Science.gov

Sample records for drive neutralization escape

  1. Flexibility in Surface-Exposed Loops in a Virus Capsid Mediates Escape from Antibody Neutralization

    PubMed Central

    Kolawole, Abimbola O.; Li, Ming; Xia, Chunsheng; Fischer, Audrey E.; Giacobbi, Nicholas S.; Rippinger, Christine M.; Proescher, Jody B. G.; Wu, Susan K.; Bessling, Seneca L.; Gamez, Monica; Yu, Chenchen; Zhang, Rebecca; Mehoke, Thomas S.; Pipas, James M.; Wolfe, Joshua T.; Lin, Jeffrey S.; Feldman, Andrew B.

    2014-01-01

    the antibody structure into the virion/antibody complex identifies two conformations of the antibody binding domain of the viral capsid: one with a superior fit and the other with an inferior fit to the antibody. These data suggest a unique mode of antibody neutralization. In contrast to other viruses that largely escape antibody neutralization through direct disruption of the antibody-virus interface, we identify mutations that acted indirectly by limiting the conformation of the antibody binding loop in the viral capsid and drive the antibody binding domain into the conformation unable to be bound by the antibody. PMID:24501415

  2. Escape from neutralization by the respiratory syncytial virus-specific neutralizing monoclonal antibody palivizumab is driven by changes in on-rate of binding to the fusion protein

    SciTech Connect

    Bates, John T.; Keefer, Christopher J.; Slaughter, James C.; Kulp, Daniel W.; Schief, William R.

    2014-04-15

    The role of binding kinetics in determining neutralizing potency for antiviral antibodies is poorly understood. While it is believed that increased steady-state affinity correlates positively with increased virus-neutralizing activity, the relationship between association or dissociation rate and neutralization potency is unclear. We investigated the effect of naturally-occurring antibody resistance mutations in the RSV F protein on the kinetics of binding to palivizumab. Escape from palivizumab-mediated neutralization of RSV occurred with reduced association rate (K{sub on}) for binding to RSV F protein, while alteration of dissociation rate (K{sub off}) did not significantly affect neutralizing activity. Interestingly, linkage of reduced K{sub on} with reduced potency mirrored the effect of increased K{sub on} found in a high-affinity enhanced potency palivizumab variant (motavizumab). These data suggest that association rate is the dominant factor driving neutralization potency for antibodies to RSV F protein antigenic site A and determines the potency of antibody somatic variants or efficiency of escape of viral glycoprotein variants. - Highlights: • The relationship of affinity to neutralization for virus antibodies is uncertain. • Palivizumab binds to RSV escape mutant fusion proteins, but with reduced affinity. • Association rate (K{sub on}) correlated well with the potency of neutralization.

  3. Immune escape by human immunodeficiency virus type 1 from neutralizing antibodies: evidence for multiple pathways.

    PubMed Central

    Watkins, B A; Reitz, M S; Wilson, C A; Aldrich, K; Davis, A E; Robert-Guroff, M

    1993-01-01

    Sera from many HIV-1-infected individuals contain broadly reactive, specific neutralizing antibodies. Despite their broad reactivity, variant viruses, resistant to neutralization, can be selected in vitro in the presence of such antisera. We have previously shown that neutralization resistance of an escape mutant with an amino acid substitution in the transmembrane protein (A582T) occurs because of alteration of a conformational epitope that is recognized by neutralizing antibodies directed against the CD4 binding site. In this report we demonstrate that immune escape via a single-amino-acid substitution (A281V) within a conserved region of the envelope glycoprotein gp120 confers neutralization resistance against a broadly reactive neutralizing antiserum from a seropositive individual. We show this alteration affects V3 and additional regions unrelated to V3 or the CD4 binding site. Together with previous studies on escape mutants selected in vitro, our findings suggest that immune-selective pressure can arise by multiple pathways. PMID:7693973

  4. Two Escape Mechanisms of Influenza A Virus to a Broadly Neutralizing Stalk-Binding Antibody

    PubMed Central

    Chai, Ning; Swem, Lee R.; Reichelt, Mike; Chen-Harris, Haiyin; Luis, Elizabeth; Park, Summer; Fouts, Ashley; Lupardus, Patrick; Wu, Thomas D.; Li, Olga; McBride, Jacqueline; Lawrence, Michael; Xu, Min; Tan, Man-Wah

    2016-01-01

    Broadly neutralizing antibodies targeting the stalk region of influenza A virus (IAV) hemagglutinin (HA) are effective in blocking virus infection both in vitro and in vivo. The highly conserved epitopes recognized by these antibodies are critical for the membrane fusion function of HA and therefore less likely to be permissive for virus mutational escape. Here we report three resistant viruses of the A/Perth/16/2009 strain that were selected in the presence of a broadly neutralizing stalk-binding antibody. The three resistant viruses harbor three different mutations in the HA stalk: (1) Gln387Lys; (2) Asp391Tyr; (3) Asp391Gly. The Gln387Lys mutation completely abolishes binding of the antibody to the HA stalk epitope. The other two mutations, Asp391Tyr and Asp391Gly, do not affect antibody binding at neutral pH and only slightly reduce binding at low pH. Interestingly, they enhance the fusion ability of the HA, representing a novel mechanism that allows productive membrane fusion even in the presence of antibody and hence virus escape from antibody neutralization. Therefore, these mutations illustrate two different resistance mechanisms used by IAV to escape broadly neutralizing stalk-binding antibodies. Compared to the wild type virus, the resistant viruses release fewer progeny viral particles during replication and are more sensitive to Tamiflu, suggesting reduced viral fitness. PMID:27351973

  5. Two Escape Mechanisms of Influenza A Virus to a Broadly Neutralizing Stalk-Binding Antibody.

    PubMed

    Chai, Ning; Swem, Lee R; Reichelt, Mike; Chen-Harris, Haiyin; Luis, Elizabeth; Park, Summer; Fouts, Ashley; Lupardus, Patrick; Wu, Thomas D; Li, Olga; McBride, Jacqueline; Lawrence, Michael; Xu, Min; Tan, Man-Wah

    2016-06-01

    Broadly neutralizing antibodies targeting the stalk region of influenza A virus (IAV) hemagglutinin (HA) are effective in blocking virus infection both in vitro and in vivo. The highly conserved epitopes recognized by these antibodies are critical for the membrane fusion function of HA and therefore less likely to be permissive for virus mutational escape. Here we report three resistant viruses of the A/Perth/16/2009 strain that were selected in the presence of a broadly neutralizing stalk-binding antibody. The three resistant viruses harbor three different mutations in the HA stalk: (1) Gln387Lys; (2) Asp391Tyr; (3) Asp391Gly. The Gln387Lys mutation completely abolishes binding of the antibody to the HA stalk epitope. The other two mutations, Asp391Tyr and Asp391Gly, do not affect antibody binding at neutral pH and only slightly reduce binding at low pH. Interestingly, they enhance the fusion ability of the HA, representing a novel mechanism that allows productive membrane fusion even in the presence of antibody and hence virus escape from antibody neutralization. Therefore, these mutations illustrate two different resistance mechanisms used by IAV to escape broadly neutralizing stalk-binding antibodies. Compared to the wild type virus, the resistant viruses release fewer progeny viral particles during replication and are more sensitive to Tamiflu, suggesting reduced viral fitness. PMID:27351973

  6. Analysis of anisotropic suprathermal ion distributions using multidirectional measurements of escaping neutral atom fluxes

    SciTech Connect

    Goncharov, P. R.; Ozaki, T.; Veshchev, E. A.; Sudo, S.

    2008-10-15

    A feasible approach in obtaining experimental data on the angular dependence of the ion distribution function in a fusion plasma is to perform angle-resolved measurements of kinetic energy spectra of escaping neutral atoms. A general calculation scheme has been developed and realized as a FORTRAN code that has a predictive force to simulate the experimentally measurable anisotropic distributions and random samples of escaping neutral atom kinetic energies for any given angle-dependent ion distribution law, electron density, and temperature profiles, plasma composition, magnetic surface structure, and experiment geometry on any toroidal plasma device with magnetic confinement. As a particular application of the method to a specific experiment, measured signals for all 20 channels of the angle-resolved multisightline neutral particle analyzer on Large Helical Device have been numerically simulated for certain predefined model fast ion distribution functions.

  7. Analysis of anisotropic suprathermal ion distributions using multidirectional measurements of escaping neutral atom fluxes.

    PubMed

    Goncharov, P R; Ozaki, T; Veshchev, E A; Sudo, S

    2008-10-01

    A feasible approach in obtaining experimental data on the angular dependence of the ion distribution function in a fusion plasma is to perform angle-resolved measurements of kinetic energy spectra of escaping neutral atoms. A general calculation scheme has been developed and realized as a FORTRAN code that has a predictive force to simulate the experimentally measurable anisotropic distributions and random samples of escaping neutral atom kinetic energies for any given angle-dependent ion distribution law, electron density, and temperature profiles, plasma composition, magnetic surface structure, and experiment geometry on any toroidal plasma device with magnetic confinement. As a particular application of the method to a specific experiment, measured signals for all 20 channels of the angle-resolved multisightline neutral particle analyzer on Large Helical Device have been numerically simulated for certain predefined model fast ion distribution functions. PMID:19044624

  8. HIV-1 resistance to neutralizing antibodies: Determination of antibody concentrations leading to escape mutant evolution.

    PubMed

    Magnus, Carsten; Reh, Lucia; Trkola, Alexandra

    2016-06-15

    Broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) are considered vital components of novel therapeutics and blueprints for vaccine research. Yet escape to even the most potent of these antibodies is imminent in natural infection. Measures to define antibody efficacy and prevent mutant selection are thus urgently needed. Here, we derive a mathematical framework to predict the concentration ranges for which antibody escape variants can outcompete their viral ancestors, referred to as mutant selection window (MSW). When determining the MSW, we focus on the differential efficacy of neutralizing antibodies against HIV-1 in two canonical infection routes, free-virus infection and cell-cell transmission. The latter has proven highly effective in vitro suggesting its importance for both in vivo spread as well as for escaping targeted intervention strategies. We observed a range of MSW patterns that highlight the potential of mutants to arise in both transmission pathways and over wide concentration ranges. Most importantly, we found that only when the arising mutant has both, residual sensitivity to the neutralizing antibody and reduced infectivity compared to the parental virus, antibody dosing outside of the MSW to restrict mutant selection is possible. Emergence of mutants that provide complete escape and have no considerable fitness loss cannot be prevented by adjusting antibody doses. The latter may in part explain the ubiquitous resistance to neutralizing antibodies observed in natural infection and antibody treatment. Based on our findings, combinations of antibodies targeting different epitopes should be favored for antibody-based interventions as this may render complete resistance less likely to occur and also increase chances that multiple escapes result in severe fitness loss of the virus making longer-term antibody treatment more feasible. PMID:26494166

  9. Requirements for neutral beam current drive in tokamaks

    SciTech Connect

    Dory, R.A.

    1988-01-01

    This paper contains viewgraphs on the use of neutral beam current drive in future tokamaks. Current profiles, slowing down distributions, beam destabilization of alfven waves and plasma parameters are some items covered in this paper. (DWL)

  10. Neutralization escape mutants define a dominant immunogenic neutralization site on hepatitis A virus

    SciTech Connect

    Stapleton, J.T.; Lemon, S.M.

    1987-02-01

    Hepatitis A virus is an hepatotrophic human picornavirus which demonstrates little antigenic variability. To topologically map immunogenic sites on hepatitis A virus which elicit neutralizing antibodies, eight neutralizing monoclonal antibodies were evaluated in competition immunoassays employing radiolabeled monoclonal antibodies and HM-175 virus. Whereas two antibodies (K3-4C8 and K3-2F2) bound to intimately overlapping epitopes, the epitope bound by a third antibody (B5-B3) was distinctly different as evidenced by a lack of competition between antibodies for binding to the virus. The other five antibodies variably blocked the binding of both K3-4C8-K3-2F2 and B5-B3, suggesting that these epitopes are closely spaced and perhaps part of a single neutralization immunogenic site. Several combinations of monoclonal antibodies blocked the binding of polyclonal human convalescent antibody by greater than 96%, indicating that the neutralization epitopes bound by these antibodies are immunodominant in humans. Spontaneously arising HM-175 mutants were selected for resistance to monoclonal antibody-mediated neutralization. Neutralization resistance was associated with reduced antibody binding. These results suggest that hepatitis A virus may differ from poliovirus in possessing a single, dominant neutralization immunogenic site and therefore may be a better candidate for synthetic peptide or antiidiotype vaccine development.

  11. Precipitation of energetic neutral atoms and induced non-thermal escape fluxes from the Martian atmosphere

    SciTech Connect

    Lewkow, N. R.; Kharchenko, V.

    2014-08-01

    The precipitation of energetic neutral atoms, produced through charge exchange collisions between solar wind ions and thermal atmospheric gases, is investigated for the Martian atmosphere. Connections between parameters of precipitating fast ions and resulting escape fluxes, altitude-dependent energy distributions of fast atoms and their coefficients of reflection from the Mars atmosphere, are established using accurate cross sections in Monte Carlo (MC) simulations. Distributions of secondary hot (SH) atoms and molecules, induced by precipitating particles, have been obtained and applied for computations of the non-thermal escape fluxes. A new collisional database on accurate energy-angular-dependent cross sections, required for description of the energy-momentum transfer in collisions of precipitating particles and production of non-thermal atmospheric atoms and molecules, is reported with analytic fitting equations. Three-dimensional MC simulations with accurate energy-angular-dependent cross sections have been carried out to track large ensembles of energetic atoms in a time-dependent manner as they propagate into the Martian atmosphere and transfer their energy to the ambient atoms and molecules. Results of the MC simulations on the energy-deposition altitude profiles, reflection coefficients, and time-dependent atmospheric heating, obtained for the isotropic hard sphere and anisotropic quantum cross sections, are compared. Atmospheric heating rates, thermalization depths, altitude profiles of production rates, energy distributions of SH atoms and molecules, and induced escape fluxes have been determined.

  12. Envelope-chimeric Entry-targeted Measles Virus Escapes Neutralization and Achieves Oncolysis

    PubMed Central

    Miest, Tanner S; Yaiw, Koon-Chu; Frenzke, Marie; Lampe, Johanna; Hudacek, Andrew W; Springfeld, Christoph; von Messling, Veronika; Ungerechts, Guy; Cattaneo, Roberto

    2011-01-01

    Measles virus (MV) is a promising vector for cancer therapy and multivalent vaccination, but high prevalence of pre-existing neutralizing antibodies may reduce therapeutic efficacy, particularly following systemic administration. MV has only one serotype, but here we show that its envelope glycoproteins can be exchanged with those of the closely related canine distemper virus (CDV), generating a chimeric virus capable of escaping neutralization. To target its entry, we displayed on the CDV attachment protein a single-chain antibody specific for a designated receptor. To enhance oncolytic efficacy we armed the virus with a prodrug convertase gene capable of locally activating chemotherapeutic prodrugs. The new virus achieved high titers, was genetically stable, and was resistant to neutralization by sera from both MV-immunized mice and MV-immune humans. The new virus targeted syngeneic murine tumor cells expressing the designated receptor implanted in immunocompetent mice, and synergized with a chemotherapeutic prodrug in a model of oncolysis. Importantly, the chimeric MV remained oncolytic when administered systemically even in the presence of anti-MV antibodies capable of abrogating the therapeutic efficacy of the parental, nonshielded MV. This work shows that targeting, arming, and shielding can be combined to generate a tumor-specific, neutralization-resistant virus that can synergize with chemotherapeutics. PMID:21610701

  13. Subgroup J avian leukosis virus neutralizing antibody escape variants contribute to viral persistence in meat-type chickens.

    PubMed

    Pandiri, A R; Mays, J K; Silva, R F; Hunt, H D; Reed, W M; Fadly, A M

    2010-06-01

    We have previously demonstrated a high incidence of chickens with persistent viremia even in the presence of neutralizing antibodies (V+A+) against the inoculated parental virus in commercial meat-type chickens inoculated at hatch with subgroup J avian leukosis virus (ALV J) field isolates. In this study, we used an ALV J molecular clone, ADOL pR5-4, to determine the role of neutralizing antibody (NAb) escape mutants in maintaining a high incidence of viral persistence, namely, V+A+ infection profile in commercial meat-type chickens. Chickens were housed as a flock in a pen or housed in isolation in solitary Horsfall-Bauer units for testing for NAb escape variants. The emergence of NAb escape variants was evaluated by sequential autologous virus neutralization (VN) (between virus and antibody from the same sampling period) and heterologous VN (between virus and antibody from preceding and succeeding sampling periods). Sequential virus isolates and corresponding antisera from 18 chickens were examined by VN matrix. In all chickens, autologous virus isolates were not neutralized by corresponding antisera. However, some of these resilient autologous virus isolates were neutralized by antibodies from subsequent sampling intervals. Nucleotide sequence analysis of consecutive isolates from three individually housed chickens with V+A+ infection profile revealed distinct changes within the envelope region, suggesting viral evolution to escape the host immune response. These results demonstrate that the emergence of antibody escape variants in commercial meat-type chickens contributes to ALV J persistence. PMID:20608529

  14. Neutral Beam Current Drive in Spheromak plasma and plasma stability

    NASA Astrophysics Data System (ADS)

    Pearlstein, L. D.; Jayakumar, R. J.; Hudson, B.; Hill, D. N.; Lodestro, L. L.; McLean, H. S.; Fowler, T. K.; Casper, T. A.

    2007-11-01

    A key question for the Sustained Spheromak Physics Experiment (SSPX) is understanding how spheromaks can be sustained by other current drive tools such as neutral beam current drive. Another question is whether the present relationship between current and maximum spheromak magnetic field (plasma beta) is related to Alcator-like ohmic confinement limit or is a stability limit. Using the code CORSICA, the fraction of neutral beam current drive that can be achieved has been calculated for different injection angles with a fixed equilibrium. It is seen that relaxing the equilibrium with this drive simply drives the core safety factor to low values. Other equilibria where the NBI may give aligned current drive are being explored. Free-boundary equilibria calculations are underway to see what hyper-resistivity model gives the observed sustained SSPX performance and include that in the NBI calculations. Work performed under the auspices of the US DOE by University of California Lawrence Livermore National Laboratory under contract W-7405-ENG-48.

  15. Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses.

    PubMed

    Tabor, Kathryn M; Bergeron, Sadie A; Horstick, Eric J; Jordan, Diana C; Aho, Vilma; Porkka-Heiskanen, Tarja; Haspel, Gal; Burgess, Harold A

    2014-08-15

    Rapid escape swims in fish are initiated by the Mauthner cells, giant reticulospinal neurons with unique specializations for swift responses. The Mauthner cells directly activate motoneurons and facilitate predator detection by integrating acoustic, mechanosensory, and visual stimuli. In addition, larval fish show well-coordinated escape responses when exposed to electric field pulses (EFPs). Sensitization of the Mauthner cell by genetic overexpression of the voltage-gated sodium channel SCN5 increased EFP responsiveness, whereas Mauthner ablation with an engineered variant of nitroreductase with increased activity (epNTR) eliminated the response. The reaction time to EFPs is extremely short, with many responses initiated within 2 ms of the EFP. Large neurons, such as Mauthner cells, show heightened sensitivity to extracellular voltage gradients. We therefore tested whether the rapid response to EFPs was due to direct activation of the Mauthner cells, bypassing delays imposed by stimulus detection and transmission by sensory cells. Consistent with this, calcium imaging indicated that EFPs robustly activated the Mauthner cell but only rarely fired other reticulospinal neurons. Further supporting this idea, pharmacological blockade of synaptic transmission in zebrafish did not affect Mauthner cell activity in response to EFPs. Moreover, Mauthner cells transgenically expressing a tetrodotoxin (TTX)-resistant voltage-gated sodium channel retained responses to EFPs despite TTX suppression of action potentials in the rest of the brain. We propose that EFPs directly activate Mauthner cells because of their large size, thereby driving ultrarapid escape responses in fish. PMID:24848468

  16. Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses

    PubMed Central

    Tabor, Kathryn M.; Bergeron, Sadie A.; Horstick, Eric J.; Jordan, Diana C.; Aho, Vilma; Porkka-Heiskanen, Tarja; Haspel, Gal

    2014-01-01

    Rapid escape swims in fish are initiated by the Mauthner cells, giant reticulospinal neurons with unique specializations for swift responses. The Mauthner cells directly activate motoneurons and facilitate predator detection by integrating acoustic, mechanosensory, and visual stimuli. In addition, larval fish show well-coordinated escape responses when exposed to electric field pulses (EFPs). Sensitization of the Mauthner cell by genetic overexpression of the voltage-gated sodium channel SCN5 increased EFP responsiveness, whereas Mauthner ablation with an engineered variant of nitroreductase with increased activity (epNTR) eliminated the response. The reaction time to EFPs is extremely short, with many responses initiated within 2 ms of the EFP. Large neurons, such as Mauthner cells, show heightened sensitivity to extracellular voltage gradients. We therefore tested whether the rapid response to EFPs was due to direct activation of the Mauthner cells, bypassing delays imposed by stimulus detection and transmission by sensory cells. Consistent with this, calcium imaging indicated that EFPs robustly activated the Mauthner cell but only rarely fired other reticulospinal neurons. Further supporting this idea, pharmacological blockade of synaptic transmission in zebrafish did not affect Mauthner cell activity in response to EFPs. Moreover, Mauthner cells transgenically expressing a tetrodotoxin (TTX)-resistant voltage-gated sodium channel retained responses to EFPs despite TTX suppression of action potentials in the rest of the brain. We propose that EFPs directly activate Mauthner cells because of their large size, thereby driving ultrarapid escape responses in fish. PMID:24848468

  17. Characterization of Poliovirus Neutralization Escape Mutants of Single-Domain Antibody Fragments (VHHs)

    PubMed Central

    Schotte, Lise; Thys, Bert; Strauss, Mike; Filman, David J.; Rombaut, Bart

    2015-01-01

    To complete the eradication of poliovirus and to protect unvaccinated people subsequently, the development of one or more antiviral drugs will be necessary. A set of five single-domain antibody fragments (variable parts of the heavy chain of a heavy-chain antibody [VHHs]) with an in vitro neutralizing activity against poliovirus type 1 was developed previously (B. Thys, L. Schotte, S. Muyldermans, U. Wernery, G. Hassanzadeh-Ghassabeh, and B. Rombaut, Antiviral Res 87:257–264, 2010, http://dx.doi.org/10.1016/j.antiviral.2010.05.012), and their mechanisms of action have been studied (L. Schotte, M. Strauss, B. Thys, H. Halewyck, D. J. Filman, M. Bostina, J. M. Hogle, and B. Rombaut, J Virol 88:4403–4413, 2014, http://dx.doi.org/10.1128/JVI.03402-13). In this study, neutralization escape mutants were selected for each VHH. Sequencing of the P1 region of the genome showed that amino acid substitutions are found in the four viral proteins of the capsid and that they are located both in proximity to the binding sites of the VHHs and in regions further away from the canyon and hidden beneath the surface. Characterization of the mutants demonstrated that they have single-cycle replication kinetics that are similar to those of their parental strain and that they are all drug (VHH) independent. Their resistant phenotypes are stable, as they do not regain full susceptibility to the VHH after passage over HeLa cells in the absence of VHH. They are all at least as stable as the parental strain against heat inactivation at 44°C, and three of them are even significantly (P < 0.05) more resistant to heat inactivation. The resistant variants all still can be neutralized by at least two other VHHs and retain full susceptibility to pirodavir and 35-1F4. PMID:26014941

  18. Novel Rabies Virus-Neutralizing Epitope Recognized by Human Monoclonal Antibody: Fine Mapping and Escape Mutant Analysis†

    PubMed Central

    Marissen, Wilfred E.; Kramer, R. Arjen; Rice, Amy; Weldon, William C.; Niezgoda, Michael; Faber, Milosz; Slootstra, Jerry W.; Meloen, Rob H.; Clijsters-van der Horst, Marieke; Visser, Therese J.; Jongeneelen, Mandy; Thijsse, Sandra; Throsby, Mark; de Kruif, John; Rupprecht, Charles E.; Dietzschold, Bernhard; Goudsmit, Jaap; Bakker, Alexander B. H.

    2005-01-01

    Anti-rabies virus immunoglobulin combined with rabies vaccine protects humans from lethal rabies infections. For cost and safety reasons, replacement of the human or equine polyclonal immunoglobulin is advocated, and the use of rabies virus-specific monoclonal antibodies (MAbs) is recommended. We produced two previously described potent rabies virus-neutralizing human MAbs, CR57 and CRJB, in human PER.C6 cells. The two MAbs competed for binding to rabies virus glycoprotein. Using CR57 and a set of 15-mer overlapping peptides covering the glycoprotein ectodomain, a neutralization domain was identified between amino acids (aa) 218 and 240. The minimal binding region was identified as KLCGVL (aa 226 to 231), with key residues K-CGV- identified by alanine replacement scanning. The critical binding region of this novel nonconformational rabies virus epitope is highly conserved within rabies viruses of genotype 1. Subsequently, we generated six rabies virus variants escaping neutralization by CR57 and six variants escaping CRJB. The CR57 escape mutants were only partially covered by CRJB, and all CRJB-resistant variants completely escaped neutralization by CR57. Without exception, the CR57-resistant variants showed a mutation at key residues within the defined minimal binding region, while the CRJB escape viruses showed a single mutation distant from the CR57 epitope (N182D) combined with mutations in the CR57 epitope. The competition between CR57 and CRJB, the in vitro escape profile, and the apparent overlap between the recognized epitopes argues against including both CR57 and CRJB in a MAb cocktail aimed at replacing classical immunoglobulin preparations. PMID:15795253

  19. Neutral and Selective Processes Drive Population Differentiation for Iris hexagona.

    PubMed

    Hamlin, Jennafer A P; Arnold, Michael L

    2015-01-01

    Gene flow among widespread populations can be reduced by geographical distance or by divergent selection resulting from local adaptation. In this study, we tested for the divergence of phenotypes and genotypes among 8 populations of Iris hexagona. Using a genotyping-by-sequencing approach, we generated a panel of 750 single nucleotide polymorphisms (SNPs) and used population genetic analyses to determine what may affect patterns of divergence across I. hexagona populations. Specifically, genetic differentiation was compared between populations at neutral and nonneutral SNPs and detected significant differences between the 2 types of markers. We then asked whether loci with the strongest degree of population genetic differentiation were also the loci with the strongest association to morphology or climate differences, allowing us to test if pollinators or climate drive population differentiation or some combination of both. We found 2 markers that were associated with morphology and 1 marker associated with 2 of the environmental variables, which were also identified in the outlier analysis. We then show that the SNPs putatively under selection were positively correlated with both geographic distance and phenotypic distance, albeit weakly to phenotypic distance. Moreover, neutral SNPs were only correlated with geographic distance and thus isolation-by-distance was observed for neutral SNPs. Our data suggest that both deterministic and neutral processes have contributed to the evolutionary trajectory of I. hexagona populations. PMID:26163584

  20. A transmission/escape probabilities model for neutral particle transport in the outer regions of a diverted tokamak

    SciTech Connect

    Stacey, W.M.

    1992-12-01

    A new computational model for neutral particle transport in the outer regions of a diverted tokamak plasma chamber is presented. The model is based on the calculation of transmission and escape probabilities using first-flight integral transport theory and the balancing of fluxes across the surfaces bounding the various regions. The geometrical complexity of the problem is included in precomputed probabilities which depend only on the mean free path of the region.

  1. Effects of MHD instabilities on neutral beam current drive

    SciTech Connect

    Podestà, M.; Gorelenkova, M.; Darrow, D. S.; Fredrickson, E. D.; Gerhardt, S. P.; White, R. B.

    2015-04-17

    One of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility is the neutral beam injection (NBI). However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CD efficiency are investigated. When looking at the new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ~50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Finally, implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.

  2. Effects of MHD instabilities on neutral beam current drive

    DOE PAGESBeta

    Podestà, M.; Gorelenkova, M.; Darrow, D. S.; Fredrickson, E. D.; Gerhardt, S. P.; White, R. B.

    2015-04-17

    One of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility is the neutral beam injection (NBI). However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CDmore » efficiency are investigated. When looking at the new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ~50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Finally, implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.« less

  3. Highly Pathogenic Avian Influenza Virus Subtype H5N1 Escaping Neutralization: More than HA Variation

    PubMed Central

    Höper, Dirk; Kalthoff, Donata; Hoffmann, Bernd

    2012-01-01

    Influenza A viruses are one of the major threats in modern health care. Novel viruses arise due to antigenic drift and antigenic shift, leading to escape from the immune system and resulting in a serious problem for disease control. In order to investigate the escape process and to enable predictions of escape, we serially passaged influenza A H5N1 virus in vitro 100 times under immune pressure. The generated escape viruses were characterized phenotypically and in detail by full-genome deep sequencing. Mutations already found in natural isolates were detected, evidencing the in vivo relevance of the in vitro-induced amino acid substitutions. Additionally, several novel alterations were triggered. Altogether, the results imply that our in vitro system is suitable to study influenza A virus evolution and that it might even be possible to predict antigenic changes of influenza A viruses circulating in vaccinated populations. PMID:22090121

  4. Temporal analysis of HIV envelope sequence evolution and antibody escape in a subtype A-infected individual with a broad neutralizing antibody response

    PubMed Central

    Bosch, Katherine A.; Rainwater, Stephanie; Jaoko, Walter; Overbaugh, Julie

    2010-01-01

    The origin of broadly neutralizing HIV-specific antibodies and their relation to HIV evolution are not well defined. Here we examined virus evolution and neutralizing antibody escape in a subtype A infected individual with a broad, cross subtype, antibody response. The majority of envelope variants isolated over the first ~ 5 years post-infection were poorly neutralized by contemporaneous plasma that neutralized variants from earlier in infection, consistent with a dynamic process of escape. The majority of variants could be neutralized by later plasma, suggesting these evolving variants may have contributed to the elicitation of new antibody responses. However, some variants from later in infection were recognized by plasma from earlier in infection, including one notably neutralization-sensitive variant that was sensitive due to a proline at position 199 in V2. These studies suggest a complex pattern of virus evolution in this individual with a broad NAb response, including persistence of neutralization-sensitive viruses. PMID:20034648

  5. Calculation of low-Z impurity pellet induced fluxes of charge exchange neutral particles escaping from magnetically confined toroidal plasmas.

