP4 response. Results The disposition of sitagliptin in plasma was best described by a 2-compartment model. The relationship between sitagliptin concentration and DPP4 activity was best described by an indirect response model with a negative feedback loop. Simulations showed that twice a day or three times a day dosage schedules were superior to once daily schedule for maximal DPP4 inhibition at the lowest sitagliptin exposure. Conclusion This study provides the first pharmacokinetic/pharmacodynamic model of sitagliptin in the context of HCT, and provides a valuable tool for exploration of optimal dosing regimens, critical for improving time to engraftment in patients after UCB HCT. PMID:24142388

  12. Does the treatment of type 2 diabetes mellitus with the DPP-4 inhibitor vildagliptin reduce HbA1c to a greater extent in Japanese patients than in Caucasian patients?

    PubMed Central

    Foley, James E; Bhosekar, Vaishali; Kawamori, Ryuzo

    2016-01-01

    Background Previous work suggests that Japanese patients with type 2 diabetes mellitus (T2DM) may respond more favorably to a DPP-4 (dipeptidyl peptidase-4) inhibitor than Caucasians. We aimed to compare the efficacy of the DPP-4 inhibitor vildagliptin (50 mg twice daily [bid]) between Japanese and Caucasian populations. Methods This analysis pooled data from 19 studies of drug-naïve patients with T2DM who were treated for 12 weeks with vildagliptin 50 mg bid as monotherapy. The pool comprised Japanese patients (n=338) who had been treated in Japan and Caucasian patients (n=1,275) who were treated elsewhere. Change from baseline (Δ) in glycated hemoglobin (HbA1c) at 12 weeks (in millimoles per mole) versus baseline HbA1c (both in percentage National Glycohemoglobin Standardization Program units [NGSP%] and millimoles per mole) for each population was reported. Universal HbA1c in millimoles per mole was calculated from either the Japanese Diabetes Society or the NGSP% HbA1c standards. Results At baseline, mean values for Japanese and Caucasian patients, respectively, were as follows: age, 59 years and 56 years; % male, 69% and 57%. The average HbA1c was reduced from 7.90% to 6.96% (Japanese Diabetes Society) and from 8.57% to 7.50% (United States National Glycohemoglobin Standardization Program), while HbA1c was reduced from 63 mmol/mol to 53 mmol/mol and from 70 mmol/mol to 58 mmol/mol in Japanese and Caucasians, respectively. ΔHbA1c increased with increasing baseline in both populations. The slopes were the same (0.41, r2=0.36; and 0.41, r2=0.15), and the intercepts were 15.4 mmol/mol and 17.2 mmol/mol, respectively. In Japanese patients, mean ΔHbA1c was greater by 1.7 mmol/mol (0.2% NGSP HbA1c) at any given baseline HbA1c than in Caucasians (P=0.01). Conclusion The present pooled analysis suggests that Japanese patients respond better to vildagliptin treatment compared with Caucasians. However, when glycemic control was corrected by using the same glycemic

  13. Angiotensin II Stimulation of DPP4 Activity Regulates Megalin in the Proximal Tubules

    PubMed Central

    Aroor, Annayya; Zuberek, Marcin; Duta, Cornel; Meuth, Alex; Sowers, James R.; Whaley-Connell, Adam; Nistala, Ravi

    2016-01-01

    Proteinuria is a marker of incipient kidney injury in many disorders, including obesity. Previously, we demonstrated that megalin, a receptor endocytotic protein in the proximal tubule, is downregulated in obese mice, which was prevented by inhibition of dipeptidyl protease 4 (DPP4). Obesity is thought to be associated with upregulation of intra-renal angiotensin II (Ang II) signaling via the Ang II Type 1 receptor (AT1R) and Ang II suppresses megalin expression in proximal tubule cells in vitro. Therefore, we tested the hypothesis that Ang II will suppress megalin protein via activation of DPP4. We used Ang II (200 ng/kg/min) infusion in mice and Ang II (10−8 M) treatment of T35OK-AT1R proximal tubule cells to test our hypothesis. Ang II-infused mouse kidneys displayed increases in DPP4 activity and decreases in megalin. In proximal tubule cells, Ang II stimulated DPP4 activity concurrent with suppression of megalin. MK0626, a DPP4 inhibitor, partially restored megalin expression similar to U0126, a mitogen activated protein kinase (MAPK)/extracellular regulated kinase (ERK) kinase kinase (MEK) 1/2 inhibitor and AG1478, an epidermal growth factor receptor (EGFR) inhibitor. Similarly, Ang II-induced ERK phosphorylation was suppressed with MK0626 and Ang II-induced DPP4 activity was suppressed by U0126. Therefore, our study reveals a cross talk between AT1R signaling and DPP4 activation in the regulation of megalin and underscores the significance of targeting DPP4 in the prevention of obesity related kidney injury progression. PMID:27213360

  14. Angiotensin II Stimulation of DPP4 Activity Regulates Megalin in the Proximal Tubules.

    PubMed

    Aroor, Annayya; Zuberek, Marcin; Duta, Cornel; Meuth, Alex; Sowers, James R; Whaley-Connell, Adam; Nistala, Ravi

    2016-01-01

    Proteinuria is a marker of incipient kidney injury in many disorders, including obesity. Previously, we demonstrated that megalin, a receptor endocytotic protein in the proximal tubule, is downregulated in obese mice, which was prevented by inhibition of dipeptidyl protease 4 (DPP4). Obesity is thought to be associated with upregulation of intra-renal angiotensin II (Ang II) signaling via the Ang II Type 1 receptor (AT₁R) and Ang II suppresses megalin expression in proximal tubule cells in vitro. Therefore, we tested the hypothesis that Ang II will suppress megalin protein via activation of DPP4. We used Ang II (200 ng/kg/min) infusion in mice and Ang II (10(-8) M) treatment of T35OK-AT₁R proximal tubule cells to test our hypothesis. Ang II-infused mouse kidneys displayed increases in DPP4 activity and decreases in megalin. In proximal tubule cells, Ang II stimulated DPP4 activity concurrent with suppression of megalin. MK0626, a DPP4 inhibitor, partially restored megalin expression similar to U0126, a mitogen activated protein kinase (MAPK)/extracellular regulated kinase (ERK) kinase kinase (MEK) 1/2 inhibitor and AG1478, an epidermal growth factor receptor (EGFR) inhibitor. Similarly, Ang II-induced ERK phosphorylation was suppressed with MK0626 and Ang II-induced DPP4 activity was suppressed by U0126. Therefore, our study reveals a cross talk between AT₁R signaling and DPP4 activation in the regulation of megalin and underscores the significance of targeting DPP4 in the prevention of obesity related kidney injury progression. PMID:27213360

  15. A Thorough QTc Study Confirms Early Pharmacokinetics/QTc Modeling: A Supratherapeutic Dose of Omarigliptin, a Once-Weekly DPP-4 Inhibitor, Does Not Prolong the QTc Interval.

    PubMed

    Tatosian, Daniel A; Cardillo Marricco, Nadia; Glasgow, Xiaoli Shirley; DeGroot, Bruce; Dunnington, Katherine; George, Laura; Gendrano, Isaias Noel; Johnson-Levonas, Amy O; Swearingen, Dennis; Kauh, Eunkyung

    2016-09-01

    Omarigliptin is a dipeptidyl peptidase-4 inhibitor being developed as a once-weekly treatment for type 2 diabetes. This double-blind, double-dummy, randomized, 3-period balanced crossover study definitively evaluated the effects of a supratherapeutic omarigliptin dose on QTc interval. Population-specific correction of QT interval (QTcP) was used for the primary analysis. Healthy subjects (n = 60) were enrolled and received treatments separated by a ≥4-week washout: (1) single-dose 25 mg omarigliptin (day 1), single-dose 175 mg omarigliptin (day 2); (2) placebo (day 1) followed by single-dose 400 mg moxifloxacin (day 2); (3) placebo (days 1 and 2). Day 2 QTcP intervals were analyzed. The primary hypothesis was supported if the 90%CIs for the least-squares mean differences between omarigliptin 175 mg and placebo in QTcP interval change from baseline were all < 10 milliseconds at every postdose point on day 2. The upper bounds of the 90%CIs for the differences (omarigliptin-placebo) in QTcP change from baseline for omarigliptin 175 mg were < 10 milliseconds at all postdose times on day 2. In conclusion, a supratherapeutic dose of omarigliptin does not prolong the QTcP interval to a clinically meaningful degree relative to placebo, confirming the results of the earlier concentration-QTc analysis. PMID:27627194

  16. High Levels of Serum DPP-4 Activity Are Associated with Low Bone Mineral Density in Obese Postmenopausal Women

    PubMed Central

    2016-01-01

    Background Dipeptidyl peptidase 4/CD26 (DPP-4) is a widely expressed cell surface serine protease. DPP-4 inhibitors, one of common anti-diabetic agents play a protective role in bone metabolism in recent studies. A soluble form of DPP-4 is found in serum, and exhibits DPP-4 enzymatic activity. However, the physiological role of serum or soluble DPP-4 and its relationship with DPP-4 enzymatic function remain poorly understood. The aims of current study were to determine the association between serum DPP-4 activity and bone mineral density (BMD) in postmenopausal women. Methods We recruited data and serum samples from 124 consecutive healthy postmenopausal women aged >50 years. We divided study subjects into obese (body mass index [BMI] ≥25 kg/m2) and non-obese (BMI <25 kg/m2) postmenopausal women and examined the correlation between serum DPP-4 activity and clinical variables in each groups. Results A total of 124 postmenopausal women was enrolled, with a mean age of 59.9±7.1 years. The mean BMI of the study patients was 24.4±2.8 kg/m2. Regarding bone turnover markers, serum DPP-4 activity was positively correlated with serum calcium concentrations, intact parathyroid hormone, and serum C-telopeptide levels in all of the study subjects. However, there was no association between serum DPP-4 activity and BMD in the spine or femoral neck in all of the study subjects. Serum DPP-4 activity was negatively correlated (R=−0.288, P=0.038) with BMD of the spine in obese postmenopausal women. Conclusion This study demonstrated for the first time that serum soluble DPP-4 activity was negatively correlated with BMD in obese postmenopausal women. PMID:26676330

  17. Linagliptin but not Sitagliptin inhibited transforming growth factor-β2-induced endothelial DPP-4 activity and the endothelial-mesenchymal transition.

    PubMed

    Shi, Sen; Kanasaki, Keizo; Koya, Daisuke

    2016-02-26

    Dipeptidyl peptidase (DPP)-4 plays an important role in endothelial cell biology. We have shown that the DPP-4 inhibitor Linagliptin can inhibit the endothelial-mesenchymal transition (EndMT) and ameliorate diabetic kidney fibrosis associated with the suppression of DPP-4 protein levels via the induction of miR-29. The current study demonstrated that such effects of Linagliptin on endothelial cell profibrotic programs were drug-specific but not class effects. In the cell-free system, both Linagliptin and Sitagliptin inhibited recombinant DPP-4 activity in a concentration-dependent manner. Linagliptin can inhibit all of the following: DPP-4 activity and protein level, integrin β1 protein levels, EndMT, and DPP-4 3'UTR activity; Sitagliptin, however, inhibited none of these in the current study. Additionally, TGF-β2 induced both the induction of VEGF-R1 and the suppression of VEGF-R2 levels in endothelial cells, and both were inhibited by Linagliptin but not by Sitagliptin. miR-29, the miR that negatively regulates the 3'UTR of DPP-4 mRNA, was suppressed by TGF-β2 and restored by Linagliptin but not by Sitagliptin. Following the overexpression of pCMV-DPP-4-GFP and pCMV6-Myc-DPP-4 in endothelial cells, the proximity of Myc-DPP-4 and DPP-4-GFP was suppressed by Linagliptin but not by Sitagliptin, suggesting that only Linagliptin inhibited the homo-dimer formation of DPP-4 in endothelial cells; this difference in activity between the two gliptins could explain their diverse effects on endothelial cell biology. In conclusion, each of the DPP-4 inhibitors may have unique drug-specific effects. PMID:26826382

  18. Evidence for neural contribution to islet effects of DPP-4 inhibition in mice.

    PubMed

    Ahlkvist, Linda; Omar, Bilal; Pacini, Giovanni; Ahrén, Bo

    2016-06-01

    It has been suggested that neural mechanisms may contribute to effects of the incretin hormones, and, therefore, also to the effects of dipeptidyl peptidase (DPP-4) inhibition. We therefore examined whether muscarinic mechanisms are involved in the stimulation of insulin secretion by DPP-4 inhibition. Fasted, anesthetized mice were given intraperitoneal saline or the muscarinic antagonist atropine (5mg/kg) before duodenal glucose (75mg/mouse), with or without the DPP-4 inhibitor NVPDPP728 (0.095mg/mouse), or before intravenous glucose (0.35g/kg) with or without co-administration with GLP-1 or glucose-dependent insulinotropic polypeptide (GIP) (both 3nmol/kg). Furthermore, isolated islets were incubated (1h) in 2.8 and 11.1mM glucose, with or without GIP or GLP-1 (both 100nM), in the presence or absence of atropine (100µM). Duodenal glucose increased circulating insulin and this effect was potentiated by DPP-4 inhibition. The increase in insulin achieved by DPP-4 inhibition was reduced by atropine by approximately 35%. Duodenal glucose also elicited an increase in circulating intact GLP-1 and GIP and this was augmented by DPP-4 inhibition, but these effects were not affected by atropine. Atropine did also not affect the augmentation by GLP-1 and GIP on glucose-stimulated insulin secretion from isolated islets. Based on these findings, we suggest that muscarinic mechanisms contribute to the stimulation of insulin secretion by DPP-4 inhibition through neural effects induced by GLP-1 and GIP whereas neural effects do not affect the levels of GLP-1 or GIP or the islet effects of the two incretin hormones. PMID:26997369

  19. Cut to the chase: a review of CD26/dipeptidyl peptidase-4's (DPP4) entanglement in the immune system.

    PubMed

    Klemann, C; Wagner, L; Stephan, M; von Hörsten, S

    2016-07-01

    CD26/DPP4 (dipeptidyl peptidase 4/DP4/DPPIV) is a surface T cell activation antigen and has been shown to have DPP4 enzymatic activity, cleaving-off amino-terminal dipeptides with either L-proline or L-alanine at the penultimate position. It plays a major role in glucose metabolism by N-terminal truncation and inactivation of the incretins glucagon-like peptide-1 (GLP) and gastric inhibitory protein (GIP). In 2006, DPP4 inhibitors have been introduced to clinics and have been demonstrated to efficiently enhance the endogenous insulin secretion via prolongation of the half-life of GLP-1 and GIP in patients. However, a large number of studies demonstrate clearly that CD26/DPP4 also plays an integral role in the immune system, particularly in T cell activation. Therefore, inhibition of DPP4 might represent a double-edged sword. Apart from the metabolic benefit, the associated immunological effects of long term DPP4 inhibition on regulatory processes such as T cell homeostasis, maturation and activation are not understood fully at this stage. The current data point to an important role for CD26/DPP4 in maintaining lymphocyte composition and function, T cell activation and co-stimulation, memory T cell generation and thymic emigration patterns during immune-senescence. In rodents, critical immune changes occur at baseline levels as well as after in-vitro and in-vivo challenge. In patients receiving DPP4 inhibitors, evidence of immunological side effects also became apparent. The scope of this review is to recapitulate the role of CD26/DPP4 in the immune system regarding its pharmacological inhibition and T cell-dependent immune regulation. PMID:26919392

  20. Dipeptidyl peptidase-4 inhibitor for steroid-induced diabetes

    PubMed Central

    Yanai, Hidekatsu; Masui, Yoshinori; Yoshikawa, Reo; Kunimatsu, Junwa; Kaneko, Hiroshi

    2010-01-01

    The addition of the dipeptidyl peptidase-4 (DDP-4) inhibitor has been reported to achieve greater improvements in glucose metabolism with fewer adverse events compared to increasing the metformin dose in type 2 diabetic patients. We present a patient with steroid-induced diabetes whose blood glucose levels were ameliorated by the use of the DPP-4 inhibitor, showing that the DPP-4 inhibitors may be an effective and safe oral anti-diabetic drug for steroid-induced diabetes. PMID:21537433

  1. In vivo DPP-4 inhibition to enhance engraftment of single-unit cord blood transplants in adults with hematological malignancies.

    PubMed

    Farag, Sherif S; Srivastava, Shivani; Messina-Graham, Steven; Schwartz, Jennifer; Robertson, Michael J; Abonour, Rafat; Cornetta, Kenneth; Wood, Lisa; Secrest, Angie; Strother, R Matthew; Jones, David R; Broxmeyer, Hal E

    2013-04-01

    Delayed engraftment is a significant limitation of umbilical cord blood (UCB) transplantation due to low stem cell numbers. Inhibition of dipeptidyl peptidase (DPP)-4 enhanced engraftment in murine transplants. We evaluated the feasibility of systemic DPP-4 inhibition using sitagliptin to enhance engraftment of single-unit UCB grafts in adults with hematological malignancies. Twenty-four patients (21-58 years) received myeloablative conditioning, followed by sitagliptin 600 mg orally days -1 to +2, and single UCB grafts day 0. Seventeen receiving red cell-depleted (RCD) grafts, matched at 4 (n=10) or 5 (n=7) of 6 human leucocyte antigen (HLA) loci with median nucleated cell dose 3.6 (2.5-5.2)×10(7)/kg, engrafted at median of 21 (range, 13-50) days with cumulative incidence of 94% (95% confidence interval, 84%-100%) at 50 days. Plasma DDP-4 activity was reduced to 23%±7% within 2 h. Area under DPP-4 activity-time curve (AUCA) correlated with engraftment; 9 of 11 with AUCA <6,000 activity·h engrafted within ≤21 days, while all 6 with higher AUCA engrafted later (P=0.002). Seven patients receiving red cell replete grafts had 10-fold lower colony forming units after thawing compared with RCD grafts, with poor engraftment. Systemic DPP-4 inhibition was well tolerated and may enhance engraftment. Optimizing sitagliptin dosing to achieve more sustained DPP-4 inhibition may further improve outcome. PMID:23270493

  2. Inhibition of DPP4 activity in humans establishes its in vivo role in CXCL10 post-translational modification: prospective placebo-controlled clinical studies.

    PubMed

    Decalf, Jérémie; Tarbell, Kristin V; Casrouge, Armanda; Price, Jeffrey D; Linder, Grace; Mottez, Estelle; Sultanik, Philippe; Mallet, Vincent; Pol, Stanislas; Duffy, Darragh; Albert, Matthew L

    2016-01-01

    Biochemical experiments, animal models, and observational studies in humans all support a role of dipeptidyl peptidase 4 (DPP4) in the N-terminal truncation of CXCL10, which results in the generation of an antagonist form of the chemokine that limits T-cell and NK cell migration. Motivated by the ability to regulate lymphocyte trafficking in vivo, we conducted two prospective clinical trials to test the effects of DPP4 inhibition on CXCL10 processing in healthy donors and in chronic hepatitis C patients, a disease in which DPP4 levels are found to be elevated. Participants were treated daily with 100 mg sitagliptin, a clinically approved DPP4 inhibitor. Plasma samples were analyzed using an ultrasensitive single-molecule assay (Simoa) to distinguish the full-length CXCL101-77 from the NH2-truncated CXCL103-77, as compared to the total CXCL10 levels. Sitagliptin treatment resulted in a significant decrease in CXCL103-77 concentration, a reciprocal increase in CXCL101-77, with only minimal effects on total levels of the chemokine. These data provide the first direct evidence that in vivo DPP4 inhibition in humans can preserve the bioactive form of CXCL10, offering new therapeutic opportunities for DPP4 inhibitors. PMID:27137491

  3. Pleiotropic effects of the dipeptidylpeptidase-4 inhibitors on the cardiovascular system

    PubMed Central

    Aroor, Annayya R.; Sowers, James R.; Jia, Guanghong

    2014-01-01

    Dipeptidylpeptidase-4 (DPP-4) is a ubiquitously expressed transmembrane protein that removes NH2-terminal dipeptides from various substrate hormones, chemokines, neuropeptides, and growth factors. Two known substrates of DPP-4 include the incretin hormones glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide, which are secreted by enteroendocrine cells in response to postprandial hyperglycemia and account for 60–70% of postprandial insulin secretion. DPP-4 inhibitors (DPP-4i) block degradation of GLP-1 and gastric inhibitory peptide, extend their insulinotropic effect, and improve glycemia. Since 2006, several DPP-4i have become available for treatment of type 2 diabetes mellitus. Clinical trials confirm that DPP-4i raises GLP-1 levels in plasma and improves glycemia with very low risk for hypoglycemia and other side effects. Recent studies also suggest that DPP-4i confers cardiovascular and kidney protection, beyond glycemic control, which may reduce the risk for further development of the multiple comorbidities associated with obesity/type 2 diabetes mellitus, including hypertension and cardiovascular disease (CVD) and kidney disease. The notion that DPP-4i may improve CVD outcomes by mechanisms beyond glycemic control is due to both GLP-1-dependent and GLP-1-independent effects. The CVD protective effects by DPP-4i result from multiple factors including insulin resistance, oxidative stress, dyslipidemia, adipose tissue dysfunction, dysfunctional immunity, and antiapoptotic properties of these agents in the heart and vasculature. This review focuses on cellular and molecular mechanisms mediating the CVD protective effects of DPP-4i beyond favorable effects on glycemic control. PMID:24929856

  4. Clinical pharmacology of dipeptidyl peptidase 4 inhibitors indicated for the treatment of type 2 diabetes mellitus.

    PubMed

    Chen, Xiao-Wu; He, Zhi-Xu; Zhou, Zhi-Wei; Yang, Tianxin; Zhang, Xueji; Yang, Yin-Xue; Duan, Wei; Zhou, Shu-Feng

    2015-10-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are a class of oral antidiabetic drugs that improve glycaemic control without causing weight gain or increasing hypoglycaemic risk in patients with type 2 diabetes mellitus (T2DM). The eight available DPP-4 inhibitors, including alogliptin, anagliptin, gemigliptin, linagliptin, saxagliptin, sitagliptin, teneligliptin, and vildagliptin, are small molecules used orally with identical mechanism of action and similar safety profiles in patients with T2DM. DPP-4 inhibitors may be used as monotherapy or in double or triple combination with other oral glucose-lowering agents such as metformin, thiazolidinediones, or sulfonylureas. Although DPP-4 inhibitors have the same mode of action, they differ by some important pharmacokinetic and pharmacodynamic properties that may be clinically relevant in some patients. The main differences between the eight gliptins include: potency, target selectivity, oral bioavailability, elimination half-life, binding to plasma proteins, metabolic pathways, formation of active metabolite(s), main excretion routes, dosage adjustment for renal and liver insufficiency, and potential drug-drug interactions. The off-target inhibition of selective DPP-4 inhibitors is responsible for multiorgan toxicities such as immune dysfunction, impaired healing, and skin reactions. As a drug class, the DPP-4 inhibitors have become accepted in clinical practice due to their excellent tolerability profile, with a low risk of hypoglycaemia, a neutral effect on body weight, and once-daily dosing. It is unknown if DPP-4 inhibitors can prevent disease progression. More clinical studies are needed to validate the optimal regimens of DPP-4 inhibitors for the management of T2DM when their potential toxicities are closely monitored. PMID:26173919

  5. Metabolic role of dipeptidyl peptidase 4 (DPP4) in primary human (pre)adipocytes

    PubMed Central

    Zilleßen, Pia; Celner, Jennifer; Kretschmann, Anita; Pfeifer, Alexander; Racké, Kurt; Mayer, Peter

    2016-01-01

    Dipeptidyl peptidase 4 (DPP4) is the target of the gliptins, a recent class of oral antidiabetics. DPP4 (also called CD26) was previously characterized in immune cells but also has important metabolic functions which are not yet fully understood. Thus, we investigated the function of DPP4 in human white preadipocytes and adipocytes. We found that both cell types express DPP4 in high amounts; DPP4 release markedly increased during differentiation. In preadipocytes, lentiviral DPP4 knockdown caused significant changes in gene expression as determined by whole-genome DNA-array analysis. Metabolic genes were increased, e.g. PDK4 18-fold and PPARγC1α (=PGC1α) 6-fold, and proliferation-related genes were decreased (e.g. FGF7 5-fold). These effects, contributing to differentiation, were not inhibited by the PPARγ antagonist T0070907. Vice versa, the PPARγ agonist pioglitazone induced a different set of genes (mainly FABP4). DPP4 knockdown also affected growth factor signaling and, accordingly, retarded preadipocyte proliferation. In particular, basal and insulin-induced ERK activation (but not Akt activation) was markedly diminished (by around 60%). This indicates that DPP4 knockdown contributes to adipocyte maturation by mimicking growth factor withdrawal, an early step in fat cell differentiation. In mature adipocytes, DPP4 becomes liberated so that adipose tissue may constitute a relevant source of circulating DPP4. PMID:26983599

  6. Combination therapy of dipeptidyl peptidase-4 inhibitors and metformin in type 2 diabetes: rationale and evidence.

    PubMed

    Liu, Y; Hong, T

    2014-02-01

    The main pathogenesis of type 2 diabetes mellitus (T2DM) includes insulin resistance and pancreatic islet dysfunction. Metformin, which attenuates insulin resistance, has been recommended as the first-line antidiabetic medication. Dipeptidyl peptidase-4 (DPP-4) inhibitors are novel oral hypoglycaemic agents that protect glucagon-like peptide-1 (GLP-1) from degradation, maintain the bioactivity of endogenous GLP-1, and thus improve islet dysfunction. Results from clinical trials have shown that the combination therapy of DPP-4 inhibitors and metformin [as an add-on, an initial combination or a fixed-dose combination (FDC)] provides excellent efficacy and safety in patients with T2DM. Moreover, recent studies have suggested that metformin enhances the biological effect of GLP-1 by increasing GLP-1 secretion, suppressing activity of DPP-4 and upregulating the expression of GLP-1 receptor in pancreatic β-cells. Conversely, DPP-4 inhibitors have a favourable effect on insulin sensitivity in patients with T2DM. Therefore, the combination of DPP-4 inhibitors and metformin provides an additive or even synergistic effect on metabolic control in patients with T2DM. This article provides an overview of clinical evidence and discusses the rationale for the combination therapy of DPP-4 inhibitors and metformin. PMID:23668534

  7. Glucose-independent renoprotective mechanisms of the tissue dipeptidyl peptidase-4 inhibitor, saxagliptin, in Dahl salt-sensitive hypertensive rats.

    PubMed

    Uchii, Masako; Kimoto, Naoya; Sakai, Mariko; Kitayama, Tetsuya; Kunori, Shunji

    2016-07-15

    Although previous studies have shown an important role of renal dipeptidyl peptidase-4 (DPP-4) inhibition in ameliorating kidney injury in hypertensive rats, the renal distribution of DPP-4 and mechanisms of renoprotective action of DPP-4 inhibition remain unclear. In this study, we examined the effects of the DPP-4 inhibitor saxagliptin on DPP-4 activity in renal cells (using in situ DPP-4 staining) and on renal gene expression related to inflammation and fibrosis in the renal injury in hypertensive Dahl salt-sensitive (Dahl-S) rats. Male rats fed a high-salt (8% NaCl) diet received vehicle (water) or saxagliptin (12.7mg/kg/day) for 4 weeks. Blood pressure (BP), serum glucose and 24-h urinary albumin and sodium excretions were measured, and renal histopathology was performed. High salt-diet increased BP and urinary albumin excretion, consequently resulting in glomerular sclerosis and tubulointerstitial fibrosis. Although saxagliptin did not affect BP and blood glucose levels, it significantly ameliorated urinary albumin excretion. In situ staining showed DPP-4 activity in glomerular and tubular cells. Saxagliptin significantly suppressed DPP-4 activity in renal tissue extracts and in glomerular and tubular cells. Saxagliptin also significantly attenuated the increase in inflammation and fibrosis-related gene expressions in the kidney. Our results demonstrate that saxagliptin inhibited the development of renal injury independent of its glucose-lowering effect. Glomerular and tubular DPP-4 inhibition by saxagliptin was associated with improvements in albuminuria and the suppression of inflammation and fibrosis-related genes. Thus, local glomerular and tubular DPP-4 inhibition by saxagliptin may play an important role in its renoprotective effects in Dahl-S rats. PMID:27063445

  8. Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas.

    PubMed

    Deacon, C F; Lebovitz, H E

    2016-04-01

    Type 2 diabetes (T2DM) is a progressive disease, and pharmacotherapy with a single agent does not generally provide durable glycaemic control over the long term. Sulphonylurea (SU) drugs have a history stretching back over 60 years, and have traditionally been the mainstay choice as second-line agents to be added to metformin once glycaemic control with metformin monotherapy deteriorates; however, they are associated with undesirable side effects, including increased hypoglycaemia risk and weight gain. Dipeptidyl peptidase (DPP)-4 inhibitors are, by comparison, more recent, with the first compound being launched in 2006, but the class now globally encompasses at least 11 different compounds. DPP-4 inhibitors improve glycaemic control with similar efficacy to SUs, but do not usually provoke hypoglycaemia or weight gain, are relatively free from adverse side effects, and have recently been shown not to increase cardiovascular risk in large prospective safety trials. Because of these factors, DPP-4 inhibitors have become an established therapy for T2DM and are increasingly being positioned earlier in treatment algorithms. The present article reviews these two classes of oral antidiabetic drugs (DPP-4 inhibitors and SUs), highlighting differences and similarities between members of the same class, as well as discussing the potential advantages and disadvantages of the two drug classes. While both classes have their merits, the choice of which to use depends on the characteristics of each individual patient; however, for the majority of patients, DPP-4 inhibitors are now the preferred choice. PMID:26597596

  9. Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH) proteins.

    PubMed

    Wagner, L; Klemann, C; Stephan, M; von Hörsten, S

    2016-06-01

    Dipeptidyl peptidase (DPP) 4 (CD26, DPP4) is a multi-functional protein involved in T cell activation by co-stimulation via its association with adenosine deaminase (ADA), caveolin-1, CARMA-1, CD45, mannose-6-phosphate/insulin growth factor-II receptor (M6P/IGFII-R) and C-X-C motif receptor 4 (CXC-R4). The proline-specific dipeptidyl peptidase also modulates the bioactivity of several chemokines. However, a number of enzymes displaying either DPP4-like activities or representing structural homologues have been discovered in the past two decades and are referred to as DPP4 activity and/or structure homologue (DASH) proteins. Apart from DPP4, DASH proteins include fibroblast activation protein alpha (FAP), DPP8, DPP9, DPP4-like protein 1 (DPL1, DPP6, DPPX L, DPPX S), DPP4-like protein 2 (DPL2, DPP10) from the DPP4-gene family S9b and structurally unrelated enzyme DPP2, displaying DPP4-like activity. In contrast, DPP6 and DPP10 lack enzymatic DPP4-like activity. These DASH proteins play important roles in the immune system involving quiescence (DPP2), proliferation (DPP8/DPP9), antigen-presenting (DPP9), co-stimulation (DPP4), T cell activation (DPP4), signal transduction (DPP4, DPP8 and DPP9), differentiation (DPP4, DPP8) and tissue remodelling (DPP4, FAP). Thus, they are involved in many pathophysiological processes and have therefore been proposed for potential biomarkers or even drug targets in various cancers (DPP4 and FAP) and inflammatory diseases (DPP4, DPP8/DPP9). However, they also pose the challenge of drug selectivity concerning other DASH members for better efficacy and/or avoidance of unwanted side effects. Therefore, this review unravels the complex roles of DASH proteins in immunology. PMID:26671446

  10. Identification of residues on human receptor DPP4 critical for MERS-CoV binding and entry

    SciTech Connect

    Song, Wenfei; Wang, Ying; Wang, Nianshuang; Wang, Dongli; Guo, Jianying; Fu, Lili; Shi, Xuanling

    2014-12-15

    Middle East respiratory syndrome coronavirus (MERS-CoV) infects host cells through binding the receptor binding domain (RBD) on its spike glycoprotein to human receptor dipeptidyl peptidase 4 (hDPP4). Here, we report identification of critical residues on hDPP4 for RBD binding and virus entry through analysis of a panel of hDPP4 mutants. Based on the RBD–hDPP4 crystal structure we reported, the mutated residues were located at the interface between RBD and hDPP4, which potentially changed the polarity, hydrophobic or hydrophilic properties of hDPP4, thereby interfering or disrupting their interaction with RBD. Using surface plasmon resonance (SPR) binding analysis and pseudovirus infection assay, we showed that several residues in hDPP4–RBD binding interface were important on hDPP4–RBD binding and viral entry. These results provide atomic insights into the features of interactions between hDPP4 and MERS-CoV RBD, and also provide potential explanation for cellular and species tropism of MERS-CoV infection. - Highlights: • It has been demonstrated that MERS-CoV infects host cells through binding its envelope spike (S) glycoprotein to the host cellular receptor dipeptidyl peptidase 4 (DPP4). • To identify the critical residues on hDPP4 for RBD binding and virus entry, we constructed a panel of hDPP4 mutants based on structure-guided mutagenesis. • Using surface plasmon resonance (SPR) binding analysis and pseudovirus infection assay, we showed that several residues on hDPP4 had significant impacts on virus/receptor interactions and viral entry. • Our study has provided new insights into the features of interactions between hDPP4 and MERS-CoV RBD, and provides potential explanation for cellular and species tropism of MERS-CoV infection.

  11. Cardiovascular effects of dipeptidyl peptidase-4 inhibitors

    PubMed Central

    Papagianni, M; Tziomalos, K

    2015-01-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are effective glucose-lowering agents that do not increase body weight and are associated with a low risk for hypoglycemia. Also, they appear to exert beneficial effects on other established cardiovascular risk factors, including dyslipidemia and hypertension. Moreover, DPP-4 inhibitors exert antiinflammatory and antioxidant actions, improve endothelial function and reduce urinary albumin excretion. In contrast to these favorable cardiovascular effects, three recent large, randomized, placebo-controlled trials in patients with type 2 diabetes mellitus (T2DM) and established cardiovascular disease or multiple cardiovascular risk factors showed that DPP-4 inhibitors do not affect the risk of myocardial infarction or ischemic stroke and might increase the risk of heart failure. The findings of the former randomized studies highlight the limitations of surrogate markers and show that beneficial effects on cardiovascular risk factors do not necessarily translate into reductions in hard clinical endpoints. Ongoing trials will shed more light on the safety profile of DPP-4 inhibitors and will clarify whether they will improve the cardiovascular outcomes of patients with T2DM. Hippokratia 2015; 19 (3): 195-199. PMID:27418775

  12. Association of DPP4 Gene Polymorphisms with Type 2 Diabetes Mellitus in Malaysian Subjects

    PubMed Central

    Ahmed, Radwan H.; Huri, Hasniza Zaman; Al-Hamodi, Zaid; Salem, Sameer D.; Al-absi, Boshra; Muniandy, Sekaran

    2016-01-01

    Background Genetic polymorphisms of the Dipeptidyl Peptidase 4 (DPP4) gene may play a role in the etiology of type 2 diabetes mellitus (T2DM). This study aimed to investigate the possible association of single nucleotide polymorphisms (SNPs) of the DPP4 gene in Malaysian subjects with T2DM and evaluated whether they had an effect on the serum levels of soluble dipeptidyl peptidase 4 (sDPP-IV). Method Ten DPP4 SNPs were genotyped by TaqMan genotyping assays in 314 subjects with T2DM and 235 controls. Of these, 71 metabolic syndrome (MetS) subjects were excluded from subsequent analysis. The odds ratios (ORs) and their 95% confidence interval (CIs) were calculated using multiple logistic regression for the association between the SNPs of DPP4 and T2DM. In addition, the serum levels of sDPP-IV were investigated to evaluate the association of the SNPs of DPP4 with the sDPP-IV levels. Results Dominant, recessive, and additive genetic models were employed to test the association of DPP4 polymorphisms with T2DM, after adjusting for age, race, gender and BMI. The rs12617656 was associated with T2DM in Malaysian subjects in the recessive genetic model (OR = 1.98, p = 0.006), dominant model (OR = 1.95, p = 0.008), and additive model (OR = 1.63, p = 0.001). This association was more pronounced among Malaysian Indians, recessive (OR = 3.21, p = 0.019), dominant OR = 3.72, p = 0.003) and additive model (OR = 2.29, p = 0.0009). The additive genetic model showed that DPP4 rs4664443 and rs7633162 polymorphisms were associated with T2DM (OR = 1.53, p = 0.039), and (OR = 1.42, p = 0.020), respectively. In addition, the rs4664443 G>A polymorphism was associated with increased sDPP-IV levels (p = 0.042) in T2DM subjects. Conclusions DPP4 polymorphisms were associated with T2DM in Malaysian subjects, and linked to variations in sDPP-IV levels. In addition, these associations were more pronounced among Malaysian Indian subjects. PMID:27111895

  13. Treatment progression in sulfonylurea and dipeptidyl peptidase-4 inhibitor cohorts of type 2 diabetes patients on metformin

    PubMed Central

    Peng, Xiaomei; Jiang, Dingfeng; Liu, Dongju; Varnado, Oralee J; Bae, Jay P

    2016-01-01

    Background Metformin is an oral antidiabetic drug (OAD) widely used as first-line therapy in type 2 diabetes (T2D) treatments. Numerous treatment pathways after metformin failure exist. It is important to understand how treatment choices influence subsequent therapy progressions. This retrospective study compares adherence to, persistence with, and treatment progression in sulfonylurea (SU) and dipeptidyl peptidase-4 (DPP-4) inhibitor patient cohorts with T2D on metformin. Methods Using health insurance claims data, matched patient cohorts were created and OAD use was compared in patients with T2D initiating SU or DPP-4 inhibitors (index drugs) since January 1, 2010, to December 31, 2010, with background metformin therapy. Propensity score matching adjusted for possible selection bias. Persistence was measured via Cox regression as days to a ≥60-day gap in index drug possession; adherence was defined as proportion of days covered (PDC) ≥80%. Evolving treatment patterns were traced at 6-month intervals for 24 months following index drug discontinuation. Results From among 19,621 and 7,484 patients in the SU and DPP-4 inhibitor cohorts, respectively, 6,758 patient pairs were matched. Persistence at 12 months in the SU cohort was 48.0% compared to 52.5% for the DPP-4 inhibitor cohort. PDC adherence (mean [SD]) during the 12-month follow-up period was 63.3 (29.7) for the SU cohort and 65.5 (28.7) for the DPP-4 inhibitor cohort. PDC ≥80% was 40.5% and 43.4% in the SU and DPP-4 inhibitor cohorts, respectively. A higher percentage of patients in the SU cohort remained untreated. Following index drug discontinuation, monotherapy was more common in the SU cohort, while use of two or three OADs was more common in the DPP-4 inhibitor cohort. Insulin therapy initiation was higher in the SU cohort. Conclusion Slightly better adherence and persistence were seen in the DPP-4 inhibitor cohort. Adherence and persistence remain a challenge to many patients; understanding

  14. Emerging role of dipeptidyl peptidase-4 inhibitors in the management of type 2 diabetes

    PubMed Central

    Richter, Bernd; Bandeira-Echtler, Elizabeth; Bergerhoff, Karla; Lerch, Christian

    2008-01-01

    Background: In type 2 diabetes mellitus (T2DM) there is a progressive loss of β-cell function. One new approach yielding promising results is the use of the orally active dipeptidyl peptidase-4 (DPP-4) inhibitors. However, every new compound for T2DM has to prove long-term safety especially on cardiovascular outcomes. Objectives: Systematic review and meta-analysis of the effects of sitagliptin and vildagliptin therapy on main efficacy parameters and safety. Selection criteria, data collection, and analysis: Randomized controlled clinical studies of at least 12 weeks’ duration in T2DM. Results: DPP-4 inhibitors versus placebo showed glycosylated hemoglobin A1c(A1c) improvements of 0.7% versus placebo but not compared to monotherapy with other hypoglycemic agents (0.3% in favor of controls). The overall risk profile of DPP-4 inhibitors was low, however a 34% relative risk increase (95% confidence interval 10% to 64%, P = 0.004) was noted for all cause infection associated with sitagliptin use. No data on immune function, health-related quality of life and diabetic complications could be extracted. Conclusions: DPP-4 inhibitors have some theoretical advantages over existing therapies with oral antidiabetic compounds but should currently be restricted to individual patients. Long-term data on cardiovascular outcomes and safety are needed before widespread use of these new agents. PMID:19065993

  15. Saxagliptin: a dipeptidyl peptidase-4 inhibitor ameliorates streptozotocin induced Alzheimer's disease.

    PubMed

    Kosaraju, Jayasankar; Gali, Chaitanya Chakravarthi; Khatwal, Rizwan Basha; Dubala, Anil; Chinni, Santhivardhan; Holsinger, R M Damian; Madhunapantula, V Subba Rao; Muthureddy Nataraj, Satish Kumar; Basavan, Duraiswamy

    2013-09-01

    Type 2 diabetes (T2D) is one of the major risk factors associated with Alzheimer's disease (AD). Recent studies have found similarities in molecular mechanisms that underlie the respective degenerative developments in the two diseases. Pharmacological agents, such as dipeptidyl peptidase-4 (DPP-4) inhibitors, which increase the level of glucagon-like peptide-1 (GLP-1) and ameliorate T2D, have become valuable candidates as disease modifying agents in the treatment of AD. In addition, endogenous GLP-1 levels decrease amyloid beta (Aβ) peptide and tau phosphorylation in AD. The present study examines the efficacy of Saxagliptin, a DPP-4 inhibitor in a streptozotocin (STZ) induced rat model of AD. Three months following induction of AD by intracerebral administration of streptozotocin, animals were orally administered Saxagliptin (0.25, 0.5 and 1 mg/kg) for 60 days. The effect of the DPP-4 inhibitor on hippocampal GLP-1 levels, Aβ burden, tau phosphorylation, inflammatory markers and memory retention were evaluated. The results reveal an attenuation of Aβ, tau phosphorylation and inflammatory markers and an improvement in hippocampal GLP-1 and memory retention following treatment. This remarkable therapeutic effect of Saxagliptin mediated through DPP-4 inhibition demonstrates a unique mechanism for Aβ and tau clearance by increasing GLP-1 levels and reverses the behavioural deficits and pathology observed in AD. PMID:23603201

  16. Three ileus cases associated with the use of dipeptidyl peptidase-4 inhibitors in diabetic patients.

    PubMed

    Kanasaki, Keizo; Konishi, Kazunori; Hayashi, Ranji; Shiroeda, Hisakazu; Nomura, Tomoe; Nakagawa, Atsushi; Nagai, Takako; Takeda-Watanabe, Ai; Ito, Hiroki; Tsuda, Shin-Ichi; Kitada, Munehiro; Fujii, Mizue; Kanasaki, Megumi; Nishizawa, Makoto; Nakano, Yasuharu; Tomita, Yasuto; Ueda, Nobuhiko; Kosaka, Takeo; Koya, Daisuke

    2013-11-27

    Dipeptidyl peptidase (DPP)-4 inhibitors are a new class of antidiabetic drugs that increase incretin hormone levels to enhance blood sugar level-dependent insulinotropic effects, suppress glucagon action, and reduce bowel motility. These incretin effects are ideal for blood sugar control. However, the safety profile of DPP-4 inhibitors is not yet established. Herein, we present three cases of ileus, considered to be closely related to the use of DPP-4 inhibitors, in diabetic patients. Each of the three patients exhibited some risk of a deficiency in bowel movement; the onset of ileus was within 40 days after strengthened inhibition of DPP-4. The use of a DPP-4 inhibitor could be safe, although the cases presented herein enable us to inform the scientific community to some of the potential adverse effects of the use of DPP-4 inhibitors in select populations. PMID:24843724

  17. Dipeptidyl peptidase 4 inhibitor improves brain insulin sensitivity, but fails to prevent cognitive impairment in orchiectomy obese rats.

