Science.gov

Sample records for driven cuprate superconductors

  1. Spin-Fluctuation-Driven Nematic Charge-Density Wave in Cuprate Superconductors: Impact of Aslamazov-Larkin Vertex Corrections.

    PubMed

    Yamakawa, Youichi; Kontani, Hiroshi

    2015-06-26

    We present a microscopic derivation of the nematic charge-density wave (CDW) formation in cuprate superconductors based on the three-orbital d-p Hubbard model by introducing the vertex correction (VC) into the charge susceptibility. The CDW instability at q=(Δ(FS),0), (0,Δ(FS)) appears when the spin fluctuations are strong, due to the strong charge-spin interference represented by the VC. Here, Δ(FS) is the wave number between the neighboring hot spots. The obtained spin-fluctuation-driven CDW is expressed as the "intra-unit-cell orbital order" accompanied by the charge transfer between the neighboring atomic orbitals, which is actually observed by the scanning tunneling microscope measurements. We predict that the cuprate CDW and the nematic orbital order in Fe-based superconductors are closely related spin-fluctuation-driven phenomena. PMID:26197139

  2. Raman scattering in cuprate superconductors

    SciTech Connect

    Devereaux, T.P.; Kampf, A.P.

    1997-07-20

    A theory for electronic Raman scattering in the cuprate superconductors is presented with a specific emphasis on the polarization dependence of the spectra which can infer the symmetry of the energy gap. Signatures of the effects of disorder on the low frequency and low temperature behavior of the Raman spectra for different symmetry channels provide detailed information about the magnitude and the phase of the energy gap. Properties of the theory for finite T will be discussed and compared to recent data concerning the doping dependence of the Raman spectra in cuprate superconductors, and remaining questions will be addressed.

  3. Oxygen diffusion in cuprate superconductors

    SciTech Connect

    Routbort, J.L.; Rothman, S.J.

    1995-01-01

    Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La{sub 2}{sub {minus}}{sub {times}}Sr{sub {times}}CuO{sub 4}, YBa{sub 2}Cu{sub 3}O{sub 7}{sub {minus}}{delta}, YBa{sub 2}Cu{sub 4}O{sub 8}, and the Bi{sub 2}Sr{sub 2}Ca{sub n}{sub {minus}}{sub 1}Cu{sub n}O{sub 2}{sub +}{sub 4} (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible.

  4. The color of polarization in cuprate superconductors

    NASA Technical Reports Server (NTRS)

    Hoff, H. A.; Osofsky, M. S.; Lechter, W. L.; Pande, C. S.

    1991-01-01

    A technique for the identification of individual anisotropic grains in a heterogeneous and opaque material involves the observation of grain color in reflected light through crossed polarizers (color of polarization). Such colors are generally characteristic of particular phases. When grains of many members of the class of hole carrier cuprate superconductors are so viewed at room temperature with a 'daylight' source, a characteristic color of polarization is observed. This color was studied in many of these cuprate superconductors and a strong correlation was found between color and the existence of superconductivity. Two members were also examined of the electron cuprate superconductors and it was found that they possess the same color of polarization as the hole carrier cuprate superconductors so far examined. The commonality of the characteristic color regardless of charge carrier indicates that the presence of this color is independent of carrier type. The correlation of this color with the existence of superconductivity in the cuprate superconductors suggests that the origin of the color relates to the origin of superconductivity. Photometric techniques are also discussed.

  5. Enhancing critical current density of cuprate superconductors

    DOEpatents

    Chaudhari, Praveen

    2015-06-16

    The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.

  6. Doping dependence of Meissner effect in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Feng, Shiping; Huang, Zheyu; Zhao, Huaisong

    2010-11-01

    Within the t- t‧- J model, the doping dependence of the Meissner effect in cuprate superconductors is studied based on the kinetic energy driven superconducting mechanism. Following the linear response theory, it is shown that the electromagnetic response consists of two parts, the diamagnetic current and the paramagnetic current, which exactly cancels the diamagnetic term in the normal state, and then the Meissner effect is obtained for all the temperature T ⩽ Tc throughout the superconducting dome. By considering the two-dimensional geometry of cuprate superconductors within the specular reflection model, the main features of the doping and temperature dependence of the local magnetic field profile, the magnetic field penetration depth, and the superfluid density observed on cuprate superconductors are well reproduced. In particular, it is shown that in analogy to the domelike shape of the doping dependent superconducting transition temperature, the maximal superfluid density occurs around the critical doping δ ≈ 0.195, and then decreases in both lower doped and higher doped regimes.

  7. Chasing arcs in cuprate superconductors.

    SciTech Connect

    Norman, M. R.; Materials Science Division

    2009-01-01

    Important clues to the origin of high-temperature superconductivity in cuprate compounds lie within the normal phase of these compounds, which forms above the transition temperature T{sub c}. One unusual feature of the normal phase is the presence of a pseudogap; depending on the momentum of the charge carrier, its excitation energy is either zero or finite (1). Two reports in Science, by Pushp et al. (2) in June and by Lee et al. (3) on page 1099 of this issue, have used scanning tunneling microscopy to provide dramatic new insights into the pseudogap phase and to elucidate how the electronic excitations, both above and below T{sub c}, differ for different values of the carrier momentum.

  8. Hole-doped cuprate high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Chu, C. W.; Deng, L. Z.; Lv, B.

    2015-07-01

    Hole-doped cuprate high temperature superconductors have ushered in the modern era of high temperature superconductivity (HTS) and have continued to be at center stage in the field. Extensive studies have been made, many compounds discovered, voluminous data compiled, numerous models proposed, many review articles written, and various prototype devices made and tested with better performance than their nonsuperconducting counterparts. The field is indeed vast. We have therefore decided to focus on the major cuprate materials systems that have laid the foundation of HTS science and technology and present several simple scaling laws that show the systematic and universal simplicity amid the complexity of these material systems, while referring readers interested in the HTS physics and devices to the review articles. Developments in the field are mostly presented in chronological order, sometimes with anecdotes, in an attempt to share some of the moments of excitement and despair in the history of HTS with readers, especially the younger ones.

  9. Exploring intertwined orders in cuprate superconductors

    DOE PAGESBeta

    Tranquada, John M.

    2014-11-22

    In this study, the concept of intertwined orders has been introduced to describe the cooperative relationship between antiferromagnetic spin correlations and electron (or hole) pair correlations that develop in copper-oxide superconductors. This contrasts with systems in which, for example, charge-density-wave (CDW) order competes for Fermi surface area with superconductivity. La2-xBaxCuO4 with x = 0.125 provides an example in which the ordering of spin stripes coincides with the onset of two-dimensional superconducting correlations. The apparent frustration of the interlayer Josephson coupling has motivated the concept of the pair-density-wave superconductor, a state that theoretical calculations show to be energetically competitive with themore » uniform d-wave superconductor. Even at x = 0.095, where there is robust superconductivity below 32 K in zero field, the coexistence of strong, low-energy, incommensurate spin excitations implies a spatially modulated and intertwined pair wave function. Recent observations of CDW order in YBa2Cu3O6+x and other cuprate families have raised interesting questions regarding the general role of charge modulations and the relation to superconductivity. While there are differences in the doping dependence of the modulation wave vectors in YBa2Cu3O6+x and La2-xBaxCuO4, the maximum ordering strength is peaked at the hole concentration of 1/8 in both cases. There are also possible connections with the quantum oscillations that have been detected about the same hole concentration but at high magnetic fields. Resolving these relationships remains a research challenge.« less

  10. Exploring intertwined orders in cuprate superconductors

    SciTech Connect

    Tranquada, John M.

    2014-11-22

    In this study, the concept of intertwined orders has been introduced to describe the cooperative relationship between antiferromagnetic spin correlations and electron (or hole) pair correlations that develop in copper-oxide superconductors. This contrasts with systems in which, for example, charge-density-wave (CDW) order competes for Fermi surface area with superconductivity. La2-xBaxCuO4 with x = 0.125 provides an example in which the ordering of spin stripes coincides with the onset of two-dimensional superconducting correlations. The apparent frustration of the interlayer Josephson coupling has motivated the concept of the pair-density-wave superconductor, a state that theoretical calculations show to be energetically competitive with the uniform d-wave superconductor. Even at x = 0.095, where there is robust superconductivity below 32 K in zero field, the coexistence of strong, low-energy, incommensurate spin excitations implies a spatially modulated and intertwined pair wave function. Recent observations of CDW order in YBa2Cu3O6+x and other cuprate families have raised interesting questions regarding the general role of charge modulations and the relation to superconductivity. While there are differences in the doping dependence of the modulation wave vectors in YBa2Cu3O6+x and La2-xBaxCuO4, the maximum ordering strength is peaked at the hole concentration of 1/8 in both cases. There are also possible connections with the quantum oscillations that have been detected about the same hole concentration but at high magnetic fields. Resolving these relationships remains a research challenge.

  11. Inhomogeneities in single crystals of cuprate oxide superconductors

    NASA Technical Reports Server (NTRS)

    Moorjani, K.; Bohandy, J.; Kim, B. F.; Adrian, F. J.

    1991-01-01

    The next stage in the evolution of experimental research on the high temperature superconductors will require high quality single crystals and epitaxially grown crystalline films. However, inhomogeneities and other defects are not uncommon in single crystals of cuprate oxide superconductors, so a corollary requirement will be a reliable method for judging the quality of these materials. The application of magnetically modulated resistance methods in this task is briefly described and illustrated.

  12. Fermi-surface reconstruction by stripe order in cuprate superconductors

    PubMed Central

    Laliberté, F.; Chang, J.; Doiron-Leyraud, N.; Hassinger, E.; Daou, R.; Rondeau, M.; Ramshaw, B.J.; Liang, R.; Bonn, D.A.; Hardy, W.N.; Pyon, S.; Takayama, T.; Takagi, H.; Sheikin, I.; Malone, L.; Proust, C.; Behnia, K.; Taillefer, Louis

    2011-01-01

    The origin of pairing in a superconductor resides in the underlying normal state. In the cuprate high-temperature superconductor YBa2Cu3Oy (YBCO), application of a magnetic field to suppress superconductivity reveals a ground state that appears to break the translational symmetry of the lattice, pointing to some density-wave order. Here we use a comparative study of thermoelectric transport in the cuprates YBCO and La1.8−xEu0.2SrxCuO4 (Eu-LSCO) to show that the two materials exhibit the same process of Fermi-surface reconstruction as a function of temperature and doping. The fact that in Eu-LSCO this reconstruction coexists with spin and charge modulations that break translational symmetry shows that stripe order is the generic non-superconducting ground state of hole-doped cuprates. PMID:21847106

  13. Fermi-surface reconstruction by stripe order in cuprate superconductors.

    PubMed

    Laliberté, F; Chang, J; Doiron-Leyraud, N; Hassinger, E; Daou, R; Rondeau, M; Ramshaw, B J; Liang, R; Bonn, D A; Hardy, W N; Pyon, S; Takayama, T; Takagi, H; Sheikin, I; Malone, L; Proust, C; Behnia, K; Taillefer, Louis

    2011-01-01

    The origin of pairing in a superconductor resides in the underlying normal state. In the cuprate high-temperature superconductor YBa(2)Cu(3)O(y) (YBCO), application of a magnetic field to suppress superconductivity reveals a ground state that appears to break the translational symmetry of the lattice, pointing to some density-wave order. Here we use a comparative study of thermoelectric transport in the cuprates YBCO and La(1.8-x)Eu(0.2)Sr(x)CuO(4) (Eu-LSCO) to show that the two materials exhibit the same process of Fermi-surface reconstruction as a function of temperature and doping. The fact that in Eu-LSCO this reconstruction coexists with spin and charge modulations that break translational symmetry shows that stripe order is the generic non-superconducting ground state of hole-doped cuprates. PMID:21847106

  14. Electronic structure of cuprate superconductors in a full charge-spin recombination scheme

    NASA Astrophysics Data System (ADS)

    Feng, Shiping; Kuang, Lülin; Zhao, Huaisong

    2015-10-01

    A long-standing unsolved problem is how a microscopic theory of superconductivity in cuprate superconductors based on the charge-spin separation can produce a large electron Fermi surface. Within the framework of the kinetic-energy driven superconducting mechanism, a full charge-spin recombination scheme is developed to fully recombine a charge carrier and a localized spin into a electron, and then is employed to study the electronic structure of cuprate superconductors in the superconducting-state. In particular, it is shown that the underlying electron Fermi surface fulfills Luttinger's theorem, while the superconducting coherence of the low-energy quasiparticle excitations is qualitatively described by the standard d-wave Bardeen-Cooper-Schrieffer formalism. The theory also shows that the observed peak-dip-hump structure in the electron spectrum and Fermi arc behavior in the underdoped regime are mainly caused by the strong energy and momentum dependence of the electron self-energy.

  15. Direct measurement of the upper critical field in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Grissonnanche, G.; Cyr-Choinière, O.; Laliberté, F.; René de Cotret, S.; Juneau-Fecteau, A.; Dufour-Beauséjour, S.; Delage, M.-È.; Leboeuf, D.; Chang, J.; Ramshaw, B. J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Adachi, S.; Hussey, N. E.; Vignolle, B.; Proust, C.; Sutherland, M.; Krämer, S.; Park, J.-H.; Graf, D.; Doiron-Leyraud, N.; Taillefer, Louis

    2014-02-01

    In the quest to increase the critical temperature Tc of cuprate superconductors, it is essential to identify the factors that limit the strength of superconductivity. The upper critical field Hc2 is a fundamental measure of that strength, yet there is no agreement on its magnitude and doping dependence in cuprate superconductors. Here we show that the thermal conductivity can be used to directly detect Hc2 in the cuprates YBa2Cu3Oy, YBa2Cu4O8 and Tl2Ba2CuO6+δ, allowing us to map out Hc2 across the doping phase diagram. It exhibits two peaks, each located at a critical point where the Fermi surface of YBa2Cu3Oy is known to undergo a transformation. Below the higher critical point, the condensation energy, obtained directly from Hc2, suffers a sudden 20-fold collapse. This reveals that phase competition—associated with Fermi-surface reconstruction and charge-density-wave order—is a key limiting factor in the superconductivity of cuprates.

  16. Direct measurement of the upper critical field in cuprate superconductors

    PubMed Central

    Grissonnanche, G.; Cyr-Choinière, O.; Laliberté, F.; René de Cotret, S.; Juneau-Fecteau, A.; Dufour-Beauséjour, S.; Delage, M. -È.; LeBoeuf, D.; Chang, J.; Ramshaw, B. J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Adachi, S.; Hussey, N. E.; Vignolle, B.; Proust, C.; Sutherland, M.; Krämer, S.; Park, J. -H.; Graf, D.; Doiron-Leyraud, N.; Taillefer, Louis

    2014-01-01

    In the quest to increase the critical temperature Tc of cuprate superconductors, it is essential to identify the factors that limit the strength of superconductivity. The upper critical field Hc2 is a fundamental measure of that strength, yet there is no agreement on its magnitude and doping dependence in cuprate superconductors. Here we show that the thermal conductivity can be used to directly detect Hc2 in the cuprates YBa2Cu3Oy, YBa2Cu4O8 and Tl2Ba2CuO6+δ, allowing us to map out Hc2 across the doping phase diagram. It exhibits two peaks, each located at a critical point where the Fermi surface of YBa2Cu3Oy is known to undergo a transformation. Below the higher critical point, the condensation energy, obtained directly from Hc2, suffers a sudden 20-fold collapse. This reveals that phase competition—associated with Fermi-surface reconstruction and charge-density-wave order—is a key limiting factor in the superconductivity of cuprates. PMID:24518054

  17. Ultrafast studies of coexisting electronic order in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Hinton, James; Thewalt, Eric; Alpichshev, Zhanybek; Sternbach, Aaron; McLeod, Alex; Ji, L.; Veit, Mike; Dorrow, Chelsey; Koralek, Jake; Xhao, Xudong; Barisic, Neven; Kemper, Alexander; Gedik, Nuh; Greven, Martin; Basov, Dimitri; Orenstein, Joe

    The cuprate family of high temperature superconductors displays a variety of electronic phases which emerge when charge carriers are added to the antiferromagnetic parent compound. These electronic phases are characterized by subtle differences in the low energy electronic excitations. Ultrafast time-resolved reflectivity (TRR) provides an ideal tool for investigating the cuprate phase diagram, as small changes in the electronic structure can produce significant contrast in the non-equilibrium reflectivity. Here we present TRR measurements of cuprate superconductors, focusing on the model single-layer cuprate HgBa2CuO4+δ. We observe a cusp-like feature in the quasiparticle lifetime near the superconducting transition temperature Tc. This feature can be understood using a model of coherently-mixed charge-density wave and superconducting pairing. We propose extending this technique to the nanoscale using ultrafast scattering scanning near-field microscopy (u-SNOM). This will allow us to explore how these electronic phases coexist and compete in real-space.

  18. Thermomagnetic effects above and below {Tc} in the cuprate superconductors

    SciTech Connect

    Clayhold, J.A.; Xue, Y.Y.; Chu, C.W.; Eckstein, J.N.; Bozovic, I.

    1996-12-31

    Two different thermomagnetic transport quantities, the electrothermal conductivity and the Nernst effect are shown to be powerful probes of high-temperature superconductors. In the vortex state below {Tc}, the electrothermal conductivity is independent of both the magnetic field and the vortex viscosity because it is sensitive only to the properties of the vortex normal cores. Some new data from cuprate superconductors show a surprising, low-field anomaly in the dilute vortex limit. Above {Tc} in the normal state, it is shown how the Nernst effect is a probe of transport anisotropy around the Fermi surface.

  19. Phase Separation in Cuprate Superconductors - Proceedings of the Workshop

    NASA Astrophysics Data System (ADS)

    Müller, K. A.; Benedek, G.

    1993-01-01

    The Table of Contents for the full book PDF is as follows: * Preface and Scope * Frustrated Phase Separation and High Temperature Superconductivity * Phase Separation and Photo-Induced High Tc Superconductivity in the Cuprates * Neutron Scattering Studies of the Spin Dynamics in La2-xSrxCuO4 * Percolative Phase Separation and High Tc Superconductivity * Phase Separation in Cuprate Superconductors from NMR and Microwave Absorption Measurements * Electronic Structure and Phase Separation in Superconducting Cuprates * The Virtual Exciton Mechanism of Superconductivity * Linear Arrays of Non Homogeneous Cu Sites in the CuO2 Plane: A New Scenario for Pairing Mechanisms in a Corrugated-Iron-Like Plane * Phase Separation, Structure and Superconductivity in Oxygen-Annealed La2CuO4+δ * Phase Separation in La2-xSrxCuO4 and YBa2Cu3Ox Studied by Mössbauer Spectroscopy * Phase Diagram and Transport Studies on La2-xSrxCuO4 * Static and Dynamic Transport Aspects of Phase Separation * Phase Separation in the Superconducting La2Cu4+δ Phases (0 < δ < 0.09) Prepared by Electrochemical Oxidation * Neutron Scattering Study of the YBa2Cu3O6+x System * NMR Investigation of Low Energy Excitations in YBa2Cu3O6+x Single Crystals * Aspects of the Spin Dynamics in the Cuprate Superconductors * Oxygen Order and Spin Structure in YBa2Cu3Ox Deduced from Copper NMR and NQR * Static and Dynamic Magnetic Properties of Ba, Cu and O in YBa2Cu4O8 and Y2Ba4Cu7O15.1 * Positional Splitting of Apex Oxygen and Nonlinear Excitations in Cuprates * Cooper Pair Formation by Distortive Electron-Lattice Coupling * Bipolaronic Charge Density Waves, Polaronic Spin Density Waves, and High Tc Superconductivity * Phase Separation as Result of a Thermodynamical Variational Method for the Emery Model * General Discussion led by G. Benedek and K. A. Müller

  20. μSR Studies of Cuprate Superconductors

    NASA Astrophysics Data System (ADS)

    Sonier, Jeff E.

    2016-09-01

    A partial review of magnetic and superconducting properties of hole-doped cuprates determined by μSR is given. Much was learned about these materials from μSR experiments performed in the early years following the discovery of high-temperature superconductivity over an intermediate range of hole doping. Through the years improvements in sample quality and μSR instrumentation has led to new information and a refined understanding of the superconductivity and magnetism. Implicit in the discussion is the evolution of the superconducting and magnetic order parameters as a function of doping concentration, temperature and magnetic field, as evidenced by μSR.

  1. Hybrid crystals of cuprates and iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Xia, Dai; Cong-Cong, Le; Xian-Xin, Wu; Jiang-Ping, Hu

    2016-07-01

    We propose two possible new compounds, Ba2CuO2Fe2As2 and K2CuO2Fe2Se2, which hybridize the building blocks of two high temperature superconductors, cuprates and iron-based superconductors. These compounds consist of square CuO2 layers and antifluorite-type Fe2 X 2 (X = As, Se) layers separated by Ba/K. The calculations of binding energies and phonon spectra indicate that they are dynamically stable, which ensures that they may be experimentally synthesized. The Fermi surfaces and electronic structures of the two compounds inherit the characteristics of both cuprates and iron-based superconductors. These compounds can be superconductors with intriguing physical properties to help to determine the pairing mechanisms of high T c superconductivity. Project supported by the National Basic Research Program of China (Grant No. 2015CB921300), the National Natural Science Foundation of China (Grant Nos. 1190020 and 11334012), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07000000).

  2. Giant proximity effect in cuprate superconductors.

    PubMed

    Bozovic, I; Logvenov, G; Verhoeven, M A J; Caputo, P; Goldobin, E; Beasley, M R

    2004-10-01

    Using an advanced molecular beam epitaxy system, we have reproducibly synthesized atomically smooth films of high-temperature superconductors and uniform trilayer junctions with virtually perfect interfaces. We found that supercurrent runs through very thick barriers. We can rule out pinholes and microshorts; this "giant proximity effect" (GPE) is intrinsic. It defies the conventional explanation; it might originate in resonant tunneling through pair states in an almost-superconducting barrier. GPE may also be significant for superconducting electronics, since thick barriers are easier to fabricate. PMID:15524925

  3. Atomic layer-by-layer epitaxy of cuprate superconductors

    SciTech Connect

    Bozovic, I.; Eckstein, J.N.; Virshup, G.F.

    1994-03-01

    A technique for atomic layer-by-layer epitaxy of cuprate superconductors and other complex oxides has been developed at Varian. The samples are engineered by stacking molecular layers of different compounds to assemble multilayers and superlattices, by adding or omitting atomic monolayers to create novel compounds, and by doping within specified atomic monolayers. Apart form manufacturing trilayer Josephson junctions with I{sub c}R{sub n}>5 mV, this technique enables one to address fundamental issues such as the dimensionality of HTSC state, existence of long-range proximity effects, occurrence of resonant tunneling etc., as well as to synthesize novel metastable HTSC compounds. 4 refs., 2 figs.

  4. Possibility of c-axis voltage steps for a cuprate superconductor in a resonant cavity

    NASA Astrophysics Data System (ADS)

    Tornes, I.; Stroud, D.

    2003-08-01

    Very anisotropic cuprate superconductors, such as BiSr2Ca2CuO8+x, when driven by currents parallel to the c axis, behave like stacks of underdamped Josephson junctions. Here, we analyze the possibility that such a stack can be caused to phase lock, to exhibit self-induced resonant voltage steps (SIRS’s), and hence to radiate coherently when placed in a suitable resonant electromagnetic cavity. We analyze this possibility using equations of motion developed to describe such SIRS’s in stacks of artificial Josephson junctions. We conclude that such steps might be observable with a suitably chosen cavity and resonant frequency.

  5. Theoretical study of magnetoelectric effects in noncentrosymmetric and cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Kashyap, Manoj K.

    A century after the discovery of superconductivity at the lab of Kamerlingh Onnes in 1911, it is noticeable that the phenomenon is quite ubiquitous in nature. In addition to a long list of superconducting alloys and compounds, almost half the elements in the periodic table superconduct. By the late seventies, superconductivity was thought to be well understood. This turned out to be a myth, with the discovery of unconventional superconductors that defied Bardeen-Cooper-Schrieffer (BCS) theory. Cuprates have been the most prominent example among them ever since their discovery in 1986 by Bednorz and Muller. Another example of non-compliance with BCS theory lie among noncentrosymmetric superconductors. In this dissertation, magnetoelectric (ME) effects in these two classes of superconductors have been studied from different perspectives, utilizing Ginzburg-Landau (GL) theory. Even though GL theory was proposed before the BCS theory, it was not given much importance due to its phenomenological nature until Gor'kov proved that it is a limiting form of the microscopic BCS theory. However today, in the absence of any complete microscopic theory to explain superconductivity in unconventional superconductors, Ginzburg-Landau theory is an important tool to move ahead and qualitatively understand the behavior of varied superconducting systems. Noncentrosymmetric superconductors have generated much theoretical interest since 2004 despite been known for long. The absence of inversion symmetry in non- centrosymmetric superconductors allows for extra terms called Lifshitz invariants in the Ginzburg-Landau functional. This leads to magnetoelectric effects that do not exist in centrosymmetric superconductors. One manifestation of this is in the vortex structure in materials with a cubic point group O. In particular, a current is predicted to flow parallel to the applied magnetic field in such a vortex in addition to the usual vortex supercurrents. In this work, we present both

  6. p-Orbital Density Wave with d Symmetry in High-Tc Cuprate Superconductors

    NASA Astrophysics Data System (ADS)

    Tsuchiizu, Masahisa; Yamakawa, Youichi; Kontani, Hiroshi

    Emergence of the nematic density wave is a fundamental unsolved problem in cuprate superconductors. To understand the origin of the nematicity, we employ the recently-developed functional renormalization-group method with high numerical accuracy, and discover the critical development of the p-orbital-density-wave (p-ODW) instability in the strong-spin-fluctuation region. The obtained p-ODW state possesses the key characteristics of the charge ordering pattern in Bi- and Y-based superconductors, such as the wavevector parallel to the nearest Cu-Cu direction, and the d-symmetry form factor with the antiphase correlation between px and py orbitals in the same unit cell. From the beautiful scaling relation between the spin susceptibility and the p-ODW susceptibility, we conclude that the p-ODW is driven by the strong interference between spin and charge fluctuations. It is clarified that the strong charge-spin interference, which is the origin of the nematicity, is the hidden but significant characteristics of the electronic states in cuprate superconductors.