    PubMed

    Goncharov, P R; Ozaki, T; Sudo, S; Tamura, N; Tolstikhina, I Yu; Sergeev, V Yu

    2008-10-01

    Measurements of energy- and time-resolved neutral hydrogen and helium fluxes from an impurity pellet ablation cloud, referred to as pellet charge exchange or PCX experiments, can be used to study local fast ion energy distributions in fusion plasmas. The estimation of the local distribution function f(i)(E) of fast ions entering the cloud requires knowledge of both the fraction F(0)(E) of incident ions exiting the cloud as neutral atoms and the attenuation factor A(E,rho) describing the loss of fast atoms in the plasma. Determination of A(E,rho), in turn, requires the total stopping cross section sigma(loss) of neutral atoms in the plasma and the Jacobian reflecting the measurement geometry and the magnetic surface shape. The obtained functions F(0)(E) and A(E,rho) enter multiplicatively into the probability density for escaping neutral particle kinetic energy. A general calculation scheme has been developed and realized as a FORTRAN code, which is to be applied for the calculation of f(i)(E) from PCX experimental results obtained with low-Z impurity pellets. PMID:19044625

  6. HIV-1 clade C escapes broadly neutralizing autologous antibodies with N332 glycan specificity by distinct mechanisms.

    PubMed

    Deshpande, Suprit; Patil, Shilpa; Kumar, Rajesh; Hermanus, Tandile; Murugavel, Kailapuri G; Srikrishnan, Aylur K; Solomon, Suniti; Morris, Lynn; Bhattacharya, Jayanta

    2016-01-01

    The glycan supersite centered on N332 in the V3 base of the HIV-1 envelope (Env) is a target for broadly neutralizing antibodies (bnAbs) such as PGT121 and PGT128. In this study, we examined the basis of resistance of HIV-1 clade C Envs obtained from broadly cross neutralizing (BCN) plasma of an Indian donor with N332 specificity. Pseudotyped viruses expressing autologous envs were found to be resistant to autologous BCN plasma as well as to PGT121 and PGT128 mAbs despite the majority of Envs containing an intact N332 residue. While resistance of one of the Envs to neutralization by autologous plasma antibodies with shorter V1 loop length was found to be correlated with a N332S mutation, resistance to neutralization of rest of the Envs was found to be associated with longer V1 loop length and acquisition of protective N-glycans. In summary, we show evidence of escape of circulating HIV-1 clade C in an individual from autologous BCN antibodies by three distinct mechanisms. PMID:27576440

  7. Europa's atmospheric neutral escape: Importance of symmetrical O2 charge exchange

    NASA Astrophysics Data System (ADS)

    Dols, Vincent J.; Bagenal, Fran; Cassidy, Timothy A.; Crary, Frank J.; Delamere, Peter A.

    2016-01-01

    We model the interaction of the jovian magnetospheric plasma with the atmosphere of Europa using a multi-species chemistry model where the atmospheric distributions of H2 and O2 are prescribed. The plasma flow is idealized as an incompressible flow around a conducting obstacle. We compute changes in plasma composition resulting from this interaction as well as the reaction rates integrated over the simulation domain for several upstream plasma conditions (ion density, ion temperature and flow velocity). We show that for all cases, the main atmospheric loss process is a cascade of symmetrical charge exchanges on O2, which results in the ejection of neutrals. The production rate of ejected neutrals is about an order of magnitude larger than the production of ions. This conclusion is relevant to future missions to Europa that aim to detect fast neutrals. The neutral ejection resulting from this charge exchange creates an oxygen cloud around the orbit of the moon that is very extended radially but also very tenuous, and has not yet been directly detected.

  8. The Lyman Alpha Reference Sample. V. The Impact of Neutral ISM Kinematics and Geometry on Lyα Escape

    NASA Astrophysics Data System (ADS)

    Rivera-Thorsen, Thøger E.; Hayes, Matthew; Östlin, Göran; Duval, Florent; Orlitová, Ivana; Verhamme, Anne; Mas-Hesse, J. Miguel; Schaerer, Daniel; Cannon, John M.; Otí-Floranes, Héctor; Sandberg, Andreas; Guaita, Lucia; Adamo, Angela; Atek, Hakim; Herenz, E. Christian; Kunth, Daniel; Laursen, Peter; Melinder, Jens

    2015-05-01

    We present high-resolution far-UV spectroscopy of the 14 galaxies of the Lyα Reference Sample; a sample of strongly star-forming galaxies at low redshifts (0.028 < z < 0.18). We compare the derived properties to global properties derived from multi-band imaging and 21 cm H i interferometry and single-dish observations, as well as archival optical SDSS spectra. Besides the Lyα line, the spectra contain a number of metal absorption features allowing us to probe the kinematics of the neutral ISM and evaluate the optical depth and and covering fraction of the neutral medium as a function of line of sight velocity. Furthermore, we show how this, in combination with the precise determination of systemic velocity and good Lyα spectra, can be used to distinguish a model in which separate clumps together fully cover the background source, from the “picket fence” model named by Heckman et al. We find that no one single effect dominates in governing Lyα radiative transfer and escape. Lyα escape in our sample coincides with a maximum velocity-binned covering fraction of ≲0.9 and bulk outflow velocities of ≳50 km s-1, although a number of galaxies show these characteristics and yet little or no Lyα escape. We find that Lyα peak velocities, where available, are not consistent with a strong backscattered component, but rather with a simpler model of an intrinsic emission line overlaid by a blueshifted absorption profile from the outflowing wind. Finally, we find a strong anticorrelation between Hα equivalent width and maximum velocity-binned covering factor, and propose a heuristic explanatory model. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO 11522, GO 11727, GO 12027, and GO 12583.

  9. Transmission and accumulation of CTL escape variants drive negative associations between HIV polymorphisms and HLA.

    PubMed

    Leslie, Alasdair; Kavanagh, Daniel; Honeyborne, Isobella; Pfafferott, Katja; Edwards, Charles; Pillay, Tilly; Hilton, Louise; Thobakgale, Christina; Ramduth, Danni; Draenert, Rika; Le Gall, Sylvie; Luzzi, Graz; Edwards, Anne; Brander, Christian; Sewell, Andrew K; Moore, Sarah; Mullins, James; Moore, Corey; Mallal, Simon; Bhardwaj, Nina; Yusim, Karina; Phillips, Rodney; Klenerman, Paul; Korber, Bette; Kiepiela, Photini; Walker, Bruce; Goulder, Philip

    2005-03-21

    Human immunodeficiency virus (HIV)-1 amino acid sequence polymorphisms associated with expression of specific human histocompatibility leukocyte antigen (HLA) class I alleles suggest sites of cytotoxic T lymphocyte (CTL)-mediated selection pressure and immune escape. The associations most frequently observed are between expression of an HLA class I molecule and variation from the consensus sequence. However, a substantial number of sites have been identified in which particular HLA class I allele expression is associated with preservation of the consensus sequence. The mechanism behind this is so far unexplained. The current studies, focusing on two examples of "negatively associated" or apparently preserved epitopes, suggest an explanation for this phenomenon: negative associations can arise as a result of positive selection of an escape mutation, which is stable on transmission and therefore accumulates in the population to the point at which it defines the consensus sequence. Such negative associations may only be in evidence transiently, because the statistical power to detect them diminishes as the mutations accumulate. If an escape variant reaches fixation in the population, the epitope will be lost as a potential target to the immune system. These data help to explain how HIV is evolving at a population level. Understanding the direction of HIV evolution has important implications for vaccine development. PMID:15781581

  10. Off-axis Neutral Beam Current Drive for Advanced Scenario Development in DIII-D

    SciTech Connect

    Murakami, M; Park, J; Petty, C; Luce, T; Heidbrink, W; Osborne, T; Wade, M; Austin, M; Brooks, N; Budny, R; Challis, C; DeBoo, J; deGrassie, J; Ferron, J; Gohil, P; Hobirk, J; Holcomb, C; Hollmann, E; Hong, R; Hyatt, A; Lohr, J; Lanctot, M; Makowski, M; McCune, D; Politzer, P; Prater, R; John, H S; Suzuki, T; West, W; Unterberg, E; Van Zeeland, M; Yu, J

    2008-10-13

    Modification of the two existing DIII-D neutral beam lines is proposed to allow vertical steering to provide off-axis neutral beam current drive (NBCD) as far off-axis as half the plasma radius. New calculations indicate very good current drive with good localization off-axis as long as the toroidal magnetic field, B{sub T}, and the plasma current, I{sub p}, are in the same direction (for a beam steered downward). The effects of helicity can be large: e.g., ITER off-axis NBCD can be increased by more than 20% if the B{sub T} direction is reversed. This prediction has been tested by an off-axis NBCD experiment using reduced size plasmas that are vertically shifted with the existing NBI on DIII-D. The existence of off-axis NBCD is evident in sawtooth and internal inductance behavior. By shifting the plasma upward or downward, or by changing the sign of the toroidal field, measured off-axis NBCD profiles, determined from MSE data, are consistent with predicted differences (40%-45%) arising from the NBI orientation with respect to the magnetic field lines. Modification of the DIII-D NB system will strongly support scenario development for ITER and future tokamaks as well as providing flexible scientific tools for understanding transport, energetic particles and heating and current drive.

  11. Identifying possible sites for antibody neutralization escape: Implications for unique functional properties of the C-terminal tail of Human Immunodeficiency Virus Type 1 gp41.

    PubMed

    Lu, Zhifeng; Huang, Yushen; Tan, Yue; Yu, Yang; Wang, Junyi; Chen, Ying-Hua

    2016-07-01

    A previous amino acid sequence analyses from our laboratory reported nine potential sites in gp41 glycoprotein of HIV-1 that may contribute to virus escape from antibody neutralization. Besides four sites found outside the membrane of HIV-1 virus, five located in the C-terminal tail of gp41 specifically in the lentivirus lytic peptides motifs (LLPs). To further study the bioinformatical results, the virus infectivity assay and the standard neutralization assay were conducted on conservatively mutated virus. Two sites in the LLP3 domain stood out with the ability to alter the resistance of HIV-1 virus to certain broadly neutralizing antibodies (bNAbs). While the glycoprotein incorporation on the viral membrane and the interaction of the LLP3 domain with the lipid membrane remained unaltered, the increase in neutralization resistance of the mutant virus was associated with the changes on Env conformation. Our findings demonstrate different sensibility of bNAbs to mutations in the C-terminal tail and indicate an unrecognized potential role for even minor sequence variation in the C-terminal tail in modulating the antigenicity of the ectodomain of HIV-1 envelope glycoprotein complex. PMID:27157128

  12. Continuous viral escape and selection by autologous neutralizing antibodies in drug-naive human immunodeficiency virus controllers.

    PubMed

    Mahalanabis, Madhumita; Jayaraman, Pushpa; Miura, Toshiyuki; Pereyra, Florencia; Chester, E Michael; Richardson, Barbra; Walker, Bruce; Haigwood, Nancy L

    2009-01-01

    We assessed differences in the character and specificity of autologous neutralizing antibodies (ANAbs) against individual viral variants of the quasispecies in a cohort of drug-naïve subjects with long-term controlled human immunodeficiency virus type 1 (HIV-1) infection and moderate levels of broad heterologous neutralizing antibodies (HNAb). Functional plasma virus showed continuous env evolution despite a short time frame and low levels of viral replication. Neutralization-sensitive variants dominated in subjects with intermittent viral blips, while neutralization-resistant variants predominated in elite controllers. By sequence analysis of this panel of autologous variants with various sensitivities to neutralization, we identified more than 30 residues in envelope proteins (Env) associated with resistance or sensitivity to ANAbs. The appearance of new sensitive variants is consistent with a model of continuous selection and turnover. Strong ANAb responses directed against autologous Env variants are present in long-term chronically infected individuals, suggesting a role for these responses in contributing to the durable control of HIV replication. PMID:18987151

  13. Continuous Viral Escape and Selection by Autologous Neutralizing Antibodies in Drug-Naïve Human Immunodeficiency Virus Controllers▿

    PubMed Central

    Mahalanabis, Madhumita; Jayaraman, Pushpa; Miura, Toshiyuki; Pereyra, Florencia; Chester, E. Michael; Richardson, Barbra; Walker, Bruce; Haigwood, Nancy L.

    2009-01-01

    We assessed differences in the character and specificity of autologous neutralizing antibodies (ANAbs) against individual viral variants of the quasispecies in a cohort of drug-naïve subjects with long-term controlled human immunodeficiency virus type 1 (HIV-1) infection and moderate levels of broad heterologous neutralizing antibodies (HNAb). Functional plasma virus showed continuous env evolution despite a short time frame and low levels of viral replication. Neutralization-sensitive variants dominated in subjects with intermittent viral blips, while neutralization-resistant variants predominated in elite controllers. By sequence analysis of this panel of autologous variants with various sensitivities to neutralization, we identified more than 30 residues in envelope proteins (Env) associated with resistance or sensitivity to ANAbs. The appearance of new sensitive variants is consistent with a model of continuous selection and turnover. Strong ANAb responses directed against autologous Env variants are present in long-term chronically infected individuals, suggesting a role for these responses in contributing to the durable control of HIV replication. PMID:18987151

  14. Subgroup J Avian Leukosis Virus Neutralizing Antibody Escape Variants Contribute to Viral Persistence in Meat-Type Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously demonstrated a high incidence of chickens with persistent viremia even in the presence of neutralizing antibodies (NAb) against the inoculated parental virus (V+A+) in commercial meat-type chickens inoculated at hatch with Subgroup J avian leukosis virus (ALV J) field isolates. I...

  15. Fast wave current drive in neutral beam heated plasmas on DIII-D

    SciTech Connect

    Petty, C.C.; Forest, C.B.; Pinsker, R.I.

    1997-04-01

    The physics of non-inductive current drive and current profile control using the fast magnetosonic wave has been demonstrated on the DIII-D tokamak. In non-sawtoothing discharges formed by neutral beam injection (NBI), the radial profile of the fast wave current drive (FWCD) was determined by the response of the loop voltage profile to co, counter, and symmetric antenna phasings, and was found to be in good agreement with theoretical models. The application of counter FWCD increased the magnetic shear reversal of the plasma and delayed the onset of sawteeth, compared to co FWCD. The partial absorption of fast waves by energetic beam ions at high harmonics of the ion cyclotron frequency was also evident from a build up of fast particle pressure near the magnetic axis and a correlated increase in the neutron rate. The anomalous fast particle pressure and neutron rate increased with increasing NBI power and peaked when a harmonic of the deuterium cyclotron frequency passed through the center of the plasma. The experimental FWCD efficiency was highest at 2 T where the interaction between the fast waves and the beam ions was weakest; as the magnetic field strength was lowered, the FWCD efficiency decreased to approximately half of the maximum theoretical value.

  16. Current drive with fast waves, electron cyclotron waves, and neutral injection in the DIII-D tokamak

    SciTech Connect

    Prater, R.; Petty, C.C.; Pinsker, R.I.; Chiu, S.C.; deGrassie, J.S.; Harvey, R.W.; Ikel, H.; Lin-Liu, Y.R.; Luce, T.C. ); James, R.A. ); Porkolab, M. ); Baity, F.W.; Goulding, R.H.; Hoffmann, D.J. ); Kawash

    1992-09-01

    Current drive experiments have been performed on the DIII-D tokamak using fast waves, electron cyclotron waves, and neutral injection. Fast wave experiments were performed using a 4-strap antenna with 1 MW of power at 60 MHz. These experiments showed effective heating of electrons, with a global heating efficiency equivalent to that of neutral injection even when the single pass damping was calculated to be as small as 5%. The damping was probably due to the effect of multiple passes of the wave through the plasma. Fast wave current drive experiments were performed with a toroidally directional phasing of the antenna straps. Currents driven by fast wave current drive (FWCD) in the direction of the main plasma current of up to 100 kA were found, not including a calculated 40 kA of bootstrap current. Experiments with FWCD in the counter current direction showed little current drive. In both cases, changes in the sawtooth behavior and the internal inductance qualitatively support the measurement of FWCD. Experiments on electron cyclotron current drive have shown that 100 kA of current can be driven by 1 MW of power at 60 GHz. Calculations with a Fokker-Planck code show that electron cyclotron current drive (ECCD) can be well predicted when the effects of electron trapping and of the residual electric field are included. Experiments on driving current with neutral injection showed that effective current drive could be obtained and discharges with full current drive were demonstrated. Interestingly, all of these methods of current drive had about the same efficiency, 0.015 {times} 10{sup 20} MA/MW/m{sup 2}.

  17. Viral variants that initiate and drive maturation of V1V2-directed HIV-1 broadly neutralizing antibodies

    PubMed Central

    Bhiman, Jinal N.; Anthony, Colin; Doria-Rose, Nicole A.; Karimanzira, Owen; Schramm, Chaim A.; Khoza, Thandeka; Kitchin, Dale; Botha, Gordon; Gorman, Jason; Garrett, Nigel J.; Abdool Karim, Salim S.; Shapiro, Lawrence; Williamson, Carolyn; Kwong, Peter D.; Mascola, John R.; Morris, Lynn; Moore, Penny L.

    2015-01-01

    The elicitation of broadly neutralizing antibodies (bNAbs) is likely to be essential for a preventative HIV-1 vaccine, but this has not yet been achieved by immunization. In contrast some HIV-1-infected individuals naturally mount bNAb responses during chronic infection, suggesting that years of maturation are required for breadth1-6. Recent studies have shown that viral diversification precedes the emergence of bNAbs but the significance of this observation is unknown7,8. Here, we delineate the key viral events that drove neutralization breadth within the CAP256-VRC26 family of 33 monoclonal antibodies (mAbs) isolated from a superinfected individual. First, we identified minority viral variants that were distinct from both transmitted/founder (T/F) viruses and efficiently engaged the bNAb precursor, termed bNAb-initiating envelopes. Second, deep sequencing revealed a pool of diverse epitope variants (immunotypes) that were preferentially neutralized by broader members of the antibody lineage. In contrast, a “dead-end” antibody sublineage unable to neutralize these immunotypes showed limited evolution and failed to develop breadth. Thus, early viral escape at key antibody-virus contact sites selects for sublineages that can tolerate these changes, providing a new mechanism for the generation of neutralization breadth within a developing antibody lineage. PMID:26457756

  18. Addition of a Single gp120 Glycan Confers Increased Binding to Dendritic Cell-Specific ICAM-3-Grabbing Nonintegrin and Neutralization Escape to Human Immunodeficiency Virus Type 1

    PubMed Central

    Lue, James; Hsu, Mayla; Yang, David; Marx, Preston; Chen, Zhiwei; Cheng-Mayer, Cecilia

    2002-01-01

    The potential role of dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) binding in human immunodeficiency virus transmission across the mucosal barrier was investigated by assessing the ability of simian-human immunodeficiency chimeric viruses (SHIVs) showing varying degrees of mucosal transmissibility to bind the DC-SIGN expressed on the surface of transfected cells. We found that gp120 of the highly transmissible, pathogenic CCR5-tropic SHIVSF162P3 bound human and rhesus DC-SIGN with an efficiency threefold or greater than that of gp120 of the nonpathogenic, poorly transmissible parental SHIVSF162, and this increase in binding to the DC-SIGN of the SHIVSF162P3 envelope gp120 translated into an enhancement of T-cell infection in trans. The presence of an additional glycan at the N-terminal base of the V2 loop of SHIVSF162P3 gp120 compared to that of the parental virus was shown to be responsible for the increase in binding to DC-SIGN. Interestingly, this glycan also conferred escape from autologous neutralization, raising the possibility that the modification occurred as a result of immune selection. Our data suggest that more-efficient binding of envelope gp120 to DC-SIGN could be relevant to the enhanced mucosal transmissibility of SHIVSF162P3 compared to that of parental SHIVSF162. PMID:12239306

  19. Dust escape from Io

    NASA Astrophysics Data System (ADS)

    Flandes, Alberto

    2004-08-01

    The Dust ballerina skirt is a set of well defined streams composed of nanometric sized dust particles that escape from the Jovian system and may be accelerated up to >=200 km/s. The source of this dust is Jupiter's moon Io, the most volcanically active body in the Solar system. The escape of dust grains from Jupiter requires first the escape of these grains from Io. This work is basically devoted to explain this escape given that the driving of dust particles to great heights and later injection into the ionosphere of Io may give the particles an equilibrium potential that allow the magnetic field to accelerate them away from Io. The grain sizes obtained through this study match very well to the values required for the particles to escape from the Jovian system.

  20. Resistance of a human serum-selected human immunodeficiency virus type 1 escape mutant to neutralization by CD4 binding site monoclonal antibodies is conferred by a single amino acid change in gp120.

    PubMed Central

    McKeating, J A; Bennett, J; Zolla-Pazner, S; Schutten, M; Ashelford, S; Brown, A L; Balfe, P

    1993-01-01

    We have selected an HXB2 variant which can replicate in the presence of a neutralizing human serum. Sequencing of the gp120 region of the env gene from the variant and parental viruses identified a single amino acid substitution in the third conserved region of gp120 at residue 375 (AGT-->AAT, Ser-->Asn; designated 375 S/N). The escape mutant was found to be resistant to neutralization by soluble CD4 (sCD4) and four monoclonal antibodies (MAbs), 39.13g, 1.5e, G13, and 448, binding to epitopes overlapping that of the CD4 binding site (CD4 b.s.). Introduction of the 375 S/N mutation into HXB2 by site-directed mutagenesis confirmed that this mutation is responsible for the neutralization-resistant phenotype. Both sCD4 and three of the CD4 b.s. MAbs (39.13g, 1.5e, and G13) demonstrated reduced binding to the native 375 S/N mutant gp120. The ability to select for an escape variant resistant to multiple independent CD4 b.s. MAbs by a human serum confirms the reports that antibodies to the discontinuous CD4 b.s. are a major component of the group-specific neutralizing activity in human sera. PMID:7688820

  1. EMERGENCE OF SUBGROUP J AVIAN LEUKOSIS VIRUS NEUTRALIZING ANTIBODY ESCAPE VARIANTS IN MEAT-TYPE CHICKENS INFECTED WITH VIRUS AT HATCH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection of meat-type chickens at hatch with field isolates of Subgroup J avian leukosis virus (ALV J) results in a high incidence of chickens with persistent viremia even in the presence of neutralizing antibodies (NAb) against the inoculated parental virus (V+A+). The purpose of this study was t...

  2. MAVEN Measurements of the Ion Escape Rate from Mars

    NASA Astrophysics Data System (ADS)

    Brain, Dave; Dong, Yaxue; Fortier, Kier; Fang, Xiaohua; McFadden, James; Halekas, Jasper; Connerney, Jack; Eparvier, Frank; Dong, Chuanfei; Bougher, Stephen; Ma, Yingjuan; Modolo, Ronan; Lillis, Rob; Luhmann, Janet; Curry, Shannon; Seki, Kanako; Jakosky, Bruce

    2015-04-01

    The loss of atmospheric particles (neutral atoms, neutral molecules, ions) to space is thought to have played a role in the evolution of Martian climate over the past ~4 billion years. Due to the lack of a global magnetic field on Mars, the solar wind has direct access to the upper layers of the Martian atmosphere, and can drive non-thermal escape of charged particles (ions) from the atmosphere. Two spacecraft (Phobos 2 and Mars Express) have previously measured escaping ions at Mars. The recently arrived MAVEN spacecraft is equipped with instruments to measure escaping ions with high time cadence and high energy and mass resolution, as well as instruments to provide contextual information about what controls the variation in escape rates. We report on the total escape rate of heavy planetary ions from the Martian atmosphere measured by MAVEN. Heavy ions are identified in data from the SupraThermal And Thermal Ion Composition (STATIC) instrument. Rudimentary estimates of ion escape rate are obtained by summing the measured ion fluxes over a surface downstream from Mars with respect to the solar wind flow. This estimate can then be refined to account for the limited field of view of the instrument (investigation of measured particle distributions) and the limited spatial coverage of the spacecraft orbit trajectory. Variability in measured escape rates can also be grouped according to upstream conditions and the orientation of Mars (and its crustal magnetic fields) with respect to the solar wind. Important upstream drivers include the solar Extreme Ultraviolet (EUV) flux, solar wind pressure, and the interplanetary magnetic field strength and direction. These drivers are measured directly by MAVEN's EUV, SWIA, and MAG instruments. We will provide an initial estimate of ion escape rates based on the first several months of MAVEN data. We will then report on progress to refine these estimates to correct for instrument field of view and spacecraft coverage effects, as

  3. Mechanisms of Ionospheric Mass Escape

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Khazanov, G. V.

    2010-01-01

    The dependence of ionospheric O+ escape flux on electromagnetic energy flux and electron precipitation into the ionosphere is derived for a hypothetical ambipolar pick-up process, powered the relative motion of plasmas and neutral upper atmosphere, and by electron precipitation, at heights where the ions are magnetized but influenced by photo-ionization, collisions with gas atoms, ambipolar and centrifugal acceleration. Ion pick-up by the convection electric field produces "ring-beam" or toroidal velocity distributions, as inferred from direct plasma measurements, from observations of the associated waves, and from the spectra of incoherent radar echoes. Ring-beams are unstable to plasma wave growth, resulting in rapid relaxation via transverse velocity diffusion, into transversely accelerated ion populations. Ion escape is substantially facilitated by the ambipolar potential, but is only weakly affected by centrifugal acceleration. If, as cited simulations suggest, ion ring beams relax into non-thermal velocity distributions with characteristic speed equal to the local ion-neutral flow speed, a generalized "Jeans escape" calculation shows that the escape flux of ionospheric O+ increases with Poynting flux and with precipitating electron density in rough agreement with observations.

  4. Observational Constraints on a Pluto Torus of Circumsolar Neutral Gas

    NASA Astrophysics Data System (ADS)

    Hill, M. E.; Kollmann, P.; McNutt, R. L., Jr.; Smith, H. T.; Bagenal, F.; Brown, L. E.; Elliott, H. A.; Haggerty, D. K.; Horanyi, M.; Krimigis, S. M.; Kusterer, M. B.; Lisse, C. M.; McComas, D. J.; Piquette, M. R.; Sidrow, E. J.; Strobel, D. F.; Szalay, J.; Vandegriff, J. D.; Zirnstein, E.; Ennico Smith, K.; Olkin, C.; Weaver, H. A., Jr.; Young, L. A.; Stern, S. A.

    2015-12-01

    We present the concept of a neutral gas torus surrounding the Sun, aligned with Pluto's orbit, and place observational constraints based primarily on comparison of New Horizons (NH) measurements with a 3-D Monte Carlo model adapted from analogous satellite tori surrounding Saturn and Jupiter. Such a torus, or perhaps partial torus, should result from neutral N2 escaping from Pluto's exosphere. Unlike other more massive planets closer to the Sun, neutrals escape Pluto readily owing, e.g., to the high thermal speed relative to the escape velocity. Importantly, escaped neutrals have a long lifetime due to the great distance from the Sun, ~100 years for photoionization of N2 and ~180 years for photoionization of N, which results from disassociated N2. Despite the lengthy 248-year orbit, these long e-folding lifetimes may allow an enhanced neutral population to form an extended gas cloud that modifies the N2 spatial profile near Pluto. These neutrals are not directly observable by NH but once ionized N2+ or N+ are picked up by the solar wind, reaching ~50 keV, making these pickup ions (PUIs) detectable by NH's Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument. PEPSSI observations analyzed to date may constrain the N2 density; the remaining ~95% of the encounter data, scheduled for downlink in August along with similarly anticipated data from the Solar Wind Around Pluto (SWAP) experiment, should help determine the Pluto outgassing rates. Measurements from SWAP include the solar wind speed, a quantity that greatly enhances PUI studies by enabling us to directly account for the PUI distribution's sensitive dependence on plasma speed. Note that anomalous cosmic ray Si observed at Voyager is overabundant by a factor of ~3000 relative to interstellar composition. This might be related to "outer source" PUIs, but the fact that N2 and Si are indistinguishable in many instruments could mean that N2 is actually driving this apparent Si discrepancy.

  5. The great escape

    PubMed Central

    Sin, Ho-Su; Namekawa, Satoshi H

    2013-01-01

    Epigenetic mechanisms precisely regulate sex chromosome inactivation as well as genes that escape the silencing process. In male germ cells, DNA damage response factor RNF8 establishes active epigenetic modifications on the silent sex chromosomes during meiosis, and activates escape genes during a state of sex chromosome-wide silencing in postmeiotic spermatids. During the course of evolution, the gene content of escape genes in postmeiotic spermatids recently diverged on the sex chromosomes. This evolutionary feature mirrors the epigenetic processes of sex chromosomes in germ cells. In this article, we describe how epigenetic processes have helped to shape the evolution of sex chromosome-linked genes. Furthermore, we compare features of escape genes on sex chromosomes in male germ cells to escape genes located on the single X chromosome silenced during X-inactivation in females, clarifying the distinct evolutionary implications between male and female escape genes. PMID:23880818

  6. Crew Escape Certification Test

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This video tape shows the Shuttle hatch jettison test at Rockwell facilities. The video also shows a Shuttle escape pole deployment test from a NASA aircraft, and an emergency egress test performed by a volunteer Navy parachutist using the pole and a parachute escape system.

  7. MAVEN measurements of photochemical escape of oxygen from the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Lillis, R. J.; Deighan, J.; Fox, J. L.; Bougher, S. W.; Cravens, T. E.; Lee, Y.; Mahaffy, P. R.; Benna, M.; Elrod, M. K.; Andersson, L.; McFadden, J.

    2015-10-01

    One of the primary goals of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) mission is to characterize rates of atmospheric escape at the present epoch and relate those escape rates to solar drivers [1]. One of the major escape processes is known as photochemical escape, which is broadly defined as a process by which a) an exothermic reaction in the atmosphere/ionosphere results in an upward-traveling neutral particle whose velocity exceeds planetary escape velocity and b) the particle is not prevented from escaping through any subsequent collisions[2].At Mars, photochemical escape of oxygen is expected to be a significant channel for atmospheric escape, particularly in the early solar system when extreme ultraviolet (EUV) fluxes were much higher[3]. Thus characterizing this escape process is central to understanding the role escape to space has played in Mars' climate evolution.

  8. Structured Observations Reveal Slow HIV-1 CTL Escape

    PubMed Central

    Roberts, Hannah E.; Hurst, Jacob; Robinson, Nicola; Brown, Helen; Flanagan, Peter; Vass, Laura; Fidler, Sarah; Weber, Jonathan; Babiker, Abdel; Phillips, Rodney E.; McLean, Angela R.; Frater, John

    2015-01-01

    The existence of viral variants that escape from the selection pressures imposed by cytotoxic T-lymphocytes (CTLs) in HIV-1 infection is well documented, but it is unclear when they arise, with reported measures of the time to escape in individuals ranging from days to years. A study of participants enrolled in the SPARTAC (Short Pulse Anti-Retroviral Therapy at HIV Seroconversion) clinical trial allowed direct observation of the evolution of CTL escape variants in 125 adults with primary HIV-1 infection observed for up to three years. Patient HLA-type, longitudinal CD8+ T-cell responses measured by IFN-γ ELISpot and longitudinal HIV-1 gag, pol, and nef sequence data were used to study the timing and prevalence of CTL escape in the participants whilst untreated. Results showed that sequence variation within CTL epitopes at the first time point (within six months of the estimated date of seroconversion) was consistent with most mutations being transmitted in the infecting viral strain rather than with escape arising within the first few weeks of infection. Escape arose throughout the first three years of infection, but slowly and steadily. Approximately one third of patients did not drive any new escape in an HLA-restricted epitope in just under two years. Patients driving several escape mutations during these two years were rare and the median and modal numbers of new escape events in each patient were one and zero respectively. Survival analysis of time to escape found that possession of a protective HLA type significantly reduced time to first escape in a patient (p = 0.01), and epitopes escaped faster in the face of a measurable CD8+ ELISpot response (p = 0.001). However, even in an HLA matched host who mounted a measurable, specific, CD8+ response the average time before the targeted epitope evolved an escape mutation was longer than two years. PMID:25642847

  9. THERMALLY DRIVEN ATMOSPHERIC ESCAPE

    SciTech Connect

    Johnson, Robert E.

    2010-06-20

    Accurately determining the escape rate from a planet's atmosphere is critical for determining its evolution. A large amount of Cassini data is now available for Titan's upper atmosphere and a wealth of data is expected within the next decade on escape from Pluto, Mars, and extra-solar planets. Escape can be driven by upward thermal conduction of energy deposited well below the exobase, as well as by nonthermal processes produced by energy deposited in the exobase region. Recent applications of a model for escape driven by upward thermal conduction, called the slow hydrodynamic escape model, have resulted in surprisingly large loss rates for the atmosphere of Titan, Saturn's largest moon. Based on a molecular kinetic simulation of the exobase region, these rates appear to be orders of magnitude too large. Therefore, the slow hydrodynamic model is evaluated here. It is shown that such a model cannot give a reliable description of the atmospheric temperature profile unless it is coupled to a molecular kinetic description of the exobase region. Therefore, the present escape rates for Titan and Pluto must be re-evaluated using the atmospheric model described here.