    PubMed

    Pintana, Hiranya; Pongkan, Wanpitak; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2015-08-01

    It is unclear whether the dipeptidyl peptidase 4 (DPP4) inhibitor can counteract brain insulin resistance, brain mitochondrial dysfunction, impairment of hippocampal synaptic plasticity and cognitive decline in testosterone-deprived obese rats. We hypothesized that DPP4 inhibitor vildagliptin improves cognitive function in testosterone-deprived obese rats by restoring brain insulin sensitivity, brain mitochondrial function and hippocampal synaptic plasticity. Thirty male Wistar rats received either a sham-operated (S, n=6) or bilateral orchiectomy (ORX, n=24). ORX rats were divided into two groups and fed with either a normal diet (ND (NDO)) or a high-fat diet (HFO) for 12 weeks. Then, ORX rats in each dietary group were divided into two subgroups (n=6/subgroup) to receive either a vehicle or vildagliptin (3 mg/kg per day, p.o.) for 4 weeks. After treatment, cognitive function, metabolic parameters, brain insulin sensitivity, hippocampal synaptic plasticity and brain mitochondrial function were determined in each rat. We found that HFO rats exhibited peripheral and brain insulin resistance, brain mitochondrial dysfunction, impaired hippocampal synaptic plasticity and cognitive decline. NDO rats did not develop peripheral and brain insulin resistance. However, impaired hippocampal synaptic plasticity and cognitive decline occurred. Vildagliptin significantly improved peripheral insulin sensitivity, restored brain insulin sensitivity and decreased brain mitochondrial reactive oxygen species production in HFO rats. However, vildagliptin did not restore hippocampal synaptic plasticity and cognitive function in both NDO and HFO rats. These findings suggest that vildagliptin could not counteract the impairment of hippocampal synaptic plasticity and cognitive decline in testosterone-deprived subjects, despite its effects on improved peripheral and brain insulin sensitivity as well as brain mitochondrial function. PMID:26016746

  18. Cardiovascular safety of dipeptidyl peptidase-4 inhibitors: recent evidence on heart failure.

    PubMed

    Kankanala, Saumya Reddy; Syed, Rafay; Gong, Quan; Ren, Boxu; Rao, Xiaoquan; Zhong, Jixin

    2016-01-01

    The cardiovascular safety of DPP4 inhibitors as a class, especially in regards to heart failure, has been questioned after the publication of first trials (SAVOR-TIMI 53 and EXAMINE) assessing the cardiovascular risks of DPP4 inhibitors alogliptin and sitagliptin in 2013. Although there were no increased risks in composite cardiovascular outcomes, the SAVOR-TIMI 53 trial reported a 27% increase in hospitalization for heart failure in diabetic patients who received the DPP4 inhibitor saxagliptin. There has been substantial increase in knowledge on the heart failure effect of DPP4 inhibition since 2013. This review will summarize the role of the DPP4/incretin axis in heart failure and discuss the findings from recent large scale clinical trials assessing the effects of DPP4 inhibitors on heart failure. PMID:27347354

  19. Cardiovascular safety of dipeptidyl peptidase-4 inhibitors: recent evidence on heart failure

    PubMed Central

    Kankanala, Saumya Reddy; Syed, Rafay; Gong, Quan; Ren, Boxu; Rao, Xiaoquan; Zhong, Jixin

    2016-01-01

    The cardiovascular safety of DPP4 inhibitors as a class, especially in regards to heart failure, has been questioned after the publication of first trials (SAVOR-TIMI 53 and EXAMINE) assessing the cardiovascular risks of DPP4 inhibitors alogliptin and sitagliptin in 2013. Although there were no increased risks in composite cardiovascular outcomes, the SAVOR-TIMI 53 trial reported a 27% increase in hospitalization for heart failure in diabetic patients who received the DPP4 inhibitor saxagliptin. There has been substantial increase in knowledge on the heart failure effect of DPP4 inhibition since 2013. This review will summarize the role of the DPP4/incretin axis in heart failure and discuss the findings from recent large scale clinical trials assessing the effects of DPP4 inhibitors on heart failure. PMID:27347354

  20. Aminopiperidine-Fused Imidazoles as Dipeptidyl Peptidase-IV Inhibitors

    SciTech Connect

    Edmondson, S.; Mastracchio, A; Cox, J; Eiermann, G; He, H; Lyons, K; Patel, R; Patel, S; Petrov, A; et. al.

    2009-01-01

    A new series of DPP-4 inhibitors derived from piperidine-fused benzimidazoles and imidazopyridines is described. Optimization of this class of DPP-4 inhibitors led to the discovery of imidazopyridine 34. The potency, selectivity, cross-species DMPK profiles, and in vivo efficacy of 34 is reported.

  1. Treatment with DPP-4I Anagliptin or α-GI Miglitol Reduces IGT Development and the Expression of CVD Risk Factors in OLETF Rats.

    PubMed

    Imai, Chihiro; Harazaki, Tomomi; Inoue, Seiya; Mochizuki, Kazuki; Goda, Toshinao

    2015-01-01

    It has been reported that postprandial hyperglycemia from the pre-diabetic stage, especially from the impaired glucose tolerance (IGT) stage, is positively associated with subsequent incidences of cardiovascular diseases (CVD) and type 2 diabetes. In this study, we aimed to investigate whether treatment with a dipeptidyl peptidase-4 inhibitor (DPP-4I) or an α-glucosidase inhibitor (α-GI), either of which suppresses postprandial hyperglycemia, reduces the expression of CVD risk factors in an IGT animal model. A DPP-4I, anagliptin (1,200 ppm), or an α-GI, miglitol (600 ppm), in the diet was administered for 47 wk to Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model for spontaneously-developed type 2 diabetes, at the IGT stage. We examined whether each treatment reduced the expression of CVD risk factors such as inflammatory cytokines/cytokine-like factors in peripheral leukocytes and adhesion molecules in the aortic tissues and circulation. Treatment with either drug reduced IGT development and repressed expression of the interleukin-1β, tumor necrosis factor-α, S100a9, and S100a11 genes in peripheral leukocytes in the fasting state at weeks 25 and 39. The mRNA levels of E-selectin in aortic tissues and protein levels of the soluble forms of E-selectin and ICAM-1 in arterial blood were significantly lower in the anagliptin and miglitol groups than in the control group. Our results suggest that long-term treatment with anagliptin or miglitol in OLETF rats at the IGT stage suppresses the expression of inflammatory cytokines in peripheral leukocytes and adhesion molecules in aortic tissues. PMID:26440638

  2. Bioassay-guided isolation of DPP-4 inhibitory fractions from extracts of submerged cultured of Inonotus obliquus.

    PubMed

    Geng, Yan; Lu, Zhen-Ming; Huang, Wei; Xu, Hong-Yu; Shi, Jin-Song; Xu, Zheng-Hong

    2013-01-01

    Inonotus obliquus is a medicinal mushroom used in Russian and Eastern European folk medicine for the treatment of gastrointestinal cancer, cardiovascular disease and diabetes. Previous studies in our laboratory have demonstrated that the mycelium powders of I. obliquus possess significant antihyperglycemic effects in a mouse model of diabetic disease induced by alloxan. However, the active ingredients of mycelium powders responsible for the diabetes activity have not been identified. This study aims to identify the active ingredients of I. obliquus mycelium powders by a bioassay-guided fractionation approach and explore the mechanism of action of these active ingredients by using a well-established DPP-4 (an important enzyme as a new therapeutic target for diabetes) inhibitory assay model. The results showed the chloroform extract of mycelium was potential inhibitory against DPP-4. Bioactivity guided fractionation led to the identification of 19 compounds using UPLC-Q-TOF-MS. Molecular docking between the compounds and DPP-4 revealed that compounds 5, 8, 9, 14, 15 may be the active components responsible for the DPP-4 inhibitory activity. PMID:23325103

  3. The GABAA antagonist DPP-4-PIOL selectively antagonises tonic over phasic GABAergic currents in dentate gyrus granule cells.

    PubMed

    Boddum, Kim; Frølund, Bente; Kristiansen, Uffe

    2014-11-01

    GABAA receptors mediate two different types of inhibitory currents: phasic inhibitory currents when rapid and brief presynaptic GABA release activates postsynaptic GABAA receptors and tonic inhibitory currents generated by low extrasynaptic GABA levels, persistently activating extrasynaptic GABAA receptors. The two inhibitory current types are mediated by different subpopulations of GABAA receptors with diverse pharmacological profiles. Selective antagonism of tonic currents is of special interest as excessive tonic inhibition post-stroke has severe pathological consequences. Here we demonstrate that phasic and tonic GABAA receptor currents can be selectively inhibited by the antagonists SR 95531 and the 4-PIOL derivative, 4-(3,3-diphenylpropyl)-5-(4-piperidyl)-3-isoxazolol hydrobromide (DPP-4-PIOL), respectively. In dentate gyrus granule cells, SR 95531 was found approximately 4 times as potent inhibiting phasic currents compared to tonic currents (IC50 values: 101 vs. 427 nM). Conversely, DPP-4-PIOL was estimated to be more than 20 times as potent inhibiting tonic current compared to phasic current (IC50 values: 0.87 vs. 21.3 nM). Consequently, we were able to impose a pronounced reduction in tonic GABA mediated current (>70 %) by concentrations of DPP-4-PIOL, at which no significant effect on the phasic current was seen. Our findings demonstrate that selective inhibition of GABA mediated tonic current is possible, when targeting a subpopulation of GABAA receptors located extrasynaptically using the antagonist, DPP-4-PIOL. PMID:25103229

  4. Effects of dipeptidyl peptidase-4 inhibitor in insulin-resistant rats with myocardial infarction.

    PubMed

    Apaijai, Nattayaporn; Inthachai, Tharnwimol; Lekawanvijit, Suree; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-06-01

    Adverse cardiac remodeling after myocardial infarction (MI) leads to progressive heart failure. Obese-insulin resistance increases risks of MI and heart failure. Although dipeptidyl peptidase-4 (DPP4) inhibitor is known to exert cardioprotection, its effects on adverse remodeling after MI in obese-insulin-resistant rats are unclear. We hypothesized that DPP4 inhibitor reduces adverse left ventricular (LV) remodeling and LV dysfunction in obese-insulin-resistant rats with MI. Rats were fed either normal diet (ND) or high-fat diet (HFD) for 12 weeks to induce obese-insulin resistance, followed by left anterior descending coronary artery ligation to induce MI. Then, rats in each dietary group were divided into five subgroups to receive vehicle, enalapril (10mg/kg/day), metformin (30mg/kg/day), DPP4 inhibitor vildagliptin (3mg/kg/day), or combined metformin and vildagliptin for 8 weeks. Heart rate variability (HRV), LV function, pathological and biochemical studies for LV remodeling, and cardiomyocyte apoptosis were determined. Obese-insulin-resistant rats had severe insulin resistance and LV dysfunction. HFD rats had a higher mortality rate than ND rats, and all treatments reduced the mortality rate in obese-insulin-resistant rats. Although all drugs improved insulin resistance, HRV, LV function as well as reduced cardiac hypertrophy and fibrosis, vildagliptin effectively reduced cardiomyocyte cross-sectional areas more than enalapril and was related to markedly decreased ERK1/2 phosphorylation. In ND rats with MI, metformin neither improved LV ejection fraction nor reduced cardiac fibrosis. The infarct size and transforming growth factor-β expression were not different among groups. In obese-insulin-resistant rats with chronic MI, DPP4 inhibitor vildagliptin exerts better cardioprotection than enalapril in attenuating adverse LV remodeling. PMID:27044778

  5. Exendin-4 therapy still offered an additional benefit on reducing transverse aortic constriction-induced cardiac hypertrophy-caused myocardial damage in DPP-4 deficient rats.

    PubMed

    Lu, Hung-I; Chung, Sheng-Ying; Chen, Yi-Ling; Huang, Tein-Hung; Zhen, Yen-Yi; Liu, Chu-Feng; Chang, Meng-Wei; Chen, Yung-Lung; Sheu, Jiunn-Jye; Chua, Sarah; Yip, Hon-Kan; Lee, Fan-Yen

    2016-01-01

    Inhibition of dipeptidyl peptidase-IV (DPP-4) enzyme activity has been revealed to protect myocardium from ischemia-reperfusion through enhancing the endogenous glucagon-like peptide-1 (GLP-1) level. However, whether exogenous supply of exendin-4, an analogue of GLP-1, would still offer benefit for protecting myocardial damage from trans-aortic constriction (TAC)-induced hypertrophic cardiomyopathy in preexistence of DPP-4 deficiency (DPP-4(D)) remained unclear. Male-adult (DPP-4(D)) rats (n = 32) were randomized into group 1 [sham control (SC)], group 2 (DPP-4(D) + TAC), group 3 [DPP-4(D) + TAC + exendin-4 10 µg/day], and group 4 [DPP-4(D) + TAC + exendin-4 10 µg + exendin-9-39 10 µg/day]. The rats were sacrificed by day 60 after last echocardiographic examination. By day 60 after TAC, left ventricular ejection fraction (LVEF) (%) was highest in group 1 and lowest in group 2, and significantly lower in group 4 than that in group 3 (all p < 0.001). The protein expressions of oxidative stress (oxidized protein, NOX-1, NOX-2), inflammatory (MMP-9, TNF-α, NF-κB), apoptotic (Bax, cleaved caspase 3 and PARP), fibrotic (TGF-β, Smad3), heart failure (BNP, β-MHC), DNA damaged (γ-H2AX) and ischemic stress (p-P38, p-Akt, p53, ATM) biomarkers showed an opposite pattern of LVEF among the four groups (all p < 0.03). Fibrotic area (by Masson's trichrome, Sirius red), and cellular expressions of DNA-damaged markers (Ki-67+, γ-H2AX+, CD90+/53BP1+) displayed an identical pattern, whereas cellular expressions of angiogenesis (CD31+, α-SMA+) and sarcomere length exhibited an opposite pattern compared to that of oxidative stress among the four groups (all p < 0.001). Take altogether, Exendin-4 effectively suppressed TAC-induced pathological cardiac hypertrophy in DPP-4(D) rat. PMID:27158369

  6. Synthesis and biological evaluation of azobicyclo[3.3.0] octane derivatives as dipeptidyl peptidase 4 inhibitors for the treatment of type 2 diabetes.

    PubMed

    Cho, Tang Peng; Long, Yang Fang; Gang, Lin Zhi; Yang, Wang; Jun, Lu He; Yuan, Shen Guang; Hong, Fu Jian; Lin, Wang; Liang, Guan Dong; Lei, Zhang; Jing, Luo Jing; Shen, Gong Ai; Hong, She Gao; Dan, Wang; Ying, Feng; Ke, Yan Pang; Ying, Leng; Jun, Feng; Tai, Mong Xian

    2010-06-15

    A series of novel azobicyclo[3.3.0]octane derivatives were synthesized and evaluated as dipeptidyl peptidase 4 (DPP-4) inhibitors. The effort resulted in the discovery of inhibitor 2a, which exhibited excellent efficacies in an oral glucose tolerance test. Introduction of methyl group (2j) could prolong the inhibition of serum DPP-4 activity. PMID:20488702

  7. Dipeptidyl Peptidase-4 Inhibitor Increases Vascular Leakage in Retina through VE-cadherin Phosphorylation.

    PubMed

    Lee, Choon-Soo; Kim, Yun Gi; Cho, Hyun-Jai; Park, Jonghanne; Jeong, Heewon; Lee, Sang-Eun; Lee, Seung-Pyo; Kang, Hyun-Jae; Kim, Hyo-Soo

    2016-01-01

    The inhibitors of CD26 (dipeptidyl peptidase-4; DPP4) have been widely prescribed to control glucose level in diabetic patients. DPP4-inhibitors, however, accumulate stromal cell-derived factor-1α (SDF-1α), a well-known inducer of vascular leakage and angiogenesis both of which are fundamental pathophysiology of diabetic retinopathy. The aim of this study was to investigate the effects of DPP4-inhibitors on vascular permeability and diabetic retinopathy. DPP4-inhibitor (diprotin A or sitagliptin) increased the phosphorylation of Src and vascular endothelial-cadherin (VE-cadherin) in human endothelial cells and disrupted endothelial cell-to-cell junctions, which were attenuated by CXCR4 (receptor of SDF-1α)-blocker or Src-inhibitor. Disruption of endothelial cell-to-cell junctions in the immuno-fluorescence images correlated with the actual leakage of the endothelial monolayer in the transwell endothelial permeability assay. In the Miles assay, vascular leakage was observed in the ears into which SDF-1α was injected, and this effect was aggravated by DPP4-inhibitor. In the model of retinopathy of prematurity, DPP4-inhibitor increased not only retinal vascularity but also leakage. Additionally, in the murine diabetic retinopathy model, DPP4-inhibitor increased the phosphorylation of Src and VE-cadherin and aggravated vascular leakage in the retinas. Collectively, DPP4-inhibitor induced vascular leakage by augmenting the SDF-1α/CXCR4/Src/VE-cadherin signaling pathway. These data highlight safety issues associated with the use of DPP4-inhibitors. PMID:27381080

  8. Dipeptidyl Peptidase-4 Inhibitor Increases Vascular Leakage in Retina through VE-cadherin Phosphorylation

    PubMed Central

    Lee, Choon-Soo; Kim, Yun Gi; Cho, Hyun-Jai; Park, Jonghanne; Jeong, Heewon; Lee, Sang-Eun; Lee, Seung-Pyo; Kang, Hyun-Jae; Kim, Hyo-Soo

    2016-01-01

    The inhibitors of CD26 (dipeptidyl peptidase-4; DPP4) have been widely prescribed to control glucose level in diabetic patients. DPP4-inhibitors, however, accumulate stromal cell-derived factor-1α (SDF-1α), a well-known inducer of vascular leakage and angiogenesis both of which are fundamental pathophysiology of diabetic retinopathy. The aim of this study was to investigate the effects of DPP4-inhibitors on vascular permeability and diabetic retinopathy. DPP4-inhibitor (diprotin A or sitagliptin) increased the phosphorylation of Src and vascular endothelial-cadherin (VE-cadherin) in human endothelial cells and disrupted endothelial cell-to-cell junctions, which were attenuated by CXCR4 (receptor of SDF-1α)-blocker or Src-inhibitor. Disruption of endothelial cell-to-cell junctions in the immuno-fluorescence images correlated with the actual leakage of the endothelial monolayer in the transwell endothelial permeability assay. In the Miles assay, vascular leakage was observed in the ears into which SDF-1α was injected, and this effect was aggravated by DPP4-inhibitor. In the model of retinopathy of prematurity, DPP4-inhibitor increased not only retinal vascularity but also leakage. Additionally, in the murine diabetic retinopathy model, DPP4-inhibitor increased the phosphorylation of Src and VE-cadherin and aggravated vascular leakage in the retinas. Collectively, DPP4-inhibitor induced vascular leakage by augmenting the SDF-1α/CXCR4/Src/VE-cadherin signaling pathway. These data highlight safety issues associated with the use of DPP4-inhibitors. PMID:27381080

  9. Role of dipeptidyl peptidase-4 inhibitors in new-onset diabetes after transplantation

    PubMed Central

    Lim, Sun Woo; Jin, Ji Zhe; Jin, Long; Jin, Jian; Li, Can

    2015-01-01

    Despite strict pre- and post-transplantation screening, the incidence of new-onset diabetes after transplantation (NODAT) remains as high as 60%. This complication affects the risk of cardiovascular events and patient and graft survival rates. Thus, reducing the impact of NODAT could improve overall transplant success. The pathogenesis of NODAT is multifactorial, and both modifiable and nonmodifiable risk factors have been implicated. Monitoring and controlling the blood glucose profile, implementing multidisciplinary care, performing lifestyle modifications, using a modified immunosuppressive regimen, administering anti-metabolite agents, and taking a conventional antidiabetic approach may diminish the incidence of NODAT. In addition to these preventive strategies, inhibition of dipeptidyl peptidase-4 (DPP4) by the gliptin family of drugs has recently gained considerable interest as therapy for type 2 diabetes mellitus and NODAT. This review focuses on the role of DPP4 inhibitors and discusses recent literature regarding management of NODAT. PMID:26552451

  10. Dipeptidyl peptidase-4 inhibitors and fracture risk: an updated meta-analysis of randomized clinical trials

    PubMed Central

    Fu, Jianying; Zhu, Jianhong; Hao, Yehua; Guo, Chongchong; Zhou, Zhikun

    2016-01-01

    Data on the effects of dipeptidyl peptidase-4 (DPP-4) inhibitors on fracture risk are conflicting. Here, we performed a systematic review and meta-analysis of randomized controlled trials (RCTs) assessing the effects of DPP-4 inhibitors. Electronic databases were searched for relevant published articles, and unpublished studies presented at ClinicalTrials.gov were searched for relevant clinical data. Eligible studies included prospective randomized trials evaluating DPP-4 inhibitors versus placebo or other anti-diabetic medications in patients with type 2 diabetes. Study quality was determined using Jadad scores. Statistical analyses were performed to calculate the risk ratios (RRs) and 95% confidence intervals (CIs) using fixed-effects models. There were 62 eligible RCTs with 62,206 participants, including 33,452 patients treated with DPP-4 inhibitors. The number of fractures was 364 in the exposed group and 358 in the control group. The overall risk of fracture did not differ between patients exposed to DPP-4 inhibitors and controls (RR, 0.95; 95% CI, 0.83–1.10; P = 0.50). The results were consistent across subgroups defined by type of DPP-4 inhibitor, type of control, and length of follow-up. The study showed that DPP-4 inhibitor use does not modify the risk of bone fracture compared with placebo or other anti-diabetic medications in patients with type 2 diabetes. PMID:27384445

  11. Dipeptidyl peptidase-4 inhibitors and fracture risk: an updated meta-analysis of randomized clinical trials.

    PubMed

    Fu, Jianying; Zhu, Jianhong; Hao, Yehua; Guo, Chongchong; Zhou, Zhikun

    2016-01-01

    Data on the effects of dipeptidyl peptidase-4 (DPP-4) inhibitors on fracture risk are conflicting. Here, we performed a systematic review and meta-analysis of randomized controlled trials (RCTs) assessing the effects of DPP-4 inhibitors. Electronic databases were searched for relevant published articles, and unpublished studies presented at ClinicalTrials.gov were searched for relevant clinical data. Eligible studies included prospective randomized trials evaluating DPP-4 inhibitors versus placebo or other anti-diabetic medications in patients with type 2 diabetes. Study quality was determined using Jadad scores. Statistical analyses were performed to calculate the risk ratios (RRs) and 95% confidence intervals (CIs) using fixed-effects models. There were 62 eligible RCTs with 62,206 participants, including 33,452 patients treated with DPP-4 inhibitors. The number of fractures was 364 in the exposed group and 358 in the control group. The overall risk of fracture did not differ between patients exposed to DPP-4 inhibitors and controls (RR, 0.95; 95% CI, 0.83-1.10; P = 0.50). The results were consistent across subgroups defined by type of DPP-4 inhibitor, type of control, and length of follow-up. The study showed that DPP-4 inhibitor use does not modify the risk of bone fracture compared with placebo or other anti-diabetic medications in patients with type 2 diabetes. PMID:27384445

  12. Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes

    SciTech Connect

    Kodera, Ryo; Shikata, Kenichi; Takatsuka, Tetsuharu; Oda, Kaori; Miyamoto, Satoshi; Kajitani, Nobuo; Hirota, Daisho; Ono, Tetsuichiro; Usui, Hitomi Kataoka; Makino, Hirofumi

    2014-01-17

    Highlights: •DPP-4 inhibitor decreased urinary albumin excretion in a rat of type 1 diabetes. •DPP-4 inhibitor ameliorated histlogical changes of diabetic nephropathy. •DPP-4 inhibitor has reno-protective effects through anti-inflammatory action. •DPP-4 inhibitor is beneficial on diabetic nephropathy besides lowering blood glucose. -- Abstract: Introduction: Dipeptidyl peptidase-4 (DPP-4) inhibitors are incretin-based drugs in patients with type 2 diabetes. In our previous study, we showed that glucagon-like peptide-1 (GLP-1) receptor agonist has reno-protective effects through anti-inflammatory action. The mechanism of action of DPP-4 inhibitor is different from that of GLP-1 receptor agonists. It is not obvious whether DPP-4 inhibitor prevents the exacerbation of diabetic nephropathy through anti-inflammatory effects besides lowering blood glucose or not. The purpose of this study is to clarify the reno-protective effects of DPP-4 inhibitor through anti-inflammatory actions in the early diabetic nephropathy. Materials and methods: Five-week-old male Sprague–Dawley (SD) rats were divided into three groups; non-diabetes, diabetes and diabetes treated with DPP-4 inhibitor (PKF275-055; 3 mg/kg/day). PKF275-055 was administered orally for 8 weeks. Results: PKF275-055 increased the serum active GLP-1 concentration and the production of urinary cyclic AMP. PKF275-055 decreased urinary albumin excretion and ameliorated histological change of diabetic nephropathy. Macrophage infiltration was inhibited, and inflammatory molecules were down-regulated by PKF275-055 in the glomeruli. In addition, nuclear factor-κB (NF-κB) activity was suppressed in the kidney. Conclusions: These results indicate that DPP-4 inhibitor, PKF275-055, have reno-protective effects through anti-inflammatory action in the early stage of diabetic nephropathy. The endogenous biological active GLP-1 might be beneficial on diabetic nephropathy besides lowering blood glucose.

  13. Diabetes therapies in hemodialysis patients: Dipeptidase-4 inhibitors.

    PubMed

    Nakamura, Yuya; Hasegawa, Hitomi; Tsuji, Mayumi; Udaka, Yuko; Mihara, Masatomo; Shimizu, Tatsuo; Inoue, Michiyasu; Goto, Yoshikazu; Gotoh, Hiromichi; Inagaki, Masahiro; Oguchi, Katsuji

    2015-06-25

    Although several previous studies have been published on the effects of dipeptidase-4 (DPP-4) inhibitors in diabetic hemodialysis (HD) patients, the findings have yet to be reviewed comprehensively. Eyesight failure caused by diabetic retinopathy and aging-related dementia make multiple daily insulin injections difficult for HD patients. Therefore, we reviewed the effects of DPP-4 inhibitors with a focus on oral antidiabetic drugs as a new treatment strategy in HD patients with diabetes. The following 7 DPP-4 inhibitors are available worldwide: sitagliptin, vildagliptin, alogliptin, linagliptin, teneligliptin, anagliptin, and saxagliptin. All of these are administered once daily with dose adjustments in HD patients. Four types of oral antidiabetic drugs can be administered for combination oral therapy with DPP-4 inhibitors, including sulfonylureas, meglitinide, thiazolidinediones, and alpha-glucosidase inhibitor. Nine studies examined the antidiabetic effects in HD patients. Treatments decreased hemoglobin A1c and glycated albumin levels by 0.3% to 1.3% and 1.7% to 4.9%, respectively. The efficacy of DPP-4 inhibitor treatment is high among HD patients, and no patients exhibited significant severe adverse effects such as hypoglycemia and liver dysfunction. DPP-4 inhibitors are key drugs in new treatment strategies for HD patients with diabetes and with limited choices for diabetes treatment. PMID:26131325

  14. The dipeptidyl peptidase-4 inhibitor sitagliptin suppresses mouse colon tumorigenesis in type 2 diabetic mice.

    PubMed

    Yorifuji, Naoki; Inoue, Takuya; Iguchi, Munetaka; Fujiwara, Kaori; Kakimoto, Kazuki; Nouda, Sadaharu; Okada, Toshihiko; Kawakami, Ken; Abe, Yosuke; Takeuchi, Toshihisa; Higuchi, Kazuhide

    2016-02-01

    Patients with type 2 diabetes mellitus are known to have an increased risk of colorectal neoplasia. Dipeptidyl peptidase-4 (DPP-4) inhibitors have been used as a new therapeutic tool for type 2 diabetes. Since the substrates for DPP-4 include intestinotrophic hormones and chemokines such as GLP-2 and stromal cell-derived factor-1 (SDF-1), which are associated with tumor progression, DPP-4 inhibitors may increase the risk of colorectal tumors. However, the influence of DPP-4 inhibitors on colorectal neoplasia in patients with type 2 diabetes remains unknown. In the present study, we show that long-term administration of a DPP-4 inhibitor, sitagliptin (STG), suppressed colon carcinogenesis in leptin-deficient (ob/ob) C57BL/6J mice. Colonic mucosal concentrations of glucagon‑like peptide-1 (GLP-1) and GLP-2 were significantly elevated in the ob/ob mice. However, mucosal GLP concentrations and the plasma level of SDF-1 were not affected by the administration of STG. Real‑time PCR analysis revealed that colonic mucosal IL-6 mRNA expression, which was significantly upregulated in the ob/ob mice, was significantly suppressed by the long-term administration of STG. These results suggest that a DPP-4 inhibitor may suppress colon carcinogenesis in mice with type 2 diabetes in a GLP-independent manner. Since DPP-4 has multiple biological functions, further studies analyzing other factors related to colon carcinogenesis are needed. PMID:26573958

  15. The Dipeptidyl Peptidase-4 Inhibitor Teneligliptin Attenuates Hepatic Lipogenesis via AMPK Activation in Non-Alcoholic Fatty Liver Disease Model Mice

    PubMed Central

    Ideta, Takayasu; Shirakami, Yohei; Miyazaki, Tsuneyuki; Kochi, Takahiro; Sakai, Hiroyasu; Moriwaki, Hisataka; Shimizu, Masahito

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD), which is strongly associated with metabolic syndrome, is increasingly a major cause of hepatic disorder. Dipeptidyl peptidase (DPP)-4 inhibitors, anti-diabetic agents, are expected to be effective for the treatment of NAFLD. In the present study, we established a novel NAFLD model mouse using monosodium glutamate (MSG) and a high-fat diet (HFD) and investigated the effects of a DPP-4 inhibitor, teneligliptin, on the progression of NAFLD. Male MSG/HFD-treated mice were divided into two groups, one of which received teneligliptin in drinking water. Administration of MSG and HFD caused mice to develop severe fatty changes in the liver, but teneligliptin treatment improved hepatic steatosis and inflammation, as evaluated by the NAFLD activity score. Serum alanine aminotransferase and intrahepatic triglyceride levels were significantly decreased in teneligliptin-treated mice (p < 0.05). Hepatic mRNA levels of the genes involved in de novo lipogenesis were significantly downregulated by teneligliptin (p < 0.05). Moreover, teneligliptin increased hepatic expression levels of phosphorylated AMP-activated protein kinase (AMPK) protein. These findings suggest that teneligliptin attenuates lipogenesis in the liver by activating AMPK and downregulating the expression of genes involved in lipogenesis. DPP-4 inhibitors may be effective for the treatment of NAFLD and may be able to prevent its progression to non-alcoholic steatohepatitis. PMID:26670228

  16. The Dipeptidyl Peptidase-4 Inhibitor Teneligliptin Attenuates Hepatic Lipogenesis via AMPK Activation in Non-Alcoholic Fatty Liver Disease Model Mice.

    PubMed

    Ideta, Takayasu; Shirakami, Yohei; Miyazaki, Tsuneyuki; Kochi, Takahiro; Sakai, Hiroyasu; Moriwaki, Hisataka; Shimizu, Masahito

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD), which is strongly associated with metabolic syndrome, is increasingly a major cause of hepatic disorder. Dipeptidyl peptidase (DPP)-4 inhibitors, anti-diabetic agents, are expected to be effective for the treatment of NAFLD. In the present study, we established a novel NAFLD model mouse using monosodium glutamate (MSG) and a high-fat diet (HFD) and investigated the effects of a DPP-4 inhibitor, teneligliptin, on the progression of NAFLD. Male MSG/HFD-treated mice were divided into two groups, one of which received teneligliptin in drinking water. Administration of MSG and HFD caused mice to develop severe fatty changes in the liver, but teneligliptin treatment improved hepatic steatosis and inflammation, as evaluated by the NAFLD activity score. Serum alanine aminotransferase and intrahepatic triglyceride levels were significantly decreased in teneligliptin-treated mice (p < 0.05). Hepatic mRNA levels of the genes involved in de novo lipogenesis were significantly downregulated by teneligliptin (p < 0.05). Moreover, teneligliptin increased hepatic expression levels of phosphorylated AMP-activated protein kinase (AMPK) protein. These findings suggest that teneligliptin attenuates lipogenesis in the liver by activating AMPK and downregulating the expression of genes involved in lipogenesis. DPP-4 inhibitors may be effective for the treatment of NAFLD and may be able to prevent its progression to non-alcoholic steatohepatitis. PMID:26670228

  17. Exendin-4 therapy still offered an additional benefit on reducing transverse aortic constriction-induced cardiac hypertrophy-caused myocardial damage in DPP-4 deficient rats

    PubMed Central

    Lu, Hung-I; Chung, Sheng-Ying; Chen, Yi-Ling; Huang, Tein-Hung; Zhen, Yen-Yi; Liu, Chu-Feng; Chang, Meng-Wei; Chen, Yung-Lung; Sheu, Jiunn-Jye; Chua, Sarah; Yip, Hon-Kan; Lee, Fan-Yen

    2016-01-01

    Inhibition of dipeptidyl peptidase-IV (DPP-4) enzyme activity has been revealed to protect myocardium from ischemia-reperfusion through enhancing the endogenous glucagon-like peptide-1 (GLP-1) level. However, whether exogenous supply of exendin-4, an analogue of GLP-1, would still offer benefit for protecting myocardial damage from trans-aortic constriction (TAC)-induced hypertrophic cardiomyopathy in preexistence of DPP-4 deficiency (DPP-4D) remained unclear. Male-adult (DPP-4D) rats (n = 32) were randomized into group 1 [sham control (SC)], group 2 (DPP-4D + TAC), group 3 [DPP-4D + TAC + exendin-4 10 µg/day], and group 4 [DPP-4D + TAC + exendin-4 10 µg + exendin-9-39 10 µg/day]. The rats were sacrificed by day 60 after last echocardiographic examination. By day 60 after TAC, left ventricular ejection fraction (LVEF) (%) was highest in group 1 and lowest in group 2, and significantly lower in group 4 than that in group 3 (all p < 0.001). The protein expressions of oxidative stress (oxidized protein, NOX-1, NOX-2), inflammatory (MMP-9, TNF-α, NF-κB), apoptotic (Bax, cleaved caspase 3 and PARP), fibrotic (TGF-β, Smad3), heart failure (BNP, β-MHC), DNA damaged (γ-H2AX) and ischemic stress (p-P38, p-Akt, p53, ATM) biomarkers showed an opposite pattern of LVEF among the four groups (all p < 0.03). Fibrotic area (by Masson’s trichrome, Sirius red), and cellular expressions of DNA-damaged markers (Ki-67+, γ-H2AX+, CD90+/53BP1+) displayed an identical pattern, whereas cellular expressions of angiogenesis (CD31+, α-SMA+) and sarcomere length exhibited an opposite pattern compared to that of oxidative stress among the four groups (all p < 0.001). Take altogether, Exendin-4 effectively suppressed TAC-induced pathological cardiac hypertrophy in DPP-4D rat. PMID:27158369

  18. Whey proteins as source of dipeptidyl dipeptidase IV (dipeptidyl peptidase-4) inhibitors.

    PubMed

    Tulipano, Giovanni; Sibilia, Valeria; Caroli, Anna Maria; Cocchi, Daniela

    2011-04-01

    Preclinical and clinical studies suggest that whey proteins can reduce postprandial glucose levels and stimulate insulin release in healthy subjects and in subjects with type 2 diabetes by reducing dipeptidyl peptidase-4 (DPP-4) activity in the proximal bowel and hence increasing intact incretin levels. Our aim was to identify DPP-4 inhibitors among short peptides occurring in hydrolysates of β-lactoglobulin, the major whey protein found in the milk of ruminants. We proved that the bioactive peptide Ile-Pro-Ala can be regarded as a moderate DPP-4 inhibitor. PMID:21256171

  19. Differences in Expression of DPP4 in Steatotic Rat Liver Are Not Related to Differences in the Methylation of its Gene Promoter.

    PubMed

    Tarantola, Eleonora; Gobbato, Sara; Ferrigno, Andrea; Bertone, Vittorio; Capelli, Enrica

    2015-01-01

    The aim of the present study was to investigate the methylation status in the promoter region of Dipeptidyl peptidase-IV (Dpp4) gene, in livers from obese Zucker rats with different patterns of immunohistochemical positivity. Molecular analysis was carried-out on DNA obtained from livers of obese and lean Zucker rats and of control Wistar rats using the bisulfite conversion method and DNA sequencing. Our study focused on the genomic region of 1,000 bp, which includes the final part of 680 bp of the Dpp4 gene promoter and a small stretch of 320 bp at the beginning of the gene. The results indicate that the different immunohistochemical pattern of DPP4 observed in obese (fa/fa) and lean (fa/-) Zucker rats is not correlated to DNA methylation of its promoter. This is in agreement with the results of other studies carried-out on visceral and subcutaneous adipose tissue with varying levels of enzyme expression, in which differences in the methylation pattern of the Dpp4 promoter region were not observed. PMID:26359413

  20. [Clinical and Biological Character in Mouse Models for Middle East Respiratory Syndrome Generated by Transduction with Different Doses of DPP4 Molecule].