  7. Quantum Phase Transitions of Antiferromagnets and the Cuprate Superconductors

    NASA Astrophysics Data System (ADS)

    Sachdev, Subir

    I begin with a proposed global phase diagram of the cuprate superconductors as a function of carrier concentration, magnetic field, and temperature, and highlight its connection to numerous recent experiments. The phase diagram is then used as a point of departure for a pedagogical review of various quantum phases and phase transitions of insulators, superconductors, and metals. The bond operator method is used to describe the transition of dimerized antiferromagnetic insulators between magnetically ordered states and spin-gap states. The Schwinger boson method is applied to frustrated square lattice antiferromagnets: phase diagrams containing collinear and spirally ordered magnetic states, Z_2 spin liquids, and valence bond solids are presented, and described by an effective gauge theory of spinons. Insights from these theories of insulators are then applied to a variety of symmetry breaking transitions in d-wave superconductors. The latter systems also contain fermionic quasiparticles with a massless Dirac spectrum, and their influence on the order parameter fluctuations and quantum criticality is carefully discussed. I conclude with an introduction to strong coupling problems associated with symmetry breaking transitions in two-dimensional metals, where the order parameter fluctuations couple to a gapless line of fermionic excitations along the Fermi surface.

  8. Atomic-Layer Engineering of Cuprate Superconductors (415th Brookhaven Lecture)

    SciTech Connect

    Bozovic, Ivan

    2006-05-17

    Copper-oxide compounds, called cuprates, show superconducting properties at 163 degrees Kelvin, the highest temperature of any known superconducting material. Cuprates are therefore among the 'high-temperature superconductors' of extreme interest both to scientists and to industry. Research to learn their secrets is one of the hottest topics in the field of materials science.

  9. Fluctuating charge-density waves in a cuprate superconductor.

    PubMed

    Torchinsky, Darius H; Mahmood, Fahad; Bollinger, Anthony T; Božović, Ivan; Gedik, Nuh

    2013-05-01

    Cuprate materials hosting high-temperature superconductivity (HTS) also exhibit various forms of charge and spin ordering whose significance is not fully understood. So far, static charge-density waves (CDWs) have been detected by diffraction probes only at particular doping levels or in an applied external field . However, dynamic CDWs may also be present more broadly and their detection, characterization and relationship with HTS remain open problems. Here we present a method based on ultrafast spectroscopy to detect the presence and measure the lifetimes of CDW fluctuations in cuprates. In an underdoped La(1.9)Sr(0.1)CuO4 film (T(c) = 26 K), we observe collective excitations of CDW that persist up to 100 K. This dynamic CDW fluctuates with a characteristic lifetime of 2 ps at T = 5 K that decreases to 0.5 ps at T = 100 K. In contrast, in an optimally doped La(1.84)Sr(0.16)CuO4 film (T(c) = 38.5 K), we detect no signatures of fluctuating CDWs at any temperature, favouring the competition scenario. This work forges a path for studying fluctuating order parameters in various superconductors and other materials. PMID:23435216

  10. Charge orders, magnetism and pairings in the cuprate superconductors.

    PubMed

    Kloss, T; Montiel, X; de Carvalho, V S; Freire, H; Pépin, C

    2016-08-01

    We review the recent developments in the field of cuprate superconductors with special focus on the recently observed charge order in the underdoped compounds. We introduce new theoretical developments following the study of the antiferromagnetic quantum critical point in two dimensions, in which preemptive orders in both charge and superconducting (SC) sectors emerge, that are in turn related by an SU(2) symmetry. We consider the implications of this proliferation of orders in the underdoped region, and provide a study of the type of fluctuations which characterize the SU(2) symmetry. We identify an intermediate energy scale where the SC fluctuations are dominant and argue that they are unstable towards the formation of a resonant excitonic state at the pseudogap temperature T (*). We discuss the implications of this scenario for a few key experiments. PMID:27427401

  11. Spin excitations of ferronematic order in underdoped cuprate superconductors

    PubMed Central

    Seibold, G.; Di Castro, C.; Grilli, M.; Lorenzana, J.

    2014-01-01

    High-temperature superconductors exhibit a characteristic hourglass-shaped spectrum of magnetic fluctuations which most likely contribute to the pairing glue in the cuprates. Recent neutron scattering experiments in strongly underdoped compounds have revealed a significant low energy anisotropy of these fluctuations which we explain by a model in which topological defects of the antiferromagnet clump to producing domain wall segments with ferronematic order. This state does not invoke global charge order but breaks C4 rotational and inversion symmetry. The incommensurability of the low doping charge-disordered state is in good agreement with experiment and interpolates smoothly with the incommensurability of the stripe phase at higher doping. Within linear spin-wave theory the dynamic structure factor is in very good agreement with inelastic neutron scattering data and can account for the observed energy dependent anisotropy. PMID:24936723

  12. Charge orders, magnetism and pairings in the cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Kloss, T.; Montiel, X.; de Carvalho, V. S.; Freire, H.; Pépin, C.

    2016-08-01

    We review the recent developments in the field of cuprate superconductors with special focus on the recently observed charge order in the underdoped compounds. We introduce new theoretical developments following the study of the antiferromagnetic quantum critical point in two dimensions, in which preemptive orders in both charge and superconducting (SC) sectors emerge, that are in turn related by an SU(2) symmetry. We consider the implications of this proliferation of orders in the underdoped region, and provide a study of the type of fluctuations which characterize the SU(2) symmetry. We identify an intermediate energy scale where the SC fluctuations are dominant and argue that they are unstable towards the formation of a resonant excitonic state at the pseudogap temperature T *. We discuss the implications of this scenario for a few key experiments.

  13. Inverse correlation between quasiparticle mass and T c in a cuprate high-T c superconductor.

    PubMed

    Putzke, Carsten; Malone, Liam; Badoux, Sven; Vignolle, Baptiste; Vignolles, David; Tabis, Wojciech; Walmsley, Philip; Bird, Matthew; Hussey, Nigel E; Proust, Cyril; Carrington, Antony

    2016-03-01

    Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature T c is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-T c superconductivity. We have tested the robustness of this correlation between m* and T c by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as T c increases under pressure. This inverse correlation between m* and T c suggests that quantum fluctuations of the charge order enhance m* but do not enhance T c. PMID:27034989

  14. Inverse correlation between quasiparticle mass and Tc in a cuprate high-Tc superconductor

    PubMed Central

    Putzke, Carsten; Malone, Liam; Badoux, Sven; Vignolle, Baptiste; Vignolles, David; Tabis, Wojciech; Walmsley, Philip; Bird, Matthew; Hussey, Nigel E.; Proust, Cyril; Carrington, Antony

    2016-01-01

    Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature Tc is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-Tc superconductivity. We have tested the robustness of this correlation between m* and Tc by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as Tc increases under pressure. This inverse correlation between m* and Tc suggests that quantum fluctuations of the charge order enhance m* but do not enhance Tc. PMID:27034989

  15. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    SciTech Connect

    Palczewski, Ari Deibert

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc, max ≈ 95 K and (Bi 1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc, max ≈ 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major differences in the band structure. First, the Fermi surface segments close to (π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is consistent

  16. Infrared pseudogap in cuprate and pnictide high-temperature superconductors

    SciTech Connect

    Moon, S. J.; Lee, Y. S.; Schafgans, A. A.; Chubukov, A. V.; Kasahara, S.; Shibauchi, T.; Terashima, T.; Matsuda, Y.; Tanatar, M. A.; Prozorov, R.; Thaler, A.; Canfield, Paul C.; Bud'ko, Sergey L.; Sefat, A. S.; Mandrus, D.; Segawa, K.; Ando, Y.; Basov, D. N.

    2014-07-01

    We investigate infrared manifestations of the pseudogap in the prototypical cuprate and pnictide superconductors, YBa2Cu3Oy and BaFe2As2 (Ba122) systems. We find remarkable similarities between the spectroscopic features attributable to the pseudogap in these two classes of superconductors. The hallmarks of the pseudogap state in both systems include a weak absorption feature at about 500cm-1 followed by a featureless continuum between 500 and 1500cm-1 in the conductivity data and a significant suppression in the scattering rate below 700–900 cm-1. The latter result allows us to identify the energy scale associated with the pseudogap ΔPG. We find that in the Ba122-based materials the superconductivity-induced changes of the infrared spectra occur in the frequency region below 100–200 cm-1, which is much lower than the energy scale of the pseudogap. We performed theoretical analysis of the scattering rate data of the two compounds using the same model, which accounts for the effects of the pseudogap and electron-boson coupling. We find that the scattering rate suppression in Ba122-based compounds below ΔPG is solely due to the pseudogap formation, whereas the impact of the electron-boson coupling effects is limited to lower frequencies. The magnetic resonance modes used as inputs in our modeling are found to evolve with the development of the pseudogap, suggesting an intimate correlation between the pseudogap and magnetism

  17. Interlayer coupling and the thermopower of cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Zhou, J.-S.; Goodenough, J. B.

    1996-11-01

    A review of the extant literature on the thermopower (TEP) of the cuprate superconductors reveals a transition from polaronic to homogeneous itinerant electron behavior with increasing hole concentration in the CuO2 sheets. Superconductivity appears at the compositions of crossover from one regime to the other, and the normal state of the superconductors retains a heterogeneous electronic structure of mobile hole-rich and hole-poor domains, which introduces both a statistical and a transport component to the Seebeck coefficient. A primary manifestation of the transport component is an enhancement term δα(T) having a maximum at a Tmax=100-140 K, which is characteristic of a strong coupling of the charge carriers to optical rather than acoustic phonons. Comparison of the TEP for La1.85Sr0.15CuO4 vs La0.85Sr1.15GaCuO5 and La1.8Sr0.2CaCu2O6+δ vs Bi2Sr2CaCu2O8+δ indicates that an increase in the c-axis coupling between neighboring CuO2 sheets increases the size of the polaron or hole-rich domains in the underdoped compositions, thereby lowering the room-temperature value of the Seebeck coefficient α(300 K) and increasing the magnitude of δα(T). These observations implicate a strong elastic component, enhanced by electron-lattice interactions, in the c-axis coupling as well as in the formation of larger nonadiabatic polarons and their interactions within the CuO2 planes. They also signal that caution must be exercised in any application of a ``universal plot'' of α(300 K) versus hole concentration p per Cu atom in a CuO2 plane to obtain a value of p from TEP data.

  18. Tuning order in the cuprate superconductors by a magnetic field

    NASA Astrophysics Data System (ADS)

    Sachdev, Subir

    2002-03-01

    An innovative series of recent neutron scattering(B. Lake et al.), Science 291, 1759 (2001); B. Khyakovich et al., preprint; B. Lake et al., preprint. and STM(J. Hoffman et al.), Science, Feb 2002. experiments have shed new light on the nature of strong correlations in the cuprate superconductors. Some of these experiments use a magnetic field, applied perpendicular to the CuO2 layers, to tune the low temperature properties of the superconducting state. Their results support the idea that ground state correlations in the doped Mott insulator can be described using a framework of competing order parameters, and of proximity to quantum phase transitions associated with them. In our view, they also offer compelling evidence that the orders competing with superconductivity are spin and charge density waves. The predictions(E. Demler, S. Sachdev, and Y. Zhang, Phys. Rev. Lett. 87), 067202 (2001); S. Sachdev, cond- mat/0108238 A. Polkovnikov, S. Sachdev, M. Vojta, and E. Demler, cond- mat/0110329. of the theories of such quantum transitions will be reviewed and compared with the recent experimental results. In particular, we show that the quantum theory of a spin-density-wave ordering transition in a superconductor simultaneously describes a variety of observations with a single set of typical parameters: the field dependence of the elastic neutron scattering intensity, the absence of satellite Bragg peaks associated with the vortex lattice in existing neutron scattering experiments, and the spatial extent of the charge order in STM experiments.

  19. Electronic excitations in electron-doped cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Unger, P.; Fulde, P.

    1995-04-01

    We calculate the electronic single-particle spectrum of an electron-doped cuprate superconductor such as Nd2-xCexCuO4-y. The dynamics of holes in the Cu-O planes is described by the extended Hubbard or Emery model. We consider the system at half-filling (one hole per unit cell, nh=1) and in the case of electron doping where the ground state is paramagnetic. The projection technique of Mori and Zwanzig is applied to derive the equations of motion for the Green's functions of Cu and O holes. These equations are solved self-consistently as in a previous calculation, where we considered the case of hole doping. At half-filling the system exhibits a charge-transfer gap bounded by Zhang-Rice singlet states and the upper Hubbard band. Upon electron doping the upper Hubbard band crosses the Fermi level and the system becomes metallic. With increasing electron doping the singlet band loses intensity and finally vanishes for nh=0. The corresponding spectral weight is transferred to the upper Hubbard band, which becomes a usual tight-binding band for zero hole concentration. The shape of the flat band crossing the Fermi level fits well to angle-resolved photoemission spectra of Nd2-xCexCuO4-y for x=0.15 and 0.22. Furthermore, our findings are in excellent agreement with exact diagonalization studies of 2×2 CuO2 cluster with periodic boundary conditions.

  20. Polar Kerr effect in high temperature cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Tewari, Sumanta; Sharma, Girish; Goswami, Pallab; Yakovenko, Victor; Chakravarty, Sudip

    A mechanism is proposed for the tantalizing evidence of polar Kerr effect in a class of high temperature superconductors-the signs of the Kerr angle from two opposite faces of the same sample are identical and magnetic field training is non-existent. The mechanism does not break global time reversal symmetry, as in an antiferromagnet, and results in zero Faraday effect. It is best understood in a phenomenological model of bilayer cuprates, such as YBCO, in which intra-bilayer tunneling nucleates a chiral d-density wave such that the individual layers have opposite chirality. Although the presentation is specific to the chiral d-density wave, the mechanism may be more general to any quasi-two-dimensional orbital antiferromagnet in which time reversal symmetry is broken in each plane, but not when averaged macroscopically. St and GS supported by AFOSR (FA9550-13-1-0045), PG supported by JQI-NSF-PFC, SC supported by NSF-DMR-1004520.

  1. Infrared Faraday Measurements on Cuprate High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Arik, M. Murat; Mukherjee, Alok; Cerne, John; Lubashevsky, Y.; Pan, Lidong; Armitage, N. P.; Kirzhner, T.; Koren, G.

    2014-03-01

    Recent measurements on cuprate high temperature superconductors (CHTS) have observed evidence for symmetry breakings in the pseudogap phase, suggesting that this is a full-fledged phase with an actual broken symmetry. To test the spectral character of this broken symmetry, we have made infrared polarization-sensitive measurements in the absence of magnetic field on a series of CHTS films. We have studied the Faraday effect (change in the polarization of transmitted light) in CHTS films as a function of temperature (10-300K), energy (0.1-3 eV), and sample orientation with respect to the incident light polarization. We observe a strong linear optical anisotropy, well above the superconducting transition temperature. This signal is maximized when the sample lattice axes are oriented near 45o with respect to the incident light polarization, and varies as the sample is rotated. We explore the temperature and energy dependence of this signal. This work supported by NSF-DMR1006078 and Gordon and Betty Moore Foundation through Grant GBMF2628.

  2. Spin excitations and superconductivity in cuprate oxide and heavy electron superconductors

    NASA Astrophysics Data System (ADS)

    Pines, David

    1990-04-01

    The experimental evidence for a temperature-dependent build up of antiferromagnetic correlations between Cu 2+ planar spins in the normal state of cuprate oxide superconductors is reviewed, and a phenomenological one-component model, developed in collaboration with A. Millis and H. Monien, which appears capable of providing a quantitative account of existing experiments is described. A scaling law which relates the superconducting transaction temperature to the measurable spin-spin correlation length is proposed. The NMR experimental results in the superconducting state are shown to be consistent with d-wave pairing in a strong coupling superconductor. Comparison of the results of NMR experiments on the cuprate oxide and heavy electron superconductors reveals striking similarities. I conclude that the cuprate oxide superconductors are unconventional superconductors in which the superconductivity is of (primarily) electronic origin and results from an attractive interaction of antiferromagnetic character between itinerant quasiparticles in the spin antisymmetric channel, and discuss similarities and differences between cuprate oxide and heavy electron systems.

  3. Liquid-gated superconductor-insulator transition in an electron-doped cuprate

    NASA Astrophysics Data System (ADS)

    Zeng, Shengwei; Huang, Zhen; Bao, Nina; Lv, Weiming; Liu, Zhiqi; Herng, T. S.; Gopinadhan, K.; Jian, Linke; Ding, J.; Venkatesan, T.; Ariando, Ariando

    2014-03-01

    Doping charge carriers will causes the change of cuprates from antiferromagnetic Mott insulators to high-Tc superconductors. Continuous changing of carrier density is necessary to understand the nature of such phase transition, and thus, further our understanding of cuprate superconductors. Electric field-effect doping, especially with electronic double layer transistors (EDLT) configuration which use ionic liquids (ILs) and polymer electrolyte as the gate dielectrics, is a potential avenue for this investigation and it has been shown its effectiveness in inducing phase transition in strongly correlated electron system. Owing to EDLT, superconductor-to-insulator transition (SIT) has been observed in hole-doped cuprates La2-xSrxCuO4 and YBa2Cu3Oy. Here we use EDLT to tune the carrier density in electron-doped cuprates Pr2-xCexCuO4 ultrathin films and cause the sample evolves from a superconducting state to an insulating state. This present results could be helpful to study SIT between electron- and hole-doped cuprates.

  4. Excitation of coherent oscillations in underdoped cuprate superconductors by intense THz pulses

    NASA Astrophysics Data System (ADS)

    Hoffmann, Matthias C.; Lee, Wei-Sheng; Dakovski, Georgi L.; Turner, Joshua J.; Gerber, Simon M.; Bonn, Doug; Hardy, Walter; Liang, Ruixing; Salluzzo, Marco

    2016-05-01

    We use intense broadband THz pulses to excite the cuprate superconductors YBCO and NBCO in their underdoped phase, where superconducting and charge density wave ground states compete. We observe pronounced coherent oscillations at attributed to renormalized low-energy phonon modes. These oscillation features are much more prominent than those observed in all-optical pump-probe measurements, suggesting a different excitation mechanism.

  5. Berry phases and the intrinsic thermal Hall effect in high-temperature cuprate superconductors.

    PubMed

    Cvetkovic, Vladimir; Vafek, Oskar

    2015-01-01

    Bogolyubov quasiparticles move in a practically uniform magnetic field in the vortex state of high-temperature cuprate superconductors. When set in motion by an externally applied heat current, the quasiparticles' trajectories may bend, causing a temperature gradient perpendicular to the heat current and the applied magnetic field, resulting in the thermal Hall effect. Here we relate this effect to the Berry curvature of quasiparticle magnetic sub-bands, and calculate the dependence of the intrinsic thermal Hall conductivity on superconductor's temperature, magnetic field and the amplitude of the d-wave pairing. The intrinsic contribution to thermal Hall conductivity displays a rapid onset with increasing temperature, which compares favourably with existing experiments at high magnetic field on the highest purity samples. Because such temperature onset is related to the pairing amplitude, our finding may help to settle a much-debated question of the bulk value of the pairing strength in cuprate superconductors in magnetic field. PMID:25758469

  6. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    SciTech Connect

    Zhou, X.J.

    2010-04-30

    In addition to the record high superconducting transition temperature (T{sub c}), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T{sub c}, and anomalous normal state properties above T{sub c}. In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T{sub c}. As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T{sub c} superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not

  7. Magnetic proximity effect at the interface between a cuprate superconductor and an oxide spin valve

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, G. A.; Demidov, V. V.; Khaydukov, Yu. N.; Mustafa, L.; Constantinian, K. Y.; Kalabukhov, A. V.; Winkler, D.

    2016-04-01

    A heterostructure that consists of the YBa2Cu3O7-δ cuprate superconductor and the SrRuO3/La0.7Sr0.3MnO3 ruthenate/manganite spin valve is investigated using SQUID magnetometry, ferromagnetic resonance, and neutron reflectometry. It is shown that a magnetic moment is induced due to the magnetic proximity effect in the superconducting part of the heterostructure, while the magnetic moment in the composite ferromagnetic interlayer is suppressed. The magnetization emerging in the superconductor coincides in order of magnitude with the results of calculations taking into account the induced magnetic moment of Cu atoms because of orbital reconstruction at the interface between the superconductor and the ferromagnet, as well as with the results of the model taking into account the variations in the density of states at a distance on the order of the coherence length in the superconductor. The experimentally obtained characteristic penetration depth of the magnetic moment in the superconductor considerably exceeds the coherence length of the cuprate superconductor, which indicates the predominance of the mechanism of induced magnetic moment of Cu atoms.

  8. TOPICAL REVIEW: Theory of extrinsic and intrinsic tunnelling in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Beanland, J.; Alexandrov, A. S.

    2010-10-01

    There has been a huge theoretical and experimental push to try to illuminate the mechanism behind the high-temperature superconductivity of copper oxides. Cuprates are distinguishable from conventional metallic superconductors in originating from the doping of the parent charge-transfer insulators. The superconducting parts are weakly coupled two-dimensional doped layers held together by the parent lattice. Apart from their high-Tc they have other characteristic features including the 'superconducting' gap (SG) which develops below the superconducting critical temperature and can be seen in extrinsic and intrinsic tunnelling experiments as well as using high-resolution angle-resolved photoemission (ARPES); there also exists another energy gap, the 'pseudogap' (PG), which is a large anomalous gap that exists well above Tc. We present a brief review of recent theories behind the pseudogap and discuss in detail one specific (polaronic) approach which explains the SG, PG and unusual tunnelling characteristics of cuprate superconductors.

  9. Relationship between critical temperature and core orbital coupling in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Chen, Ning

    2016-04-01

    Because superconductivity and several relevant phenomena of high-temperature superconductors (HTSCs) arise from interactions of valence electrons near the Fermi surface, the valence orbital coupling has usually been thought to be critical to understanding the electronic pairing mechanism which seems work without the core coupling orbitals. But, as strong electronic correlations are believed to be essential for a comprehensive understanding of the cuprate superconductors, the Fermi surface is influenced directly or indirectly by all orbital couplings in the entire energy band. In this paper, we focused on the core orbital coupling which arises from the overlap between the Oxygen's 2 s core orbital and the core p orbital of neighboring ion of CuO2 layers as they have a similar energy level ranging from -12 ∼ -23 eV below the Fermi level. The characters of this core coupling are varied with different kinds of neighboring ions or from the crystal structures. Based on the experimental superconducting critical temperature (Tc) data, we found that the binding energy differences between the valence couplings and the core couplings are positively related with the systemic Tc values for all cuprate superconductors. Obviously, this relationship suggests that the electron pairing nature of superconductivity for all cuprates might arise from the sp core orbital coupling.

  10. Laser-ARPES studies of BSCCO-BASED cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Douglas, J. F.; Koralek, J. D.; Sun, Z.; Plumb, N. C.; Wang, Q.; Reber, T. J.; Griffith, J. D.; Aiura, Y.; Oka, K.; Eisaki, H.; Dessau, D. S.; Devereaux, T. P.; Johnson, S. S.

    2007-03-01

    Utilizing 6 eV and 7 eV laser light, we have performed high-resolution ANGLE RESOLVED PHOTOEMISSION studies of the BSCCO family of superconductors. This higher resolution, in both energy and momentum, has allowed the observation of interesting new doping- and temperature-dependent features in the nodal and near nodal dispersions in these materials.

  11. Cuprate-titanate superconductor and method for making

    DOEpatents

    Toreki, R.; Poeppelmeier, K.; Dabrowski, B.

    1995-05-23

    A new copper oxide superconductor of the formula Ln{sub 1{minus}x}M{sub x}Sr{sub 2}Cu{sub 3{minus}y}Ti{sub y}O{sub 7+{delta}} is disclosed, and exhibits a {Tc} of 60 K with deviations from linear metallic behavior as high as 130 K. 2 Figs.

  12. Cuprate-titanate superconductor and method for making

    DOEpatents

    Toreki, Robert; Poeppelmeier, Kenneth; Dabrowski, Bogdan

    1995-01-01

    A new copper oxide superconductor of the formula Ln.sub.1-x M.sub.x Sr.sub.2 Cu.sub.3-y Ti.sub.y O.sub.7+.delta. is disclosed, and exhibits a Tc of 60.degree. K. with deviations from linear metallic behavior as high as 130.degree. K.