  10. The Aeronomy of Mars: Characterization by MAVEN of the Upper Atmosphere Reservoir That Regulates Volatile Escape

    NASA Astrophysics Data System (ADS)

    Bougher, S. W.; Cravens, T. E.; Grebowsky, J.; Luhmann, J.

    2015-12-01

    The Mars thermosphere-ionosphere-exosphere (TIE) system constitutes the atmospheric reservoir (i.e. available cold and hot planetary neutral and thermal ion species) that regulates present day escape processes from the planet. The characterization of this TIE system, including its spatial and temporal (e.g., solar cycle, seasonal, diurnal, episodic) variability is needed to determine present day escape rates. Without knowledge of the physics and chemistry creating this TIE region and driving its variations, it is not possible to constrain either the short term or long term histories of atmosphere escape from Mars. MAVEN (Mars Atmosphere and Volatile Evolution Mission) will make both in-situ and remote measurements of the state variables of the Martian TIE system. A full characterization of the thermosphere (˜100-250 km) and ionosphere (˜100-400 km) structure (and its variability) will be conducted with the collection of spacecraft in-situ measurements that systematically span most local times and latitudes, over a regular sampling of Mars seasons, and throughout the bottom half of the solar cycle. Such sampling will far surpass that available from existing spacecraft and ground-based datasets. In addition, remote measurements will provide a systematic mapping of the composition and structure of Mars neutral upper atmosphere and coronae (e.g. H, C, N, O), as well as probe lower altitudes. Such a detailed characterization is a necessary first step toward answering MAVEN's three main science questions (see Jakosky et al. 2014, this issue). This information will be used to determine present day escape rates from Mars, and provide an estimate of integrated loss to space throughout Mars history.

  11. Escape behaviors in insects.

    PubMed

    Card, Gwyneth M

    2012-04-01

    Escape behaviors are, by necessity, fast and robust, making them excellent systems with which to study the neural basis of behavior. This is especially true in insects, which have comparatively tractable nervous systems and members who are amenable to manipulation with genetic tools. Recent technical developments in high-speed video reveal that, despite their short duration, insect escape behaviors are more complex than previously appreciated. For example, before initiating an escape jump, a fly performs sophisticated posture and stimulus-dependent preparatory leg movements that enable it to jump away from a looming threat. This newfound flexibility raises the question of how the nervous system generates a behavior that is both rapid and flexible. Recordings from the cricket nervous system suggest that synchrony between the activity of specific interneuron pairs may provide a rapid cue for the cricket to detect the direction of an approaching predator and thus which direction it should run. Technical advances make possible wireless recording from neurons while locusts escape from a looming threat, enabling, for the first time, a direct correlation between the activity of multiple neurons and the time-course of an insect escape behavior. PMID:22226514

  12. Escape and rescue model

    NASA Astrophysics Data System (ADS)

    Alvord, D.; Nelson, H. E.

    The Escape and Rescue model is a discrete-event simulation program written in Simscript. It was developed to simulate the emergency movement involved in escape and/or rescue of people from a Board and Care Home housing a group of persons with varying degrees of physical or mental disabilities along with a small live-in staff. It may, however, be used in a much more general setting. It can reasonably handle a building with up to 100 residents and 100 rooms.

  13. Natural selection and neutral evolution jointly drive population divergence between alpine and lowland ecotypes of the allopolyploid plant Anemone multifida (Ranunculaceae).

    PubMed

    McEwen, Jamie R; Vamosi, Jana C; Rogers, Sean M

    2013-01-01

    Population differentiation can be driven in large part by natural selection, but selectively neutral evolution can play a prominent role in shaping patters of population divergence. The decomposition of the evolutionary history of populations into the relative effects of natural selection and selectively neutral evolution enables an understanding of the causes of population divergence and adaptation. In this study, we examined heterogeneous genomic divergence between alpine and lowland ecotypes of the allopolyploid plant, Anemone multifida. Using peak height and dominant AFLP data, we quantified population differentiation at non-outlier (neutral) and outlier loci to determine the potential contribution of natural selection and selectively neutral evolution to population divergence. We found 13 candidate loci, corresponding to 2.7% of loci, with signatures of divergent natural selection between alpine and lowland populations and between alpine populations (Fst  = 0.074-0.445 at outlier loci), but neutral population differentiation was also evident between alpine populations (FST  = 0.041-0.095 at neutral loci). By examining population structure at both neutral and outlier loci, we determined that the combined effects of selection and neutral evolution are associated with the divergence of alpine populations, which may be linked to extreme abiotic conditions and isolation between alpine sites. The presence of outlier levels of genetic variation in structured populations underscores the importance of separately analyzing neutral and outlier loci to infer the relative role of divergent natural selection and neutral evolution in population divergence. PMID:23874801

  14. Natural Selection and Neutral Evolution Jointly Drive Population Divergence between Alpine and Lowland Ecotypes of the Allopolyploid Plant Anemone multifida (Ranunculaceae)

    PubMed Central

    McEwen, Jamie R.; Vamosi, Jana C.; Rogers, Sean M.

    2013-01-01

    Population differentiation can be driven in large part by natural selection, but selectively neutral evolution can play a prominent role in shaping patters of population divergence. The decomposition of the evolutionary history of populations into the relative effects of natural selection and selectively neutral evolution enables an understanding of the causes of population divergence and adaptation. In this study, we examined heterogeneous genomic divergence between alpine and lowland ecotypes of the allopolyploid plant, Anemone multifida. Using peak height and dominant AFLP data, we quantified population differentiation at non-outlier (neutral) and outlier loci to determine the potential contribution of natural selection and selectively neutral evolution to population divergence. We found 13 candidate loci, corresponding to 2.7% of loci, with signatures of divergent natural selection between alpine and lowland populations and between alpine populations (Fst  = 0.074–0.445 at outlier loci), but neutral population differentiation was also evident between alpine populations (FST  = 0.041–0.095 at neutral loci). By examining population structure at both neutral and outlier loci, we determined that the combined effects of selection and neutral evolution are associated with the divergence of alpine populations, which may be linked to extreme abiotic conditions and isolation between alpine sites. The presence of outlier levels of genetic variation in structured populations underscores the importance of separately analyzing neutral and outlier loci to infer the relative role of divergent natural selection and neutral evolution in population divergence. PMID:23874801

  15. MEMO: Mars Escape and Magnetic Orbiter

    NASA Astrophysics Data System (ADS)

    Chassefiere, E.; Langlais, B.; Leblanc, F.; Sotin, C.; Barabash, S.; Dehant, V.; Dougherty, M.; Lammer, H.; Mandea, M.; Vennerstrom, S.

    There are several reasons to believe that Mars could have become an Earth like planet rather than the present dry and cold planet. In particular, many elements suggest the presence of liquid water at the Martian surface during a relatively short period at an early stage of its history. Since liquid water may have been the birthplace for life on Earth, the fate of Martian water is one of the major key and yet unanswered question to be solved. Mars Escape and Magnetic Orbiter (MEMO) is a low periapsis orbiter of Mars devoted to the measurement of present escape and the characterization of the fossil magnetic field of Mars. The use of a low periapsis altitude orbit (120-150 km) is required to detect and quantify all populations of atoms and molecules involved in escape. It is also required to measure the magnetic field of Mars with an unprecedented spatial resolution that would allow getting a more precise timing of the dynamo and its disappearance. Achieving a full characterization of atmospheric escape, and extrapolating it back to the past requires: (i) to measure escape fluxes of neutral and ion species, and characterize the dynamics and chemistry of the regions of the atmosphere where escape occurs (thermosphere, ionosphere, exosphere), as well as their responses to solar activity, and (ii) to characterize the lateral variations of the magnetic field of lithospheric origin, and by extension, the timing of the Martian dynamo. Of particular interest is the extinction of the dynamo that is thought to have enhanced the atmospheric escape processes still operating today. The proposed low-periapsis orbiter will consist of the following elements: • An "Escape Package" to characterize by both in-situ and remote measurements the thermosphere, ionosphere, exosphere and solar wind interaction regions (from one hundred to several thousand km), including thermal, suprathermal 1 and energetic particles. • A "Magnetic Field Package", to characterize the magnetization of the

  16. Spacecraft Escape Capsule

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.; Charles, Dingell W.; Bufkin, Ann L.; Rodriggs, Liana M.; Peterson, Wayne; Cuthbert, Peter; Lee, David E.; Westhelle, Carlos

    2006-01-01

    A report discusses the Gumdrop capsule a conceptual spacecraft that would enable the crew to escape safely in the event of a major equipment failure at any time from launch through atmospheric re-entry. The scaleable Gumdrop capsule would comprise a command module (CM), a service module (SM), and a crew escape system (CES). The CM would contain a pressurized crew environment that would include avionic, life-support, thermal control, propulsive attitude control, and recovery systems. The SM would provide the primary propulsion and would also supply electrical power, life-support resources, and active thermal control to the CM. The CES would include a solid rocket motor, embedded within the SM, for pushing the CM away from the SM in the event of a critical thermal-protection-system failure or loss of control. The CM and SM would normally remain integrated with each other from launch through recovery, but could be separated using the CES, if necessary, to enable the safe recovery of the crew in the CM. The crew escape motor could be used, alternatively, as a redundant means of de-orbit propulsion for the CM in the event of a major system failure in the SM.

  17. Advanced Crew Escape Suit.

    PubMed

    1995-09-01

    Design of the S1032 Launch Entry Suit (LES) began following the Challenger loss and NASA's decision to incorporate a Shuttle crew escape system. The LES (see Figure 1) has successfully supported Shuttle missions since NASA's Return to Flight with STS-26 in September 1988. In 1990, engineers began developing the S1035 Advanced Crew Escape Suit (ACES) to serve as a replacement for the LES. The ACES was designed to be a simplified, lightweight, low-bulk pressure suit which aided self donning/doffing, provided improved comfort, and enhanced overall performance to reduce crew member stress and fatigue. Favorable crew member evaluations of a prototype led to full-scale development and qualification of the S1035 ACES between 1990 and 1992. Production of the S1035 ACES began in February 1993, with the first unit delivered to NASA in May 1994. The S1035 ACES first flew aboard STS-68 in August 1994 and will become the primary crew escape suit when the S1032 LES ends its service life in late 1995. The primary goal of the S1035 development program was to provide improved performance over that of the S1032 to minimize the stress and fatigue typically experienced by crew members. To achieve this, five fundamental design objectives were established, resulting in various material/configuration changes. PMID:11540717

  18. [Escape mutants of hepatitis B virus].

    PubMed

    Jaramillo, Carlos Mario; Navas, María-Cristina

    2015-04-01

    The hepatitis B virus (HBV) infection is a public health problem worldwide. Considering HBV morbidity and mortality and the economic consequences .of this infection, policies and strategies to control it have been implemented, especially in regions where HBV infection is endemic, with high rates of vertical and horizontal infection. One of these strategies is the development of the recombinant vaccine. A 92% of the countries in the world have implemented the vaccine with a global coverage of 69%. The escape variants of HBV correspond to isolates with mutations in the sequence coding for the "a" determinant; these mutations result in changes in the amino acid sequence of the surface antigen (HBsAg) that prevent neutralization of viral particles by antibodies generated in response to vaccination or infection. The escape variants can infect vaccinated individuals and have been identified in the population of countries with different epidemiological patterns. PMID:26065452

  19. Orbiter escape pole

    NASA Technical Reports Server (NTRS)

    Goodrich, Winston D. (Inventor); Wesselski, Clarence J. (Inventor); Pelischek, Timothy E. (Inventor); Becker, Bruce H. (Inventor); Kahn, Jon B. (Inventor); Grimaldi, Margaret E. (Inventor); McManamen, John P. (Inventor); Castro, Edgar O. (Inventor)

    1989-01-01

    A Shuttle type of aircraft (10) with an escape hatch (12) has an arcuately shaped pole housing (16) attachable to an interior wall and ceiling with its open end adjacent to the escape hatch. The pole housing 16 contains a telescopically arranged and arcuately shaped primary pole member (22) and extension pole member (23) which are guided by roller assemblies (30,35). The extension pole member (23) is slidable and extendable relative to the primary pole member (22). For actuation, a spring actuated system includes a spring (52) in the pole housing. A locking member (90) engages both pole members (22,23) through notch portions (85,86) in the pole members. The locking member selectively releases the extension pole member (23) and the primary pole member (22). An internal one-way clutch or anti-return mechanism prevents retraction of the extension pole member from an extended position. Shock absorbers (54)(150,152) are for absoring the energy of the springs. A manual backup deployment system is provided which includes a canted ring (104) biased by a spring member (108). A lever member (100) with a slot and pin connection (102) permits the mechanical manipulation of the canted ring to move the primary pole member. The ring (104) also prevents retraction of the main pole. The crew escape mechanism includes a magazine (60) and a number of lanyards (62), each lanyard being mounted by a roller loop (68) over the primary pole member (22). The strap on the roller loop has stitching for controlled release, a protection sheath (74) to prevent tangling and a hook member (69) for attachment to a crew harness.

  20. Lyman-Werner UV escape fractions from primordial haloes

    NASA Astrophysics Data System (ADS)

    Schauer, Anna T. P.; Whalen, Daniel J.; Glover, Simon C. O.; Klessen, Ralf S.

    2015-12-01

    Population III (Pop III) stars can regulate star formation in the primordial Universe in several ways. They can ionize nearby haloes, and even if their ionizing photons are trapped by their own haloes, their Lyman-Werner (LW) photons can still escape and destroy H2 in other haloes, preventing them from cooling and forming stars. LW escape fractions are thus a key parameter in cosmological simulations of early reionization and star formation but have not yet been parametrized for realistic haloes by halo or stellar mass. To do so, we perform radiation hydrodynamical simulations of LW UV escape from 9-120 M⊙ Pop III stars in 105-107 M⊙ haloes with ZEUS-MP. We find that photons in the LW lines (i.e. those responsible for destroying H2 in nearby systems) have escape fractions ranging from 0 to 85 per cent. No LW photons escape the most massive halo in our sample, even from the most massive star. Escape fractions for photons elsewhere in the 11.18-13.6 eV energy range, which can be redshifted into the LW lines at cosmological distances, are generally much higher, being above 60 per cent for all but the least massive stars in the most massive haloes. We find that shielding of H2 by neutral hydrogen, which has been neglected in most studies to date, produces escape fractions that are up to a factor of 3 smaller than those predicted by H2 self-shielding alone.

  1. Physical Processes for Driving Ionospheric Outflows in Global Simulations

    NASA Technical Reports Server (NTRS)

    Moore, Thomas Earle; Strangeway, Robert J.

    2009-01-01

    We review and assess the importance of processes thought to drive ionospheric outflows, linking them as appropriate to the solar wind and interplanetary magnetic field, and to the spatial and temporal distribution of their magnetospheric internal responses. These begin with the diffuse effects of photoionization and thermal equilibrium of the ionospheric topside, enhancing Jeans' escape, with ambipolar diffusion and acceleration. Auroral outflows begin with dayside reconnexion and resultant field-aligned currents and driven convection. These produce plasmaspheric plumes, collisional heating and wave-particle interactions, centrifugal acceleration, and auroral acceleration by parallel electric fields, including enhanced ambipolar fields from electron heating by precipitating particles. Observations and simulations show that solar wind energy dissipation into the atmosphere is concentrated by the geomagnetic field into auroral regions with an amplification factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Internal plasmas thus enable electromagnetic driving via coupling to the plasma, neutral gas and by extension, the entire body " We assess the Importance of each of these processes in terms of local escape flux production as well as global outflow, and suggest methods for their implementation within multispecies global simulation codes. We complete 'he survey with an assessment of outstanding obstacles to this objective.

  2. Modeling Neutral Densities Downstream of a Gridded Ion Thruster

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2010-01-01

    The details of a model for determining the neutral density downstream of a gridded ion thruster are presented. An investigation of the possible sources of neutrals emanating from and surrounding a NEXT ion thruster determined that the most significant contributors to the downstream neutral density include discharge chamber neutrals escaping through the perforated grids, neutrals escaping from the neutralizer, and vacuum facility background neutrals. For the neutral flux through the grids, near- and far-field equations are presented for rigorously determining the neutral density downstream of a cylindrical aperture. These equations are integrated into a spherically-domed convex grid geometry with a hexagonal array of apertures for determining neutral densities downstream of the ion thruster grids. The neutrals escaping from an off-center neutralizer are also modeled assuming diffuse neutral emission from the neutralizer keeper orifice. Finally, the effect of the surrounding vacuum facility neutrals is included and assumed to be constant. The model is used to predict the neutral density downstream of a NEXT ion thruster with and without neutralizer flow and a vacuum facility background pressure. The impacts of past simplifying assumptions for predicting downstream neutral densities are also examined for a NEXT ion thruster.

  3. Reconstructing the Alcatraz escape

    NASA Astrophysics Data System (ADS)

    Baart, F.; Hoes, O.; Hut, R.; Donchyts, G.; van Leeuwen, E.

    2014-12-01

    In the night of June 12, 1962 three inmates used a raft made of raincoatsto escaped the ultimate maximum security prison island Alcatraz in SanFrancisco, United States. History is unclear about what happened tothe escapees. At what time did they step into the water, did theysurvive, if so, where did they reach land? The fate of the escapees has been the subject of much debate: did theymake landfall on Angel Island, or did the current sweep them out ofthe bay and into the cold pacific ocean? In this presentation, we try to shed light on this historic case using avisualization of a high-resolution hydrodynamic simulation of the San Francisco Bay, combined with historical tidal records. By reconstructing the hydrodynamic conditions and using a particle based simulation of the escapees we show possible scenarios. The interactive model is visualized using both a 3D photorealistic and web based visualization. The "Escape from Alcatraz" scenario demonstrates the capabilities of the 3Di platform. This platform is normally used for overland flooding (1D/2D). The model engine uses a quad tree structure, resulting in an order of magnitude speedup. The subgrid approach takes detailed bathymetry information into account. The inter-model variability is tested by comparing the results with the DFlow Flexible Mesh (DFlowFM) San Francisco Bay model. Interactivity is implemented by converting the models from static programs to interactive libraries, adhering to the Basic ModelInterface (BMI). Interactive models are more suitable for answeringexploratory research questions such as this reconstruction effort. Although these hydrodynamic simulations only provide circumstantialevidence for solving the mystery of what happened during the foggy darknight of June 12, 1962, it can be used as a guidance and provides aninteresting testcase to apply interactive modelling.

  4. Neutral Gas and Low-Redshift Starbursts: From Infall to Ionization

    NASA Astrophysics Data System (ADS)

    Jaskot, Anne; Oey, M. S.; Salzer, J. J.; Van Sistine, A.; Haynes, M. P.

    2014-01-01

    The interplay of gas inflows, star formation, and feedback drives galaxy evolution, and starburst galaxies provide important laboratories for probing these processes at their most extreme. With two samples of low-redshift starburst galaxies, we examine the conversion of neutral gas into stars and the subsequent effects of stellar feedback on the neutral interstellar medium (ISM). The ALFALFA Hα survey represents a complete, volume-limited sample of HI-selected galaxies with 21 cm spectra and Hα and R-band imaging. By contrasting the starburst galaxies with the rest of the gas-rich galaxy population, we investigate the roles of galaxy morphology, HI kinematics, and the atomic gas supply in triggering extreme levels of star formation. Both an elevated HI gas supply and an external disturbance are necessary to drive the starbursts. While neutral gas may fuel a starburst, it may also increase starbursts' optical depths and hinder the transport of ionizing radiation. In contrast to the expectations for high-redshift star-forming galaxies, neutral gas appears to effectively bar the escape of ionizing radiation in most low-redshift starbursts. To evaluate the impact of radiative feedback in extreme starbursts, we analyze optical spectra of the Green Pea galaxies, a low-redshift sample selected by their intense [O III] λ5007 emission and compact sizes. We use nebular photoionization and stellar population models to constrain the Peas' burst ages, ionizing sources, and optical depths and find that the Peas are likely optically thin to Lyman continuum (LyC) radiation. These young starbursts still generate substantial ionizing radiation, while recent supernovae may have carved holes in the ISM that enhance LyC photon escape into the intergalactic medium. While the ALFALFA survey demonstrates the role of external processes in triggering starbursts, the Green Peas show that starbursts' radiation can escape to affect their external environment.

  5. HIV Evolution and Escape.

    PubMed Central

    Richman, Douglas D.; Little, Susan J.; Smith, Davey M.; Wrin, Terri; Petropoulos, Christos; Wong, Joseph K.

    2004-01-01

    Human immunodeficiency virus (HIV) exemplifies the principles of Darwinian evolution with a telescoped chronology. Because of its high mutation rate and remarkably high rates of replication, evolution can be appreciated over periods of days in contrast to the durations conceived of by Darwin. Certain selective pressures that drive the evolution of HIV include chemotherapy, anatomic compartmentalization and the immune response. Examples of these selective forces on HIV evolution are described. Images Fig. 5 PMID:17060974

  6. THERMALLY DRIVEN ATMOSPHERIC ESCAPE: TRANSITION FROM HYDRODYNAMIC TO JEANS ESCAPE

    SciTech Connect

    Volkov, Alexey N.; Johnson, Robert E.; Tucker, Orenthal J.; Erwin, Justin T.

    2011-03-10

    Thermally driven escape from planetary atmospheres changes in nature from an organized outflow (hydrodynamic escape) to escape on a molecule-by-molecule basis (Jeans escape) with increasing Jeans parameter, {lambda}, the ratio of the gravitational to thermal energy of the atmospheric molecules. This change is described here for the first time using the direct simulation Monte Carlo method. When heating is predominantly below the lower boundary of the simulation region, R{sub 0}, and well below the exobase of a single-component atmosphere, the nature of the escape process changes over a surprisingly narrow range of Jeans parameters, {lambda}{sub 0}, evaluated at R{sub 0}. For an atomic gas, the transition occurs over {lambda}{sub 0} {approx} 2-3, where the lower bound, {lambda}{sub 0} {approx} 2.1, corresponds to the upper limit for isentropic, supersonic outflow. For {lambda}{sub 0} > 3 escape occurs on a molecule-by-molecule basis and we show that, contrary to earlier suggestions, for {lambda}{sub 0} > {approx}6 the escape rate does not deviate significantly from the familiar Jeans rate. In a gas composed of diatomic molecules, the transition shifts to {lambda}{sub 0} {approx} 2.4-3.6 and at {lambda}{sub 0} > {approx}4 the escape rate increases a few tens of percent over that for the monatomic gas. Scaling by the Jeans parameter and the Knudsen number, these results can be applied to thermally induced escape of the major species from solar and extrasolar planets.

  7. Escape from Vela X

    SciTech Connect

    Hinton, J.; Funk, S.; Parsons, R.D.; Ohm, S.; /Leicester U. /Leeds U.

    2012-02-15

    While the Vela pulsar and its associated nebula are often considered as the archetype of a system powered by a {approx} 10{sup 4} year old isolated neutron star, many features of the spectral energy distribution of this pulsar wind nebula are both puzzling and unusual. Here we develop a model that for the first time relates the main structures in the system, the extended radio nebula (ERN) and the X-ray cocoon through continuous injection of particles with a fixed spectral shape. We argue that diffusive escape of particles from the ERN can explain the steep Fermi-LAT spectrum. In this scenario Vela X should produce a distinct feature in the locally-measured cosmic ray electron spectrum at very high energies. This prediction can be tested in the future using the Cherenkov Telescope Array (CTA). If particles are indeed released early in the evolution of PWNe and can avoid severe adiabatic losses, PWN provide a natural explanation for the rising positron fraction in the local CR spectrum.

  8. Xenon Fractionation, Hydrogen Escape, and the Oxidation of the Earth

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.; Catling, D. C.

    2014-12-01

    Xenon in Earth's atmosphere is severely mass fractionated and depleted compared to any plausible solar system source material, yet Kr is unfractionated. These observations seem to imply that Xe has escaped from Earth. Vigorous hydrodynamic hydrogen escape can produce mass fractionation in heavy gases. The required hydrogen flux is very high but within the range permitted by solar EUV heating when Earth was 100 Myrs old or younger. However this model cannot explain why Xe escapes but Kr does not. Recently, what appears to be ancient atmospheric xenon has been recovered from several very ancient (3-3.5 Ga) terrestrial hydrothermal barites and cherts (Pujol 2011, 2013). What is eye-catching about this ancient Xe is that it is less fractionated that Xe in modern air. In other words, it appears that a process was active on Earth some 3 to 3.5 billion years ago that caused xenon to fractionate. By this time the Sun was no longer the EUV source that it used to be. If xenon was being fractionated by escape — currently the only viable hypothesis — it had to be in Earth's Archean atmosphere and under rather modest levels of EUV forcing. It should be possible for Xe, but not Kr, to escape from Earth as an ion. In a hydrodynamically escaping hydrogen wind the hydrogen is partially ionized. The key concepts are that ions are much more strongly coupled to the escaping flow than are neutrals (so that a relatively modest flow of H and H+ to space could carry Xe+ along with it, the flux can be small enough to be consistent with diffusion-limited flux), and that Xe alone among the noble gases is more easily ionized than hydrogen. This sort of escape is possible along the polar field lines, although a weak or absent magnetic field would likely work as well. The extended history of hydrogen escape implicit in Xe escape in the Archean is consistent with other suggestions that hydrogen escape in the Archean was considerable. Hydrogen escape plausibly played the key role in creating

  9. An escape from crowding.

    PubMed

    Freeman, Jeremy; Pelli, Denis G

    2007-01-01

    Crowding occurs when nearby flankers jumble the appearance of a target object, making it hard to identify. Crowding is feature integration over an inappropriately large region. What determines the size of that region? According to bottom-up proposals, the size is that of an anatomically determined isolation field. According to top-down proposals, the size is that of the spotlight of attention. Intriligator and Cavanagh (2001) proposed the latter, but we show that their conclusion rests on an implausible assumption. Here we investigate the role of attention in crowding using the change blindness paradigm. We measure capacity for widely and narrowly spaced letters during a change detection task, both with and without an interstimulus cue. We find that standard crowding manipulations-reducing spacing and adding flankers-severely impair uncued change detection but have no effect on cued change detection. Because crowded letters look less familiar, we must use longer internal descriptions (less compact representations) to remember them. Thus, fewer fit into working memory. The memory limit does not apply to the cued condition because the observer need remember only the cued letter. Cued performance escapes the effects of crowding, as predicted by a top-down account. However, our most parsimonious account of the results is bottom-up: Cued change detection is so easy that the observer can tolerate feature degradation and letter distortion, making the observer immune to crowding. The change detection task enhances the classic partial report paradigm by making the test easier (same/different instead of identifying one of many possible targets), which increases its sensitivity, so it can reveal degraded memory traces. PMID:18217837

  10. Photochemical escape of oxygen from the Martian atmosphere: first results from MAVEN

    NASA Astrophysics Data System (ADS)

    Lillis, Rob; Deigan, Justin; Fox, Jane; Bougher, Steve; Lee, Yuni; Cravens, Thomas; Rahmati, Ali; Jakosky, Bruce

    2015-04-01

    One of the primary goals of the MAVEN mission is to characterize rates of atmospheric escape at the present epoch and relate those escape rates to solar drivers. One of the major escape processes is known as photochemical escape, which is broadly defined as a process by which a) an exothermic reaction in the atmosphere results in an upward-traveling neutral particle whose velocity exceeds planetary escape velocity and b) the particle is not prevented from escaping through any subsequent collisions. At Mars, photochemical escape of oxygen is expected to be a significant channel for atmospheric escape, particularly in the early solar system when extreme ultraviolet (EUV) fluxes were much higher. Thus characterizing this escape process is central to understanding the role escape to space has played in Mars' climate evolution. Because escaping hot atoms cannot easily be directly measured, models of production and transport (through the atmosphere) of such atoms must be used to constrain escape rates. These models require altitude profiles of neutral densities and electron and ion densities and temperatures, as well as compositional information. All the relevant quantities upon which photochemical escape depends will be measured by MAVEN at the relevant altitudes (150-250 km). LPW will measure electron density and temperature, NGIMS will measure neutral and ion density and STATIC will measure ion density and temperature. 4 separate calculations must be made for every altitude profile: Profiles of O2+dissociative recombination (DR) rates will be calculated straightforwardly from electron temperature, electron density and O2+density. Profiles of rotational and vibrational distributions of O2+ ions will be calculated from profiles of CO2, O, O2, O+, CO2+ and CO+ via a lookup table from an empirical model. Profiles of energy distributions of hot O atoms will be calculated from the results of step 2 and from profiles of electron and ion temperatures. Profiles of all neutral

  11. Suicide as Escape from Self.

    ERIC Educational Resources Information Center

    Baumeister, Roy F.

    1990-01-01

    Suicide is analyzed as a motivation to escape from adversive self-awareness. The causal chain is traced from initial failures that are attributed internally because of a cognitively deconstructed state. (SLD)

  12. Automatic fluid separator supplies own driving power

    NASA Technical Reports Server (NTRS)

    Decker, M. S.; Majneri, L. A.; Spulgis, I. S.

    1966-01-01

    Centrifugal separator suspended in the fuel tank of a space vehicle selects and vents gas vapor at zero gravity. Escaping vapor is used to drive an expander turbine that is magnetically coupled to the separator.

  13. Structural acid-base chemistry in the metallic state: how μ3-neutralization drives interfaces and helices in Ti21Mn25.

    PubMed

    Stacey, Timothy E; Fredrickson, Daniel C

    2013-08-01

    Intermetallic phases remain a large class of compounds whose vast structural diversity is unaccounted for by chemical theory. A recent resurgence of interest in intermetallics, due to their potential in such applications as catalysis and thermoelectricity, has intensified the need for models connecting their compositions to their structures and stability. In this Article, we illustrate how the μ3-acidity model, an extension of the acid/base concept based on the Method of Moments, offers intuitive explanations for puzzling structural progressions occurring in intermetallics formed between transition metals. Simple CsCl-type structures are frequently observed for phases with near 1:1 ratios of transition metals. However, in two compounds, TiCu and Ti21Mn25, structures are adopted which deviate from this norm. μ3-Acidity analysis shows that the formation of CsCl-type phases in these exceptional systems would yield an imbalance in the acid/base strength pairing, resulting in overneutralization of the weaker partner and thus instability. Intriguing geometrical features emerge in response, which serve to improve the neutralization of the constituent elements. In both TiCu and Ti21Mn25, part of the structure shields weaker acids or bases from their stronger partners by enhancing homoatomic bonding in the sublattice of the weaker acid or base. In TiCu, this protection is accomplished by developing doubled layers of Ti atoms to reduce their heteroatomic contacts. In Ti21Mn25 the structural response is more extreme: Ti-poor TiMn2 domains are formed to guard Mn from the Ti atoms, while the remaining Ti segregates to regions between the TiMn2 domains. The geometrical details of this arrangement fine-tune the acid/base interactions for an even greater level of stability. The most striking of these occurs in the Ti-rich region, where a paucity of Mn neighbors leads to difficulty in achieving strong neutralization. The Ti atoms arrange themselves in helical tubes, maximizing

  14. Orbital Effects on Mercury's Escaping Sodium Exosphere

    NASA Technical Reports Server (NTRS)

    Schmidt, Carl A.; Wilson, Jody K.; Baumgardner, Jeffrey; Mendillo, Michael

    2009-01-01

    We present results from coronagraphic imaging of Mercury's sodium tail over a 7 deg field of view. Several sets of observations made at the McDonald Observatory since May 2007 show a tail of neutral sodium atoms stretching more than 1000 Mercury radii (R(sub m)) in length, or a full degree of sky. However, no tail was observed extending beyond 120 R(sub m) during the January 2008 MESSENGER Fly-by period, or during a similar orbital phase of Mercury in July 2008. Large changes in Mercury's heliocentric radial velocity cause Doppler shifts about the Fraunhofer absorption features; the resultant change in solar flux and radiation pressure is the primary cause of the observed variation in tail brightness. Smaller fluctuations in brightness may exist due to changing source rates at the surface, but we have no explicit evidence for such changes in this data set. The effects of radiation pressure on Mercury's escaping atmosphere are investigated using seven observations spanning different orbital phases. Total escape rates of atmospheric sodium are estimated to be between 5 and 13 x 10(exp 23) atoms/s and show a correlation to radiation pressure. Candidate sources of Mercury's sodium exosphere include desorption by UV sunlight, thermal desorption, solar wind channeled along Mercury's magnetic field lines, and micro-meteor impacts. Wide-angle observations of the full extent of Mercury's sodium tail offer opportunities to enhance our understanding of the time histories of these source rates.