    PubMed

    Yao, Yanfeng; Lan, Jiaming; Li, Fengdi; Niu, Peihua; Yu, Pin; Lu Shuai; Bao, Linlin; Tan, Wenjie; Qin, Chuan

    2015-11-01

    In this study, we evaluated the difference ot biological characteristics in the MERS-CoV infected mice model in prior to transduction with different dosage of human DPP4. Firstly, we transduced different dosage of DPP4 (high or low) into mice, and then challenged them with MERS-CoV in order to establish the model. After establishment of mice model, we observed the clinical signs of disease, virus replication, immunopathogenesis and antibody response. The results indicated that the infected mice showed typical pneumonia, virus replication, histological lesions, and neutralizing antibody production. Moreover, the high dosage group was superior to the low dosage group. Fourteen days after infection, the specific antibody to virus structural protein and neutralizing antibody were analyzed, the high dosage group induced higher level antibody. In summary, the MERS-CoV infected mice model were established prior transduction with DPP4, and the level of DPP4 influenced the clinical signs of disease, virus replication and antibody response in this model. PMID:26951002

  1. Gliptin and GLP-1 analog treatment improves survival and vascular inflammation/dysfunction in animals with lipopolysaccharide-induced endotoxemia.

    PubMed

    Steven, Sebastian; Hausding, Michael; Kröller-Schön, Swenja; Mader, Michael; Mikhed, Yuliya; Stamm, Paul; Zinßius, Elena; Pfeffer, Amanda; Welschof, Philipp; Agdauletova, Saule; Sudowe, Stephan; Li, Huige; Oelze, Matthias; Schulz, Eberhard; Klein, Thomas; Münzel, Thomas; Daiber, Andreas

    2015-03-01

    Dipeptidyl peptidase (DPP)-4 inhibitors are used to treat hyperglycemia by increasing the incretin glucagon-like peptide-1 (GLP-1). Previous studies showed anti-inflammatory and antiatherosclerotic effects of DPP-4 inhibitors. Here, we compared the effects of linagliptin versus sitagliptin and liraglutide on survival and vascular function in animal models of endotoxic shock by prophylactic therapy and treatment after lipopolysaccharide (LPS) injection. Gliptins were administered either orally or subcutaneously: linagliptin (5 mg/kg/day), sitagliptin (50 mg/kg/day) or liraglutide (200 µg/kg/day). Endotoxic shock was induced by LPS injection (mice 17.5-20 mg/kg i.p., rats 10 mg/kg/day). Linagliptin and liraglutide treatment or DPP-4 knockout improved the survival of endotoxemic mice, while sitagliptin was ineffective. Linagliptin, liraglutide and sitagliptin ameliorated LPS-induced hypotension and vascular dysfunction in endotoxemic rats, suppressed inflammatory parameters such as whole blood nitrosyl-iron hemoglobin (leukocyte-inducible nitric oxide synthase activity) or aortic mRNA expression of markers of inflammation as well as whole blood and aortic reactive oxygen species formation. Hemostasis (tail bleeding time, activated partial thromboplastin time) was impaired in endotoxemic rats and recovered under cotreatment with linagliptin and liraglutide. Finally, the beneficial effects of linagliptin on vascular function and inflammatory parameters in endotoxemic mice were impaired in AMP-activated kinase (alpha1) knockout mice. The improved survival of endotoxemic animals and other data shown here may warrant further clinical evaluation of these drugs in patients with septic shock beyond the potential improvement of inflammatory complications in diabetic individuals with special emphasis on the role of AMP-activated kinase (alpha1) in the DPP-4/GLP-1 cascade. PMID:25600227

  2. Synthesis and biological evaluation of bicyclo[3.3.0] octane derivatives as dipeptidyl peptidase 4 inhibitors for the treatment of type 2 diabetes.

    PubMed

    Cho, Tang Peng; Gang, Lin Zhi; Long, Yang Fang; Yang, Wang; Qian, Wang; Lei, Zhang; Jing, Luo Jing; Ying, Feng; Ke, Yan Pang; Ying, Leng; Jun, Feng

    2010-06-15

    A series of novel bicyclo[3.3.0]octane derivatives have been synthesized and found to be dipeptidyl peptidase 4 (DPP-4) inhibitors. Compounds 10a and 10b demonstrate good efficacies in oral glucose tolerance tests. PMID:20488704

  3. Design and synthesis of 4-(2,4,5-trifluorophenyl)butane-1,3-diamines as dipeptidyl peptidase IV inhibitors.

    PubMed

    Zhu, Linrong; Li, Yuanyuan; Qiu, Ling; Su, Mingbo; Wang, Xin; Xia, Chunmei; Qu, Yi; Li, Jingya; Li, Jia; Xiong, Bing; Shen, Jingkang

    2013-07-01

    The worldwide prevalence of diabetes has spurred numerous studies on the development of new antidiabetic medicines. As a result, dipeptidyl peptidase IV (DPP4) has been recognized as a validated target. In our efforts to discover new DPP4 inhibitors, we analyzed the complexed structures of DPP4 available in Protein Data Bank and designed a series of triazole compounds. After enzyme activity assays and crystallographic verification of the binding interaction patterns, we found that the triazole compounds can inhibit DPP4 with micromolar IC50 values. Liver microsome stability and cytochrome P450 metabolic tests were performed on this series, revealing undesirable pharmacokinetic profiles for the triazole compounds. To overcome this liability, we substituted the triazole ring with an amide or urea group to produce a new series of DPP4 inhibitors. Based on its enzyme activity, metabolic stability, and selectivity over DPP8 and DPP9, we selected compound 21 r for further study of its in vivo effects in mice using an oral glucose tolerance test (OGTT). The results show that 21 r has efficacy similar to that of sitagliptin at a dose of 3 mg kg(-1) . The crystal structure of 21 r bound to DPP4 also reveals that the trifluoromethyl group is directed toward a subpocket different from the subsite bound by sitagliptin, providing clues for the design of new DPP4 inhibitors. PMID:23671024

  4. Overview of Glucagon-like Peptide-1 Analogs and Dipeptidyl Peptidase-4 Inhibitors for Type 2 Diabetes

    PubMed Central

    Pratley, Richard E.

    2008-01-01

    Context Impairment of incretin activity is now recognized as integral to the metabolic derangement underlying type 2 diabetes. Glucoregulatory agents that target the incretin system have recently been developed, and the place of these drugs in the treatment of type 2 diabetes can be assessed based on a growing body of clinical data. Evidence Acquisition A PubMed search was conducted to identify clinical studies of incretin therapies in type 2 diabetes. Article reference lists were also searched for relevant information, and supplemental material such as conference abstracts, drug prescribing information, and treatment guidelines were included as appropriate. Evidence Synthesis Two classes of therapies target the incretin system. The first, glucagon-like peptide-1 (GLP-1) agonists (exemplified by exenatide and liraglutide), have demonstrated considerable efficacy in clinical trials, reducing hemoglobin A1c (HbA1c) by up to 1.3%, decreasing fasting and postprandial glucose concentrations, reducing weight by approximately 3.0 kg, and improving cardiovascular risk factors. The second class, the dipeptidyl peptidase-4 inhibitors (such as sitagliptin and vildagliptin) rely on production of endogenous GLP-1 and act by reducing its turnover. The dipeptidyl peptidase-4 (DPP-4) inhibitors produce modest reductions in HbA1c (< 1%) compared with GLP-1 agonists and are generally weight-neutral. Neither GLP-1 agonists nor DPP-4 inhibitors cause hypoglycemia unless used with other agents known to increase risk. Conclusions GLP-1 agonists and DPP-4 inhibitors provide a valuable new treatment option for patients with type 2 diabetes and may be associated with a wider range of therapeutic benefits than older drugs. PMID:18769687

  5. Effects of Dipeptidyl Peptidase-4 Inhibitors on Hyperglycemia and Blood Cyclosporine Levels in Renal Transplant Patients with Diabetes: A Pilot Study

    PubMed Central

    Bae, Jaehyun; Lee, Min Jung; Choe, Eun Yeong; Jung, Chang Hee; Wang, Hye Jin; Kim, Myoung Soo; Kim, Yu Seun

    2016-01-01

    Background The use of dipeptidyl peptidase-4 (DPP-4) inhibitors is increasing among renal transplant patients with diabetes. However, the glucose-lowering efficacies of various DPP-4 inhibitors and their effects on blood cyclosporine levels have not been fully investigated. We compared the glucose-lowering efficacies of DPP 4 inhibitors and evaluate their effects on the blood levels of cyclosporine in renal transplant recipients with diabetes. Methods Sixty-five renal allograft recipients who received treatment with DPP-4 inhibitors (vildagliptin, sitagliptin, or linagliptin) following kidney transplant were enrolled. The glucose-lowering efficacies of the DPP-4 inhibitors were compared according to the changes in the hemoglobin A1c (HbA1c) levels after 3 months of treatment. Changes in the trough levels of the cyclosporine were also assessed 2 months after treatment with each DPP-4 inhibitor. Results HbA1c significantly decreased in the linagliptin group in comparison with other DPP-4 inhibitors (vildagliptin –0.38%±1.03%, sitagliptin –0.53%±0.95%, and linagliptin –1.40±1.34; P=0.016). Cyclosporine trough levels were significantly increased in the sitagliptin group compared with vildagliptin group (30.62±81.70 ng/mL vs. –24.22±53.54 ng/mL, P=0.036). Cyclosporine trough levels were minimally changed in patients with linagliptin. Conclusion Linagliptin demonstrates superior glucose-lowering efficacy and minimal effect on cyclosporine trough levels in comparison with other DPP-4 inhibitors in kidney transplant patients with diabetes. PMID:26754588

  6. Potential for combination of dipeptidyl peptidase-4 inhibitors and sodium-glucose co-transporter-2 inhibitors for the treatment of type 2 diabetes

    PubMed Central

    Sharma, M D

    2015-01-01

    In individuals with advanced type 2 diabetes (T2DM), combination therapy is often unavoidable to maintain glycaemic control. Currently metformin is considered the first line of defence, but many patients experience gastrointestinal adverse events, necessitating an alternative treatment approach. Established therapeutic classes, such as sulphonylureas and thiazolidinediones, have some properties undesirable in individuals with T2DM, such as hypoglycaemia risk, weight gain and fluid retention, highlighting the need for newer agents with more favourable safety profiles that can be combined and used at all stages of T2DM. New treatment strategies have focused on both dipeptidyl peptidase (DPP)-4 inhibitors, which improve hyperglycaemia by stimulating insulin secretion in a glucose-dependent fashion and suppressing glucagon secretion, and sodium-glucose co-transporter-2 (SGLT2) inhibitors, which reduce renal glucose reabsorption and induce urinary glucose excretion, thereby lowering plasma glucose. The potential complimentary mechanism of action and good tolerance profile of these two classes of agents make them attractive treatment options for combination therapy with any of the existing glucose-lowering agents, including insulin. Together, the DPP-4 and SGLT2 inhibitors fulfill a need for treatments with mechanisms of action that can be used in combination with a low risk of adverse events, such as hypoglycaemia or weight gain. PMID:25690671

  7. Dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapy – focus on alogliptin

    PubMed Central

    Capuano, Annalisa; Sportiello, Liberata; Maiorino, Maria Ida; Rossi, Francesco; Giugliano, Dario; Esposito, Katherine

    2013-01-01

    Type 2 diabetes mellitus is a complex and progressive disease that is showing an apparently unstoppable increase worldwide. Although there is general agreement on the first-line use of metformin in most patients with type 2 diabetes, the ideal drug sequence after metformin failure is an area of increasing uncertainty. New treatment strategies target pancreatic islet dysfunction, in particular gut-derived incretin hormones. Inhibition of the enzyme dipeptidyl peptidase-4 (DPP-4) slows degradation of endogenous glucagon-like peptide-1 (GLP-1) and thereby enhances and prolongs the action of the endogenous incretin hormones. The five available DPP-4 inhibitors, also known as ‘gliptins’ (sitagliptin, vildagliptin, saxagliptin, linagliptin, alogliptin), are small molecules used orally with similar overall clinical efficacy and safety profiles in patients with type 2 diabetes. The main differences between the five gliptins on the market include: potency, target selectivity, oral bioavailability, long or short half-life, high or low binding to plasma proteins, metabolism, presence of active or inactive metabolites, excretion routes, dosage adjustment for renal and liver insufficiency, and potential drug–drug interactions. On average, treatment with gliptins is expected to produce a mean glycated hemoglobin (HbA1c) decrease of 0.5%–0.8%, with about 40% of diabetic subjects at target for the HbA1c goal <7%. There are very few studies comparing DPP-4 inhibitors. Alogliptin as monotherapy or added to metformin, pioglitazone, glibenclamide, voglibose, or insulin therapy significantly improves glycemic control compared with placebo in adult or elderly patients with inadequately controlled type 2 diabetes. In the EXAMINE trial, alogliptin is being compared with placebo on cardiovascular outcomes in approximately 5,400 patients with type 2 diabetes. In clinical studies, DPP-4 inhibitors were generally safe and well tolerated. However, there are limited data on their

  8. Beneficial Effects of Evogliptin, a Novel Dipeptidyl Peptidase 4 Inhibitor, on Adiposity with Increased Ppargc1a in White Adipose Tissue in Obese Mice

    PubMed Central

    Kim, Mi-Kyung; Shin, Chang-Yell; Jung, Il-Hoon; Sohn, Yong Sung; Son, Moon-Ho

    2015-01-01

    Although dipeptidyl peptidase 4 (DPP4) is an adipokine known to positively correlate with adiposity, the effects of pharmacological DPP4 inhibition on body composition have not been fully understood. This study was aimed to assess the effects of DPP4 inhibitors on adiposity for the first time in the established obese mice model. The weight loss effects of multiple DPP4 inhibitors were compared after a 4 week treatment in diet-induced obese mice. In addition, a 2 week study was performed to explore and compare the acute effects of evogliptin, a novel DPP4 inhibitor, and exenatide, a glucagon-like peptide-1 (GLP-1) analogue, on whole body composition, energy consumption, various plasma adipokines and gene expression in white adipose tissue (WAT). After the 4 week treatment, weight loss and blood glucose reductions were consistently observed with multiple DPP4 inhibitors. Moreover, after 2-week treatment, evogliptin dose-dependently reduced whole body fat mass while increasing the proportion of smaller adipocytes. However, insulin sensitivity or plasma lipid levels were not significantly altered. In addition to increased active GLP-1 levels by plasma DPP4 inhibition, evogliptin also enhanced basal metabolic rate without reduction in caloric intake, in contrast to exenatide; this finding suggested evogliptin's effects may be mediated by pathways other than via GLP-1. Evogliptin treatment also differentially increased Ppargc1a expression, a key metabolic regulator, in WAT, but not in skeletal muscle and brown adipose tissue. The increased expression of the downstream mitochondrial gene, Cox4i1, was also suggestive of the potential metabolic alteration in WAT by DPP4 inhibitors. We are the first to demonstrate that pharmacological DPP4 inhibition by evogliptin directly causes fat loss in established obese mice. In contradistinction to exenatide, the fat-loss effect of DPP4 inhibitor is partly attributed to enhanced energy expenditure along with metabolic changes in WAT

  9. Effect of Dipeptidyl Peptidase-4 Inhibitor on All-Cause Mortality and Coronary Revascularization in Diabetic Patients

    PubMed Central

    Park, Hyo Eun; Jeon, Jooyeong; Hwang, In-Chang; Sung, Jidong; Lee, Seung-Pyo; Kim, Hyung-Kwan; Cho, Goo-Yeong; Sohn, Dae-Won

    2015-01-01

    Background Anti-atherosclerotic effect of dipeptidyl peptidase-4 (DPP-4) inhibitors has been suggested from previous studies, and yet, its association with cardiovascular outcome has not been demonstrated. We aimed to evaluate the effect of DPP-4 inhibitors in reducing mortality and coronary revascularization, in association with baseline coronary computed tomography (CT). Methods The current study was performed as a multi-center, retrospective observational cohort study. All subjects with diabetes mellitus who had diagnostic CT during 2007-2011 were included, and 1866 DPP-4 inhibitor users and 5179 non-users were compared for outcome. The primary outcome was all-cause mortality and secondary outcome included any coronary revascularization therapy after 90 days of CT in addition to all-cause mortality. Results DPP-4 inhibitors users had significantly less adverse events [0.8% vs. 4.4% in users vs. non-users, adjusted hazard ratios (HR) 0.220, 95% confidence interval (CI) 0.102-0.474, p = 0.0001 for primary outcome, 4.1% vs. 7.6% in users vs. non-users, HR 0.517, 95% CI 0.363-0.735, p = 0.0002 for secondary outcome, adjusted variables were age, sex, presence of hypertension, high sensitivity C-reactive protein, glycated hemoglobin, statin use, coronary artery calcium score and degree of stenosis]. Interestingly, DPP-4 inhibitor seemed to be beneficial only in subjects without significant stenosis (adjusted HR 0.148, p = 0.0013 and adjusted HR 0.525, p = 0.0081 for primary and secondary outcome). Conclusion DPP-4 inhibitor is associated with reduced all-cause mortality and coronary revascularization in diabetic patients. Such beneficial effect was significant only in those without significant coronary stenosis, which implies that DPP-4 inhibitor may have beneficial effect in earlier stage of atherosclerosis. PMID:26755932

  10. Drug development from the bench to the pharmacy: with special reference to dipeptidyl peptidase-4 inhibitor development.

    PubMed

    Carr, R D

    2016-06-01

    The dipeptidyl peptidase-4 (DPP-4) inhibitor concept is an example of prospective drug design and development based upon a distinct endocrine hypothesis. The design of enzyme inhibitors is a pragmatic approach to drug design; being compatible with the identification and optimization of small molecules that have properties commensurate with oral administration, as well as acceptable drug metabolism, distribution and elimination characteristics. Glucagon-like peptide 1 (GLP-1), a hormone with a spectrum of favourable metabolic actions, including glucose-dependent stimulation of insulin and inhibition of glucagon secretion, provided the endocrine basis from which the idea of using DPP-4 inhibitors as anti-diabetic agents was developed. The origin of the DPP-4 inhibitor concept was inspired by the angiotensin-converting enzyme inhibitor approach, which succeeded in establishing a class of extensively used therapeutic agents for the treatment of cardiovascular disorders. PMID:26773271

  11. Genetic Deletion or Pharmacological Inhibition of Dipeptidyl Peptidase-4 Improves Cardiovascular Outcomes After Myocardial Infarction in Mice

    PubMed Central

    Sauvé, Meghan; Ban, Kiwon; Momen, M. Abdul; Zhou, Yu-Qing; Henkelman, R. Mark; Husain, Mansoor; Drucker, Daniel J.

    2010-01-01

    OBJECTIVE Glucagon-like peptide-1 (7-36)amide (GLP-1) is cleaved by dipeptidyl peptidase-4 (DPP-4) to GLP-1 (9-36)amide. We examined whether chemical inhibition or genetic elimination of DPP-4 activity affects cardiovascular function in normoglycemic and diabetic mice after experimental myocardial infarction. RESEARCH DESIGN AND METHODS Cardiac structure and function was assessed by hemodynamic monitoring and echocardiography in DPP-4 knockout (Dpp4−/−) mice versus wild-type (Dpp4+/+) littermate controls and after left anterior descending (LAD) coronary artery ligation–induced myocardial infarction (MI). Effects of sustained DPP-4 inhibition with sitagliptin versus treatment with metformin were ascertained after experimental MI in a high-fat diet–streptozotocin model of murine diabetes. Functional recovery from ischemia-reperfusion (I/R) injury was measured in isolated hearts from Dpp4−/− versus Dpp4+/+ littermates and from normoglycemic wild-type (WT) mice treated with sitagliptin or metformin. Cardioprotective signaling in the murine heart was examined by RT-PCR and Western blot analyses. RESULTS Dpp4−/− mice exhibited normal indexes of cardiac structure and function. Survival post-MI was modestly improved in normoglycemic Dpp4−/− mice. Increased cardiac expression of phosphorylated AKT (pAKT), pGSK3β, and atrial natriuretic peptide (ANP) was detected in the nonischemic Dpp4−/− heart, and HO-1, ANP, and pGSK3β proteins were induced in nonischemic hearts from diabetic mice treated with sitagliptin or metformin. Sitagliptin and metformin treatment of wild-type diabetic mice reduced mortality after myocardial infarction. Sitagliptin improved functional recovery after I/R injury ex vivo in WT mice with similar protection from I/R injury also manifest in hearts from Dpp4−/− versus Dpp4+/+ mice. CONCLUSIONS Genetic disruption or chemical inhibition of DPP-4 does not impair cardiovascular function in the normoglycemic or diabetic mouse

  12. Addition of dipeptidyl peptidase-4 inhibitors to sulphonylureas and risk of hypoglycaemia: systematic review and meta-analysis

    PubMed Central

    Moore, Nicholas; Arnaud, Mickael; Robinson, Philip; Raschi, Emanuel; De Ponti, Fabrizio; Bégaud, Bernard; Pariente, Antoine

    2016-01-01

    Objective To quantify the risk of hypoglycaemia associated with the concomitant use of dipeptidyl peptidase-4 (DPP-4) inhibitors and sulphonylureas compared with placebo and sulphonylureas. Design Systematic review and meta-analysis. Data sources Medline, ISI Web of Science, SCOPUS, Cochrane Central Register of Controlled Trials, and clinicaltrial.gov were searched without any language restriction. Study selection Placebo controlled randomised trials comprising at least 50 participants with type 2 diabetes treated with DPP-4 inhibitors and sulphonylureas. Review methods Risk of bias in each trial was assessed using the Cochrane Collaboration tool. The risk ratio of hypoglycaemia with 95% confidence intervals was computed for each study and then pooled using fixed effect models (Mantel Haenszel method) or random effect models, when appropriate. Subgroup analyses were also performed (eg, dose of DPP-4 inhibitors). The number needed to harm (NNH) was estimated according to treatment duration. Results 10 studies were included, representing a total of 6546 participants (4020 received DPP-4 inhibitors plus sulphonylureas, 2526 placebo plus sulphonylureas). The risk ratio of hypoglycaemia was 1.52 (95% confidence interval 1.29 to 1.80). The NNH was 17 (95% confidence interval 11 to 30) for a treatment duration of six months or less, 15 (9 to 26) for 6.1 to 12 months, and 8 (5 to 15) for more than one year. In subgroup analysis, no difference was found between full and low doses of DPP-4 inhibitors: the risk ratio related to full dose DPP-4 inhibitors was 1.66 (1.34 to 2.06), whereas the increased risk ratio related to low dose DPP-4 inhibitors did not reach statistical significance (1.33, 0.92 to 1.94). Conclusions Addition of DPP-4 inhibitors to sulphonylurea to treat people with type 2 diabetes is associated with a 50% increased risk of hypoglycaemia and to one excess case of hypoglycaemia for every 17 patients in the first six months of treatment. This

  13. Economic Impact of Combining Metformin with Dipeptidyl Peptidase-4 Inhibitors in Diabetic Patients with Renal Impairment in Spanish Patients

    PubMed Central

    Navarro-Artieda, Ruth

    2015-01-01

    Background To evaluate resource use and health costs due to the combination of metformin and dipeptidyl peptidase-4 (DPP-4) inhibitors in patients with diabetes and renal impairment in routine clinical practice. Methods An observational, retrospective study was performed. Patients aged ≥30 years treated with metformin who initiated a second oral antidiabetic treatment in 2009 to 2010 were included. Two groups of patients were analysed: metformin+DPP-4 inhibitors and other oral antidiabetics. The main measures were: compliance, persistence, metabolic control (glycosylated hemoglobin< 7%) and complications (hypoglycemia, cardiovascular events) and total costs. Patients were followed up for 2 years. Results We included 395 patients, mean age 70.2 years, 56.5% male: 135 patients received metformin+DPP-4 inhibitors and 260 patients received metformin+other oral antidiabetics. Patients receiving DPP-4 inhibitors showed better compliance (66.0% vs. 60.1%), persistence (57.6% vs. 50.0%), and metabolic control (63.9% vs. 57.3%), respectively, compared with those receiving other oral antidiabetics (P<0.05), and also had a lower rate of hypoglycemia (20.0% vs. 47.7%) and lower total costs (€ 2,486 vs. € 3,002), P=0.001. Conclusion Despite the limitations of the study, patients with renal impairment treated with DPP-4 inhibitors had better metabolic control, lower rates (association) of hypoglycaemia, and lower health costs for the Spanish national health system. PMID:25729716

  14. Pancreatic gene variants potentially associated with dipeptidyl peptidase-4 inhibitor treatment response in Type 2 diabetes.

    PubMed

    Jamaluddin, Jazlina Liza; Huri, Hasniza Zaman; Vethakkan, Shireene Ratna; Mustafa, Norlaila

    2014-02-01

    In the adult pancreas, the expression of the genes PAX4, KCNQ1, TCF7L2, KCNJ11, ABCC8, MTNR1B and WFS1 are mainly restricted to β cells to maintain glucose homeostasis. We have identified these genes as the main regulators of incretin-mediated actions, and therefore they may potentially influence the response of DPP-4 inhibitors. This review represents the first detailed exploration of pancreatic β-cell genes and their variant mechanisms, which could potentially affect the response of DPP-4 inhibitors in Type 2 diabetes. We have focused on the signaling pathways of these genes to understand their roles in gastrointestinal incretin-mediated effects; and finally, we sought to associate gene mechanisms with their Type 2 diabetes risk variants to predict the responses of DPP-4 inhibitors for this disease. PMID:24444412

  15. Improving cancer immunotherapy with DNA methyltransferase inhibitors.

    PubMed

    Saleh, Mohammad H; Wang, Lei; Goldberg, Michael S

    2016-07-01

    Immunotherapy confers durable clinical benefit to melanoma, lung, and kidney cancer patients. Challengingly, most other solid tumors, including ovarian carcinoma, are not particularly responsive to immunotherapy, so combination with a complementary therapy may be beneficial. Recent findings suggest that epigenetic modifying drugs can prime antitumor immunity by increasing expression of tumor-associated antigens, chemokines, and activating ligands by cancer cells as well as cytokines by immune cells. This review, drawing from both preclinical and clinical data, describes some of the mechanisms of action that enable DNA methyltransferase inhibitors to facilitate the establishment of antitumor immunity. PMID:26646852

  16. The lysyl oxidase inhibitor β-aminopropionitrile reduces body weight gain and improves the metabolic profile in diet-induced obesity in rats

    PubMed Central

    Miana, María; Galán, María; Martínez-Martínez, Ernesto; Varona, Saray; Jurado-López, Raquel; Bausa-Miranda, Belén; Antequera, Alfonso; Luaces, María; Martínez-González, José; Rodríguez, Cristina; Cachofeiro, Victoria

    2015-01-01

    ABSTRACT Extracellular matrix (ECM) remodelling of the adipose tissue plays a pivotal role in the pathophysiology of obesity. The lysyl oxidase (LOX) family of amine oxidases, including LOX and LOX-like (LOXL) isoenzymes, controls ECM maturation, and upregulation of LOX activity is essential in fibrosis; however, its involvement in adipose tissue dysfunction in obesity is unclear. In this study, we observed that LOX is the main isoenzyme expressed in human adipose tissue and that its expression is strongly upregulated in samples from obese individuals that had been referred to bariatric surgery. LOX expression was also induced in the adipose tissue from male Wistar rats fed a high-fat diet (HFD). Interestingly, treatment with β-aminopropionitrile (BAPN), a specific and irreversible inhibitor of LOX activity, attenuated the increase in body weight and fat mass that was observed in obese animals and shifted adipocyte size toward smaller adipocytes. BAPN also ameliorated the increase in collagen content that was observed in adipose tissue from obese animals and improved several metabolic parameters – it ameliorated glucose and insulin levels, decreased homeostasis model assessment (HOMA) index and reduced plasma triglyceride levels. Furthermore, in white adipose tissue from obese animals, BAPN prevented the downregulation of adiponectin and glucose transporter 4 (GLUT4), as well as the increase in suppressor of cytokine signaling 3 (SOCS3) and dipeptidyl peptidase 4 (DPP4) levels, triggered by the HFD. Likewise, in the TNFα-induced insulin-resistant 3T3-L1 adipocyte model, BAPN prevented the downregulation of adiponectin and GLUT4 and the increase in SOCS3 levels, and consequently normalised insulin-stimulated glucose uptake. Therefore, our data provide evidence that LOX plays a pathologically relevant role in the metabolic dysfunction induced by obesity and emphasise the interest of novel pharmacological interventions that target adipose tissue fibrosis and LOX

  17. The lysyl oxidase inhibitor β-aminopropionitrile reduces body weight gain and improves the metabolic profile in diet-induced obesity in rats.

    PubMed

    Miana, María; Galán, María; Martínez-Martínez, Ernesto; Varona, Saray; Jurado-López, Raquel; Bausa-Miranda, Belén; Antequera, Alfonso; Luaces, María; Martínez-González, José; Rodríguez, Cristina; Cachofeiro, Victoria

    2015-06-01

    Extracellular matrix (ECM) remodelling of the adipose tissue plays a pivotal role in the pathophysiology of obesity. The lysyl oxidase (LOX) family of amine oxidases, including LOX and LOX-like (LOXL) isoenzymes, controls ECM maturation, and upregulation of LOX activity is essential in fibrosis; however, its involvement in adipose tissue dysfunction in obesity is unclear. In this study, we observed that LOX is the main isoenzyme expressed in human adipose tissue and that its expression is strongly upregulated in samples from obese individuals that had been referred to bariatric surgery. LOX expression was also induced in the adipose tissue from male Wistar rats fed a high-fat diet (HFD). Interestingly, treatment with β-aminopropionitrile (BAPN), a specific and irreversible inhibitor of LOX activity, attenuated the increase in body weight and fat mass that was observed in obese animals and shifted adipocyte size toward smaller adipocytes. BAPN also ameliorated the increase in collagen content that was observed in adipose tissue from obese animals and improved several metabolic parameters - it ameliorated glucose and insulin levels, decreased homeostasis model assessment (HOMA) index and reduced plasma triglyceride levels. Furthermore, in white adipose tissue from obese animals, BAPN prevented the downregulation of adiponectin and glucose transporter 4 (GLUT4), as well as the increase in suppressor of cytokine signaling 3 (SOCS3) and dipeptidyl peptidase 4 (DPP4) levels, triggered by the HFD. Likewise, in the TNFα-induced insulin-resistant 3T3-L1 adipocyte model, BAPN prevented the downregulation of adiponectin and GLUT4 and the increase in SOCS3 levels, and consequently normalised insulin-stimulated glucose uptake. Therefore, our data provide evidence that LOX plays a pathologically relevant role in the metabolic dysfunction induced by obesity and emphasise the interest of novel pharmacological interventions that target adipose tissue fibrosis and LOX activity for

  18. Design, synthesis and biological evaluation of hetero-aromatic moieties substituted pyrrole-2-carbonitrile derivatives as dipeptidyl peptidase IV inhibitors.

    PubMed

    Ji, Xun; Su, Mingbo; Wang, Jiang; Deng, Guanghui; Deng, Sisi; Li, Zeng; Tang, Chunlan; Li, Jingya; Li, Jia; Zhao, Linxiang; Jiang, Hualiang; Liu, Hong

    2014-03-21

    A series of novel hetero-aromatic moieties substituted α-amino pyrrole-2-carbonitrile derivatives was designed and synthesized based on structure-activity relationships (SARs) of pyrrole-2-carbonitrile inhibitors. All compounds demonstrated good dipeptidyl peptidase IV (DPP4) inhibitory activities (IC50 = 0.004-113.6 μM). Moreover, compounds 6h (IC50 = 0.004 μM) and 6n (IC50 = 0.01 μM) showed excellent inhibitory activities against DPP4, good selectivity (compound 6h, selective ratio: DPP8/DPP4 = 450.0; DPP9/DPP4 = 375.0; compound 6n, selective ratio: DPP8/DPP4 = 470.0; DPP9/DPP4 = 750.0) and good efficacy in an oral glucose tolerance test in ICR mice. Furthermore, compounds 6h and 6n demonstrated moderate PK properties (compound 6h, F% = 37.8%, t1/2 = 1.45 h; compound 6n, F% = 16.8%, t1/2 = 3.64 h). PMID:24531224

  19. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins

    PubMed Central

    Dutta, Mouparna; Ghosh, Anindya S.; Oda, Masataka; Venkatramani, Ravindra; Rao, Basuthkar J.; Dandekar, Abhaya M.; Goñi, Félix M.

    2015-01-01

    The long term side effects of any newly introduced drug is a subject of intense research, and often raging controversies. One such example is the dipeptidyl peptidase-IV (DPP4) inhibitor used for treating type 2 diabetes, which is inconclusively implicated in increased susceptibility to acute pancreatitis. Previously, based on a computational analysis of the spatial and electrostatic properties of active site residues, we have demonstrated that phosphoinositide-specific phospholipase C (PI-PLC) from Bacillus cereus is a prolyl peptidase using in vivo experiments. In the current work, we first report the inhibition of the native activity of PI-PLC by two DPP4 inhibitors - vildagliptin (LAF-237) and K-579. While vildagliptin inhibited PI-PLC at micromolar concentrations, K-579 was a potent inhibitor even at nanomolar concentrations. Subsequently, we queried a comprehensive, non-redundant set of 5000 human proteins (50% similarity cutoff) with known structures using serine protease (SPASE) motifs derived from trypsin and DPP4. A pancreatic lipase and a gastric lipase are among the proteins that are identified as proteins having promiscuous SPASE scaffolds that could interact with DPP4 inhibitors. The presence of such scaffolds in human lipases is expected since they share the same catalytic mechanism with PI-PLC. However our methodology also detects other proteins, often with a completely different enzymatic mechanism, that have significantly congruent domains with the SPASE motifs. The reported elevated levels of serum lipase, although contested, could be rationalized by inhibition of lipases reported here. In an effort to further our understanding of the spatial and electrostatic basis of DPP4 inhibitors, we have also done a comprehensive analysis of all 76 known DPP4 structures liganded to inhibitors till date. Also, the methodology presented here can be easily adopted for other drugs, and provide the first line of filtering in the identification of pathways that

  20. Safety and effectiveness of dipeptidyl peptidase-4 inhibitors versus intermediate-acting insulin or placebo for patients with type 2 diabetes failing two oral antihyperglycaemic agents: a systematic review and network meta-analysis

    PubMed Central

    Tricco, Andrea C; Antony, Jesmin; Khan, Paul A; Ghassemi, Marco; Hamid, Jemila S; Ashoor, Huda; Blondal, Erik; Soobiah, Charlene; Yu, Catherine H; Hutton, Brian; Hemmelgarn, Brenda R; Moher, David; Majumdar, Sumit R; Straus, Sharon E

    2014-01-01

    Objective To evaluate the effectiveness and safety of dipeptidyl peptidase-4 (DPP-4) inhibitors versus intermediate-acting insulin for adults with type 2 diabetes mellitus (T2DM) and poor glycaemic control despite treatment with two oral agents. Setting Studies were multicentre and multinational. Participants Ten studies including 2967 patients with T2DM. Interventions Studies that examined DPP-4 inhibitors compared with each other, intermediate-acting insulin, no treatment or placebo in patients with T2DM. Primary and secondary outcome measures Primary outcome was glycosylated haemoglobin (HbA1c). Secondary outcomes were healthcare utilisation, body weight, fractures, quality of life, microvascular complications, macrovascular complications, all-cause mortality, harms, cost and cost-effectiveness. Results 10 randomised clinical trials with 2967 patients were included after screening 5831 titles and abstracts, and 180 full-text articles. DPP-4 inhibitors significantly reduced HbA1c versus placebo in network meta-analysis (NMA; mean difference (MD) −0.62%, 95% CI −0.93% to −0.33%) and meta-analysis (MD −0.61%, 95% CI −0.81% to −0.41%), respectively. Significant differences in HbA1c were not observed for neutral protamine Hagedorn (NPH) insulin versus placebo and DPP-4 inhibitors versus NPH insulin in NMA. In meta-analysis, no significant differences were observed between DPP-4 inhibitors and placebo for severe hypoglycaemia, weight gain, cardiovascular disease, overall harms, treatment-related harms and mortality, although patients receiving DPP-4 inhibitors experienced less infections (relative risk 0.72, 95% CI 0.57 to 0.91). Conclusions DPP-4 inhibitors were superior to placebo in reducing HbA1c levels in adults with T2DM taking at least two oral agents. Compared with placebo, no safety signals were detected with DPP-4 inhibitors and there was a reduced risk of infection. There was no significant difference in HbA1c observed between NPH and placebo or

  1. Improving Viral Protease Inhibitors to Counter Drug Resistance.

    PubMed

    Kurt Yilmaz, Nese; Swanstrom, Ronald; Schiffer, Celia A

    2016-07-01

    Drug resistance is a major problem in health care, undermining therapy outcomes and necessitating novel approaches to drug design. Extensive studies on resistance to viral protease inhibitors, particularly those of HIV-1 and hepatitis C virus (HCV) protease, revealed a plethora of information on the structural and molecular mechanisms underlying resistance. These insights led to several strategies to improve viral protease inhibitors to counter resistance, such as exploiting the essential biological function and leveraging evolutionary constraints. Incorporation of these strategies into structure-based drug design can minimize vulnerability to resistance, not only for viral proteases but for other quickly evolving drug targets as well, toward designing inhibitors one step ahead of evolution to counter resistance with more intelligent and rational design. PMID:27090931

  2. Difluoromethane, a new and improved inhibitor of methanotrophy

    USGS Publications Warehouse

    Miller, L.G.; Sasson, C.; Oremland, R.S.

    1998-01-01

    Difluoromethane (HFC-32; DFM) is compared to acetylene and methyl fluoride as an inhibitor of methanotrophy in cultures and soils. DFM was found to be a reversible inhibitor of CH4 oxidation by Methylococcus capsulatus (Bath). Consumption of CH4 in soil was blocked by additions of low levels of DFM (0.03 kPa), and this inhibition was reversed by DFM removal. Although a small quantity of DFM was consumed during these incubations, its remaining concentration was sufficiently elevated to sustain inhibition. Methanogenesis in anaerobic soil slurries, including acetoclastic methanogenesis, was unaffected by levels of DFM which inhibit methanotrophy. Low levels of DFM (0.03 kPa) also inhibited nitrification and N2O production by soils. DFM is proposed as an improved inhibitor of CH4 oxidation over acetylene and/or methyl fluoride on the basis of its reversibility, its efficacy at low concentrations, its lack of inhibition of methanogenesis, and its low cost.