  13. A pseudogap term in the magnetic response of the cuprate superconductors

    SciTech Connect

    Walstedt, Professor Russell E.; Mason, Dr. Thomas Edward; Aeppli, Professor Gabriel; Hayden, Professor Stephen M.; Mook Jr, Herbert A

    2011-01-01

    We combine neutron scattering (INS) data and NMR/NQR nuclear spin lattice relaxation rate (1/T1) data to deduce the existence of a new contribution to the magnetic response (~q, ) in cuprate superconductors. This contribution, which has yet to be observed with INS, is shown to embody the magnetic pseudogap effects. As such, it explains the long-standing puzzle of pseudogap effects missing from cuprate INS data, dominated by stripe fluctuations, for (~q, ) at low energies. For La1.86Sr0.14CuO4 and Y Ba2Cu3O6.5, the new term is the chief contributor to 1/T1 for T Tc.

  14. Two-dimensional superconductor-insulator quantum phase transitions in an electron-doped cuprate

    NASA Astrophysics Data System (ADS)

    Zeng, S. W.; Huang, Z.; Lv, W. M.; Bao, N. N.; Gopinadhan, K.; Jian, L. K.; Herng, T. S.; Liu, Z. Q.; Zhao, Y. L.; Li, C. J.; Harsan Ma, H. J.; Yang, P.; Ding, J.; Venkatesan, T.; Ariando

    2015-07-01

    We use an ionic liquid-assisted electric-field effect to tune the carrier density in an electron-doped cuprate ultrathin film and cause a two-dimensional superconductor-insulator transition (SIT). The low upper critical field in this system allows us to perform magnetic-field (B)-induced SIT in the liquid-gated superconducting film. Finite-size scaling analysis indicates that SITs induced both by electric and by magnetic fields are quantum phase transitions and the transitions are governed by percolation effects—quantum mechanical in the former and classical in the latter cases. Compared to the hole-doped cuprates, the SITs in the electron-doped system occur at critical sheet resistances (Rc) much lower than the pair quantum resistance RQ=h /(2e ) 2=6.45 k Ω , suggesting the possible existence of fermionic excitations at finite temperatures at the insulating phase near the SITs.

  15. Wiedemann-Franz law in the underdoped cuprate superconductor YBa2Cu3Oy

    NASA Astrophysics Data System (ADS)

    Grissonnanche, G.; Laliberté, F.; Dufour-Beauséjour, S.; Matusiak, M.; Badoux, S.; Tafti, F. F.; Michon, B.; Riopel, A.; Cyr-Choinière, O.; Baglo, J. C.; Ramshaw, B. J.; Liang, R.; Bonn, D. A.; Hardy, W. N.; Krämer, S.; LeBoeuf, D.; Graf, D.; Doiron-Leyraud, N.; Taillefer, Louis

    2016-02-01

    The electrical and thermal Hall conductivities of the cuprate superconductor YBa2Cu3Oy , σx y and κx y, were measured in a magnetic field up to 35 T, at a hole concentration (doping) p =0.11 . In the T =0 limit, we find that the Wiedemann-Franz law, κx y/T =(π2/3 ) (kB/e ) 2σx y , is satisfied for fields immediately above the vortex-melting field Hvs. This rules out the existence of a vortex liquid at T =0 and it puts a clear constraint on the nature of the normal state in underdoped cuprates, in a region of the doping phase diagram where charge-density-wave order is known to exist. As the temperature is raised, the Lorenz ratio, Lxy=κxy/(σxyT ) , decreases rapidly, indicating that strong small-q scattering processes are involved.

  16. Electronic states of cuprate superconductors containing halogen or carbon

    NASA Astrophysics Data System (ADS)

    Tohiyama, Takami; Shibata, Yasumasa; Maekawa, Sadamichi

    1996-12-01

    The electronic states of the halo-oxocuprate and oxycarbonate superconductors are examined by means of the ionic and cluster models. The oxycarbonates examined contain the CO3 group on one side of the CuO2 plane. The superconducting critical temperature Tc is found to be correlated with the stability of the Zhang-Rice local singlet in the CuO2 plane. The stability is generally determined by two factors: (1) the energy-level separation between apical ion and in-plane oxygen and (2) the hybridization between apical pz and in-plane orbitals. The former is dominant for the oxycarbonates. It is also found that the CO3 group has no effect on the stabilization. For the halo-oxocuprates, the latter is crucial to stabilize the singlet.

  17. The Ground State of the Pseudogap in Cuprate Superconductors

    NASA Astrophysics Data System (ADS)

    Valla, T.; Fedorov, A. V.; Lee, Jinho; Davis, J. C.; Gu, G. D.

    2006-12-01

    We present studies of the electronic structure of La2 xBaxCuO4, a system where the superconductivity is strongly suppressed as static spin and charge orders or “stripes” develop near the doping level of x = 18. Using angle-resolved photoemission and scanning tunneling microscopy, we detect an energy gap at the Fermi surface with magnitude consistent with d-wave symmetry and with linear density of states, vanishing only at four nodal points, even when superconductivity disappears at x = 18. Thus, the nonsuperconducting, striped state at x = 18 is consistent with a phase-incoherent d-wave superconductor whose Cooper pairs form spin-charge ordered structures instead of becoming superconducting.

  18. Scaling relation for the superfluid density of cuprate superconductors: Origins and limits

    NASA Astrophysics Data System (ADS)

    Tallon, J. L.; Cooper, J. R.; Naqib, S. H.; Loram, J. W.

    2006-05-01

    A universal scaling relation, ρs∝σ(Tc)×Tc has been reported by Homes [Nature (London) 430, 539 (2004)] where ρs is the superfluid density and σ(T) is the dc conductivity. The relation was shown to apply to both c -axis and in-plane dynamics for high- Tc superconductors as well as to the more conventional superconductors Nb and Pb, suggesting common physics in these systems. We show quantitatively that the scaling behavior has several possible origins, including marginal Fermi-liquid behavior, Josephson coupling, dirty-limit superconductivity, and unitary impurity scattering for a d -wave order parameter. However, the relation breaks down seriously in overdoped cuprates, and possibly even at lower doping.

  19. Mechanics of Individual, Isolated Vortices in a Cuprate Superconductor

    SciTech Connect

    Auslaender, M.

    2010-05-25

    Superconductors often contain quantized microscopic whirlpools of electrons, called vortices, that can be modeled as one-dimensional elastic objects. Vortices are a diverse playground for condensed matter because of the interplay between thermal fluctuations, vortex-vortex interactions, and the interaction of the vortex core with the three-dimensional disorder landscape. While vortex matter has been studied extensively, the static and dynamic properties of an individual vortex have not. Here we employ magnetic force microscopy (MFM) to image and manipulate individual vortices in detwinned, single crystal YBa{sub 2}Cu{sub 3}O{sub 6.991} (YBCO), directly measuring the interaction of a moving vortex with the local disorder potential. We find an unexpected and dramatic enhancement of the response of a vortex to pulling when we wiggle it transversely. In addition, we find enhanced vortex pinning anisotropy that suggests clustering of oxygen vacancies in our sample and demonstrates the power of MFM to probe vortex structure and microscopic defects that cause pinning.

  20. Recombination and propagation of quasiparticles in cuprate superconductors

    SciTech Connect

    Gedik, Nuh

    2004-05-20

    Rapid developments in time-resolved optical spectroscopy have led to renewed interest in the nonequilibrium state of superconductors and other highly correlated electron materials. In these experiments, the nonequilibrium state is prepared by the absorption of short (less than 100 fs) laser pulses, typically in the near-infrared, that perturb the density and energy distribution of quasiparticles. The evolution of the nonequilibrium state is probed by time resolving the changes in the optical response functions of the medium that take place after photoexcitation. Ultimately, the goal of such experiments is to understand not only the nonequilibrium state, but to shed light on the still poorly understood equilibrium properties of these materials. We report nonequilibrium experiments that have revealed aspects of the cup rates that have been inaccessible by other techniques. Namely, the diffusion and recombination coefficients of quasiparticles have been measured in both YBa{sub 2}Cu{sub 3}O{sub 6.5} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x} using time-resolved optical spectroscopy. Dependence of these measurements on doping, temperature and laser intensity is also obtained. To study the recombination of quasiparticles, we measure the change in reflectivity {Delta}R which is directly proportional to the nonequilibrium quasiparticle density created by the laser. From the intensity dependence, we estimate {beta}, the inelastic scattering coefficient and {gamma}{sub th} thermal equilibrium quasiparticle decay rate. We also present the dependence of recombination measurements on doping in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x}. Going from underdoped to overdoped regime, the sign of {Delta}R changes from positive to negative right at the optimal doping. This is accompanied by a change in dynamics. The decay of {Delta}R stops being intensity dependent exactly at the optimal doping. We provide possible interpretations of these two observations. To study the propagation of

  1. Emery vs. Hubbard model for cuprate superconductors: a composite operator method study

    NASA Astrophysics Data System (ADS)

    Avella, Adolfo; Mancini, Ferdinando; Mancini, Francesco Paolo; Plekhanov, Evgeny

    2013-06-01

    Within the composite operator method (COM), we report the solution of the Emery model (also known as p- d or three band model), which is relevant for the cuprate high- T c superconductors. We also discuss the relevance of the often-neglected direct oxygen-oxygen hopping for a more accurate, sometimes unique, description of this class of materials. The benchmark of the solution is performed by comparing our results with the available quantum Monte Carlo ones. Both single-particle and thermodynamic properties of the model are studied in detail. Our solution features a metal-insulator transition at half filling. The resulting metal-insulator phase diagram agrees qualitatively very well with the one obtained within dynamical mean-field theory. We discuss the type of transition (Mott-Hubbard (MH) or charge-transfer (CT)) for the microscopic (ab initio) parameter range relevant for cuprates getting, as expected a CT type. The emerging single-particle scenario clearly suggests a very close relation between the relevant sub-bands of the three- (Emery) and the single-band (Hubbard) models, thus providing an independent and non-perturbative proof of the validity of the mapping between the two models for the model parameters optimal to describe cuprates. Such a result confirms the emergence of the Zhang-Rice scenario, which has been recently questioned. We also report the behavior of the specific heat and of the entropy as functions of the temperature on varying the model parameters as these quantities, more than any other, depend on and, consequently, reveal the most relevant energy scales of the system.

  2. Change of carrier density at the pseudogap critical point of a cuprate superconductor.

    PubMed

    Badoux, S; Tabis, W; Laliberté, F; Grissonnanche, G; Vignolle, B; Vignolles, D; Béard, J; Bonn, D A; Hardy, W N; Liang, R; Doiron-Leyraud, N; Taillefer, Louis; Proust, Cyril

    2016-03-10

    The pseudogap is a partial gap in the electronic density of states that opens in the normal (non-superconducting) state of cuprate superconductors and whose origin is a long-standing puzzle. Its connection to the Mott insulator phase at low doping (hole concentration, p) remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate doping is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 tesla to show that Fermi-surface reconstruction by charge order in the cuprate YBa2Cu3Oy ends sharply at a critical doping p = 0.16 that is distinctly lower than the pseudogap critical point p* = 0.19 (ref. 11). This shows that the pseudogap and charge order are separate phenomena. We find that the change in carrier density n from n = 1 + p in the conventional metal at high doping (ref. 12) to n = p at low doping (ref. 13) starts at the pseudogap critical point. This shows that the pseudogap and the antiferromagnetic Mott insulator are linked. PMID:26901870

  3. Change of carrier density at the pseudogap critical point of a cuprate superconductor

    NASA Astrophysics Data System (ADS)

    Badoux, S.; Tabis, W.; Laliberté, F.; Grissonnanche, G.; Vignolle, B.; Vignolles, D.; Béard, J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Doiron-Leyraud, N.; Taillefer, Louis; Proust, Cyril

    2016-03-01

    The pseudogap is a partial gap in the electronic density of states that opens in the normal (non-superconducting) state of cuprate superconductors and whose origin is a long-standing puzzle. Its connection to the Mott insulator phase at low doping (hole concentration, p) remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate doping is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 tesla to show that Fermi-surface reconstruction by charge order in the cuprate YBa2Cu3Oy ends sharply at a critical doping p = 0.16 that is distinctly lower than the pseudogap critical point p* = 0.19 (ref. 11). This shows that the pseudogap and charge order are separate phenomena. We find that the change in carrier density n from n = 1 + p in the conventional metal at high doping (ref. 12) to n = p at low doping (ref. 13) starts at the pseudogap critical point. This shows that the pseudogap and the antiferromagnetic Mott insulator are linked.

  4. η collective mode as A1 g Raman resonance in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Montiel, X.; Kloss, T.; Pépin, C.; Benhabib, S.; Gallais, Y.; Sacuto, A.

    2016-01-01

    We discuss the possible existence of a spin singlet excitation with charge ±2 (η mode) originating the A1 g Raman resonance in cuprate superconductors. This η mode relates the d -wave superconducting singlet pairing channel to a d -wave charge channel. We show that the η boson forms a particle-particle bound state below the 2 Δ threshold of the particle-hole continuum where Δ is the maximum d -wave gap. Within a generalized random phase approximation and Bethe-Salpeter approximation study, we find that this mode has energies similar to the resonance observed with inelastic neutron scattering below the superconducting (SC) coherent peak at 2 Δ in various SC cuprate compounds. We show that it is a very good candidate for the resonance observed in Raman scattering below the 2 Δ peak in the A1 g symmetry. Since the η mode sits in the S =0 channel, it may be observable via Raman, x-ray, or electron energy loss spectroscopy probes.

  5. Inequivalence of Single-Particle and Population Lifetimes in a Cuprate Superconductor.

    PubMed

    Yang, S-L; Sobota, J A; Leuenberger, D; He, Y; Hashimoto, M; Lu, D H; Eisaki, H; Kirchmann, P S; Shen, Z-X

    2015-06-19

    We study optimally doped Bi-2212 (T(c)=96  K) using femtosecond time- and angle-resolved photoelectron spectroscopy. Energy-resolved population lifetimes are extracted and compared with single-particle lifetimes measured by equilibrium photoemission. The population lifetimes deviate from the single-particle lifetimes in the low excitation limit by 1-2 orders of magnitude. Fundamental considerations of electron scattering unveil that these two lifetimes are in general distinct, yet for systems with only electron-phonon scattering they should converge in the low-temperature, low-fluence limit. The qualitative disparity in our data, even in this limit, suggests that scattering channels beyond electron-phonon interactions play a significant role in the electron dynamics of cuprate superconductors. PMID:26196996

  6. Doping Dependent Charge Transfer Gap and Realistic Electronic Model of n-type Cuprate Superconductors

    SciTech Connect

    Xiang, T.

    2010-05-03

    Based on the analysis of the measurement data of angle-resolved photoemission spectroscopy (ARPES) and optics, we show that the charge transfer gap is significantly smaller than the optical one and is reduced by doping in electron doped cuprate superconductors. This leads to a strong charge fluctuation between the Zhang-Rice singlet and the upper Hubbard bands. The basic model for describing this system is a hybridized two-band t-J model. In the symmetric limit where the corresponding intra- and inter-band hopping integrals are equal to each other, this two-band model is equivalent to the Hubbard model with an antiferromagnetic exchange interaction (i.e. the t-U-J model). The mean-field result of the t-U-J model gives a good account for the doping evolution of the Fermi surface and the staggered magnetization.

  7. Tracking Cooper pairs in a cuprate superconductor by ultrafast angle-resolved photoemission.

    PubMed

    Smallwood, Christopher L; Hinton, James P; Jozwiak, Christopher; Zhang, Wentao; Koralek, Jake D; Eisaki, Hiroshi; Lee, Dung-Hai; Orenstein, Joseph; Lanzara, Alessandra

    2012-06-01

    In high-temperature superconductivity, the process that leads to the formation of Cooper pairs, the fundamental charge carriers in any superconductor, remains mysterious. We used a femtosecond laser pump pulse to perturb superconducting Bi(2)Sr(2)CaCu(2)O(8+δ) and studied subsequent dynamics using time- and angle-resolved photoemission and infrared reflectivity probes. Gap and quasiparticle population dynamics revealed marked dependencies on both excitation density and crystal momentum. Close to the d-wave nodes, the superconducting gap was sensitive to the pump intensity, and Cooper pairs recombined slowly. Far from the nodes, pumping affected the gap only weakly, and recombination processes were faster. These results demonstrate a new window into the dynamical processes that govern quasiparticle recombination and gap formation in cuprates. PMID:22654053

  8. Quasistatic magnetoelectric multipoles as order parameter for pseudogap phase in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Fechner, M.; Fierz, M. J. A.; Thöle, F.; Staub, U.; Spaldin, N. A.

    2016-05-01

    We introduce a mechanism in which coupling between fluctuating spin magnetic dipole moments and polar optical phonons leads to a nonzero ferroic ordering of quasistatic magnetoelectric multipoles. Using first-principles calculations within the LSDA +U method of density functional theory, we calculate the magnitude of the effect for the prototypical cuprate superconductor HgBa2CuO4 . We show that our proposed mechanism is consistent, to our knowledge, with all experimental data for the onset of the pseudogap phase and therefore propose the quasistatic magnetoelectric multipole as a possible pseudogap order parameter. Finally, we show that our mechanism embraces some key aspects of previous theoretical models, in particular the description of the pseudogap phase in terms of orbital currents.

  9. Physics of {pi}-meson condensation and high temperature cuprate superconductors

    SciTech Connect

    Sushkov, O. P.

    2009-08-15

    The idea of condensation of the Goldstone {pi}-meson field in nuclear matter had been put forward a long time ago. However, it was established that the normal nuclear density is too low, it is not sufficient to condensate {pi} mesons. This is why the {pi} condensation has never been observed. Recent experimental and theoretical studies of high-temperature cuprate superconductors have revealed condensation of Goldstone magnons, the effect fully analogous to the {pi} condensation. The magnon condensation has been observed. It is clear now that quantum fluctuations play a crucial role in the condensation, in particular they drive a quantum phase transition that destroys the condensate at some density of fermions.

  10. Universality class of the structural phase transition in the normal phase of cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Najafi, M. N.; Tavana, A.

    2016-08-01

    The tetragonal-orthorhombic structural phase transition of oxygen atoms in the basal plane of YBa2Cu3O6 +δ high-TC cuprate superconductors is studied numerically. By mapping the system onto the asymmetric next-nearest-neighbor Ising model, we characterize this phase transition. Results indicate the degrees of critical behavior. We show that this phase transition occurs at the temperature TC≃0.148 eV in the thermodynamic limit. By analyzing the critical exponents, it is found that this universality class displays some common features, with the two-dimensional three-state Potts model universality class, although the possibility of other universality classes cannot be ruled out. Conformal invariance at T =Tc is investigated using the Schramm-Loewner evolution (SLE) technique, and it is found that the SLE diffusivity parameter for this system is 3.34 ±0.01 .

  11. Inequivalence of single-particle and population lifetimes in a cuprate superconductor

    SciTech Connect

    Yang, Shuolong; Sobota, J. A.; Leuenberger, D.; He, Y.; Hashimoto, M.; Lu, D. H.; Eisaki, H.; Kirchmann, P. S.; Shen, Z. -X.

    2015-06-15

    We study optimally doped Bi-2212 (Tc=96 K) using femtosecond time- and angle-resolved photoelectron spectroscopy. Energy-resolved population lifetimes are extracted and compared with single-particle lifetimes measured by equilibrium photoemission. The population lifetimes deviate from the single-particle lifetimes in the low excitation limit by 1–2 orders of magnitude. Fundamental considerations of electron scattering unveil that these two lifetimes are in general distinct, yet for systems with only electron-phonon scattering they should converge in the low-temperature, low-fluence limit. As a result, the qualitative disparity in our data, even in this limit, suggests that scattering channels beyond electron-phonon interactions play a significant role in the electron dynamics of cuprate superconductors.

  12. Angular fluctuations of a multi-component order describe the pseudogap regime of the cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Sachdev, Subir

    2014-03-01

    The hole-doped cuprate high temperature superconductors enter the pseudogap regime as their superconducting critical temperature, Tc, falls with decreasing hole density. Experiments have probed this regime for over two decades, but we argue that decisive new information has emerged from recent X-ray scattering experiments. The experiments observe incommensurate charge density wave fluctuations whose strength rises gradually over a wide temperature range above Tc, but then decreases as the temperature is lowered below Tc. We propose a theory in which the superconducting and charge-density wave orders exhibit angular fluctuations in a 6-dimensional space. The theory provides a natural quantitative fit to the X-ray data, and is consistent with other observed characteristics of the pseudogap. Results will also be presented on the microscopic origins of these order parameters. Work in collaboration with Lauren Hayward, Roger Melko, David Hawthorn, and Jay Sau.

  13. Mutual synchronization of two stacks of intrinsic Josephson junctions in cuprate superconductors

    SciTech Connect

    Lin, Shi-Zeng

    2014-05-07

    Certain high-T{sub c} cuprate superconductors, which naturally realize a stack of Josephson junctions, thus can be used to generate electromagnetic waves in the terahertz region. A plate-like single crystal with 10{sup 4} junctions without cavity resonance was proposed to achieve strong radiation. For this purpose, it is required to synchronize the Josephson plasma oscillation in all junctions. In this work, we propose to use two stacks of junctions shunted in parallel to achieve synchronization. The two stacks are mutually synchronized in the whole IV curve, and there is a phase shift between the plasma oscillation in the two stacks. The phase shift is nonzero when the number of junctions in different stacks is the same, while it can be arbitrary when the number of junctions is different. This phase shift can be tuned continuously by applying a magnetic field when all the junctions are connected by superconducting wires.

  14. Emergence of charge order in a staggered loop-current phase of cuprate high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Atkinson, W. A.; Kampf, A. P.; Bulut, S.

    2016-04-01

    We study the emergence of charge-ordered phases within a π -loop-current (π LC ) model for the pseudogap based on a three-band model for underdoped cuprate superconductors. Loop currents and charge ordering are driven by distinct components of the short-range Coulomb interactions: loop currents result from the repulsion between nearest-neighbor copper and oxygen orbitals, while charge order results from repulsion between neighboring oxygen orbitals. We find that the leading π LC phase has an antiferromagnetic pattern similar to previously discovered staggered flux phases, and that it emerges abruptly at hole dopings p below the Van Hove filling. Subsequent charge-ordering tendencies in the π LC phase reveal that diagonal d -charge density waves (dCDWs) are suppressed by the loop currents while axial order competes more weakly. In some cases we find a wide temperature range below the loop-current transition, over which the susceptibility towards an axial dCDW is large. In these cases, short-range axial charge order may be induced by doping-related disorder. A unique feature of the coexisting dCDW and π LC phases is the emergence of an incommensurate modulation of the loop currents. If the dCDW is biaxial (checkerboard) then the resulting incommensurate current pattern breaks all mirror and time-reversal symmetries, thereby allowing for a polar Kerr effect.

  15. Stimulated emission of Cooper pairs in a high-temperature cuprate superconductor

    PubMed Central

    Zhang, Wentao; Miller, Tristan; Smallwood, Christopher L.; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Kaindl, R. A.; Lee, Dung-Hai; Lanzara, Alessandra

    2016-01-01

    The concept of stimulated emission of bosons has played an important role in modern science and technology, and constitutes the working principle for lasers. In a stimulated emission process, an incoming photon enhances the probability that an excited atomic state will transition to a lower energy state and generate a second photon of the same energy. It is expected, but not experimentally shown, that stimulated emission contributes significantly to the zero resistance current in a superconductor by enhancing the probability that scattered Cooper pairs will return to the macroscopically occupied condensate instead of entering any other state. Here, we use time- and angle-resolved photoemission spectroscopy to study the initial rise of the non-equilibrium quasiparticle population in a Bi2Sr2CaCu2O8+δ cuprate superconductor induced by an ultrashort laser pulse. Our finding reveals significantly slower buildup of quasiparticles in the superconducting state than in the normal state. The slower buildup only occurs when the pump pulse is too weak to deplete the superconducting condensate, and for cuts inside the Fermi arc region. We propose this is a manifestation of stimulated recombination of broken Cooper pairs, and signals an important momentum space dichotomy in the formation of Cooper pairs inside and outside the Fermi arc region. PMID:27364682

  16. Stimulated emission of Cooper pairs in a high-temperature cuprate superconductor.

    PubMed

    Zhang, Wentao; Miller, Tristan; Smallwood, Christopher L; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Kaindl, R A; Lee, Dung-Hai; Lanzara, Alessandra

    2016-01-01

    The concept of stimulated emission of bosons has played an important role in modern science and technology, and constitutes the working principle for lasers. In a stimulated emission process, an incoming photon enhances the probability that an excited atomic state will transition to a lower energy state and generate a second photon of the same energy. It is expected, but not experimentally shown, that stimulated emission contributes significantly to the zero resistance current in a superconductor by enhancing the probability that scattered Cooper pairs will return to the macroscopically occupied condensate instead of entering any other state. Here, we use time- and angle-resolved photoemission spectroscopy to study the initial rise of the non-equilibrium quasiparticle population in a Bi2Sr2CaCu2O8+δ cuprate superconductor induced by an ultrashort laser pulse. Our finding reveals significantly slower buildup of quasiparticles in the superconducting state than in the normal state. The slower buildup only occurs when the pump pulse is too weak to deplete the superconducting condensate, and for cuts inside the Fermi arc region. We propose this is a manifestation of stimulated recombination of broken Cooper pairs, and signals an important momentum space dichotomy in the formation of Cooper pairs inside and outside the Fermi arc region. PMID:27364682

  17. Stimulated emission of Cooper pairs in a high-temperature cuprate superconductor

    NASA Astrophysics Data System (ADS)

    Zhang, Wentao; Miller, Tristan; Smallwood, Christopher L.; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Kaindl, R. A.; Lee, Dung-Hai; Lanzara, Alessandra

    2016-07-01

    The concept of stimulated emission of bosons has played an important role in modern science and technology, and constitutes the working principle for lasers. In a stimulated emission process, an incoming photon enhances the probability that an excited atomic state will transition to a lower energy state and generate a second photon of the same energy. It is expected, but not experimentally shown, that stimulated emission contributes significantly to the zero resistance current in a superconductor by enhancing the probability that scattered Cooper pairs will return to the macroscopically occupied condensate instead of entering any other state. Here, we use time- and angle-resolved photoemission spectroscopy to study the initial rise of the non-equilibrium quasiparticle population in a Bi2Sr2CaCu2O8+δ cuprate superconductor induced by an ultrashort laser pulse. Our finding reveals significantly slower buildup of quasiparticles in the superconducting state than in the normal state. The slower buildup only occurs when the pump pulse is too weak to deplete the superconducting condensate, and for cuts inside the Fermi arc region. We propose this is a manifestation of stimulated recombination of broken Cooper pairs, and signals an important momentum space dichotomy in the formation of Cooper pairs inside and outside the Fermi arc region.