  15. Role of detergents in driving complex structural arrangements in colloidal suspensions of Photosystem I (PS I) via charge stabilization and neutralization

    NASA Astrophysics Data System (ADS)

    Niroomand, Hanieh; Mukherjee, Dibyendu; Khomami, Bamin

    2012-02-01

    Specific concentrations of detergents such as DM (n-Dodecyl-β-D-Maltoside) and Triton X-100 (TX-100) used for Photosystem I (PS I) stabilization in buffer solutions play significant roles in controlling the solution-phase protein-protein interactions. Such control on PS I-PS I interactions facilitates uniform monolayer deposition of PS I on self-assembled monolayer (SAM)/Au substrates, a critical step for their future incorporation into bio-hybrid photovoltaic devices. Moreover, electric-field assisted assembly from PS I solutions with TX-100 as the detergent facilitates the formation of uniform PS I monolayer. But, the same phenomenon is not observed for PS I suspensions with DM as the detergent. To explain the underlying colloidal physics of these systems, in-situ dynamic light scattering experiments under various incubation times and applied voltages reveal the role of DM in charge neutralization and in turn, significant reduction of the PS I dipole moment in solution. Furthermore, small angle X-ray scattering measurements provide the much-needed structural information for a detailed understanding of the protein-detergent complexation process. These detailed investigations point towards the use of random sequential adsorption techniques in creating systematic dense monolayers of PS I.

  16. Characterizing Atmospheric Escape from Mars Today and Through Time, with MAVEN

    NASA Astrophysics Data System (ADS)

    Lillis, R. J.; Brain, D. A.; Bougher, S. W.; Leblanc, F.; Luhmann, J. G.; Jakosky, B. M.; Modolo, R.; Fox, J.; Deighan, J.; Fang, X.; Wang, Y. C.; Lee, Y.; Dong, C.; Ma, Y.; Cravens, T.; Andersson, L.; Curry, S. M.; Schneider, N.; Combi, M.; Stewart, I.; Clarke, J.; Grebowsky, J.; Mitchell, D. L.; Yelle, R.; Nagy, A. F.; Baker, D.; Lin, R. P.

    2015-12-01

    Two of the primary goals of the MAVEN mission are to determine how the rate of escape of Martian atmospheric gas to space at the current epoch depends upon solar influences and planetary parameters and to estimate the total mass of atmosphere lost to space over the history of the planet. Along with MAVEN's suite of nine science instruments, a collection of complementary models of the neutral and plasma environments of Mars' upper atmosphere and near-space environment are an indispensable part of the MAVEN toolkit, for three primary reasons. First, escaping neutrals will not be directly measured by MAVEN and so neutral escape rates must be derived, via models, from in situ measurements of plasma temperatures and neutral and plasma densities and by remote measurements of the extended exosphere. Second, although escaping ions will be directly measured, all MAVEN measurements are limited in spatial coverage, so global models are needed for intelligent interpolation over spherical surfaces to calculate global escape rates. Third, MAVEN measurements will lead to multidimensional parameterizations of global escape rates for a range of solar and planetary parameters, but further global models informed by MAVEN data will be required to extend these parameterizations to the more extreme conditions that likely prevailed in the early solar system, which is essential for determining total integrated atmospheric loss. We describe these modeling tools and the strategies for using them in concert with MAVEN measurements to greater constrain the history of atmospheric loss on Mars.

  17. Photochemical escape of oxygen from the Martian atmosphere: new insights from MAVEN

    NASA Astrophysics Data System (ADS)

    Lillis, R. J.; Deighan, J.; Bougher, S. W.; Cravens, T.; Fox, J. L.; Lee, Y.; Rahmati, A.; McFadden, J. P.; Benna, M.; Mahaffy, P. R.; Elrod, M. K.; Andersson, L.; Fowler, C. M.; Curry, S.; Gröller, H.; Jakosky, B. M.

    2015-12-01

    One of the primary goals of the MAVEN mission is to characterize rates of atmospheric escape from Mars at the present epoch and relate those escape rates to solar drivers. One of the known escape processes is photochemical escape, where a) an exothermic chemical reaction in the atmosphere results in an upward-traveling neutral particle whose velocity exceeds planetary escape velocity and b) the particle is not prevented from escaping through any subsequent collisions. Because escaping hot atoms are not directly measured, models of production and transport (through the atmosphere) of such atoms must be used to constrain photochemical escape rates. These models require altitude profiles of neutral densities and electron and ion densities and temperatures, as well as compositional information, all of which are measured by MAVEN instruments at the relevant altitudes (150-300 km). For every altitude profile: Profiles of O2+ dissociative recombination (DR) rates will be calculated from electron temperature, electron density and O2+ density. Profiles of energy distributions of hot O atoms will be calculated from profiles of electron and ion temperatures. Profiles of all neutral densities will be input into models of hot O transport in order to calculate photochemical escape fluxes from DR of O2+. We will present photochemical escape fluxes as a function of several factors, in particular solar zenith angle and EUV flux. This, combined with further simulations with progressively higher EUV fluxes, will eventually enable a total integrated loss estimate over the course of Martian history and hence a determination of the impact of this loss process on the evolution of the Martian climate.

  18. Neutralizer optimization

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Mohajeri, Kayhan

    1991-01-01

    The preliminary results of a test program to optimize a neutralizer design for 30 cm xenon ion thrusters are discussed. The impact of neutralizer geometry, neutralizer axial location, and local magnetic fields on neutralizer performance is discussed. The effect of neutralizer performance on overall thruster performance is quantified, for thruster operation in the 0.5-3.2 kW power range. Additionally, these data are compared to data published for other north-south stationkeeping (NSSK) and primary propulsion xenon ion thruster neutralizers.

  19. Plasma Escape from Unmagnetized Bodies

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Grebowsky, J. M.; Intriligator, D. S.

    1998-01-01

    A considerable fraction of atmospheric loss at Venus and Titan is in the form of plasma escape. This is due in part to the fact that the ionospheres of these unmagnetized bodies interact directly with the high speed plasmas flowing around them. The similarities of the interactions help reinforce interpretations of measurements made at each body, especially when instruments and measurement sites differ. For example, it is well established through this method that ions born in the exospheres above the ionopauses are picked up and carried away by the solar wind at Venus and the rotating plasma in Saturn's magnetosphere. On the other hand, it is more difficult to relate the observations associated with escape of cooler ionospheric plasma down the ionotails of each body. A clear example of ionospheric plasma escaping Titan was observed as it flowed down its ionotail (1). Measurements at Venus have not as yet clearly distinguished between ionospheric and pickup ion escape in the ionotail; however, cold ions detected in the distant wake at 1 AU by the CELIAS/CTOF instrument on SOHO have been interpreted as ionospheric in origin (2). An algorithm to determine ionospheric flow from Pioneer Venus aeronomical measurements is used to show that escape of cold ionospheric plasma is likely to occur. These results along with plasma flow measurements made in the ionotail of Venus are combined and compared to the corresponding flow at Titan.

  20. Viral escape from antisense RNA.

    PubMed

    Bull, J J; Jacobson, A; Badgett, M R; Molineux, I J

    1998-05-01

    RNA coliphage SP was propagated for several generations on a host expressing an inhibitory antisense RNA complementary to bases 31-270 of the positive-stranded genome. Phages evolved that escaped inhibition. Typically, these escape mutants contained 3-4 base substitutions, but different sequences were observed among different isolates. The mutations were located within three different types of structural features within the predicted secondary structure of SP genomic RNA: (i) hairpin loops; (ii) hairpin stems; and (iii) the 5' region of the phage genome complementary to the antisense molecule. Computer modelling of the mutant genomic RNAs showed that all of the substitutions within hairpin stems improved the Watson-Crick pairing of the stem. No major structural rearrangements were predicted for any of the mutant genomes, and most substitutions in coding regions did not alter the amino acid sequence. Although the evolved phage populations were polymorphic for substitutions, many substitutions appeared independently in two selected lines. The creation of a new, perfect, antisense RNA against an escape mutant resulted in the inhibition of that mutant but not of other escape mutants nor of the ancestral, unevolved phage. Thus, at least in this system, a population of viruses that evolved to escape from a single antisense RNA would require a cocktail of several antisense RNAs for inhibition. PMID:9643550

  1. MAVEN in situ measurements of photochemical escape of oxygen from Mars

    NASA Astrophysics Data System (ADS)

    Lillis, Robert; Deighan, Justin; Fox, Jane; Bougher, Stephen; Lee, Yuni; Cravens, Thomas; Rahmati, Ali; Mahaffy, Paul; Benna, Mehdi; Groller, Hannes; Jakosky, Bruce

    2016-04-01

    One of the primary goals of the MAVEN mission is to characterize rates of atmospheric escape from Mars at the present epoch and relate those escape rates to solar drivers. One of the known escape processes is photochemical escape, where a) an exothermic chemical reaction in the atmosphere results in an upward-traveling neutral particle whose velocity exceeds planetary escape velocity and b) the particle is not prevented from escaping through subsequent collisions. At Mars, photochemical escape of oxygen is expected to be a significant channel for atmospheric escape, particularly in the early solar system when extreme ultraviolet (EUV) fluxes were much higher. Thus characterizing this escape process and its variability with solar drivers is central to understanding the role escape to space has played in Mars' climate evolution. We use near-periapsis (<400 km altitude) data from three MAVEN instruments: the Langmuir Probe and Waves (LPW) instrument measures electron density and temperature, the Suprathermal And Thermal Ion Composition (STATIC) experiment measures ion temperature and the Neutral Gas and Ion Mass Spectrometer (NGIMS) measures neutral and ion densities. For each profile of in situ measurements, we make several calculations, each as a function of altitude. The first uses electron and temperatures and simulates the dissociative recombination of both O2+ and CO2+ to calculate the probability distribution for the initial energies of the resulting hot oxygen atoms. The second is a Monte Carlo hot atom transport model that takes that distribution of initial O energies and the measured neutral density profiles and calculates the probability that a hot atom born at that altitude will escape. The third takes the measured electron and ion densities and electron temperatures and calculates the production rate of hot O atoms. We then multiply together the profiles of hot atom production and escape probability to get profiles of the production rate of escaping atoms

  2. On the hydrodynamic model of thermal escape from planetary atmospheres and its comparison with kinetic simulations

    NASA Astrophysics Data System (ADS)

    Volkov, A. N.

    2016-06-01

    Parkers' model of thermal escape implies the search of solutions of one-dimensional hydrodynamic equations for an inviscid but thermally conducting gas with a critical point and vanishing temperature far from the source. The properties of solutions of this model are studied for neutral mon- and diatomic gases with the viscosity index varying from 1/2 to 1. The domains of existence and uniqueness of solutions in terms of the source Jeans escape parameter and Knudsen number are established. The solutions are found to exist only in a narrow range of the critical point Jeans parameter. The lower and upper limits of this range correspond to solutions that are dominated by either heat conduction or adiabatic expansion. Thermal escape described by Parker's model occurs in two asymptotic regimes: the low-density (LD) regime, when escape is dominated by heat conduction, and the high-density (HD) regime, when escape is dominated by adiabatic expansion. Expressions for the mass and energy escape rates in these regimes are found theoretically. The comparison of results of hydrodynamic and kinetic simulations performed in identical conditions shows that Parker's model is capable of describing thermal escape only in the HD regime, providing decent agreement with the kinetic model in terms of the atmospheric structure below the exobase and the mass and energy escape rates. In the LD regime, Parker's model predicts a much faster drop in atmospheric temperature and less extended atmospheres, and can both over- and underestimate the escape rates in orders of magnitude.

  3. Collective Predation and Escape Strategies

    NASA Astrophysics Data System (ADS)

    Angelani, Luca

    2012-09-01

    The phenomenon of collective predation is analyzed by using a simple individual-based model reproducing spatial animal movements. Two groups of self-propelled organisms are simulated by using Vicseklike models including steric intragroup repulsion. Chase and escape are described by intergroups interactions, attraction (for predators) or repulsion (for preys) from nearest particles of the opposite group. The quantitative analysis of some relevant quantities (total catch time, lifetime distribution, predation rate) allows us to characterize many aspects of the predation phenomenon and gives insights into the study of efficient escape strategies. The reported findings could be of relevance for many basic and applied disciplines, from statistical physics, to ecology, and robotics.

  4. Automated Escape Guidance Algorithms for An Escape Vehicle

    NASA Technical Reports Server (NTRS)

    Flanary, Ronald; Hammen, David; Ito, Daigoro; Rabalais, Bruce; Rishikof, Brian; Siebold, Karl

    2002-01-01

    An escape vehicle was designed to provide an emergency evacuation for crew members living on a space station. For maximum escape capability, the escape vehicle needs to have the ability to safely evacuate a station in a contingency scenario such as an uncontrolled (e.g., tumbling) station. This emergency escape sequence will typically be divided into three events: The fust separation event (SEP1), the navigation reconstruction event, and the second separation event (SEP2). SEP1 is responsible for taking the spacecraft from its docking port to a distance greater than the maximum radius of the rotating station. The navigation reconstruction event takes place prior to the SEP2 event and establishes the orbital state to within the tolerance limits necessary for SEP2. The SEP2 event calculates and performs an avoidance burn to prevent station recontact during the next several orbits. This paper presents the tools and results for the whole separation sequence with an emphasis on the two separation events. The fust challenge includes collision avoidance during the escape sequence while the station is in an uncontrolled rotational state, with rotation rates of up to 2 degrees per second. The task of avoiding a collision may require the use of the Vehicle's de-orbit propulsion system for maximum thrust and minimum dwell time within the vicinity of the station vicinity. The thrust of the propulsion system is in a single direction, and can be controlled only by the attitude of the spacecraft. Escape algorithms based on a look-up table or analytical guidance can be implemented since the rotation rate and the angular momentum vector can be sensed onboard and a-priori knowledge of the position and relative orientation are available. In addition, crew intervention has been provided for in the event of unforeseen obstacles in the escape path. The purpose of the SEP2 burn is to avoid re-contact with the station over an extended period of time. Performing this maneuver properly

  5. In situ and remote measurements of ions escaping from Venus

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Brandt, P. C.

    2013-12-01

    Venus is thought to lose a large fraction of its atmosphere in the form ions, mainly via pickup. The relative loss rate of the exosphere as neutrals or ions is not known, nor is the flux of escaping ions well constrained. Knowledge of these processes will shed light on the role an intrinsic magnetic field has in atmospheric erosion. We use the complementary in-situ plasma and energetic neutral atom (ENA) measurements from the Venus Express (VEx) spacecraft in order to constrain the ion escape. VEx completed about 2500 orbits to date and reached altitudes as low as 200km. The ASPERA/IMA instrument measured directional proton and oxygen ion spectra in the 10eV to 40keV range. We bin the data accumulated over the mission in space and bulk flow direction, yielding a direct measure of the local ion escape flux. While such in-situ measurements provide data without ambiguity, they are limited by the orbital coverage. This is why we include remote ENA measurements from the ASPERA/NPD (100eV to 10keV) instrument to our study. ENAs are created when escaping ions charge exchange with the high atmosphere atoms or molecules. We have done an exhaustive analysis of the data, excluding time periods of instrument contamination. Most ENA emission originates from low altitudes above Venus' limb. These measurements will be compared with the in-situ data, which allows constraining the atmospheric density at high altitudes. Interestingly, there are also ENA emissions from other directions, which were not sampled in-situ. This allows us to put a lower limit to the escape from these regions.

  6. Numerical study of beam propagation and plasma properties in the neutralizer and the E-RID of the ITER Neutral Beam Injector

    NASA Astrophysics Data System (ADS)

    Lifschitz, A. F.; Revel, A.; Caillault, L.; Minea, T.

    2014-04-01

    Non-ohmic heating will be used in the experimental nuclear fusion reactor ITER to reach thermonuclear temperatures. Two heating mechanism will be implemented, i.e. microwaves resonant with ion and electron cyclotron frequencies and energetic neutral beam injection, which contributes also to the current drive. Each one of the two neutral beam injector planned for ITER will deliver 16 MW of 1 MeV D0 beam. In the injector, negative ions D- coming from a 40 A negative ion source are electrostatically accelerated to 1 MeV, and stripped of their extra electron by collision with a target gas in a structure known as the neutralizer. Residual charged particles are deflected after the neutralizer in an electrostatic ion dump (E-RID). The ionization of the deuterium buffer gas filling the neutralizer induced by the D- beam creates a rarefied plasma which is expected to efficiently screens the Coulomb repulsion of the beam. Moreover, this plasma can eventually escape from the neutralizer and move back in the accelerator, towards the accelerating grids and the negative ion source. The transport of the beam through the neutralizer and the RID and the related plasma properties were studied using a 3D electrostatic particle-in-cell code called OBI-3 (Orsay Beam Injector 3 dimensional). Particle-particle and particle-wall collisions are treated using the Monte Carlo collision approach. Simulations show that the secondary plasma effectively screens the beam space charge preventing beam transverse expansion. Plasma ions created in the neutralizer form an upstream current with a magnitude of ˜0.5% of the negative ion current. Gas breakdown leading to arc formation in the RID was not observed. Finally, results for the propagation of non-ideal beams coming from simulations of the extraction and consecutive acceleration taken from Revel et al 2013 Nucl. Fusion 53 073027 are presented.

  7. 42 CFR 84.51 - Entry and escape, or escape only; classification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... during entry into a hazardous atmosphere, and for escape from a hazardous atmosphere; or (b) Escape only. Respirators designed and approved for use only during escape from a hazardous atmosphere....

  8. 42 CFR 84.51 - Entry and escape, or escape only; classification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... during entry into a hazardous atmosphere, and for escape from a hazardous atmosphere; or (b) Escape only. Respirators designed and approved for use only during escape from a hazardous atmosphere....

  9. 42 CFR 84.51 - Entry and escape, or escape only; classification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... during entry into a hazardous atmosphere, and for escape from a hazardous atmosphere; or (b) Escape only. Respirators designed and approved for use only during escape from a hazardous atmosphere....

  10. 42 CFR 84.51 - Entry and escape, or escape only; classification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... during entry into a hazardous atmosphere, and for escape from a hazardous atmosphere; or (b) Escape only. Respirators designed and approved for use only during escape from a hazardous atmosphere....

  11. 42 CFR 84.51 - Entry and escape, or escape only; classification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... during entry into a hazardous atmosphere, and for escape from a hazardous atmosphere; or (b) Escape only. Respirators designed and approved for use only during escape from a hazardous atmosphere....

  12. Lise Meitner's escape from Germany

    NASA Astrophysics Data System (ADS)

    Sime, Ruth Lewin

    1990-03-01

    Lise Meitner (1878-1968) achieved prominence as a nuclear physicist in Germany; although of Jewish origin, her Austrian citizenship exempted her from Nazi racial laws until the annexation of Austria in 1938 precipitated her dismissal. Forbidden to emigrate, she narrowly escaped to the Netherlands with the help of concerned friends in the international physics community.

  13. Lunar escape systems feasibility study

    NASA Technical Reports Server (NTRS)

    Matzenauer, J. O.

    1976-01-01

    Results are presented for a study conducted to determine the feasibility of simple lunar escape system concepts, to develop a spectrum of operational data, and to identify techniques and configurations suitable for the emergency escape mission. The study demonstrated the feasibility of the lunar emergency escape-to-orbit system (LESS) designed to provide a means for the two-man crew of a lunar module (LM) or extended-stay LM (ELM) to escape from the lunar surface in the event that the LM/ELM ascent stage becomes unsafe or is otherwise unable to take off. The LESS is to carry the two astronauts to a safe lunar orbit, where the Apollo command and service modules (CSM) are to be used for rendezvous and rescue, all within the lifetime of the backpack life support system (about 4 hr). It is concluded that simple manual control modes are sufficient, that simple boost profiles are acceptable, and that one man can deploy and set up the LESS. Initial guidance data can be calculated for the LESS by Mission Control and transmitted via the LM/ELM uplink.

  14. Io's neutral clouds: From the atmosphere to the plasma torus

    NASA Astrophysics Data System (ADS)

    Burger, Matthew Howard

    2003-10-01

    Since the discovery of sodium thirty years ago, observations of Io's neutral features have provided essential insight into understanding the relationship between the Io's atmosphere and the Io torus, a ring of plasma encircling Jupiter. In this thesis I use observations and models of lo's corona, extended neutral clouds, and fast sodium jet to probe the interactions between the atmosphere, torus, and neutral clouds. A corona and neutral cloud model, based on the model of Wilson and Schneider (1999), has been developed to study neutral loss from Io. Neutrals are ejected from Io's exobase and their trajectories followed under the influence of gravity until lost into the plasma torus. I also developed description of the plasma torus based on Voyager and ground-based observations to accurately determine neutral lifetimes. Mutual eclipsing events between Galilean satellites were used to measure the shape of lo's sodium corona, revealing a corona that is only approximately spherically symmetric around Io. I discovered a previously undetected asymmetry: the sub-Jupiter corona is denser than the anti-Jupiter corona. Modeling implies that sodium source from the sub-Jupiter hemisphere must be twice as large as from the anti-Jupiter hemisphere. The Galileo spacecraft has imaged a remarkable atmospheric escape process occurring in Io's ionosphere. Electrodynamic consequences of Io's motion through Jupiter's magnetosphere drive mega-amp currents through lo's ionosphere; some sodium ions carrying this current are neutralized as they leave the atmosphere. The Galileo images show that the resulting fast sodium jet removes ˜5 × 1025 atoms sec-1 from Io's atmosphere. The source region of the jet is much smaller than Io itself implying that the ionosphere is densest near Io's equator. A model-based comparison of the neutral oxygen and sodium clouds details differences in the morphologies and spatial extent of each: sodium extends only 1/4 the way around Jupiter while oxygen forms a

  15. Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution

    PubMed Central

    Tang, Xian-Chun; Agnihothram, Sudhakar S.; Jiao, Yongjun; Stanhope, Jeremy; Graham, Rachel L.; Peterson, Eric C.; Avnir, Yuval; Tallarico, Aimee St. Clair; Sheehan, Jared; Zhu, Quan; Baric, Ralph S.; Marasco, Wayne A.

    2014-01-01

    The newly emerging Middle East Respiratory Syndrome coronavirus (MERS-CoV) causes a Severe Acute Respiratory Syndrome-like disease with ∼43% mortality. Given the recent detection of virus in dromedary camels, zoonotic transfer of MERS-CoV to humans is suspected. In addition, little is known about the role of human neutralizing Ab (nAb) pressure as a driving force in MERS-CoV adaptive evolution. Here, we used a well-characterized nonimmune human Ab-phage library and a panning strategy with proteoliposomes and cells to identify seven human nAbs against the receptor-binding domain (RBD) of the MERS-CoV Spike protein. These nAbs bind to three different epitopes in the RBD and human dipeptidyl peptidase 4 (hDPP4) interface with subnanomolar/nanomolar binding affinities and block the binding of MERS-CoV Spike protein with its hDPP4 receptor. Escape mutant assays identified five amino acid residues that are critical for neutralization escape. Despite the close proximity of the three epitopes on the RBD interface, escape from one epitope did not have a major impact on neutralization with Abs directed to a different epitope. Importantly, the majority of escape mutations had negative impacts on hDPP4 receptor binding and viral fitness. To our knowledge, these results provide the first report on human nAbs against MERS-CoV that may contribute to MERS-CoV clearance and evolution. Moreover, in the absence of a licensed vaccine or antiviral for MERS, this panel of nAbs offers the possibility of developing human mAb-based immunotherapy, especially for health-care workers. PMID:24778221

  16. Magnetic buoyancy and the escape of magnetic fields from stars

    NASA Astrophysics Data System (ADS)

    Parker, E. N.

    1984-06-01

    Magnetic buoyancy causes the azimuthal magnetic fields of stars to rise rapidly to the surface, from where they are generally assumed to escape freely into space. However, a closer look at the problem reveals the simple fact that disengagement of the field from the gas, and escape into space, require a convoluted field configuration, producing neutral point reconnection of the flux in the tenuous gas above the surface of the star. Only that flux which reconnects can escape. Recent observations of the magnetic fields emerging through the surface of the Sun show that even at sunspot maximum the gaps in longitude between bipolar magnetic regions are so wide as to limit severely the reconnection between regions. We suggest from the observations that no more than perhaps 3% of the flux that is observed to emerge through the surface is able to reconnect and escape. Hence the surface of the Sun approximates to an impenetrable barrier rather than an open surface, with quantitative consequences for theoretical dynamo models. Recent observations of the retraction of bipolar fields at the end of their appearance at the surface suggest active dynamical control by the convection beneath the surface.

  17. Blue Origin Conducts Pad Escape Test

    NASA Video Gallery

    Blue Origin conducted a successful pad escape test Oct. 19 at the company's West Texas launch site, firing its pusher escape motor and launching a full-scale suborbital crew capsule from a simulate...

  18. Genetic Algorithms with Local Minimum Escaping Technique

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroki; Sakata, Kenichiro; Tang, Zheng; Ishii, Masahiro

    In this paper, we propose a genetic algorithm(GA) with local minimum escaping technique. This proposed method uses the local minimum escaping techique. It can escape from the local minimum by correcting parameters when genetic algorithm falls into a local minimum. Simulations are performed to scheduling problem without buffer capacity using this proposed method, and its validity is shown.

  19. [Escape Behaviors and Its Underlying Neuronal Circuits].

    PubMed

    Oda, Yoichi

    2015-10-01

    Escape behaviors are crucial to survive predator encounters or aversive stimuli. The neural circuits mediating escape behaviors of different animal species have a common framework to trigger extremely fast and robust movement with minimum delay. Thus, the neuronal escape circuits possibly represent functional architectures that perform the most efficient sensory-motor processing in the brain. Here, I review the escape behaviors and underlying neuronal circuits of several invertebrates and fish by focusing on the Mauthner cells, a pair of giant reticulospinal neurons in the hindbrain, that trigger fast escape behavior in goldfish and zebrafish. PMID:26450070

  20. Neutral particle beams for space defense

    NASA Astrophysics Data System (ADS)

    Botwin, Robert; Favale, Anthony

    Neutral particle beam (NPB) weapons direct highly focused high energy streams of electrically neutral atomic particles traveling at nearly the speed of light, escaping deflection from the earth's magnetic field and acting on the subatomic structure of a target, destroying it from within. The beam's brief contact with a reentry vehicle produces a nuclear reaction in the latter that yields particle emissions; by detecting and identifying those particles, it becomes possible to effectively distinguish warheads from decoys. Attention is given to the NPB program roles to be played by the Beam Experiment Aboard Rocket and Neutral Particle Beam Integrated Space Experiment projects.

  1. Escape of a driven particle from a metastable state: A semiclassical approach.

    PubMed

    Ghosh, Pradipta; Shit, Anindita; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray

    2010-06-28

    In this article we explore the dynamics of escape of a particle in the semiclassical regime by driving the particle externally. We demonstrate that under suitable approximations the semiclassical escape rate essentially assumes the structure of classical Kramers rate. Both internal (due to thermal bath) as well as external noises (due to driving) are being considered. The noises are stationary, Gaussian, and are characterized by arbitrary decaying memory kernel. Finally, we subject our formulation to rigorous numerical test under variedly changing conditions of the parameters. PMID:20590205

  2. On ion escape from Venus

    NASA Astrophysics Data System (ADS)

    Jarvinen, Riku

    2011-04-01

    This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics. Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects? One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the

  3. On ion escape from Venus

    NASA Astrophysics Data System (ADS)

    Jarvinen, R.

    2011-04-01

    This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics.Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects?One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the

  4. Escape Dynamics in Quasihomogeneous Fields

    NASA Astrophysics Data System (ADS)

    Mioc, Vasile; Stavinschi, Magda

    The escape in the two-body problem associated to a quasihomogeneous potential (a sum of homogeneous potentials) is being tackled. The basic equations of the problem are put in a form for which the infinity is a singularity, then they are regularized via McGehee-type transformations. The singularity is replaced by a manifold pasted on the phase space, and the flow on this manifold is described; it is identical with the analogous flows corresponding to already studied concrete astronomical and physical situations.

  5. Helium escape from the Earth's atmosphere - The charge exchange mechanism revisited

    NASA Technical Reports Server (NTRS)

    Lie-Svendsen, O.; Rees, M. H.; Stamnes, K.

    1992-01-01

    We have studied the escape of neutral helium from the terrestrial atmosphere through exothermic charge exchange reactions between He(+) ions and the major atmospheric constituents N2, O2 and O. Elastic collisions with the neutral background particles were treated quantitatively using a recently developed kinetic theory approach. An interhemispheric plasma transport model was employed to provide a global distribution of He(+) ions as a function of altitude, latitude and local solar time and for different levels of solar ionization. Combining these ion densities with neutral densities from an MSIS model and best estimates for the reaction rate coefficients of the charge exchange reactions, we computed the global distribution of the neutral He escape flux. The escape rates show large diurnal and latitudinal variations, while the global average does not vary by more than a factor of three over a solar cycle. We find that this escape mechanism is potentially important for the overall balance of helium in the Earth's atmosphere. However, more accurate values for the reaction rate coefficients of the charge exchange reactions are required to make a definitive assessment of its importance.

  6. Wind Enhanced Escape, Ion Pickup and the Evolution of Water on Mars

    NASA Technical Reports Server (NTRS)

    Hartle, Richard

    1999-01-01

    Preferential loss of hydrogen over deuterium from Mars has produced a deuterium rich atmosphere possessing a D/B ratio 5.2 times that of terrestrial water. Rayleigh fractionation is applied, constrained by the deuterium enrichment factor, to determine the magnitudes of ancient and present water reservoirs on the planet. The dominant lose mechanisms of R and D from the current atmosphere are thought to be thermal escape and solar wind ion pickup of the neutral and ion forms of theme constituents, respectively. During an earlier martian epoch, only thermal escape was significant because Mars had a terrestrial sized magnetosphere that protected the atmosphere from solar wind scavenging processes. The magnitudes of present and ancient water reservoirs are estimated when thermal escape is considered alone and subsequently when the effects of ion pickup are added. The escape fluxes of R and D are significantly increased above the respective Jeans fluxes when the effects of thermospheric winds and planetary rotation are accounted for at the exobase. Such wind enhanced escape also increases as the mass of an escaping constituent increases; thus, the increase in the escape flux of D is greater than that of H. When the fractionation process is also constrained by the D/H ratio observed in hydrous minerals of SNC meteorites, an ancient crustal reservoir of Martian water in derived, tens of meters in global-equivalent depth, considerably exceeding that obtained with no winds. The reservoir becomes even larger when ion pickup processes are added.