  3. Navigating the chemical space of dipeptidyl peptidase-4 inhibitors

    PubMed Central

    Shoombuatong, Watshara; Prachayasittikul, Veda; Anuwongcharoen, Nuttapat; Songtawee, Napat; Monnor, Teerawat; Prachayasittikul, Supaluk; Prachayasittikul, Virapong; Nantasenamat, Chanin

    2015-01-01

    This study represents the first large-scale study on the chemical space of inhibitors of dipeptidyl peptidase-4 (DPP4), which is a potential therapeutic protein target for the treatment of diabetes mellitus. Herein, a large set of 2,937 compounds evaluated for their ability to inhibit DPP4 was compiled from the literature. Molecular descriptors were generated from the geometrically optimized low-energy conformers of these compounds at the semiempirical AM1 level. The origins of DPP4 inhibitory activity were elucidated from computed molecular descriptors that accounted for the unique physicochemical properties inherently present in the active and inactive sets of compounds as defined by their respective half maximal inhibitory concentration values of less than 1 μM and greater than 10 μM, respectively. Decision tree analysis revealed the importance of molecular weight, total energy of a molecule, topological polar surface area, lowest unoccupied molecular orbital, and number of hydrogen-bond donors, which correspond to molecular size, energy, surface polarity, electron acceptors, and hydrogen bond donors, respectively. The prediction model was subjected to rigorous independent testing via three external sets. Scaffold and chemical fragment analysis was also performed on these active and inactive sets of compounds to shed light on the distinguishing features of the functional moieties. Docking of representative active DPP4 inhibitors was also performed to unravel key interacting residues. The results of this study are anticipated to be useful in guiding the rational design of novel and robust DPP4 inhibitors for the treatment of diabetes. PMID:26309399

  4. Clinical Characteristics and Metabolic Predictors of Rapid Responders to Dipeptidyl Peptidase-4 Inhibitor as an Add-on Therapy to Sulfonylurea and Metformin

    PubMed Central

    Kim, Ye An; Yoo, Won Sang; Hong, Eun Shil; Ku, Eu Jeong; Park, Kyeong Seon; Lim, Soo; Cho, Young Min; Park, Kyong Soo; Jang, Hak Chul

    2015-01-01

    Background Dipeptidyl peptidase-4 (DPP-4) inhibitor add-on therapy is a new option for patients with inadequately controlled type 2 diabetes who are taking combined metformin and sulfonylurea (SU). We evaluated the efficacy and safety of this triple therapy and the characteristics of rapid responders and hypoglycemia-prone patients. Methods We included 807 patients with type 2 diabetes who were prescribed a newly added DPP-4 inhibitor to ongoing metformin and SU in 2009 to 2011. Glycemia and other metabolic parameters at baseline, 12, 24, and 52 weeks, as well as episodes of hypoglycemia were analyzed. Rapid responders were defined as patients with ≥25% reduction in glycosylated hemoglobin (HbA1c) within 12 weeks. Results At baseline, while on the submaximal metformin and SU combination, the mean HbA1c level was 8.4%. Twelve weeks after initiation of DPP-4 inhibitor add-on, 269 patients (34.4%) achieved an HbA1c level ≤7%. Sixty-six patients (8.2%, 47 men) were rapid responders. The duration of diabetes was shorter in rapid responders, and their baseline fasting plasma glucose (FPG), HbA1c, C-peptide, and homeostasis model assessment of insulin resistance were significantly higher. Patients who experienced hypoglycemia after taking DPP-4 inhibitor add-on were more likely to be female, to have a lower body weight and lower triglyceride and FPG levels, and to have higher homeostasis model assessment of β-cells. Conclusion An oral hypoglycemic triple agent combination including a DPP-4 inhibitor was effective in patients with uncontrolled diabetes. Proactive dose reduction of SU should be considered when a DPP-4 inhibitor is added for rapid responders and hypoglycemia-prone patients. PMID:26616595

  5. Real-world evaluation of glycemic control among patients with type 2 diabetes mellitus treated with canagliflozin versus dipeptidyl peptidase-4 inhibitors.

    PubMed

    Thayer, Sarah; Chow, Wing; Korrer, Stephanie; Aguilar, Richard

    2016-06-01

    Objective To evaluate glycemic control among patients with type 2 diabetes mellitus (T2DM) treated with canagliflozin (CANA) vs. dipeptidyl peptidase-4 (DPP-4) inhibitors. Methods Using integrated claims and lab data from a US health plan of commercial and Medicare Advantage enrollees, this matched-control cohort study assessed adult T2DM patients receiving treatment with CANA or DPP-4 inhibitors (1 April 2013-31 December 2013). Cohorts were chosen hierarchically; the first pharmacy claim for CANA was identified as the index date; then the first pharmacy claim for a DPP-4 inhibitor was identified and index date set. Eligible patients had 6 months of continuous health plan enrollment before the index date (baseline) and 9 months after (follow-up) and no evidence of index drug in baseline. Patients were matched 1:1 using propensity score matching. Changes in glycated hemoglobin (HbA1c) and percentages of patients with HbA1c <8% and <7% during the follow-up were evaluated. Results The matched CANA and DPP-4 inhibitor cohorts (53.2% treated with sitagliptin) included 2766 patients each (mean age: 55.7 years). Among patients with baseline and follow-up HbA1c results, mean baseline HbA1c values were similar, 8.62% and 8.57% (p = 0.615) for the CANA (n = 729) and DPP-4 inhibitor (n = 710) cohorts, respectively. Change in HbA1c was greater among patients in the CANA cohort than for those in the DPP-4 inhibitor cohort (-0.92% vs. -0.63%, p < 0.001), and also among the subset of patients with baseline HbA1c ≥7% (-1.07% [n = 624] vs. -0.79% [n = 603], p = 0.004). During follow-up, greater percentages of the CANA cohort relative to the DPP-4 inhibitor cohort achieved HbA1c of <8% (66.0% vs. 58.6%, p = 0.004) and <7% (35.4% vs. 29.9%, p = 0.022). Limitations This study was observational and residual confounding remains a possibility. Conclusions In this real-world study of patients with T2DM, CANA use was associated with greater HbA1c

  6. Dipeptidyl peptidase-4 inhibitors or sodium glucose co-transporter-2 inhibitors as an add-on to insulin therapy: A comparative review

    PubMed Central

    Singh, Awadhesh Kumar; Singh, Ritu

    2016-01-01

    The gradual decline in β-cell function is inevitable in type 2 diabetes mellitus and therefore, substantial proportions of patients require insulin subsequently, in order to achieve optimal glucose control. While weight gain, hypoglycemia, and fluid retention especially during dose intensification is a known limitation to insulin therapy, these adverse effects also reduce patient satisfaction and treatment adherence. It is also possible that the benefits of intensive control achieved by insulin therapy, perhaps get nullified by the weight gain and hypoglycemia. In addition, improvement in plasma glucose or glycated hemoglobin (HbA1c) itself is associated with weight gain. Notably, studies have already suggested that reduction in body weight by ~3–5%, may allow a significantly better glycemic control. Thus, a class of drugs, which can reduce HbA1c effectively, yet are weight neutral or preferably reduce body weight, could be the most sought out strategy as an add-on therapy to insulin. While sulfonylureas (SUs) are associated with weight gain and hypoglycemia, pioglitazone increases body weight and fluid retention. Moreover, SUs are not recommended once premix or prandial insulin is commenced. The addition of newer agents, such as glucagon-like peptide-1 receptor agonist to insulin certainly appears to be an effective tool in reducing both HbA1c and body weight as is evident across the studies; however, this approach incurs an additional injection as well as cost. Dipeptidyl peptidase-4 inhibitors (DPP-4I) and sodium-glucose co-transporter-2 inhibitors (SGLT-2I) are other exciting options, as an add-on to insulin therapy primarily because these are oral drugs and do not possess any intrinsic potential of hypoglycemia. Furthermore, these are either weight neutral or induce significant weight loss. This review article aims to comparatively analyze the safety and efficacy of DPP-4I and SGLT-2I, as an add-on therapy to insulin. PMID:26904466

  7. Dipeptidyl peptidase-4 inhibitors or sodium glucose co-transporter-2 inhibitors as an add-on to insulin therapy: A comparative review.

    PubMed

    Singh, Awadhesh Kumar; Singh, Ritu

    2016-01-01

    The gradual decline in β-cell function is inevitable in type 2 diabetes mellitus and therefore, substantial proportions of patients require insulin subsequently, in order to achieve optimal glucose control. While weight gain, hypoglycemia, and fluid retention especially during dose intensification is a known limitation to insulin therapy, these adverse effects also reduce patient satisfaction and treatment adherence. It is also possible that the benefits of intensive control achieved by insulin therapy, perhaps get nullified by the weight gain and hypoglycemia. In addition, improvement in plasma glucose or glycated hemoglobin (HbA1c) itself is associated with weight gain. Notably, studies have already suggested that reduction in body weight by ~3-5%, may allow a significantly better glycemic control. Thus, a class of drugs, which can reduce HbA1c effectively, yet are weight neutral or preferably reduce body weight, could be the most sought out strategy as an add-on therapy to insulin. While sulfonylureas (SUs) are associated with weight gain and hypoglycemia, pioglitazone increases body weight and fluid retention. Moreover, SUs are not recommended once premix or prandial insulin is commenced. The addition of newer agents, such as glucagon-like peptide-1 receptor agonist to insulin certainly appears to be an effective tool in reducing both HbA1c and body weight as is evident across the studies; however, this approach incurs an additional injection as well as cost. Dipeptidyl peptidase-4 inhibitors (DPP-4I) and sodium-glucose co-transporter-2 inhibitors (SGLT-2I) are other exciting options, as an add-on to insulin therapy primarily because these are oral drugs and do not possess any intrinsic potential of hypoglycemia. Furthermore, these are either weight neutral or induce significant weight loss. This review article aims to comparatively analyze the safety and efficacy of DPP-4I and SGLT-2I, as an add-on therapy to insulin. PMID:26904466

  8. Difluoromethane, a new and improved inhibitor of methanotrophy

    SciTech Connect

    Miller, L.G.; Sasson, C.; Oremland, R.S.

    1998-11-01

    Difluoromethane (HFC-32; DFM) is compared to acetylene and methyl fluoride as an inhibitor of methanotrophy in cultures and soils. DFM was found to be a reversible inhibitor of CH{sub 4} oxidation by Methylococcus capsulatus (Bath). Consumption of CH{sub 4} in soil was blocked by additions of low levels of DFM (0.03 kPa), and this inhibition was reversed by DFM removal. Although a small quantity of DFM was consumed during these incubations, its remaining concentration was sufficiently elevated to sustain inhibition. Methanogenesis in anaerobic soil slurries, including acetoclastic methanogenesis, was unaffected by levels of DFM which inhibit methanotrophy. Low levels of DFM (0.03 kPa) also inhibited nitrification and N{sub 2}O production by soils. DFM is proposed as an improved inhibitor of CH{sub 4} oxidation over acetylene and/or methyl fluoride on the basis of its reversibility, its efficacy at low concentrations, its lack of inhibition of methanogenesis, and its low cost.

  9. Use of Dipeptidyl-Peptidase-4 Inhibitors and the Risk of Pneumonia: A Population-Based Cohort Study

    PubMed Central

    Wvan der Zanden, Rogier; de Vries, Frank; Lalmohamed, Arief; Driessen, Johanna H. M.; de Boer, Anthonius; Rohde, Gernot; Neef, Cees; den Heijer, Casper

    2015-01-01

    Background Dipeptidyl-peptidase-4 inhibitors (DPP4Is) are drugs for the treatment of type 2 diabetes mellitus (T2DM). There is increasing evidence that DPP4Is may result in suppression of the immune system and may increase the risk of infections such as pneumonia. Aim of this study was to evaluate the association between the use of DPP4Is and the risk of pneumonia in a population-based study. Methods We conducted a population-based cohort study using data from the world’s largest primary care database, the UK Clinical Practice Research Datalink (CPRD). We selected all users of non-insulin antidiabetic drugs (NIADs), including DPP4Is, between 2007 and 2012. To each NIAD user, we matched randomly selected non-users. The NIAD user’s first prescription defined the index date, which was then assigned to the matched non-users. Patients were followed from their first prescription until end of data collection or the first event of pneumonia, whichever came first. Cox regression analysis estimated the association between pneumonia and current use of DPP4Is versus 1) current use of other NIADs and 2) non-users. DPP4I use was then stratified to daily and cumulative dose. Analyses were statistically adjusted for age, sex, lifestyle factors and comorbidities and concomitant use of various other drugs. Results Risk of pneumonia was not increased with current DPP4I use versus use of other NIADs, adjusted Hazard Ratio (HR) 0.70; 95% Confidence Interval (CI) 0.55–0.91. Also higher cumulative doses or daily doses did not further increase risk of pneumonia. Conclusion We found no increased risk of pneumonia in T2DM patients using DPP4Is compared to T2DM patients using other NIADs. Our finding is in line with direct and indirect evidence from observational studies and RCTs. There is probably no need to avoid prescribing of DPP4Is to elderly patients who are at risk of pneumonia. PMID:26468883

  10. Design, synthesis and biological evaluation of 4-fluoropyrrolidine-2-carbonitrile and octahydrocyclopenta[b]pyrrole-2-carbonitrile derivatives as dipeptidyl peptidase IV inhibitors.

    PubMed

    Ji, Xun; Xia, Chunmei; Wang, Jiang; Su, Mingbo; Zhang, Lei; Dong, Tiancheng; Li, Zeng; Wan, Xia; Li, Jingya; Li, Jia; Zhao, Linxiang; Gao, Zhaobing; Jiang, Hualiang; Liu, Hong

    2014-10-30

    Based on the previous work in our group and the principle of computer-aided drug design, a series of novel β-amino pyrrole-2-carbonitrile derivatives was designed and synthesized. Compounds 8l and 9l were efficacious and selective DPP4 inhibitors resulting in decreased blood glucose in vivo. Compound 8l had moderate DPP4 inhibitory activity (IC50 = 0.05 μM) and good oral bioavailability (F = 53.2%). Compound 9l showed excellent DPP4 inhibitory activity (IC50 = 0.01 μM), good selectivity (selective ratio: DPP8/DPP4 = 898.00; DPP9/DPP4 = 566.00) against related peptidases, and good efficacy in an oral glucose tolerance tests in ICR mice and moderate PK profiles (F = 22.8%, t1/2 = 2.74 h). Moreover, compound 9l did not block hERG channel and exhibited no inhibition of liver metabolic enzymes such as CYP2C9. PMID:25164763

  11. Quantification of the Contribution of GLP-1 to Mediating Insulinotropic Effects of DPP-4 Inhibition With Vildagliptin in Healthy Subjects and Patients With Type 2 Diabetes Using Exendin [9-39] as a GLP-1 Receptor Antagonist.

    PubMed

    Nauck, Michael A; Kind, Joachim; Köthe, Lars D; Holst, Jens J; Deacon, Carolyn F; Broschag, Matthias; He, Yan Ling; Kjems, Lise; Foley, James

    2016-08-01

    We quantified the contribution of GLP-1 as a mediator of the therapeutic effects of dipeptidyl peptidase 4 (DPP-4) inhibition (vildagliptin) by using the GLP-1 receptor antagonist exendin [9-39] in patients with type 2 diabetes and in healthy subjects. Thirty-two patients with type 2 diabetes and 29 age- and weight-matched healthy control subjects were treated in randomized order with 100 mg once daily vildagliptin or placebo for 10 days. Meal tests were performed (days 9 and 10) without and with a high-dose intravenous infusion of exendin [9-39]. The main end point was the ratio of the areas under the curve (AUCs) of integrated insulin secretion rates (total AUCISR) and glucose (total AUCglucose) over 4 h after the meal. Vildagliptin treatment more than doubled responses of intact GLP-1 and glucose-dependent insulinotropic polypeptide and lowered glucose responses without changing AUCISR/AUCglucose in healthy subjects. Vildagliptin significantly increased this ratio by 10.5% in patients with type 2 diabetes, and exendin [9-39] reduced it (both P < 0.0001). The percentage reduction in the AUCISR/AUCglucose ratio achieved with exendin [9-39] was significantly smaller after vildagliptin treatment than after placebo treatment (P = 0.026) and was equivalent to 47 ± 5% of the increments due to vildagliptin. Thus, other mediators appear to contribute significantly to the therapeutic effects of DPP-4 inhibition. PMID:27207543

  12. Lipoprotein effects of incretin analogs and dipeptidyl peptidase 4 inhibitors

    PubMed Central

    Zhong, Jixin; Maiseyeu, Andrei; Rajagopalan, Sanjay

    2015-01-01

    Elevated post-prandial lipoprotein levels are common in patients with type 2 diabetes. Post-prandial lipoprotein alterations in type 2 diabetics are widely believed to drive inflammation and are considered a major risk factor for cardiovascular disease in diabetic patients. The incretins glucagon like peptide-1 (GLP-1) and glucose insulinotropic peptide (GIP) modulate post-prandial lipoproteins through a multitude of pathways that are independent of insulin and weight loss. Evidence from both animal models and humans seems to suggest an important effect on triglyceride rich lipoproteins (Apo48 containing) with little to no effects on other lipoproteins at least in humans. Dipeptidyl peptidase-4 (DPP4) inhibitors also appear to share these effects suggesting an important role for incretins in these effects. In this review, we will summarize lipid modulating effects of incretin analogs and DPP-4 inhibitors in both animal models and human studies and provide an overview of mechanisms responsible for these effects. PMID:26005496

  13. The efficacy and safety of dipeptidyl peptidase-4 inhibitors for treatment of type 2 diabetes mellitus patients with severe renal impairment: a meta-analysis.

    PubMed

    Chen, Maosheng; Liu, Yueming; Jin, Juan; He, Qiang

    2016-05-01

    Aims/introduction Dipeptidyl peptidase-4 (DPP-4) inhibitors are a new class of oral antidiabetic agents, and have been increasingly and widely used in the treatment of diabetes mellitus (DM). However, information of DPP-4 inhibitors in type 2 DM patients with severe renal impairment (RI) is limited. Our study aimed to assess the efficacy and safety of DPP-4 inhibitors as compared to placebos or other hypoglycemic drugs in type 2 DM patients with severe RI. Materials and methods A meta-analysis was conducted to examine the literature comparing the effects of DPP-4 inhibitors on hemoglobin A1c (HbA1c) and fasting blood glucose (FBG). Randomized control trials (RCTs) including adults with type 2 DM and severe RI were analyzed. Safety was evaluated based on the percentage of patients who developed hypoglycemia and the occurrence of adverse events (AEs) as well as the incidence of peripheral edema, urinary tract infection, diarrhea, and death. Results Five RCTs including 503 patients were analyzed. Compared with a placebo or no treatment, DPP-4 inhibitors were associated with a larger decline in HbA1c (mean difference (MD) = -0.57, 95% confidence interval (CI): -0.73 to -0.41; p < 0.01) but not with FBG (MD = -0.26, 95% CI: -1.40 to 0.8; p = 0.66). Compared with glipizide monotherapy, no significant differences in HbA1c (MD = 0.15, 95% CI: -0.19 to 0.49; p = 0.38) or FBG (MD = -0.26, 95% CI: -1.16 to 0.64; p = 0.57) were found. Similar odds of experiencing an AE were found in both the DPP-4 inhibitor groups and comparison groups. Conclusions In type 2 DM patients with severe RI, treatment with DPP-4 inhibitors is safe and it effectively lowers HbA1c. PMID:26915531

  14. ASP4000, a slow-binding dipeptidyl peptidase 4 inhibitor, has antihyperglycemic activity of long duration in Zucker fatty rats.

    PubMed

    Tanaka-Amino, Keiko; Matsumoto, Kazumi; Hatakeyama, Yoshifumi; Takakura, Shoji; Mutoh, Seitaro

    2010-03-01

    ASP4000 ((2S)-1-{[(1R,3S,4S,6R)-6-hydroxy-2-azabicyclo[2.2.1]hept-3-yl]carbonyl}-2-pyrrolidinecarbonitrile hydrochloride) is a novel, potent and selective dipeptidyl peptidase 4 (DPP IV, EC 3.4.14.5) inhibitor (Keiko Tanaka-Amino et al. in Eur J pharmacol 59:444-449, 2008). The aim of the present study was to characterize the kinetic profile of and identify the long duration effect of the antihyperglycemic activity of ASP4000. ASP4000 was found to inhibit human recombinant DPP4 activity with a K(i) of 1.05 nM, a k(on) value of 22.3 x 10(5) M(-1) s(-1), and a k (off) of 2.35 x 10(-3) M(-1) s(-1), with higher affinity than that of vildagliptin. The kinetic studies indicate that both the formation and dissociation of ASP4000/DPP4 complex were faster than those of vildagliptin, and that ASP4000 slow-bindingly inhibits DPP4 with a different mode of inhibition than vildagliptin. In addition, ASP4000 augmented the insulin response and ameliorated the glucose excursion during the oral glucose tolerance test in Zucker fatty rats at 4 h post dosing. ASP4000 is expected to be a promising, long duration DPP4 inhibitor for type 2 diabetes. PMID:19238312

  15. The Role of Dipeptidyl Peptidase – 4 Inhibitors in Diabetic Kidney Disease

    PubMed Central

    Panchapakesan, Usha; Pollock, Carol

    2015-01-01

    Despite major advances in the understanding of the molecular mechanisms that underpin the development of diabetic kidney disease, current best practice still leaves a significant proportion of patients with end-stage kidney disease requiring renal replacement therapy. This is on a background of an increasing diabetes epidemic worldwide. Although kidney failure is a major cause of morbidity the main cause of death remains cardiovascular in nature. Hence, diabetic therapies which are both “cardio-renal” protective seem the logical way forward. In this review, we discuss the dipeptidyl peptidase 4 (DPP4) inhibitors (DPP4inh), which are glucose-lowering agents used clinically and their role in diabetic kidney disease with specific focus on renoprotection and surrogate markers of cardiovascular disease. We highlight the novel pleiotropic effects of DPP4 that make it an attractive additional target to combat the fibrotic and inflammatory pathways in diabetic kidney disease and also discuss the current literature on the cardiovascular safety profile of DPP4inh. Clearly, these observed renoprotective effects will need to be confirmed by clinical trials to determine whether they translate into beneficial effects to patients with diabetes. PMID:26379674

  16. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors.

    PubMed

    Nauck, M

    2016-03-01

    Over the last few years, incretin-based therapies have emerged as important agents in the treatment of type 2 diabetes (T2D). These agents exert their effect via the incretin system, specifically targeting the receptor for the incretin hormone glucagon-like peptide 1 (GLP-1), which is partly responsible for augmenting glucose-dependent insulin secretion in response to nutrient intake (the 'incretin effect'). In patients with T2D, pharmacological doses/concentrations of GLP-1 can compensate for the inability of diabetic β cells to respond to the main incretin hormone glucose-dependent insulinotropic polypeptide, and this is therefore a suitable parent compound for incretin-based glucose-lowering medications. Two classes of incretin-based therapies are available: GLP-1 receptor agonists (GLP-1RAs) and dipeptidyl peptidase-4 (DPP-4) inhibitors. GLP-1RAs promote GLP-1 receptor (GLP-1R) signalling by providing GLP-1R stimulation through 'incretin mimetics' circulating at pharmacological concentrations, whereas DPP-4 inhibitors prevent the degradation of endogenously released GLP-1. Both agents produce reductions in plasma glucose and, as a result of their glucose-dependent mode of action, this is associated with low rates of hypoglycaemia; however, there are distinct modes of action resulting in differing efficacy and tolerability profiles. Furthermore, as their actions are not restricted to stimulating insulin secretion, these agents have also been associated with additional non-glycaemic benefits such as weight loss, improvements in β-cell function and cardiovascular risk markers. These attributes have made incretin therapies attractive treatments for the management of T2D and have presented physicians with an opportunity to tailor treatment plans. This review endeavours to outline the commonalities and differences among incretin-based therapies and to provide guidance regarding agents most suitable for treating T2D in individual patients. PMID:26489970

  17. Trelagliptin (SYR-472, Zafatek), Novel Once-Weekly Treatment for Type 2 Diabetes, Inhibits Dipeptidyl Peptidase-4 (DPP-4) via a Non-Covalent Mechanism

    PubMed Central

    Jennings, Andy; Kamran, Ruhi; Ueno, Hikaru; Nishigaki, Nobuhiro; Kosaka, Takuo; Tani, Akiyoshi; Sano, Hiroki; Kinugawa, Yoshinobu; Koumura, Emiko; Shi, Lihong; Takeuchi, Koji

    2016-01-01

    Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4- and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Taken together, potent dipeptidyl peptidase inhibition may partially contribute to sustained efficacy of trelagliptin. PMID:27328054

  18. Trelagliptin (SYR-472, Zafatek), Novel Once-Weekly Treatment for Type 2 Diabetes, Inhibits Dipeptidyl Peptidase-4 (DPP-4) via a Non-Covalent Mechanism.

    PubMed

    Grimshaw, Charles E; Jennings, Andy; Kamran, Ruhi; Ueno, Hikaru; Nishigaki, Nobuhiro; Kosaka, Takuo; Tani, Akiyoshi; Sano, Hiroki; Kinugawa, Yoshinobu; Koumura, Emiko; Shi, Lihong; Takeuchi, Koji

    2016-01-01

    Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4- and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Taken together, potent dipeptidyl peptidase inhibition may partially contribute to sustained efficacy of trelagliptin. PMID:27328054

  19. Trelagliptin (SYR-472, Zafatek), novel once-weekly treatment for type 2 diabetes, inhibits dipeptidyl peptidase-4 (DPP-4) via a non-covalent mechanism

    DOE PAGESBeta

    Grimshaw, Charles E.; Jennings, Andy; Kamran, Ruhi; Ueno, Hikaru; Nishigaki, Nobuhiro; Kosaka, Takuo; Tani, Akiyoshi; Sano, Hiroki; Kinugawa, Yoshinobu; Koumura, Emiko; et al

    2016-06-21

    Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4-and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Altogether, potent dipeptidyl peptidase inhibitionmay partially contribute to sustained efficacy of trelagliptin.

  20. Serotonin and Noradrenaline Reuptake Inhibitors Improve Micturition Control in Mice

    PubMed Central

    Simonetto, Marialaura; Claus, Mirko; Ballabio, Maurizio; Caretta, Antonio; Mucignat-Caretta, Carla

    2015-01-01

    Poor micturition control may cause profound distress, because proper voiding is mandatory for an active social life. Micturition results from the subtle interplay of central and peripheral components. It involves the coordination of autonomic and neuromuscular activity at the brainstem level, under the executive control of the prefrontal cortex. We tested the hypothesis that administration of molecules acting as reuptake inhibitors of serotonin, noradrenaline or both may exert a strong effect on the control of urine release, in a mouse model of overactive bladder. Mice were injected with cyclophosphamide (40 mg/kg), to increase micturition acts. Mice were then given one of four molecules: the serotonin reuptake inhibitor imipramine, its metabolite desipramine that acts on noradrenaline reuptake, the serotonin and noradrenaline reuptake inhibitor duloxetine or its active metabolite 4-hydroxy-duloxetine. Cyclophosphamide increased urine release without inducing overt toxicity or inflammation, except for increase in urothelium thickness. All the antidepressants were able to decrease the cyclophosphamide effects, as apparent from longer latency to the first micturition act, decreased number of urine spots and volume of released urine. These results suggest that serotonin and noradrenaline reuptake inhibitors exert a strong and effective modulatory effect on the control of urine release and prompt to additional studies on their central effects on brain areas involved in the social and behavioral control of micturition. PMID:25812116

  1. Inhibitors

    MedlinePlus

    ... Community Counts Blood Safety Inhibitors Articles & Key Findings Free Materials Videos Starting the Conversation Playing it Safe A Look at Hemophilia Joint Range of Motion My Story Links to Other Websites ...

  2. Clinical Characteristics of the Responders to Dipeptidyl Peptidase-4 Inhibitors in Korean Subjects with Type 2 Diabetes

    PubMed Central

    Oh, Tae Jung; Bae, Jae Hyun; Kim, Yeong Gi; Park, Kyeong Seon; Cho, Young Min; Park, Kyong Soo; Kim, Seong Yeon

    2013-01-01

    We investigated characteristics associated with the efficacy of dipeptidyl peptidase-4 inhibitors (DPP4i) in Korean patients with type 2 diabetes. We reviewed medical records of 477 patients who had taken sitagliptin or vildagliptin longer than 40 weeks. Response to DPP4i was evaluated with HbA1c change after therapy (ΔHbA1c). The Student's t-test between good responders (GR: ΔHbA1c > 1.0%) and poor responders (PR: ΔHbA1c < 0.5%), a correlation analysis among clinical parameters, and a linear multivariate regression analysis were performed. The mean age was 60 yr, duration of diabetes 11 yr and HbA1c was 8.1%. Baseline fasting plasma glucose (FPG), HbA1c, C-peptide, and creatinine were significantly higher in the GR compared to the PR. Duration of diabetes, FPG, HbA1c, C-peptide and creatinine were significantly correlated with ΔHbA1c. In the multivariate analysis, age (r2 = 0.006), duration of diabetes (r2 = 0.019), HbA1c (r2 = 0.296), and creatinine levels (r2 = 0.024) were independent predictors for the response to DPP4i. Body mass index and insulin resistance were not associated with the response to DPP4i. In conclusion, better response to DPP4i would be expected in Korean patients with type 2 diabetes who have higher baseline HbA1c and creatinine levels with shorter duration of diabetes. PMID:23772153

  3. The Dose-Dependent Organ-Specific Effects of a Dipeptidyl Peptidase-4 Inhibitor on Cardiovascular Complications in a Model of Type 2 Diabetes

    PubMed Central

    Seo, Jung-Woo; Lee, Arah; Kim, Dong Jin; Kim, Yang-Gyun; Kim, Se-Yeun; Lee, Kyung Hye; Lim, Sung-Jig; Cheng, Xian Wu; Lee, Sang-Ho; Kim, Weon

    2016-01-01

    Objective Although dipeptidyl peptidase-4 (DPP-4) inhibitors have been suggested to have a non-glucoregulatory protective effect in various tissues, the effects of long-term inhibition of DPP-4 on the micro- and macro-vascular complications of type 2 diabetes remain uncertain. The aim of the present study was to investigate the organ-specific protective effects of DPP-4 inhibitor in rodent model of type 2 diabetes. Methods Eight-week-old diabetic and obese db/db mice and controls (db/m mice) received vehicle or one of two doses of gemigliptin (0.04 and 0.4%) daily for 12 weeks. Urine albumin excretion and echocardiography measured at 20 weeks of age. Heart and kidney tissue were subjected to molecular analysis and immunohistochemical evaluation. Results Gemigliptin effectively suppressed plasma DPP-4 activation in db/db mice in a dose-dependent manner. The HbA1c level was normalized in the 0.4% gemigliptin, but not in the 0.04% gemigliptin group. Gemigliptin showed a dose-dependent protective effect on podocytes, anti-apoptotic and anti-oxidant effects in the diabetic kidney. However, the dose-dependent effect of gemigliptin on diabetic cardiomyopathy was ambivalent. The lower dose significantly attenuated left ventricular (LV) dysfunction, apoptosis, and cardiac fibrosis, but the higher dose could not protect the LV dysfunction and cardiac fibrosis. Conclusion Gemigliptin exerted non-glucoregulatory protective effects on both diabetic nephropathy and cardiomyopathy. However, high-level inhibition of DPP-4 was associated with an organ-specific effect on cardiovascular complications in type 2 diabetes. PMID:26959365

  4. Sodium-glucose co-transporter-2 inhibitors and dipeptidyl peptidase-4 inhibitors combination therapy in type 2 diabetes: A systematic review of current evidence

    PubMed Central

    Singh, Awadhesh Kumar; Singh, Ritu

    2016-01-01

    As type 2 diabetes mellitus (T2DM) is a chronic and progressive disease with multiple pathophysiologic defects, no single anti-diabetic agent can tackle all these multi-factorial pathways. Consequently, multiple agents working through the different mechanisms will be required for the optimal glycemic control. Moreover, the combination therapies of different anti-diabetic agents may complement their actions and possibly act synergistic. Furthermore, these combinations could possess the additional properties to counter their undesired physiological compensatory response. Sodium-glucose co-transporter-2 inhibitors (SGLT-2I) are newly emerging class of drugs, with a great potential to reduce glucose effectively with an additional quality of lowering cardiovascular events as demonstrated very recently by one of the agents of this class. However, increase in endogenous glucose production (EGP) from the liver, either due to the increase in glucagon or compensatory response to glucosuria can offset the glucose-lowering potential of SGLT-2I. Interestingly, another class of drugs such as dipeptidyl peptidase-4 inhibitors (DPP-4I) effectively decrease glucagon and reduce EGP. In light of these findings, combination therapies with SGLT-2I and DPP-4I are particularly appealing and are expected to produce a synergistic effect. Preclinical studies of combination therapies with DPP-4I and SGLT-2I have already demonstrated a significant lowering of hemoglobin A1c potential and human studies also find no drug-drug interaction between these agents. This article aims to systematically review the efficacy and safety of combination therapy of SGLT-2I and DPP-4I in T2DM. PMID:27042423

  5. Sodium-glucose co-transporter-2 inhibitors and dipeptidyl peptidase-4 inhibitors combination therapy in type 2 diabetes: A systematic review of current evidence.

    PubMed

    Singh, Awadhesh Kumar; Singh, Ritu

    2016-01-01

    As type 2 diabetes mellitus (T2DM) is a chronic and progressive disease with multiple pathophysiologic defects, no single anti-diabetic agent can tackle all these multi-factorial pathways. Consequently, multiple agents working through the different mechanisms will be required for the optimal glycemic control. Moreover, the combination therapies of different anti-diabetic agents may complement their actions and possibly act synergistic. Furthermore, these combinations could possess the additional properties to counter their undesired physiological compensatory response. Sodium-glucose co-transporter-2 inhibitors (SGLT-2I) are newly emerging class of drugs, with a great potential to reduce glucose effectively with an additional quality of lowering cardiovascular events as demonstrated very recently by one of the agents of this class. However, increase in endogenous glucose production (EGP) from the liver, either due to the increase in glucagon or compensatory response to glucosuria can offset the glucose-lowering potential of SGLT-2I. Interestingly, another class of drugs such as dipeptidyl peptidase-4 inhibitors (DPP-4I) effectively decrease glucagon and reduce EGP. In light of these findings, combination therapies with SGLT-2I and DPP-4I are particularly appealing and are expected to produce a synergistic effect. Preclinical studies of combination therapies with DPP-4I and SGLT-2I have already demonstrated a significant lowering of hemoglobin A1c potential and human studies also find no drug-drug interaction between these agents. This article aims to systematically review the efficacy and safety of combination therapy of SGLT-2I and DPP-4I in T2DM. PMID:27042423

  6. Mimosine Dipeptide Enantiomsers: Improved Inhibitors against Melanogenesis and Cyclooxygenase.

    PubMed

    Nguyen, Binh Cao Quan; Tawata, Shinkichi

    2015-01-01

    Melanogenesis plays an important role in the protection of skin against UV through production of melanin pigments, but abnormal accumulation of this pigment causes unaesthetic hyperpigmentation. Much effort is being made to develop effective depigmenting agents. Here, we show for the first time that a small library of mimosine dipeptide enantiomers (Mi-L/D-amino acid) inhibit the melanogenesis in B16F10 melanoma cells by down-regulating the cellular tyrosinase with little effect on their growth or viability. Two of them, Mi-D-Trp and Mi-D-Val, turned out to be the most potent inhibitors on melanin content and cellular tyrosinase in B16F10 melanoma cells. In addition, most of the mimosine dipeptides were more potent than mimosine for inhibiting cyclooxygenase 1 (COX-1) with IC50 of 18-26 μM. Among them, Mi-L-Val and Mi-L-Trp inhibited cyclooxygenase 2 (COX-2) more potently than indomethacin, with IC50 values of 22 and 19 μM, respectively. Taken together, our results suggest the possibility that mimosine dipeptides could be better candidates (than mimosine) for anti-melanogenic (skin hyperpigmentation treatment) and cyclooxygenase (COX) inhibition. PMID:26287130

  7. Optimization of microtubule affinity regulating kinase (MARK) inhibitors with improved physical properties.

    PubMed

    Sloman, David L; Noucti, Njamkou; Altman, Michael D; Chen, Dapeng; Mislak, Andrea C; Szewczak, Alexander; Hayashi, Mansuo; Warren, Lee; Dellovade, Tammy; Wu, Zhenhua; Marcus, Jacob; Walker, Deborah; Su, Hua-Poo; Edavettal, Suzanne C; Munshi, Sanjeev; Hutton, Michael; Nuthall, Hugh; Stanton, Matthew G

    2016-09-01

    Inhibition of microtubule affinity regulating kinase (MARK) represents a potentially attractive means of arresting neurofibrillary tangle pathology in Alzheimer's disease. This manuscript outlines efforts to optimize a pyrazolopyrimidine series of MARK inhibitors by focusing on improvements in potency, physical properties and attributes amenable to CNS penetration. A unique cylcyclohexyldiamine scaffold was identified that led to remarkable improvements in potency, opening up opportunities to reduce MW, Pgp efflux and improve pharmacokinetic properties while also conferring improved solubility. PMID:27491711

  8. Molecular mechanisms that could contribute to prolonged effectiveness of PDE5 inhibitors to improve erectile function.

    PubMed

    Francis, S H; Morris, G Z; Corbin, J D

    2008-01-01

    Cyclic guanosine monophosphate (cGMP) in penile vascular smooth muscle cells (VSMC) plays a key role in promoting penile erection. Phosphodiesterase-5 (PDE5) in VSMC breaks down cGMP to counter this effect. Sildenafil (Viagra), vardenafil (Levitra) and tadalafil (Cialis), treatments for erectile dysfunction, inhibit PDE5 action. Many men with erectile dysfunction have improved erectile function after plasma inhibitor concentration falls below therapeutic levels. Maximum effect plus onset and duration of action of inhibitor determines its efficacy. The rate and extent of cellular drug accumulation and efflux of drug from smooth muscle cells plus persistence of drug effects in these cell impact these parameters. We propose possible molecular mechanisms that could account for prolonged action of PDE5 inhibitors including (1) persistence of biochemical effects after inhibitor is cleared from cells, and (2) retention of drug in VSMC beyond plasma clearance. PMID:18418391

  9. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAFV600E melanoma

    PubMed Central

    Hu-Lieskovan, Siwen; Mok, Stephen; Moreno, Blanca Homet; Tsoi, Jennifer; Faja, Lidia Robert; Goedert, Lucas; Pinheiro, Elaine M.; Koya, Richard C.; Graeber, Thomas; Comin-Anduix, Begoña; Ribas, Antoni

    2016-01-01

    Combining immunotherapy and BRAF targeted therapy may result in improved antitumor activity with the high response rates of targeted therapy and the durability of responses with immunotherapy. However, the first clinical trial testing the combination of the BRAF inhibitor vemurafenib and the CTLA-4 antibody ipilimumab was terminated early due to substantial liver toxicities. MEK inhibitors can potentiate the MAPK inhibition in BRAF mutant cells, while potentially alleviating the unwanted paradoxical MAPK activation in BRAF wild type cells that lead to side effects when using BRAF inhibitors alone. However, there is the concern of MEK inhibitors being detrimental to T cell functionality. Using a mouse model of syngeneic BRAFV600E driven melanoma, we tested whether addition of the MEK inhibitor trametinib would enhance the antitumor activity of combined immunotherapy with the BRAF inhibitor dabrafenib. Combination of dabrafenib and trametinib with pmel-1 adoptive cell transfer (ACT) showed complete tumor regression, increased T cell infiltration into tumors and improved in vivo cytotoxicity. Single agent dabrafenib increased tumor-associated macrophages and T regulatory cells (Tregs) in tumors, which decreased with the addition of trametinib. The triple combination therapy resulted in increased melanosomal antigen and MHC expression, and global immune-related gene up-regulation. Given the up-regulation of PD-L1 seen with dabrafenib and/or trametinib combined with antigen-specific ACT, we tested combination of dabrafenib, trametinib with anti-PD1 therapy in SM1 tumors, and observed superior anti-tumor effect. Our findings support the testing of triple combination therapy of BRAF and MEK inhibitors with immunotherapy in patients with BRAFV600E mutant metastatic melanoma. PMID:25787767

  10. Differential Cardiovascular Outcomes after Dipeptidyl Peptidase-4 Inhibitor, Sulfonylurea, and Pioglitazone Therapy, All in Combination with Metformin, for Type 2 Diabetes: A Population-Based Cohort Study

    PubMed Central

    Shin, Ju-Young; Chang, Yoosoo; Kim, Ye-Jee; Lee, Joongyub; Kim, Ju-Young; Park, Byung-Joo

    2015-01-01

    Background/Objectives Data on the comparative effectiveness of oral antidiabetics on cardiovascular outcomes in a clinical practice setting are limited. This study sought to determine whether a differential risk of cardiovascular disease (CVD) exists for the combination of a dipeptidyl peptidase-4 (DPP-4) inhibitor plus metformin versus a sulfonylurea derivative plus metformin or pioglitazone plus metformin. Methods We conducted a cohort study of 349,476 patients who received treatment with a DPP-4 inhibitor, sulfonylurea, or pioglitazone plus metformin for type 2 diabetes using the Korean national health insurance claims database. The incidence of total CVD and individual outcomes of myocardial infarction (MI), heart failure (HF), and ischemic stroke (IS) were assessed using the hazard ratios (HRs) estimated from a Cox proportional-hazards model weighted for a propensity score. Results During follow-up, 3,881 patients developed a CVD, including 428 MIs, 212 HFs, and 1,487 ISs. The adjusted HR with 95% confidence interval (CI) for a sulfonylurea derivative plus metformin compared with a DPP-4 inhibitor plus metformin was 1.20 (1.09-1.32) for total CVD; 1.14 (1.04-1.91) for MI; 1.07 (0.71-1.62) for HF; and 1.51 (1.28-1.79) for IS. The HRs with 95% CI for total CVD, MI, HF, and IS for pioglitazone plus metformin were 0.89 (0.81-0.99), 1.05 (0.76-1.46), 4.81 (3.53-6.56), and 0.81 (0.67-0.99), respectively. Conclusions Compared with a DPP-4 inhibitor plus metformin, treatment with a sulfonylurea drug plus metformin was associated with increased risks of total CVD, MI, and IS, whereas the use of pioglitazone plus metformin was associated with decreased total CVD and IS risks. PMID:25992614

  11. The discovery of 2-substituted phenol quinazolines as potent RET kinase inhibitors with improved KDR selectivity.

    PubMed

    Newton, Rebecca; Bowler, Katherine A; Burns, Emily M; Chapman, Philip J; Fairweather, Emma E; Fritzl, Samantha J R; Goldberg, Kristin M; Hamilton, Niall M; Holt, Sarah V; Hopkins, Gemma V; Jones, Stuart D; Jordan, Allan M; Lyons, Amanda J; Nikki March, H; McDonald, Neil Q; Maguire, Laura A; Mould, Daniel P; Purkiss, Andrew G; Small, Helen F; Stowell, Alexandra I J; Thomson, Graeme J; Waddell, Ian D; Waszkowycz, Bohdan; Watson, Amanda J; Ogilvie, Donald J

    2016-04-13

    Deregulation of the receptor tyrosine kinase RET has been implicated in medullary thyroid cancer, a small percentage of lung adenocarcinomas, endocrine-resistant breast cancer and pancreatic cancer. There are several clinically approved multi-kinase inhibitors that target RET as a secondary pharmacology but additional activities, most notably inhibition of KDR, lead to dose-limiting toxicities. There is, therefore, a clinical need for more specific RET kinase inhibitors. Herein we report our efforts towards identifying a potent and selective RET inhibitor using vandetanib 1 as the starting point for structure-based drug design. Phenolic anilinoquinazolines exemplified by 6 showed improved affinities towards RET but, unsurprisingly, suffered from high metabolic clearance. Efforts to mitigate the metabolic liability of the phenol led to the discovery that a flanking substituent not only improved the hepatocyte stability, but could also impart a significant gain in selectivity. This culminated in the identification of 36; a potent RET inhibitor with much improved selectivity against KDR. PMID:26874741

  12. Improving the representation of peptide-like inhibitor and antibiotic molecules in the Protein Data Bank.

    PubMed

    Dutta, Shuchismita; Dimitropoulos, Dimitris; Feng, Zukang; Persikova, Irina; Sen, Sanchayita; Shao, Chenghua; Westbrook, John; Young, Jasmine; Zhuravleva, Marina A; Kleywegt, Gerard J; Berman, Helen M

    2014-06-01

    With the accumulation of a large number and variety of molecules in the Protein Data Bank (PDB) comes the need on occasion to review and improve their representation. The Worldwide PDB (wwPDB) partners have periodically updated various aspects of structural data representation to improve the integrity and consistency of the archive. The remediation effort described here was focused on improving the representation of peptide-like inhibitor and antibiotic molecules so that they can be easily identified and analyzed. Peptide-like inhibitors or antibiotics were identified in over 1000 PDB entries, systematically reviewed and represented either as peptides with polymer sequence or as single components. For the majority of the single-component molecules, their peptide-like composition was captured in a new representation, called the subcomponent sequence. A novel concept called "group" was developed for representing complex peptide-like antibiotics and inhibitors that are composed of multiple polymer and nonpolymer components. In addition, a reference dictionary was developed with detailed information about these peptide-like molecules to aid in their annotation, identification and analysis. Based on the experience gained in this remediation, guidelines, procedures, and tools were developed to annotate new depositions containing peptide-like inhibitors and antibiotics accurately and consistently. PMID:24173824

  13. Highly improved antiparasitic activity after introduction of an N-benzylimidazole moiety on protein farnesyltransferase inhibitors.