  18. First observation for a cuprate superconductor of fluctuation-induced diamagnetism well inside the finite-magnetic-field regime

    PubMed

    Carballeira; Mosqueira; Revcolevschi; Vidal

    2000-04-01

    For the first time for a cuprate superconductor, measurements performed above T(c) in high quality grain aligned La1.9Sr0.1CuO4 samples have allowed the observation of the thermal fluctuation induced diamagnetism well inside the finite-magnetic-field fluctuation regime. These results may be explained in terms of the Gaussian Ginzburg-Landau approach for layered superconductors, but only if the finite field contributions are estimated by taking off the short-wavelength fluctuations. PMID:11019036

  19. Specific heat of underdoped cuprate superconductors from a phenomenological layered Boson-Fermion model

    NASA Astrophysics Data System (ADS)

    Salas, P.; Fortes, M.; Solís, M. A.; Sevilla, F. J.

    2016-05-01

    We adapt the Boson-Fermion superconductivity model to include layered systems such as underdoped cuprate superconductors. These systems are represented by an infinite layered structure containing a mixture of paired and unpaired fermions. The former, which stand for the superconducting carriers, are considered as noninteracting zero spin composite-bosons with a linear energy-momentum dispersion relation in the CuO2 planes where superconduction is predominant, coexisting with the unpaired fermions in a pattern of stacked slabs. The inter-slab, penetrable, infinite planes are generated by a Dirac comb potential, while paired and unpaired electrons (or holes) are free to move parallel to the planes. Composite-bosons condense at a critical temperature at which they exhibit a jump in their specific heat. These two values are assumed to be equal to the superconducting critical temperature Tc and the specific heat jump reported for YBa2Cu3O6.80 to fix our model parameters namely, the plane impenetrability and the fraction of superconducting charge carriers. We then calculate the isochoric and isobaric electronic specific heats for temperatures lower than Tc of both, the composite-bosons and the unpaired fermions, which matches the latest experimental curves. From the latter, we extract the linear coefficient (γn) at Tc, as well as the quadratic (αT2) term for low temperatures. We also calculate the lattice specific heat from the ARPES phonon spectrum, and add it to the electronic part, reproducing the experimental total specific heat at and below Tc within a 5% error range, from which the cubic (ßT3) term for low temperatures is obtained. In addition, we show that this model reproduces the cuprates mass anisotropies.

  20. Comparative studies of the scanning tunneling spectra in cuprate and iron-arsenide superconductors

    NASA Astrophysics Data System (ADS)

    Yeh, N.-C.; Teague, M. L.; Beyer, A. D.; Shen, B.; Wen, H.-H.

    2012-12-01

    We report scanning tunneling spectroscopic studies of cuprate and iron-arsenic superconductors, including YBa2Cu3O7-δ (Y-123, Tc = 93 K), Sr0.9La0.1CuO2 (La-112, Tc = 43 K), and the “122” compounds Ba(Fe1-xCox)2As2 (Co-122 with x = 0.06, 0.08, 0.12 for Tc = 14, 24, 20 K). In zero field (H = 0), spatially homogeneous coherence peaks at energies ω = ± ΔSC flanked by spectral “shoulders” at ±Δeff are found in hole-type Y-123. In contrast, only a pair of spatially homogeneous peaks is seen in electron-type La-112 at ± Δeff. For H > 0, pseudogap (ΔPG) features are revealed inside the vortices, with ΔPG = [(Δeff)2-(ΔSC)2]1/2 > ΔSC in Y-123 and ΔPG < ΔSC in La-112, suggesting that the physical origin of ΔPG is a competing order coexisting with superconductivity. Additionally, Fourier transformation (FT) of the Y-123 spectra exhibits two types of spectral peaks, one type is associated with ω-dependent quasiparticle interference (QPI) wave-vectors and the other consists of ω-independent wave-vectors due to competing orders and (π,π) magnetic resonances. For the multi-band Co-122 compounds, two-gap superconductivity is found for all doping levels. Magnetic resonant modes that follow the temperature dependence of the superconducting gaps are also identified. These findings, together with the ω- and x-dependent QPI spectra, are consistent with a sign-changing s-wave pairing symmetry in the Co-122 iron arsenides. Our comparative studies suggest that the commonalities among the cuprate and the ferrous superconductors include the proximity to competing orders, antiferromagnetic (AFM) spin fluctuations and magnetic resonances in the superconducting (SC) state, and the unconventional pairing symmetries with sign-changing order parameters on different parts of the Fermi surface.

  1. Phenomenology of the valence-fluctuation pairing mechanism: {Tc} systematics of cuprates, and evidence for this mechanism in other superconductors

    SciTech Connect

    Brandow, B.H.

    1994-12-15

    The phenomenology of the cuprate superconductors is unconventional in many respects, in addition to the high {Tc}`s. A number of these features have recently been explained, qualitatively and even semi-quantitatively, by means of a valence-fluctuation mechanism. They now examine the extent to which this mechanism can account, at a qualitative level, for the {Tc} systematics of the many known cuprate superconductors. They find that this mechanism is consistent with some major features of the {Tc} systematics: the strong dependence on the hole-doping concentration x, the strong correlation with the Madelung potential of the apical oxygens, and a strong dependence on the number of apical oxygens per planar copper ion. They also argue that the same mechanism should be operating (together with phonons) in a number of other superconductors, in particular in the other exotic superconductors of Uemura. The evidence is that typical features of these exotics include extremely short coherence length, very high (and often T{sup 2}) normal-state resistivity, a highly anomalous form of H{sub c2}(T), a large London penetration depth, and an often obvious suitability for representation by an Anderson lattice form of model Hamiltonian. The frequently-encountered cluster and/or reduced-dimensionality aspects are argued to be features which help to justify the latter form of model Hamiltonian. 81 refs.

  2. Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T.

    PubMed

    Larbalestier, D C; Jiang, J; Trociewitz, U P; Kametani, F; Scheuerlein, C; Dalban-Canassy, M; Matras, M; Chen, P; Craig, N C; Lee, P J; Hellstrom, E E

    2014-04-01

    Magnets are the principal market for superconductors, but making attractive conductors out of the high-temperature cuprate superconductors (HTSs) has proved difficult because of the presence of high-angle grain boundaries that are generally believed to lower the critical current density, J(c). To minimize such grain boundary obstacles, HTS conductors such as REBa2Cu3O(7-x) and (Bi, Pb)2Sr2Ca2Cu3O(10-x) are both made as tapes with a high aspect ratio and a large superconducting anisotropy. Here we report that Bi2Sr2CaCu2O(8-x) (Bi-2212) can be made in the much more desirable isotropic, round-wire, multifilament form that can be wound or cabled into arbitrary geometries and will be especially valuable for high-field NMR magnets beyond the present 1 GHz proton resonance limit of Nb3Sn technology. An appealing attribute of this Bi-2212 conductor is that, being without macroscopic texture, it contains many high-angle grain boundaries but nevertheless attains a very high J(c) of 2,500 A mm(-2) at 20 T and 4.2 K. The large potential of the conductor has been demonstrated by building a small coil that generated almost 2.6 T in a 31 T background field. This demonstration that grain boundary limits to high Jc can be practically overcome underlines the value of a renewed focus on grain boundary properties in non-ideal geometries. PMID:24608141

  3. Stabilization of high Tc phase in bismuth cuprate superconductor by lead doping

    NASA Technical Reports Server (NTRS)

    Gupta, Ram. P.; Pachauri, J. P.; Khokle, W. S.; Nagpal, K. C.; Date, S. K.

    1991-01-01

    It has been widely ascertained that doping of lead in Bi-Sr-Ca-Cu-O systems promotes the growth of high T sub c (110 K) phase, improves critical current density, and lowers processing temperature. A systematic study was undertaken to determine optimum lead content and processing conditions to achieve these properties. A large number of samples with cationic compositions of Bi(2-x)Pb(x)Sr2Ca2Cu3 (x = 0.2 to 2.0) were prepared by conventional solid state reaction technique. Samples of all compositions were annealed together at a temperature and characterized through resistance temperature (R-T) measurements and x ray diffraction to determine the zero resistance temperature, T sub c(0) and to identify presence of phases, respectively. The annealing temperature was varied between 790 and 880 C to optimize processing parameters. Results are given. In brief, an optimum process is reported along with composition of leaded bismuth cuprate superconductor which yields nearly a high T sub c single phase with highly stable superconducting properties.

  4. Stabilization of high T(sub c) phase in bismuth cuprate superconductor by lead doping

    NASA Technical Reports Server (NTRS)

    Gupta, Ram. P.; Pachauri, J. P.; Khokle, W. S.; Nagpal, K. C.; Date, S. K.

    1990-01-01

    It has widely been ascertained that doping of lead in Bi:Sr:Ca:Cu:O systems promotes the growth of high T(sub c) (110 K) phase, improves critical current density, and lowers processing temperature. A systematic investigation is undertaken to determine optimum lead content and processing conditions to achieve these. A large number of samples with cationic compositions of Bi(2-x)Pb(x)Sr2Ca2Cu3 (x = 0.2 to 2.0) were prepared by conventional solid state reaction technique. Samples of all compositions were annealed together at a temperature and characterized through resistance-temperature (R-T) measurements and x ray diffraction (XRD) to determine the zero resistance temperature, T(sub c)(0) and to identify presence of phases, respectively. The annealing temperature was varied between 790 C to optimize processing parameters. Results are given. In brief, an optimum process is reported along with composition of leaded bismuth cuprate superconductor which yields nearly a high T(sub c) single phase with highly stable superconducting properties.

  5. Origin and consequences of the disorder-induced inhomogeneities in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debmalya; Sensarma, Rajdeep; Ghosal, Amit

    The effect of potential impurities on cuprate superconductors are investigated within a formalism suitable for addressing the complex interplay of the bare repulsive electronic correlations and disorder, both being strong. We show that the mechanism governing the demise of superconductivity is rather subtle and differs from the conventional weak-coupling descriptions. While the superconductivity remains surprisingly robust for up to moderate disorder, it crashes down sharply at stronger disorders. The initial robustness is attributed to the strong repulsive correlations that smear out charge inhomogeneities by reorganizing the hopping on the bonds prohibiting formation of superconducting ``islands''. However, with increasing strength of disorder, the potential difference across some bonds reach the scale of the bandwidth and the overall energy of the system is reduced by prohibiting hopping on such links. Integrating this concept within our formalism, we show that the correlations fail to homogenize the system across these ``cut-bonds''. This produces Mott-insulating, Anderson-insulating, as well as locally superconducting regions interspersed among each other at strong disorder, eventually destroying the global superconductivity.

  6. Interplay between pair density waves and random field disorders in the pseudogap regime of cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Chan, Cheung

    2016-05-01

    To capture various experimental results in the pseudogap regime of the underdoped cuprate superconductors for temperature T

  7. Ground state of underdoped cuprates in vicinity of superconductor-to-insulator transition

    DOE PAGESBeta

    Wu, Jie; Bollinger, Anthony T.; Sun, Yujie; Božović, Ivan

    2016-08-15

    When an insulating underdoped cuprate is doped beyond a critical concentration (xc), high-temperature superconductivity emerges. We have synthesized a series of La2–xSrxCuO4 (LSCO) samples using the combinatorial spread technique that allows us to traverse the superconductor-to-insulator transition (SIT) in extremely fine doping steps, Δx≈0.00008. We have measured the Hall resistivity (ρH) as a function of temperature down to 300 mK in magnetic fields up to 9 T. At very low temperatures, ρH shows an erratic behavior, jumps and fluctuations exceeding 100%, hysteresis, and memory effects, indicating that the insulating ground state is a charge-cluster glass (CCG). Furthermore, based on themore » phase diagram depicted in our experiment, we propose a unified picture to account for the anomalous electric transport in the vicinity of the SIT, suggesting that the CCG is in fact a disordered and glassy version of the charge density wave.« less

  8. Resonant Two-Magnon Raman Scattering in Cuprate Antiferromagnetic Insulators and Superconductors.

    NASA Astrophysics Data System (ADS)

    Blumberg, G.; Abbamonte, P.; Klein, M. V.

    1996-03-01

    We present results of low-temperature two-magnon resonance Raman excitation profile measurements for single layer Sr_2CuO_2Cl2 and bilayer YBa_2Cu_3O6 + δ antiferromagnets over the excitation region from 1.65 to 3.05 eV. These data reveal composite structure of the B_1g two-magnon line shape peaked at ~ 2.7J and ~ 4J and strong nonmonotonic dependence of the scattering intensity on excitation energy. Resonant magnetic scattering contributes also to A_1g and B_2g channels. We analyze these data using the triple resonance theory of Chubukov and Frenkel(A. Chubukov and D. Frenkel, Phys. Rev. Lett.74), 3057 (1995). and deduce information about magnetic interaction (J and J_⊥) and band parameters (NN hopping t and charge transfer gap 2Δ) in these antiferromagnets.(G. Blumberg et. al.), Preprint cond-mat/9511080. The ~ 3J spin superexchange excitation persists upon hole doping and is present in superconductors, proving the universality of the short wavelength magnetic excitations in the cuprate superconducting metals and the parent antiferromagnetic insulators.(G. Blumberg et. al.), Phys. Rev. B 49, 13 295 (1994).

  9. Universal sheet resistance and revised phase diagram of the cuprate high-temperature superconductors

    PubMed Central

    Barišić, Neven; Chan, Mun K.; Li, Yuan; Yu, Guichuan; Zhao, Xudong; Dressel, Martin; Smontara, Ana; Greven, Martin

    2013-01-01

    Upon introducing charge carriers into the copper–oxygen sheets of the enigmatic lamellar cuprates, the ground state evolves from an insulator to a superconductor and eventually to a seemingly conventional metal (a Fermi liquid). Much has remained elusive about the nature of this evolution and about the peculiar metallic state at intermediate hole-carrier concentrations (p). The planar resistivity of this unconventional metal exhibits a linear temperature dependence (ρ ∝ T) that is disrupted upon cooling toward the superconducting state by the opening of a partial gap (the pseudogap) on the Fermi surface. Here, we first demonstrate for the quintessential compound HgBa2CuO4+δ a dramatic switch from linear to purely quadratic (Fermi liquid-like, ρ ∝ T2) resistive behavior in the pseudogap regime. Despite the considerable variation in crystal structures and disorder among different compounds, our result together with prior work gives insight into the p-T phase diagram and reveals the fundamental resistance per copper–oxygen sheet in both linear (ρ☐ = A1☐T) and quadratic (ρ☐ = A2☐T2) regimes, with A1☐ ∝ A2☐ ∝ 1/p. Theoretical models can now be benchmarked against this remarkably simple universal behavior. Deviations from this underlying behavior can be expected to lead to new insight into the nonuniversal features exhibited by certain compounds. PMID:23836669

  10. Formation and properties of novel artificially-layered cuprate superconductors using pulsed-laser deposition

    SciTech Connect

    Norton, D.P.; Chakoumakos, B.C.; Budai, J.D.

    1996-03-01

    Pulsed-laser deposition and epitaxial stabilization have been effectively used to engineer artificially-layered thin-film materials. Novel cuprate compounds have been synthesized using the constraint of epitaxy to stabilize (Ca,Sr)CuO{sub 2}/(Ba,Ca,Sr)CuO{sub 2} superconducting superlattices in the infinite layer structure. Superlattice chemical modulation can be observed from the x-ray diffraction patterns for structures with SrCuO{sub 2} and (Ca, Sr)CuO{sub 2} layers as thin as a single unit cell ({approximately}3. 4 {angstrom}). X-ray diffraction intensity oscillations, due to the finite thickness of the film, indicate that (Ca,Sr)CuO{sub 2} films grown by pulsed-laser deposition are extremely flat with a thickness variation of only {approximately}20 {angstrom} over a length scale of several thousand angstroms. This enables the unit-cell control of (Ca, Sr)CuO{sub 2} film growth in an oxygen pressure regime in which in situ surface analysis using electron diffraction is not possible. With the incorporation of BaCuO{sub 2} layers, superlattice structures have been synthesized which superconduct at temperatures as high as 70 K. Dc transport measurements indicate that (Ca, Sr)CuO{sub 2}/BaCuO{sub 2} superlattices are two dimensional superconductors with the superconducting transition primarily associated with the BaCuO{sub 2} layers. Superconductivity is observed only for structures with BaCuO{sub 2} layers at least two unit cells thick with {Tc} decreasing as the (Ca,Sr)CuO{sub 2} layer thickness increases. Normalized resistance in the superconducting region collapse to the Ginzburg-Landau Coulomb gas universal resistance curve consistent with the two-dimensional vortex fluctuation model.

  11. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    SciTech Connect

    Yung Moo Huh

    2001-05-01

    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La{sub 2-x}Sr{sub x}CuO{sub 4-{delta}}, La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H{parallel}c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T{sub c}, magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T{sub c0} vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La{sub 2-x}Sr{sub x}CuO{sub 4} (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T{sub c}. The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance {zeta}{sub c} becomes comparable to the spacing between adjacent CuO{sub 2} layers s at sufficiently high magnetic fields near H{sub c2}.

  12. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    SciTech Connect

    Douglas K. Finnemore

    2001-06-25

    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La{sub 2-x}Sr{sub x}CuO{sub 4-{delta}}, La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H {parallel} c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T{sub c}, magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T{sub c0} vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La{sub 2-x}Sr{sub x}CuO{sub 4} (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T{sub c}. The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance {xi}{sub c} becomes comparable to the spacing between adjacent CuO{sub 2} layers s at sufficiently high magnetic field near H{sub c2}.

  13. The roles of antiferromagnetic and nematic fluctuations in cuprate superconductors: a sign-free quantum Monte-Carlo study

    NASA Astrophysics Data System (ADS)

    Li, Zixiang; Yao, Hong; Wang, Fa; Lee, Dung-Hai

    Superconductivity is an emergent phenomena in the sense that the energy scale at which Cooper pairs form is generically much lower than the bare energy scale, namely the electron kinetic energy bandwidth. Addressing the mechanism of Cooper pairing amounts to finding out the effective interaction (or the renormalized interaction) that operates at the low energies. Finding such interaction from the bare microscopic Hamiltonian has not been possible for strong correlated superconductors such as the copper-oxide high temperature superconductor. In fact even one is given the effective interaction, determining its implied electronic instabilities without making any approximation has been a formidable task. Here, we perform sign-free quantum Monte-Carlo simulations to study the antiferromagnetic, superconducting, and the charge density wave instabilities which are ubiquitous in both electron and hole doped cuprates. Our result suggests only after including both the nematic and antiferromagnetic fluctuation, are the observed properties associated with these instabilities reproduced by the theory.

  14. Frank Isakson Prize Talk: Superfluid and normal-fluid densities in the cuprate superconductors from infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tanner, D. B.

    Measurements for a number of cuprate families of optical reflectance over a wide spectral range (far-infrared to ultraviolet) have been analyzed using Kramers-Kronig analysis to obtain the optical conductivity σ (ω) and (by integration of the real part of the conductivity) the spectral weight of low- and mid-energy excitations. For the Kramers-Kronig analysis to give reliable results, accurate high-frequency extrapolations, based on x-ray atomic scattering functions, were used. When the optical conductivities of the normal and superconducting states are compared, a transfer of spectral weight from finite frequencies to the zero-frequency delta-function conductivity of the superconductor is seen. The strength of this delta function gives the superfluid density, ρs. In a clean metallic superconductor the superfluid density is essentially equal to the conduction electron density. The cuprates in contrast have only about 20% of the a b-plane low-energy spectral weight in the superfluid. The rest remains in finite-frequency, midinfrared absorption. In underdoped materials the superfluid fraction is even smaller. There are two ways to measure ρs, using either the partial sum rule for the conductivity or by examination of σ2 (ω) . Comparison of these two estimates of the superfluid density shows that 98% of the a b-plane superfluid density comes from energies below 0.15 eV. Many students, postdocs, and materials preparers have contributed to this work; to all I am very grateful.

  15. Magnetization Studies of Oxides Related to the High Temperature Cuprate Superconductors

    NASA Astrophysics Data System (ADS)

    Wang, Zhaorong

    An Oxford Instruments Faraday magnetometer, capable of operating in the temperature range between 1.5 K and 1000 K, and magnetic field range between 0 T to 8 T, with a sensitivity of 3times10^{-8 }rm cm^3G, was assembled and calibrated. The pumping station which supported this magnetometer was designed and built. Software for reducing the raw data and generating calibration files was written. The magnetic properties of several oxides related to the high temperature cuprate superconductors BaCuO_{2+x}, La_2CuO_4, Sr _2IrO_4, Sr_2RhO_4, Sr_2VO _4, and Sr_2CuO_3 were measured using the Faraday magnetometer. AC and DC magnetization, neutron diffraction, and heat capacity measurements on polycrystalline BaCuO _{2+x} revealed a combination of magnetic behaviors. The Cu_6 ring clusters and Cu_{18}^here clusters in this compound were found to have ferromagnetic ground states with large spins 3 and 9, respectively. The Cu_6 rings ordered antiferromagnetically below the Neel temperature T_ N = 15 +/- 0.5 Kelvin, whereas the Cu _{18}^heres remained paramagnetic down to 2 Kelvin. The ordered moment below T_ N was 0.89(5) Bohr magnetons per Cu in the Cu_6 rings, demonstrating that quantum fluctuation effects are small in these atomic clusters. The Cu_{18} clusters are predicted to exhibit ferromagnetic intercluster order below about 1 Kelvin. Heat capacity C_ P data for BaCuO_{2+x} show a sharp second order transition at the Neel 2 temperature. The value of the discontinuity in the heat capacity at Neel is close to that expected for antiferromagnetic ordering of the ring clusters, according to the mean field theory. An additional maximum in C_ P at about 0.8 K may correspond to the ferromagnetic ordering of the sphere clusters postulated above. Understanding the magnetic behavior of BaCuO_{2+x } is relevant to the pairing mechanism in high T_ c cuprates. Magnetic susceptibility measurements for Sr _2CuO_{3+/-delta} were made from 2 K to 800 K, and a strong dependence upon

  16. Fermiology of the Undoped Cuprate Superconductor Pr2CuO4

    NASA Astrophysics Data System (ADS)

    McDonald, Ross; Breznay, Nicholas; Krockenberger, Yoshiharu; Modic, Kimberly; Zhu, Zengwei; Hayes, Ian; Nair, Nityan; Helm, Toni; Irie, Hiroshi; Yamamoto, Hideki; Analytis, James

    Unconventional, high temperature superconductivity consistently appears in the vicinity of suppressed phase transitions, leading to the suggestion that quantum criticality is vital to the physics of these systems. A confounding factor in identifying the role of quantum criticality in the electron-doped cuprates is the competing influence of chemical doping and oxygen stoichiometry. Recent advances in molecular beam epitaxy and preparation of cuprate thin films indicate that annealing can be employed to optimize Tc via the control of apical oxygen occupancy. For Pr2CuO4+/-δ the resulting square planar coordinated structure exhibits a 25 K superconducting transition in the absence of Cerium doping. Using these films and ultra high magnetic fields (>90 T) enables measurements of magnetic quantum oscillations - the first observation of their kind for a cuprate thin film. The oscillation frequency is consistent with the reconstructed Fermi surface of the bulk electron-doped cuprate Nd2-xCexCuO4. Furthermore, we observe a mass enhancement, suggesting that tuning these materials via oxygen stoichiometry enables exploration of underlying quantum criticality, providing a new axis with which to explore the physics underlying the electron doped side of the cuprate phase diagram.

  17. Transport anomalies and quantum criticality in electron-doped cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Yu, Heshan; He, Ge; Hu, Wei; Yuan, Jie; Zhu, Beiyi; Jin, Kui

    2016-06-01

    Superconductivity research is like running a marathon. Three decades after the discovery of high-Tc cuprates, there have been mass data generated from transport measurements, which bring fruitful information. In this review, we give a brief summary of the intriguing phenomena reported in electron-doped cuprates from the aspect of electrical transport as well as the complementary thermal transport. We attempt to sort out common features of the electron-doped family, e.g. the strange metal, negative magnetoresistance, multiple sign reversals of Hall in mixed state, abnormal Nernst signal, complex quantum criticality. Most of them have been challenging the existing theories, nevertheless, a unified diagram certainly helps to approach the nature of electron-doped cuprates.