  7. Mars atmosphere evolution: Escape to space

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.

    1992-01-01

    The loss mechanisms and the rates of escape, to space, of Martian atmosphere constituents have changed throughout the history of the solar system. For the first billion years, Mars' atmosphere escape was probably dominated by impact erosion related to the presence of debris left over from the accretionary phase. This loss was further augmented by hydrodynamic outflows related to the presence of an early denser atmosphere and a sun that was brighter in the EUV wavelengths. Following this initial 'catastrophic' phase, during which a large fraction of the original atmosphere was lost but then replaced by volcanism and cometary impact, the 'modern' loss mechanisms which still operate today would have taken over. Those mechanisms that now contribute to escape to space consist of classical thermal or Jeans escape, nonthermal escape due to chemical reaction in the atmosphere, and solar wind-related losses. Both the loss mechanisms and the rates of escape are discussed.

  8. Wind-Induced Atmospheric Escape: Titan

    NASA Technical Reports Server (NTRS)

    Hartle, Richard; Johnson, Robert; Sittler, Edward, Jr.; Sarantos, Menelaos; Simpson, David

    2012-01-01

    Rapid thermospheric flows can significantly enhance the estimates of the atmospheric loss rate and the structure of the atmospheric corona of a planetary body. In particular, rapid horizontal flow at the exobase can increase the corresponding constituent escape rate. Here we show that such corrections, for both thermal and non-thermal escape, cannot be ignored when calculating the escape of methane from Titan, for which drastically different rates have been proposed. Such enhancements are also relevant to Pluto and exoplanets.

  9. Escape nightmares and postescape stressful events.

    PubMed

    Cernovsky, Z Z

    1988-04-01

    Correlation matrix based on questionnaire item responses by 38 Czechoslovak refugees suggested that "escape nightmares" (recurrent nightmares about being back in the exhomeland, wanting to or trying to re-escape to the free world) are unrelated to postescape incidence of various stressful events (e.g., illness, job difficulties, financial problems). However, refugees who reported a greater number of the stressful events also reported a somewhat higher incidence of nightmares on themes other than escape from homeland (r = .34). PMID:3399334

  10. Model of a mechanical clock escapement

    NASA Astrophysics Data System (ADS)

    Moline, David; Wagner, John; Volk, Eugene

    2012-07-01

    The mechanical tower clock originated in Europe during the 14th century to sound hourly bells and later display hands on a dial. An important innovation was the escapement mechanism, which converts stored energy into oscillatory motion for fixed time intervals through the pendulum swing. Previous work has modeled the escapement mechanism in terms of inelastic and elastic collisions. We derive and experimentally verify a theoretical model in terms of impulsive differential equations for the Graham escapement mechanism in a Seth Thomas tower clock. The model offers insight into the clock's mechanical behavior and the functionality of the deadbeat escapement mechanism.

  11. Electronic Escape Trails for Firefighters

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles; Schipper, John; Betts, Bradley

    2008-01-01

    A proposed wireless-communication and data-processing system would exploit recent advances in radio-frequency identification devices (RFIDs) and software to establish information lifelines between firefighters in a burning building and a fire chief at a control station near but outside the building. The system would enable identification of trails that firefighters and others could follow to escape from the building, including identification of new trails should previously established trails become blocked. The system would include a transceiver unit and a computer at the control station, portable transceiver units carried by the firefighters in the building, and RFID tags that the firefighters would place at multiple locations as they move into and through the building (see figure). Each RFID tag, having a size of the order of a few centimeters, would include at least standard RFID circuitry and possibly sensors for measuring such other relevant environmental parameters as temperature, levels of light and sound, concentration of oxygen, concentrations of hazardous chemicals in smoke, and/or levels of nuclear radiation. The RFID tags would be activated and interrogated by the firefighters and control-station transceivers. Preferably, RFID tags would be configured to communicate with each other and with the firefighters units and the control station in an ordered sequence, with built-in redundancy. In a typical scenario, as firefighters moved through a building, they would scatter many RFID tags into smoke-obscured areas by use of a compressed-air gun. Alternatively or in addition, they would mark escape trails by dropping RFID tags at such points of interest as mantraps, hot spots, and trail waypoints. The RFID tags could be of different types, operating at different frequencies to identify their functions, and possibly responding by emitting audible beeps when activated by signals transmitted by transceiver units carried by nearby firefighters.

  12. Career development. The great escape.

    PubMed

    Clews, Graham

    2006-03-23

    The healthcare outside hospitals white paper is part of a continuing drive to involve non-NHS bodies in patient care. This means an unfamiliar working environment for migrating managers; with different motivations, less job security and increased entrepreneurial freedom. Managers in Partnership has called on managers to develop self-marketing skills to suit the new job market. PMID:16618075

  13. iDriving (Intelligent Driving)

    SciTech Connect

    Malikopoulos, Andreas

    2012-09-17

    iDriving identifies the driving style factors that have a major impact on fuel economy. An optimization framework is used with the aim of optimizing a driving style with respect to these driving factors. A set of polynomial metamodels is constructed to reflect the responses produced in fuel economy by changing the driving factors. The optimization framework is used to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving styles in responses to actual driving conditions to improve fuel efficiency.

  14. iDriving (Intelligent Driving)

    Energy Science and Technology Software Center (ESTSC)

    2012-09-17

    iDriving identifies the driving style factors that have a major impact on fuel economy. An optimization framework is used with the aim of optimizing a driving style with respect to these driving factors. A set of polynomial metamodels is constructed to reflect the responses produced in fuel economy by changing the driving factors. The optimization framework is used to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving stylesmore » in responses to actual driving conditions to improve fuel efficiency.« less

  15. Alternative end joining, clonal evolution, and escape from a telomere-driven crisis

    PubMed Central

    Hendrickson, Eric A; Baird, Duncan M

    2015-01-01

    Telomere dysfunction and fusion play key roles in driving genomic instability and clonal evolution in many tumor types. We have recently described a role for DNA ligase III (LIG3) in facilitating the escape of cells from crisis induced by telomere dysfunction. Our data indicate that LIG3-mediated telomere fusion is important in facilitating clonal evolution. PMID:27308409

  16. Escape as Reinforcement and Escape Extinction in the Treatment of Feeding Problems

    ERIC Educational Resources Information Center

    LaRue, Robert H.; Stewart, Victoria; Piazza, Cathleen C.; Volkert, Valerie M.; Patel, Meeta R.; Zeleny, Jason

    2011-01-01

    Given the effectiveness of putative escape extinction as treatment for feeding problems, it is surprising that little is known about the effects of escape as reinforcement for appropriate eating during treatment. In the current investigation, we examined the effectiveness of escape as reinforcement for mouth clean (a product measure of…

  17. Generalized Jeans' Escape of Pick-Up Ions in Quasi-Linear Relaxation

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Khazanov, G. V.

    2011-01-01

    Jeans escape is a well-validated formulation of upper atmospheric escape that we have generalized to estimate plasma escape from ionospheres. It involves the computation of the parts of particle velocity space that are unbound by the gravitational potential at the exobase, followed by a calculation of the flux carried by such unbound particles as they escape from the potential well. To generalize this approach for ions, we superposed an electrostatic ambipolar potential and a centrifugal potential, for motions across and along a divergent magnetic field. We then considered how the presence of superthermal electrons, produced by precipitating auroral primary electrons, controls the ambipolar potential. We also showed that the centrifugal potential plays a small role in controlling the mass escape flux from the terrestrial ionosphere. We then applied the transverse ion velocity distribution produced when ions, picked up by supersonic (i.e., auroral) ionospheric convection, relax via quasi-linear diffusion, as estimated for cometary comas [1]. The results provide a theoretical basis for observed ion escape response to electromagnetic and kinetic energy sources. They also suggest that super-sonic but sub-Alfvenic flow, with ion pick-up, is a unique and important regime of ion-neutral coupling, in which plasma wave-particle interactions are driven by ion-neutral collisions at densities for which the collision frequency falls near or below the gyro-frequency. As another possible illustration of this process, the heliopause ribbon discovered by the IBEX mission involves interactions between the solar wind ions and the interstellar neutral gas, in a regime that may be analogous [2].

  18. MEMO: Mars Escape and Magnetic Orbiter

    NASA Astrophysics Data System (ADS)

    Leblanc, F.; Langlais, B.; Chassefiere, E.; Sotin, C.; Barabash, S.; Dehant, V.; Dougherty, M.; Lammer, H.; Mandea, M.; Vennerstrom, S.

    2007-03-01

    MEMO is a new orbiter devoted to the characterization of present atmospheric escape and of the fossile magnetic field. The low periapsis (~130 km) is required to detect and quantify atoms and molecules involved in the escape, and to measure the magnetic f

  19. Escaping Homelessness: Anticipated and Perceived Facilitators

    ERIC Educational Resources Information Center

    Patterson, Allisha; Tweed, Roger

    2009-01-01

    One study with two distinct sections was conducted to identify factors facilitating escape from homelessness. In Section 1, 58 homeless individuals rated possible facilitators of escape (factors they believed would help them become more independent and self-sufficient). In Section 2, 80 participants who had already exited homelessness rated the…

  20. Submarine 'safe to escape' studies in man.

    PubMed

    Jurd, K M; Seddon, F M; Thacker, J C; Blogg, S L; Stansfield, M R D; White, M G; Loveman, G A M

    2014-01-01

    The Royal Navy requires reliable advice on the safe limits of escape from a distressed submarine (DISSUB). Flooding in a DISSUB may cause a rise in ambient pressure, increasing the risk of decompression sickness (DCS) and decreasing the maximum depth from which it is safe to escape. The aim of this study was to investigate the pressure/depth limits to escape following saturation at raised ambient pressure. Exposure to saturation pressures up to 1.6 bar (a) (160 kPa) (n = 38); escapes from depths down to 120 meters of sea water (msw) (n = 254) and a combination of saturation followed by escape (n = 90) was carried out in the QinetiQ Submarine Escape Simulator, Alverstoke, United Kingdom. Doppler ultrasound monitoring was used to judge the severity of decompression stress. The trials confirmed the previously untested advice, in the Guardbook, that if a DISSUB was lying at a depth of 90 msw, then it was safe to escape when the pressure in the DISSUB was 1.5 bar (a), but also indicated that this advice may be overly conservative. This study demonstrated that the upper DISSUB saturation pressure limit to safe escape from 90 msw was 1.6 bar (a), resulting in two cases of DCS. PMID:25109084

  1. Atmospheric escape, redox evolution, and planetary habitability

    NASA Astrophysics Data System (ADS)

    Catling, D. C.; Zahnle, K. J.

    2011-12-01

    Through the greenhouse effect, the presence and composition of an atmosphere is critical for defining a (conventional) circumstellar habitable zone in terms of planetary surface temperatures suitable for liquid water. Lack of knowledge of planetary atmospheres is likely to frustrate attempts to say with any certainty whether detected terrestrial-sized exoplanets may or may not be habitable. Perhaps an underappreciated role in such considerations is the evolutionary effect of atmospheric escape for determining atmospheric composition or whether an atmosphere exists in the first place. Whether atmospheres exist at all on planets is demonstrably connected to the effect of integrated atmospheric escape. When we observe our own Solar System and transiting exoplanets, the existence of an atmosphere is clearly delineated by a relative vulnerability to thermal escape and impact erosion. The prevalence of thermal escape as a key evolutionary determinant for the presence of planetary atmosphere is shown by a relationship between the relative solar (or stellar) heating and the escape velocity. Those bodies with too much stellar heating and too smaller escape velocity end up devoid of atmospheres. Impact erosion is evident in the relationship between impact velocity and escape velocity. Escape due to impacts is particularly important for understanding the large differences in the atmospheres of giant planet moons, such as Ganymede versus Titan. It is also significant for Mars-sized planets. The oxidation state of atmospheres is important for some theories of the origin of life (where an early reducing atmosphere is helpful for organic synthesis) and the evolution of advanced life (where free molecular oxygen is the best source of high energy metabolism). Surfaces on some relatively small planets and moons are observed to have evolved to an oxidized state, which theory and observation can explain through atmospheric escape. There are several examples in the Solar System where a

  2. Impaired Driving

    MedlinePlus

    ... Risk Factors BAC Effects Prevention Additional Resources How big is the problem? In 2014, 9,967 people ... Driving: A Threat to Everyone (October 2011) Additional Data Drunk Driving State Data and Maps Motor Vehicle ...

  3. Drugged Driving

    MedlinePlus

    ... Infographics » Drugged Driving Drugged Driving Email Facebook Twitter Text Description of Infographic Top Right Figure : In 2009, ... crash than those who don't smoke. Bottom Text: Develop Social Strategies Offer to be a designated ...

  4. Light weight escape capsule for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Robert, James A.

    1988-01-01

    Emergency crew escape capabilities have been less than adequate for fighter aircraft since before WW II. From the over-the-side bailout of those days through the current ejection seat with a rocket catapult, escaping from a disabled aircraft has been risky at best. Current efforts are underway toward developing a high-tech, smart ejection seat that will give fighter pilots more room to live in the sky, but an escape capsule is needed to meet current and future fighter envelopes. Escape capsules have a bad reputation due to past examples of high weight, poor performance and great complexity. However, the advantages available demand that a capsule be developed. This capsule concept will minimize the inherent disavantages and incorporate the benefits while integrating all aspects of crew station design. The resulting design is appropriate for a crew station of the year 2010 and includes improved combat acceleration protection, chemical or biological combat capability, improved aircraft to escape system interaction, and the highest level of escape performance achievable. The capsule is compact, which can allow a reduced aircraft size and weighs only 1200 lb. The escape system weight penalty is only 120 lb higher than that for the next ejection seat and the capsule has a corresponding increase in performance.

  5. High torque bellows seal rotary drive

    NASA Technical Reports Server (NTRS)

    Diaguila, A. J.; Macomber, J. W.; Adams, D. W.

    1972-01-01

    Bellows seal rotary drive device was developed which allows high torque transmission through sealed compartments. Bearing friction which would normally be carried by sealing bellows in comparable devices is absorbed by universal-gimbal joint. It can be used to transmit high torque, low speed, rotary motion through sealed barriers to prevent contamination or escape of fluids.

  6. Stellar wind interaction and pick-up ion escape of the Kepler-11 "super-Earths"

    NASA Astrophysics Data System (ADS)

    Kislyakova, Kristina; Johnstone, Colin; Odert, Petra; Erkaev, Nikolai; Lammer, Helmut; Lüftinger, Theresa; Holmstöm, Mats; Khodachenko, Maxim; Güdel, Manuel

    2014-05-01

    We present the results of modeling of the interactions between stellar wind and the extended hydrogen-dominated upper atmospheres of planets and estimate the resulting escape of planetary pick-up ions from the 5 «super-Earths» in the compact Kepler-11 system. We compare the escape rates with the efficiency of the thermal escape of neutral hydrogen atoms. Assuming the stellar wind of Kepler-11 is similar to the solar wind, we used a polytropic 1D hydrodynamic wind model to estimate the wind properties at the planetary orbits. We applied a Direct Simulation Monte Carlo Model to model the hydrogen coronae and the stellar wind plasma interaction around Kepler-11b-f planets within a realistic expected heating efficiency range of 15-40%. The same model was used to estimate the ion pick-up escape from the XUV heated and hydrodynamically extended upper atmospheres of Kepler-11b-f. Modeling clarifies the influence of possible magnetic moments on escape processes and allows to estimate the charge exchange and photoionization production rates of planetary ions as well as the loss rates of pick-up H+ ions for all five planets. This study presents also the comparison of the results between the five 'super-Earths' and in a more general sense also with the thermal escape rates of the neutral planetary hydrogen atoms. Our results show that for all Kepler-11b-f exoplanets, a huge neutral hydrogen corona is formed around the planet. The non-symmetric form of the corona changes from planet to planet and is defined mostly by radiation pressure, charge-exchange and gravitational effects. According to our estimates, nonthermal escape rates of pick-up ionized hydrogen atoms for Kepler-11 «super-Earths» vary between ~ 6.4 × 1030 s-1 and ~ 4.1 × 1031 s-1 depending on the planet's orbital location and assumed heating efficiency. These values correspond to non-thermal mass loss rates of ~ 1.07 × 107 g·s-1 and ~ 6.8 × 107 g·s-1 respectively, which is a few percent of the thermal

  7. Wind enhanced planetary escape: Collisional modifications

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.; Hartle, R. E.

    1976-01-01

    The problem of thermal escape is considered in which both the effects of thermospheric winds at the exobase and collisions below the exobase are included in a Monte Carlo calculation. The collisions are included by means of a collisional relaxation layer of a background gas which models the transition region between the exosphere and the thermosphere. The wind effects are considered in the limiting cases of vertical and horizontal flows. Two species are considered: terrestrial hydrogen and terrestrial helium. In the cases of terrestrial hydrogen the escape fluxes were found to be strongly filtered or throttled by collisions at high exospheric temperatures. The model is applied to molecular hydrogen diffusing through a methane relaxation layer under conditions possible on Titan. The results are similar to the case of terrestrial hydrogen with wind enhanced escape being strongly suppressed by collisions. It is concluded that wind enhanced escape is not an important process on Titan.

  8. Apollo experience report: Launch escape propulsion subsystem

    NASA Technical Reports Server (NTRS)

    Townsend, N. A.

    1973-01-01

    The Apollo launch escape propulsion subsystem contained three solid rocket motors. The general design, development, and qualification of the solid-propellant pitch-control, tower-jettison, and launch-escape motors of the Apollo launch escape propulsion subsystem were completed during years 1961 to 1966. The launch escape system components are described in general terms, and the sequence of events through the ground-based test programs and flight-test programs is discussed. The initial ground rules established for this system were that it should use existing technology and designs as much as possible. The practicality of this decision is proved by the minimum number of problems that were encountered during the development and qualification program.

  9. Biogeochemistry: Nocturnal escape route for marsh gas

    NASA Astrophysics Data System (ADS)

    Anthony, Katey Walter; MacIntyre, Sally

    2016-07-01

    A field study of methane emissions from wetlands reveals that more of the gas escapes through diffusive processes than was thought, mostly at night. Because methane is a greenhouse gas, the findings have implications for global warming.

  10. Polymer escape from a confining potential

    NASA Astrophysics Data System (ADS)

    Mökkönen, Harri; Ikonen, Timo; Jónsson, Hannes; Ala-Nissila, Tapio

    2014-02-01

    The rate of escape of polymers from a two-dimensionally confining potential well has been evaluated using self-avoiding as well as ideal chain representations of varying length, up to 80 beads. Long timescale Langevin trajectories were calculated using the path integral hyperdynamics method to evaluate the escape rate. A minimum is found in the rate for self-avoiding polymers of intermediate length while the escape rate decreases monotonically with polymer length for ideal polymers. The increase in the rate for long, self-avoiding polymers is ascribed to crowding in the potential well which reduces the free energy escape barrier. An effective potential curve obtained using the centroid as an independent variable was evaluated by thermodynamic averaging and Kramers rate theory then applied to estimate the escape rate. While the qualitative features are well reproduced by this approach, it significantly overestimates the rate, especially for the longer polymers. The reason for this is illustrated by constructing a two-dimensional effective energy surface using the radius of gyration as well as the centroid as controlled variables. This shows that the description of a transition state dividing surface using only the centroid fails to confine the system to the region corresponding to the free energy barrier and this problem becomes more pronounced the longer the polymer is. A proper definition of a transition state for polymer escape needs to take into account the shape as well as the location of the polymer.

  11. Polymer escape from a confining potential

    SciTech Connect

    Mökkönen, Harri; Ikonen, Timo; Jónsson, Hannes; Ala-Nissila, Tapio

    2014-02-07

    The rate of escape of polymers from a two-dimensionally confining potential well has been evaluated using self-avoiding as well as ideal chain representations of varying length, up to 80 beads. Long timescale Langevin trajectories were calculated using the path integral hyperdynamics method to evaluate the escape rate. A minimum is found in the rate for self-avoiding polymers of intermediate length while the escape rate decreases monotonically with polymer length for ideal polymers. The increase in the rate for long, self-avoiding polymers is ascribed to crowding in the potential well which reduces the free energy escape barrier. An effective potential curve obtained using the centroid as an independent variable was evaluated by thermodynamic averaging and Kramers rate theory then applied to estimate the escape rate. While the qualitative features are well reproduced by this approach, it significantly overestimates the rate, especially for the longer polymers. The reason for this is illustrated by constructing a two-dimensional effective energy surface using the radius of gyration as well as the centroid as controlled variables. This shows that the description of a transition state dividing surface using only the centroid fails to confine the system to the region corresponding to the free energy barrier and this problem becomes more pronounced the longer the polymer is. A proper definition of a transition state for polymer escape needs to take into account the shape as well as the location of the polymer.

  12. Submarine tower escape decompression sickness risk estimation.

    PubMed

    Loveman, G A M; Seddon, E M; Thacker, J C; Stansfield, M R; Jurd, K M

    2014-01-01

    Actions to enhance survival in a distressed submarine (DISSUB) scenario may be guided in part by knowledge of the likely risk of decompression sickness (DCS) should the crew attempt tower escape. A mathematical model for DCS risk estimation has been calibrated against DCS outcome data from 3,738 exposures of either men or goats to raised pressure. Body mass was used to scale DCS risk. The calibration data included more than 1,000 actual or simulated submarine escape exposures and no exposures with substantial staged decompression. Cases of pulmonary barotrauma were removed from the calibration data. The calibrated model was used to estimate the likelihood of DCS occurrence following submarine escape from the United Kingdom Royal Navy tower escape system. Where internal DISSUB pressure remains at - 0.1 MPa, escape from DISSUB depths < 200 meters is estimated to have DCS risk < 6%. Saturation at raised DISSUB pressure markedly increases risk, with > 60% DCS risk predicted for a 200-meter escape from saturation at 0.21 MPa. Using the calibrated model to predict DCS for direct ascent from saturation gives similar risk estimates to other published models. PMID:25109085

  13. Pile Driving

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Machine-oriented structural engineering firm TERA, Inc. is engaged in a project to evaluate the reliability of offshore pile driving prediction methods to eventually predict the best pile driving technique for each new offshore oil platform. Phase I Pile driving records of 48 offshore platforms including such information as blow counts, soil composition and pertinent construction details were digitized. In Phase II, pile driving records were statistically compared with current methods of prediction. Result was development of modular software, the CRIPS80 Software Design Analyzer System, that companies can use to evaluate other prediction procedures or other data bases.

  14. Atomic hydrogen escape rate due to charge exchange with hot plasmaspheric ions

    NASA Technical Reports Server (NTRS)

    Maher, L. J.; Tinsley, B. A.

    1977-01-01

    Data on ion and electron temperatures and concentrations to several thousand kilometers of altitude were obtained from the Atmosphere Explorer C satellite for 1974 and to 850 km from Arecibo incoherent scatter radar measurements. These data were used to normalize diffusive equilibrium profiles. From these profiles and by using the neutral atmospheric model of Jacchia (1971) and a new hydrogen model, the charge-exchange-induced neutral hydrogen escape fluxes for equatorial and middle latitudes were calculated. The data confirm earlier estimates that the charge exchange loss is more important than Jeans escape for the earth. It is also found that inside the plasmapause this charge exchange process with hot plasmapheric ions is the major production and loss process for the satellite population in the hydrogen geocorona.

  15. Simulations of neutralized final focus

    SciTech Connect

    Welch, D.R.; Rose, D.V.; Genoni, T.C.; Yu, S.S.; Barnard, J.J.

    2005-01-18

    In order to drive an inertial fusion target or study high energy density physics with heavy ion beams, the beam radius must be focused to < 3 mm and the pulse length must be compressed to < 10 ns. The conventional scheme for temporal pulse compression makes use of an increasing ion velocity to compress the beam as it drifts and beam space charge to stagnate the compression before final focus. Beam compression in a neutralizing plasma does not require stagnation of the compression, enabling a more robust method. The final pulse shape at the target can be programmed by an applied velocity tilt. In this paper, neutralized drift compression is investigated. The sensitivity of the compression and focusing to beam momentum spread, plasma, and magnetic field conditions is studied with realistic driver examples. Using the 3D particle-in-cell code, we examine issues associated with self-field generation, stability, and vacuum-neutralized transport transition and focusing.

  16. 46 CFR 28.390 - Means of escape.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Means of escape. 28.390 Section 28.390 Shipping COAST... Operate With More Than 16 Individuals on Board § 28.390 Means of escape. (a) Each space which is used by... two widely separated means of escape. At least one of the means of escape must be independent...

  17. 46 CFR 28.390 - Means of escape.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Means of escape. 28.390 Section 28.390 Shipping COAST... Operate With More Than 16 Individuals on Board § 28.390 Means of escape. (a) Each space which is used by... two widely separated means of escape. At least one of the means of escape must be independent...

  18. 46 CFR 177.500 - Means of escape.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Means of escape. 177.500 Section 177.500 Shipping COAST...) CONSTRUCTION AND ARRANGEMENT Escape Requirements § 177.500 Means of escape. (a) Except as otherwise provided in... least two means of escape, one of which must not be a watertight door. (b) The two required means...

  19. 46 CFR 177.500 - Means of escape.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Means of escape. 177.500 Section 177.500 Shipping COAST...) CONSTRUCTION AND ARRANGEMENT Escape Requirements § 177.500 Means of escape. (a) Except as otherwise provided in... least two means of escape, one of which must not be a watertight door. (b) The two required means...

  20. 46 CFR 177.500 - Means of escape.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Means of escape. 177.500 Section 177.500 Shipping COAST...) CONSTRUCTION AND ARRANGEMENT Escape Requirements § 177.500 Means of escape. (a) Except as otherwise provided in... least two means of escape, one of which must not be a watertight door. (b) The two required means...

  1. 46 CFR 177.500 - Means of escape.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Means of escape. 177.500 Section 177.500 Shipping COAST...) CONSTRUCTION AND ARRANGEMENT Escape Requirements § 177.500 Means of escape. (a) Except as otherwise provided in... least two means of escape, one of which must not be a watertight door. (b) The two required means...

  2. 46 CFR 177.500 - Means of escape.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Means of escape. 177.500 Section 177.500 Shipping COAST...) CONSTRUCTION AND ARRANGEMENT Escape Requirements § 177.500 Means of escape. (a) Except as otherwise provided in... least two means of escape, one of which must not be a watertight door. (b) The two required means...

  3. 46 CFR 28.390 - Means of escape.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Means of escape. 28.390 Section 28.390 Shipping COAST... Operate With More Than 16 Individuals on Board § 28.390 Means of escape. (a) Each space which is used by... two widely separated means of escape. At least one of the means of escape must be independent...

  4. Escape of a mesoscopic particle from a modulated optical trap

    NASA Astrophysics Data System (ADS)

    Kruse, J. R.; Dykman, M. I.; Golding, B.

    2003-03-01

    We describe experiments on noise-induced escape of a mesoscopic particle from a bistable potential well. The potential is created by the interaction of two focused laser beams with a glass sphere of diameter ˜ 1 μm. The trapping potential is mapped quantitatively in 3-dimensions by a statistical method [1]. The dynamics of the particle can be varied from highly overdamped to underdamped by tuning the density of the surrounding environment. The eigenfrequencies of the trapped particle, as well as over-barrier transition rates W, have been directly measured as a function of damping. When the potential is modulated, the escape probability of the particle over the potential barrier becomes synchronized with the driving field. At large modulation amplitude, we find that the system approaches a saddle-node bifurcation. We have measured the critical exponent that describes the amplitude dependence of ln W as the bifurcation point is approached. By varying the modulation frequency, it is possible to probe the non-adiabatic region where the critical exponent has been predicted to change, with results in agreement with theory and numerical simulations. [1] L.I. McCann, M.I. Dykman, and B. Golding, Nature 402, 785 (1999).

  5. HST study of Lyman-alpha emission in star-forming galaxies: the effect of neutral gas flows

    NASA Astrophysics Data System (ADS)

    Kunth, Daniel; Mas-Hesse, J. M.; Terlevich, E.; Terlevich, R.; Lequeux, J.; Fall, S. Michael

    1998-06-01

    We present high dispersion HST GHRS UV spectroscopic observations of 8 H II galaxies covering a wide range of metallicities and physical properties. We have found Lyalpha \\ emission in 4 galaxies with blueshifted absorption features, leading to P Cygni like profiles in 3 of them. In all these objects the O I and Si II absorption lines are also blueshifted with respect to the ionized gas, indicating that the neutral gas is outflowing in these galaxies with velocities up to 200 km s(-1) or more. The rest of the sample shows broad damped Lyalpha \\ absorption profiles centered at the wavelength corresponding to the redshift of the H II emitting gas. We therefore find that the velocity structure of the neutral gas in these galaxies is the driving factor that determines the detectability of Lyalpha \\ in emission. Relatively small column densities of neutral gas with even very small dust content would destroy the Lyalpha \\ emission if this gas is static with respect to the ionized region where Lyalpha \\ photons originate. The situation changes dramatically when most of the neutral gas is velocity-shifted with respect to the ionized regions because resonant scattering by neutral hydrogen will be most efficient at wavelengths shorter than the Lyalpha \\ emission, allowing the Lyalpha \\ photons to escape (at least partially). This mechanism complements the effect of porosity in the neutral interstellar medium discussed by other authors, which allows to explain the escape of Lyalpha \\ photons in regions surrounded by static neutral gas, but with only partial covering factors. The anisotropy of these gas flows and their dependence on the intrinsic properties of the violent star-forming episodes taking place in these objects (age, strength, gas geometry,...) might explain (in part) the apparent lack of correlation between other properties (like metallicity) and the frequency of occurence and strength of Lyalpha \\ emission in star-forming galaxies. Attempts to derive the

  6. Hydrogen Escape from early Earth and Mars

    NASA Astrophysics Data System (ADS)

    Zugger, M. E.; Ramirez, R. M.; Kasting, J. F.

    2012-12-01

    A controversy regarding hydrodynamic escape rates arose when Tian et al. (2005) published transonic escape rates for an atmosphere composed of pure H2. Tian et al. concluded that the hydrogen escape rate from early Earth would have been a factor of 20 or more slower than the diffusion limit, even if the solar EUV (extreme ultraviolet) flux was enhanced by a factor of 5 relative to today. This conclusion was challenged by Catling (2006), who pointed out that solar EUV fluxes could have been much higher than this so that plenty of energy should have been available to power escape. This controversy has remained unresolved to date. Hydrogen escape from early Mars is also of interest. As discussed in this session in a complementary paper by Ramirez et al., collision-induced absorption by molecular hydrogen could have helped to warm early Mars, perhaps explaining the formation of valleys and valley networks. Ramirez et al. have shown that a mixture of 90% CO2 and 10% H2 is capable raising early Mars' surface temperature above the freezing point of water, for surface pressures exceeding ~3 bar. However, we need to understand whether H2 mixing ratios of 10% are physically plausible. The H2 partial pressure in Mars' early atmosphere would have been determined by the balance between volcanic outgassing and escape to space. The 10% mixing ratio is high compared to the value of ~10-3 typically assumed for early Earth. But Mars' early atmosphere may have been more reduced than Earth's (Wadwha, 2001); if the hydrogen escape rate on Mars was also slower than on Earth, then additional increases in atmospheric hydrogen concentration are possible. To answer these questions about the early atmospheres of Earth and Mars, we have modified an existing model of hydrodynamic escape, developed by F. Tian, J. Kasting, and others, to converge for atmospheres with a wide range of hydrogen mixing ratios. The model finds subsonic solutions to the hydrodynamic equations; these can be shown to

  7. Compensatory escape mechanism at low Reynolds number

    PubMed Central

    Gemmell, Brad J.; Sheng, Jian; Buskey, Edward J.