    PubMed

    Bosc, Damien; Mouray, Elisabeth; Cojean, Sandrine; Franco, Caio Haddad; Loiseau, Philippe M; Freitas-Junior, Lucio H; Moraes, Carolina Borsoi; Grellier, Philippe; Dubois, Joëlle

    2016-02-15

    In our search for new protein farnesyltransferase inhibitors with improved antiparasitic activities, we modified our previously developed 3-arylthiophene series of inhibitors by replacing the thioisopropyl group by different substituted imidazolylmethanamino moieties. Twenty four new derivatives were synthesized and evaluated against human and parasite farnesyltransferases, and their anti-parasitic activity was determined against Plasmodium falciparum, Trypanosoma brucei, Trypanosoma cruzi, and Leishmania donovani. Introduction of a N-p-substituted-benzylimidazole led to significantly increase the inhibition of parasite proliferation in the submicromolar range. The structure of the best inhibitors was parasite dependent. Three compounds possess IC50 values at the same range as the reference miltefosine against L. donovani proliferation and other new derivatives display high level of anti-trypanosomal activity against T. cruzi, higher or in the same order of magnitude as the reference compounds benznidazole and nifurtimox. PMID:26774924

  14. Effect of dipeptidyl peptidase-4 inhibitor, vildagliptin on plasminogen activator inhibitor-1 in patients with diabetes mellitus.

    PubMed

    Tani, Shigemasa; Takahashi, Atsuhiko; Nagao, Ken; Hirayama, Atsushi

    2015-02-15

    Dipeptidyl peptidase-4 (DPP-4) inhibitors may affect the serum levels of plasminogen activator inhibitor-1 (PAI-1) associated with triglyceride (TG) metabolism, which is a prognostic factor for cardiovascular disease, in diabetic patients. We conducted an 8-week, prospective, randomized study in which we assigned type 2 diabetic patients who were inadequately controlled with antidiabetic therapy to the vildagliptin group (50 mg bid, n = 49) or the control group (n = 49). The primary efficacy parameter was the change in the serum level of PAI-1, and the secondary end point was the change in the serum levels of TG-rich lipoproteins. In the vildagliptin group, significant decrease of the serum PAI-1 level by 16.3% (p <0.0001) and significant decreases of the serum TG, remnant-like particle cholesterol, and apolipoprotein B levels by 12.1% (p = 0.002), 13.9% (p = 0.003), and 9.5% (p <0.0001), respectively, were observed. No such changes were observed in the control group. Multivariate regression analyses identified the absolute change from the baseline (Δ) of the PAI-1, but not that of the fasting blood glucose or hemoglobin A1c, as independent predictors of the ΔTG, Δ remnant-like particle cholesterol, and Δ apolipoprotein B. In conclusion, treatment of type 2 diabetes with vildagliptin might prevent the progression of atherosclerotic cardiovascular disease in diabetic patients by decreasing the serum PAI-1 levels and improving TG metabolism. PMID:25637323

  15. The Place of Dipeptidyl Peptidase-4 Inhibitors in Type 2 Diabetes Therapeutics: A “Me Too” or “the Special One” Antidiabetic Class?

    PubMed Central

    Godinho, Ricardo; Carvalho, Eugénia; Teixeira, Frederico

    2015-01-01

    Incretin-based therapies, the most recent therapeutic options for type 2 diabetes mellitus (T2DM) management, can modify various elements of the disease, including hypersecretion of glucagon, abnormal gastric emptying, postprandial hyperglycaemia, and, possibly, pancreatic β cell dysfunction. Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) increase glucagon-like peptide-1 (GLP-1) availability and correct the “incretin defect” seen in T2DM patients. Clinical studies have shown good glycaemic control with minimal risk of hypoglycaemia or any other adverse effects, despite the reports of pancreatitis, whose association remains to be proved. Recent studies have been focusing on the putative ability of DPP-4 inhibitors to preserve pancreas function, in particular due to the inhibition of apoptotic pathways and stimulation of β cell proliferation. In addition, other cytoprotective effects on other organs/tissues that are involved in serious T2DM complications, including the heart, kidney, and retina, have been increasingly reported. This review outlines the therapeutic potential of DPP-4 inhibitors for the treatment of T2DM, focusing on their main features, clinical applications, and risks, and discusses the major challenges for the future, in particular the possibility of becoming the preferred therapy for T2DM due to their ability to modify the natural history of the disease and ameliorate nephropathy, retinopathy, and cardiovascular complications. PMID:26075286

  16. Bisubstrate analogue inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase: New design with improved properties

    SciTech Connect

    Shi, Genbin; Shaw, Gary; Liang, Yu-He; Subburaman, Priadarsini; Li, Yue; Wu, Yan; Yan, Honggao; Ji, Xinhua

    2012-07-11

    6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), a key enzyme in the folate biosynthetic pathway, catalyzes the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin. The enzyme is essential for microorganisms, is absent from humans, and is not the target for any existing antibiotics. Therefore, HPPK is an attractive target for developing novel antimicrobial agents. Previously, we characterized the reaction trajectory of HPPK-catalyzed pyrophosphoryl transfer and synthesized a series of bisubstrate analog inhibitors of the enzyme by linking 6-hydroxymethylpterin to adenosine through 2, 3, or 4 phosphate groups. Here, we report a new generation of bisubstrate analog inhibitors. To improve protein binding and linker properties of such inhibitors, we have replaced the pterin moiety with 7,7-dimethyl-7,8-dihydropterin and the phosphate bridge with a piperidine linked thioether. We have synthesized the new inhibitors, measured their K{sub d} and IC{sub 50} values, determined their crystal structures in complex with HPPK, and established their structure-activity relationship. 6-Carboxylic acid ethyl ester-7,7-dimethyl-7,8-dihydropterin, a novel intermediate that we developed recently for easy derivatization at position 6 of 7,7-dimethyl-7,8-dihydropterin, offers a much high yield for the synthesis of bisubstrate analogs than that of previously established procedure.

  17. The dipeptidyl peptidase inhibitor linagliptin and the angiotensin II receptor blocker telmisartan show renal benefit by different pathways in rats with 5/6 nephrectomy.

    PubMed

    Tsuprykov, Oleg; Ando, Ryotaro; Reichetzeder, Christoph; von Websky, Karoline; Antonenko, Viktoriia; Sharkovska, Yuliya; Chaykovska, Lyubov; Rahnenführer, Jan; Hasan, Ahmed A; Tammen, Harald; Alter, Markus; Klein, Thomas; Ueda, Seiji; Yamagishi, Sho-Ichi; Okuda, Seiya; Hocher, Berthold

    2016-05-01

    Dipeptidyl peptidase (DPP)-4 inhibitors delay chronic kidney disease (CKD) progression in experimental diabetic nephropathy in a glucose-independent manner. Here we compared the effects of the DPP-4 inhibitor linagliptin versus telmisartan in preventing CKD progression in non-diabetic rats with 5/6 nephrectomy. Animals were allocated to 1 of 4 groups: sham operated plus placebo; 5/6 nephrectomy plus placebo; 5/6 nephrectomy plus linagliptin; and 5/6 nephrectomy plus telmisartan. Interstitial fibrosis was significantly decreased by 48% with linagliptin but a non-significant 24% with telmisartan versus placebo. The urine albumin-to-creatinine ratio was significantly decreased by 66% with linagliptin and 92% with telmisartan versus placebo. Blood pressure was significantly lowered by telmisartan, but it was not affected by linagliptin. As shown by mass spectrometry, the number of altered peptide signals for linagliptin in plasma was 552 and 320 in the kidney. For telmisartan, there were 108 peptide changes in plasma and 363 in the kidney versus placebo. Linagliptin up-regulated peptides derived from collagen type I, apolipoprotein C1, and heterogeneous nuclear ribonucleoproteins A2/B1, a potential downstream target of atrial natriuretic peptide, whereas telmisartan up-regulated angiotensin II. A second study was conducted to confirm these findings in 5/6 nephrectomy wild-type and genetically deficient DPP-4 rats treated with linagliptin or placebo. Linagliptin therapy in wild-type rats was as effective as DPP-4 genetic deficiency in terms of albuminuria reduction. Thus, linagliptin showed comparable efficacy to telmisartan in preventing CKD progression in non-diabetic rats with 5/6 nephrectomy. However, the underlying pathways seem to be different. PMID:27083282

  18. Proteasome inhibitors, including curcumin, improve pancreatic β-cell function and insulin sensitivity in diabetic mice

    PubMed Central

    Weisberg, S; Leibel, R; Tortoriello, D V

    2016-01-01

    Background: Type 2 diabetes stems from obesity-associated insulin resistance, and in the genetically susceptible, concomitant pancreatic β-cell failure can occur, which further exacerbates hyperglycemia. Recent work by our group and others has shown that the natural polyphenol curcumin attenuates the development of insulin resistance and hyperglycemia in mouse models of hyperinsulinemic or compensated type 2 diabetes. Although several potential downstream molecular targets of curcumin exist, it is now recognized to be a direct inhibitor of proteasome activity. We now show that curcumin also prevents β-cell failure in a mouse model of uncompensated obesity-related insulin resistance (Leprdb/db on the Kaliss background). Results: In this instance, dietary supplementation with curcumin prevented hyperglycemia, increased insulin production and lean body mass, and prolonged lifespan. In addition, we show that short-term in vivo treatment with low dosages of two molecularly distinct proteasome inhibitors celastrol and epoxomicin reverse hyperglycemia in mice with β-cell failure by increasing insulin production and insulin sensitivity. Conclusions: These studies suggest that proteasome inhibitors may prove useful for patients with diabetes by improving both β-cell function and relieving insulin resistance. PMID:27110686

  19. Alogliptin benzoate for management of type 2 diabetes

    PubMed Central

    Saisho, Yoshifumi

    2015-01-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors, a new class of oral hypoglycemic agents, augment glucose-dependent insulin secretion and suppress glucagon levels through enhancement of the action of endogenous incretin by inhibiting DPP-4, an incretin-degrading enzyme. DPP-4 inhibitors are generally well tolerated because of their low risk of hypoglycemia and other adverse events. Moreover, with their potential to improve beta cell function, a core defect of type 2 diabetes, DPP-4 inhibitors are becoming a major component of treatment of type 2 diabetes. Alogliptin benzoate is a newly developed, highly selective DPP-4 inhibitor which has been approved in many countries throughout the world. Once-daily administration of alogliptin as either monotherapy or combination therapy with other oral antidiabetic drugs or insulin has a potent glucose-lowering effect which is similar to that of other DPP-4 inhibitors, with a low risk of hypoglycemia and weight gain. The cardiovascular safety of this drug has been confirmed in a recent randomized controlled trial. This review summarizes the efficacy and safety of alogliptin, and discusses the role of DPP-4 inhibitors in the treatment of type 2 diabetes. PMID:25914541

  20. Improved Amplification of Microbial DNA from Blood Cultures by Removal of the PCR Inhibitor Sodium Polyanetholesulfonate

    PubMed Central

    Fredricks, David N.; Relman, David A.

    1998-01-01

    Molecular methods are increasingly used to identify microbes in clinical samples. A common technical problem with PCR is failed amplification due to the presence of PCR inhibitors. Initial attempts at amplification of the bacterial 16S rRNA gene from inoculated blood culture media failed for this reason. The inhibitor persisted, despite numerous attempts to purify the DNA, and was identified as sodium polyanetholesulfonate (SPS), a common additive to blood culture media. Like DNA, SPS is a high-molecular-weight polyanion that is soluble in water but insoluble in alcohol. Accordingly, SPS tends to copurify with DNA. An extraction method was designed for purification of DNA from blood culture media and removal of SPS. Blood culture media containing human blood and spiked with Escherichia coli was subjected to an organic extraction procedure with benzyl alcohol, and removal of SPS was documented spectrophotometrically. Successful amplification of the extracted E. coli 16S rRNA gene was achieved by adding 5 μl of undiluted processed sample DNA to a 50-μl PCR mixture. When using other purification methods, the inhibitory effect of SPS could be overcome only by dilution of these samples. By our extraction technique, even uninoculated blood culture media were found to contain bacterial DNA when they were subjected to broad-range 16S rRNA gene consensus PCR. We conclude that the blood culture additive SPS is a potent inhibitor of PCR, is resistant to removal by traditional DNA purification methods, but can be removed by a benzyl alcohol extraction protocol that results in improved PCR performance. PMID:9738025

  1. The PDE4 inhibitor roflumilast improves memory in rodents at non-emetic doses.

    PubMed

    Vanmierlo, Tim; Creemers, Pim; Akkerman, Sven; van Duinen, Marlies; Sambeth, Anke; De Vry, Jochen; Uz, Tolga; Blokland, Arjan; Prickaerts, Jos

    2016-04-15

    Enhancement of central availability of the second messenger cAMP is a promising approach to improve cognitive function. Pharmacological inhibition of phosphodiesterase type 4 (PDE4), a group of cAMP hydrolyzing enzymes in the brain, has been shown to improve cognitive performances in rodents and monkeys. However, inhibition of PDE4 is generally associated with severe emetic side-effects. Roflumilast, an FDA-approved PDE4 inhibitor for treatment of chronic obstructive pulmonary disease (COPD), is yielding only mild emetic side effects. In the present study we investigate the potential of roflumilast as a cognition enhancer and to determine the potential coinciding emetic response in comparison to rolipram, a classic PDE4 inhibitor with pronounced emetic effects. Cognition enhancement was evaluated in mice and it was found that both roflumilast and rolipram enhanced memory in an object location task (0.03mg/kg), whereas only roflumilast was effective in a spatial Y-maze (0.1mg/kg). Emetic potential was measured using competition of PDE4 inhibition for α2-adrenergic receptor antagonism in which recovery from xylazine/ketamine-mediated anesthesia is used as a surrogate marker. While rolipram displayed emetic properties at a dose 10 times the memory-enhancing dose, roflumilast only showed increased emetic-like properties at a dose 100 times the memory-enhancing dose. Moreover, combining sub-efficacious doses of the approved cognition-enhancer donepezil and roflumilast, which did not improve memory when given alone, fully restored object recognition memory deficit in rats induced by the muscarinic receptor antagonist scopolamine. These findings suggest that roflumilast offers a more favorable window for treatment of cognitive deficits compared to rolipram. PMID:26794595

  2. Treatment with didemnin B, an elongation factor 1A inhibitor, improves hepatic lipotoxicity in obese mice.

    PubMed

    Hetherington, Alexandra M; Sawyez, Cynthia G; Sutherland, Brian G; Robson, Debra L; Arya, Rigya; Kelly, Karen; Jacobs, René L; Borradaile, Nica M

    2016-09-01

    Eukaryotic elongation factor EEF1A1 is induced by oxidative and ER stress, and contributes to subsequent cell death in many cell types, including hepatocytes. We recently showed that blocking the protein synthesis activity of EEF1A1 with the peptide inhibitor, didemnin B, decreases saturated fatty acid overload-induced cell death in HepG2 cells. In light of this and other recent work suggesting that limiting protein synthesis may be beneficial in treating ER stress-related disease, we hypothesized that acute intervention with didemnin B would decrease hepatic ER stress and lipotoxicity in obese mice with nonalcoholic fatty liver disease (NAFLD). Hyperphagic male ob/ob mice were fed semipurified diet for 4 weeks, and during week 5 received i.p. injections of didemnin B or vehicle on days 1, 4, and 7. Interestingly, we observed that administration of this compound modestly decreased food intake without evidence of illness or distress, and thus included an additional control group matched for food consumption with didemnin B-treated animals. Treatment with didemnin B improved several characteristics of hepatic lipotoxicity to a greater extent than the effects of caloric restriction alone, including hepatic steatosis, and some hepatic markers of ER stress and inflammation (GRP78, Xbp1s, and Mcp1). Plasma lipid and lipoprotein profiles and histopathological measures of NAFLD, including lobular inflammation, and total NAFLD activity score were also improved by didemnin B. These data indicate that acute intervention with the EEF1A inhibitor, didemnin B, improves hepatic lipotoxicity in obese mice with NAFLD through mechanisms not entirely dependent on decreased food intake, suggesting a potential therapeutic strategy for this ER stress-related disease. PMID:27613825

  3. Cholinesterase inhibitors improve both memory and complex learning in aged beagle dogs.

    PubMed

    Araujo, Joseph A; Greig, Nigel H; Ingram, Donald K; Sandin, Johan; de Rivera, Christina; Milgram, Norton W

    2011-01-01

    Similar to patients with Alzheimer's disease (AD), dogs exhibit age-dependent cognitive decline, amyloid-β (Aβ) pathology, and evidence of cholinergic hypofunction. The present study sought to further investigate the role of cholinergic hypofunction in the canine model by examining the effect of the cholinesterase inhibitors phenserine and donepezil on performance of two tasks, a delayed non-matching-to-position task (DNMP) designed to assess working memory, and an oddity discrimination learning task designed to assess complex learning, in aged dogs. Phenserine (0.5 mg/kg; PO) significantly improved performance on the DNMP at the longest delay compared to wash-out and partially attenuated scopolamine-induced deficits (15 μg/kg; SC). Phenserine also improved learning on a difficult version of an oddity discrimination task compared to placebo, but had no effect on an easier version. We also examined the effects of three doses of donepezil (0.75, 1.5, and 6 mg/kg; PO) on performance of the DNMP. Similar to the results with phenserine, 1.5 mg/kg of donepezil improved performance at the longest delay compared to baseline and wash-out, indicative of memory enhancement. These results further extend the findings of cholinergic hypofunction in aged dogs and provide pharmacological validation of the canine model with a cholinesterase inhibitor approved for use in AD. Collectively, these studies support utilizing the aged dog in future screening of therapeutics for AD, as well as for investigating the links among cholinergic function, Aβ pathology, and cognitive decline. PMID:21593569

  4. Islet amyloid inhibitors improve glucose homeostasis in a transgenic mouse model of type 2 diabetes.

    PubMed

    Wijesekara, N; Ahrens, R; Wu, L; Ha, K; Liu, Y; Wheeler, M B; Fraser, P E

    2015-10-01

    Increasing evidence points to the cytotoxicity of islet amyloid polypeptide (IAPP) aggregates as a major contributor to the loss of β-cell mass in type 2 diabetes. Prevention of IAPP formation represents a potential treatment to increase β-cell survival and function. The IAPP inhibitory peptide, D-ANFLVH, has been previously shown to prevent islet amyloid accumulation in cultured human islets. To assess its activity in vivo, D-ANFLVH was administered by intraperitoneal injection into a human IAPP transgenic mouse model, which replicates type 2 diabetes islet amyloid pathology. The peptide was a potent inhibitor of islet amyloid deposition, resulting in reduced islet cell apoptosis and preservation of β-cell area leading to improved glucose tolerance. These findings provide support for a key role of islet amyloid in β-cell survival and validate the application of anti-amyloid compounds as therapeutic strategies to maintain normal insulin secretion in patients with type 2 diabetes. PMID:26095311

  5. Benzothiophene inhibitors of MK2. Part 2: Improvements in kinase selectivity and cell potency

    SciTech Connect

    Anderson, David R.; Meyers, Marvin J.; Kurumbail, Ravi G.; Caspers, Nicole; Poda, Gennadiy I.; Long, Scott A.; Pierce, Betsy S.; Mahoney, Matthew W.; Mourey, Robert J.; Parikh, Mihir D.; Pfizer

    2010-10-01

    Optimization of kinase selectivity for a set of benzothiophene MK2 inhibitors provided analogs with potencies of less than 500 nM in a cell based assay. The selectivity of the inhibitors can be rationalized by examination of X-ray crystal structures of inhibitors bound to MK2.

  6. Renoprotective Effect of Gemigliptin, a Dipeptidyl Peptidase-4 Inhibitor, in Streptozotocin-Induced Type 1 Diabetic Mice

    PubMed Central

    Jung, Gwon-Soo; Jeon, Jae-Han; Choe, Mi Sun; Kim, Sung-Woo; Lee, In-Kyu

    2016-01-01

    Background Dipeptidyl peptidase-4 (DPP-4) inhibitors are widely used in the treatment of patients with type 2 diabetes and have proven protective effects on diabetic kidney disease (DKD). Whether DPP-4 inhibitors have renoprotective effects on insulin-deficient type 1 diabetes has not been comprehensively examined. The aim of this study was to determine whether gemigliptin, a new DPP-4 inhibitor, has renoprotective effects in streptozotocin (STZ)-induced type 1 diabetic mice. Methods Diabetes was induced by intraperitoneal administration of a single dose of STZ. Mice with diabetes were treated without or with gemigliptin (300 mg/kg) for 8 weeks. Morphological changes of the glomerular basement membrane (GBM) were observed by electron microscopy and periodic-acid Schiff staining. In addition, we measured blood glucose and urinary albumin excretion and evaluated fibrotic markers using immunohistochemical staining, quantitative reverse transcription polymerase chain reaction analysis, and Western blot analysis. Results Gemigliptin did not reduce the blood glucose levels of STZ-treated mice. In gemigliptin-treated mice with STZ, a significant reduction in urinary albumin excretion and GBM thickness was observed. Immunohistological examination revealed that gemigliptin attenuated renal fibrosis induced by STZ and decreased extracellular matrix protein levels, including those of type I collagen and fibronectin, and Smad3 phosphorylation. In cultured rat renal cells, gemigliptin inhibited transforming growth factor β-stimulated type I collagen and fibronectin mRNA and protein levels via down-regulation of Smad3 phosphorylation. Conclusion Our data demonstrate that gemigliptin has renoprotective effects on DKD, regardless of its glucose-lowering effect, suggesting that it could be used to prevent DKD, including in patients with type 1 diabetes. PMID:27098503

  7. Dipeptidyl Peptidase-4 Inhibitor Decreases Abdominal Aortic Aneurysm Formation through GLP-1-Dependent Monocytic Activity in Mice

    PubMed Central

    Lu, Hsin Ying; Huang, Chun Yao; Shih, Chun Ming; Chang, Wei Hung; Tsai, Chein Sung; Lin, Feng Yen; Shih, Chun Che

    2015-01-01

    Abdominal aortic aneurysm (AAA) is a life-threatening situation affecting almost 10% of elders. There has been no effective medication for AAA other than surgical intervention. Dipeptidyl peptidase-4 (DPP-4) inhibitors have been shown to have a protective effect on cardiovascular disease. Whether DPP-4 inhibitors may be beneficial in the treatment of AAA is unclear. We investigated the effects of DPP-4 inhibitor sitagliptin on the angiotensin II (Ang II)-infused AAA formation in apoE-deficient (apoE-/-) mice. Mice with induced AAA were treated with placebo or 2.5, 5 or 10 mg/kg/day sitagliptin. Ang II-infused apoE-/- mice exhibited a 55.6% incidence of AAA formation, but treatment with sitagliptin decreased AAA formation. Specifically, administered sitagliptin in Ang II-infused mice exhibited decreased expansion of the suprarenal aorta, reduced elastin lamina degradation of the aorta, and diminished vascular inflammation by macrophage infiltration. Treatment with sitagliptin decreased gelatinolytic activity and apoptotic cells in aorta tissues. Sitaglipitn, additionally, was associated with increased levels of plasma active glucagon-like peptide-1 (GLP-1). In vitro studies, GLP-1 decreased reactive oxygen species (ROS) production, cell migration, and MMP-2 as well as MMP-9 activity in Ang II-stimulated monocytic cells. The results conclude that oral administration of sitagliptin can prevent abdominal aortic aneurysm formation in Ang II-infused apoE-/-mice, at least in part, by increasing of GLP-1 activity, decreasing MMP-2 and MMP-9 production from macrophage infiltration. The results indicate that sitagliptin may have therapeutic potential in preventing the development of AAA. PMID:25876091

  8. Ticagrelor--a new platelet aggregation inhibitor in patients with acute coronary syndromes. An improvement of other inhibitors?

    PubMed

    Kowalczyk, Mariusz; Banach, Maciej; Mikhailidis, Dimitri P; Hannam, Simon; Rysz, Jacek

    2009-12-01

    Antiplatelet agents play an essential role in the treatment of acute coronary syndrome (ACS). Thienopyridines are a class of drugs that function via inhibition of the adenosine diphosphate (ADP) P2Y12 platelet receptors. Currently, clopidogrel, a second generation thienopyridine, is the main drug of choice and the combination of aspirin and clopidogrel is administered orally for the treatment of ACS. Clopidogrel, is a pro-drug that needs to be metabolized in the liver and intestines to form active metabolites. Prasugrel, a third generation thienopyridine, was approved for use in Europe in February 2009, and is currently available in the United Kingdom. All thienopyridines however, have pharmacological limitations that lead to a search for more effective non-thienopyridine P2Y12 inhibitors. Promising results have been reported with ticagrelor, an oral first reversible, direct-acting inhibitor of the P2Y12 receptor. Ticagrelor is the first oral P2Y12 receptor binding antagonist that does not require metabolic activation. Furthermore, ticagrelor has at last 1 active metabolite, which has very similar pharmacokinetics to the parent compound. Therefore, ticagrelor has more rapid onset and more pronounced platelet inhibition than other antiplatelet agents. The safety and efficacy of ticagrelor compared with clopidogrel in ACS patient has been recently evaluated by the PLATelet inhibition and patient Outcomes (PLATO) trial. Ticagrelor compared with clopidogrel had a significantly greater reduction in the death rate from vascular causes, myocardial infarction, or stroke without major bleeding. There was however, an increase in non-procedure related bleeding, dyspnoea and ventricular pauses in the first week of treatment. Further studies on new antiplatelet agents are needed to establish a new "gold standard" antiplatelet therapy. PMID:19946242

  9. Adjunctive Phosphodiesterase-4 Inhibitor Therapy Improves Antibiotic Response to Pulmonary Tuberculosis in a Rabbit Model

    PubMed Central

    Subbian, Selvakumar; Tsenova, Liana; Holloway, Jennifer; Peixoto, Blas; O'Brien, Paul; Dartois, Véronique; Khetani, Vikram; Zeldis, Jerome B.; Kaplan, Gilla

    2016-01-01

    Objectives Adjunctive host-directed therapy is emerging as a new potential approach to improve the outcome of conventional antimicrobial treatment for tuberculosis (TB). We tested the ability of a phosphodiesterase-4 inhibitor (PDE4i) CC-11050, co-administered with the first-line anti-TB drug isoniazid (INH), to accelerate bacillary killing and reduce chronic inflammation in the lungs of rabbits with experimental Mycobacterium tuberculosis (Mtb) infection. Methods A rabbit model of pulmonary TB that recapitulates the pathologic manifestations seen in humans was used. Rabbits were infected with virulent Mtb by aerosol exposure and treated for eight weeks with INH with or without CC-11050, starting at four weeks post infection. The effect of CC-11050 treatment on disease severity, pathology, bacillary load, T cell proliferation and global lung transcriptome profiles were analyzed. Results Significant improvement in bacillary clearance and reduced lung pathology and fibrosis were noted in the rabbits treated for eight weeks with INH + CC-11050, compared to those treated with INH or CC-11050 only. In addition, expression of host genes associated with tissue remodeling, tumor necrosis factor alpha (TNF-α) regulation, macrophage activation and lung inflammation networks was dampened in CC-11050-treated, compared to the untreated rabbits. Conclusions Adjunctive CC-11050 therapy significantly improves the response of rabbits with experimental pulmonary TB to INH treatment. We propose that CC-11050 may be a promising candidate for host directed therapy of patients with pulmonary TB, reducing the duration and improving clinical outcome of antibiotic treatment. PMID:26981575

  10. Nanoparticle delivery of an AKT/PDK1 inhibitor improves the therapeutic effect in pancreatic cancer

    PubMed Central

    Lucero-Acuña, Armando; Jeffery, Justin J; Abril, Edward R; Nagle, Raymond B; Guzman, Roberto; Pagel, Mark D; Meuillet, Emmanuelle J

    2014-01-01

    The K-ras mutation in pancreatic cancer can inhibit drug delivery and increase drug resistance. This is exemplified by the therapeutic effect of PH-427, a small molecule inhibitor of AKT/PDK1, which has shown a good therapeutic effect against a BxPC3 pancreatic cancer model that has K-ras, but has a poor therapeutic effect against a MiaPaCa-2 pancreatic cancer model with mutant K-ras. To increase the therapeutic effect of PH-427 against the MiaPaCa-2 pancreatic cancer model with mutant K-ras, we encapsulated PH-427 into poly(lactic-co-glycolic acid) nanoparticles (PNP) to form drug-loaded PH-427-PNP. PH-427 showed a biphasic release from PH-427-PNP over 30 days during studies in sodium phosphate buffer, and in vitro studies revealed that the PNP was rapidly internalized into MiaPaCa-2 tumor cells, suggesting that PNP can improve PH-427 delivery into cells harboring mutant K-ras. In vivo studies of an orthotopic MiaPaCa-2 pancreatic cancer model showed reduced tumor load with PH-427-PNP as compared with treatment using PH-427 alone or with no treatment. Ex vivo studies confirmed the in vivo results, suggesting that PNP can improve drug delivery to pancreatic cancer harboring mutant K-ras. PMID:25516710

  11. Polyamine metabolism and osmotic stress. II. Improvement of oat protoplasts by an inhibitor of arginine decarboxylase

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Kaur-Sawhney, R.; Galston, A. W.

    1986-01-01

    We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with DL-alpha-difluoromethylarginine (DFMA), a specific 'suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role.

  12. Improved Synthesis of Chiral Pyrrolidine Inhibitors and Their Binding Properties to Neuronal Nitric Oxide Synthase

    PubMed Central

    Xue, Fengtian; Kraus, James M.; Labby, Kristin Jansen; Ji, Haitao; Mataka, Jan; Xia, Guoyao; Li, Huiying; Delker, Silvia L.; Roman, Linda J.; Martásek, Pavel; Poulos, Thomas L.; Silverman, Richard B.

    2011-01-01

    We report an efficient synthetic route to chiral pyrrolidine inhibitors of neuronal nitric oxide synthase (nNOS) and crystal structures of the inhibitors bound to nNOS and to endothelial NOS. The new route enables versatile structure activity relationship studies on the pyrrolidine-based scaffold, which can be beneficial for further development of nNOS inhibitors. The X-ray crystal structures of three new fluorine-containing inhibitors bound to nNOS provide insights into the effect of the fluorine atoms on binding. PMID:21809851

  13. The effects of dipeptidyl peptidase-4 inhibition on microvascular diabetes complications.

    PubMed

    Avogaro, Angelo; Fadini, Gian Paolo

    2014-10-01

    We performed a review of the literature to determine whether the dipeptidyl peptidase-4 inhibitors (DPP4-I) may have the capability to directly and positively influence diabetic microvascular complications. The literature was scanned to identify experimental and clinical evidence that DPP4-I can ameliorate diabetic microangiopathy. We retrieved articles published between 1 January 1980 and 1 March 2014 in English-language peer-reviewed journals using the following terms: ("diabetes" OR "diabetic") AND ("retinopathy" OR "retinal" OR "nephropathy" OR "renal" OR "albuminuria" OR "microalbuminuria" OR "neuropathy" OR "ulcer" OR "wound" OR "bone marrow"); ("dipeptidyl peptidase-4" OR "dipeptidyl peptidase-IV" OR "DPP-4" OR "DPP-IV"); and ("inhibition" OR "inhibitor"). Experimentally, DPP4-I appears to improve inflammation, endothelial function, blood pressure, lipid metabolism, and bone marrow function. Several experimental studies report direct potential beneficial effects of DPP4-I on all microvascular diabetes-related complications. These drugs have the ability to act either directly or indirectly via improved glucose control, GLP-1 bioavailability, and modifying nonincretin substrates. Although preliminary clinical data support that DPP4-I therapy can protect from microangiopathy, insufficient evidence is available to conclude that this class of drugs directly prevents or decreases microangiopathy in humans independently from improved glucose control. Experimental findings and preliminary clinical data suggest that DPP4-I, in addition to improving metabolic control, have the potential to interfere with the onset and progression of diabetic microangiopathy. Further evidence is needed to confirm these effects in patients with diabetes. PMID:25249673

  14. Phosphomannose Isomerase Inhibitors Improve N-Glycosylation in Selected Phosphomannomutase-deficient Fibroblasts*

    PubMed Central

    Sharma, Vandana; Ichikawa, Mie; He, Ping; Bravo, Yalda; Dahl, Russell; Ng, Bobby G.; Cosford, Nicholas D. P.; Freeze, Hudson H.

    2011-01-01

    Congenital disorders of glycosylation (CDG) are rare genetic disorders due to impaired glycosylation. The patients with subtypes CDG-Ia and CDG-Ib have mutations in the genes encoding phosphomannomutase 2 (PMM2) and phosphomannose isomerase (MPI or PMI), respectively. PMM2 (mannose 6-phosphate → mannose 1-phosphate) and MPI (mannose 6-phosphate ⇔ fructose 6-phosphate) deficiencies reduce the metabolic flux of mannose 6-phosphate (Man-6-P) into glycosylation, resulting in unoccupied N-glycosylation sites. Both PMM2 and MPI compete for the same substrate, Man-6-P. Daily mannose doses reverse most of the symptoms of MPI-deficient CDG-Ib patients. However, CDG-Ia patients do not benefit from mannose supplementation because >95% Man-6-P is catabolized by MPI. We hypothesized that inhibiting MPI enzymatic activity would provide more Man-6-P for glycosylation and possibly benefit CDG-Ia patients with residual PMM2 activity. Here we show that MLS0315771, a potent MPI inhibitor from the benzoisothiazolone series, diverts Man-6-P toward glycosylation in various cell lines including fibroblasts from CDG-Ia patients and improves N-glycosylation. Finally, we show that MLS0315771 increases mannose metabolic flux toward glycosylation in zebrafish embryos. PMID:21949237

  15. Improvement of dolichol-linked oligosaccharide biosynthesis by the squalene synthase inhibitor zaragozic acid.

    PubMed

    Haeuptle, Micha A; Welti, Michael; Troxler, Heinz; Hülsmeier, Andreas J; Imbach, Timo; Hennet, Thierry

    2011-02-25

    The majority of congenital disorders of glycosylation (CDG) are caused by defects of dolichol (Dol)-linked oligosaccharide assembly, which lead to under-occupancy of N-glycosylation sites. Most mutations encountered in CDG are hypomorphic, thus leaving residual activity to the affected biosynthetic enzymes. We hypothesized that increased cellular levels of Dol-linked substrates might compensate for the low biosynthetic activity and thereby improve the output of protein N-glycosylation in CDG. To this end, we investigated the potential of the squalene synthase inhibitor zaragozic acid A to redirect the flow of the polyisoprene pathway toward Dol by lowering cholesterol biosynthesis. The addition of zaragozic acid A to CDG fibroblasts with a Dol-P-Man synthase defect led to the formation of longer Dol-P species and to increased Dol-P-Man levels. This treatment was shown to decrease the pathologic accumulation of incomplete Dol pyrophosphate-GlcNAc(2)Man(5) in Dol-P-Man synthase-deficient fibroblasts. Zaragozic acid A treatment also decreased the amount of truncated protein N-linked oligosaccharides in these CDG fibroblasts. The increased cellular levels of Dol-P-Man and possibly the decreased cholesterol levels in zaragozic acid A-treated cells also led to increased availability of the glycosylphosphatidylinositol anchor as shown by the elevated cell-surface expression of the CD59 protein. This study shows that manipulation of the cellular Dol pool, as achieved by zaragozic acid A addition, may represent a valuable approach to improve N-linked glycosylation in CDG cells. PMID:21183681

  16. Improvement of Dolichol-linked Oligosaccharide Biosynthesis by the Squalene Synthase Inhibitor Zaragozic Acid*

    PubMed Central

    Haeuptle, Micha A.; Welti, Michael; Troxler, Heinz; Hülsmeier, Andreas J.; Imbach, Timo; Hennet, Thierry

    2011-01-01

    The majority of congenital disorders of glycosylation (CDG) are caused by defects of dolichol (Dol)-linked oligosaccharide assembly, which lead to under-occupancy of N-glycosylation sites. Most mutations encountered in CDG are hypomorphic, thus leaving residual activity to the affected biosynthetic enzymes. We hypothesized that increased cellular levels of Dol-linked substrates might compensate for the low biosynthetic activity and thereby improve the output of protein N-glycosylation in CDG. To this end, we investigated the potential of the squalene synthase inhibitor zaragozic acid A to redirect the flow of the polyisoprene pathway toward Dol by lowering cholesterol biosynthesis. The addition of zaragozic acid A to CDG fibroblasts with a Dol-P-Man synthase defect led to the formation of longer Dol-P species and to increased Dol-P-Man levels. This treatment was shown to decrease the pathologic accumulation of incomplete Dol pyrophosphate-GlcNAc2Man5 in Dol-P-Man synthase-deficient fibroblasts. Zaragozic acid A treatment also decreased the amount of truncated protein N-linked oligosaccharides in these CDG fibroblasts. The increased cellular levels of Dol-P-Man and possibly the decreased cholesterol levels in zaragozic acid A-treated cells also led to increased availability of the glycosylphosphatidylinositol anchor as shown by the elevated cell-surface expression of the CD59 protein. This study shows that manipulation of the cellular Dol pool, as achieved by zaragozic acid A addition, may represent a valuable approach to improve N-linked glycosylation in CDG cells. PMID:21183681

  17. Bicyclic-Capped Histone Deacetylase 6 Inhibitors with Improved Activity in a Model of Axonal Charcot-Marie-Tooth Disease.