  18. Two types of nematicity in the phase diagram of the cuprate superconductor YBa2Cu3Oy

    NASA Astrophysics Data System (ADS)

    Cyr-Choinière, O.; Grissonnanche, G.; Badoux, S.; Day, J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Doiron-Leyraud, N.; Taillefer, Louis

    2015-12-01

    Nematicity has emerged as a key feature of cuprate superconductors, but its link to other fundamental properties such as superconductivity, charge order, and the pseudogap remains unclear. Here we use measurements of transport anisotropy in YBa2Cu3Oy to distinguish two types of nematicity. The first is associated with short-range charge-density-wave modulations in a doping region near p =0.12 . It is detected in the Nernst coefficient, but not in the resistivity. The second type prevails at lower doping, where there are spin modulations but no charge modulations. In this case, the onset of in-plane anisotropy—detected in both the Nernst coefficient and the resistivity—follows a line in the temperature-doping phase diagram that tracks the pseudogap energy. We discuss two possible scenarios for the latter nematicity.

  19. Electron-Doped Sr2IrO4 : An Analogue of Hole-Doped Cuprate Superconductors Demonstrated by Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Yan, Y. J.; Ren, M. Q.; Xu, H. C.; Xie, B. P.; Tao, R.; Choi, H. Y.; Lee, N.; Choi, Y. J.; Zhang, T.; Feng, D. L.

    2015-10-01

    Sr2Ir O4 was predicted to be a high-temperature superconductor upon electron doping since it highly resembles the cuprates in crystal structure, electronic structure, and magnetic coupling constants. Here, we report a scanning tunneling microscopy/spectroscopy (STM/STS) study of Sr2Ir O4 with surface electron doping by depositing potassium (K) atoms. We find that as the electron doping increases, the system gradually evolves from an insulating state to a normal metallic state, via a pseudogaplike phase, and a phase with a sharp, V-shaped low-energy gap with about 95% loss of density of state (DOS) at EF . At certain K coverage (0.5-0.6 monolayer), the magnitude of the low-energy gap is 25-30 meV, and it closes at around 50 K. Our observations show that the electron-doped Sr2Ir O4 remarkably resembles hole-doped cuprate superconductors.

  20. Perspective on the phase diagram of cuprate high-temperature superconductors.

    PubMed

    Rybicki, Damian; Jurkutat, Michael; Reichardt, Steven; Kapusta, Czesław; Haase, Jürgen

    2016-01-01

    Universal scaling laws can guide the understanding of new phenomena, and for cuprate high-temperature superconductivity the influential Uemura relation showed, early on, that the maximum critical temperature of superconductivity correlates with the density of the superfluid measured at low temperatures. Here we show that the charge content of the bonding orbitals of copper and oxygen in the ubiquitous CuO2 plane, measured with nuclear magnetic resonance, reproduces this scaling. The charge transfer of the nominal copper hole to planar oxygen sets the maximum critical temperature. A three-dimensional phase diagram in terms of the charge content at copper as well as oxygen is introduced, which has the different cuprate families sorted with respect to their maximum critical temperature. We suggest that the critical temperature could be raised substantially if one were able to synthesize materials that lead to an increased planar oxygen hole content at the expense of that of planar copper. PMID:27150719

  1. Perspective on the phase diagram of cuprate high-temperature superconductors

    PubMed Central

    Rybicki, Damian; Jurkutat, Michael; Reichardt, Steven; Kapusta, Czesław; Haase, Jürgen

    2016-01-01

    Universal scaling laws can guide the understanding of new phenomena, and for cuprate high-temperature superconductivity the influential Uemura relation showed, early on, that the maximum critical temperature of superconductivity correlates with the density of the superfluid measured at low temperatures. Here we show that the charge content of the bonding orbitals of copper and oxygen in the ubiquitous CuO2 plane, measured with nuclear magnetic resonance, reproduces this scaling. The charge transfer of the nominal copper hole to planar oxygen sets the maximum critical temperature. A three-dimensional phase diagram in terms of the charge content at copper as well as oxygen is introduced, which has the different cuprate families sorted with respect to their maximum critical temperature. We suggest that the critical temperature could be raised substantially if one were able to synthesize materials that lead to an increased planar oxygen hole content at the expense of that of planar copper. PMID:27150719

  2. Perspective on the phase diagram of cuprate high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Rybicki, Damian; Jurkutat, Michael; Reichardt, Steven; Kapusta, Czesław; Haase, Jürgen

    2016-05-01

    Universal scaling laws can guide the understanding of new phenomena, and for cuprate high-temperature superconductivity the influential Uemura relation showed, early on, that the maximum critical temperature of superconductivity correlates with the density of the superfluid measured at low temperatures. Here we show that the charge content of the bonding orbitals of copper and oxygen in the ubiquitous CuO2 plane, measured with nuclear magnetic resonance, reproduces this scaling. The charge transfer of the nominal copper hole to planar oxygen sets the maximum critical temperature. A three-dimensional phase diagram in terms of the charge content at copper as well as oxygen is introduced, which has the different cuprate families sorted with respect to their maximum critical temperature. We suggest that the critical temperature could be raised substantially if one were able to synthesize materials that lead to an increased planar oxygen hole content at the expense of that of planar copper.

  3. Novel magnetic excitations in a model cuprate high-Tc superconductor

    NASA Astrophysics Data System (ADS)

    Li, Yuan

    2011-03-01

    Magnetic fluctuations might be essential to the mechanism of high-temperature superconductivity in the cuprates. For a long time, such fluctuations have been theoretically regarded as arising from the antiferromagnetic correlations within the copper-oxygen layers, and experimental studies of magnetic excitation spectrum have mainly been carried out near the corresponding wave vector (1/2,~1/2). Following neutron diffraction experiments which demonstrated the universal existence of a `` q ~=~0 antiferromagnetic order'' in the pseudogap phase of three different cuprates [1-3], our recent inelastic neutron scattering experiments on the model compound HgBa 2 Cu O4 + δ (Hg1201) revealed the existence of unusual magnetic excitations that weakly disperse throughout the entire Brillouin zone [4,5]. Like the q ~=~0 antiferromagnetic order, the new excitations are observed in the pseudogap phase and therefore appear to be associated with the order. The excitations possess very large spectral weights at well-defined characteristic energies that are comparable to the resonance energy and to those of electron-boson-coupling features observed in a wide range of cuprates, highlighting their possible influence on the electronic structure. These findings demonstrate that the pseudogap state is a distinct phase of matter rather than a mere crossover. They furthermore cast doubt on the presumed predominant importance of the wave vector (1/2,~1/2) in the magnetic excitation spectrum, and have the profound implication that a single-band description of the cuprates is insufficient. Project was funded by DOE and NSF grants. The author achnowledges the Alexander von Humboldt Foundation.

  4. Probing broken symmetry states in cuprate superconductors with polarization-sensitive infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Mukherjee, Alok; Arik, Mumtaz Murat; Seo, Jungryeol; Cerne, John; Zhang, Hao; Xu, Ke Jun; Wei, John Y. T.; Armitage, N. P.; Kirzhner, T.; Koren, G.

    The nature of the pseudogap state in high-temperature superconducting (HTS) cuprates has drawn a lot of attention in the past two decades. A fundamental question is whether the pseudogap is a distinct phase with its own broken symmetries. Recent optical studies in the near-IR (800 meV) and THz (2-6 meV) ranges have observed symmetry breaking in the pseudogap state of HTS cuprates, suggesting that the pseudogap is a distinct phase. To probe the spectral character of this broken symmetry, we have performed infrared/visible Faraday and Kerr effect measurements at zero magnetic field and various temperatures on a series of HTS cuprate thin films, grown epitaxially by pulsed laser-ablated deposition. We will present and discuss our data, primarily complex Faraday/Kerr angle as a function of energy (0.1-3 eV), temperature (10-300K) and sample orientation with respect to the incident light polarization. This work supported by NSF-DMR1410599, NSERC, CFI-OIT and the Canadian Institute for Advanced Research.

  5. Role of Strong Correlation in the Recent Angle-Resolved Photoemission Spectroscopy Experiments on Cuprate Superconductors

    SciTech Connect

    Yunoki, S.; Dagotto, Elbio R; Sorella, S.

    2005-01-01

    Motivated by recent photoemission experiments on cuprates, the low-lying excitations of a strongly correlated superconducting state are studied numerically. It is observed that along the nodal direction these low-lying one-particle excitations show a linear momentum dependence for a wide range of excitation energies and, thus, they do not present a kinklike structure. The nodal Fermi velocity vF, as well as other observables, are systematically evaluated directly from the calculated dispersions, and they are found to compare well with experiments. It is argued that the parameter dependence of v{sub F} is quantitatively explained by a simple picture of a renormalized Fermi velocity.

  6. Quasi-particles ultrafastly releasing kink bosons to form Fermi arcs in a cuprate superconductor.

    PubMed

    Ishida, Y; Saitoh, T; Mochiku, T; Nakane, T; Hirata, K; Shin, S

    2016-01-01

    In a conventional framework, superconductivity is lost at a critical temperature (Tc) because, at higher temperatures, gluing bosons can no longer bind two electrons into a Cooper pair. In high-Tc cuprates, it is still unknown how superconductivity vanishes at Tc. We provide evidence that the so-called ≲ 70-meV kink bosons that dress the quasi-particle excitations are playing a key role in the loss of superconductivity in a cuprate. We irradiated a 170-fs laser pulse on Bi2Sr2CaCu2O(8+δ) and monitored the responses of the superconducting gap and dressed quasi-particles by time- and angle-resolved photoemission spectroscopy. We observe an ultrafast loss of superconducting gap near the d-wave node, or light-induced Fermi arcs, which is accompanied by spectral broadenings and weight redistributions occurring within the kink binding energy. We discuss that the underlying mechanism of the spectral broadening that induce the Fermi arc is the undressing of quasi-particles from the kink bosons. The loss mechanism is beyond the conventional framework, and can accept the unconventional phenomena such as the signatures of Cooper pairs remaining at temperatures above Tc. PMID:26728626

  7. Single reconstructed Fermi surface pocket in an underdoped single-layer cuprate superconductor

    NASA Astrophysics Data System (ADS)

    Chan, M. K.; Harrison, N.; McDonald, R. D.; Ramshaw, B. J.; Modic, K. A.; Barišić, N.; Greven, M.

    2016-07-01

    The observation of a reconstructed Fermi surface via quantum oscillations in hole-doped cuprates opened a path towards identifying broken symmetry states in the pseudogap regime. However, such an identification has remained inconclusive due to the multi-frequency quantum oscillation spectra and complications accounting for bilayer effects in most studies. We overcome these impediments with high-resolution measurements on the structurally simpler cuprate HgBa2CuO4+δ (Hg1201), which features one CuO2 plane per primitive unit cell. We find only a single oscillatory component with no signatures of magnetic breakdown tunnelling to additional orbits. Therefore, the Fermi surface comprises a single quasi-two-dimensional pocket. Quantitative modelling of these results indicates that a biaxial charge density wave within each CuO2 plane is responsible for the reconstruction and rules out criss-crossed charge stripes between layers as a viable alternative in Hg1201. Lastly, we determine that the characteristic gap between reconstructed pockets is a significant fraction of the pseudogap energy.

  8. Single reconstructed Fermi surface pocket in an underdoped single-layer cuprate superconductor

    PubMed Central

    Chan, M. K.; Harrison, N.; McDonald, R. D.; Ramshaw, B. J.; Modic, K. A.; Barišić, N.; Greven, M.

    2016-01-01

    The observation of a reconstructed Fermi surface via quantum oscillations in hole-doped cuprates opened a path towards identifying broken symmetry states in the pseudogap regime. However, such an identification has remained inconclusive due to the multi-frequency quantum oscillation spectra and complications accounting for bilayer effects in most studies. We overcome these impediments with high-resolution measurements on the structurally simpler cuprate HgBa2CuO4+δ (Hg1201), which features one CuO2 plane per primitive unit cell. We find only a single oscillatory component with no signatures of magnetic breakdown tunnelling to additional orbits. Therefore, the Fermi surface comprises a single quasi-two-dimensional pocket. Quantitative modelling of these results indicates that a biaxial charge density wave within each CuO2 plane is responsible for the reconstruction and rules out criss-crossed charge stripes between layers as a viable alternative in Hg1201. Lastly, we determine that the characteristic gap between reconstructed pockets is a significant fraction of the pseudogap energy. PMID:27448102

  9. Single reconstructed Fermi surface pocket in an underdoped single-layer cuprate superconductor.

    PubMed

    Chan, M K; Harrison, N; McDonald, R D; Ramshaw, B J; Modic, K A; Barišić, N; Greven, M

    2016-01-01

    The observation of a reconstructed Fermi surface via quantum oscillations in hole-doped cuprates opened a path towards identifying broken symmetry states in the pseudogap regime. However, such an identification has remained inconclusive due to the multi-frequency quantum oscillation spectra and complications accounting for bilayer effects in most studies. We overcome these impediments with high-resolution measurements on the structurally simpler cuprate HgBa2CuO4+δ (Hg1201), which features one CuO2 plane per primitive unit cell. We find only a single oscillatory component with no signatures of magnetic breakdown tunnelling to additional orbits. Therefore, the Fermi surface comprises a single quasi-two-dimensional pocket. Quantitative modelling of these results indicates that a biaxial charge density wave within each CuO2 plane is responsible for the reconstruction and rules out criss-crossed charge stripes between layers as a viable alternative in Hg1201. Lastly, we determine that the characteristic gap between reconstructed pockets is a significant fraction of the pseudogap energy. PMID:27448102

  10. Quasi-particles ultrafastly releasing kink bosons to form Fermi arcs in a cuprate superconductor

    PubMed Central

    Ishida, Y.; Saitoh, T.; Mochiku, T.; Nakane, T.; Hirata, K.; Shin, S.

    2016-01-01

    In a conventional framework, superconductivity is lost at a critical temperature (Tc) because, at higher temperatures, gluing bosons can no longer bind two electrons into a Cooper pair. In high-Tc cuprates, it is still unknown how superconductivity vanishes at Tc. We provide evidence that the so-called ≲70-meV kink bosons that dress the quasi-particle excitations are playing a key role in the loss of superconductivity in a cuprate. We irradiated a 170-fs laser pulse on Bi2Sr2CaCu2O8+δ and monitored the responses of the superconducting gap and dressed quasi-particles by time- and angle-resolved photoemission spectroscopy. We observe an ultrafast loss of superconducting gap near the d-wave node, or light-induced Fermi arcs, which is accompanied by spectral broadenings and weight redistributions occurring within the kink binding energy. We discuss that the underlying mechanism of the spectral broadening that induce the Fermi arc is the undressing of quasi-particles from the kink bosons. The loss mechanism is beyond the conventional framework, and can accept the unconventional phenomena such as the signatures of Cooper pairs remaining at temperatures above Tc. PMID:26728626

  11. Disorder-Driven Superconductor-Insulator Transition in d-Wave Superconductors

    NASA Astrophysics Data System (ADS)

    Song, Yun; He, Long

    2014-03-01

    We study the superconductor-insulator transition (SIT) in d-wave superconductors. By means of the kernel polynomial method, the Bogoliubov-de Gennes equations are solved self-consistently, making it possible to observe fully the nanoscale spatial fluctuations of the superconducting order parameters. It is shown that Anderson localization can not entirely inhibit the occurrence of the local superconductivity in strongly-disordered d-wave superconductors. Separated by an insulating ``sea'' completely, a few isolated superconducting ``islands'' with significant enhancement of the local superconducting order parameters can survive across the SIT. The disorder-driven SIT, therefore, is a transition from a d-wave superconductor to a boson insulator which consists of localized Cooper pairs. Unlike an s-wave superconductor which presents a robust single-particle gap across the SIT, the optical conductivity of a d-wave superconductor reveals a gapless insulating phase, where the SIT can be detected by observing the disappearance of the Drude weight with the increasing disorder. The National Basic Research Program of China (Grant Nos. 2011CBA00108).

  12. Muon Spin Relaxation Studies of Zn-Substitution Effects in High-{ital T{sub {ital c}}} Cuprate Superconductors

    SciTech Connect

    Nachumi, B.; Keren, A.; Kojima, K.; Larkin, M.; Luke, G.M.; Merrin, J.; Tchernyshoev, O.; Uemura, Y.J.; Ichikawa, N.; Goto, M.; Uchida, S.

    1996-12-01

    We have performed transverse-field muon spin relaxation measurements of the Zn-substituted cuprate high-{ital T}{sub {ital c}} superconductors: La{sub 2{minus}{ital x}}Sr{sub {ital x}}(Cu{sub 1{minus}{ital y}}Zn{sub {ital y}})O{sub 4} and YBa{sub 2}(Cu{sub 1{minus}{ital y}}Zn{sub {ital y}}){sub 3}O{sub 6.63}. The superconducting carrier density/effective mass {ital n}{sub {ital s}}/{ital m}{sup *} ratio at {ital T}{r_arrow}0 decreases with increasing Zn concentration, in a manner consistent with our {open_quote}{open_quote}swiss cheese{close_quote}{close_quote} model in which charge carriers within an area {pi}{xi}{sub {ital ab}}{sup 2} around each Zn are excluded from the superfluid. We discuss this result in the context of Bose condensation, pair localization, and pair breaking. {copyright} {ital 1996 The American Physical Society.}

  13. The deviation in the d-wave behaviour of the gaps in Cuprate high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Hüfner, S.; Müller, F.

    2012-12-01

    The (Cuprate) High Temperature Superconductors (CHTSCs) are characterised by a d-wave gap of the cos(2ϕ) form. In some systems, deviations from this canonical behaviour are observed in ARPES experiments. In this note ARPES experiments on the gaps of the one layer systems Bi2201 and LSCO are inspected and analysed. The available data give for optimal doping a superconducting gap of (9 ± 2) meV, and a pseudogap, which originates from the preformed pairs, of (15 ± 3) meV. A second pseudogap, (35 ± 5) meV, with a shorter wave vector is observed in many experiments and is ascribed to an additional ordered structure. The existence of the two pseudogaps is responsible for the deviation from the canonical cos(2ϕ) behaviour. Thus the question whether the pseudogap observed in the CHTSC by ARPES is due to preformed pairs or due to additional order does not really exist at least in the one layer compounds. There are two pseudogaps present in the one layer CHTSC, one due to preformed pairs, which become superconducting below Tc, and a second one, reflecting an additional order, which is most likely the checkerboard structure.

  14. Tunneling evidence of strong cooper-pair-breaking near T c in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Wolf, E. L.; Tao, H. J.; Susla, B.

    1991-02-01

    The superconductive tunneling density of states obtained from conventional metal film-insulator tunnel junctions on cleaved (ab) basal planes of single crystal Bi 2Sr 2CaCu 2O 8+y (2212) reveals a rising pair breaking rate Γ(T) near T c, as predicted by Lee and Read. We obtain Γ(T)=2.3 kT c(T/T c) 3, which confirms a recent calculation by Coffey and also recent tunneling results of Takada et al on YBa 2Cu 3O 6. This implies a pair lifetime at T c of about 40 fs in 2212. The results indicate that the T 3 pairbreaking near T c is an intrinsic feature of superconductivity in the cuprate planes.

  15. Formation of Gapless Fermi Arcs and Fingerprints of Order in the Pseudogap State of Cuprate Superconductors

    SciTech Connect

    Kondo, Takeshi; Palczewski, Ari D.; Hamaya, Yoichiro; Takeuchi, Tsunehiro; Wen, J. S.; Gu, Genda; Kaminski, Adam

    2013-10-11

    We use angle-resolved photoemission spectroscopy and a new quantitative approach based on the partial density of states to study properties of seemingly disconnected portions of the Fermi surface (FS) that are present in the pseudogap state of cuprates called Fermi arcs. We find that the normal state FS collapses very abruptly into Fermi arcs at the pseudogap temperature (T∗). Surprisingly, the length of the Fermi arcs remains constant over an extended temperature range between T∗ and Tpair, consistent with the presence of an ordered state below T∗. These arcs collapse again at the temperature below which pair formation occurs (Tpair) either to a point or a very short arc, whose length is limited by our experimental resolution. The tips of the arcs span between points defining a set of wave vectors in momentum space, which are the fingerprints of the ordered state that causes the pseudogap.

  16. Formation of Gapless Fermi Arcs and Fingerprints of Order in the Pseudogap State of Cuprate Superconductors

    SciTech Connect

    Kondo, Takeshi; Palczewski, Ari; Hamaya, Yoichiro; Takeuchi, Tsunehiro; Wen, J. S.; Xu, Z. J.; Gu, Genda; Kaminski, Adam

    2013-10-08

    We use angle-resolved photoemission spectroscopy and a new quantitative approach based on the partial density of states to study properties of seemingly disconnected portions of the Fermi surface (FS) that are present in the pseudogap state of cuprates called Fermi arcs. We find that the normal state FS collapses very abruptly into Fermi arcs at the pseudogap temperature (T*). Surprisingly, the length of the Fermi arcs remains constant over an extended temperature range between (T*) and Tpair, consistent with the presence of an ordered state below T*. These arcs collapse again at the temperature below which pair formation occurs (Tpair) either to a point or a very short arc, whose length is limited by our experimental resolution. The tips of the arcs span between points defining a set of wave vectors in momentum space, which are the fingerprints of the ordered state that causes the pseudogap.

  17. Optical conductivity of single plane cuprate superconductor HgBa2CuO4

    NASA Astrophysics Data System (ADS)

    Lobo, R. P. S. M.; Bontemps, N.; Hwang, J.; Yang, J.; Timusk, T.; Colson, D.; Forget, A.

    2007-03-01

    We investigated the ab-plane infrared and visible spectra of a HgBa2CuO4 single crystal close to optimal doping (Tc= 90 K) from 100 to 40000 cm-1. Data as a function of temperature (down to 30 K) was limited to frequencies below 10000 cm-1. The low frequency scattering rate has a linear frequency dependence. Under 120 K a supplementary small drop below 1000 cm-1 suggests the presence of a pseudogap. This is the same frequency at which the optical conductivity shows a clear loss of spectral weight in the superconducting state. The low frequency effective mass is temperature dependent and increases from 1.5 at room temperature to 2.5 just above Tc. We will compare our results to other single plane cuprates.

  18. Magnetization studies of oxides related to the high temperature cuprate superconductors

    SciTech Connect

    Wang, Z.

    1995-06-19

    The magnetic properties related to the following high temperature superconductors were measured utilizing a Faraday magnetometer: BaCuO{sub 2+x}, La{sub 2} CuO{sub 4}, Sr{sub 2} RhO{sub 4}, Sr{sub 2} VO{sub 4}, and Sr{sub 2} CuO{sub 3}. Neutron diffraction, magnetic susceptibility, and heat capacity measurements are discussed.

  19. Normal-state conductivity of underdoped to overdoped cuprate superconductors: Pseudogap effects on the in-plane and c-axis charge transports

    NASA Astrophysics Data System (ADS)

    Dzhumanov, S.; Ganiev, O. K.; Djumanov, Sh. S.

    2014-05-01

    We have developed a theory of the unusual in-plane and c-axis charge transports in hole-doped cuprate superconductors and explain the temperature- and doping-dependent in-plane resistivity ρab, c-axis resistivity ρc and resistivity anisotropy ρc/ρab seen experimentally above Tc. We argue that the relevant current carriers in these materials above Tc are hole-like. The in-plane conductivity of underdoped to overdoped cuprates is considered as the conductivity of hole polarons and preformed Cooper pairs at their scattering by lattice vibrations in hole-rich CuO2 layers (with nonzero thickness). The appropriate Boltzmann transport equations were used to calculate the conductivity of polaronic carriers and bosonic Cooper pairs above and below the pseudogap (PG) temperature T* in the relaxation time approximation. We show that the linearity of ρab(T) above T* is associated with the polaron-phonon scattering, while different deviations from the T-linear behavior in ρab(T) below T* are caused by transition to the BCS-like PG regime. The specific model for layered cuprates is used to simulate the c-axis transport and to calculate the c-axis conductivity associated with the thermal dissociation of localized bipolarons in carrier-poor regions between the CuO2 layers into hole polarons which subsequently move by hopping along the c-axis. It is shown that the bipolaronic PG and carrier-confinement together cause the insulating ρc(T) behavior in the cuprates. The calculated results for ρab(T), ρc(T) and ρc(T)/ρab(T) were compared with the experimental data obtained for various hole-doped cuprates. For all the considered cases, a good quantitative agreement was found between theory and experimental data.

  20. The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors

    PubMed Central

    Hinton, J. P.; Thewalt, E.; Alpichshev, Z.; Mahmood, F.; Koralek, J. D.; Chan, M. K.; Veit, M. J.; Dorow, C. J.; Barišić, N.; Kemper, A. F.; Bonn, D. A.; Hardy, W. N.; Liang, Ruixing; Gedik, N.; Greven, M.; Lanzara, A.; Orenstein, J.

    2016-01-01

    In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic ”pseudogap” phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp, as a function of temperature and magnetic field in underdoped HgBa2CuO4+δ (Hg-1201) and YBa2Cu3O6+x (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T ) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs. PMID:27071712

  1. The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Hinton, J. P.; Thewalt, E.; Alpichshev, Z.; Mahmood, F.; Koralek, J. D.; Chan, M. K.; Veit, M. J.; Dorow, C. J.; Barišić, N.; Kemper, A. F.; Bonn, D. A.; Hardy, W. N.; Liang, Ruixing; Gedik, N.; Greven, M.; Lanzara, A.; Orenstein, J.

    2016-04-01

    In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic ”pseudogap” phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp, as a function of temperature and magnetic field in underdoped HgBa2CuO4+δ (Hg-1201) and YBa2Cu3O6+x (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T ) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs.