    2013-01-01

    Despite high predation pressure, planktonic copepods remain one of the most abundant groups on the planet. Their escape response provides one of most effective mechanisms to maximize evolutionary fitness. Owing to their small size (100 µm) compared with their predators (>1 mm), increasing viscosity is believed to have detrimental effects on copepods’ fitness at lower temperature. Using high-speed digital holography we acquire 3D kinematics of the nauplius escape including both location and detailed appendage motion. By independently varying temperature and viscosity we demonstrate that at natural thermal extremes, contrary to conventional views, nauplii achieve equivalent escape distance while maintaining optimal velocity. Using experimental results and kinematic simulations from a resistive force theory propulsion model, we demonstrate that a shift in appendage timing creates an increase in power stroke duration relative to recovery stroke duration. This change allows the nauplius to limit losses in velocity and maintain distance during escapes at the lower bound of its natural thermal range. The shift in power stroke duration relative to recovery stroke duration is found to be regulated by the temperature dependence of swimming appendage muscle groups, not a dynamic response to viscosity change. These results show that copepod nauplii have natural adaptive mechanisms to compensate for viscosity variations with temperature but not in situations in which viscosity varies independent of temperature, such as in some phytoplankton blooms. Understanding the robustness of escapes in the wake of environmental changes such as temperature and viscosity has implications in assessing the future health of performance compensation. PMID:23487740

  8. Cerebrospinal Fluid HIV Escape from Antiretroviral Therapy.

    PubMed

    Ferretti, Francesca; Gisslen, Magnus; Cinque, Paola; Price, Richard W

    2015-06-01

    CNS infection is a nearly constant facet of systemic CNS infection and is generally well controlled by suppressive systemic antiretroviral therapy (ART). However, there are instances when HIV can be detected in the cerebrospinal fluid (CSF) despite suppression of plasma viruses below the clinical limits of measurement. We review three types of CSF viral escape: asymptomatic, neuro-symptomatic, and secondary. The first, asymptomatic CSF escape, is seemingly benign and characterized by lack of discernable neurological deterioration or subsequent CNS disease progression. Neuro-symptomatic CSF escape is an uncommon, but important, entity characterized by new or progressive CNS disease that is critical to recognize clinically because of its management implications. Finally, secondary CSF escape, which may be even more uncommon, is defined by an increase of CSF HIV replication in association with a concomitant non-HIV infection, as a consequence of the local inflammatory response. Understanding these CSF escape settings not only is important for clinical diagnosis and management but also may provide insight into the CNS HIV reservoir. PMID:25860317

  9. Stellar wind interaction and pick-up ion escape of the Kepler-11 "super-Earths"

    NASA Astrophysics Data System (ADS)

    Kislyakova, K. G.; Johnstone, C. P.; Odert, P.; Erkaev, N. V.; Lammer, H.; Lüftinger, T.; Holmström, M.; Khodachenko, M. L.; Güdel, M.

    2014-02-01

    Aims: We study the interactions between stellar winds and the extended hydrogen-dominated upper atmospheres of planets. We estimate the resulting escape of planetary pick-up ions from the five "super-Earths" in the compact Kepler-11 system and compare the escape rates with the efficiency of the thermal escape of neutral hydrogen atoms. Methods: Assuming the stellar wind of Kepler-11 is similar to the solar wind, we use a polytropic 1D hydrodynamic wind model to estimate the wind properties at the planetary orbits. We apply a direct simulation Monte Carlo model to model the hydrogen coronae and the stellar wind plasma interaction around Kepler-11b-f within a realistic expected heating efficiency range of 15-40%. The same model is used to estimate the ion pick-up escape from the XUV heated and hydrodynamically extended upper atmospheres of Kepler-11b-f. From the interaction model, we study the influence of possible magnetic moments, calculate the charge exchange and photoionization production rates of planetary ions, and estimate the loss rates of pick-up H+ ions for all five planets. We compare the results between the five "super-Earths" and the thermal escape rates of the neutral planetary hydrogen atoms. Results: Our results show that a huge neutral hydrogen corona is formed around the planet for all Kepler-11b-f exoplanets. The non-symmetric form of the corona changes from planet to planet and is defined mostly by radiation pressure and gravitational effects. Non-thermal escape rates of pick-up ionized hydrogen atoms for Kepler-11 "super-Earths" vary between ~6.4 × 1030 s-1 and ~4.1 × 1031 s-1, depending on the planet's orbital location and assumed heating efficiency. These values correspond to non-thermal mass loss rates of ~1.07 × 107 g s-1 and ~6.8 × 107 g s-1 respectively, which is a few percent of the thermal escape rates.

  10. Comparative pick-up ion distributions at Mars and Venus: Consequences for atmospheric deposition and escape

    NASA Astrophysics Data System (ADS)

    Curry, Shannon M.; Luhmann, Janet; Ma, Yingjuan; Liemohn, Michael; Dong, Chuanfei; Hara, Takuya

    2015-09-01

    Without the shielding of a substantial intrinsic dipole magnetic field, the atmospheres of Mars and Venus are particularly susceptible to similar atmospheric ion energization and scavenging processes. However, each planet has different attributes and external conditions controlling its high altitude planetary ion spatial and energy distributions. This paper describes analogous test particle simulations in background MHD fields that allow us to compare the properties and fates, precipitation or escape, of the mainly O+ atmospheric pick-up ions at Mars and Venus. The goal is to illustrate how atmospheric and planetary scales affect the upper atmospheres and space environments of our terrestrial planet neighbors. The results show the expected convection electric field-related hemispheric asymmetries in both precipitation and escape, where the degree of asymmetry at each planet is determined by the planetary scale and local interplanetary field strength. At Venus, the kinetic treatment of O+ reveals a strong nightside source of precipitation while Mars' crustal fields complicate the simple asymmetry in ion precipitation and drive a dayside source of precipitation. The pickup O+ escape pattern at both Venus and Mars exhibits low energy tailward escape, but Mars exhibits a prominent, high energy 'polar plume' feature in the hemisphere of the upward convection electric field while the Venus ion wake shows only a modest poleward concentration. The overall escape is larger at Venus than Mars (2.1 ×1025 and 4.3 ×1024 at solar maximum, respectively), but the efficiency (likelihood) of O+ escaping is 2-3 times higher at Mars. The consequences of these comparisons for pickup ion related atmospheric energy deposition, loss rates, and detection on spacecraft including PVO, VEX, MEX and MAVEN are considered. In particular, both O+ precipitation and escape show electric field controlled asymmetries that grow with energy, while the O+ fluxes and energy spectra at selected spatial

  11. Radiative equilibrium and escape of Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Erwin, Justin; Koskinen, Tommi T.; Yelle, Roger V.

    2015-11-01

    Observations of Pluto’s extend atmosphere by the New Horizons spacecraft motivate an update to our modeling effort on Pluto’s atmosphere. New Horizons observations have already improved our constraints on planet radius and surface pressure, which are key to modeling the atmospheric structure. We model the radiative conductive equilibrium in the lower atmosphere combined with the UV driven escape model of the upper atmosphere. The non-LTE radiative transfer model in the lower atmosphere include heating and cooling by CH4, CO, and HCN. The escape model of the upper atmosphere is updated to include diffusion and escape of each molecular component. These results will be used to aid in the analysis and better understanding of the full atmospheric structure.

  12. Thermal escape from extrasolar giant planets.

    PubMed

    Koskinen, Tommi T; Lavvas, Panayotis; Harris, Matthew J; Yelle, Roger V

    2014-04-28

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres. PMID:24664923

  13. Thermal escape from extrasolar giant planets

    PubMed Central

    Koskinen, Tommi T.; Lavvas, Panayotis; Harris, Matthew J.; Yelle, Roger V.

    2014-01-01

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres. PMID:24664923

  14. Broadening of neutralization activity to directly block a dominant antibody-driven SARS-coronavirus evolution pathway.

    PubMed

    Sui, Jianhua; Aird, Daniel R; Tamin, Azaibi; Murakami, Akikazu; Yan, Meiying; Yammanuru, Anuradha; Jing, Huaiqi; Kan, Biao; Liu, Xin; Zhu, Quan; Yuan, Qing-An; Adams, Gregory P; Bellini, William J; Xu, Jianguo; Anderson, Larry J; Marasco, Wayne A

    2008-11-01

    Phylogenetic analyses have provided strong evidence that amino acid changes in spike (S) protein of animal and human SARS coronaviruses (SARS-CoVs) during and between two zoonotic transfers (2002/03 and 2003/04) are the result of positive selection. While several studies support that some amino acid changes between animal and human viruses are the result of inter-species adaptation, the role of neutralizing antibodies (nAbs) in driving SARS-CoV evolution, particularly during intra-species transmission, is unknown. A detailed examination of SARS-CoV infected animal and human convalescent sera could provide evidence of nAb pressure which, if found, may lead to strategies to effectively block virus evolution pathways by broadening the activity of nAbs. Here we show, by focusing on a dominant neutralization epitope, that contemporaneous- and cross-strain nAb responses against SARS-CoV spike protein exist during natural infection. In vitro immune pressure on this epitope using 2002/03 strain-specific nAb 80R recapitulated a dominant escape mutation that was present in all 2003/04 animal and human viruses. Strategies to block this nAb escape/naturally occurring evolution pathway by generating broad nAbs (BnAbs) with activity against 80R escape mutants and both 2002/03 and 2003/04 strains were explored. Structure-based amino acid changes in an activation-induced cytidine deaminase (AID) "hot spot" in a light chain CDR (complementarity determining region) alone, introduced through shuffling of naturally occurring non-immune human VL chain repertoire or by targeted mutagenesis, were successful in generating these BnAbs. These results demonstrate that nAb-mediated immune pressure is likely a driving force for positive selection during intra-species transmission of SARS-CoV. Somatic hypermutation (SHM) of a single VL CDR can markedly broaden the activity of a strain-specific nAb. The strategies investigated in this study, in particular the use of structural information in

  15. Distracted driving

    MedlinePlus

    ... stay safe with a cell phone in the car. ... for Disease Control and Prevention Injury Prevention & Control. Motor Vehicle Safety. www.cdc.gov/motorvehiclesafety/distracted_driving . Accessed May ...

  16. Driving Safely

    MedlinePlus

    ... drivers’ flexibility and coordination, and reduced driving errors. S l Hand grip strengthening to help you hold on to the steering wheel l Shoulder and upper arm flexibility exercises to make ...

  17. Distracted Driving

    MedlinePlus

    ... combines all three types of distraction. 3 How big is the problem? Deaths In 2013, 3,154 ... European countries. More A CDC study analyzed 2011 data on distracted driving, including talking on a cell ...

  18. Statistical theory of asteroid escape rates.

    PubMed

    Jaffé, Charles; Ross, Shane D; Lo, Martin W; Marsden, Jerrold; Farrelly, David; Uzer, T

    2002-07-01

    Transition states in phase space are identified and shown to regulate the rate of escape of asteroids temporarily captured in circumplanetary orbits. The transition states, similar to those occurring in chemical reaction dynamics, are then used to develop a statistical semianalytical theory for the rate of escape of asteroids temporarily captured by Mars. Theory and numerical simulations are found to agree to better than 1%. These calculations suggest that further development of transition state theory in celestial mechanics, as an alternative to large-scale numerical simulations, will be a fruitful approach to mass transport calculations. PMID:12097024

  19. Enhanced HIV-1 neutralization by antibody heteroligation

    PubMed Central

    Mouquet, Hugo; Warncke, Malte; Scheid, Johannes F.; Seaman, Michael S.; Nussenzweig, Michel C.

    2012-01-01

    Passive transfer of broadly neutralizing human antibodies against HIV-1 protects macaques against infection. However, HIV-1 uses several strategies to escape antibody neutralization, including mutation of the gp160 viral surface spike, a glycan shield to block antibody access to the spike, and expression of a limited number of viral surface spikes, which interferes with bivalent antibody binding. The latter is thought to decrease antibody apparent affinity or avidity, thereby interfering with neutralizing activity. To test the idea that increasing apparent affinity might enhance neutralizing activity, we engineered bispecific anti–HIV-1 antibodies (BiAbs) that can bind bivalently by virtue of one scFv arm that binds to gp120 and a second arm to the gp41 subunit of gp160. The individual arms of the BiAbs preserved the binding specificities of the original anti-HIV IgG antibodies and together bound simultaneously to gp120 and gp41. Heterotypic bivalent binding enhanced neutralization compared with the parental antibodies. We conclude that antibody recognition and viral neutralization of HIV can be improved by heteroligation. PMID:22219363

  20. Martian Atmospheric and Ionospheric plasma Escape

    NASA Astrophysics Data System (ADS)

    Lundin, Rickard

    2016-04-01

    Solar forcing is responsible for the heating, ionization, photochemistry, and erosion processes in the upper atmosphere throughout the lifetime of the terrestrial planets. Of the four terrestrial planets, the Earth is the only one with a fully developed biosphere, while our kin Venus and Mars have evolved into arid inhabitable planets. As for Mars, there are ample evidences for an early Noachian, water rich period on Mars. The question is, what made Mars evolve so differently compared to the Earth? Various hydrosphere and atmospheric evolution scenarios for Mars have been forwarded based on surface morphology, chemical composition, simulations, semi-empiric (in-situ data) models, and the long-term evolution of the Sun. Progress has been made, but the case is still open regarding the changes that led to the present arid surface and tenuous atmosphere at Mars. This presentation addresses the long-term variability of the Sun, the solar forcing impact on the Martian atmosphere, and its interaction with the space environment - an electromagnetic wave and particle interaction with the upper atmosphere that has implications for its photochemistry, composition, and energization that governs thermal and non-thermal escape. Non-thermal escape implies an electromagnetic upward energization of planetary ions and molecules to velocities above escape velocity, a process governed by a combination of solar EUV radiation (ionization), and energy and momentum transfer by the solar wind. The ion escape issue dates back to the early Soviet and US-missions to Mars, but the first more accurate estimates of escape rates came with the Phobos-2 mission in 1989. Better-quality ion composition measurement results of atmospheric/ionospheric ion escape from Mars, obtained from ESA Mars Express (MEX) instruments, have improved our understanding of the ion escape mechanism. With the NASA MAVEN spacecraft orbiting Mars since Sept. 2014, dual in-situ measurement with plasma instruments are now

  1. Constraining the Metallicity and Escape Fraction of Two z≈3.1 Lyman-Alpha Emitting Galaxies

    NASA Astrophysics Data System (ADS)

    Richardson, Mark L. A.; McLinden, E. M.; Malhotra, S.; Rhoads, J. E.; Levesque, E. M.

    2012-05-01

    We observed two z≈3.1 Lyman-α emitting galaxies (LAE) using the Near-infrared Integral Field Spectrometer (NIFS) at Gemini North, specifically looking for [OIII] 4960 & 5008Å, [OII] 3727Å, and H-β 4863Å. We detected the [OIII] doublet in both objects, determined upper limits for [OII] for both objects, and determined upper limits for H-β for one object. With the detections and upper limits we use the [OIII]/[OII] and R23 line diagnostic to attempt to constrain the metallicity and escape fraction of Ly-α. These metallicity constraints are needed to explore the behaviour of the Mass-Metallicty relation in the low-mass regime and also give insight into the star formation histories of LAE which are known to host young stellar populations. The escape fraction, when combined with an extinction correction, gives insight into the presence of neutral gas. This neutral gas is responsible for resonantly scattering any escaped Ly-α photons, increasing its optical depth to dust. For one object we constrain the metallicity to be Z≤ 0.4Z⊙ and constrain the escape fraction of Ly-α to be Fesc ≤ 30%. For the second object we are only able to constrain its escape fraction, finding 6% ≤ Fesc ≤ 40%. We would like to thank the Natural Sciences and Engineering Research Council of Canada for their financial support through a post-graduate fellowship.

  2. Centrifugally Stimulated Exospheric Ion Escape at Mercury

    NASA Technical Reports Server (NTRS)

    Delcourt, Dominique; Seki, K.; Terada, N.; Moore, Thomas E.

    2012-01-01

    We investigate the transport of ions in the low-altitude magnetosphere magnetosphere of Mercury. We show that, because of small spatial scales, the centrifugal effect due to curvature of the E B drift paths can lead to significant particle energization in the parallel direction. We demonstrate that because of this effect, ions with initial speed smaller than the escape speed such as those produced via thermal desorption can overcome gravity and escape into the magnetosphere. The escape route of this low-energy exosphere originating material is largely controlled by the magnetospheric convection rate. This escape route spreads over a narrower range of altitudes when the convection rate increases. Bulk transport of low-energy planetary material thus occurs within a limited region of space once moderate magnetospheric convection is established. These results suggest that, via release of material otherwise gravitationally trapped, the E B related centrifugal acceleration is an important mechanism for the net supply of plasma to the magnetosphere of Mercury.

  3. Developing the E-Scape Software System

    ERIC Educational Resources Information Center

    Derrick, Karim

    2012-01-01

    Most innovations have contextual pre-cursors that prompt new ways of thinking and in their turn help to give form to the new reality. This was the case with the e-scape software development process. The origins of the system existed in software components and ideas that we had developed through previous projects, but the ultimate direction we took…

  4. Nociception and escape behavior in planarians

    NASA Astrophysics Data System (ADS)

    Schoetz Collins, Eva-Maria

    2015-03-01

    Planarians are famous and widely studied for their regenerative capabilities. When a moving planarian is cut through the middle, the resulting head and tail pieces instantaneously retract and exhibit a characteristic escape response that differs from normal locomotion. In asexual animals, a similar reaction is observed when the planarian undergoes fission, suggesting that reproduction through self-tearing is a rather traumatic event for the animal. Using a multiscale approach, we unravel the dynamics, mechanics, and functional aspects of the planarian escape response. This musculature-driven gait was found to be a dominating response that supersedes the urge to feed or reproduce and quantitatively differs from other modes of planarian locomotion (gliding, peristalsis). We show that this escape gait constitutes the animal's pain response mediated by TRP like receptors and the neurotransmitter histamine, and that it can be induced through adverse thermal, mechanical, electrical or chemical stimuli. Ultimately, we will examine the neuronal subpopulations involved in mediating escape reflexes in planarians and how they are functionally restored during regeneration, thereby gaining mechanistic insight into the neuronal circuits required for specific behaviors. Supported by BWF CASI and Sloan Foundation.

  5. Evolution: Escaping the Inevitability of Ageing.

    PubMed

    Archer, C Ruth; Hosken, David J

    2016-03-01

    William Hamilton argued that even species inhabiting the farthest flung corners of the universe should age. However, a recent study shows that to find a species that escapes ageing, you only need to look as far as your local pond. PMID:26954440

  6. Animal escapology II: escape trajectory case studies

    PubMed Central

    Domenici, Paolo; Blagburn, Jonathan M.; Bacon, Jonathan P.

    2011-01-01

    Summary Escape trajectories (ETs; measured as the angle relative to the direction of the threat) have been studied in many taxa using a variety of methodologies and definitions. Here, we provide a review of methodological issues followed by a survey of ET studies across animal taxa, including insects, crustaceans, molluscs, lizards, fish, amphibians, birds and mammals. Variability in ETs is examined in terms of ecological significance and morpho-physiological constraints. The survey shows that certain escape strategies (single ETs and highly variable ETs within a limited angular sector) are found in most taxa reviewed here, suggesting that at least some of these ET distributions are the result of convergent evolution. High variability in ETs is found to be associated with multiple preferred trajectories in species from all taxa, and is suggested to provide unpredictability in the escape response. Random ETs are relatively rare and may be related to constraints in the manoeuvrability of the prey. Similarly, reports of the effect of refuges in the immediate environment are relatively uncommon, and mainly confined to lizards and mammals. This may be related to the fact that work on ETs carried out in laboratory settings has rarely provided shelters. Although there are a relatively large number of examples in the literature that suggest trends in the distribution of ETs, our understanding of animal escape strategies would benefit from a standardization of the analytical approach in the study of ETs, using circular statistics and related tests, in addition to the generation of large data sets. PMID:21753040

  7. THE EFFECT OF GALACTIC PROPERTIES ON THE ESCAPE FRACTION OF IONIZING PHOTONS

    SciTech Connect

    Fernandez, Elizabeth R.; Shull, J. Michael E-mail: michael.shull@colorado.edu

    2011-04-10

    The escape fraction, f{sub esc}, of ionizing photons from early galaxies is a crucial parameter for determining whether the observed galaxies at z {>=} 6 are able to reionize the high-redshift intergalactic medium. Previous attempts to measure f{sub esc} have found a wide range of values, varying from less than 0.01 to nearly 1. Rather than finding a single value of f{sub esc}, we clarify through modeling how internal properties of galaxies affect f{sub esc} through the density and distribution of neutral hydrogen within the galaxy, along with the rate of ionizing photons' production. We find that the escape fraction depends sensitively on the covering factor of clumps, along with the density of the clumped and interclump medium. One must therefore be cautious when dealing with an inhomogeneous medium. Fewer high-density clumps lead to a greater escape fraction than more numerous low-density clumps. When more ionizing photons are produced in a starburst, f{sub esc} increases, as photons escape more readily from the gas layers. Large variations in the predicted escape fraction, caused by differences in the hydrogen distribution, may explain the large observed differences in f{sub esc} among galaxies. Values of f{sub esc} must also be consistent with the reionization history. High-mass galaxies alone are unable to reionize the universe, because f{sub esc} >1 would be required. Small galaxies are needed to achieve reionization, with greater mean escape fraction in the past.

  8. Oxygen Pickup Ions at Mars: Model Comparisons with MAVEN Data and Implications for Oxygen Escape

    NASA Astrophysics Data System (ADS)

    Cravens, Tom; Rahmati, Ali; Larsen, Davin; Lillis, Rob; Connerney, Jack; Halekas, Jasper; Bougher, Stephen W.

    2015-04-01

    A major source of atmospheric escape on Mars is the dissociative recombination of O2+ in the ionosphere, which creates oxygen atoms with energies exceeding the escape energy. These atoms are the source of the hot oxygen exosphere of Mars, which extends to tens of Martian radii. Direct measurement of the distant oxygen exosphere, which is mainly populated with escaping neutral oxygen atoms, is difficult due to the very low densities at these distances. However, ionization of these atoms creates pickup ions that are accelerated by the solar wind convective electric field to high energies, allowing them to be measured by the SEP (Solar Energetic Particle) instrument onboard the MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft.We modeled the hot oxygen at Mars and its interaction with the solar wind using Monte Carlo and test particle methods and using densities and temperatures from the MTGCM (Mars Thermospheric General Circulation Model). The distribution function of hot oxygen atoms at 300 km is calculated using a two-stream method, and the Liouville theorem extends this distribution for the gravitationally bound and escaping parts to high altitudes. We determined the O+ flux upstream of Mars as a function of energy, and separate it into parts due both the gravitationally bound and the escaping oxygen. Significant fluxes of O+ ions are predicted for energies greater than 60 keV and have been observed by the SEP instrument, even when MAVEN was several Martian radii away from the planet. These data-model comparisons will be presented and then interpreted in terms of the escape of oxygen from Mars.

  9. Antibody neutralization of retargeted measles viruses.

    PubMed

    Lech, Patrycja J; Pappoe, Roland; Nakamura, Takafumi; Tobin, Gregory J; Nara, Peter L; Russell, Stephen J

    2014-04-01

    The measles virus (MV) vaccine lineage is a promising oncolytic but prior exposure to the measles vaccine or wild-type MV strains limits treatment utility due to the presence of anti-measles antibodies. MV entry can be redirected by displaying a polypeptide ligand on the Hemagglutinin (H) C-terminus. We hypothesized that retargeted MV would escape neutralization by monoclonal antibodies (mAbs) recognizing the H receptor-binding surface and be less susceptible to neutralization by human antisera. Using chimeric H proteins, with and without mutations that ablate MV receptor binding, we show that retargeted MVs escape mAbs that target the H receptor-binding surface by virtue of mutations that ablate infection via SLAM and CD46. However, C-terminally displayed domains do not mediate virus entry in the presence of human antibodies that bind to the underlying H domain. In conclusion, utility of retargeted oncolytic measles viruses does not extend to evasion of human serum neutralization. PMID:24725950

  10. Exploring potential Pluto-generated neutral tori

    NASA Astrophysics Data System (ADS)

    Smith, Howard T.; Hill, Matthew; KollMann, Peter; McHutt, Ralph

    2015-11-01

    The NASA New Horizons mission to Pluto is providing unprecedented insight into this mysterious outer solar system body. Escaping molecular nitrogen is of particular interest and possibly analogous to similar features observed at moons of Saturn and Jupiter. Such escaping N2 has the potential of creating molecular nitrogen and N (as a result of molecular dissociation) tori or partial toroidal extended particle distributions. The presence of these features would present the first confirmation of an extended toroidal neutral feature on a planetary scale in our solar system. While escape velocities are anticipated to be lower than those at Enceladus, Io or even Europa, particle lifetimes are much longer in Pluto’s orbit because as a result of much weaker solar interaction processes along Pluto’s orbit (on the order of tens of years). Thus, with a ~248 year orbit, Pluto may in fact be generating an extended toroidal feature along it orbit.For this work, we modify and apply our 3-D Monte Carlo neutral torus model (previously used at Saturn, Jupiter and Mercury) to study/analyze the theoretical possibility and scope of potential Pluto-generated neutral tori. Our model injects weighted particles and tracks their trajectories under the influence of all gravitational fields with interactions with other particles, solar photons and Pluto collisions. We present anticipated N2 and N tori based on current estimates of source characterization and environmental conditions. We also present an analysis of sensitivity to assumed initial conditions. Such results can provide insight into the Pluto system as well as valuable interpretation of New Horizon’s observational data.

  11. Simulating the one-dimensional structure of Titan's upper atmosphere: 3. Mechanisms determining methane escape

    NASA Astrophysics Data System (ADS)

    Bell, Jared M.; Bougher, Stephen W.; Waite, J. Hunter, Jr.; Ridley, Aaron J.; Magee, Brian A.; Mandt, Kathleen E.; Westlake, Joseph; DeJong, Anna D.; Bar-Nun, Akiva; Jacovi, Ronen; Toth, Gabor; De La Haye, Virginie; Gell, David; Fletcher, Gregory

    2011-11-01

    This investigation extends the work presented by Bell et al. (2010a, 2010b). Using the one-dimensional (1-D) configuration of the Titan Global Ionosphere-Thermosphere Model (T-GITM), we quantify the relative importance of the different dynamical and chemical mechanisms that determine the CH4 escape rates calculated by T-GITM. Moreover, we consider the implications of updated Huygens Gas Chromatograph Mass Spectrometer (GCMS) determinations of both the 40Ar mixing ratios and 15N/14N isotopic ratios in work by Niemann et al. (2010). Combining the GCMS constraints in the lower atmosphere with the Ion Neutral Mass Spectrometer (INMS) measurements in work by Magee et al. (2009), our simulation results suggest that the optimal CH4 homopause altitude is located at 1000 km. Using this homopause altitude, we conclude that topside escape rates of 1.0 × 1010 CH4 m-2 s-1 (referred to the surface) are sufficient to reproduce the INMS methane measurements in work by Magee et al. (2009). These escape rates of methane are consistent with the upper limits to methane escape (1.11 × 1011 CH4 m-2 s-1) established by both the Cassini Plasma Spectrometer (CAPS) and Magnetosphere Imaging Instrument (MIMI) measurements of Carbon-group ions in the near Titan magnetosphere.

  12. Launch Pad Escape System Design (Human Spaceflight)

    NASA Technical Reports Server (NTRS)

    Maloney, Kelli

    2011-01-01

    A launch pad escape system for human spaceflight is one of those things that everyone hopes they will never need but is critical for every manned space program. Since men were first put into space in the early 1960s, the need for such an Emergency Escape System (EES) has become apparent. The National Aeronautics and Space Administration (NASA) has made use of various types of these EESs over the past 50 years. Early programs, like Mercury and Gemini, did not have an official launch pad escape system. Rather, they relied on a Launch Escape System (LES) of a separate solid rocket motor attached to the manned capsule that could pull the astronauts to safety in the event of an emergency. This could only occur after hatch closure at the launch pad or during the first stage of flight. A version of a LES, now called a Launch Abort System (LAS) is still used today for all manned capsule type launch vehicles. However, this system is very limited in that it can only be used after hatch closure and it is for flight crew only. In addition, the forces necessary for the LES/LAS to get the capsule away from a rocket during the first stage of flight are quite high and can cause injury to the crew. These shortcomings led to the development of a ground based EES for the flight crew and ground support personnel as well. This way, a much less dangerous mode of egress is available for any flight or ground personnel up to a few seconds before launch. The early EESs were fairly simple, gravity-powered systems to use when thing's go bad. And things can go bad very quickly and catastrophically when dealing with a flight vehicle fueled with millions of pounds of hazardous propellant. With this in mind, early EES designers saw such a passive/unpowered system as a must for last minute escapes. This and other design requirements had to be derived for an EES, and this section will take a look at the safety design requirements had to be derived for an EES, and this section will take a look at

  13. 17. VIEW OF ESCAPE TRAINING TANK, SHOWING ENCLOSED PASSAGEWAY FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF ESCAPE TRAINING TANK, SHOWING ENCLOSED PASSAGEWAY FROM ELEVATOR TO 18-FOOT LOCK, LOOKING EAST - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  14. 14. DETAIL VIEW OF ESCAPE TRAINING TANK, SHOWING HOLDDOWN RODS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL VIEW OF ESCAPE TRAINING TANK, SHOWING HOLD-DOWN RODS, LOOKING SOUTH - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  15. 15. VIEW OF ESCAPE TRAINING TANK, LOOKING EAST ACROSS MEZZANINE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF ESCAPE TRAINING TANK, LOOKING EAST ACROSS MEZZANINE, SHOWING ENTRANCE TO SUBMARINE SECTION AT 110-FOOT LEVEL - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  16. 34. VIEW OF SUBMARINE ESCAPE TRAINING TANK PRIOR TO ADDITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. VIEW OF SUBMARINE ESCAPE TRAINING TANK PRIOR TO ADDITION OF BLISTERS IN 1959, LOOKING SOUTHEAST - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  17. 21. VIEW OF ESCAPE TRAINING TANK, SHOWING INTERIOR OF CUPOLA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW OF ESCAPE TRAINING TANK, SHOWING INTERIOR OF CUPOLA AND TOP OF THE TANK, LOOKING NORTHEAST - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  18. 18. VIEW OF ESCAPE TRAINING TANK, SHOWING ENCLOSED PASSAGEWAY FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF ESCAPE TRAINING TANK, SHOWING ENCLOSED PASSAGEWAY FROM 50-FOOT LOCK TO ELEVATOR, LOOKING WEST - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  19. 23. VIEW OF ESCAPE TRAINING TANK, LOOKING NORTHWEST, SHOWING TWOLOCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. VIEW OF ESCAPE TRAINING TANK, LOOKING NORTHWEST, SHOWING TWO-LOCK RECOMPRESSION CHAMBER IN PASSAGEWAY FROM ELEVATOR TO CUPOLA - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  20. 33 CFR 143.101 - Means of escape.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Officer in Charge, Marine Inspection, one or more “secondary means of escape.” (d) Unmanned OCS facilities... board, unmanned facilities shall also be provided with one or more “secondary means of escape,” but...

  1. 33 CFR 143.101 - Means of escape.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Officer in Charge, Marine Inspection, one or more “secondary means of escape.” (d) Unmanned OCS facilities... board, unmanned facilities shall also be provided with one or more “secondary means of escape,” but...