    PubMed

    Shen, Sida; Benoy, Veronick; Bergman, Joel A; Kalin, Jay H; Frojuello, Mariana; Vistoli, Giulio; Haeck, Wanda; Van Den Bosch, Ludo; Kozikowski, Alan P

    2016-02-17

    Charcot-Marie-Tooth (CMT) disease is a disorder of the peripheral nervous system where progressive degeneration of motor and sensory nerves leads to motor problems and sensory loss and for which no pharmacological treatment is available. Recently, it has been shown in a model for the axonal form of CMT that histone deacetylase 6 (HDAC6) can serve as a target for the development of a pharmacological therapy. Therefore, we aimed at developing new selective and activity-specific HDAC6 inhibitors with improved biochemical properties. By utilizing a bicyclic cap as the structural scaffold from which to build upon, we developed several analogues that showed improved potency compared to tubastatin A while maintaining excellent selectivity compared to HDAC1. Further screening in N2a cells examining both the acetylation of α-tubulin and histones narrowed down the library of compounds to three potent and selective HDAC6 inhibitors. In mutant HSPB1-expressing DRG neurons, serving as an in vitro model for CMT2, these inhibitors were able to restore the mitochondrial axonal transport deficits. Combining structure-based development of HDAC6 inhibitors, screening in N2a cells and in a neuronal model for CMT2F, and preliminary ADMET and pharmacokinetic profiles, resulted in the selection of compound 23d that possesses improved biochemical, functional, and druglike properties compared to tubastatin A. PMID:26599234

  18. Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: systematic review and meta-analysis of randomised and observational studies

    PubMed Central

    Li, Ling; Li, Sheyu; Deng, Ke; Liu, Jiali; Vandvik, Per Olav; Zhao, Pujing; Zhang, Longhao; Shen, Jiantong; Bala, Malgorzata M; Sohani, Zahra N; Wong, Evelyn; Busse, Jason W; Ebrahim, Shanil; Malaga, German; Rios, Lorena P; Wang, Yingqiang; Chen, Qunfei; Guyatt, Gordon H

    2016-01-01

    Objectives To examine the association between dipeptidyl peptidase-4 (DPP-4) inhibitors and the risk of heart failure or hospital admission for heart failure in patients with type 2 diabetes. Design Systematic review and meta-analysis of randomised and observational studies. Data sources Medline, Embase, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov searched up to 25 June 2015, and communication with experts. Eligibility criteria Randomised controlled trials, non-randomised controlled trials, cohort studies, and case-control studies that compared DPP-4 inhibitors against placebo, lifestyle modification, or active antidiabetic drugs in adults with type 2 diabetes, and explicitly reported the outcome of heart failure or hospital admission for heart failure. Data collection and analysis Teams of paired reviewers independently screened for eligible studies, assessed risk of bias, and extracted data using standardised, pilot tested forms. Data from trials and observational studies were pooled separately; quality of evidence was assessed by the GRADE approach. Results Eligible studies included 43 trials (n=68 775) and 12 observational studies (nine cohort studies, three nested case-control studies; n=1 777 358). Pooling of 38 trials reporting heart failure provided low quality evidence for a possible similar risk of heart failure between DPP-4 inhibitor use versus control (42/15 701 v 33/12 591; odds ratio 0.97 (95% confidence interval 0.61 to 1.56); risk difference 2 fewer (19 fewer to 28 more) events per 1000 patients with type 2 diabetes over five years). The observational studies provided effect estimates generally consistent with trial findings, but with very low quality evidence. Pooling of the five trials reporting admission for heart failure provided moderate quality evidence for an increased risk in patients treated with DPP-4 inhibitors versus control (622/18 554 v 552/18 474; 1.13 (1.00 to 1.26); 8 more (0 more to

  19. Structural Basis of Resistance to Anti-Cytochrome bc1 Complex Inhibitors: Implication for Drug Improvement

    PubMed Central

    Esser, Lothar; Yu, Chang-An; Xia, Di

    2016-01-01

    The emergence of drug resistance has devastating economic and social consequences, a testimonial of which is the rise and fall of inhibitors against the respiratory component cytochrome bc1 complex, a time tested and highly effective target for disease control. Unfortunately, the mechanism of resistance is a multivariate problem, including primarily mutations in the gene of the cytochrome b subunit but also activation of alternative pathways of ubiquinol oxidation and pharmacokinetic effects. There is a considerable interest in designing new bc1 inhibitors with novel modes of binding and lower propensity to induce the development of resistance. The accumulation of crystallographic data of bc1 complexes with and without inhibitors bound provides the structural basis for rational drug design. In particular, the cytochrome b subunit offers two distinct active sites that can be targeted for inhibition - the quinol oxidation site and the quinone reduction site. This review brings together available structural information of inhibited bc1 by various quinol oxidation- and reduction-site inhibitors, the inhibitor binding modes, conformational changes upon inhibitor binding of side chains in the active site and large scale domain movements of the iron-sulfur protein subunit. Structural data analysis provides a clear understanding of where and why existing inhibitors fail and points towards promising alternatives. PMID:23688079

  20. Lipid nanoparticle delivery of a microRNA-145 inhibitor improves experimental pulmonary hypertension.

    PubMed

    McLendon, Jared M; Joshi, Sachindra R; Sparks, Jeff; Matar, Majed; Fewell, Jason G; Abe, Kohtaro; Oka, Masahiko; McMurtry, Ivan F; Gerthoffer, William T

    2015-07-28

    pathology, and histopathology and did not detect significant off-target effects. AntimiR-145 reduced the degree of pulmonary arteriopathy, reduced the severity of pulmonary hypertension, and reduced the degree of cardiac dysfunction. The results establish effective and low toxicity of lung delivery of a miRNA-145 inhibitor using functionalized cationic lipopolyamine nanoparticles to repair pulmonary arteriopathy and improve cardiac function in rats with severe PAH. PMID:25979327

  1. Febuxostat, a novel xanthine oxidoreductase inhibitor, improves hypertension and endothelial dysfunction in spontaneously hypertensive rats.

    PubMed

    Shirakura, Takashi; Nomura, Johji; Matsui, Chieko; Kobayashi, Tsunefumi; Tamura, Mizuho; Masuzaki, Hiroaki

    2016-08-01

    Xanthine oxidase (XO) is an enzyme responsible for the production of uric acid. XO produces considerable amount of oxidative stress throughout the body. To date, however, its pathophysiologic role in hypertension and endothelial dysfunction still remains controversial. To explore the possible involvement of XO-derived oxidative stress in the pathophysiology of vascular dysfunction, by use of a selective XO inhibitor, febuxostat, we investigated the impact of pharmacological inhibition of XO on hypertension and vascular endothelial dysfunction in spontaneously hypertensive rats (SHRs). Sixteen-week-old SHR and normotensive Wistar-Kyoto (WKY) rats were treated with tap water (control) or water containing febuxostat (3 mg/kg/day) for 6 weeks. Systolic blood pressure (SBP) in febuxostat-treated SHR (220 ± 3 mmHg) was significantly (P < 0.05) decreased compared with the control SHR (236 ± 4 mmHg) while SBP in febuxostat-treated WKY was constant. Acetylcholine-induced endothelium-dependent relaxation in aortas from febuxostat-treated SHR was significantly (P < 0.05) improved compared with the control SHR, whereas relaxation in response to sodium nitroprusside was not changed. Vascular XO activity and tissue nitrotyrosine level, a representative indicator of local oxidative stress, were considerably elevated in the control SHR compared with the control WKY, and this increment was abolished by febuxostat. Our results suggest that exaggerated XO activity and resultant increase in oxidative stress in this experimental model contribute to the hypertension and endothelial dysfunction, thereby supporting a notion that pharmacological inhibition of XO is valuable not only for hyperuricemia but also for treating hypertension and related endothelial dysfunction in human clinics. PMID:27198514

  2. Farnesyl pyrophosphate synthase inhibitor, ibandronate, improves endothelial function in spontaneously hypertensive rats

    PubMed Central

    HAN, JIE; JIANG, DONG-MEI; YE, YANG; DU, CHANG-QING; YANG, JIAN; HU, SHEN-JIANG

    2016-01-01

    Reactive oxygen species (ROS), originating predominantly from vascular smooth muscle cells (VSMCs), lead to vascular damage and endothelial dysfunction in rats with hypertension. The downstream signaling pathways of farnesyl pyrophosphate (FPP) synthase, Ras-related C3 botulinum toxin substrate 1 (Rac1) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, mediate the generation of ROS. The present study investigated the effect of the FPP synthase inhibitor, ibandronate, on ROS production, the possible beneficial effect on endothelial dysfunction and the underlying mechanisms in spontaneously hypertensive rats (SHRs). The SHRs were treated with ibandronate for 30 days. Endothelium-dependent and independent vasorelaxation were measured in isolated aortic rings. Additionally, VSMCs from the SHRs and Wistar-Kyoto (WKY) rats were cultured. The production of ROS and activation of NADPH oxidase were determined using fluorescence and chemiluminescence, respectively, in vivo and in vitro. Angiotensin II (Ang II) increased ROS production in the cultured VSMCs from the WKY rats and SHRs, in a concentration-dependent manner. The Ang II-induced responses were more marked in the SHR VSMCs, compare with those in the WKY VSMCs, however, the response decreased significantly following ibandronate pretreatment. Treatment with ibandronate significantly decreased the production of ROS, translocation of NADPH oxidase subunit p47phox, and activities of NADPH oxidase and Rac1 in the aorta and VSMCs, and improved the impaired endothelium-dependent vasodilation in the SHRs. Adding geranylgeraniol, but not farnesol or mevalonate, reversed the inhibitory effects of ibandronate. In addition, inhibiting geranylgeranyl-transferase mimicked the effect of ibandronate on the excess oxidative response. Ibandronate exerted cellular antioxidant effects through the Rac1/NADPH oxidase pathway. These effects may have contributed to the vasoprotective effects on the impaired endothelium in

  3. Tyrosine kinase inhibitor NVP-BGJ398 functionally improves FGFR3-related dwarfism in mouse model.

    PubMed

    Komla-Ebri, Davide; Dambroise, Emilie; Kramer, Ina; Benoist-Lasselin, Catherine; Kaci, Nabil; Le Gall, Cindy; Martin, Ludovic; Busca, Patricia; Barbault, Florent; Graus-Porta, Diana; Munnich, Arnold; Kneissel, Michaela; Di Rocco, Federico; Biosse-Duplan, Martin; Legeai-Mallet, Laurence

    2016-05-01

    Achondroplasia (ACH) is the most frequent form of dwarfism and is caused by gain-of-function mutations in the fibroblast growth factor receptor 3-encoding (FGFR3-encoding) gene. Although potential therapeutic strategies for ACH, which aim to reduce excessive FGFR3 activation, have emerged over many years, the use of tyrosine kinase inhibitor (TKI) to counteract FGFR3 hyperactivity has yet to be evaluated. Here, we have reported that the pan-FGFR TKI, NVP-BGJ398, reduces FGFR3 phosphorylation and corrects the abnormal femoral growth plate and calvaria in organ cultures from embryos of the Fgfr3Y367C/+ mouse model of ACH. Moreover, we demonstrated that a low dose of NVP-BGJ398, injected subcutaneously, was able to penetrate into the growth plate of Fgfr3Y367C/+ mice and modify its organization. Improvements to the axial and appendicular skeletons were noticeable after 10 days of treatment and were more extensive after 15 days of treatment that started from postnatal day 1. Low-dose NVP-BGJ398 treatment reduced intervertebral disc defects of lumbar vertebrae, loss of synchondroses, and foramen-magnum shape anomalies. NVP-BGJ398 inhibited FGFR3 downstream signaling pathways, including MAPK, SOX9, STAT1, and PLCγ, in the growth plates of Fgfr3Y367C/+ mice and in cultured chondrocyte models of ACH. Together, our data demonstrate that NVP-BGJ398 corrects pathological hallmarks of ACH and support TKIs as a potential therapeutic approach for ACH. PMID:27064282

  4. Farnesyl pyrophosphate synthase inhibitor, ibandronate, improves endothelial function in spontaneously hypertensive rats.

    PubMed

    Han, Jie; Jiang, Dong-Mei; Ye, Yang; Du, Chang-Qing; Yang, Jian; Hu, Shen-Jiang

    2016-05-01

    Reactive oxygen species (ROS), originating predominantly from vascular smooth muscle cells (VSMCs), lead to vascular damage and endothelial dysfunction in rats with hypertension. The downstream signaling pathways of farnesyl pyrophosphate (FPP) synthase, Ras-related C3 botulinum toxin substrate 1 (Rac1) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, mediate the generation of ROS. The present study investigated the effect of the FPP synthase inhibitor, ibandronate, on ROS production, the possible beneficial effect on endothelial dysfunction and the underlying mechanisms in spontaneously hypertensive rats (SHRs). The SHRs were treated with ibandronate for 30 days. Endothelium‑dependent and independent vasorelaxation were measured in isolated aortic rings. Additionally, VSMCs from the SHRs and Wistar‑Kyoto (WKY) rats were cultured. The production of ROS and activation of NADPH oxidase were determined using fluorescence and chemiluminescence, respectively, in vivo and in vitro. Angiotensin II (Ang II) increased ROS production in the cultured VSMCs from the WKY rats and SHRs, in a concentration‑dependent manner. The Ang II‑induced responses were more marked in the SHR VSMCs, compare with those in the WKY VSMCs, however, the response decreased significantly following ibandronate pretreatment. Treatment with ibandronate significantly decreased the production of ROS, translocation of NADPH oxidase subunit p47phox, and activities of NADPH oxidase and Rac1 in the aorta and VSMCs, and improved the impaired endothelium‑dependent vasodilation in the SHRs. Adding geranylgeraniol, but not farnesol or mevalonate, reversed the inhibitory effects of ibandronate. In addition, inhibiting geranylgeranyl-transferase mimicked the effect of ibandronate on the excess oxidative response. Ibandronate exerted cellular antioxidant effects through the Rac1/NADPH oxidase pathway. These effects may have contributed to the vasoprotective effects on the impaired

  5. Tyrosine kinase inhibitor NVP-BGJ398 functionally improves FGFR3-related dwarfism in mouse model

    PubMed Central

    Dambroise, Emilie; Kramer, Ina; Benoist-Lasselin, Catherine; Kaci, Nabil; Le Gall, Cindy; Martin, Ludovic; Busca, Patricia; Barbault, Florent; Graus-Porta, Diana; Munnich, Arnold; Kneissel, Michaela; Di Rocco, Federico; Biosse-Duplan, Martin

    2016-01-01

    Achondroplasia (ACH) is the most frequent form of dwarfism and is caused by gain-of-function mutations in the fibroblast growth factor receptor 3–encoding (FGFR3-encoding) gene. Although potential therapeutic strategies for ACH, which aim to reduce excessive FGFR3 activation, have emerged over many years, the use of tyrosine kinase inhibitor (TKI) to counteract FGFR3 hyperactivity has yet to be evaluated. Here, we have reported that the pan-FGFR TKI, NVP-BGJ398, reduces FGFR3 phosphorylation and corrects the abnormal femoral growth plate and calvaria in organ cultures from embryos of the Fgfr3Y367C/+ mouse model of ACH. Moreover, we demonstrated that a low dose of NVP-BGJ398, injected subcutaneously, was able to penetrate into the growth plate of Fgfr3Y367C/+ mice and modify its organization. Improvements to the axial and appendicular skeletons were noticeable after 10 days of treatment and were more extensive after 15 days of treatment that started from postnatal day 1. Low-dose NVP-BGJ398 treatment reduced intervertebral disc defects of lumbar vertebrae, loss of synchondroses, and foramen-magnum shape anomalies. NVP-BGJ398 inhibited FGFR3 downstream signaling pathways, including MAPK, SOX9, STAT1, and PLCγ, in the growth plates of Fgfr3Y367C/+ mice and in cultured chondrocyte models of ACH. Together, our data demonstrate that NVP-BGJ398 corrects pathological hallmarks of ACH and support TKIs as a potential therapeutic approach for ACH. PMID:27064282

  6. The efflux pump inhibitor timcodar improves the potency of antimycobacterial agents.

    PubMed

    Grossman, Trudy H; Shoen, Carolyn M; Jones, Steven M; Jones, Peter L; Cynamon, Michael H; Locher, Christopher P

    2015-03-01

    Previous studies indicated that inhibition of efflux pumps augments tuberculosis therapy. In this study, we used timcodar (formerly VX-853) to determine if this efflux pump inhibitor could increase the potency of antituberculosis (anti-TB) drugs against Mycobacterium tuberculosis in in vitro and in vivo combination studies. When used alone, timcodar weakly inhibited M. tuberculosis growth in broth culture (MIC, 19 μg/ml); however, it demonstrated synergism in drug combination studies with rifampin, bedaquiline, and clofazimine but not with other anti-TB agents. When M. tuberculosis was cultured in host macrophage cells, timcodar had about a 10-fold increase (50% inhibitory concentration, 1.9 μg/ml) in the growth inhibition of M. tuberculosis and demonstrated synergy with rifampin, moxifloxacin, and bedaquiline. In a mouse model of tuberculosis lung infection, timcodar potentiated the efficacies of rifampin and isoniazid, conferring 1.0 and 0.4 log10 reductions in bacterial burden in lung, respectively, compared to the efficacy of each drug alone. Furthermore, timcodar reduced the likelihood of a relapse infection when evaluated in a mouse model of long-term, chronic infection with treatment with a combination of rifampin, isoniazid, and timcodar. Although timcodar had no effect on the pharmacokinetics of rifampin in plasma and lung, it did increase the plasma exposure of bedaquiline. These data suggest that the antimycobacterial drug-potentiating activity of timcodar is complex and drug dependent and involves both bacterial and host-targeted mechanisms. Further study of the improvement of the potency of antimycobacterial drugs and drug candidates when used in combination with timcodar is warranted. PMID:25534740

  7. Improved Histone Deacetylase Inhibitors as Therapeutics for the Neurodegenerative Disease Friedreich's Ataxia: A New Synthetic Route

    PubMed Central

    Xu, Chunping; Soragni, Elisabetta; Jacques, Vincent; Rusche, James R.; Gottesfeld, Joel M.

    2011-01-01

    Friedreich's ataxia (FRDA) is caused by transcriptional repression of the nuclear FXN gene encoding the essential mitochondrial protein frataxin. Based on the hypothesis that the acetylation state of the histone proteins is responsible for gene silencing in FRDA, previous work in our lab identified a first generation of HDAC inhibitors (pimelic o-aminobenzamides), which increase FXN mRNA in lymphocytes from FRDA patients. Importantly, these compounds also function in a FRDA mouse model to increase FXN mRNA levels in the brain and heart. While the first generation of HDAC inhibitors hold promise as potential therapeutics for FRDA, they have two potential problems: less than optimal brain penetration and metabolic instability in acidic conditions. Extensive optimization focusing on modifying the left benzene ring, linker and the right benzene ring lead to a novel class of HDAC inhibitors that have optimized pharmacological properties (increased brain penetration and acid stability) compared to the previous HDAC inhibitors. This article will describe the chemical synthesis and pharmacological properties of these new HDAC inhibitors.

  8. Evaluation of Improved Glycogen Synthase Kinase-3α Inhibitors in Models of Acute Myeloid Leukemia

    PubMed Central

    Neumann, Theresa; Benajiba, Lina; Göring, Stefan; Stegmaier, Kimberly; Schmidt, Boris

    2016-01-01

    The challenge for Glycogen Synthase Kinase-3 (GSK-3) inhibitor design lies in achieving high selectivity for one isoform over the other. The therapy of certain diseases, such as acute myeloid leukemia (AML) may require α-isoform specific targeting. The scorpion shaped GSK-3 inhibitors developed by our group achieved the highest GSK-3α selectivity reported so far, but suffered from insufficient aqueous solubility. This work presents the solubility-driven optimization of our isoform-selective inhibitors using a scorpion shaped lead. Among 15 novel compounds, compound 27 showed high activity against GSK-3α/β with the highest GSK-3α selectivity reported to date. Compound 27 was profiled for bioavailability and toxicity in a zebrafish embryo phenotype assay. Selective GSK-3α targeting in AML cell lines was achieved with compound 27, resulting in a strong differentiation phenotype and colony formation impairment, confirming the potential of GSK-3α inhibition in AML therapy. PMID:26496242

  9. Dipeptidyl peptidase-4 inhibitors can minimize the hypoglycaemic burden and enhance safety in elderly people with diabetes.

    PubMed

    Avogaro, A; Dardano, A; de Kreutzenberg, S V; Del Prato, S

    2015-02-01

    The prevalence of type 2 diabetes mellitus (T2DM) among elderly people is increasing. Often associated with disabilities/comorbidities, T2DM lowers the chances of successful aging and is independently associated with frailty and an increased risk of hypoglycaemia, which can be further exacerbated by antihyperglycaemic treatment. From this perspective, the clinical management of T2DM in the elderly is challenging and requires individualization of optimum glycaemic targets depending on comorbidities, cognitive functioning and ability to recognize and self-manage the disease. The lack of solid evidence-based medicine supporting treatment guidelines for older people with diabetes further complicates the matter. Several classes of medicine for the treatment of T2DM are currently available and different drug combinations are often required to achieve individualized glycaemic goals. Many of these drugs, however, carry disadvantages such as the propensity to cause weight gain or hypoglycaemia. Dipeptidyl peptidase-4 (DPP-4) inhibitors, a recent addition to the pharmacological armamentarium, have become widely accepted in clinical practice because of their efficacy, low risk of hypoglycaemia, neutral effect on body weight, and apparently greater safety in patients with kidney failure. Although more information is needed to reach definitive conclusions, growing evidence suggests that DPP-4 inhibitors may become a valuable component in the pharmacological management of elderly people with T2DM. The present review aims to delineate the potential advantages of this pharmacological approach in the treatment of elderly people with T2DM. PMID:24867662

  10. Pharmacokinetic and pharmacodynamic interactions between metformin and a novel dipeptidyl peptidase-4 inhibitor, evogliptin, in healthy subjects.

    PubMed

    Rhee, Su-Jin; Choi, YoonJung; Lee, SeungHwan; Oh, Jaeseong; Kim, Sung-Jin; Yoon, Seo Hyun; Cho, Joo-Youn; Yu, Kyung-Sang

    2016-01-01

    Evogliptin is a newly developed dipeptidyl peptidase-4 (DPP-4) inhibitor, which is expected to be combined with metformin for treating type 2 diabetes mellitus. We investigated the potential pharmacokinetic and pharmacodynamic interactions between evogliptin and metformin. A randomized, open-label, multiple-dose, six-sequence, three-period crossover study was conducted in 36 healthy male subjects. All subjects received three treatments, separated by 7-day washout intervals: evogliptin, 5 mg od for 7 days (EVO); metformin IR, 1,000 mg bid for 7 days (MET); and the combination of EVO and MET (EVO + MET). After the last dose in a period, serial blood samples were collected for 24 hours for pharmacokinetic assessments. During steady state, serial blood samples were collected for 2 hours after an oral glucose tolerance test, and DPP-4, active glucagon-like peptide-1, glucose, glucagon, insulin, and C-peptide were measured to assess pharmacodynamic properties. EVO + MET and EVO showed similar steady state maximum concentration and area under the concentration-time curve at steady state values for evogliptin; the geometric mean ratios (90% confidence interval) were 1.06 (1.01-1.12) and 1.02 (0.99-1.06), respectively. EVO + MET slightly reduced steady state maximum concentration and area under the concentration-time curve at steady state values for metformin compared to MET, with geometric mean ratios (90% confidence interval) of 0.84 (0.79-0.89) and 0.94 (0.89-0.98), respectively. EVO + MET and EVO had similar DPP-4 inhibition efficacy, but EVO + MET increased active glucagon-like peptide-1 and reduced glucose to larger extents than either EVO or MET alone. Our results suggested that EVO+MET could provide therapeutic benefits without clinically significant pharmacokinetic interactions. Thus, the EVO + MET combination is a promising option for treating type 2 diabetes mellitus. PMID:27570447

  11. Pharmacokinetic and pharmacodynamic interactions between metformin and a novel dipeptidyl peptidase-4 inhibitor, evogliptin, in healthy subjects

    PubMed Central

    Rhee, Su-jin; Choi, YoonJung; Lee, SeungHwan; Oh, Jaeseong; Kim, Sung-Jin; Yoon, Seo Hyun; Cho, Joo-Youn; Yu, Kyung-Sang

    2016-01-01

    Evogliptin is a newly developed dipeptidyl peptidase-4 (DPP-4) inhibitor, which is expected to be combined with metformin for treating type 2 diabetes mellitus. We investigated the potential pharmacokinetic and pharmacodynamic interactions between evogliptin and metformin. A randomized, open-label, multiple-dose, six-sequence, three-period crossover study was conducted in 36 healthy male subjects. All subjects received three treatments, separated by 7-day washout intervals: evogliptin, 5 mg od for 7 days (EVO); metformin IR, 1,000 mg bid for 7 days (MET); and the combination of EVO and MET (EVO + MET). After the last dose in a period, serial blood samples were collected for 24 hours for pharmacokinetic assessments. During steady state, serial blood samples were collected for 2 hours after an oral glucose tolerance test, and DPP-4, active glucagon-like peptide-1, glucose, glucagon, insulin, and C-peptide were measured to assess pharmacodynamic properties. EVO + MET and EVO showed similar steady state maximum concentration and area under the concentration–time curve at steady state values for evogliptin; the geometric mean ratios (90% confidence interval) were 1.06 (1.01–1.12) and 1.02 (0.99–1.06), respectively. EVO + MET slightly reduced steady state maximum concentration and area under the concentration–time curve at steady state values for metformin compared to MET, with geometric mean ratios (90% confidence interval) of 0.84 (0.79–0.89) and 0.94 (0.89–0.98), respectively. EVO + MET and EVO had similar DPP-4 inhibition efficacy, but EVO + MET increased active glucagon-like peptide-1 and reduced glucose to larger extents than either EVO or MET alone. Our results suggested that EVO+MET could provide therapeutic benefits without clinically significant pharmacokinetic interactions. Thus, the EVO + MET combination is a promising option for treating type 2 diabetes mellitus. PMID:27570447

  12. Advances in bypassing agent therapy for hemophilia patients with inhibitors to close care gaps and improve outcomes.

    PubMed

    Shapiro, Amy D; Hedner, Ulla

    2011-10-01

    In the past, patients with hemophilia and inhibitors have had less-than-optimal treatment and have experienced more orthopedic complications than patients without inhibitors. Bypassing agents offer the potential to close treatment gaps between inhibitor and noninhibitor patients by helping the former better attain key treatment goals, including: facilitating early initiation of treatment and hemostatic control in hemarthroses; providing effective treatment in serious hemorrhagic episodes; and performance of major surgery. Effective treatment with a bypassing agent minimizes joint and/or muscle damage and potentially can serve as an effective prophylactic agent to minimize the number of hemarthroses experienced per year, thereby mitigating the development of arthropathy. The reported efficacy of the currently available bypassing agents ranges from approximately 50-80% (50-64% in controlled studies) for plasma-derived activated prothrombin complex concentrate (pd-aPCC) and 81-91% (in controlled studies) for recombinant activated factor VII (rFVIIa), including use in major orthopedic surgery. Both bypassing agents have undergone key improvements in their formulation and/or properties in recent years. The nanofiltered, vapor-heated formulation of pd-aPCC has diminished the risk of acquiring blood-borne viral infections and the room temperature stable formulation of rFVIIa allows more convenient storage, increased ease to dissolve and inject, and smaller volumes, thereby increasing overall ease of administration. Use of recommended dosing has been demonstrated to provide effective hemostasis with a minimal number of injections for both agents. In this paper, we review the individual characteristics of pd-aPCC and rFVIIa and discuss clinical data from studies conducted in inhibitor patients that demonstrate the potential benefits of these bypassing agents in this difficult-to-treat population, and underscore the potential opportunities to close the gap in care between

  13. A chemical tuned strategy to develop novel irreversible EGFR-TK inhibitors with improved safety and pharmacokinetic profiles.

    PubMed

    Xia, Guangxin; Chen, Wenteng; Zhang, Jing; Shao, Jiaan; Zhang, Yong; Huang, Wei; Zhang, Leduo; Qi, Weixing; Sun, Xing; Li, Bojun; Xiang, Zhixiong; Ma, Chen; Xu, Jia; Deng, Hailin; Li, Yufeng; Li, Ping; Miao, Hong; Han, Jiansheng; Liu, Yanjun; Shen, Jingkang; Yu, Yongping

    2014-12-11

    Gatekeeper T790 M mutation in EGFR is the most prevalent factor underlying acquired resistance. Acrylamide-bearing quinazoline derivatives are powerful irreversible inhibitors for overcoming resistance. Nevertheless, concerns about the risk of nonspecific covalent modification have motivated the development of novel cysteine-targeting inhibitors. In this paper, we demonstrate that fluoro-substituted olefins can be tuned to alter Michael addition reactivity. Incorporation of these olefins into the quinazoline templates produced potent EGFR inhibitors with improved safety and pharmacokinetic properties. A lead compound 5a was validated against EGFR(WT), EGFR(T790M) as well as A431 and H1975 cancer cell lines. Additionally, compound 5a displayed a weaker inhibition against the EGFR-independent cancer cell line SW620 when compared with afatinib. Oral administration of 5a at a dose of 30 mg/kg induced tumor regression in a murine-EGFR(L858R/T790M) driven H1975 xenograft model. Also, 5a exhibited improved oral bioavailability and safety as well as favorable tissue distribution properties and enhanced brain uptake. These findings provide the basis of a promising strategy toward the treatment of NSCLC patients with drug resistance. PMID:25409491

  14. EGFR Tyrosine Kinase Inhibitor (PD153035) Improves Glucose Tolerance and Insulin Action in High-Fat Diet–Fed Mice

    PubMed Central

    Prada, Patricia O.; Ropelle, Eduardo R.; Mourão, Rosa H.; de Souza, Claudio T.; Pauli, Jose R.; Cintra, Dennys E.; Schenka, André; Rocco, Silvana A.; Rittner, Roberto; Franchini, Kleber G.; Vassallo, José; Velloso, Lício A.; Carvalheira, José B.; Saad, Mario J.A.

    2009-01-01

    OBJECTIVE In obesity, an increased macrophage infiltration in adipose tissue occurs, contributing to low-grade inflammation and insulin resistance. Epidermal growth factor receptor (EGFR) mediates both chemotaxis and proliferation in monocytes and macrophages. However, the role of EGFR inhibitors in this subclinical inflammation has not yet been investigated. We investigated, herein, in vivo efficacy and associated molecular mechanisms by which PD153035, an EGFR tyrosine kinase inhibitor, improved diabetes control and insulin action. RESEARCH DESIGN AND METHODS The effect of PD153035 was investigated on insulin sensitivity, insulin signaling, and c-Jun NH2-terminal kinase (JNK) and nuclear factor (NF)-κB activity in tissues of high-fat diet (HFD)-fed mice and also on infiltration and the activation state of adipose tissue macrophages (ATMs) in these mice. RESULTS PD153035 treatment for 1 day decreased the protein expression of inducible nitric oxide synthase, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 in the stroma vascular fraction, suggesting that this drug reduces the M1 proinflammatory state in ATMs, as an initial effect, in turn reducing the circulating levels of TNF-α and IL-6, and initiating an improvement in insulin signaling and sensitivity. After 14 days of drug administration, there was a marked improvement in glucose tolerance; a reduction in insulin resistance; a reduction in macrophage infiltration in adipose tissue and in TNF-α, IL-6, and free fatty acids; accompanied by an improvement in insulin signaling in liver, muscle, and adipose tissue; and also a decrease in insulin receptor substrate-1 Ser307 phosphorylation in JNK and inhibitor of NF-κB kinase (IKKβ) activation in these tissues. CONCLUSIONS Treatment with PD153035 improves glucose tolerance, insulin sensitivity, and signaling and reduces subclinical inflammation in HFD-fed mice. PMID:19696185

  15. Use of Hydration Inhibitors to Improve Bond Durability of Aluminum Adhesive Joints

    NASA Technical Reports Server (NTRS)

    Davis, G. D.; Ahearn, J. S.; Matienzo, L. J.; Venables, J. D.

    1985-01-01

    An investigation is conducted of the mechanisms by which nitrilotris methylene phosphonic acid (NTMP) and related compounds are adsorbed onto oxidized aluminum surfaces to inhibit hydration and increase the durability of adhesive bonds formed with inhibitor-treated panels. P - O - Al bonds are identified as the basis of adsorption, and it is found that water initially adsorbed onto the etched aluminum surfaces is displaced by the NTMP. The hydration of the NTMP-treated surfaces occurs in three stages, namely the reverisble physisorption of water, the slow dissolution of NTMP followed by rapid hydration of the freshly exposed Al2O3 to AlOOH and further hydration of the surface to Al(OH)3. Five properties of an ideal inhibitor are identified.

  16. Global regulator engineering significantly improved Escherichia coli tolerances toward inhibitors of lignocellulosic hydrolysates.

    PubMed

    Wang, Jianqing; Zhang, Yan; Chen, Yilu; Lin, Min; Lin, Zhanglin

    2012-12-01

    Lignocellulosic biomass is regarded as the most viable source of feedstock for industrial biorefinery, but the harmful inhibitors generated from the indispensable pretreatments prior to fermentation remain a daunting technical hurdle. Using an exogenous regulator, irrE, from the radiation-resistant Deinococcus radiodurans, we previously showed that a novel global regulator engineering (GRE) approach significantly enhanced tolerances of Escherichia coli to alcohol and acetate stresses. In this work, an irrE library was subjected to selection under various stresses of furfural, a typical hydrolysate inhibitor. Three furfural tolerant irrE mutants including F1-37 and F2-1 were successfully obtained. The cells containing these mutants reached OD(600) levels of 4- to 16-fold of that for the pMD18T cells in growth assay under 0.2% (v/v) furfural stress. The cells containing irrE F1-37 and F2-1 also showed considerably reduced intracellular oxygen species (ROS) levels under furfural stress. Moreover, these two irrE mutants were subsequently found to confer significant cross tolerances to two other most common inhibitors, 5-hydroxymethyl-2-furaldehyde (HMF), vanillin, as well as real lignocellulosic hydrolysates. When evaluated in Luria-Bertani (LB) medium supplemented with corn stover cellulosic hydrolysate (prepared with a solid loading of 30%), the cells containing the mutants exhibited lag phases markedly shortened by 24-44 h in comparison with the control cells. This work thus presents a promising step forward to resolve the inhibitor problem for E. coli. From the view of synthetic biology, irrE can be considered as an evolvable "part" for various stresses. Furthermore, this GRE approach can be extended to exploit other exogenous global regulators from extremophiles, and the native counterparts in E. coli, for eliciting industrially useful phenotypes. PMID:22684885

  17. Discovery of bacterial NAD⁺-dependent DNA ligase inhibitors: improvements in clearance of adenosine series.

    PubMed

    Stokes, Suzanne S; Gowravaram, Madhusudhan; Huynh, Hoan; Lu, Min; Mullen, George B; Chen, Brendan; Albert, Robert; O'Shea, Thomas J; Rooney, Michael T; Hu, Haiqing; Newman, Joseph V; Mills, Scott D

    2012-01-01

    Optimization of clearance of adenosine inhibitors of bacterial NAD(+)-dependent DNA ligase is discussed. To reduce Cytochrome P-450-mediated metabolic clearance, many strategies were explored; however, most modifications resulted in compounds with reduced antibacterial activity and/or unchanged total clearance. The alkyl side chains of the 2-cycloalkoxyadenosines were fluorinated, and compounds with moderate antibacterial activity and favorable pharmacokinetic properties in rat and dog were identified. PMID:22154350

  18. Improving fascin inhibitors to block tumor cell migration and metastasis.

    PubMed

    Han, Shaoqin; Huang, Jianyun; Liu, Bingqian; Xing, Bowen; Bordeleau, Francois; Reinhart-King, Cynthia A; Li, Wenxin; Zhang, J Jillian; Huang, Xin-Yun

    2016-08-01

    Tumor metastasis is the major cause of mortality of cancer patients, being responsible for ∼90% of all cancer deaths. One of the key steps during tumor metastasis is tumor cell migration which requires actin cytoskeletal reorganization. Among the critical actin cytoskeletal protrusion structures are antenna-like filopodia. Fascin protein is the main actin-bundling protein in filopodia. Here we report the development of fascin-specific small-molecules that inhibit the interaction between fascin and actin. These inhibitors block the in vitro actin-binding and actin-bundling activities of fascin, tumor cell migration and tumor metastasis in mouse models. Mechanistically, these inhibitors likely occupy one of the actin-binding sites, reduce the binding of actin filaments, and thus lead to the inhibition of the bundling activity of fascin. At the cellular level, these inhibitors impair actin cytoskeletal reorganization. Our data indicate that target-specific anti-fascin agents will have great potential for treating metastatic tumors. PMID:27071719

  19. Improved Pharmacological and Structural Properties of HIV Fusion Inhibitor AP3 over Enfuvirtide: Highlighting Advantages of Artificial Peptide Strategy

    DOE PAGESBeta

    Zhu, Xiaojie; Zhu, Yun; Ye, Sheng; Wang, Qian; Xu, Wei; Su, Shan; Sun, Zhiwu; Yu, Fei; Liu, Qi; Wang, Chao; et al

    2015-08-19

    Enfuvirtide (T20), is the first HIV fusion inhibitor approved for treatment of HIV/AIDS patients who fail to respond to the current antiretroviral drugs. However, its clinical application is limited because of short half-life, drug resistance and cross-reactivity with the preexisting antibodies in HIV-infected patients. Using an artificial peptide strategy, we designed a peptide with non-native protein sequence, AP3, which exhibited potent antiviral activity against a broad spectrum of HIV-1 strains, including those resistant to T20, and had remarkably longer in vivo half-life than T20. While the preexisting antibodies in HIV-infected patients significantly suppressed T20’s antiviral activity, these antibodies neither recognizedmore » AP3, nor attenuated its anti-HIV-1 activity. Structurally different from T20, AP3 could fold into single-helix and interact with gp41 NHR. The two residues, Met and Thr, at the N-terminus of AP3 form a hook-like structure to stabilize interaction between AP3 and NHR helices. Therefore, AP3 has potential for further development as a new HIV fusion inhibitor with improved antiviral efficacy, resistance profile and pharmacological properties over enfuvirtide. Meanwhile, this study highlighted the advantages of artificially designed peptides, and confirmed that this strategy could be used in developing artificial peptide-based viral fusion inhibitors against HIV and other enveloped viruses.« less

  20. Dipeptidyl-peptidase 4 Inhibition: Linking Metabolic Control to Cardiovascular Protection

    PubMed Central

    Avogaro, Angelo; de Kreutzenberg, Saula; Fadini, Gianpaolo

    2014-01-01

    Dipeptidyl peptidases 4 (DPP4) inhibitors are a new class of oral anti-hyperglycemic drugs for the treatment of type 2 diabetes (T2DM). They are also called “incretins” because they act by inhibiting the degradation of endogenous incretin hormones, in particular GLP-1, that mediates their main metabolic effects. DPP4 is an ubiquitous protease that regulates not only glucose and lipid metabolism, but also exhibits several systemic effects at different site levels. DPP4 inhibition improves endothelial function, reduces the pro-oxidative and the pro-inflammatory state, and exerts renal effects. These actions are mediated by different DPP4 ligands, such as cytokines, growth factors, neuotransmitters etc. Clinical and experimental studies have demonstrated that DPP4 inhibitors are efficient in protecting cardiac, renal and vascular systems, through antiatherosclerotic and vasculoprotective mechanisms. For these reasons DDP4 inhibitors are thought to be “cardiovascular protective” as well as anti-diabetic drugs. Clinical trials aimed to demonstrate the efficacy of DPP4 inhibitors in reducing cardiovascular events, independent of their anti-hyperglycemic action, are ongoing. These trials will also give necessary information on their safety. PMID:23844811

  1. [A Case of Anorexia Nervosa with Chewing and Spitting Improved by Treatment with Selective Serotonin Reuptake Inhibitors].