  2. The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors

    DOE PAGESBeta

    Hinton, J. P.; Thewalt, E.; Alpichshev, Z.; Mahmood, F.; Koralek, J. D.; Chan, M. K.; Veit, M. J.; Dorow, C. J.; Barisic, N.; Kemper, A. F.; et al

    2016-04-13

    In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic ”pseudogap” phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp,more » as a function of temperature and magnetic field in underdoped HgBa2CuO4+δ (Hg-1201) and YBa2Cu3O6+x (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Lastly, our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs.« less

  3. The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors.

    PubMed

    Hinton, J P; Thewalt, E; Alpichshev, Z; Mahmood, F; Koralek, J D; Chan, M K; Veit, M J; Dorow, C J; Barišić, N; Kemper, A F; Bonn, D A; Hardy, W N; Liang, Ruixing; Gedik, N; Greven, M; Lanzara, A; Orenstein, J

    2016-01-01

    In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic "pseudogap" phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp, as a function of temperature and magnetic field in underdoped HgBa2CuO(4+δ) (Hg-1201) and YBa2Cu3O(6+x) (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs. PMID:27071712

  4. Synthesis and Magnetic, Thermal, and Electrical Measurements on Complex non-Cuprate Superconductors

    SciTech Connect

    Henry, Laurence L

    2006-02-27

    The project investigated superconductivity in non-cuprate materials with critical temperatures, T{sub c}, in excess of 20 K in order to understand the thermodynamics of several of these materials. The project is a cooperative effort between investigators at Southern University (SU), Louisiana State University (LSU), and Los Alamos National Laboratory (LANL). It involved synthesis of high quality samples, and subsequent detailed magnetic, thermal and electrical measurements on them. The project provided a PhD Thesis research experience and training for a graduate student, Ms. Robin Macaluso. High quality, single crystal samples were synthesized by Ms. Macaluso under the direction of one of the CO-PIS, John Sarao, during the summer while she was a visitor at LANL being supported by this grant. On these samples magnetic measurements were performed at SU, thermal and electrical measurements were made in the LSU Physics and Astronomy Department. The crystallographic properties were determined in the LSU Chemistry Department by Ms. Macaluso under the direction of her dissertation advisor, Dr. Julia Chan. Additional high field magnetic measurements on other samples were performed at the National High Magnetic Field Laboratory (NHMFL) both in Tallahassee and at LANL. These measurements involved another graduate student, Umit Alver, who used some of the measurements as part of his PhD dissertation in Physics at LSU.

  5. New preparative methods to enhance phase purity and physical properties of cuprate superconductors

    SciTech Connect

    Salomon, R.E.; Schaeffer, R.; Macho, J.; Thomas, A.; Myer, G.H. Ben Franklin Superconductivity Center, Philadelphia, PA ); Coppa, N.V. )

    1991-01-01

    Several methods which avoid the problems inherent in solid state reactions have been developed. These methods include freeze drying, liquid ammonia based processes and a novel xerogel process. They are applicable to both 123, 124 and BISCCO based superconductors and have as their goal the atomic mixing of precursors in order to reduce inhomogeneity in the final product. The three methods are described and compared to each other and to conventional methods of synthesis. The products prepared by these methods are fully characterized by elemental analysis, XRD, TGA, DSC, resistivity and magnetic susceptibility versus temperature and by SEM. 13 refs., 2 figs.

  6. SU(2) symmetry in a realistic spin-fermion model for cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Kloss, T.; Montiel, X.; Pépin, C.

    2015-05-01

    We consider the pseudogap (PG) state of high-Tc superconductors in the form of a composite order parameter fluctuating between 2 pF -charge ordering and superconducting (SC) pairing. In the limit of linear dispersion and at the hot spots, both order parameters are related by a SU(2) symmetry, and the eight-hot-spot model of Efetov et al. [Nat. Phys. 9, 442 (2013), 10.1038/nphys2641] is recovered. In the general case, however, curvature terms of the dispersion will break this symmetry, and the degeneracy between both states is lifted. Taking the full momentum dependence of the order parameter into account, we measure the strength of this SU(2) symmetry breaking over the full Brillouin zone. For realistic dispersion relations including curvature we find generically that the SU(2) symmetry breaking is small and robust to the fermiology and that the symmetric situation is restored in the large paramagnon mass and coupling limit. Comparing the level splitting for different materials, we propose a scenario that could account for the competition between the PG and SC states in the phase diagram of high-Tc superconductors.

  7. Magnetic-field-driven superconductor-insulator transition in stripe-ordered La1.48Nd0.4Sr0.12CuO4

    NASA Astrophysics Data System (ADS)

    Baity, Paul; Shi, Zhenzhong; Popović, Dragana; Sasagawa, T.

    2015-03-01

    The effects of the magnetic field (H) in underdoped cuprates, the nature of the H-driven superconductor-insulator transition (SIT), and the interplay with charge ordering are some of the key questions in high-temperature superconductivity. A recent study of the H-driven SIT in highly underdoped (Tc ~ 4 K) La2-xSrxCuO4 (LSCO) revealed an intermediate phase, with two quantum critical points separating the superconductor and the insulator. While charge distribution in highly underdoped LSCO seems to be inhomogeneous, its sister compound La2-xNd0.4SrxCuO4 (LNSCO) with x = 0 . 12 is known to have a charge-stripe order already in H = 0 at low enough temperatures (T). In order to address the above issues, we carry out detailed measurements of the in-plane and out-of-plane magnetoresistance with different H orientations and over a wide range of T on LNSCO single crystals with x = 0 . 12 and Tc ~ 4 K. The results will provide insight into the universality of the H-driven SIT in cuprates with different types or, at least, varying degrees of charge order. Supported by NSF DMR-1307075 and NHMFL via NSF DMR-1157490 and the State of Florida.

  8. Extended van-Hove singularity in non-cuprate layered perovskite superconductor Sr{sub 2}RuO{sub 4}

    SciTech Connect

    Takahashi, T.; Yokoya, T.; Chainani, A.; Katayama-Yoshida, H.; Kasai, M.; Tokura, Y. |

    1996-12-31

    Low-temperature high-resolution angle-resolved photoemission spectroscopy (ARPES) have been performed on a non-cuprate superconductor Sr{sub 2}RuO{sub 4} ({Tc} {approximately} 1 K), which has the same crystal structure as La{sub 2}CuO{sub 4}, but with RuO{sub 2} layers replacing CuO{sub 2}. High-resolution ARPES spectra obtained along {Lambda}-Z line (Ru-O bonding direction) in Brillouin zone show the existence of an extended van-Hove singularity (VHS) close to E{sub F} (20 {+-} 2 meV) like high-{Tc} cuprates, regardless of the character of the electronic states at E{sub F}, suggesting that an extended VHS is a general feature of correlated two-dimensional d-electron metals. This requests re-examination of the VHS scenario for superconducting properties of cuprates, while the observed T-linear resistivity seems to be consistent with the present result.

  9. Microwave Absorption and Low-Frequency AC Losses in 1-2-3 Cuprate Superconductors

    NASA Astrophysics Data System (ADS)

    Huang, Ming Xun

    We have studied various aspects of microwave absorption in cuprates of the prototype REBa_2Cu _3O_{rm x} (6 < x < 7), where RE stands for Y or a rare earth ion. The first series of experiments concern the discovery and subsequent elucidation of a huge increase in zero field microwave absorption, at temperatures below 20 K, in micron size powder samples of ErBa_2Cu _3O_{rm x}. The field dependence of the microwave absorption was used to show that this abnormal zero field signal is a part of a broad and highly distorted electron spin resonance (ESR) spectrum. Spectra at different frequencies were analyzed using the "weak exchange, strong dipole field" Kubo-Toyabe model for the first time and we conclude that there is a large (~1 kOe) fluctuating local dipolar field at the Er site coming from the other Er^{3+} magnetic moments. For better understanding, experiments were done on ESR in powders of Er_{rm x}Y _{rm 1-z}Ba_2 Cu_3O_6 (0.02 < z < 1). For z < 0.4, another partially resolved line appeared at low fields. These spectra cannot be described as a powder pattern due to a single line with an anisotropic g-value. Rather they appear to be the sum of two Kubo -Toyabe lines. Most likely these lines are resonances coming from two closely spaced (~1K) low lying doublets. Crystal field calculations indicate that the distortion away from cubic symmetry implied by our results is much smaller than that required to describe the results of neutron scattering measurements. Another series of experiments were done to measure the increase in the microwave absorption in thin films of YBa_2Cu_3O _7 due to the application of a dc magnetic field (B) between 0.45 and 1.4 Tesla at 0.8 < (T/Tc) < 1. The data are very well represented by conventional models of fluxon dynamics. We have also measured the real (chi _1) and imaginary (chi_2 ) parts of the low frequency (<150 Hz) complex ac susceptibility. It was found that the data can be understood by using the Bean model.

  10. Driven motion of vortices in superconductors

    SciTech Connect

    Crabtree, G.W.; Leaf, G.K.; Kaper, H.G.; Vinokur, V.M.; Koshelev, A.E.; Braun, D.W.; Levine, D.M.

    1995-09-01

    The driven motion of vortices in the solid vortex state is analyzed with the time-dependent Ginzburg-Landau equations. In large-scale numerical simulations, carried out on the IBM Scalable POWERparallel (SP) system at Argonne National Laboratory, many hundreds of vortices are followed as they move under the influence of a Lorentz force induced by a transport current in the presence of a planar defect (similar to a twin boundary in YBa{sub 2}CU{sub 3}O{sub 7}). Correlations in the positions and velocities of the vortices in plastic and elastic motion are identified and compared. Two types of plastic motion are observed. Organized plastic motion displaying long-range orientational correlation and shorter-range velocity correlation occurs when the driving forces are small compared to the pinning forces in the twin boundary. Disorganized plastic motion displaying no significant correlation in either the velocities or orientation of the vortex system occurs when the driving and pinning forces axe of the same order.

  11. Mapping the Electronic Structure of Each Ingredient Oxide Layer of High-Tc Cuprate Superconductor Bi2 Sr2 CaCu2 O8 +δ

    NASA Astrophysics Data System (ADS)

    Lv, Yan-Feng; Wang, Wen-Lin; Peng, Jun-Ping; Ding, Hao; Wang, Yang; Wang, Lili; He, Ke; Ji, Shuai-Hua; Zhong, Ruidan; Schneeloch, John; Gu, Gen-Da; Song, Can-Li; Ma, Xu-Cun; Xue, Qi-Kun

    2015-12-01

    Understanding the mechanism of high transition temperature (Tc) superconductivity in cuprates has been hindered by the apparent complexity of their multilayered crystal structure. Using a cryogenic scanning tunneling microscopy (STM), we report on layer-by-layer probing of the electronic structures of all ingredient planes (BiO, SrO, CuO2 ) of Bi2 Sr2 CaCu2 O8 +δ superconductor prepared by argon-ion bombardment and annealing technique. We show that the well-known pseudogap (PG) feature observed by STM is inherently a property of the BiO planes and thus irrelevant directly to Cooper pairing. The SrO planes exhibit an unexpected van Hove singularity near the Fermi level, while the CuO2 planes are exclusively characterized by a smaller gap inside the PG. The small gap becomes invisible near Tc, which we identify as the superconducting gap. The above results constitute severe constraints on any microscopic model for high Tc superconductivity in cuprates.

  12. Mapping the Electronic Structure of Each Ingredient Oxide Layer of High-T\\{c} Cuprate Superconductor Bi{2}Sr{2}CaCu{2}O{8+δ}.

    PubMed

    Lv, Yan-Feng; Wang, Wen-Lin; Peng, Jun-Ping; Ding, Hao; Wang, Yang; Wang, Lili; He, Ke; Ji, Shuai-Hua; Zhong, Ruidan; Schneeloch, John; Gu, Gen-Da; Song, Can-Li; Ma, Xu-Cun; Xue, Qi-Kun

    2015-12-01

    Understanding the mechanism of high transition temperature (T{c}) superconductivity in cuprates has been hindered by the apparent complexity of their multilayered crystal structure. Using a cryogenic scanning tunneling microscopy (STM), we report on layer-by-layer probing of the electronic structures of all ingredient planes (BiO, SrO, CuO{2}) of Bi{2}Sr{2}CaCu_2}O{8+δ} superconductor prepared by argon-ion bombardment and annealing technique. We show that the well-known pseudogap (PG) feature observed by STM is inherently a property of the BiO planes and thus irrelevant directly to Cooper pairing. The SrO planes exhibit an unexpected van Hove singularity near the Fermi level, while the CuO{2} planes are exclusively characterized by a smaller gap inside the PG. The small gap becomes invisible near T{c}, which we identify as the superconducting gap. The above results constitute severe constraints on any microscopic model for high T{c} superconductivity in cuprates. PMID:26684137

  13. Coexistence of ΘI I-loop-current order with checkerboard d -wave CDW/PDW order in a hot-spot model for cuprate superconductors

    NASA Astrophysics Data System (ADS)

    de Carvalho, Vanuildo S.; Pépin, Catherine; Freire, Hermann

    2016-03-01

    We investigate the strong influence of the ΘI I-loop-current order on both unidirectional and bidirectional d -wave charge-density-wave/pair-density-wave (CDW/PDW) composite orders along axial momenta (±Q0,0 ) and (0 ,±Q0) that emerge in an effective hot-spot model departing from the three-band Emery model relevant to the phenomenology of the cuprate superconductors. This study is motivated by the compelling evidence that the ΘI I-loop-current order described by this model may explain groundbreaking experiments such as spin-polarized neutron scattering performed in these materials. Here, we demonstrate, within a saddle-point approximation, that the ΘI I-loop-current order clearly coexists with bidirectional (i.e., checkerboard) d -wave CDW and PDW orders along axial momenta, but is visibly detrimental to the unidirectional (i.e., stripe) case. This result has potentially far-reaching implications for the physics of the cuprates and agrees well with very recent x-ray experiments on YBCO that indicate that at higher dopings the CDW order has indeed a tendency to be bidirectional.

  14. Strong coupling critique of spin fluctuation driven charge order in underdoped cuprates

    NASA Astrophysics Data System (ADS)

    Mishra, Vivek; Norman, M. R.

    2015-08-01

    Charge order has emerged as a generic feature of doped cuprates, leading to important questions about its origin and its relation to superconductivity. Recent experiments on two classes of hole doped cuprates indicate a novel d -wave symmetry for the order. These were motivated by earlier spin fluctuation theoretical studies based on an expansion about hot spots in the Brillouin zone that indicated such an order would be competitive with d -wave superconductivity. Here, we reexamine this problem by solving strong coupling equations in the full Brillouin zone for experimentally relevant parameters. We find that bond-oriented order, as seen experimentally, is strongly suppressed. We also include coupling to B1 g phonons and do not see any qualitative change. Our results argue against an itinerant model for the charge order, implying instead that such order is likely due to Coulombic phase separation of the doped holes.

  15. p -orbital density wave with d symmetry in high-Tc cuprate superconductors predicted by renormalization-group + constrained RPA theory

    NASA Astrophysics Data System (ADS)

    Tsuchiizu, Masahisa; Yamakawa, Youichi; Kontani, Hiroshi

    2016-04-01

    The discovery of the charge-density-wave formation in the high-Tc cuprate superconductors has activated intensive theoretical studies for the pseudogap states. However, the microscopic origin of the charge-density-wave state has been unknown so far since the many-body effects beyond the mean-field-level approximations, called the vertex corrections, are essential. Toward solving this problem, we employ the recently developed functional renormalization group method, by which we can calculate the higher-order vertex corrections in a systematic and unbiased way with high numerical accuracy. We discover the critical development of the p -orbital-density-wave (p -ODW) instability in the strong-spin-fluctuation region. The obtained p -ODW state possesses the key characteristics of the charge-ordering pattern in Bi- and Y-based superconductors, such as the wave vector parallel to the nearest Cu-Cu direction, and the d -symmetry form factor with the antiphase correlation between px and py orbitals in the same unit cell. In addition, from the observation of the beautiful scaling relation between the spin susceptibility and the p -ODW susceptibility, we conclude that the main driving force of the density wave is the Aslamazov-Larkin vertex correction that becomes very singular near the magnetic quantum-critical point.

  16. Random field disorder and charge order driven quantum oscillations in cuprates

    NASA Astrophysics Data System (ADS)

    Russo, Antonio; Chakravarty, Sudip

    2016-03-01

    In the pseudogap regime of the cuprates, a period-2 charge order breaks a Z2 symmetry, reflecting a broken translational symmetry. Therefore, the interaction of charge order and quenched disorder due to potential scattering, can, in principle, be treated as a random field Ising model. A numerical analysis of the ground state of such a random field Ising model reveals local, glassy dynamics in both two and three dimensions. The dynamics are treated in the glassy limit as a heat bath which couples to the itinerant electrons, leading to an unusual electronic non-Fermi-liquid. If the dynamics are strong enough, the electron spectral function has no quasiparticle peak and the effective mass diverges at the Fermi surface, precluding quantum oscillations. In contrast to charge density, d -density wave order (reflecting staggered circulating currents) does not directly couple to potential disorder, allowing it to support quantum oscillations. At fourth order in Landau theory, there is a term consisting of the square of the d -density wave order parameter, and the square of the charge order. This coupling could induce parasitic charge order, which may be weak enough for the Fermi liquid behavior to remain uncorrupted. Here, we argue that this distinction must be made clear, as one interprets quantum oscillations in cuprates.

  17. Random field disorder and charge order driven quantum oscillations in cuprates

    NASA Astrophysics Data System (ADS)

    Russo, Antonio; Chakravarty, Sudip

    In the pseudogap regime of the cuprates, charge order breaks a ℤ2 symmetry. Therefore, the interaction of charge order and quenched disorder due to potential scattering, can, in principle, be treated as a random field Ising model. A numerical analysis of the ground state of such a random field Ising model reveals local, glassy dynamics in both 2 D and 3 D . The glassy dynamics are treated as a heat bath which couple to the itinerant electrons, leading to an unusual electronic non-Fermi liquid. If the dynamics are strong enough, the electron spectral function has no quasiparticle peak and the effective mass diverges at the Fermi surface, precluding quantum oscillations. In contrast to charge density, d-density wave order (reflecting staggered circulating currents) does not directly couple to potential disorder, allowing it to support quantum oscillations. At fourth order in Landau theory, there is a term consisting of the square of the d-density wave order parameter, and the square of the charge order. This coupling could induce parasitic charge order, which may be weak enough for the Fermi liquid behavior to remain uncorrupted. Here, we argue that this distinction must be made clear, as one interprets quantum oscillations in cuprates.

  18. Possible Room-Tc Superconductor with in-plane Ginzburg Sandwichin Cuprate-and Pnictide-likefamilyof Compounds

    NASA Astrophysics Data System (ADS)

    Mazov, L. S.

    On the basis of detailed analysis of resistive, neutron and optical experimental data in doped cuprates it is demonstrated that high critical temperature Tc of superconducting transition in these compounds is provided by Cooper pairing of mobile charge carriers in conducting charge (C) stripes due to delocalized, in-plane, charge-transfer (CT) excitons, propagating in semi-insulating spin (S) stripes, adjacent with C-ones. Such stripe structure arises in the pseudogap state in result of magnetic phase transition from spin-disordered state to magnetically-ordered one, like to incommensurate: T:Tonset SDW in CuO2 planes at Tonset ≤ T', which transition is accompanied by opening of the SDW-gap c SDW (pseudogap) at symmetrical parts of the Fermi surface. So-formed SDWstate, because of its incommensurability with the lattice period, generates the CDWwith wavelength ACDW = AS DW/2and, hence, the wave of lattice distortion. The crucial rise of Tc in cuprates duetoexcitonsis precededby moderate riseof Tc due to phonons, characteristic for partial dielectrization of electron energy spectrum in itinerant electron systems with interplay between superconductivity and magnetism. The picture is consistent with the Little-Ginzburg(LG) exciton mechanism of high-Tc superconductivity in planar geometry of GinzburgHTS-sandwich: insulator-metal-insulator. The new way to synthesize room-Tc supercon-ductors(RTS)in similar transitional-metal compounds with higher energyof in-planeCT transitionis proposed.

  19. Irreversibility line and flux pinning properties in a multilayered cuprate superconductor of Ba2Ca3Cu4O8(O,F)2 (Tc = 105 K)

    NASA Astrophysics Data System (ADS)

    Shirage, P. M.; Iyo, A.; Shivagan, D. D.; Tanaka, Y.; Kito, H.; Kodama, Y.

    2008-07-01

    Irreversibility line (IL) and flux pinning properties were investigated for a Ba2Ca3Cu4O8(O,F)2 (F-0234) multilayered cuprate superconductor with a Tc of 105 K. The intragrain critical current density (Jc) and irreversibility field (Birr) were determined by using Bean's critical state model for the grain-aligned sample (nominal composition Ba2Ca3Cu4O8.7F1.3). The irreversibility line (IL) of F-0234 is much lower than that of (Cu,C)Ba2Ca3Cu4Oy ((Cu, C)-1234) and HgBa2Ca3Cu4Oy (Hg-1234) in spite of the spacing between the superconducting blocks of F-0234 (7.3 Å) being much thinner. The double logarithmic plot of Birr field versus [1-(T/Tc) ] analysis hints that the flux line melting model has been adopted. An anisotropy factor of 65 was calculated from a 3D to 2D crossover field of about 0.95 T. Due to the high anisotropy of this system, a low IL has resulted. The flux pinning force density Fp ( ≈JcB) exhibits scaling behaviour when the magnetic field B is normalized by the Birr field. Analysis of the normalized pinning force reveals that a surface pinning mechanism is dominant and the reduced magnetic field bmax = 0.2 agrees with surface pinning mechanism with closely spaced pins.

  20. Nernst and Seebeck coefficients of the cuprate superconductor YBa2Cu3O6.67: a study of Fermi surface reconstruction.

    PubMed

    Chang, J; Daou, R; Proust, Cyril; Leboeuf, David; Doiron-Leyraud, Nicolas; Laliberté, Francis; Pingault, B; Ramshaw, B J; Liang, Ruixing; Bonn, D A; Hardy, W N; Takagi, H; Antunes, A B; Sheikin, I; Behnia, K; Taillefer, Louis

    2010-02-01

    The Seebeck and Nernst coefficients S and nu of the cuprate superconductor YBa{2}Cu{3}O{y} (YBCO) were measured in a single crystal with doping p=0.12 in magnetic fields up to H=28 T. Down to T=9 K, nu becomes independent of field by H approximately 30 T, showing that superconducting fluctuations have become negligible. In this field-induced normal state, S/T and nu/T are both large and negative in the T-->0 limit, with the magnitude and sign of S/T consistent with the small electronlike Fermi surface pocket detected previously by quantum oscillations and the Hall effect. The change of sign in S(T) at T approximately 50 K is remarkably similar to that observed in La2-xBaxCuO4, La{2-x-y}Nd{y}Sr_{x}CuO{4}, and La{2-x-y}Eu{y}Sr{x}CuO{4}, where it is clearly associated with the onset of stripe order. We propose that a similar density-wave mechanism causes the Fermi surface reconstruction in YBCO. PMID:20366789

  1. Short-ranged and short-lived charge-density-wave order and pseudogap features in underdoped cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Greco, Andrés; Bejas, Matías

    2011-06-01

    The pseudogap phase of high-Tc cuprates is controversially attributed to preformed pairs or to a phase which coexists and competes with superconductivity. One of the challenges is to develop theoretical and experimental studies in order to distinguish between both proposals. Very recently, researchers at Stanford have reported [M. Hashimoto , Nat. Phys.PRLTAO1745-247310.1038/nphys1632 6, 414 (2010); R.-H. He , ScienceSCIEAS0036-807510.1126/science.1198415 331, 1579 (2011)] angle-resolved photoemission spectroscopy experiments on Pb-Bi2201 supporting the point of view that the pseudogap is distinct from superconductivity and associated to a spacial symmetry breaking without long-range order. In this paper, we show that many features reported by these experiments can be described in the framework of the t-J model considering self-energy effects in the proximity to a d charge-density-wave instability.

  2. Low energy impurity kink in the normal and anomalous self-energies in Bi-cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Bok, Jin Mo; Bae, Jong Ju; Hong, Seung Hwan; Zhou, X. J.; Choi, Han-Yong

    2015-08-01

    The sharp low energy kink (LEK) in quasiparticle (qp) spectra well below the superconducting energy gap observed in the angle-resolved photo-emission spectroscopy (ARPES) of the Bi-cuprates may be understood in terms of the forward scattering impurities located off the Cu-O planes. The relevance of the idea has been established by comparing the calculated normal self-energy from the off-plane impurity effects and the extracted one from the self-energy analysis of Bi2Sr2CaCu2O8+δ (Bi2212) ARPES data in Hong et al. [Phys. Rev. Lett. 113, 057001 (2014)]. In addition to the explanation of the LEK, this is a necessary step to analyze ARPES data, to reveal the spectrum of fluctuations promoting superconductivity. We also present the extracted anomalous self-energy from the self-energy analysis, which is its first experimental determination as far as we are aware of. The extracted anomalous self-energy and its implications are discussed in comparison with the calculated impurity self-energy term.