  2. 33 CFR 143.101 - Means of escape.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Officer in Charge, Marine Inspection, one or more “secondary means of escape.” (d) Unmanned OCS facilities... board, unmanned facilities shall also be provided with one or more “secondary means of escape,” but...

  3. Structural basis of influenza virus neutralization

    PubMed Central

    Han, Thomas; Marasco, Wayne A.

    2010-01-01

    Although seasonal influenza vaccines play a valuable role in reducing the spread of the virus at the population level, ongoing viral evolution to evade immune responses remains problematic. No current vaccines are likely to elicit enduring protection in the face of emerging and re-emerging influenza viruses that rapidly undergoing antigenic drift. Eliciting broadly cross-neutralizing antibody responses against influenza virus is a crucial goal for seasonal and pandemic influenza vaccine preparation. Recent three-dimensional structure information obtained from crystallization of influenza antigens in complex with neutralizing antibodies (nAbs) have provided a framework for interpreting antibody-based viral neutralization that should aid in the design of vaccine immunogens. Here, we will review current knowledge of the structure-based mechanisms contributing to the neutralization and neutralization escape of influenza viruses. We will also explore the potential for this structure-based approach to overcome the challenge of obtaining the highly desired “universal” influenza vaccine. PMID:21251008

  4. Escape of atmospheres and loss of water

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.; Donahue, T. M.; Walker, J. C. G.; Kasting, J. F.

    1989-01-01

    The properties and limitations of several loss processes for atmospheric gases are presented and discussed. They include thermal loss (Jeans and hydrodynamic); nonthermal loss (all processes involve charged particles); and impact erosion, including thermal escape from a molten body heated by rapid accretion. Hydrodynamic escape, or 'blowoff', is of particular interest because it offers the prospect of processing large quantities of gas and enriching the remainder in heavy elements and isotopes. In a second part, the water budgets and likely evolutionary histories of Venus, Earth and Mars are assessed. Although it is tempting to associate the great D/H enrichment on Venus with loss of a large initial endowment, a steady state with juvenile water (perhaps from comets) is equally probable.

  5. Endosomal escape: a bottleneck in intracellular delivery.

    PubMed

    Shete, Harshad K; Prabhu, Rashmi H; Patravale, Vandana B

    2014-01-01

    With advances in therapeutic science, apart from drugs, newer bioactive moieties like oligonucleotides, proteins, peptides, enzymes and antibodies are constantly being introduced for the betterment of therapeutic efficacy. These moieties have intracellular components of the cells like cytoplasm and nucleus as one of their pharmacological sites for exhibiting therapeutic activity. Despite their promising efficacy, their intracellular bioavailability has been critically hampered leading to failure in the treatment of numerous diseases and disorders. The endosomal uptake pathway is known to be a rate-limiting barrier for such systems. Bioactive molecules get trapped in the endosomal vesicles and degraded in the lysosomal compartment, necessitating the need for effective strategies that facilitate the endosomal escape and enhance the cytosolic bioavailability of bioactives. Microbes like viruses and bacteria have developed their innate mechanistic tactics to translocate their genome and toxins by efficiently penetrating the host cell membrane. Understanding this mechanism and exploring it further for intracellular delivery has opened new avenues to surmount the endosomal barrier. These strategies include membrane fusion, pore formation and proton sponge effects. On the other hand, progress in designing a novel smart polymeric carrier system that triggers endosomal escape by undergoing modulations in the intracellular milieu has further led to an improvement in intracellular delivery. These comprise pH, enzyme and temperature-induced modulators, synthetic cationic lipids and photo-induced physical disruption. Each of the aforementioned strategies has its own unique mechanism to escape the endosome. This review recapitulates the numerous strategies designed to surmount the bottleneck of endosomal escape and thereby achieve successful intracellular uptake of bioactives. PMID:24730275

  6. CRV Escape Trajectories from the ISS

    NASA Technical Reports Server (NTRS)

    Foti, Tony M.

    1999-01-01

    The Crew Return Vehicle (CRV) slated for use on the International Space Station (ISS) provides a safe return for up to seven crew members under various emergency conditions. One of the most demanding situations for executing the escape involves separating from a tumbling ISS Current requirements specify a maximum Root Sum Square (RSS) tumble rate of 2 degrees/second, with the additional requirement for an expedited departure from any ISS attitude. The design of a trajectory that ensures no re-contact with the ISS poses many challenges on the Guidance, Navigation, and Control (GN&C) system of the vehicle. To ensure no re-contact the trajectory design employs a two burn sequence, with the first burn preventing near-term collision and the second burn preventing far-field re-contact This presentation describes the approach used to design and to evaluate trajectories for CRV departure from the baselined location on the ISS Node 3 starboard. This approach involved performing a parametric search of selected control variables vital in escaping the tumbling ISS The presentation provides a candidate targeting methodology for escape using minimal information from available navigation devices, and presents the quantitative results from the analysis.

  7. Scrunching: a novel escape gait in planarians

    NASA Astrophysics Data System (ADS)

    Cochet-Escartin, Olivier; Mickolajczyk, Keith J.; Collins, Eva-Maria S.

    2015-10-01

    The ability to escape a predator or other life-threatening situations is central to animal survival. Different species have evolved unique strategies under anatomical and environmental constraints. In this study, we describe a novel musculature-driven escape gait in planarians, ‘scrunching’, which is quantitatively different from other planarian gaits, such as gliding and peristalsis. We show that scrunching is a conserved gait among different flatworm species, underlying its importance as an escape mechanism. We further demonstrate that it can be induced by a variety of physical stimuli, including amputation, high temperature, electric shock and low pH. We discuss the functional basis for scrunching as the preferential gait when gliding is impaired due to a disruption of mucus production. Finally, we show that the key mechanical features of scrunching are adequately captured by a simple biomechanical model that is solely based on experimental data from traction force microscopy and tissue rheology without fit parameters. Together, our results form a complete description of this novel form of planarian locomotion. Because scrunching has distinct dynamics, this gait can serve as a robust behavioral readout for studies of motor neuron and muscular functions in planarians and in particular the restoration of these functions during regeneration.

  8. Cold ion escape from the Martian ionosphere

    NASA Astrophysics Data System (ADS)

    Fränz, M.; Dubinin, E.; Andrews, D.; Barabash, S.; Nilsson, H.; Fedorov, A.

    2015-12-01

    We here report on new measurements of the escape flux of oxygen ions from Mars by combining the observations of the ASPERA-3 and MARSIS experiments on board the European Mars Express spacecraft. We show that in previous estimates of the total heavy ion escape flow the contribution of the cold ionospheric outflow with energies below 10 eV has been underestimated. Both case studies and the derived flow pattern indicate that the cold plasma observed by MARSIS and the superthermal plasma observed by ASPERA-3 move with the same bulk speed in most regions of the Martian tail. We determine maps of the tailside heavy ion flux distribution derived from mean ion velocity distributions sampled over 7 years. If we assume that the superthermal bulk speed derived from these long time averages of the ion distribution function represent the total plasma bulk speed we derive the total tailside plasma flux. Assuming cylindrical symmetry we determine the mean total escape rate for the years 2007-2014 at 2.8 ± 0.4 ×1025 atoms / s which is in good agreement with model estimates. A possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside.

  9. Cold Ion Escape from the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Fränz, M.; Dubinin, E.; Andrews, D.; Nilsson, H.; Barabash, S.; Fedorov, A.

    2015-10-01

    We here report on new measurements of the escape flux of oxygen ions from Mars by combining the observations of the ASPERA-3 and MARSIS experiments on board the European Mars Express spacecraft. We show that in previous estimates of the total heavy ion escape flow the contribution of the coldionospheric outflow with energies below 10 eV has been underestimated. Both case studies and the derived flow pattern indicate that the cold plasma observed by MARSIS and the superthermal plasma observed by ASPERA-3 move with the same bulk speed in most regions of the Martian tail. We determine maps of the tailside heavy ion flux distribution derived from mean ion velocity distributions sampled over 7 years. If we assume that the superthermal bulk speed derived from these long time averages of the ion distribution function represent the total plasma bulk speed we derive the total tailside plasma flux. Assuming cylindrical symmetry we determine the mean total escape rate for the years 2007 to 2014 at 2.9±0.2×10 25 atoms/s which is in good agreement with model estimates. In this talk we will also try to compare these results with more recent observations by the MAVEN spacecraft. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime.

  10. Xenon Fractionation and Archean Hydrogen Escape

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.

    2015-01-01

    Xenon is the heaviest gas found in significant quantities in natural planetary atmospheres. It would seem the least likely to escape. Yet there is more evidence for xenon escape from Earth than for any element other than helium and perhaps neon. The most straightforward evidence is that most of the radiogenic Xe from the decay of (129)I (half-life 15.7 Myr) and (244)Pu (half-life 81 Myr) that is Earth's birthright is missing. The missing xenon is often attributed to the impact erosion of early atmospheres of Earth and its ancestors. It is obvious that if most of the radiogenic xenon were driven off by impacts, most of the rest of the atmophiles fared the same fate. The other line of evidence is in the nonradiogenic isotopes of xenon and its silent partner, krypton. Atmospheric xenon is strongly mass fractionated (at about 4% per amu) compared to any known solar system source (Figure 1). This is in stark contrast to krypton, which may not be fractionated at all: atmospheric Kr is slightly heavier than solar Kr (at about 0.5% per amu), but it is the same as in carbonaceous chondrites. Nonradiogenic xenon is also under abundant relative to krypton (the so-called "missing xenon" problem). Together these observations imply that xenon has been subject to fractionating escape and krypton not.

  11. Scrunching: a novel escape gait in planarians.

    PubMed

    Cochet-Escartin, Olivier; Mickolajczyk, Keith J; Collins, Eva-Maria S

    2015-10-01

    The ability to escape a predator or other life-threatening situations is central to animal survival. Different species have evolved unique strategies under anatomical and environmental constraints. In this study, we describe a novel musculature-driven escape gait in planarians, 'scrunching', which is quantitatively different from other planarian gaits, such as gliding and peristalsis. We show that scrunching is a conserved gait among different flatworm species, underlying its importance as an escape mechanism. We further demonstrate that it can be induced by a variety of physical stimuli, including amputation, high temperature, electric shock and low pH. We discuss the functional basis for scrunching as the preferential gait when gliding is impaired due to a disruption of mucus production. Finally, we show that the key mechanical features of scrunching are adequately captured by a simple biomechanical model that is solely based on experimental data from traction force microscopy and tissue rheology without fit parameters. Together, our results form a complete description of this novel form of planarian locomotion. Because scrunching has distinct dynamics, this gait can serve as a robust behavioral readout for studies of motor neuron and muscular functions in planarians and in particular the restoration of these functions during regeneration. PMID:26356147

  12. 30 CFR 77.1101 - Escape and evacuation; plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Fire Protection § 77.1101 Escape and evacuation; plan. (a) Before September 30, 1971, each operator of... event of a fire. (b) All employees shall be instructed on current escape and evacuation plans, fire alarm signals, and applicable procedures to be followed in case of fire. (c) Plans for escape...

  13. 30 CFR 77.1101 - Escape and evacuation; plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fire Protection § 77.1101 Escape and evacuation; plan. (a) Before September 30, 1971, each operator of... event of a fire. (b) All employees shall be instructed on current escape and evacuation plans, fire alarm signals, and applicable procedures to be followed in case of fire. (c) Plans for escape...

  14. 30 CFR 75.382 - Mechanical escape facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... controls. (b) Every mechanical escape facility with a platform, cage, or other device shall be equipped with brakes that can stop the fully loaded platform, cage, or other device. (c) Mechanical escape... cages, platforms, or elevators. (e) Mechanical escape facilities shall have rated capacities...

  15. 30 CFR 75.382 - Mechanical escape facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... controls. (b) Every mechanical escape facility with a platform, cage, or other device shall be equipped with brakes that can stop the fully loaded platform, cage, or other device. (c) Mechanical escape... cages, platforms, or elevators. (e) Mechanical escape facilities shall have rated capacities...

  16. 30 CFR 75.382 - Mechanical escape facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... controls. (b) Every mechanical escape facility with a platform, cage, or other device shall be equipped with brakes that can stop the fully loaded platform, cage, or other device. (c) Mechanical escape... cages, platforms, or elevators. (e) Mechanical escape facilities shall have rated capacities...

  17. 30 CFR 75.382 - Mechanical escape facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... controls. (b) Every mechanical escape facility with a platform, cage, or other device shall be equipped with brakes that can stop the fully loaded platform, cage, or other device. (c) Mechanical escape... cages, platforms, or elevators. (e) Mechanical escape facilities shall have rated capacities...

  18. 30 CFR 75.382 - Mechanical escape facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... controls. (b) Every mechanical escape facility with a platform, cage, or other device shall be equipped with brakes that can stop the fully loaded platform, cage, or other device. (c) Mechanical escape... cages, platforms, or elevators. (e) Mechanical escape facilities shall have rated capacities...

  19. 46 CFR 169.313 - Means of escape.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Means of escape. 169.313 Section 169.313 Shipping COAST... and Arrangement Hull Structure § 169.313 Means of escape. (a) Except as provided by paragraph (f) of this section, there must be at least two means of escape from all areas generally accessible to...

  20. 46 CFR 127.240 - Means of escape.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Means of escape. 127.240 Section 127.240 Shipping COAST... Particular Construction and Arrangements § 127.240 Means of escape. (a) Except as provided by paragraphs (l) and (m) of this section, there must be at least two means of escape, exclusive of windows...

  1. 46 CFR 127.240 - Means of escape.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Means of escape. 127.240 Section 127.240 Shipping COAST... Particular Construction and Arrangements § 127.240 Means of escape. (a) Except as provided by paragraphs (l) and (m) of this section, there must be at least two means of escape, exclusive of windows...

  2. 46 CFR 127.240 - Means of escape.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Means of escape. 127.240 Section 127.240 Shipping COAST... Particular Construction and Arrangements § 127.240 Means of escape. (a) Except as provided by paragraphs (l) and (m) of this section, there must be at least two means of escape, exclusive of windows...

  3. 46 CFR 169.313 - Means of escape.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Means of escape. 169.313 Section 169.313 Shipping COAST... and Arrangement Hull Structure § 169.313 Means of escape. (a) Except as provided by paragraph (f) of this section, there must be at least two means of escape from all areas generally accessible to...

  4. 46 CFR 116.500 - Means of escape.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Means of escape. 116.500 Section 116.500 Shipping COAST... and Embarkation Station Requirements § 116.500 Means of escape. (a) Except as otherwise provided in... least two means of escape, one of which must not be a watertight door. (b) The two required means...

  5. 46 CFR 169.313 - Means of escape.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Means of escape. 169.313 Section 169.313 Shipping COAST... and Arrangement Hull Structure § 169.313 Means of escape. (a) Except as provided by paragraph (f) of this section, there must be at least two means of escape from all areas generally accessible to...

  6. 46 CFR 116.500 - Means of escape.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Means of escape. 116.500 Section 116.500 Shipping COAST... and Embarkation Station Requirements § 116.500 Means of escape. (a) Except as otherwise provided in... least two means of escape, one of which must not be a watertight door. (b) The two required means...

  7. 46 CFR 169.313 - Means of escape.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Means of escape. 169.313 Section 169.313 Shipping COAST... and Arrangement Hull Structure § 169.313 Means of escape. (a) Except as provided by paragraph (f) of this section, there must be at least two means of escape from all areas generally accessible to...

  8. 46 CFR 116.500 - Means of escape.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Means of escape. 116.500 Section 116.500 Shipping COAST... and Embarkation Station Requirements § 116.500 Means of escape. (a) Except as otherwise provided in... least two means of escape, one of which must not be a watertight door. (b) The two required means...

  9. 46 CFR 169.313 - Means of escape.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Means of escape. 169.313 Section 169.313 Shipping COAST... and Arrangement Hull Structure § 169.313 Means of escape. (a) Except as provided by paragraph (f) of this section, there must be at least two means of escape from all areas generally accessible to...

  10. Methane in the lunar exosphere: Implications for solar wind carbon escape

    NASA Astrophysics Data System (ADS)

    Hodges, , R. Richard

    2016-07-01

    A positive identification of methane in the lunar exosphere has been made in data from the neutral mass spectrometer on the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft. Like argon-40, methane is adsorbed on the lunar surface during nighttime. However, higher activation energies for methane delay its desorption at sunrise by about an hour local time, creating a postsunrise bulge with peak concentration of approximately 400-450 molecules cm-3 at a reference altitude of 12 km, which is just above the highest topographic feature on the Moon. The rate of escape of carbon as methane derived from the LADEE data is estimated to be in the range 1.5-4.5 × 1021 s-1. A lower bound for solar carbon escape derived separately from Apollo sample analyses is 3.4 × 1021 s-1.

  11. Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators

    PubMed Central

    Onal, Cagdas D.; Rus, Daniela

    2014-01-01

    Abstract In this work we describe an autonomous soft-bodied robot that is both self-contained and capable of rapid, continuum-body motion. We detail the design, modeling, fabrication, and control of the soft fish, focusing on enabling the robot to perform rapid escape responses. The robot employs a compliant body with embedded actuators emulating the slender anatomical form of a fish. In addition, the robot has a novel fluidic actuation system that drives body motion and has all the subsystems of a traditional robot onboard: power, actuation, processing, and control. At the core of the fish's soft body is an array of fluidic elastomer actuators. We design the fish to emulate escape responses in addition to forward swimming because such maneuvers require rapid body accelerations and continuum-body motion. These maneuvers showcase the performance capabilities of this self-contained robot. The kinematics and controllability of the robot during simulated escape response maneuvers are analyzed and compared with studies on biological fish. We show that during escape responses, the soft-bodied robot has similar input–output relationships to those observed in biological fish. The major implication of this work is that we show soft robots can be both self-contained and capable of rapid body motion.

  12. Cold Ion Escape from the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Fraenz, M.; Dubinin, E.; Wei, Y.; Woch, J. G.; Morgan, D. D.; Barabash, S. V.; Lundin, R. N.; Fedorov, A.

    2012-12-01

    It has always been challenging to observe the flux of ions with energies of less than 10eV escaping from the planetary ionospheres. We here report on new measurements of the ionospheric ion flows at Mars by the ASPERA-3 experiment on board Mars Express. We first use support from the MARSIS radar experiment for some orbits with fortunate observation geometry. Here we have observed a transterminator flow of O+ and O2+ ions with a super-sonic velocity of around 5km/s and fluxes of 0.8x10^9/cm^2s. If we assume a symmetric flux around the terminator this corresponds to an ion flow of 3.1x10^25/s half of which is expected to escape from Mars (Fraenz et al, 2010). This escape flux is significantly higher than previously observed on the tailside of Mars, we discuss possible reasons for the difference. Since 2008 the MARSIS radar does nightside local plasma density measurement which often coincide with ASPERA-3 measurements. In a new analysis of the combined nightside datasets (Fig. 1) we show that the main escape channel is along the shadow boundary on the tailside of Mars. At a distance of about 0.5 R_M the flux settles at a constant value (Fig. 2) which indicates that about half of the transterminator ionospheric flow escapes from the planet. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvenic regime.; Median oxygen ion flux reconstructed by combining ion velocity observations of the Mars Express ASPERA-3 IMA sensor and local plasma density observations by the MARSIS radar. Each bin value is the median from observations on about 3000 orbits between May 2007 and July 2011. Horizontal axis is MSO X-axis (Sun towards the left), vertical axis is vertical distance from MSO X-axis. ; Ring median flux of cylindrical ring regions of all bins shown in previous figure. The different colors show median fluxes

  13. Basin Explosions and Escape Phenomena in the Twin-Well Duffing Oscillator: Compound Global Bifurcations Organizing Behaviour

    NASA Astrophysics Data System (ADS)

    Ueda, Y.; Yoshida, S.; Stewart, H. B.; Thompson, J. M. T.

    1990-07-01

    The sinusoidally drive, twin-well Duffing oscillator has become a central archetypal model for studies of chaos and fractal basin boundaries in the nonlinear dynamics of dissipative ordinary differential equations. It can also be used to illustrate and elucidate universal features of the escape from a potential well, the jumps from one-well to cross-well motions displaying similar characteristics to those recently charted for the cubic one-well potential. We identify here some new codimension-two global bifurcations which serve to organize the bifurcation set and structure the related basin explosions and escape phenomena.

  14. Hydrodynamical Modeling of Hydrogen Escape from Rocky Planets

    NASA Astrophysics Data System (ADS)

    Barringer, Daniel; Zugger, M.; Kasting, J.

    2013-01-01

    Hydrogen escape affects both the composition of primitive atmospheres of terrestrial planets and the planet’s state of oxidation. On Mars, hydrogen escape played a critical role in how long the planet remained in a warm wet state amenable to life. For both solar and extrasolar planets, hydrogen-rich atmospheres are better candidates for originating life by way of Miller-Urey-type prebiotic synthesis. However, calculating the rate of atmospheric hydrogen escape is difficult, for a number of reasons. First, the escape can be controlled either by diffusion through the homopause or by conditions in the upper atmosphere, whichever is slower. Second, both thermal and non-thermal escape mechanisms are typically important. Third, thermal escape itself can be subdivided into Jeans escape (thin upper atmosphere), and hydrodynamic escape, and hydrodynamic escape can be further subdivided into transonic escape and slower subsonic escape, depending on whether the exobase occurs above or below the sonic point. Additionally, the rate of escape for real terrestrial planet atmospheres, which are not 100% hydrogen, depends upon the concentration of infrared coolants, and upon heating and photochemistry driven largely by extreme ultraviolet (EUV) radiation. We have modified an existing 1-D model of hydrodynamic escape (F. Tian et al., JGR, 2008) to work in the high- hydrogen regime. Calculations are underway to determine hydrogen escape rates as a function of atmospheric H2 mixing ratio and the solar EUV flux. We will compare these rates with the estimated upper limit on the escape rate based on diffusion. Initial results for early Earth and Mars will later be extended to rocky exoplanets.

  15. Risks incurred by hydrogen escaping from containers and conduits

    SciTech Connect

    Swain, M.R.; Grilliot, E.S.; Swain, M.N.

    1998-08-01

    This paper is a discussion of a method for hydrogen leak classification. Leaks are classified as; gas escapes into enclosed spaces, gas escapes into partially enclosed spaces (vented), and gas escapes into unenclosed spaces. Each of the three enclosure classifications is further divided into two subclasses; total volume of hydrogen escaped and flow rate of escaping hydrogen. A method to aid in risk assessment determination in partially enclosed spaces is proposed and verified for several enclosure geometries. Examples are discussed for additional enclosure geometries.

  16. Restricting HIV-1 pathways for escape using rationally designed anti–HIV-1 antibodies

    PubMed Central

    Klein, Florian; Horwitz, Joshua A.; Halper-Stromberg, Ariel; Sather, D. Noah; Marcovecchio, Paola M.; Lee, Terri; West, Anthony P.; Gao, Han; Seaman, Michael S.; Stamatatos, Leonidas; Nussenzweig, Michel C.; Bjorkman, Pamela J.

    2013-01-01

    Recently identified broadly neutralizing antibodies (bNAbs) that potently neutralize most HIV-1 strains are key to potential antibody-based therapeutic approaches to combat HIV/AIDS in the absence of an effective vaccine. Increasing bNAb potencies and resistance to common routes of HIV-1 escape through mutation would facilitate their use as therapeutics. We previously used structure-based design to create the bNAb NIH45-46G54W, which exhibits superior potency and/or breadth compared with other bNAbs. We report new, more effective NIH45-46G54W variants designed using analyses of the NIH45-46–gp120 complex structure and sequences of NIH45-46G54W–resistant HIV-1 strains. One variant, 45-46m2, neutralizes 96% of HIV-1 strains in a cross-clade panel and viruses isolated from an HIV-infected individual that are resistant to all other known bNAbs, making it the single most broad and potent anti–HIV-1 antibody to date. A description of its mechanism is presented based on a 45-46m2–gp120 crystal structure. A second variant, 45-46m7, designed to thwart HIV-1 resistance to NIH45-46G54W arising from mutations in a gp120 consensus sequence, targets a common route of HIV-1 escape. In combination, 45-46m2 and 45-46m7 reduce the possible routes for the evolution of fit viral escape mutants in HIV-1YU-2–infected humanized mice, with viremic control exhibited when a third antibody, 10–1074, was added to the combination. PMID:23712429

  17. Global analysis of fungal morphology exposes mechanisms of host cell escape

    PubMed Central

    O’Meara, Teresa R.; Veri, Amanda O.; Ketela, Troy; Jiang, Bo; Roemer, Terry; Cowen, Leah E.

    2015-01-01

    Developmental transitions between single-cell yeast and multicellular filaments underpin virulence of diverse fungal pathogens. For the leading human fungal pathogen Candida albicans, filamentation is thought to be required for immune cell escape via induction of an inflammatory programmed cell death. Here we perform a genome-scale analysis of C. albicans morphogenesis and identify 102 negative morphogenetic regulators and 872 positive regulators, highlighting key roles for ergosterol biosynthesis and N-linked glycosylation. We demonstrate that C. albicans filamentation is not required for escape from host immune cells; instead, macrophage pyroptosis is driven by fungal cell-wall remodelling and exposure of glycosylated proteins in response to the macrophage phagosome. The capacity of killed, previously phagocytized cells to drive macrophage lysis is also observed with the distantly related fungal pathogen Cryptococcus neoformans. This study provides a global view of morphogenetic circuitry governing a key virulence trait, and illuminates a new mechanism by which fungi trigger host cell death. PMID:25824284

  18. Escape process in systems characterized by stable noises and position-dependent resting times

    NASA Astrophysics Data System (ADS)

    Srokowski, Tomasz

    2016-06-01

    Stochastic systems characterized by a random driving in a form of the general stable noise are considered. The particle experiences long rests due to the traps the density of which is position dependent and obeys a power-law form attributed to the underlying self-similar structure. Both the one- and two-dimensional cases are analyzed. The random walk description involves a position-dependent waiting time distribution. On the other hand, the stochastic dynamics is formulated in terms of the subordination technique where the random time generator is position dependent. The first passage time problem is addressed by evaluating a first passage time density distribution and an escape rate. The influence of the medium nonhomogeneity on those quantities is demonstrated; moreover, the dependence of the escape rate on the stability index and the memory parameter is evaluated. Results indicate essential differences between the Gaussian case and the case involving Lévy flights.

  19. Escape process in systems characterized by stable noises and position-dependent resting times.

    PubMed

    Srokowski, Tomasz

    2016-06-01

    Stochastic systems characterized by a random driving in a form of the general stable noise are considered. The particle experiences long rests due to the traps the density of which is position dependent and obeys a power-law form attributed to the underlying self-similar structure. Both the one- and two-dimensional cases are analyzed. The random walk description involves a position-dependent waiting time distribution. On the other hand, the stochastic dynamics is formulated in terms of the subordination technique where the random time generator is position dependent. The first passage time problem is addressed by evaluating a first passage time density distribution and an escape rate. The influence of the medium nonhomogeneity on those quantities is demonstrated; moreover, the dependence of the escape rate on the stability index and the memory parameter is evaluated. Results indicate essential differences between the Gaussian case and the case involving Lévy flights. PMID:27415243

  20. Scintillator probe diagnostic for high energy particles escaped from Large Helical Device

    SciTech Connect

    Nishiura, M.; Isobe, M.; Saida, T.; Sasao, M.; Darrow, D.S.

    2004-10-01

    A scintillator probe for escaping fast ion diagnostics has been developed in the Large Helical Device. This probe is capable of traveling across a divertor leg and sweeping the aperture angle rotationally with respect to the axis of the probe shaft. Pitch angle and gyro radius resolutions are estimated numerically by using a Monte Carlo orbit simulation. The result shows that the detector has sufficient resolution in pitch angle and gyro radius for our target plasmas. Under the neutral beam injected plasma, a signal derived from fast ions was obtained on the scintillator plate and analyzed by using the recorded camera image.

  1. Cold Ion Escape from the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Fränz, Markus; Dubinin, Eduard; Andrews, David; Nilsson, Hans; Fedorov, Andrei

    2014-05-01

    It has always been challenging to observe the flux of ions with energies of less than 10eV escaping from the planetary ionospheres. We here report on new measurements of the ionospheric ion flows at Mars by the ASPERA-3 experiment on board Mars Express. The ion sensor IMA of this experiment has in principle a low-energy cut-off at 10eV but in negative spacecraft charging cold ions are lifted into the range of measurement but the field of view is restricted to about 4x360 deg. In a recent paper Nilsson et al. (Earth Planets Space, 64, 135, 2012) tried to use the method of long-time averaged distribution functions to overcome these constraints. In this paper we first use the same method to show that we get results consistent with this when using ASPERA-3 observations only. But then we can show that these results are inconsistent with observations of the local plasma density by the MARSIS radar instrument on board Mars Express. We demonstrate that the method of averaged distribution function can deliver the mean flow speed of the plasma but the low-energy cut-off does usually not allow to reconstruct the density. We then combine measurements of the cold ion flow speed with the plasma density observations of MARSIS to derive the cold ion flux. In an analysis of the combined nightside datasets we show that the main escape channel is along the shadow boundary on the tailside of Mars. At a distance of about 0.5 Martian radii the flux settles at a constant value which indicates that about half of the transterminator ionospheric flow escapes from the planet. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime.

  2. Suicide as escape from psychotic panic.

    PubMed

    Goldblatt, Mark J; Ronningstam, Elsa; Schechter, Mark; Herbstman, Benjamin; Maltsberger, John T

    2016-01-01

    Suicides of patients in states of acute persecutory panic may be provoked by a subjective experience of helpless terror threatening imminent annihilation or dismemberment. These patients are literally scared to death and try to run away. They imagine suicide is survivable and desperately attempt to escape from imaginary enemies. These states of terror occur in a wide range of psychotic illnesses and are often associated with command hallucinations and delusions. In this article, the authors consider the subjective experience of persecutory panic and the suicide response as an attempt to flee from danger. PMID:27294586

  3. X-chromosome inactivation and escape

    PubMed Central

    DISTECHE, CHRISTINE M.; BERLETCH, JOEL B.

    2016-01-01

    X-chromosome inactivation, which was discovered by Mary Lyon in 1961 results in random silencing of one X chromosome in female mammals. This review is dedicated to Mary Lyon, who passed away last year. She predicted many of the features of X inactivation, for e.g., the existence of an X inactivation center, the role of L1 elements in spreading of silencing and the existence of genes that escape X inactivation. Starting from her published work here we summarize advances in the field. PMID:26690513

  4. Escape Artists of the X Chromosome.

    PubMed

    Balaton, Bradley P; Brown, Carolyn J

    2016-06-01

    Inactivation of one X chromosome in mammalian females achieves dosage compensation between XX females and XY males; however, over 15% of human X-linked genes continue to be expressed from the inactive X chromosome. New genomic methodologies have improved our identification and characterization of these escape genes, revealing the importance of DNA sequence, chromatin structure, and chromosome ultrastructure in regulating expression from an otherwise inactive chromosome. Study of these exceptions to the rule of silencing highlights the interconnectedness of chromatin and chromosome structure in X-chromosome inactivation (XCI). Recent advances also demonstrate the importance of these genes in sexually dimorphic disease risk, particularly cancer. PMID:27103486

  5. Serial Escape System For Aircraft Crews

    NASA Technical Reports Server (NTRS)

    Wood, Kenneth E.