    PubMed

    Inoue, Kouji; Matsubara, Toshio; Matsuo, Koji; Watanabe, Yoshifumi

    2015-01-01

    Chewing and spitting (CHSP) is the symptom of chewing and spitting out food without swallowing. CHSP is fairy common among patients with eating disorders, but no report has been published on drug treatment for it. We report a patient with anorexia nervosa showing extreme weight loss due to CHSP. After admission, CHSP was improved by treatment with Selective Serotonin Reuptake Inhibitors, leading to marked recovery of the body weight CHSP may represent a marker for illness severity, so its early treatment is critical to prevent the increasing severity of eating disorders. PMID:26502708

  2. Improved Cav2.2 Channel Inhibitors through a gem-Dimethylsulfone Bioisostere Replacement of a Labile Sulfonamide.

    PubMed

    Shao, Pengcheng P; Ye, Feng; Chakravarty, Prasun K; Herrington, James B; Dai, Ge; Bugianesi, Randal M; Haedo, Rodolfo J; Swensen, Andrew M; Warren, Vivien A; Smith, McHardy M; Garcia, Maria L; McManus, Owen B; Lyons, Kathryn A; Li, Xiaohua; Green, Mitchell; Jochnowitz, Nina; McGowan, Erin; Mistry, Shruti; Sun, Shu-Yu; Abbadie, Catherine; Kaczorowski, Gregory J; Duffy, Joseph L

    2013-11-14

    We report the investigation of sulfonamide-derived Cav2.2 inhibitors to address drug-metabolism liabilities with this lead class of analgesics. Modification of the benzamide substituent provided improvements in both potency and selectivity. However, we discovered that formation of the persistent 3-(trifluoromethyl)benzenesulfonamide metabolite was an endemic problem in the sulfonamide series and that the replacement of the center aminopiperidine scaffold failed to prevent this metabolic pathway. This issue was eventually addressed by application of a bioisostere strategy. The new gem-dimethyl sulfone series retained Cav2.2 potency without the liability of the circulating sulfonamide metabolite. PMID:24900606

  3. Improved Cav2.2 Channel Inhibitors through a gem-Dimethylsulfone Bioisostere Replacement of a Labile Sulfonamide

    PubMed Central

    2013-01-01

    We report the investigation of sulfonamide-derived Cav2.2 inhibitors to address drug-metabolism liabilities with this lead class of analgesics. Modification of the benzamide substituent provided improvements in both potency and selectivity. However, we discovered that formation of the persistent 3-(trifluoromethyl)benzenesulfonamide metabolite was an endemic problem in the sulfonamide series and that the replacement of the center aminopiperidine scaffold failed to prevent this metabolic pathway. This issue was eventually addressed by application of a bioisostere strategy. The new gem-dimethyl sulfone series retained Cav2.2 potency without the liability of the circulating sulfonamide metabolite. PMID:24900606

  4. A Src inhibitor regulates the cell cycle of human pluripotent stem cells and improves directed differentiation.

    PubMed

    Chetty, Sundari; Engquist, Elise N; Mehanna, Elie; Lui, Kathy O; Tsankov, Alexander M; Melton, Douglas A

    2015-09-28

    Driving human pluripotent stem cells (hPSCs) into specific lineages is an inefficient and challenging process. We show that a potent Src inhibitor, PP1, regulates expression of genes involved in the G1 to S phase transition of the cell cycle, activates proteins in the retinoblastoma family, and subsequently increases the differentiation propensities of hPSCs into all three germ layers. We further demonstrate that genetic suppression of Src regulates the activity of the retinoblastoma protein and enhances the differentiation potential of hPSCs across all germ layers. These positive effects extend beyond the initial germ layer specification and enable efficient differentiation at subsequent stages of differentiation. PMID:26416968

  5. A Src inhibitor regulates the cell cycle of human pluripotent stem cells and improves directed differentiation

    PubMed Central

    Engquist, Elise N.; Mehanna, Elie; Lui, Kathy O.; Tsankov, Alexander M.

    2015-01-01

    Driving human pluripotent stem cells (hPSCs) into specific lineages is an inefficient and challenging process. We show that a potent Src inhibitor, PP1, regulates expression of genes involved in the G1 to S phase transition of the cell cycle, activates proteins in the retinoblastoma family, and subsequently increases the differentiation propensities of hPSCs into all three germ layers. We further demonstrate that genetic suppression of Src regulates the activity of the retinoblastoma protein and enhances the differentiation potential of hPSCs across all germ layers. These positive effects extend beyond the initial germ layer specification and enable efficient differentiation at subsequent stages of differentiation. PMID:26416968

  6. Molecular Recognition of the Catalytic Zinc(II) Ion in MMP-13: Structure-Based Evolution of an Allosteric Inhibitor to Dual Binding Mode Inhibitors with Improved Lipophilic Ligand Efficiencies

    PubMed Central

    Fischer, Thomas; Riedl, Rainer

    2016-01-01

    Matrix metalloproteinases (MMPs) are a class of zinc dependent endopeptidases which play a crucial role in a multitude of severe diseases such as cancer and osteoarthritis. We employed MMP-13 as the target enzyme for the structure-based design and synthesis of inhibitors able to recognize the catalytic zinc ion in addition to an allosteric binding site in order to increase the affinity of the ligand. Guided by molecular modeling, we optimized an initial allosteric inhibitor by addition of linker fragments and weak zinc binders for recognition of the catalytic center. Furthermore we improved the lipophilic ligand efficiency (LLE) of the initial inhibitor by adding appropriate zinc binding fragments to lower the clogP values of the inhibitors, while maintaining their potency. All synthesized inhibitors showed elevated affinity compared to the initial hit, also most of the novel inhibitors displayed better LLE. Derivatives with carboxylic acids as the zinc binding fragments turned out to be the most potent inhibitors (compound 3 (ZHAWOC5077): IC50 = 134 nM) whereas acyl sulfonamides showed the best lipophilic ligand efficiencies (compound 18 (ZHAWOC5135): LLE = 2.91). PMID:26938528

  7. Molecular Recognition of the Catalytic Zinc(II) Ion in MMP-13: Structure-Based Evolution of an Allosteric Inhibitor to Dual Binding Mode Inhibitors with Improved Lipophilic Ligand Efficiencies.

    PubMed

    Fischer, Thomas; Riedl, Rainer

    2016-01-01

    Matrix metalloproteinases (MMPs) are a class of zinc dependent endopeptidases which play a crucial role in a multitude of severe diseases such as cancer and osteoarthritis. We employed MMP-13 as the target enzyme for the structure-based design and synthesis of inhibitors able to recognize the catalytic zinc ion in addition to an allosteric binding site in order to increase the affinity of the ligand. Guided by molecular modeling, we optimized an initial allosteric inhibitor by addition of linker fragments and weak zinc binders for recognition of the catalytic center. Furthermore we improved the lipophilic ligand efficiency (LLE) of the initial inhibitor by adding appropriate zinc binding fragments to lower the clogP values of the inhibitors, while maintaining their potency. All synthesized inhibitors showed elevated affinity compared to the initial hit, also most of the novel inhibitors displayed better LLE. Derivatives with carboxylic acids as the zinc binding fragments turned out to be the most potent inhibitors (compound 3 (ZHAWOC5077): IC50 = 134 nM) whereas acyl sulfonamides showed the best lipophilic ligand efficiencies (compound 18 (ZHAWOC5135): LLE = 2.91). PMID:26938528

  8. The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Preserves Endothelial Function in Mesenteric Arteries from Type 1 Diabetic Rats without Decreasing Plasma Glucose

    PubMed Central

    Salheen, Salheen M.; Panchapakesan, Usha; Pollock, Carol A.; Woodman, Owen L.

    2015-01-01

    The aim of the study was to investigate the effect of the DPP-4 inhibitor linagliptin on the mechanism(s) of endothelium-dependent relaxation in mesenteric arteries from STZ-induced diabetic rats. Both normal and diabetic animals received linagliptin (2 mg/kg) daily by oral gavage for a period of 4 weeks. To measure superoxide generation in mesenteric arteries, lucigenin-enhanced chemiluminescence was used. ACh-induced relaxation of mesenteric arteries was assessed using organ bath techniques and Western blotting was used to investigate protein expression. Pharmacological tools (1μM TRAM-34, 1μM apamin, 100 nM Ibtx, 100 μM L-NNA, 10 μM ODQ) were used to distinguish between NO and EDH-mediated relaxation. Linagliptin did not affect plasma glucose, but did decrease vascular superoxide levels. Diabetes reduced responses to ACh but did not affect endothelium-independent responses to SNP. Linagliptin improved endothelial function indicated by a significant increase in responses to ACh. Diabetes impaired the contribution of both nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) to endothelium-dependent relaxation and linagliptin treatment significantly enhanced the contribution of both relaxing factors. Western blotting demonstrated that diabetes also increased expression of Nox2 and decreased expression and dimerization of endothelial NO synthase, effects that were reversed by linagliptin. These findings demonstrate treatment of type 1 diabetic rats with linagliptin significantly reduced vascular superoxide levels and preserved both NO and EDH-mediated relaxation indicating that linagliptin can improve endothelial function in diabetes independently of any glucose lowering activity. PMID:26618855

  9. Chemoresistance to Valproate Treatment of Bovine Leukemia Virus-Infected Sheep; Identification of Improved HDAC Inhibitors

    PubMed Central

    Gillet, Nicolas; Vandermeers, Fabian; de Brogniez, Alix; Florins, Arnaud; Nigro, Annamaria; François, Carole; Bouzar, Amel-Baya; Verlaeten, Olivier; Stern, Eric; Lambert, Didier M.; Wouters, Johan; Willems, Luc

    2012-01-01

    We previously proved that a histone deacetylase inhibitor (valproate, VPA) decreases the number of leukemic cells in bovine leukemia virus (BLV)-infected sheep. Here, we characterize the mechanisms initiated upon interruption of treatment. We observed that VPA treatment is followed by a decrease of the B cell counts and proviral loads (copies per blood volume). However, all sheep eventually relapsed after different periods of time and became refractory to further VPA treatment. Sheep remained persistently infected with BLV. B lymphocytes isolated throughout treatment and relapse were responsive to VPA-induced apoptosis in cell culture. B cell proliferation is only marginally affected by VPA ex vivo. Interestingly, in four out of five sheep, ex vivo viral expression was nearly undetectable at the time of relapse. In two sheep, a new tumoral clone arose, most likely revealing a selection process exerted by VPA in vivo. We conclude that the interruption of VPA treatment leads to the resurgence of the leukemia in BLV-infected sheep and hypothesize that resistance to further treatment might be due to the failure of viral expression induction. The development of more potent HDAC inhibitors and/or the combination with other compounds can overcome chemoresistance. These observations in the BLV model may be important for therapies against the related Human T-lymphotropic virus type 1. PMID:25436765

  10. NAAG peptidase inhibitor improves motor function and reduces cognitive dysfunction in a model of TBI with secondary hypoxia.

    PubMed

    Gurkoff, Gene G; Feng, Jun-Feng; Van, Ken C; Izadi, Ali; Ghiasvand, Rahil; Shahlaie, Kiarash; Song, Minsoo; Lowe, David A; Zhou, Jia; Lyeth, Bruce G

    2013-06-17

    Immediately following traumatic brain injury (TBI) and TBI with hypoxia, there is a rapid and pathophysiological increase in extracellular glutamate, subsequent neuronal damage and ultimately diminished motor and cognitive function. N-acetyl-aspartyl glutamate (NAAG), a prevalent neuropeptide in the CNS, is co-released with glutamate, binds to the presynaptic group II metabotropic glutamate receptor subtype 3 (mGluR3) and suppresses glutamate release. However, the catalytic enzyme glutamate carboxypeptidase II (GCP II) rapidly hydrolyzes NAAG into NAA and glutamate. Inhibition of the GCP II enzyme with NAAG peptidase inhibitors reduces the concentration of glutamate both by increasing the duration of NAAG activity on mGluR3 and by reducing degradation into NAA and glutamate resulting in reduced cell death in models of TBI and TBI with hypoxia. In the following study, rats were administered the NAAG peptidase inhibitor PGI-02776 (10mg/kg) 30 min following TBI combined with a hypoxic second insult. Over the two weeks following injury, PGI-02776-treated rats had significantly improved motor function as measured by increased duration on the rota-rod and a trend toward improved performance on the beam walk. Furthermore, two weeks post-injury, PGI-02776-treated animals had a significant decrease in latency to find the target platform in the Morris water maze as compared to vehicle-treated animals. These findings demonstrate that the application of NAAG peptidase inhibitors can reduce the deleterious motor and cognitive effects of TBI combined with a second hypoxic insult in the weeks following injury. PMID:23562458

  11. Modification of Triclosan Scaffold in Search of Improved Inhibitors for Enoyl-Acyl Carrier Protein (ACP) Reductase in Toxoplasma gondii

    PubMed Central

    Stec, Jozef; Fomovska, Alina; Afanador, Gustavo A.; Muench, Stephen P.; Zhou, Ying; Lai, Bo-Shiun; Bissati, Kamal El; Hickman, Mark R.; Lee, Patty J.; Leed, Susan E.; Auschwitz, Jennifer M.; Sommervile, Caroline; Woods, Stuart; Roberts, Craig W.; Rice, David; Prigge, Sean T.; McLeod, Rima; Kozikowski, Alan P.

    2013-01-01

    Through our focused effort to discover new and effective agents against toxoplasmosis, a structure-based drug design approach was utilized to develop a series of potent inhibitors of the enoyl-acyl carrier protein (ACP) reductase (ENR) enzyme in Toxoplasma gondii (TgENR). Modifications to positions 5 and 4′ of the well-known ENR inhibitor triclosan afforded a series of 29 new analogs. Among the resulting compounds, many showed high potency and improved physicochemical properties in comparison with the lead. The most potent compounds 16a and 16c have IC50 values of 250 nM against Toxoplasma gondii tachyzoites without apparent toxicity to the host cells. Their IC50 values against the recombinant TgENR were 43 and 26 nM, respectively. Additionally, 11 other analogs in this series had IC50 values ranging from 17 to 130 nM in the enzyme-based assay. With respect to their excellent in vitro activity as well as improved drug-like properties, the lead compounds 16a and 16c are deemed to be an excellent starting point for the development of new medicines to effectively treat Toxoplasma gondii infections. PMID:23776166

  12. Comparative Analysis of Binding Kinetics and Thermodynamics of Dipeptidyl Peptidase-4 Inhibitors and Their Relationship to Structure.

    PubMed

    Schnapp, Gisela; Klein, Thomas; Hoevels, Yvette; Bakker, Remko A; Nar, Herbert

    2016-08-25

    The binding kinetics and thermodynamics of dipeptidyl peptidase (DPP)-4 inhibitors (gliptins) were investigated using surface plasmon resonance and isothermal titration calorimetry. Binding of gliptins to DPP-4 is a rapid electrostatically driven process. Off-rates were generally slow partly because of reversible covalent bond formation by some gliptins, and partly because of strong and extensive interactions. Binding of all gliptins is enthalpy-dominated due to strong ionic interactions and strong solvent-shielded hydrogen bonds. Using a congeneric series of molecules which represented the intermediates in the lead optimization program of linagliptin, the onset of slow binding kinetics and development of the thermodynamic repertoire were analyzed in the context of incremental changes of the chemical structures. All compounds rapidly associated, and therefore the optimization of affinity and residence time is highly correlated. The major contributor to the increasing free energy of binding was a strong increase of binding enthalpy, whereas entropic contributions remained low and constant despite significant addition of lipophilicity. PMID:27438064

  13. Cyclooxygenase-2 inhibitor, nimesulide, improves radiation treatment against non-small cell lung cancer both in vitro and in vivo.

    PubMed

    Grimes, Kristopher R; Warren, Graham W; Fang, Fang; Xu, Yong; St Clair, William H

    2006-10-01

    Lung cancer is the leading cause of cancer-related deaths in the United States. Despite improvements in radiation, surgery and chemotherapy the 5 year survival statistics of non-small cell lung cancer (NSCLC) have improved little over the past two decades. It has been proposed that NF-kappaB is a participant in the cytoprotection against several redox-mediated therapeutic agents including ionizing radiation. Cyclooxygenase-2 (COX-2) inhibition has become an attractive target for enhancing the efficacy of radiation and chemotherapy. Numerous mechanistic pathways have been proposed as the means through which COX-2 inhibition enhances the efficacy of radiation. We hypothesize that the COX-2 inhibitor, nimesulide, will improve the efficacy of radiation therapy (RT), at least in part, via the suppression of NF-kappaB mediated cytoprotective pathways. In this study we used the COX-2 inhibitor nimesulide to improve the efficacy of RT when measured by tumor regrowth assays in vivo and clonegenic survival in vitro. For the in vivo assay, A549 tumor cells representing NSCLC were subcutaneously injected into the right flanks of female athymic nude mice (n=10/group). Mice were given nimesulide via drinking water at a concentration of 5 microg/g body weight (b.w.) and the water was replenished daily. Tumors were treated with 30 Gy fractionated radiation and measured bi-weekly. For our in vitro study, clonogenic survival assays were evaluated to determine the effect of nimesulide, radiation, and the combination. The NF-kappaB mediated mechanism of nimesulide was measured by Western blot analysis of NF-kappaB target genes, MnSOD and survivin. In vivo, mice that received combined treatments of 5 microg/g b.w. nimesulide and 30 Gy radiation (3 Gy/fraction, 10 daily fractions) had significant reduction in tumor size in comparison to the 30 Gy radiation control group (p<0.05). In vitro, nimesulide alone produced a significant decrease in clonogenic survival at doses from 0-300 micro

  14. Discovery of a highly selective PLD2 inhibitor (ML395): a new probe with improved physiochemical properties and broad spectrum antiviral activity against influenza strains

    PubMed Central

    O’Reilly, Matthew C.; Oguin, Thomas H.; Scott, Sarah A.; Thomas, Paul G.; Locuson, Charles W.; Morrison, Ryan D.; Daniels, J. Scott; Brown, H. Alex

    2014-01-01

    Further chemical optimization of the halopemide-derived family of dual PLD1/2 inhibitors afforded ML395 (VU0468809), a potent, >80-fold PLD2 selective allosteric inhibitor (cellular PLD1, IC50 >30,000 nM, cellular PLD2, IC50 = 360 nM). Moreover, ML395 possesses an attractive in vitro DMPK profile, improved physiochemical properties, ancillary pharmacology (Eurofins Panel) cleaner than any other reported PLD inhibitor, and has been found to possess interesting activity as an antiviral agent in cellular assays against a range of influenza strains (H1, H3, H5 and H7). PMID:25210004

  15. New histone deacetylase inhibitors improve cisplatin antitumor properties against thoracic cancer cells.

    PubMed

    Gueugnon, Fabien; Cartron, Pierre-François; Charrier, Cedric; Bertrand, Philippe; Fonteneau, Jean-François; Gregoire, Marc; Blanquart, Christophe

    2014-06-30

    Histone deacetylase inhibitors (HDACi) have shown promising antitumor effects on numerous cancer cells including malignant pleural mesothelioma (MPM) and lung adenocarcinoma (ADCA) cells. However, clinical trials using these compounds alone have shown limited efficacy against solid tumors. Therefore, new molecules are being developed and combinations with classical chemotherapeutic drugs are being tested. Here, we have evaluated on three MPM and three lung ADCA cell lines the antitumor potential of four new HDACi compounds, either alone or in combination with cisplatin. These effects were compared with those of vorinostat, an HDACi approved for cancer treatments. First, we characterized the HDAC mRNA expression profiles of tumor cells and showed an increase of the classI/classII HDAC ratio. We then treated cancer cells with these new HDACi and observed a cell-death induction and an increase of HDACi target genes and proteins expression. This was particularly evident for NODH compound (pan-HDACi) which had similar effects at nanomolar concentrations as micromolar concentrations of vorinostat. Interestingly, we observed that the HDACi/cisplatin combination strongly increased cell-death and limited resistance-phenotype emergence as compared with results obtained when the drugs were used alone. These results could be exploited to develop MPM and lung ADCA treatments combining chemotherapeutic approaches. PMID:24980825

  16. New histone deacetylase inhibitors improve cisplatin antitumor properties against thoracic cancer cells

    PubMed Central

    Gueugnon, Fabien; Cartron, Pierre-François; Charrier, Cedric; Bertrand, Philippe; Fonteneau, Jean-François; Gregoire, Marc; Blanquart, Christophe

    2014-01-01

    Histone deacetylase inhibitors (HDACi) have shown promising antitumor effects on numerous cancer cells including malignant pleural mesothelioma (MPM) and lung adenocarcinoma (ADCA) cells. However, clinical trials using these compounds alone have shown limited efficacy against solid tumors. Therefore, new molecules are being developed and combinations with classical chemotherapeutic drugs are being tested. Here, we have evaluated on three MPM and three lung ADCA cell lines the antitumor potential of four new HDACi compounds, either alone or in combination with cisplatin. These effects were compared with those of vorinostat, an HDACi approved for cancer treatments. First, we characterized the HDAC mRNA expression profiles of tumor cells and showed an increase of the classI/classII HDAC ratio. We then treated cancer cells with these new HDACi and observed a cell-death induction and an increase of HDACi target genes and proteins expression. This was particularly evident for NODH compound (pan-HDACi) which had similar effects at nanomolar concentrations as micromolar concentrations of vorinostat. Interestingly, we observed that the HDACi/cisplatin combination strongly increased cell-death and limited resistance-phenotype emergence as compared with results obtained when the drugs were used alone. These results could be exploited to develop MPM and lung ADCA treatments combining chemotherapeutic approaches. PMID:24980825

  17. The effect of combined treatment with canagliflozin and teneligliptin on glucose intolerance in Zucker diabetic fatty rats.

    PubMed

    Oguma, Takahiro; Kuriyama, Chiaki; Nakayama, Keiko; Matsushita, Yasuaki; Yoshida, Kumiko; Kiuchi, Satoko; Ikenaga, Yuka; Nakamaru, Yoshinobu; Hikida, Kumiko; Saito, Akira; Arakawa, Kenji; Oka, Kozo; Ueta, Kiichiro; Shiotani, Masaharu

    2015-04-01

    To assess the impact of concomitant inhibition of sodium-glucose cotransporter (SGLT) 2 and dipeptidyl peptidase IV (DPP4) for the treatment of type 2 diabetes mellitus (T2DM), the effect of combined treatment with canagliflozin, a novel SGLT2 inhibitor, and teneligliptin, a DPP4 inhibitor, on glucose intolerance was investigated in Zucker diabetic fatty (ZDF) rats. Canagliflozin potently inhibited human and rat SGLT2 and moderately inhibited human and rat SGLT1 activities but did not affect DPP4 activity. In contrast, teneligliptin inhibited human and rat DPP4 activities but not SGLT activities. A single oral treatment of canagliflozin and teneligliptin suppressed plasma glucose elevation in an oral glucose tolerance test in 13 week-old ZDF rats. This combination of agents elevated plasma active GLP-1 levels in a synergistic manner, probably mediated by intestinal SGLT1 inhibition, and further improved glucose intolerance. In the combination-treated animals, there was no pharmacokinetic interaction of the drugs and no further inhibition of plasma DPP4 activity compared with that in the teneligliptin-treated animals. These results suggest that the inhibition of SGLT2 and DPP4 improves glucose intolerance and that combined treatment with canagliflozin and teneligliptin is a novel therapeutic option for glycemic control in T2DM. PMID:25892328

  18. Hemojuvelin Modulates Iron Stress During Acute Kidney Injury: Improved by Furin Inhibitor

    PubMed Central

    Young, Guang-Huar; Huang, Tao-Min; Wu, Che-Hsiung; Lai, Chun-Fu; Hou, Chun-Cheng; Peng, Kang-Yung; Liang, Chan-Jung; Lin, Shuei-Liong; Chang, Shih-Chung; Tsai, Pi-Ru; Wu, Kwan-Dun

    2014-01-01

    Abstract Aims: Free iron plays an important role in the pathogenesis of acute kidney injury (AKI) via the formation of hydroxyl radicals. Systemic iron homeostasis is controlled by the hemojuvelin-hepcidin-ferroportin axis in the liver, but less is known about this role in AKI. Results: By proteomics, we identified a 42 kDa soluble hemojuvelin (sHJV), processed by furin protease from membrane-bound hemojuvelin (mHJV), in the urine during AKI after cardiac surgery. Biopsies from human and mouse specimens with AKI confirm that HJV is extensively increased in renal tubules. Iron overload enhanced the expression of hemojuvelin-hepcidin signaling pathway. The furin inhibitor (FI) decreases furin-mediated proteolytic cleavage of mHJV into sHJV and augments the mHJV/sHJV ratio after iron overload with hypoxia condition. The FI could reduce renal tubule apoptosis, stabilize hypoxic induced factor-1, prevent the accumulation of iron in the kidney, and further ameliorate ischemic-reperfusion injury. mHJV is associated with decreasing total kidney iron, secreting hepcidin, and promoting the degradation of ferroportin at AKI, whereas sHJV does the opposite. Innovation: This study suggests the ratio of mHJV/sHJV affects the iron deposition during acute kidney injury and sHJV could be an early biomarker of AKI. Conclusion: Our findings link endogenous HJV inextricably with renal iron homeostasis for the first time, add new significance to early predict AKI, and identify novel therapeutic targets to reduce the severity of AKI using the FI. Antioxid. Redox Signal. 20, 1181–1194. PMID:23901875

  19. Stimulating progress in regenerative medicine: improving the cloning and recovery of cryopreserved human pluripotent stem cells with ROCK inhibitors

    PubMed Central

    Rizzino, Angie

    2011-01-01

    Until recently, culturing human pluripotent stem cells was hampered by three prominent technical problems: a high degree of unwanted cellular stress when the cells are passaged, unacceptably low cloning efficiency and poor recovery of cryopreserved stocks. This review discusses recent developments that address these problems. A major focus of the review is the use of p160 Rho-associated coiled-coil kinase inhibitors for improving both the cloning efficiency and the recovery of cryopreserved human embryonic stem cells and human induced pluripotent stem cells. An underlying theme of this review is that the three problems have a common cause: separation of human pluripotent stem cells from one another increases cellular stress, which greatly decreases their viability unless special steps are taken. PMID:20868334

  20. Left-Hand Side Exploration of Novel Bacterial Topoisomerase Inhibitors to Improve Selectivity against hERG Binding

    PubMed Central

    2015-01-01

    Structure–activity relationship (SAR) exploration on the left-hand side (LHS) of a novel class of bacterial topoisomerase inhibitors led to a significant improvement in the selectivity against hERG cardiac channel binding with concomitant potent antimycobacterial activity. Bulky polar substituents at the C-7 position of the naphthyridone ring did not disturb its positioning between two base pairs of DNA. Further optimization of the polar substituents on the LHS of the naphthyridone ring led to potent antimycobacterial activity (Mtb MIC = 0.06 μM) against Mycobacterium tuberculosis (Mtb). Additionally, this knowledge provided a robust SAR understanding to mitigate the hERG risk. This compound class inhibits Mtb DNA gyrase and retains its antimycobacterial activity against moxifloxacin-resistant strains of Mtb. Finally, we demonstrate in vivo proof of concept in an acute mouse model of TB following oral administration of compound 19. PMID:26191359

  1. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase

    PubMed Central

    2014-01-01

    Background Yeasts tolerant to toxic inhibitors from steam-pretreated lignocellulose with xylose co-fermentation capability represent an appealing approach for 2nd generation ethanol production. Whereas rational engineering, mutagenesis and evolutionary engineering are established techniques for either improved xylose utilisation or enhancing yeast tolerance, this report focuses on the simultaneous enhancement of these attributes through mutagenesis and evolutionary engineering of Saccharomyces cerevisiae harbouring xylose isomerase in anoxic chemostat culture using non-detoxified pretreatment liquor from triticale straw. Results Following ethyl methanesulfonate (EMS) mutagenesis, Saccharomyces cerevisiae strain D5A+ (ATCC 200062 strain platform), harbouring the xylose isomerase (XI) gene for pentose co-fermentation was grown in anoxic chemostat culture for 100 generations at a dilution rate of 0.10 h-1 in a medium consisting of 60% (v/v) non-detoxified hydrolysate liquor from steam-pretreated triticale straw, supplemented with 20 g/L xylose as carbon source. In semi-aerobic batch cultures in the same medium, the isolated strain D5A+H exhibited a slightly lower maximum specific growth rate (μmax = 0.12 ± 0.01 h-1) than strain TMB3400, with no ethanol production observed by the latter strain. Strain D5A+H also exhibited a shorter lag phase (4 h vs. 30 h) and complete removal of HMF, furfural and acetic acid from the fermentation broth within 24 h, reaching an ethanol concentration of 1.54 g/L at a yield (Yp/s) of 0.06 g/g xylose and a specific productivity of 2.08 g/gh. Evolutionary engineering profoundly affected the yeast metabolism, given that parental strain D5A+ exhibited an oxidative metabolism on xylose prior to strain development. Conclusions Physiological adaptations confirm improvements in the resistance to and conversion of inhibitors from pretreatment liquor with simultaneous enhancement of xylose to ethanol fermentation. These data

  2. Grassypeptolides As Natural Inhibitors of Dipeptidyl Peptidase 8 and T-Cell Activation

    PubMed Central

    Kwan, Jason C.; Liu, Yanxia; Ratnayake, Ranjala; Hatano, Ryo; Kuribara, Akiko; Morimoto, Chiko; Ohnuma, Kei; Paul, Valerie J.; Ye, Tao

    2014-01-01

    Natural products made by marine cyanobacteria are often highly modified peptides and depsipeptides that have the potential to act as inhibitors for proteases. In the interest of finding novel protease inhibition activity and selectivity grassypeptolide A (1) was screened against a panel of proteases and found to selectively inhibit DPP8 over DPP4. Grassypeptolides were also found to inhibit IL-2 production and proliferation in activated T-cells, consistent with a putative role of DPP8 in the immune system. These effects were also observed in Jurkat cells, and DPP activity in Jurkat cell cytosol was shown to be inhibited by grassypeptolides. In silico docking suggests two possible binding modes of grassypeptolides – both at the active site of DPP8 and at one of the entrances to the internal cavity. Collectively these results suggest that grassypeptolides may be useful tool compounds in the study of DPP8 function. PMID:24591193

  3. Heat shock protein 90 (HSP90) inhibitors activate the heat shock factor 1 (HSF1) stress response pathway and improve glucose regulation in diabetic mice.

    PubMed

    Lee, Jee-Hyung; Gao, Jiaping; Kosinski, Penelope A; Elliman, Stephen J; Hughes, Thomas E; Gromada, Jesper; Kemp, Daniel M

    2013-01-18

    The cytoprotective stress response factor HSF1 regulates the transcription of the chaperone HSP70, which exhibits anti-inflammatory effects and improves insulin sensitivity. We tested the therapeutic potential of this pathway in rodent models of diabetes using pharmacological tools. Activation of the HSF1 pathway was achieved using potent inhibitors of the upstream regulatory protein, HSP90. Treatment with AUY922, a selective HSP90 inhibitor led to robust inhibition of JNK1 phosphorylation, cytoprotection and improved insulin signaling in cells, consistent with effects observed with HSP70 treatment. Chronic dosing with HSP90 inhibitors reversed hyperglycemia in the diabetic db/db mouse model, and improved insulin sensitivity in the diet-induced obese mouse model of insulin resistance, further supporting the concept that the HSF1 pathway is a potentially viable anti-diabetes target. PMID:23261432

  4. Teneligliptin improves metabolic abnormalities in a mouse model of postmenopausal obesity.

    PubMed

    Sameshima, Azusa; Wada, Tsutomu; Ito, Tetsuo; Kashimura, Ayaka; Sawakawa, Kanae; Yonezawa, Rika; Tsuneki, Hiroshi; Ishii, Yoko; Sasahara, Masakiyo; Saito, Shigeru; Sasaoka, Toshiyasu

    2015-10-01

    A decrease in serum estrogen levels in menopause is closely associated with the development of visceral obesity and the onset of type 2 diabetes in women. In the present study, we demonstrated the therapeutic effects of the novel DPP4 inhibitor, teneligliptin, on the features of postmenopausal obesity in mice. In the control group, female C57BL/6 mice were sham-operated and maintained on a standard diet. In the postmenopausal obese group, ovariectomized (OVX) mice were maintained on a high-fat diet, and were referred to as OVX-HF. In the treated group, teneligliptin at 60 mg/kg per day was administrated to OVX-HF, and were referred to as Tene. After a 12-week food challenge, the metabolic phenotypes of these mice were analyzed. Body weight, fat accumulation, and glucose intolerance were greater in OVX-HF than in control, while these abnormalities were markedly improved without alterations in calorie intake in Tene. Teneligliptin effectively ameliorated the characteristics of metabolic abnormalities associated with postmenopausal obesity. Regarding chronic inflammation in visceral adipose tissue, the numbers of F4/80(+)CD11c(+)CD206(-) M1-macrophages in flow cytometry, crown-like structure formation in immunohistochemistry, and proinflammatory cytokine expression were significantly attenuated in Tene. Hepatic steatosis was also markedly improved. Furthermore, decreased energy consumption in the dark and light phases, reduced locomotor activity in the dark phase, and lowered core body temperature in OVX-HF were ameliorated in Tene. Since obesity and reduced energy metabolism are a common physiology of menopause, teneligliptin appears to be beneficial as a treatment for type 2 diabetes in postmenopausal obesity. PMID:26264980

  5. Improving Viability and Transfection Efficiency with Human Umbilical Cord Wharton's Jelly Cells Through Use of a ROCK Inhibitor

    PubMed Central

    Mellott, Adam J.; Godsey, Megan E.; Shinogle, Heather E.; Moore, David S.; Forrest, M. Laird

    2014-01-01

    Abstract Differentiating stem cells using gene delivery is a key strategy in tissue engineering and regenerative medicine applications. Nonviral gene delivery bypasses several safety concerns associated with viral gene delivery; however, leading nonviral techniques, such as electroporation, subject cells to high stress and can result in poor cell viabilities. Inhibition of Rho-associated coiled-coil kinase (ROCK) has been shown to mitigate apoptotic mechanisms associated with detachment and freezing of induced pluripotent stem cells and embryonic stem cells; however, inhibiting ROCK in mesenchymal stromal cells (MSCs) for improving gene delivery applications has not been reported previously. In this study, we hypothesized that ROCK Inhibitor (RI) would improve cell viability and gene expression in primary human umbilical cord mesenchymal stromal cells (hUCMSCs) when transfected via Nucleofection™. As hypothesized, the pre-treatment and post-treatment of hUCMSCs transfected via nucleofection with Y-27632-RI significantly improved survival rates of hUCMSCs and gene expression as measured by green fluorescent protein intensity. This study provides the first comparative look at the effect of Y-27632-RI on hUCMSCs that underwent transfection via nucleofection and shows that using Y-27632-RI in concert with nucleofection could greatly enhance the utility of differentiating and reprogramming hUCMSCs for tissue engineering applications. PMID:24552552

  6. Improving viability and transfection efficiency with human umbilical cord wharton's jelly cells through use of a ROCK inhibitor.

    PubMed

    Mellott, Adam J; Godsey, Megan E; Shinogle, Heather E; Moore, David S; Forrest, M Laird; Detamore, Michael S

    2014-04-01

    Differentiating stem cells using gene delivery is a key strategy in tissue engineering and regenerative medicine applications. Nonviral gene delivery bypasses several safety concerns associated with viral gene delivery; however, leading nonviral techniques, such as electroporation, subject cells to high stress and can result in poor cell viabilities. Inhibition of Rho-associated coiled-coil kinase (ROCK) has been shown to mitigate apoptotic mechanisms associated with detachment and freezing of induced pluripotent stem cells and embryonic stem cells; however, inhibiting ROCK in mesenchymal stromal cells (MSCs) for improving gene delivery applications has not been reported previously. In this study, we hypothesized that ROCK Inhibitor (RI) would improve cell viability and gene expression in primary human umbilical cord mesenchymal stromal cells (hUCMSCs) when transfected via Nucleofection™. As hypothesized, the pre-treatment and post-treatment of hUCMSCs transfected via nucleofection with Y-27632-RI significantly improved survival rates of hUCMSCs and gene expression as measured by green fluorescent protein intensity. This study provides the first comparative look at the effect of Y-27632-RI on hUCMSCs that underwent transfection via nucleofection and shows that using Y-27632-RI in concert with nucleofection could greatly enhance the utility of differentiating and reprogramming hUCMSCs for tissue engineering applications. PMID:24552552

  7. Improving DNA double-strand repair inhibitor KU55933 therapeutic index in cancer radiotherapy using nanoparticle drug delivery

    NASA Astrophysics Data System (ADS)

    Tian, Xi; Lara, Haydee; Wagner, Kyle T.; Saripalli, Srinivas; Hyder, Syed Nabeel; Foote, Michael; Sethi, Manish; Wang, Edina; Caster, Joseph M.; Zhang, Longzhen; Wang, Andrew Z.

    2015-11-01

    Radiotherapy is a key component of cancer treatment. Because of its importance, there has been high interest in developing agents and strategies to further improve the therapeutic index of radiotherapy. DNA double-strand repair inhibitors (DSBRIs) are among the most promising agents to improve radiotherapy. However, their clinical translation has been limited by their potential toxicity to normal tissue. Recent advances in nanomedicine offer an opportunity to overcome this limitation. In this study, we aim to demonstrate the proof of principle by developing and evaluating nanoparticle (NP) formulations of KU55933, a DSBRI. We engineered a NP formulation of KU55933 using nanoprecipitation method with different lipid polymer nanoparticle formulation. NP KU55933 using PLGA formulation has the best loading efficacy as well as prolonged drug release profile. We demonstrated that NP KU55933 is a potent radiosensitizer in vitro using clonogenic assay and is more effective as a radiosensitizer than free KU55933 in vivo using mouse xenograft models of non-small cell lung cancer (NSCLC). Western blots and immunofluorescence showed NP KU55933 exhibited more prolonged inhibition of DNA repair pathway. In addition, NP KU55933 leads to lower skin toxicity than KU55933. Our study supports further investigations using NP to deliver DSBRIs to improve cancer radiotherapy treatment.

  8. Saccharomyces cerevisiae strain improvement using selection, mutation, and adaptation for the resistance to lignocellulose-derived fermentation inhibitor for ethanol production.

    PubMed

    Jang, Youri; Lim, Younghoon; Kim, Keun

    2014-05-01

    Twenty-five Saccharomyces cerevisiae strains were screened for the highest sugar tolerance, ethanol-tolerance, ethanol production, and inhibitor resistance, and S. cerevisiae KL5 was selected as the best strain. Inhibitor cocktail (100%) was composed of 75 mM formic acid, 75 mM acetic acid, 30 mM furfural, 30 mM hydroxymethyl furfural (HMF), and 2.7 mM vanillin. The cells of strain KL5 were treated with γ-irradiation, and among the survivals, KL5- G2 with improved inhibitor resistance and the highest ethanol yield in the presence of inhibitor cocktail was selected. The KL5-G2 strain was adapted to inhibitor cocktail by sequential transfer of cultures to a minimal YNB medium containing increasing concentrations of inhibitor cocktail. After 10 times of adaptation, most of the isolated colonies could grow in YNB with 80% inhibitor cocktail, whereas the parental KL5 strain could not grow at all. Among the various adapted strains, the best strain (KL5-G2-A9) producing the highest ethanol yield in the presence of inhibitor cocktail was selected. In a complex YP medium containing 60% inhibitor cocktail and 5% glucose, the theoretical yield and productivity (at 48 h) of KL5- G2-A9 were 81.3% and 0.304 g/l/h, respectively, whereas those of KL5 were 20.8% and 0.072 g/l/h, respectively. KL5-G2-A9 reduced the concentrations of HMF, furfural, and vanillin in the medium in much faster rates than KL5. PMID:24608567

  9. Significant Improvement of Semiconducting Performance of the Diketopyrrolopyrrole-Quaterthiophene Conjugated Polymer through Side-Chain Engineering via Hydrogen-Bonding.