  3. A NiCrAl pressure cell up to 4.6 GPa and its application to cuprate and pnictide superconductors

    NASA Astrophysics Data System (ADS)

    Fujiwara, Naoki; Uwatoko, Yoshiya; Matsumoto, Takehiko

    2013-06-01

    A NiCrAl-CuBe hybrid cell has been paid much attention because its maximum pressure goes beyond 3 GPa despite its large sample space. In the previous pressurizing trials for this pressure cell, we reached 4.0 GPa under a steady load of 15 ton. In the present trial, we have succeeded in reaching 4.6 GPa by using a short Teflon capsule as a pressure-mediation-liquid container. The pressure efficiency at 15 ton was 75 %. The maximum expansion of the inner diameter of the NiCrAl cylinder was 5 %, suggesting that 4.6 GPa is the upper limit of pressure. To keep high pressure above 4 GPa, a steady load control is needed: a pressure of 4.0 GPa under a steady load decreased to 3.7 GPa after the pressure cell was clamped and the steady load was released. The pressure cell is available to various experiments that need a large sample space. We have applied this pressure cell to nuclear magnetic resonance (NMR) measurements on cuprate and pnictide superconductors, such as Sr2Ca12Cu24O41, LaFeAsO1-xFx, and CaFe1-xCoxAsF. These compounds have superconducting layers, and Tcs of these compounds are enhanced by pressure application. We review what happens at optimal pressure in electric and/or magnetic properties on a microscopic level. Grant-in-Aid (Grant No. 23340101) from the Ministry of Education, Science and Culture, Japan.

  4. Exact diagonalization study of the effects of Zn and Ni impurities on the pseudogap of underdoped cuprate high-Tc superconductors

    NASA Astrophysics Data System (ADS)

    Vašátko, Jiří; Munzar, Dominik

    2016-03-01

    The influence of Zn and Ni impurities on the normal-state pseudogap of underdoped high-Tc cuprate superconductors is studied using exact diagonalization of effective t -J -like Hamiltonians describing low energy electronic excitations of the CuO2 plane with some of the copper ions replaced with Zn/Ni. The Ni case Hamiltonian has been obtained by a sequence of approximations from a more complete model involving Cu 3 d , Ni 3 d , and O 2 p orbitals. Our main findings are: (i) The width ΩPG of the pseudogap occurring in the many body density of states, and manifesting itself also in the c -axis infrared conductivity, decreases with increasing Zn concentration as a consequence of a suppression of short range spin correlations. (ii) In the case of one hole and one Ni impurity, the hole is—for realistic values of the model parameters—weakly bound to the Ni site. This causes a slight increase of ΩPG with respect to the pure case. (iii) Based on this result and further results for 1-2 holes and 1-2 Ni impurities, we suggest that in the real Ni substituted CuO2 plane ΩPG is larger than in the pure case due to the binding of the doped holes to the Ni sites and effective underdoping. Our findings clarify the trends observed in the c -axis infrared conductivity data of Zn and Ni substituted (Sm,Nd)Ba2Cu3O7 -δ crystals.

  5. Electronic structure of the ingredient planes of the cuprate superconductor Bi2Sr2CuO6 +δ : A comparison study with Bi2Sr2CaCu2O8 +δ

    NASA Astrophysics Data System (ADS)

    Lv, Yan-Feng; Wang, Wen-Lin; Ding, Hao; Wang, Yang; Ding, Ying; Zhong, Ruidan; Schneeloch, John; Gu, G. D.; Wang, Lili; He, Ke; Ji, Shuai-Hua; Zhao, Lin; Zhou, Xing-Jiang; Song, Can-Li; Ma, Xu-Cun; Xue, Qi-Kun

    2016-04-01

    By means of low-temperature scanning tunneling microscopy, we report on the electronic structures of the BiO and SrO planes of the Bi2Sr2CuO6 +δ (Bi-2201) superconductor prepared by argon-ion bombardment and annealing. Depending on post annealing conditions, the BiO planes exhibit either a pseudogap (PG) with sharp coherence peaks and an anomalously large gap magnitude of 49 meV or van Hove singularity (vHS) near the Fermi level, while the SrO is always characteristic of a PG-like feature. This contrasts with the Bi2Sr2CaCu2O8 +δ (Bi-2212) superconductor where vHS occurs solely on the SrO plane. We disclose the interstitial oxygen dopants (δ in the formulas) as a primary cause for the occurrence of vHS, which are located dominantly around the BiO and SrO planes, respectively, in Bi-2201 and Bi-2212. This is supported by the contrasting structural buckling amplitude of the BiO and SrO planes in the two superconductors. Our findings provide solid evidence for the irrelevance of PG to the superconductivity in the two superconductors, as well as insights into why Bi-2212 can achieve a higher superconducting transition temperature than Bi-2201, and by implication, the mechanism of cuprate superconductivity.

  6. Electronic structure of the ingredient planes of the cuprate superconductor Bi2Sr2CuO6+δ: A comparison study with Bi2Sr2CaCu2O8+δ

    DOE PAGESBeta

    Yan -Feng Lv; Gu, G. D.; Wang, Wen -Lin; Ding, Hao; Wang, Yang; Ding, Ying; Zhong, Ruidan; Schneeloch, John; Wang, Lili; He, Ke; et al

    2016-04-15

    By means of low-temperature scanning tunneling microscopy, we report on the electronic structures of the BiO and SrO planes of the Bi2Sr2CuO6+δ (Bi-2201) superconductor prepared by argon-ion bombardment and annealing. Depending on post annealing conditions, the BiO planes exhibit either a pseudogap (PG) with sharp coherence peaks and an anomalously large gap magnitude of 49 meV or van Hove singularity (vHS) near the Fermi level, while the SrO is always characteristic of a PG-like feature. This contrasts with the Bi2Sr2CaCu2O8+δ (Bi-2212) superconductor where vHS occurs solely on the SrO plane. We disclose the interstitial oxygen dopants (δ in the formulas)more » as a primary cause for the occurrence of vHS, which are located dominantly around the BiO and SrO planes, respectively, in Bi-2201 and Bi-2212. This is supported by the contrasting structural buckling amplitude of the BiO and SrO planes in the two superconductors. Furthermore, our findings provide solid evidence for the irrelevance of PG to the superconductivity in the two superconductors, as well as insights into why Bi-2212 can achieve a higher superconducting transition temperature than Bi-2201, and by implication, the mechanism of cuprate superconductivity.« less

  7. Nernst effect in high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Wang, Yayu

    This thesis presents a study of the Nernst effect in high temperature superconductors. The vortex Nernst measurements have been carried out on various high Tc cuprates to high magnetic fields. These results provide vital information about the properties and relations of the pseudogap phase and superconducting phase in high Tc superconductors. Our first finding is the existence of vortex-like excitations at temperatures much higher than Tc0, the zero filed transition temperature, in the underdoped cuprates. This result suggests that in the putative normal state of cuprates, although bulk Meissner effect is absent and resistivity looks normal, the amplitude of the Cooper pairing is still sizable. The transition at Tc0 is driven by the loss of long range phase coherence rather than the disappearance of superconducting condensate. The high field Nernst effect offers a reliable way to determine the upper critical field Hc2 of high Tc cuprates and many unusual properties are uncovered. For cuprates with relatively large hole density (x > 0.15), we found that H c2 is almost temperature independent for T < Tc0. This is in strong contrast to the Hc2 - T relation of conventional superconductors. Moreover, using a scaling analysis, we have demonstrated that H c2 increases with decreasing hole density x in this doping range, implying a stronger pairing potential at lower doping. In the severely underdoped regime (x < 0.12), some new features become apparent and they imply that the vortex Nernst signal is comprised of two distinct contributions. The first is from coherent regions with long range phase coherence and relatively low upper critical field, more like the superconducting phase; the second is from phase incoherent regions with much larger field scales, indicative of the pseudogap phase. As temperature rises, the superconducting phase gives weight to the pseudogap phase. Moreover, the upper critical field Hc2 of the superconducting phase scales with the onset

  8. Thermodynamic signature of a magnetic-field-driven phase transition within the superconducting state of an underdoped cuprate

    NASA Astrophysics Data System (ADS)

    Kemper, J. B.; Vafek, O.; Betts, J. B.; Balakirev, F. F.; Hardy, W. N.; Liang, Ruixing; Bonn, D. A.; Boebinger, G. S.

    2016-01-01

    More than a quarter century after the discovery of the high-temperature superconductor (HTS) YBa2Cu3O6+δ (YBCO; ref. ), studies continue to uncover complexity in its phase diagram. In addition to HTS and the pseudogap, there is growing evidence for multiple phases with boundaries which are functions of temperature (T), doping (p) and magnetic field. Here we report the low-temperature electronic specific heat (Celec) of YBa2Cu3O6.43 and YBa2Cu3O6.47 (p = 0.076 and 0.084) up to a magnetic field (H) of 34.5 T, a poorly understood region of the underdoped H-T-p phase space. We observe two regimes in the low-temperature limit: below a characteristic magnetic field H' ~ 12-15 T, Celec/T obeys an expected H1/2 behaviour; however, near H' there is a sharp inflection followed by a linear-in-H behaviour. H' rests deep within the superconducting phase and, thus, the linear-in-H behaviour is observed in the zero-resistance regime. In the limit of zero temperature, Celec/T is proportional to the zero-energy electronic density of states. At one of our dopings, the inflection is sharp only at lowest temperatures, and we thus conclude that this inflection is evidence of a magnetic-field-driven quantum phase transition.

  9. Recent high-magnetic-field experiments on the 'high Tc' cuprates: Fermi-surface instabilities as a driver for superconductivity

    SciTech Connect

    Singleton, John; Mc Donald, Ross D; Cox, Susan

    2008-01-01

    The authors give a brief review of high-magnetic-field quantum-oscillation measurements on cuprate superconductors. In the case of the underdoped cuprates, a number of small Fermi-surface pockets are observed, probably due to the incommensurate nesting of the predicted (large) hole Fermi surface. The Fermi-surface instabilities that drive this nesting are also likely to result in the incommensurate spin fluctuations observed in inelastic neutron-scattering measurements. They suggest that the unusually high superconducting transitions in the cuprates are driven by an exact mapping of these incommensurate spin fluctuations onto the d{sub x{sup 2}-y{sup 2}} Cooper-pair wavefunction. The maximum energy of the fluctuations {approx} 100s of Kelvin gives an appropriate energy scale for the superconducting transition temperature.

  10. Critical Doping for the Onset of Fermi-Surface Reconstruction by Charge-Density-Wave Order in the Cuprate Superconductor La2 -xSrx CuO4

    NASA Astrophysics Data System (ADS)

    Badoux, S.; Afshar, S. A. A.; Michon, B.; Ouellet, A.; Fortier, S.; LeBoeuf, D.; Croft, T. P.; Lester, C.; Hayden, S. M.; Takagi, H.; Yamada, K.; Graf, D.; Doiron-Leyraud, N.; Taillefer, Louis

    2016-04-01

    The Seebeck coefficient S of the cuprate superconductor La2 -xSrxCuO4 (LSCO) was measured in magnetic fields large enough to access the normal state at low temperatures, for a range of Sr concentrations from x =0.07 to x =0.15 . For x =0.11 , 0.12, 0.125, and 0.13, S /T decreases upon cooling to become negative at low temperatures. The same behavior is observed in the Hall coefficient RH (T ) . In analogy with other hole-doped cuprates at similar hole concentrations p , the negative S and RH show that the Fermi surface of LSCO undergoes a reconstruction caused by the onset of charge-density-wave modulations. Such modulations have indeed been detected in LSCO by x-ray diffraction in precisely the same doping range. Our data show that in LSCO this Fermi-surface reconstruction is confined to 0.085

  11. Effect of Coulomb interactions on the disorder-driven superconductor-insulator transition

    NASA Astrophysics Data System (ADS)

    Sherman, Daniel; Gorshunov, Boris; Poran, Shachaf; Trivedi, Nandini; Farber, Eli; Dressel, Martin; Frydman, Aviad

    2014-01-01

    We have studied the evolution of the superconducting energy gap of indium oxide through the disorder-driven superconductor-to-insulator transition (SIT) using two distinct experimental methods that allow us to test the influence of metallic screening: tunneling spectroscopy in which a metallic electrode is adjacent to the studied sample, thus screening Coulomb interactions, and contactless terahertz spectroscopy which probes the unperturbed sample. The tunneling measurements reveal a similar superconducting gap on both sides of the SIT and at temperatures above and below Tc. Terahertz measurements detect the superconducting gap below but not above the critical temperature nor in the insulating state. This difference between the two spectroscopy methods is attributed to the effect of Coulomb interactions which are screened in the tunneling experiments. Our study reveals the importance of Coulomb interactions on the energy gap of disordered superconductors.

  12. EDITORIAL: Focus on Superconductors with Exotic Symmetries FOCUS ON SUPERCONDUCTORS WITH EXOTIC SYMMETRIES

    NASA Astrophysics Data System (ADS)

    Rice, T. Maurice; Sigrist, Manfred; Maeno, Yoshiteru

    2009-05-01

    Superconductors can usefully be divided into two classes, those that are well described by the classic Bardeen-Cooper-Schrieffer (BCS) theory and its extensions and those which require a different microscopic description. The BCS theory of superconductivity solved the long standing mystery of this spectacular phenomenon and described all superconductors that were known when it was formulated in the 1950s. The key ingredient is an attractive interaction generated by the exchange of phonons between electrons which overcomes a Coulomb repulsion weakened by screening, to give a net attractive force on the low energy scale. In this case the simplest s-wave pairing always maximises the energy gain. There were speculations a little later that other types of electron pairing could be possible, but it took a quarter of a century until the first signs of superconductors with different and exotic pairing appeared. In the intervening thirty years many superconductors with exotic pairing have been and continue to be discovered and the study of their superconductivity has grown into a major subfield of condensed matter physics today. The importance of these exotic superconductors with unconventional symmetry is that their pairing is of electronic origin. As a result they are freed from the restrictions of low transition temperatures that go along with the phonon driven conventional superconductors. However in two of the main classes of the exotic superconductors, namely heavy fermion and organic superconductors, the intrinsic energy scales are very small leading to low temperature scales. The third class contains the small number of superconducting transition metal compounds with exotic pairing symmetry. The most studied of these are the high-Tc cuprates, the newly discovered iron pnictides and strontium ruthenate which is closely related to superfluid 3He. Although the basic electronic structure of these materials is well understood, the origin of the pairing is more complex

  13. X-ray photoemission study of the infinite-layer cuprate superconductor Sr(0.9) La (0.1) CuO(2)

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Jung, C. U.; Kim, J. Y.; Kim, M. S.; Lee, S. Y.; Lee, S. I.

    2001-01-01

    The electron-doped infinite-layer superconductor Sr(0.9)La(0.1) CuO(2) is studied with x-ray photoemission spectroscopy (XPS). A nonaqueous chemical etchant is shown to effectively remove contaminants and to yield surfaces from which signals intrinsic to the superconductor dominate.

  14. Reprint of : Elementary Andreev Processes in a Driven Superconductor-Normal Metal Contact

    NASA Astrophysics Data System (ADS)

    Belzig, Wolfgang; Vanevic, Mihajlo

    2016-08-01

    We investigate the full counting statistics of a voltage-driven normal metal(N)-superconductor(S) contact. In the low-bias regime below the superconducting gap, the NS contact can be mapped onto a purely normal contact, albeit with doubled voltage and counting fields. Hence in this regime the transport characteristics can be obtained by the corresponding substitution of the normal metal results. The elementary processes are single Andreev transfers and electron- and hole-like Andreev transfers. Considering Lorentzian voltage pulses we find an optimal quantization for half-integer Levitons.

  15. Ferro-type order of magneto-electric quadrupoles as an order-parameter for the pseudo-gap phase of a cuprate superconductor.

    PubMed

    Lovesey, S W; Khalyavin, D D; Staub, U

    2015-07-29

    There is general agreement within the community of researchers that investigate high-Tc materials that it is most important to understand the pseudo-gap phase. To this end, many experiments on various cuprates have been reported. Two prominent investigations-Kerr effect and neutron Bragg diffraction-imply that underdoped YBCO samples possess long-range magnetic order of an unusual kind. However, other measurements do not support the existence of magnetic order. Here we show that the Kerr effect and magnetic Bragg diffraction data are individual manifestations of ordered magneto-electric quadrupoles at Cu sites. While the use of magneto-electric multipoles is new in studies of the electronic properties of cuprates, they are not unknown in other materials, including an investigation with x-rays of the parent compound CuO. We exploit the recent prediction that neutrons are deflected by magneto-electric multipoles. The outcome of our study is a theory for the order-parameter of the pseudo-gap phase without the aforementioned conflict with other measurements, and the first experimental evidence that neutrons interact with multipoles belonging to a state of magnetic charge. PMID:26153665

  16. Ordered state of magnetic charge in the pseudo-gap phase of a cuprate superconductor (HgBa2CuO(4+δ)).

    PubMed

    Lovesey, S W; Khalyavin, D D

    2015-12-16

    A symmetry-based interpretation of published experimental results demonstrates that the pseudo-gap phase of underdoped HgBa2CuO(4+δ) (Hg1201) possesses an ordered state of magnetic charge epitomized by Cu magnetic monopoles. Magnetic properties of one-layer Hg1201 and two-layer YBa2Cu3O(6+x) (YBCO) cuprates have much in common, because their pseudo-gap phases possess the same magnetic space-group, e.g. both underdoped cuprates allow the magneto-electric (Kerr) effect. Differences in their properties stem from different Cu site symmetries, leaving Cu magnetic monopoles forbidden in YBCO. Resonant x-ray Bragg diffraction experiments can complement the wealth of information available from neutron diffraction experiments on five Hg1201 samples on which our findings are based. In the case of Hg1201 emergence of the pseudo-gap phase, with time-reversal violation, is accompanied by a reduction of Cu site symmetry that includes loss of a centre of inversion symmetry. In consequence, parity-odd x-ray absorption events herald the onset of the enigmatic phase, and we predict dependence of corresponding Bragg spots on magneto-electric multipoles, including the monopole, and the azimuthal angle (crystal rotation about the Bragg wavevector). PMID:26575373

  17. Ordered state of magnetic charge in the pseudo-gap phase of a cuprate superconductor (HgBa2CuO4+δ )

    NASA Astrophysics Data System (ADS)

    Lovesey, S. W.; Khalyavin, D. D.

    2015-12-01

    A symmetry-based interpretation of published experimental results demonstrates that the pseudo-gap phase of underdoped HgBa2CuO4+δ (Hg1201) possesses an ordered state of magnetic charge epitomized by Cu magnetic monopoles. Magnetic properties of one-layer Hg1201 and two-layer YBa2Cu3O6+x (YBCO) cuprates have much in common, because their pseudo-gap phases possess the same magnetic space-group, e.g. both underdoped cuprates allow the magneto-electric (Kerr) effect. Differences in their properties stem from different Cu site symmetries, leaving Cu magnetic monopoles forbidden in YBCO. Resonant x-ray Bragg diffraction experiments can complement the wealth of information available from neutron diffraction experiments on five Hg1201 samples on which our findings are based. In the case of Hg1201 emergence of the pseudo-gap phase, with time-reversal violation, is accompanied by a reduction of Cu site symmetry that includes loss of a centre of inversion symmetry. In consequence, parity-odd x-ray absorption events herald the onset of the enigmatic phase, and we predict dependence of corresponding Bragg spots on magneto-electric multipoles, including the monopole, and the azimuthal angle (crystal rotation about the Bragg wavevector).

  18. Large and high-quality single-crystal growth of cuprate superconductor Bi-2223 using the traveling-solvent floating-zone (TSFZ) method

    NASA Astrophysics Data System (ADS)

    Adachi, Shintaro; Usui, Tomohiro; Kosugi, Kenta; Sasaki, Nae; Sato, Kentaro; Fujita, Masaki; Yamada, Kazuyoshi; Fujii, Takenori; Watanabe, Takao

    In high superconducting transition temperature (high-Tc) cuprates, it is empirically known that Tc increases on increasing the number of CuO2 planes in a unit cell n from 1 to 3. Bi-family cuprates are ideal for investigating the microscopic mechanism involved. However, it is difficult to grow tri-layered Bi-2223, probably owing to its narrow crystallization field. Here, we report improved crystal growth of this compound using the TSFZ method under conditions slightly different from those in an earlier report [J. Cryst. Growth 223, 175 (2001)]. A Bi-rich feed-rod composition of Bi2.2Sr1.9Ca2Cu3Oy and a slightly oxygen-reduced atmosphere (mixed gas flow of O2 (10%) and Ar (90%)) were adopted for the crystal growth. In addition, to increase the supersaturation of the melts, we applied a large temperature gradient along the solid-liquid interface by shielding a high-angle light beam using Al foil around the quartz tube. In this way, we succeeded in preparing large (2 × 2 × 0 . 05 mm3) and high-quality (almost 100% pure) Bi-2223 single crystals. Hirosaki University Grant for Exploratory Research by Young Scientists and Newly-appointed Scientists.

  19. Magnetic-force-microscope Study of Interlayer _Kinks_ in Individual Vortices in Underdoped Cuprate YBa2Cu3O6 x Superconductor

    SciTech Connect

    Luan, Lan

    2010-04-05

    We use magnetic force microscopy to both image and manipulate individual vortex lines threading single crystalline YBa{sub 2}Cu{sub 3}O{sub 6.4}, a layered superconductor. We find that when we pull the top of a pinned vortex, it may not tilt smoothly. Sometimes, we observe a vortex to break into discrete segments that can be described as short stacks of pancake vortices, similar to the 'kinked' structure proposed by Benkraouda and Clem. Quantitative analysis gives an estimate of the pinning force and the coupling between the stacks. Our measurements highlight the discrete nature of stacks of pancake vortices in layered superconductors.

  20. Bosonic Magnetic Field Driven Superconductor-Insulator Transitions in Amorphous Nano-honeycomb Films

    NASA Astrophysics Data System (ADS)

    Stewart, M. D., Jr.; Yin, Aijun; Xu, J. M.; Valles, James M., Jr.

    2008-03-01

    We have observed multiple magnetic field driven superconductor-insulator transitions (SIT) in amorphous Bi films perforated with a nano-honeycomb (NHC) array of holes. The magneto-resistance across the SITs is periodic, with a period H=HM=h/2eS, where S is the area of a unit cell of holes. These transitions are, therefore, boson dominated. In constant field the temperature dependence of the resistance can be parameterized by R(T)=R0(H)(T0(H)/T) on both sides of the transition so that the evolution between the superconducting and insulating states is controlled by the vanishing of T0->0. We compare these data to the thickness driven transition in NHC films and the field driven transitions in unpatterned Bi films, other materials, and Josephson junction arrays. Our results suggest a structural source for similar behavior found in some materials and that despite the clear bosonic nature of the SITs, quasiparticle degrees of freedom likely also play an important part in the evolution of the SIT.

  1. Role of the upper branch of the hour-glass magnetic spectrum in the formation of the main kink in the electronic dispersion of high-Tc cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Geffroy, Dominique; Chaloupka, Jiří; Dahm, Thomas; Munzar, Dominik

    2016-04-01

    We investigate the electronic dispersion of the high-Tc cuprate superconductors using the fully self-consistent version of the phenomenological model, where charge planar quasiparticles are coupled to spin fluctuations. The inputs we use, the underlying (bare) band structure and the spin susceptibility χ , are extracted from fits of angle-resolved photoemission and inelastic neutron scattering data of underdoped YBa2Cu3O6.6 by T. Dahm and coworkers [Nat. Phys. 5, 217 (2009), 10.1038/nphys1180]. Our main results are as follows: (i) We have confirmed the finding by Dahm and coworkers that the main nodal kink is, for the present values of the input parameters, determined by the upper branch of the hourglass of χ . We demonstrate that the properties of the kink depend qualitatively on the strength of the charge-spin coupling. (ii) The effect of the resonance mode of χ on the electronic dispersion strongly depends on its kurtosis in the quasimomentum space. A low (high) kurtosis implies a negligible (considerable) effect of the mode on the dispersion in the near-nodal region. (iii) The energy of the kink decreases as a function of the angle θ between the Fermi surface cut and the nodal direction, in qualitative agreement with recent experimental observations. We clarify the trend and make a specific prediction concerning the angular dependence of the kink energy in underdoped YBa2Cu3O6.6 .

  2. Quasiparticle tunneling spectroscopy of high {Tc} cuprates

    SciTech Connect

    Zasadzinski, J.; Ozyuzer, L.; Yusof, Z.; Chen, J.; Gray, K.E.; Mogilevsky, R.; Hinks, D.G.; Cobb, J.L.; Markert, J.T.

    1996-04-01

    Superconductor-insulator-normal metal (SIN) and superconductor-insulator-superconductor (SIS) tunnel junctions provide important information on pairing state symmetry and mechanism. Measurements of such junctions on high {Tc} superconductors (HTS) are reported using mechanical point contacts, which generally display the optimum characteristics that can be obtained from HTS native-surface tunnel barriers. New tunneling data on the infinite-layer cuprate, Sr{sub 1{minus}x}Nd{sub x}CuO{sub 2} are reported which show a remarkable similarity to another electron-doped cuprate, Nd{sub 1.85}Ce{sub 0.85}CuO{sub 4}. In particular, there is a strong, asymmetric linear background conductance that is indicative of inelastic tunneling from a continuum of states. A discussion is given of the anomalous dip feature found in the tunneling and photoemission data on BSCCO 2212. It is shown that a similar feature is found in many cuprate junctions and that this dip scales with the gap energy over a wide range. New data on the single-layer, tetragonal cuprate, Tl{sub 2}Ba{sub 2}CuO{sub 6} (Tl2201) are presented and discussed in light of recent published results on the similar compound HgBa{sub 2}CuO{sub 4} (Hg1201). The HG1201 data display a low, flat sub-gap tunneling conductance which is consistent with a BCS density of states whereas the T12201 data display a cusp-like feature at zero bias which is more consistent with d{sub x}2-{sub y}2 symmetry.