    1990-01-01

    Emergency escape system for aircraft and aerospace vehicles ejects up to seven crewmembers, one by one, within 120 s. Intended for emergencies in which disabled craft still in stable flight at no more than 220 kn (113 m/s) equivalent airspeed and sinking no faster than 110 ft/s (33.5 m/s) at altitudes up to 50,000 ft (15.2 km). Ejection rockets load themselves from magazine after each crewmember ejected. Jumpmaster queues other crewmembers and helps them position themselves on egress ramp. Rockets pull crewmembers clear of aircraft structure. Provides orderly, controlled exit and avoids ditching at sea or landing in rough terrain.

  6. Quantum and classical resonant escapes of a strongly driven Josephson junction

    NASA Astrophysics Data System (ADS)

    Yu, H. F.; Zhu, X. B.; Peng, Z. H.; Cao, W. H.; Cui, D. J.; Tian, Ye; Chen, G. H.; Zheng, D. N.; Jing, X. N.; Lu, Li; Zhao, S. P.; Han, Siyuan

    2010-04-01

    The properties of phase escape in a dc superconducting quantum interference device (SQUID) at 25 mK, which is well below quantum-to-classical crossover temperature Tcr , in the presence of strong resonant ac driving have been investigated. The SQUID contains two Nb/Al-AlOx/Nb tunnel junctions with Josephson inductance much larger than the loop inductance so it can be viewed as a single junction having adjustable critical current. We find that with increasing microwave power W and at certain frequencies ν and ν/2 , the single primary peak in the switching current distribution, which is the result of macroscopic quantum tunneling of the phase across the junction, first shifts toward lower bias current I and then a resonant peak develops. These results are explained by quantum resonant phase escape involving single and two photons with microwave-suppressed potential barrier. As W further increases, the primary peak gradually disappears and the resonant peak grows into a single one while shifting further to lower I . At certain W , a second resonant peak appears, which can locate at very low I depending on the value of ν . Analysis based on the classical equation of motion shows that such resonant peak can arise from the resonant escape of the phase particle with extremely large oscillation amplitude resulting from bifurcation of the nonlinear system. Our experimental result and theoretical analysis demonstrate that at T≪Tcr , escape of the phase particle could be dominated by classical process, such as dynamical bifurcation of nonlinear systems under strong ac driving.

  7. Perceiving object dangerousness: an escape from pain?

    PubMed

    Anelli, Filomena; Ranzini, Mariagrazia; Nicoletti, Roberto; Borghi, Anna M

    2013-08-01

    A variety of studies showed that participants are facilitated when responding to graspable objects, while it has not been fully investigated what happens during interactions with graspable objects that are potentially dangerous. The present study focuses on the mechanisms underlying the processing of dangerous objects. In two experiments, we adopted a paradigm that has never been employed in this context, a bisection task. The line was flanked by objects belonging to different categories. We explored the sensitivity to the distinction between neutral and dangerous objects, by measuring whether the performance was biased toward a specific object category. In Experiment 1 both teenagers and adults bisected lines flanked by dangerous and neutral graspable objects, and they misperceived the line midpoint toward the neutral graspable object or, stated differently, on the opposite side of the dangerous graspable object. In Experiment 2 adults bisected lines flanked by dangerous and neutral objects matched on graspability (both graspable and ungraspable, Experiment 2a), or by graspable and ungraspable objects matched on dangerousness (both neutral and dangerous, Experiment 2b). Results confirmed the finding of Experiment 1, but also indicated that participants misperceived the line midpoint toward the ungraspable object when it was presented, being it dangerous or not. This evidence demonstrated sensitivity to object dangerousness maintained across lifespan. The emergence of aversive affordances evoked by dangerous graspable objects strenghtens the importance to consider graspability in the investigation of dangerous objects. Possible neural mechanisms involved in the processing of dangerous graspable objects are discussed. PMID:23743714

  8. Neutral beam monitoring

    DOEpatents

    Fink, Joel H.

    1981-08-18

    Method and apparatus for monitoring characteristics of a high energy neutral beam. A neutral beam is generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange neutralizes the high energy ion beam. The neutral beam is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are further identified.

  9. Energy distributions of sputtered copper neutrals and ions

    NASA Technical Reports Server (NTRS)

    Lundquist, T. R.

    1978-01-01

    Direct quantitative analysis of surfaces by secondary ion mass spectrometry will depend on an understanding of the yield ratio of ions to neutrals. This ratio as a function of the energy of the sputtered particles has been obtained for a clean polycrystalline copper surface sputtered by 1000-3000 eV Ar(+). The energy distributions of both neutral and ionized copper were measured with a retarding potential analyzer using potential modulation differentiation and signal averaging. The maximum for both distributions is identical and occurs near 2.5 eV. The energy distributions of neutrals is more sharply peaked than that of the ions, presumably as a consequence of more efficient nutralization of slow escaping ions by the mobile electrons of copper. The ion-neutral ratio is compared with results from various ionization models.

  10. The effects of steady swimming on fish escape performance.

    PubMed

    Anwar, Sanam B; Cathcart, Kelsey; Darakananda, Karin; Gaing, Ashley N; Shin, Seo Yim; Vronay, Xena; Wright, Dania N; Ellerby, David J

    2016-06-01

    Escape maneuvers are essential to the survival and fitness of many animals. Escapes are frequently initiated when an animal is already in motion. This may introduce constraints that alter the escape performance. In fish, escape maneuvers and steady, body caudal fin (BCF) swimming are driven by distinct patterns of curvature of the body axis. Pre-existing muscle activity may therefore delay or diminish a response. To quantify the performance consequences of escaping in flow, escape behavior was examined in bluegill sunfish (Lepomis macrochirus) in both still-water and during steady swimming. Escapes executed during swimming were kinematically less variable than those made in still-water. Swimming escapes also had increased response latencies and lower peak velocities and accelerations than those made in still-water. Performance was also lower for escapes made up rather than down-stream, and a preference for down-stream escapes may be associated with maximizing performance. The constraints imposed by pre-existing motion and flow, therefore, have the potential to shape predator-prey interactions under field conditions by shifting the optimal strategies for both predators and prey. PMID:27161016

  11. Escape from X Inactivation Varies in Mouse Tissues

    PubMed Central

    Yang, Fan; Shendure, Jay; Noble, William S.; Disteche, Christine M.; Deng, Xinxian

    2015-01-01

    X chromosome inactivation (XCI) silences most genes on one X chromosome in female mammals, but some genes escape XCI. To identify escape genes in vivo and to explore molecular mechanisms that regulate this process we analyzed the allele-specific expression and chromatin structure of X-linked genes in mouse tissues and cells with skewed XCI and distinguishable alleles based on single nucleotide polymorphisms. Using a binomial model to assess allelic expression, we demonstrate a continuum between complete silencing and expression from the inactive X (Xi). The validity of the RNA-seq approach was verified using RT-PCR with species-specific primers or Sanger sequencing. Both common escape genes and genes with significant differences in XCI status between tissues were identified. Such genes may be candidates for tissue-specific sex differences. Overall, few genes (3–7%) escape XCI in any of the mouse tissues examined, suggesting stringent silencing and escape controls. In contrast, an in vitro system represented by the embryonic-kidney-derived Patski cell line showed a higher density of escape genes (21%), representing both kidney-specific escape genes and cell-line specific escape genes. Allele-specific RNA polymerase II occupancy and DNase I hypersensitivity at the promoter of genes on the Xi correlated well with levels of escape, consistent with an open chromatin structure at escape genes. Allele-specific CTCF binding on the Xi clustered at escape genes and was denser in brain compared to the Patski cell line, possibly contributing to a more compartmentalized structure of the Xi and fewer escape genes in brain compared to the cell line where larger domains of escape were observed. PMID:25785854

  12. The escape model for Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Giacinti, G.; Kachelrieß, M.; Semikoz, D. V.

    2015-08-01

    The escape model explains the cosmic ray (CR) knee by energy-dependent CR leakage from the Milky Way, with an excellent fit to all existing data. We test this model calculating the trajectories of individual CRs in the Galactic magnetic field. We find that the CR escape time τesc(E) exhibits a knee-like structure around E/Z = few × 1015 eV for small coherence lengths and strengths of the turbulent magnetic field. The resulting intensities for different groups of nuclei are consistent with the ones determined by KASCADE and KASCADE-Grande, using simple power-laws as injection spectra. The transition from Galactic to extragalactic CRs happens in this model at low energies and is terminated below ≈ 3 × 1018 eV. The intermediate energy region up to the ankle is populated by CRs accelerated in starburst galaxies. This model provides a good fit to ln(A) data, while the estimated CR dipole anisotropy is close to, or below, upper limits in the energy range 1017 - 1018 eV. The phase of the dipole is expected to change between 1 × 1017 and 3 × 1018 eV.

  13. A New Maneuver for Escape Trajectories

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.

    2008-01-01

    This presentation put forth a new maneuver for escape trajectories and specifically sought to find an analytical approximation for medium thrust trajectories. In most low thrust derivations the idea is that escape velocity is best achieved by accelerating along the velocity vector. The reason for this is that change in specific orbital energy is a function of velocity and acceleration. However, Levin (1952) suggested that while this is a locally optimal solution it might not be a globally optimal one. Turning acceleration inward would drop periapse giving a higher velocity later in the trajectory. Acceleration at that point would be dotted against a higher magnitude V giving a greater rate of change of mechanical energy. The author then hypothesized that decelerating from the initial orbit and then accelerating at periapse would not lead to a gain in greater specific orbital energy--however, the hypothesis was incorrect. After considerable derivation it was determined that this new maneuver outperforms a direct burn when the overall DeltaV budget exceeds the initial orbital velocity (the author has termed this the Heinlein maneuver). The author provides a physical explanation for this maneuver and presents optimization analyses.

  14. How some T cells escape tolerance induction.

    PubMed

    Gammon, G; Sercarz, E

    1989-11-01

    A feature common to many animal models of autoimmune disease, for example, experimental allergic encephalomyelitis, experimental autoimmune myasthenia gravis and collagen-induced arthritis, is the presence of self-reactive T cells in healthy animals, which are activated to produce disease by immunization with exogenous antigen. It is unclear why these T cells are not deleted during ontogeny in the thymus and, having escaped tolerance induction, why they are not spontaneously activated by self-antigen. To investigate these questions, we have examined an experimental model in which mice are tolerant to an antigen despite the presence of antigen-reactive T cells. We find that the T cells that escape tolerance induction are specific for minor determinants on the antigen. We propose that these T cells evade tolerance induction because some minor determinants are only available in relatively low amounts after in vivo processing of the whole antigen. For the same reason, these T cells are not normally activated but can be stimulated under special circumstances to circumvent tolerance. PMID:2478888

  15. F111 Crew Escape Module pilot parachute

    SciTech Connect

    Tadios, E.L.

    1991-01-01

    A successfully deployment of a parachute system highly depends on the efficiency of the deployment device and/or method. There are several existing methods and devices that may be considered for a deployment system. For the F111 Crew Escape Module (CEM), the recovery parachute system deployment is initiated by the firing of a catapult that ejects the complete system from the CEM. At first motion of the pack, a drogue gun is fired, which deploys the pilot parachute system. The pilot parachute system then deploys the main parachute system, which consists of a cluster of three 49-ft diameter parachutes. The pilot parachute system which extracts the F111 Crew Escape Module recovery parachute system must provide reasonable bag strip velocities throughout the flight envelope (10 psf to 300 psf). The pilot parachute system must, therefore, have sufficient drag area at the lower dynamic pressures and a reduced drag area at the high end of the flight envelope. The final design that was developed was a dual parachute system which consists of a 5-ft diameter guide surface parachute tethered inside a 10-ft diameter flat circular parachute. The high drag area is sustained at the low dynamic pressures by keeping both parachutes intact. The drag area is reduced at the higher extreme by allowing the 10-ft parachute attachment to fail. The discussions to follow describe in detail how the system was developed. 4 refs., 10 figs., 2 tabs.

  16. Escape mechanisms of dust in Io

    NASA Astrophysics Data System (ADS)

    Flandes, A.

    The injection of material into the jovian magnetosphere through Io's volcanic activity makes possible the formation of structures such as the plasma torus and the dust ballerina skirt. Io's high temperature volcanism produces spectacular plumes, but even the tallest plumes, as those of Pelen Patera, will not produce enough energy to defeat the gravitational attraction of Io. The fact is that dust escapes from Io, which implies that a second mechanism is acting on the grains. Grains brought to the top of the highest plumes by the volcanic forces are still under Io's gravitational pull, but need only a minimum charge (~10-1 4 C) so that the Lorentz force due to the Jovian magnetic field equilibrates this attraction. In the volcanic vents, the escape velocity of the ejected material and its own density produces enough collisions to create charges. On top of the highest plumes (~500km) charged grains are exposed to the plasma torus that co-rotates rigidly with Jupiter and, due to the relative velocity among Io and the torus, the grains will be dragged away from Io. As it is well known, these dust grains will also be dragged away from Jupiter.

  17. Escape dynamics of many hard disks.

    PubMed

    Taniguchi, Tooru; Murata, Hiroki; Sawada, Shin-Ichi

    2014-11-01

    Many-particle effects in escapes of hard disks from a square box via a hole are discussed in a viewpoint of dynamical systems. Starting from N disks in the box at the initial time, we calculate the probability P_{n}(t) for at least n disks to remain inside the box at time t for n=1,2,...,N. At early times, the probabilities P_{n}(t),n=2,3,...,N-1, are described by superpositions of exponential decay functions. On the other hand, after a long time the probability P_{n}(t) shows a power-law decay ∼t^{-2n} for n≠1, in contrast to the fact that it decays with a different power law ∼t^{-n} for cases without any disk-disk collision. Chaotic or nonchaotic properties of the escape systems are discussed by the dynamics of a finite-time largest Lyapunov exponent, whose decay properties are related with those of the probability P_{n}(t). PMID:25493874

  18. Investigating the Consequences of Interference between Multiple CD8+ T Cell Escape Mutations in Early HIV Infection.

    PubMed

    Garcia, Victor; Feldman, Marcus W; Regoes, Roland R

    2016-02-01

    During early human immunodeficiency virus (HIV) infection multiple CD8+ T cell responses are elicited almost simultaneously. These responses exert strong selective pressures on different parts of HIV's genome, and select for mutations that escape recognition and are thus beneficial to the virus. Some studies reveal that the later these escape mutations emerge, the more slowly they go to fixation. This pattern of escape rate decrease(ERD) can arise by distinct mechanisms. In particular, in large populations with high beneficial mutation rates interference among different escape strains--an effect that can emerge in evolution with asexual reproduction and results in delayed fixation times of beneficial mutations compared to sexual reproduction--could significantly impact the escape rates of mutations. In this paper, we investigated how interference between these concurrent escape mutations affects their escape rates in systems with multiple epitopes, and whether it could be a source of the ERD pattern. To address these issues, we developed a multilocus Wright-Fisher model of HIV dynamics with selection, mutation and recombination, serving as a null-model for interference. We also derived an interference-free null model assuming initial neutral evolution before immune response elicitation. We found that interference between several equally selectively advantageous mutations can generate the observed ERD pattern. We also found that the number of loci, as well as recombination rates substantially affect ERD. These effects can be explained by the underexponential decline of escape rates over time. Lastly, we found that the observed ERD pattern in HIV infected individuals is consistent with both independent, interference-free mutations as well as interference effects. Our results confirm that interference effects should be considered when analyzing HIV escape mutations. The challenge in estimating escape rates and mutation-associated selective coefficients posed by

  19. Investigating the Consequences of Interference between Multiple CD8+ T Cell Escape Mutations in Early HIV Infection

    PubMed Central

    Garcia, Victor; Feldman, Marcus W.; Regoes, Roland R.

    2016-01-01

    During early human immunodeficiency virus (HIV) infection multiple CD8+ T cell responses are elicited almost simultaneously. These responses exert strong selective pressures on different parts of HIV’s genome, and select for mutations that escape recognition and are thus beneficial to the virus. Some studies reveal that the later these escape mutations emerge, the more slowly they go to fixation. This pattern of escape rate decrease(ERD) can arise by distinct mechanisms. In particular, in large populations with high beneficial mutation rates interference among different escape strains –an effect that can emerge in evolution with asexual reproduction and results in delayed fixation times of beneficial mutations compared to sexual reproduction– could significantly impact the escape rates of mutations. In this paper, we investigated how interference between these concurrent escape mutations affects their escape rates in systems with multiple epitopes, and whether it could be a source of the ERD pattern. To address these issues, we developed a multilocus Wright-Fisher model of HIV dynamics with selection, mutation and recombination, serving as a null-model for interference. We also derived an interference-free null model assuming initial neutral evolution before immune response elicitation. We found that interference between several equally selectively advantageous mutations can generate the observed ERD pattern. We also found that the number of loci, as well as recombination rates substantially affect ERD. These effects can be explained by the underexponential decline of escape rates over time. Lastly, we found that the observed ERD pattern in HIV infected individuals is consistent with both independent, interference-free mutations as well as interference effects. Our results confirm that interference effects should be considered when analyzing HIV escape mutations. The challenge in estimating escape rates and mutation-associated selective coefficients posed by

  20. Strong Constraint on Human Genes Escaping X-Inactivation Is Modulated by their Expression Level and Breadth in Both Sexes.

    PubMed

    Slavney, Andrea; Arbiza, Leonardo; Clark, Andrew G; Keinan, Alon

    2016-02-01

    In eutherian mammals, X-linked gene expression is normalized between XX females and XY males through the process of X chromosome inactivation (XCI). XCI results in silencing of transcription from one ChrX homolog per female cell. However, approximately 25% of human ChrX genes escape XCI to some extent and exhibit biallelic expression in females. The evolutionary basis of this phenomenon is not entirely clear, but high sequence conservation of XCI escapers suggests that purifying selection may directly or indirectly drive XCI escape at these loci. One hypothesis is that this signal results from contributions to developmental and physiological sex differences, but presently there is limited evidence supporting this model in humans. Another potential driver of this signal is selection for high and/or broad gene expression in both sexes, which are strong predictors of reduced nucleotide substitution rates in mammalian genes. Here, we compared purifying selection and gene expression patterns of human XCI escapers with those of X-inactivated genes in both sexes. When we accounted for the functional status of each ChrX gene's Y-linked homolog (or "gametolog"), we observed that XCI escapers exhibit greater degrees of purifying selection in the human lineage than X-inactivated genes, as well as higher and broader gene expression than X-inactivated genes across tissues in both sexes. These results highlight a significant role for gene expression in both sexes in driving purifying selection on XCI escapers, and emphasize these genes' potential importance in human disease. PMID:26494842

  1. Dementia and driving

    MedlinePlus

    ... not drive at times of the day when traffic is heaviest. Do not drive when the weather is bad. Do not drive long distances. Drive only on roads the person is used to. Caregivers should try to lessen ...

  2. Synthesizing within-host and population-level selective pressures on viral populations: the impact of adaptive immunity on viral immune escape

    PubMed Central

    Volkov, Igor; Pepin, Kim M.; Lloyd-Smith, James O.; Banavar, Jayanth R.; Grenfell, Bryan T.

    2010-01-01

    The evolution of viruses to escape prevailing host immunity involves selection at multiple integrative scales, from within-host viral and immune kinetics to the host population level. In order to understand how viral immune escape occurs, we develop an analytical framework that links the dynamical nature of immunity and viral variation across these scales. Our epidemiological model incorporates within-host viral evolutionary dynamics for a virus that causes acute infections (e.g. influenza and norovirus) with changes in host immunity in response to genetic changes in the virus population. We use a deterministic description of the within-host replication dynamics of the virus, the pool of susceptible host cells and the host adaptive immune response. We find that viral immune escape is most effective at intermediate values of immune strength. At very low levels of immunity, selection is too weak to drive immune escape in recovered hosts, while very high levels of immunity impose such strong selection that viral subpopulations go extinct before acquiring enough genetic diversity to escape host immunity. This result echoes the predictions of simpler models, but our formulation allows us to dissect the combination of within-host and transmission-level processes that drive immune escape. PMID:20335194

  3. Plasma heating with multi-MeV neutral atom beams

    SciTech Connect

    Grisham, L.R.; Post, D.E.; Mikkelsen, D.R.; Eubank, H.P.

    1981-10-01

    We explore the utility and feasibility of neutral beams of greater than or equal to 6 AMU formed from negative ions, and also of D/sup 0/ formed from D/sup -/. The negative ions would be accelerated to approx. 1 to 2 MeV/AMU and neutralized, whereupon the neutral atoms would be used to heat and, perhaps, to drive current in magnetically confined plasmas. Such beams appear feasible and offer the promise of significant advantages relative to conventional neutral beams based on positive deuterium ions at approx. 150 keV.

  4. A Single Amino Acid Deletion in the Matrix Protein of Porcine Reproductive and Respiratory Syndrome Virus Confers Resistance to a Polyclonal Swine Antibody with Broadly Neutralizing Activity

    PubMed Central

    Popescu, Luca N.; Monday, Nicholas; Calvert, Jay G.; Rowland, Raymond R. R.

    2015-01-01

    Assessment of virus neutralization (VN) activity in 176 pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV) identified one pig with broadly neutralizing activity. A Tyr-10 deletion in the matrix protein provided escape from broad neutralization without affecting homologous neutralizing activity. The role of the Tyr-10 deletion was confirmed through an infectious clone with a Tyr-10 deletion. The results demonstrate differences in the properties and specificities of VN responses elicited during PRRSV infection. PMID:25855739

  5. Characterization of epitopes on the rabies virus glycoprotein by selection and analysis of escape mutants.

    PubMed

    Fallahi, Firouzeh; Wandeler, Alexander I; Nadin-Davis, Susan A

    2016-07-15

    The glycoprotein (G) is the only surface protein of the lyssavirus particle and the only viral product known to be capable of eliciting the production of neutralizing antibodies. In this study, the isolation of escape mutants resistant to monoclonal antibody (Mab) neutralization was attempted by a selection strategy employing four distinct rabies virus strains: the extensively passaged Evelyn Rokitnicki Abelseth (ERA) strain and three field isolates representing two bat-associated variants and the Western Canada skunk variant (WSKV). No escape mutants were generated from either of the bat-associated viral variants but two neutralization mutants were derived from the WSKV isolate. Seven independent ERA mutants were recovered using Mabs directed against antigenic sites I (four mutants) and IIIa (three mutants) of the glycoprotein. The cross-neutralization patterns of these viral mutants were used to determine the precise location and nature of the G protein epitopes recognized by these Mabs. Nucleotide sequencing of the G gene indicated that those mutants derived using Mabs directed to antigenic site (AS) III all contained amino acid substitutions in this site. However, of the four mutants selected with AS I Mabs, two bore mutations within AS I as expected while the remaining two carried mutations in AS II. WSKV mutants exhibited mutations at the sites appropriate for the Mabs used in their selection. All ERA mutant preparations were more cytopathogenic than the parental virus when propagated in cell culture; when in vivo pathogenicity in mice was examined, three of these mutants exhibited reduced pathogenicity while the remaining four mutants exhibited comparable pathogenic properties to those of the parent virus. PMID:27132040

  6. Quantum stochastic dynamics in the presence of a time-periodic rapidly oscillating potential: nonadiabatic escape rate.

    PubMed

    Shit, Anindita; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray

    2013-09-12

    Escape from a metastable state in the presence of a high-frequency field (where the driving becomes nonadiabatic) underlies a broad range of phenomena of physics and chemistry, and thus its understanding is of paramount importance. We study the problem of intermediate-to-high-damping escape from a metastable state of a dissipative system driven by a rapidly oscillating field, one of the most important classes of nonequilibrium systems, in a broad range of field driving frequencies (ω) and amplitudes (a). We construct a Langevin equation using quantum gauge transformation in the light of Floquet theorem and exploiting a systematic perturbative expansion in powers of 1/ω using "Kapitza-Landau time window". The quantum dynamics in a high-frequency field are found to be described by an effective time-independent potential. The temperature dependence of escape rate and the change of its form with varying parameters of the field have been analyzed. It may decrease upon increasing the temperature which is contingent on the effects of intricate interplay between external modulation and dissipation. The crossover temperature between tunnelling and thermal hopping increases with an increase in external modulation so that quantum effects in the escape are relevant at higher temperatures. These observations are uncommon and counterintuitive and, therefore, of considerable interest. Our results might be valuable for the exploration of the dynamics of cold atoms in electromagnetic fields. PMID:23627350

  7. The atmospheric escape at Mars: complementing the scenario

    NASA Astrophysics Data System (ADS)

    Lilensten, Jean; Simon, Cyril; Barthélémy, Mathieu; Thissen, Roland; Ehrenreich, David; Gronoff, Guillaume; Witasse, Olivier

    2013-04-01

    In the recent years, the presence of dications in the atmospheres of Mars, Venus, Earth and Titan has been modeled and assessed. These studies also suggested that these ions could participate to the escape of the planetary atmospheres because a large fraction of them is unstable and highly ener- getic. When they dissociate, their internal energy is transformed into kinetic energy which may be larger than the escape energy. This study assesses the impact of the doubly-charged ions in the escape of CO2-dominated planetary atmospheres and to compare it to the escape of thermal photo-ions.We solve a Boltzmann transport equation at daytime taking into account the dissociative states of CO++ for a simplified single constituent atmosphere of a 2 case-study planet. We compute the escape of fast ions using a Beer-Lambert approach. We study three test-cases. On a Mars-analog planet in today's conditions, we retrieve the measured electron escape flux. When comparing the two mechanisms (i.e. excluding solar wind effects, sputtering ...), the escape due to the fast ions issuing from the dissociation of dications may account for up to 6% of the total and the escape of thermal ions for the remaining. We show that these two mechanisms cannot explain the escape of the atmosphere since the magnetic field vanished but complement the other processes and allow writing the scenario of the Mars escape. We show that the atmosphere of a Mars analog planet would empty in another giga years and a half. At Venus orbit, the contribution of the dications in the escape rate is negligible.When simulating the hot Jupiter HD209458b, the two processes cannot explain the measured escape flux of C+.

  8. New Analysis of Hydrogen and Deuterium Escape from Venus

    NASA Astrophysics Data System (ADS)

    Donahue, Thomas M.

    1999-10-01

    This paper is concerned with the time required for escape of hydrogen and deuterium to produce the present D/ H ratio in Venus water, the sizes of the original hydrogen reservoirs and their sensitivity to the magnitude of the present escape fluxes, the characteristics of exogenous and endogenous hydrogen sources, and the D/ H ratio for primordial Venus hydrogen. The procedure followed allowed the H escape flux to vary over a large range, the ratio of input to escape flux to vary from 0 to 1, and the fractionation factor, which expresses the relative efficiency of D and H escape, to vary between 0.02 and 0.5. It was found that, unless deuterium escape is very efficient, the present H escape flux (averaged over a solar cycle) cannot be larger than about 10 7 cm -2 s -1 if today's water is to be the remnant of water deposited eons ago. On the other hand if the escape flux is as large as large as 3×10 7 cm -2 s -1, today's water would be the remnant of water outgassed only about 500 million years ago. These conclusions are relatively insensitive to factors other than the magnitude of the escape flux. Since recent analysis of escape fluxes indicates that the H escape fluxes may be in the neighborhood of 3×10 7 cm -2 s -1 and the fractionation factor may be 0.14 or larger, the suggestion of Grinspoon (1993, Nature 363, 1702-1704) that the water now on Venus was created during a recent massive resurfacing event is credible. However, since it is still possible that the average escape flux is as small as 7×10 6 cm -2 s -1, the choice between 4 and 0.5 Gyr must await a resolution of this conflict by reanalysis of Pioneer Venus Lyman α data (Paxton, L., D. E. Anderson, and A. I. F. Stewart 1988, J. Geophys. Res. 93, 1766-1772).

  9. Indirect Evidence for Escaping Ionizing Photons in Local Lyman Break Galaxy Analogs

    NASA Astrophysics Data System (ADS)

    Alexandroff, Rachael M.; Heckman, Timothy M.; Borthakur, Sanchayeeta; Overzier, Roderik; Leitherer, Claus

    2015-09-01

    A population of early star-forming galaxies is the leading candidate for the re-ionization of the universe. It is still unclear, however, what conditions and physical processes would enable a significant fraction of the ionizing (Lyman continuum) photons to escape from these gas-rich galaxies. In this paper we present the results of the analysis of Hubble Space Telescope Cosmic Origins Spectrograph far-UV (FUV) spectroscopy plus ancillary multi-waveband data of a sample of 22 low-redshift galaxies that are good analogs to typical star-forming galaxies at high redshift. We measure three parameters that provide indirect evidence of the escape of ionizing radiation (leakiness): (1) the residual intensity in the cores of saturated interstellar low-ionization absorption lines, which indicates incomplete covering by that gas in the galaxy; (2) the relative amount of blueshifted Lyα line emission, which can indicate the existence of holes in the neutral hydrogen on the front-side of the galaxy outflow, and (3) the relative weakness of the [S ii] optical emission lines that trace matter-bounded H ii regions. We show that our residual intensity measures are only negligibly affected by infilling from resonance emission lines. We find all three diagnostics agree well with one another. We use these diagnostics to rank-order our sample in terms of likely leakiness, noting that a direct measure of escaping Lyman continuum has recently been made for one of the leakiest members of our sample. We then examine the correlations between our ranking and other proposed diagnostics of leakiness. We find a good correlation with the equivalent width of the Lyα emission line, but no significant correlations with either the flux ratio of the [O iii]/[O ii] emission lines or the ratio of star-formation rates derived from the (dust-corrected) FUV and Hα luminosities. Turning to galaxy properties, we find the strongest correlations with leakiness are with the compactness of the star

  10. Immunogenetic Mechanisms Driving Norovirus GII.4 Antigenic Variation

    PubMed Central

    Donaldson, Eric F.; Corti, Davide; Swanstrom, Jesica; Debbink, Kari; Lanzavecchia, Antonio; Baric, Ralph S.

    2012-01-01

    Noroviruses are the principal cause of epidemic gastroenteritis worldwide with GII.4 strains accounting for 80% of infections. The major capsid protein of GII.4 strains is evolving rapidly, resulting in new epidemic strains with altered antigenic potentials. To test if antigenic drift may contribute to GII.4 persistence, human memory B cells were immortalized and the resulting human monoclonal antibodies (mAbs) characterized for reactivity to a panel of time-ordered GII.4 virus-like particles (VLPs). Reflecting the complex exposure history of the volunteer, human anti-GII.4 mAbs grouped into three VLP reactivity patterns; ancestral (1987–1997), contemporary (2004–2009), and broad (1987–2009). NVB 114 reacted exclusively to the earliest GII.4 VLPs by EIA and blockade. NVB 97 specifically bound and blocked only contemporary GII.4 VLPs, while NBV 111 and 43.9 exclusively reacted with and blocked variants of the GII.4.2006 Minerva strain. Three mAbs had broad GII.4 reactivity. Two, NVB 37.10 and 61.3, also detected other genogroup II VLPs by EIA but did not block any VLP interactions with carbohydrate ligands. NVB 71.4 cross-neutralized the panel of time-ordered GII.4 VLPs, as measured by VLP-carbohydrate blockade assays. Using mutant VLPs designed to alter predicted antigenic epitopes, two evolving, GII.4-specific, blockade epitopes were mapped. Amino acids 294–298 and 368–372 were required for binding NVB 114, 111 and 43.9 mAbs. Amino acids 393–395 were essential for binding NVB 97, supporting earlier correlations between antibody blockade escape and carbohydrate binding variation. These data inform VLP vaccine design, provide a strategy for expanding the cross-blockade potential of chimeric VLP vaccines, and identify an antibody with broadly neutralizing therapeutic potential for the treatment of human disease. Moreover, these data support the hypothesis that GII.4 norovirus evolution is heavily influenced by antigenic variation of neutralizing epitopes