    PubMed

    Yao, Jingjing; Yu, Chenmin; Liu, Zitong; Luo, Hewei; Yang, Yang; Zhang, Guanxin; Zhang, Deqing

    2016-01-13

    Three diketopyrrolopyrrole (DPP)-quaterthiophene conjugated polymers, pDPP4T-1, pDPP4T-2, and pDPP4T-3, in which the molar ratios of the urea-containing alkyl chains vs branching alkyl chains are 1:30, 1:20, and 1:10, respectively, were prepared and investigated. In comparison with pDPP4T without urea groups in the alkyl side chains and pDPP4T-A, pDPP4T-B, and pDPP4T-C containing both linear and branched alkyl chains, thin films of pDPP4T-1, pDPP4T-2, and pDPP4T-3 exhibit higher hole mobilities; thin-film mobility increases in the order pDPP4T-1 < pDPP4T-2 < pDPP4T-3, and hole mobility of a thin film of pDPP4T-3 can reach 13.1 cm(2) V(-1) s(-1) after thermal annealing at just 100 °C. The incorporation of urea groups in the alkyl side chains also has an interesting effect on the photovoltaic performances of DPP-quaterthiophene conjugated polymers after blending with PC71BM. Blended thin films of pDPP4T-1:PC71BM, pDPP4T-2:PC71BM, and pDPP4T-3:PC71BM exhibit higher power conversion efficiencies (PCEs) than pDPP4T:PC71BM, pDPP4T-A:PC71BM, pDPP4T-B:PC71BM, and pDPP4T-C:PC71BM. The PCE of pDPP4T-1:PC71BM reaches 6.8%. Thin films of pDPP4T-1, pDPP4T-2, and pDPP4T-3 and corresponding thin films with PC71BM were characterized with AFM, GIXRD, and STEM. The results reveal that the lamellar packing order of the alkyl chains is obviously enhanced for thin films of pDPP4T-1, pDPP4T-2, and pDPP4T-3; after thermal annealing, slight inter-chain π-π stacking emerges for pDPP4T-2 and pDPP4T-3. Blends of pDPP4T-1, pDPP4T-2, and pDPP4T-3 with PC71BM show a more pronounced micro-phase separation. These observations suggest that the presence of urea groups may further facilitate the assemblies of these conjugated polymers into nanofibers and ordered aggregation of PC71BM. PMID:26669732

  10. Novel analogues of the therapeutic complement inhibitor compstatin with significantly improved affinity and potency1

    PubMed Central

    Qu, Hongchang; Magotti, Paola; Ricklin, Daniel; Wu, Emilia L.; Kourtzelis, Ioannis; Wu, You-Qiang; Kaznessis, Yiannis N.; Lambris, John D.

    2010-01-01

    Compstatin is a 13-residue disulfide-bridged peptide that inhibits a key step in the activation of the human complement system. Compstatin and its derivatives have shown great promise for the treatment of many clinical disorders associated with unbalanced complement activity. To obtain more potent compstatin analogues, we have now performed an N-methylation scan of the peptide backbone and amino acid substitutions at position 13. One analogue (Ac-I[CVW(Me)QDW-Sar-AHRC](NMe)I-NH2) displayed a 1,000-fold increase in both potency (IC50=62 nM) and binding affinity for C3b (KD=2.3 nM) over that of the original compstatin. Biophysical analysis using surface plasmon resonance and isothermal titration calorimetry suggests that the improved binding originates from more favorable free conformation and stronger hydrophobic interactions. This study provides a series of significantly improved drug leads for therapeutic applications in complement-related diseases, and offers new insights into the structure-activity relationships of compstatin analogues. PMID:21067811

  11. Phosphodiesterase 5A inhibitors improve functional recovery after stroke in rats: optimized dosing regimen with implications for mechanism.

    PubMed

    Menniti, Frank S; Ren, JingMei; Coskran, Timothy M; Liu, Jing; Morton, Daniel; Sietsma, Dana K; Som, Angel; Stephenson, Diane T; Tate, Barbara A; Finklestein, Seth P

    2009-12-01

    Phosphodiesterase 5A (PDE5A) inhibitors improve functional recovery after middle cerebral artery occlusion (MCA-o) in rats. We used the PDE5A inhibitor 3-(4-(2-hydroxyethyl)piperazin-1-yl)-7-(6-methoxypyridin-3-yl)-1-(2-propoxyethyl)pyrido[3,4-b]pyrazin-2(1H)-one hydrochloride (PF-5) to determine the timing, duration, and degree of inhibition that yields maximum efficacy. We also investigated the localization of PDE5A to determine the tissues and cells that would be targets for PDE5 inhibition and that may mediate efficacy. Nearly complete inhibition of PDE5A, starting 24 h after MCA-o and continued for 7 days, resulted in nearly complete recovery of sensorimotor function that was sustained for 3 months. Delaying administration until 72 h after MCA-o resulted in equivalent efficacy, whereas delaying treatment for 14 days was ineffective. Treatment for 7 days was equivalently efficacious to 28 or 84 days of treatment, whereas treatment for 1 day was less effective. In the normal forebrain, PDE5A immunoreactivity was prominent in smooth muscle of meningeal arteries and a few smaller blood vessels, with weak staining in a few widely scattered cortical neurons and glia. At 24 and 48 h after MCA-o, the number and intensity of blood vessel staining increased in the infarcted cortex and striatum. PDE5A immunoreactivity also was increased at 48 h in putative microglia in penumbra, whereas there was no change in staining of the scattered cortical neurons. Given the window for efficacy and the PDE5A distribution, we hypothesize that efficacy results from an effect on vasculature, and perhaps modulation of microglial function, both of which may facilitate recovery of neuronal function. PMID:19729580

  12. The mixed lineage kinase-3 inhibitor URMC-099 improves therapeutic outcomes for long-acting antiretroviral therapy.

    PubMed

    Zhang, Gang; Guo, Dongwei; Dash, Prasanta K; Araínga, Mariluz; Wiederin, Jayme L; Haverland, Nicole A; Knibbe-Hollinger, Jaclyn; Martinez-Skinner, Andrea; Ciborowski, Pawel; Goodfellow, Val S; Wysocki, Tadeusz A; Wysocki, Beata J; Poluektova, Larisa Y; Liu, Xin-Ming; McMillan, JoEllyn M; Gorantla, Santhi; Gelbard, Harris A; Gendelman, Howard E

    2016-01-01

    During studies to extend the half-life of crystalline nanoformulated antiretroviral therapy (nanoART) the mixed lineage kinase-3 inhibitor URMC-099, developed as an adjunctive neuroprotective agent was shown to facilitate antiviral responses. Long-acting ritonavir-boosted atazanavir (nanoATV/r) nanoformulations co-administered with URMC-099 reduced viral load and the numbers of HIV-1 infected CD4+ T-cells in lymphoid tissues more than either drug alone in infected humanized NOD/SCID/IL2Rγc-/- mice. The drug effects were associated with sustained ART depots. Proteomics analyses demonstrated that the antiretroviral responses were linked to affected phagolysosomal storage pathways leading to sequestration of nanoATV/r in Rab-associated recycling and late endosomes; sites associated with viral maturation. URMC-099 administered with nanoATV induced a dose-dependent reduction in HIV-1p24 and reverse transcriptase activity. This drug combination offers a unique chemical marriage for cell-based viral clearance. From the Clinical Editor: Although successful in combating HIV-1 infection, the next improvement in antiretroviral therapy (nanoART) would be to devise long acting therapy, such as intra-cellular depots. In this report, the authors described the use of nanoformulated antiretroviral therapy given together with the mixed lineage kinase-3 inhibitor URMC-099, and showed that this combination not only prolonged drug half-life, but also had better efficacy. The findings are hoped to be translated into the clinical setting in the future. PMID:26472049

  13. Anti-infective Activity of 2-Cyano-3-Acrylamide Inhibitors with Improved Drug-Like Properties against Two Intracellular Pathogens.

    PubMed

    Passalacqua, Karla D; Charbonneau, Marie-Eve; Donato, Nicholas J; Showalter, Hollis D; Sun, Duxin; Wen, Bo; He, Miao; Sun, Hanshi; O'Riordan, Mary X D; Wobus, Christiane E

    2016-07-01

    Due to the rise of antibiotic resistance and the small number of effective antiviral drugs, new approaches for treating infectious diseases are urgently needed. Identifying targets for host-based therapies represents an emerging strategy for drug discovery. The ubiquitin-proteasome system is a central mode of signaling in the eukaryotic cell and may be a promising target for therapies that bolster the host's ability to control infection. Deubiquitinase (DUB) enzymes are key regulators of the host inflammatory response, and we previously demonstrated that a selective DUB inhibitor and its derivative promote anti-infective activities in host cells. To find compounds with anti-infective efficacy but improved toxicity profiles, we tested a library of predominantly 2-cyano-3-acrylamide small-molecule DUB inhibitors for anti-infective activity in macrophages against two intracellular pathogens: murine norovirus (MNV) and Listeria monocytogenes We identified compound C6, which inhibited DUB activity in human and murine cells and reduced intracellular replication of both pathogens with minimal toxicity in cell culture. Treatment with C6 did not significantly affect the ability of macrophages to internalize virus, suggesting that the anti-infective activity interferes with postentry stages of the MNV life cycle. Metabolic stability and pharmacokinetic assays showed that C6 has a half-life in mouse liver microsomes of ∼20 min and has a half-life of approximately 4 h in mice when administered intravenously. Our results provide a framework for targeting the host ubiquitin system in the development of host-based therapies for infectious disease. Compound C6 represents a promising tool with which to elucidate the role of DUBs in the macrophage response to infection. PMID:27139470

  14. Perioperative management of patients treated with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers: a quality improvement audit.

    PubMed

    Vijay, A; Grover, A; Coulson, T G; Myles, P S

    2016-05-01

    Previous studies have shown that patients continuing angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers on the day of surgery are more likely to have significant intraoperative hypotension, higher rates of postoperative acute kidney injury, and lower incidences of postoperative atrial fibrillation. However, many of these studies were prone to bias and confounding, and questions remain over the validity of these outcomes. This observational, before-and-after quality improvement audit aimed to assess the effect of withholding these medications on the morning of surgery. We recruited 323 participants, with 83 (26%) having their preoperative angiotensin-converting enzyme inhibitor (ACEi) or angiotensin II receptor blocker (ARB) withheld on the day of surgery. There were only very small Spearman rank-order correlations between time since last dose of these medications (rho -0.12, P=0.057) and intraoperative and recovery room intravenous fluid administration (rho -0.11, P=0.042). There was no statistically significant difference between the continued or withheld groups in vasopressor (metaraminol use 3.5 [1.5-8.3] mg versus 3.5 [1.5-8.5] mg, P=0.67) or intravenous fluid administration (1000 ml [800-1500] ml versus 1000 [800-1500] ml, P=0.096), nor rates of postoperative acute kidney injury (13% vs 18%, P=0.25) or atrial fibrillation (15% versus 18%, P=0.71). This audit found no significant differences in measured outcomes between the continued or withheld ACEi/ARB groups. This finding should be interpreted with caution due to the possibility of confounding and an insufficient sample size. However, as the finding is in contrast to many previous studies, future prospective randomised clinical trials are required to answer this important question. PMID:27246933

  15. Monoacylglycerol Lipase Inhibitor JZL184 Improves Behavior and Neural Properties in Ts65Dn Mice, a Model of Down Syndrome

    PubMed Central

    Lysenko, Larisa V.; Kim, Jeesun; Henry, Cassandra; Tyrtyshnaia, Anna; Kohnz, Rebecca A.; Madamba, Francisco; Simon, Gabriel M.; Kleschevnikova, Natalia E.; Nomura, Daniel K.; Ezekowitz, R . Alan B.; Kleschevnikov, Alexander M.

    2014-01-01

    Genetic alterations or pharmacological treatments affecting endocannabinoid signaling have profound effects on synaptic and neuronal properties and, under certain conditions, may improve higher brain functions. Down syndrome (DS), a developmental disorder caused by triplication of chromosome 21, is characterized by deficient cognition and inevitable development of the Alzheimer disease (AD) type pathology during aging. Here we used JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL), to examine the effects of chronic MAGL inhibition on the behavioral, biochemical, and synaptic properties of aged Ts65Dn mice, a genetic model of DS. In both Ts65Dn mice and their normosomic (2N) controls, JZL184-treatment increased brain levels of 2-arachidonoylglycerol (2-AG) and decreased levels of its metabolites such as arachidonic acid, prostaglandins PGD2, PGE2, PGFα, and PGJ2. Enhanced spontaneous locomotor activity of Ts65Dn mice was reduced by the JZL184-treatement to the levels observed in 2N animals. Deficient long-term memory was also improved, while short-term and working types of memory were unaffected. Furthermore, reduced hippocampal long-term potentiation (LTP) was increased in the JZL184-treated Ts65Dn mice to the levels observed in 2N mice. Interestingly, changes in synaptic plasticity and behavior were not observed in the JZL184-treated 2N mice suggesting that the treatment specifically attenuated the defects in the trisomic animals. The JZL184-treatment also reduced the levels of Aβ40 and Aβ42, but had no effect on the levels of full length APP and BACE1 in both Ts65Dn and 2N mice. These data show that chronic MAGL inhibition improves the behavior and brain functions in a DS model suggesting that pharmacological targeting of MAGL may be considered as a perspective new approach for improving cognition in DS. PMID:25474204

  16. Novel Inhibitors of Neurotropic Alphavirus Replication That Improve Host Survival in a Mouse Model of Acute Viral Encephalitis

    PubMed Central

    Sindac, Janice; Yestrepsky, Bryan D.; Barraza, Scott J.; Bolduc, Kyle L.; Blakely, Pennelope K.; Keep, Richard F.; Irani, David N.; Miller, David J.; Larsen, Scott D.

    2012-01-01

    Arboviral encephalitis is a potentially devastating human disease with no approved therapies that target virus replication. We previously discovered a novel class of thieno[3,2-b]pyrrole-based inhibitors active against neurotropic alphaviruses such as western equine encephalitis virus (WEEV) in cultured cells. In this report we describe initial development of these novel antiviral compounds, including bioisosteric replacement of the 4H-thieno[3,2-b]pyrrole core with indole to improve metabolic stability and the introduction of chirality to assess target enantioselectivity. Selected modifications enhanced antiviral activity while maintaining low cytotoxicity, increased stability to microsomal metabolism, and also revealed striking enantiospecific activity in cultured cells. Furthermore, we demonstrate improved outcomes (both symptoms and survival) following treatment with indole analog 9h (CCG-203926) in an in vivo mouse model of alphaviral encephalitis that closely correlate with the enantiospecific in vitro antiviral activity. These results represent a substantial advancement in the early preclinical development of a promising class of novel antiviral drugs against virulent neurotropic alphaviruses. PMID:22428985

  17. Improved stability of rabbit and rat intestinal brush border membrane vesicles using phospholipase inhibitors.

    PubMed

    Maenz, D D; Chenu, C; Bellemare, F; Berteloot, A

    1991-11-01

    The initial rates of Na(+)-dependent D-aspartate and D-glucose uptakes were shown to decline from the time of resuspension of brush border membrane vesicles isolated from rabbit and rat jejunum by standard divalent cation precipitation procedures. The former were however more stable than the latter and followed quite closely the decrease in the intravesicular volume, thus suggesting that the loss of transport activity may involve both nonspecific opening of the vesicles and either direct or indirect specific inactivation of the transporters. Uptake rates for both substrates did tend to stabilize at 6-24 h from resuspension, however this final 'next day' uptake activity was too low to be of practical use in kinetic studies. Freezing aliquots of rabbit jejunal vesicles in liquid N2 until the time of assay resulted in complete stabilization of D-glucose uptake. A modified homogenate buffer designed to inhibit a broad spectrum of phospholipase activities resulted in a partial stabilization of glucose transport by rabbit jejunal vesicles with, on average, an over 6-fold enrichment in the 'next day' stable specific activity of uptake as compared to unfrozen vesicles. The modified homogenate buffer also improved the stability and the 'next day' specific activities of D-glucose uptake in rat jejunal brush border vesicles and D-aspartic acid uptake in rabbit jejunal vesicles. It also completely stabilized the intravesicular volume in the latter preparation. An evaluation of the kinetic parameters of Na(+)-dependent D-glucose transport in rabbit vesicles prepared from either the standard homogenate media and frozen in liquid N2 or the modified media and allowed to stabilize overnight, revealed a single transport system with a Km of 0.31-0.32 mM as the best model to fit the data. As such the modifications to the homogenate media do not appear to effect the functional properties of D-glucose transport in the membrane. While being less efficient in stabilizing the vesicles than

  18. Iron Complexation to Histone Deacetylase Inhibitors SAHA and LAQ824 in PEGylated Liposomes Can Considerably Improve Pharmacokinetics in Rats

    PubMed Central

    Wang, Yan; Tu, Sheng; Steffen, Dana; Xiong, May P.

    2015-01-01

    PURPOSE The formulation of histone deacetylase inhibitors (HDACi) is challenging due to poor water solubility and rapid elimination of drugs in vivo. This study investigated the effects of complexing iron (Fe3+) to the HDACi suberoylanilide hydroxamic acid (SAHA) and LAQ824 (LAQ) prior to their encapsulation into PEGylated liposomes, and investigated whether this technique could improve drug solubility, in vitro release and in vivo pharmacokinetic (PK) properties. METHODS The reaction stoichiometry, binding constants and solubility were measured for Fe complexes of SAHA and LAQ. The complexes were passively encapsulated into PEGylated liposomes and characterized by size distribution, zeta-potential, encapsulation efficiency (EE), and in vitro drug release studies. PC-3 cells were used to verify the in vitro anticancer activity of the formulations. In vivo pharmacokinetic properties of liposomal LAQ-Fe (L-LAQ-Fe) was evaluated in rats. RESULTS SAHA and LAQ form complexes with Fe at 1:1 stoichiometric ratio, with a binding constant on the order of 104 M−1. Fe complexation improved the aqueous solubility and the liposomal encapsulation efficiency of SAHA and LAQ (29–35% EE, final drug concentration > 1 mM). Liposomal encapsulated complexes (L-HDACi-Fe) exhibited sustained in vitro release properties compared to L-HDACi but cytotoxicity on PC-3 cells was comparable to free drugs. The PK of L-LAQ-Fe revealed 15-fold improvement in the plasma t1/2 (12.11 h) and 211-fold improvement in the AUC∞ (105.7 μg·h/ml) compared to free LAQ (0.79 h, 0.5 μg·h/ml). Similarly, the plasma t1/2 of Fe was determined to be 11.83 h in a separate experiment using radioactive Fe-59. The majority of Fe-59 activity was found in liver and spleen of rats and correlates with liposomal uptake by the mononuclear phagocyte system. CONCLUSIONS We have demonstrated that encapsulation of Fe complexes of HDACi into PEGylated liposomes can improve overall drug aqueous solubility, in vitro

  19. The Coagulation Factor XIIa Inhibitor rHA-Infestin-4 Improves Outcome after Cerebral Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Krupka, Jennifer; May, Frauke; Weimer, Thomas; Pragst, Ingo; Kleinschnitz, Christoph; Stoll, Guido; Panousis, Con; Dickneite, Gerhard; Nolte, Marc W.

    2016-01-01

    Background and Purpose Ischemic stroke provokes severe brain damage and remains a predominant disease in industrialized countries. The coagulation factor XII (FXII)-driven contact activation system plays a central, but not yet fully defined pathogenic role in stroke development. Here, we investigated the efficacy of the FXIIa inhibitor rHA-Infestin-4 in a rat model of ischemic stroke using both a prophylactic and a therapeutic approach. Methods For prophylactic treatment, animals were treated intravenously with 100 mg/kg rHA-Infestin-4 or an equal volume of saline 15 min prior to transient middle cerebral artery occlusion (tMCAO) of 90 min. For therapeutic treatment, 100 mg/kg rHA-Infestin-4, or an equal volume of saline, was administered directly after the start of reperfusion. At 24 h after tMCAO, rats were tested for neurological deficits and blood was drawn for coagulation assays. Finally, brains were removed and analyzed for infarct area and edema formation. Results Within prophylactic rHA-Infestin-4 treatment, infarct areas and brain edema formation were reduced accompanied by better neurological scores and survival compared to controls. Following therapeutic treatment, neurological outcome and survival were still improved although overall effects were less pronounced compared to prophylaxis. Conclusions With regard to the central role of the FXII-driven contact activation system in ischemic stroke, inhibition of FXIIa may represent a new and promising treatment approach to prevent cerebral ischemia/reperfusion injury. PMID:26815580

  20. Discharge of three benzotriazole corrosion inhibitors with municipal wastewater and improvements by membrane bioreactor treatment and ozonation.

    PubMed

    Weiss, Stefan; Jakobs, Jutta; Reemtsma, Thorsten

    2006-12-01

    A set of three benzotriazole corrosion inhibitors was analyzed by liquid chromatography-mass spectrometry in wastewaters and in a partially closed water cycle in the Berlin region. Benzotriazole (BTri) and two isomers of tolyltriazole (TTri) were determined in untreated municipal wastewater with mean dissolved concentrations of 12 microg/L (BTri), 2.1 microg/L (4-TTri), and 1.3 microg/L (5-TTri). Removal in conventional activated sludge (CAS) municipal wastewater treatment ranged from 37% for BTri to insignificant removal for 4-TTri. In laboratory batch tests 5-TTri was mineralized completely and 4-TTri was mineralized to only 25%. This different behavior of the three benzotriazoles was confirmed by following the triazoles through a partially closed water cycle, into bank filtrate used for drinking water production, where BTri (0.1 microg/L) and 4-TTri (0.03 microg/ L) but no 5-TTri were detected after a travel time of several months. The environmental half-life appears to increase from 5-TTri over BTri to 4-TTri. Treatment of municipal wastewater by a lab-scale membrane bioreactor (MBR) instead of CAS improved the removal of BTri and 5-TTri but could not avoid their discharge. Almost complete removal was achieved by ozonation of the treatment plant effluent with 1 mg O3/mg DOC. PMID:17180966

  1. Jumping the nuclear envelop barrier: Improving polyplex-mediated gene transfection efficiency by a selective CDK1 inhibitor RO-3306.

    PubMed

    Zhou, Xuefei; Liu, Xiangrui; Zhao, Bingxiang; Liu, Xin; Zhu, Dingcheng; Qiu, Nasha; Zhou, Quan; Piao, Ying; Zhou, Zhuxian; Tang, Jianbin; Shen, Youqing

    2016-07-28

    Successful transfection of plasmid DNA (pDNA) requires intranuclear internalization of pDNA effectively and the nuclear envelope appears to be one of the critical intracellular barriers for polymer mediated pDNA delivery. Polyethylenimine (PEI), as the classic cationic polymer, compact the negatively charged pDNA tightly and make up stable polyplexes. The polyplexes are too large to enter the nuclear through nuclear pores and it is believed that the nuclear envelope breakdown in mitosis could facilitate the nuclear entry of polyplexes. To jump the nuclear envelope barrier, we used a selective and reversible CDK1 inhibitor RO-3306 to control the G2/M transition of the cell cycle and increased the proportion of mitotic cells which have disappeared nuclear envelope during transfection. Herein, we show that RO-3306 remarkably increases the transfection efficiency of PEI polyplexes through enhanced nuclear localization of PEI and pDNA. However, RO-3306 is less effective to the charge-reversal polymer poly[(2-acryloyl)ethyl(p-boronic acid benzyl)diethylammonium bromide] (B-PDEAEA) which responses to cellular stimuli and releases free pDNA in cytoplasm. Our findings not only offer new opportunities for improving non-viral based gene delivery but also provide theoretical support for the rational design of novel functional polymers for gene delivery. We also report current data showing that RO-3306 synergizes TRAIL gene induced apoptosis in cancer cells. PMID:27212103

  2. Novel Improved Synthesis of HSP70 Inhibitor, Pifithrin-μ. In Vitro Synergy Quantification of Pifithrin-μ Combined with Pt Drugs in Prostate and Colorectal Cancer Cells.

    PubMed

    McKeon, Aoife M; Egan, Alan; Chandanshive, Jay; McMahon, Helena; Griffith, Darren M

    2016-01-01

    We describe a novel improved approach to the synthesis of the important and well-known heat shock protein 70 inhibitor (HSP70), pifithrin-μ, with corresponding and previously unreported characterisation. The first example of a combination study comprising HSP70 inhibitor pifithrin-μ and cisplatin or oxaliplatin is reported. We have determined, using the Chou-Talalay method, (i) moderate synergistic and synergistic effects in co-treating PC-3 prostate cancer cells with pifithrin-μ and cisplatin and (ii) significant synergistic effects including strong synergism in cotreating HT29 colorectal cancer cells with oxaliplatin and pifithrin-μ. PMID:27455212

  3. The MAO inhibitor phenelzine can improve functional outcomes in mice with established clinical signs in experimental autoimmune encephalomyelitis (EAE).

    PubMed

    Benson, Curtis A; Wong, Grace; Tenorio, Gustavo; Baker, Glen B; Kerr, Bradley J

    2013-09-01

    Many symptoms in multiple sclerosis (MS) can be related to changes in the levels of key neurotransmitters. These neurotransmitters have a direct role in the maintenance of neurons and also have immunomodulatory properties. Previously we have shown that when treatment began prior to the onset of clinical signs, daily treatment with the monoamine oxidase (MAO) inhibitor phenelzine (PLZ), which also elevates CNS levels of GABA, lead to substantial behavioral improvements in the experimental autoimmune encephalomyelitis (EAE), the animal model for MS. To determine whether PLZ could have beneficial effects in an already established disease state, we conducted experiments in which PLZ treatment only began when mice with EAE exhibited the first clinical signs of the disease. Using this more clinically relevant treatment approach, we find that PLZ treatment can reduce the severity of clinical signs and improve exploratory behaviors for the duration of the experiment in mice with EAE. Treatment with PLZ did not affect the infiltration of CD4+ T-cells into the spinal cord nor did it reduce the degree of reactive gliosis as measured by Iba1 immunostaining. Beginning PLZ treatment after the start of clinical signs did however lead to significantly better 5-HT innervation density in the ventral horn of the spinal cord and also resulted in higher levels of GABA, dopamine and norepinephrine in the brain and spinal cord. These results indicate that even in an established EAE disease state, PLZ can have clinical benefits. These benefits likely derive from PLZ's ability to normalize the innervation to ventral horn motor neuron pools as well as the elevations in GABA and biogenic amines that have been shown to have anti-inflammatory properties. PMID:23777648

  4. Inhibitor of neuronal nitric oxide synthase improves gas exchange in ventilator-induced lung injury after pneumonectomy

    PubMed Central

    2012-01-01

    Background Mechanical ventilation with high tidal volumes may cause ventilator-induced lung injury (VILI) and enhanced generation of nitric oxide (NO). We demonstrated in sheep that pneumonectomy followed by injurious ventilation promotes pulmonary edema. We wished both to test the hypothesis that neuronal NOS (nNOS), which is distributed in airway epithelial and neuronal tissues, could be involved in the pathogenesis of VILI and we also aimed at investigating the influence of an inhibitor of nNOS on the course of VILI after pneumonectomy. Methods Anesthetized sheep underwent right pneumonectomy, mechanical ventilation with tidal volumes (VT) of 6 mL/kg and FiO2 0.5, and were subsequently randomized to a protectively ventilated group (PROTV; n = 8) keeping VT and FiO2 unchanged, respiratory rate (RR) 25 inflations/min and PEEP 4 cm H2O for the following 8 hrs; an injuriously ventilated group with VT of 12 mL/kg, zero end-expiratory pressure, and FiO2 and RR unchanged (INJV; n = 8) and a group, which additionally received the inhibitor of nNOS, 7-nitroindazole (NI) 1.0 mg/kg/h intravenously from 2 hours after the commencement of injurious ventilation (INJV + NI; n = 8). We assessed respiratory, hemodynamic and volumetric variables, including both the extravascular lung water index (EVLWI) and the pulmonary vascular permeability index (PVPI). We measured plasma nitrite/nitrate (NOx) levels and examined lung biopsies for lung injury score (LIS). Results Both the injuriously ventilated groups demonstrated a 2–3-fold rise in EVLWI and PVPI, with no significant effects of NI. In the INJV group, gas exchange deteriorated in parallel with emerging respiratory acidosis, but administration of NI antagonized the derangement of oxygenation and the respiratory acidosis significantly. NOx displayed no significant changes and NI exerted no significant effect on LIS in the INJV group. Conclusion Inhibition of nNOS improved gas exchange, but did not

  5. Incorporation of Non-natural Amino Acids Improves Cell Permeability and Potency of Specific Inhibitors of Proteasome Trypsin-like Sites

    PubMed Central

    Geurink, Paul P.; van der Linden, Wouter A.; Mirabella, Anne C.; Gallastegui, Nerea; de Bruin, Gerjan; Blom, Annet E. M.; Voges, Mathias J.; Mock, Elliot D.; Florea, Bogdan I.; van der Marel, Gijs A.; Driessen, Christoph; van der Stelt, Mario; Groll, Michael; Overkleeft, Herman S.; Kisselev, Alexei F.

    2013-01-01

    Proteasomes degrade the majority of proteins in mammalian cells by a concerted action of three distinct pairs of active sites. The chymotrypsin-like sites are targets of antimyeloma agents bortezomib and carfilzomib. Inhibitors of the trypsin-like site sensitize multiple myeloma cells to these agents. Here we describe systematic effort to develop inhibitors with improved potency and cell permeability, yielding azido-Phe-Leu-Leu-4-aminomethyl-Phe-methyl vinyl sulfone (4a, LU-102), and a fluorescent activity-based probe for this site. X-ray structures of 4a and related inhibitors complexed with yeast proteasomes revealed the structural basis for specificity. Nontoxic to myeloma cells when used as a single agent, 4a sensitized them to bortezomib and carfilzomib. This sensitizing effect was much stronger than the synergistic effects of histone acetylase inhibitors or additive effects of doxorubicin and dexamethasone, raising the possibility that combinations of inhibitors of the trypsin-like site with bortezomib or carfilzomib would have stronger antineoplastic activity than combinations currently used clinically. PMID:23320547

  6. Histone deacetylase inhibitor pracinostat in doublet therapy: a unique strategy to improve therapeutic efficacy and to tackle herculean cancer chemoresistance.

    PubMed

    Ganai, Shabir Ahmad

    2016-09-01

    Context Histone deacetylase inhibitors (HDACi) have shown promising results in neurodegeneration and cancer. Hydroxamate HDACi, including vorinostat, have shown encouraging results in haematological malignancies, but the poor pharmacokinetic of these inhibitors leads to insufficient tumour concentration limiting their application against solid malignancies. Objective This article deals with novel HDAC inhibitor pracinostat (SB939) and delineates its therapeutic role in solid and haematological malignancies. The article provides rigorous details about the underlying molecular mechanisms modulated by pracinostat to exert cytotoxic effect. The article further highlights the doublet therapy that may be used to tackle monotonous cancer chemoresistance. Methods Both old and the latest literature on pracinostat was retrieved from diverse sources, such as PubMed, Science Direct, Springer Link, general Google search using both pracinostat and SB939 keywords in various ways: after thorough evaluation the topic which can fulfil the current gap was chosen. Results Pracinostat shows potent anticancer activity against both solid and haematological malignancies compared to the FDA-approved drug vorinostat. This marvellous inhibitor has better physicochemical, pharmaceutical and pharmacokinetic properties than the defined inhibitor vorinostat. Pracinostat has  >100-fold more affinity towards HDACs compared to other zinc-dependent metalloenzymes and shows maximum efficacy when used in doublet therapy. Conclusion Pracinostat shows potent anticancer activity even against therapeutically challenging cancers when used in doublet therapy. However, the triplet combination studies of the defined inhibitor that may prove even more beneficial are still undone, emphasizing the desperate need of further research in the defined gap. PMID:26853619

  7. The Phosphodiesterase 10A Selective Inhibitor TAK-063 Improves Cognitive Functions Associated with Schizophrenia in Rodent Models.

    PubMed

    Shiraishi, Eri; Suzuki, Kazunori; Harada, Akina; Suzuki, Noriko; Kimura, Haruhide

    2016-03-01

    Cognitive deficits in various domains, including recognition memory, attention, impulsivity, working memory, and executive function, substantially affect functional outcomes in patients with schizophrenia. TAK-063 [1-[2-fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-4(1H)-one] is a potent and selective phosphodiesterase 10A inhibitor that produces antipsychotic-like effects in rodent models of schizophrenia. We evaluated the effects of TAK-063 on multiple cognitive functions associated with schizophrenia using naïve and drug-perturbed rodents. TAK-063 at 0.1 and 0.3 mg/kg p.o. improved time-dependent memory decay in object recognition in naïve rats. TAK-063 at 0.1 and 0.3 mg/kg p.o. increased accuracy rate, and TAK-063 at 0.3 mg/kg p.o. reduced impulsivity in a five-choice serial reaction time task in naïve rats. N-methyl-d-aspartate receptor antagonists, such as phencyclidine and MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine], were used to induce working memory deficits relevant to schizophrenia in animals. TAK-063 at 0.3 mg/kg p.o. attenuated both phencyclidine-induced working memory deficits in a Y-maze test in mice and MK-801-induced working memory deficits in an eight-arm radial maze task in rats. An attentional set-shifting task using subchronic phencyclidine-treated rats was used to assess the executive function. TAK-063 at 0.3 mg/kg p.o. reversed cognitive deficits in extradimensional shifts. These findings suggest that TAK-063 has a potential to ameliorate deficits in multiple cognitive domains impaired in schizophrenia. PMID:26675680

  8. Improving the In Vivo Profile of Minigastrin Radiotracers: A Comparative Study Involving the Neutral Endopeptidase Inhibitor Phosphoramidon.

    PubMed

    Kaloudi, Aikaterini; Nock, Berthold A; Lymperis, Emmanouil; Krenning, Eric P; de Jong, Marion; Maina, Theodosia

    2016-02-01

    Minigastrin radiotracers, such as [(111)In-DOTA]MG0 ([(111)In-DOTA-DGlu(1)]minigastrin), have been considered for diagnostic imaging and radionuclide therapy of CCK2R-positive human tumors, such as medullary thyroid carcinoma. However, the high kidney retention assigned to the pentaGlu(2-6) repeat in the peptide sequence has compromised their clinical applicability. On the other hand, truncated des(Glu)(2-6)-analogs, such as [(111)In-DOTA]MG11 ([(111)In-DOTA-DGlu(10),desGlu(2-6)]minigastrin), despite their low renal uptake, show poor bioavailability and tumor targeting. [(111)In]CP04 ([(111)In-DOTA-DGlu(1-6)]minigastrin) acquired by Glu(2-6)/DGlu(2-6) substitution showed promising tumor-to-kidney ratios in rodents. In the present study, we compare the biological profiles of [(111)In]CP04, [(111)In-DOTA]MG11, and [(111)In-DOTA]MG0 during in situ neutral endopeptidase (NEP) inhibition, recently shown to improve the bioavailability of several peptide radiotracers. After coinjection of the NEP inhibitor, phosphoramidon (PA), the stability of [(111)In]CP04 and [(111)In-DOTA]MG0 in peripheral mouse blood increased, with an exceptional >14-fold improvement monitored for [(111)In-DOTA]MG11. In line with these findings, PA treatment increased the uptake of [(111)In]CP04 (8.5 ± 0.4%ID/g to 16.0 ± 2.3%ID/g) and [(111)In-DOTA]MG0 (11.9 ± 2.2%ID/g to 17.2 ± 0.9%ID/g) in A431-CCK2R(+) tumors at 4 hours postinjection, whereas the respective increase for [(111)In-DOTA]MG11 was >6-fold (2.5 ± 0.9%ID/g to 15.1 ± 1.7%ID/g). Interestingly, kidney uptake remained lowest for [(111)In-DOTA]MG11, but unfavorably increased by PA treatment for [(111)In-DOTA]MG0. Thus, overall, the most favorable in vivo profile was displayed by [(111)In-DOTA]MG11 during NEP inhibition, highlighting the need to validate this promising concept in the clinic. PMID:26844849

  9. Improvement of Canine Islet Yield by Donor Pancreas Infusion with a p38MAPK Inhibitor1,2

    PubMed Central

    Ito, Taihei; Omori, Keiko; Rawson, Jeffrey; Todorov, Ivan; Asari, Sadaki; Kuroda, Akio; Shintaku, Jonathan; Itakura, Shin; Ferreri, Kevin; Kandeel, Fouad; Mullen, Yoko

    2013-01-01

    Background The activation of p38 mitogen-activated protein kinases (MAPK) is implicated in cold ischemia-reperfusion injury of donor organs. The islet isolation process, from pancreas procurement through islet collection, may activate p38MAPK leading to cytokine release and islet damage. This damage may be prevented by treating pancreata with a p38MAPK inhibitor (p38IH) prior to cold preservation. Methods Pancreata removed from Beagle dogs were infused with UW solution containing either the p38IH, SB203580 and Pefabloc (n=6) or vehicle (DMSO and Pefabloc) alone (n=7), through the pancreatic duct and preserved using the two-layer method. After 20–22 hours, islets were isolated and 3000 IEQ/kg were autotransplanted into the corresponding dog to monitor glucose metabolism. Results P38IH-treated pancreata yielded significantly more islets than control pancreata (IEQ/g: 2,134±297 vs. 1,477±145 IEQ/g or 65,012±9,385 vs. 45,700±5,103 IEQ/Pancreas; p<0.05). Apoptotic β-cell percentages assessed by LSC were lower in p38IH-treated than the controls (44±9.4% vs. 61.6±4.8%, p<0.05). TNF-α expression assessed by RT-PCR was significantly lower in the p38IH-treated group than controls. All dogs (3000 IEQ/kg) transplanted with p38IH-treated islets (n=5) became euglycemic vs. 4 of 5 dogs that received untreated islets. Plasma C-peptide levels following glucagon challenge were higher in animals receiving p38IH-treated islets (n=5) vs. untreated islets (n=4) (0.40±0.78 vs. 0.21±0.05 ng/mL, p<0.05). Conclusions Infusion of pancreata with UW solution containing p38IH through the duct prior to peservation suppresses cytokine release, prevents β cell apoptosis, and improves islet yield significantly with no adverse effect on islet function following transplantation. P38IH treatment of human pancreata may improve islet yield for use in clinical transplantation. PMID:18645497

  10. Chronic Oral Administration of the Arginase Inhibitor 2(S)-amino-6-boronohexanoic Acid (ABH) Improves Erectile Function in Aged Rats

    PubMed Central

    Segal, Robert; Hannan, Johanna L.; Liu, Xiaopu; Kutlu, Omer; Burnett, Arthur L.; Champion, Hunter C.; Kim, Jae Hyung; Steppan, Jochen; Berkowitz, Dan E.; Bivalacqua, Trinity J.

    2014-01-01

    Arginase expression and activity have been noted to be heightened in conditions associated with erectile dysfunction, including aging. Previously, arginase inhibition by chronic administration of the arginase inhibitor 2-(S)-amino-6-boronohexanoic acid (ABH) has been shown to improve endothelial dysfunction in aged rats. The objective of this study was to assess whether chronic oral ABH administration affects cavernosal erectile function. Rats were divided into 4 groups: young control, young treated with arginase inhibitor, aged control, and aged treated with arginase inhibitor. Arginase activity was measured and presented as a proportion of young untreated rats. In vivo erectile responses to cavernous nerve stimulation were measured in all cohorts. The cavernous nerve was stimulated with a graded electrical stimulus, and the intracavernosal/ mean arterial pressure ratios and total intracavernosal pressure were recorded. Arginase activity was elevated in the aged rats compared with young controls; however, arginase activity was significantly decreased in aged rats treated with ABH. With the addition of ABH, erectile responses improved in the aged rats (P < .05). Oral inhibition of arginase with ABH results in improved erectile function in aged rats, resulting in erectile hemodynamics similar to young rats. This represents the first documentation of systemic arginase inhibition positively affecting corporal cavernosal function. PMID:22492840