  3. The microscopic structure of charge order in cuprates

    NASA Astrophysics Data System (ADS)

    Comin, Riccardo

    2015-03-01

    The spontaneous self-arrangement of electrons into periodically modulated patterns, a phenomenon commonly termed as charge order or charge-density-wave (CDW), has recently resurfaced as a prominent, universal ingredient for the physics of high-temperature superconductors. In such context, resonant x-ray scattering (RXS) has rapidly become the technique of choice for the study of charge order in momentum space, owing to its ability to directly identify a breaking of translational symmetry in the electronic density. In this talk, I will present our recent RXS studies of charge order in Bi2201, which reconciled years of apparently disconnected findings in different cuprate families by showing how charge order is a universal phenomenon in hole-doped cuprates [R. Comin, et al., Charge Order Driven by Fermi-Arc Instability in Bi2Sr2 - xLaxCuO6 +d, Science 343, 390 (2014)]. Contextually, I will discuss very recent findings of charge order in NCCO, which project such phenomenology to the electron-doped materials [E. da Silva Neto*, R. Comin*, et al., Charge ordering in the electron-doped superconductor Nd2-xCexCuO4, accepted (2014) - preprint at: http://arxiv.org/abs/1410.2253]. Furthermore, in YBCO, we have succeeded to fully reconstruct the CDW order parameter in the two-dimensional momentum space and demonstrate how resonant x-ray methods can be used to peer into the microscopic structure and symmetry of the charge order. Using this new method, we have been able to demonstrate the presence of charge stripes at the nanoscale [R. Comin, et al., Broken translational and rotational symmetry via charge stripe order in underdoped YBa2Cu3O6 +y, under review (2014)], as well as evaluate the local symmetry in the charge distribution around the Cu atoms, which was found to be predominantly of a d-wave bond-order type [R. Comin, et al., The symmetry of charge order in cuprates, under review (2014) - preprint at: http://arxiv.org/abs/1402.5415].

  4. Transport behavior across the field-driven superconductor-insulator transition in amorphous indium oxide films

    NASA Astrophysics Data System (ADS)

    Kim, Min-Soo

    Superconductor-insulator transition (SIT) in two-dimensional (2D) thin films is a beautiful realization of a zero temperature quantum phase transition (QPT) and has been explored both theoretically and experimentally over the last two decades. In addition to the several intrinsic ways (such as thickness) of tuning the transition, external magnetic field has been used to tune from one ground state to another in various condensed matter systems. Amorphous indium oxide thin films, with their unique capability of tuning the disorder level in the system easily, have been proven to be an excellent model system to study the transport mechanisms near and across the SIT in 2D. In this thesis, magnetic field-driven SIT in 2D films of amorphous InO x is studied. The goal of this work is to understand the microscopic transport mechanisms responsible for driving the SIT when the magnetic field direction is continually varied from being perpendicular to the sample plane to parallel. Applying a perpendicular magnetic field resulting in a clear field-driven SIT and a magneto-resistance peak on the insulating side in InO x films have been previously understood in a bosonic picture put forward by M. P. A. Fisher and coworkers. However, this boson-vortex duality picture is expected to give rise to markedly different transport characteristics when the magnetic field is applied parallel to the sample plane. Features found in the parallel-field transport data however can also be explained by the bosonic picture, thereby questioning the applicability of the hitherto successful models to the physics of SIT. An isotropic magnetic field value, where the sample has the exact same resistance irrespective of the angle between the sample plane and magnetic field direction, is found. This isotropic point lies at field values above the critical field (Bc) of the SIT (in both perpendicular and parallel configurations) and above the magnetoresistance peak. The isotropic point is very weakly

  5. Ferroelectricity in underdoped La-based cuprates.

    PubMed

    Viskadourakis, Z; Sunku, S S; Mukherjee, S; Andersen, B M; Ito, T; Sasagawa, T; Panagopoulos, C

    2015-01-01

    Doping a "parent" antiferromagnetic Mott insulator in cuprates leads to short-range electronic correlations and eventually to high-Tc superconductivity. However, the nature of charge correlations in the lightly doped cuprates remains unclear. Understanding the intermediate electronic phase in the phase diagram (between the parent insulator and the high-Tc superconductor) is expected to elucidate the complexity both inside and outside the superconducting dome, and in particular in the underdoped region. One such phase is ferroelectricity whose origin and relation to the properties of high-Tc superconductors is subject of current research. Here we demonstrate that ferroelectricity and the associated magnetoelectric coupling are in fact common in La-214 cuprates namely, La2-xSrxCuO4, La2LixCu1-xO4 and La2CuO4+x. It is proposed that ferroelectricity may result from local CuO6 octahedral distortions, associated with the dopant atoms and clustering of the doped charge carriers, which break spatial inversion symmetry at the local scale whereas magnetoelectric coupling can be tuned through Dzyaloshinskii-Moriya interaction. PMID:26486276

  6. Ferroelectricity in underdoped La-based cuprates

    PubMed Central

    Viskadourakis, Z.; Sunku, S. S.; Mukherjee, S.; Andersen, B. M.; Ito, T.; Sasagawa, T.; Panagopoulos, C.

    2015-01-01

    Doping a “parent” antiferromagnetic Mott insulator in cuprates leads to short-range electronic correlations and eventually to high-Tc superconductivity. However, the nature of charge correlations in the lightly doped cuprates remains unclear. Understanding the intermediate electronic phase in the phase diagram (between the parent insulator and the high-Tc superconductor) is expected to elucidate the complexity both inside and outside the superconducting dome, and in particular in the underdoped region. One such phase is ferroelectricity whose origin and relation to the properties of high-Tc superconductors is subject of current research. Here we demonstrate that ferroelectricity and the associated magnetoelectric coupling are in fact common in La-214 cuprates namely, La2-xSrxCuO4, La2LixCu1-xO4 and La2CuO4+x. It is proposed that ferroelectricity may result from local CuO6 octahedral distortions, associated with the dopant atoms and clustering of the doped charge carriers, which break spatial inversion symmetry at the local scale whereas magnetoelectric coupling can be tuned through Dzyaloshinskii-Moriya interaction. PMID:26486276

  7. A unifying phase diagram with correlation-driven superconductor-to-insulator transition for the 122 series of iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Niu, X. H.; Chen, S. D.; Jiang, J.; Ye, Z. R.; Yu, T. L.; Xu, D. F.; Xu, M.; Feng, Y.; Yan, Y. J.; Xie, B. P.; Zhao, J.; Gu, D. C.; Sun, L. L.; Mao, Qianhui; Wang, Hangdong; Fang, Minghu; Zhang, C. J.; Hu, J. P.; Sun, Z.; Feng, D. L.

    2016-02-01

    The 122 series of iron chalcogenide superconductors, for example KxFe2 -ySe2 , only possesses electron Fermi pockets. Their distinctive electronic structure challenges the picture built upon iron pnictide superconductors, where both electron and hole Fermi pockets coexist. However, partly due to the intrinsic phase separation in this family of compounds, many aspects of their behavior remain elusive. In particular, the evolution of the 122 series of iron chalcogenides with chemical substitution still lacks a microscopic and unified interpretation. Using angle-resolved photoemission spectroscopy, we studied a major fraction of 122 iron chalcogenides, including the isovalently "doped" KxFe2 -ySe2 -zSz,RbxFe2 -ySe2 -zTez , and (Tl,K) xFe2 -ySe2 -zSz . We found that the bandwidths of the low energy Fe 3 d bands in these materials depend on doping; and more crucially, as the bandwidth decreases, the ground state evolves from a metal to a superconductor, and eventually to an insulator, yet the Fermi surface in the metallic phases is unaffected by the isovalent dopants. Moreover, the correlation-driven insulator found here with small band filling may be a novel insulating phase. Our study shows that almost all the known 122-series iron chalcogenides can be understood via one unifying phase diagram which implies that moderate correlation strength is beneficial for the superconductivity.

  8. Optical devices based on dye-coated superconductor junctions: An example of a composite molecule-superconductor device

    SciTech Connect

    Zhao, J.; Jurbergs, D.; Yamazi, B.; McDevitt, J.T.

    1992-03-25

    High-temperature superconductors provide new opportunities as materials used in the construction of hybrid molecule-superconductor components. Here, the authors describe fabrication methods for and operation of optical sensors based on molecular dye-coated superconductor junctions. Devices prepared from yttrium barium cuprates and using octaethylporphyrin, phthalocyanine, and rhodamine 6G as dyes have been prepared. 9 refs., 1 fig.

  9. Excess Oxygen Defects in Layered Cuprates

    DOE R&D Accomplishments Database

    Lightfoot, P.; Pei, S. Y.; Jorgensen, J. D.; Manthiram, A.; Tang, X. X.; Goodenough, J. B.

    1990-09-01

    Neutron powder diffraction has been used to study the oxygen defect chemistry of two non-superconducting layered cuprates, La{sub 1. 25}Dy{sub 0.75}Cu{sub 3.75}F{sub 0.5}, having a T{sup {asterisk}}- related structure, and La{sub 1.85}Sr{sub 1.15}Cu{sub 2}O{sub 6.25}, having a structure related to that of the newly discovered double-layer superconductor La{sub 2-x}Sr{sub x}CaCu{sub 2}O{sub 6}. The role played by oxygen defects in determining the superconducting properties of layered cuprates is discussed.

  10. Evidence of Spin-Injection-Induced Cooper Pair Breaking in Perovskite Ferromagnet-Insulator-Superconductor Heterostructures via Pulsed Current Measurements

    NASA Technical Reports Server (NTRS)

    Yeh, N. C.; Samoilov, A. V.; Veasquez, R. P.; Li, Y.

    1998-01-01

    The effect of spin-polarized currents on the critical current densities of cuprate superconductors is investigated in perovskite ferromagnet-insulator-superconductor heterostructures with a pulsed current technique.

  11. Crucial Role of Internal Collective Modes in Underdoped Cuprates

    NASA Astrophysics Data System (ADS)

    Mallik, Aabhaas V.; Yadav, Umesh K.; Medhi, Amal; Krishnamurthy, H. R.; Shenoy, Vijay B.

    The enigmatic cuprate superconductors have attracted resurgent interest with several recent reports and discussions of competing orders in the underdoped side. Motivated by this, here we address the natural question of frailty of the d-wave superconducting state in underdoped cuprates. Using a combination of theoretical approaches we study a t - J like model. We report an - as yet unexplored - instability that is brought about by an ``internal'' fluctuation (anti-symmetric mode) of the d-wave state. This new theoretical result helps in understanding recent ARPES and STM studies. We also suggest further experiments to uncover this physics. Work supported by CSIR, UGC, DST and DAE.

  12. Elastic moduli across the superconducting and pseudogap phase boundaries in four cuprate compounds

    NASA Astrophysics Data System (ADS)

    Ramshaw, Brad; Shekhter, Arkady; Betts, Jon; Migliori, Albert

    2013-03-01

    A detailed understanding of the physics of the cuprate superconductors relies on an experimental determination of the thermodynamic phase diagram. Resonant ultrasound spectroscopy (RUS) is a unique thermodynamic probe, capable of measuring part per million changes in elastic moduli, and has access to symmetry information. Here we present a symmetry analysis of changes in the elastic moduli across the superconducting and psedogap phase boundaries in several classes of cuprates: YBCO, LSCO, Hg-1201, and Tl-2201.

  13. Interaction-driven strong topology on the boundary of a weak topological superconductor

    NASA Astrophysics Data System (ADS)

    Mendler, Daniel; Kotetes, Panagiotis; Schön, Gerd

    We focus on a class of topological superconductors (TSCs) which exhibit a bulk energy gap and support Majorana flat bands (MFBs) on the surface. In contrast to previous proposals relying on strong TSCs with nodal bandstructure, here MFBs are solely protected by a weak topological invariant reflecting a global or local strong anisotropy. In the present case interactions play a dual role, on one hand driving the spontaneous symmetry breaking to an anisotropic superconducting phase and on the other, gapping out the arising MFBs yielding a strong topological phase on the boundary. The prototype system showing this kind of behavior is the nematic pz-superconductor, which supports surface MFBs. While the interactions stabilize the pz-SC phase in the bulk and induce the MFBs, suppressed bulk p-wave pairing terms occur on the surface, thus lifting the MFB-degeneracy. A similar situation can take place if the nematic features are only local, a scenario which is realizable in a heterostructure consisting of a conventional superconductor in proximity to a topological insulator surface with intrinsic magnetic order.

  14. Symmetry of charge order in cuprates

    NASA Astrophysics Data System (ADS)

    Comin, R.; Sutarto, R.; He, F.; da Silva Neto, E. H.; Chauviere, L.; Fraño, A.; Liang, R.; Hardy, W. N.; Bonn, D. A.; Yoshida, Y.; Eisaki, H.; Achkar, A. J.; Hawthorn, D. G.; Keimer, B.; Sawatzky, G. A.; Damascelli, A.

    2015-08-01

    Charge-ordered ground states permeate the phenomenology of 3d-based transition metal oxides, and more generally represent a distinctive hallmark of strongly correlated states of matter. The recent discovery of charge order in various cuprate families has fuelled new interest into the role played by this incipient broken symmetry within the complex phase diagram of high-Tc superconductors. Here, we use resonant X-ray scattering to resolve the main characteristics of the charge-modulated state in two cuprate families: Bi2Sr2-xLaxCuO6+δ (Bi2201) and YBa2Cu3O6+y (YBCO). We detect no signatures of spatial modulations along the nodal direction in Bi2201, thus clarifying the inter-unit-cell momentum structure of charge order. We also resolve the intra-unit-cell symmetry of the charge-ordered state, which is revealed to be best represented by a bond order with modulated charges on the O-2p orbitals and a prominent d-wave character. These results provide insights into the origin and microscopic description of charge order in cuprates, and its interplay with superconductivity.

  15. Symmetry of charge order in cuprates.

    PubMed

    Comin, R; Sutarto, R; He, F; da Silva Neto, E H; Chauviere, L; Fraño, A; Liang, R; Hardy, W N; Bonn, D A; Yoshida, Y; Eisaki, H; Achkar, A J; Hawthorn, D G; Keimer, B; Sawatzky, G A; Damascelli, A

    2015-08-01

    Charge-ordered ground states permeate the phenomenology of 3d-based transition metal oxides, and more generally represent a distinctive hallmark of strongly correlated states of matter. The recent discovery of charge order in various cuprate families has fuelled new interest into the role played by this incipient broken symmetry within the complex phase diagram of high-T(c) superconductors. Here, we use resonant X-ray scattering to resolve the main characteristics of the charge-modulated state in two cuprate families: Bi2Sr(2-x)La(x)CuO(6+δ) (Bi2201) and YBa2Cu3O(6+y) (YBCO). We detect no signatures of spatial modulations along the nodal direction in Bi2201, thus clarifying the inter-unit-cell momentum structure of charge order. We also resolve the intra-unit-cell symmetry of the charge-ordered state, which is revealed to be best represented by a bond order with modulated charges on the O-2p orbitals and a prominent d-wave character. These results provide insights into the origin and microscopic description of charge order in cuprates, and its interplay with superconductivity. PMID:26006005

  16. Hyperactivated resistance in TiN films on the insulating side of the disorder-driven superconductor-insulator transition.

    SciTech Connect

    Baturina, T. I.; Mironov, A. Yu.; Vinokur, V. M.; Baklanov, M. R.; Strunk, C.; Materials Science Division; Inst. Semiconductor Physics; IMEC; Univ. Regensburg

    2008-12-01

    We investigate the insulating phase that forms in a titanium nitride film in a close vicinity of the disorder-driven superconductor-insulator transition. In zero magnetic field the temperature dependence of the resistance reveals a sequence of distinct regimes upon decreasing temperature crossing over from logarithmic to activated behavior with the variable-range hopping squeezing in between. In perpendicular magnetic fields below 2 T, the thermally activated regime retains at intermediate temperatures, whereas at ultralow temperatures, the resistance increases faster than that of the thermally activated type. This indicates a change of the mechanism of the conductivity. We find that at higher magnetic fields the thermally activated behavior disappears and the magnetoresistive isotherms saturate towards the value close to quantum resistance h/e{sup 2}.

  17. Role of Pressure and Magnetic Scattering on the Tc of the Cuprates

    NASA Astrophysics Data System (ADS)

    Wolf, Stuart; Kresin, Vladimir; Ovchinnikov, Yurii

    1996-03-01

    We can show that the large pressure effects on the transition temperature in the superconducting cuprates are caused by an unusual interplay between carrier doping and pair-breaking scattering. This pair-breaking scattering leads to a depression of Tc relative to its intrinsic value which we find to be in the range of 160K. Using these ideas we can explain the relative transition temperature in the one, two, and three layer cuprates as well as estimate the maximum Tc for the cuprate family of superconductors.

  18. Materials design for new superconductors

    NASA Astrophysics Data System (ADS)

    Norman, M. R.

    2016-07-01

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues.

  19. Theory of nonequilibrium superconductivity in cuprates

    NASA Astrophysics Data System (ADS)

    Oka, Takashi; Pietilä, Ville

    2013-03-01

    Recently, nonequilibrium properties of Hi Tc superconductors are attracting much interest. This is because new experimental methods such as time resolved ARPES has been applied to cuprates and succeeded in observing the dynamics of photo-excited quasiparticles as well as the temporal evolution of the d-wave superconducting order parameter (e.g.,). One can also realize nonequilibrium states in interfaces between cuprates and metal electrodes and control the superconducting order by changing the applied bias. In order to study the dynamics of superconductivity in strongly correlated systems, we developed a novel numerical method by combining the quantum kinetic equation with the fluctuation exchange approximation (FLEX, self-consistent T-matrix approximation). This method enables us to study the interplay between pair mediating fluctuations, e.g., antiferromagnetic and charge fluctuations, and the dynamics of quasiparticles and superconducting order parameter. In the presentation, we explain the physical insights we obtain by applying this method to nonequilibrium dynamics in d-wave superconductors.

  20. The high temperature superconductivity in cuprates: physics of the pseudogap region

    NASA Astrophysics Data System (ADS)

    Cea, Paolo

    2016-08-01

    We discuss the physics of the high temperature superconductivity in hole doped copper oxide ceramics in the pseudogap region. Starting from an effective reduced Hamiltonian relevant to the dynamics of holes injected into the copper oxide layers proposed in a previous paper, we determine the superconductive condensate wavefunction. We show that the low-lying elementary condensate excitations are analogous to the rotons in superfluid 4He. We argue that the rotons-like excitations account for the specific heat anomaly at the critical temperature. We discuss and compare with experimental observations the London penetration length, the Abrikosov vortices, the upper and lower critical magnetic fields, and the critical current density. We give arguments to explain the origin of the Fermi arcs and Fermi pockets. We investigate the nodal gap in the cuprate superconductors and discuss both the doping and temperature dependence of the nodal gap. We suggest that the nodal gap is responsible for the doping dependence of the so-called nodal Fermi velocity detected in angle resolved photoemission spectroscopy studies. We discuss the thermodynamics of the nodal quasielectron liquid and their role in the low temperature specific heat. We propose that the ubiquitous presence of charge density wave in hole doped cuprate superconductors in the pseudogap region originates from instabilities of the nodal quasielectrons driven by the interaction with the planar CuO2 lattice. We investigate the doping dependence of the charge density wave gap and the competition between charge order and superconductivity. We discuss the effects of external magnetic fields on the charge density wave gap and elucidate the interplay between charge density wave and Abrikosov vortices. Finally, we examine the physics underlying quantum oscillations in the pseudogap region.

  1. Experimental Evidence for Topological Doping in the Cuprates

    SciTech Connect

    Tranquada, J. M.

    1999-04-06

    Some recent experiments that provide support for the concept of topological doping in cuprate superconductors are discussed. Consistent with the idea of charge segregation, it is argued that the scattering associated with the ''resonance'' peak found in YBa{sub 2}Cu{sub 3}O{sub 6+x} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} comes from the Cu spins and not from the doped holes.

  2. Continuous and reversible tuning of the disorder-driven superconductor-insulator transition in bilayer graphene.

    PubMed

    Lee, Gil-Ho; Jeong, Dongchan; Park, Kee-Su; Meir, Yigal; Cha, Min-Chul; Lee, Hu-Jong

    2015-01-01

    The influence of static disorder on a quantum phase transition (QPT) is a fundamental issue in condensed matter physics. As a prototypical example of a disorder-tuned QPT, the superconductor-insulator transition (SIT) has been investigated intensively over the past three decades, but as yet without a general consensus on its nature. A key element is good control of disorder. Here, we present an experimental study of the SIT based on precise in-situ tuning of disorder in dual-gated bilayer graphene proximity-coupled to two superconducting electrodes through electrical and reversible control of the band gap and the charge carrier density. In the presence of a static disorder potential, Andreev-paired carriers formed close to the Fermi level in bilayer graphene constitute a randomly distributed network of proximity-induced superconducting puddles. The landscape of the network was easily tuned by electrical gating to induce percolative clusters at the onset of superconductivity. This is evidenced by scaling behavior consistent with the classical percolation in transport measurements. At lower temperatures, the solely electrical tuning of the disorder-induced landscape enables us to observe, for the first time, a crossover from classical to quantum percolation in a single device, which elucidates how thermal dephasing engages in separating the two regimes. PMID:26310774

  3. Continuous and reversible tuning of the disorder-driven superconductor-insulator transition in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Lee, Gil-Ho; Jeong, Dongchan; Park, Kee-Su; Meir, Yigal; Cha, Min-Chul; Lee, Hu-Jong

    2015-08-01

    The influence of static disorder on a quantum phase transition (QPT) is a fundamental issue in condensed matter physics. As a prototypical example of a disorder-tuned QPT, the superconductor-insulator transition (SIT) has been investigated intensively over the past three decades, but as yet without a general consensus on its nature. A key element is good control of disorder. Here, we present an experimental study of the SIT based on precise in-situ tuning of disorder in dual-gated bilayer graphene proximity-coupled to two superconducting electrodes through electrical and reversible control of the band gap and the charge carrier density. In the presence of a static disorder potential, Andreev-paired carriers formed close to the Fermi level in bilayer graphene constitute a randomly distributed network of proximity-induced superconducting puddles. The landscape of the network was easily tuned by electrical gating to induce percolative clusters at the onset of superconductivity. This is evidenced by scaling behavior consistent with the classical percolation in transport measurements. At lower temperatures, the solely electrical tuning of the disorder-induced landscape enables us to observe, for the first time, a crossover from classical to quantum percolation in a single device, which elucidates how thermal dephasing engages in separating the two regimes.

  4. Magnetically driven suppression of nematic order in an iron-based superconductor.

    PubMed

    Avci, S; Chmaissem, O; Allred, J M; Rosenkranz, S; Eremin, I; Chubukov, A V; Bugaris, D E; Chung, D Y; Kanatzidis, M G; Castellan, J-P; Schlueter, J A; Claus, H; Khalyavin, D D; Manuel, P; Daoud-Aladine, A; Osborn, R

    2014-01-01

    A theory of superconductivity in the iron-based materials requires an understanding of the phase diagram of the normal state. In these compounds, superconductivity emerges when stripe spin density wave (SDW) order is suppressed by doping, pressure or atomic disorder. This magnetic order is often pre-empted by nematic order, whose origin is yet to be resolved. One scenario is that nematic order is driven by orbital ordering of the iron 3d electrons that triggers stripe SDW order. Another is that magnetic interactions produce a spin-nematic phase, which then induces orbital order. Here we report the observation by neutron powder diffraction of an additional fourfold-symmetric phase in Ba1-xNaxFe2As2 close to the suppression of SDW order, which is consistent with the predictions of magnetically driven models of nematic order. PMID:24848521

  5. Quantized massive collective modes and massive spin fluctuations in high-Tc cuprates

    NASA Astrophysics Data System (ADS)

    Kanazawa, I.; Sasaki, T.

    2015-10-01

    We have analyzed angle-resolved photoemission spectra of the single- and double-layered Bi-family high-Tc superconductors by using quantized massive gauge fields, which might contain effects of spin fluctuations, charge fluctuations, and phonons. It is suggested strongly that the quantized massive gauge fields might be mediating Cooper pairing in high-Tc cuprates.

  6. Insights on the Cuprate High Energy Anomaly Observed in ARPES

    SciTech Connect

    Moritz, Brian

    2011-08-16

    Recently, angle-resolved photoemission spectroscopy has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). The anomaly is present for both hole- and electron-doped cuprates as well as the half-filled parent insulators with different energy scales arising on either side of the phase diagram. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. creating a 'waterfall'-like appearance, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram. We find that the anomaly demarcates a transition, or cross-over, from a quasiparticle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character.

  7. Enhanced Superconductivity in Superlattices of high-$T_c$ Cuprates

    SciTech Connect

    Okamoto, Satoshi; Maier, Thomas A

    2008-01-01

    The electronic properties of multilayers of strongly-correlated models for cuprate superconductors are investigated using cluster dynamical mean-field techniques. We focus on combinations of under-doped and over-doped layers and find that the superconducting order parameter in the over-doped layers is enhanced by the proximity effect of the strong pairing scale originating from the under-doped layers. The enhanced order parameter can even exceed the maximum value in uniform systems. This behavior is well reproduced in slave-boson mean-field calculations which also find higher transition temperatures than in the uniform system. These results indicate the possibility for higher critical temperatures in artificial cuprate multilayer systems.

  8. Application potential of Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Pallecchi, Ilaria; Eisterer, Michael; Malagoli, Andrea; Putti, Marina

    2015-11-01

    In this paper we report basic properties of iron-based superconductors and review the latest achievements in the fabrication of conductors based on these materials. We compare state-of-the-art results with performances obtained with low-T c and high-T c technical superconductors, evidencing in particular the most significant differences with respect to high-T c cuprate coated conductors. Although the optimization of preparation procedures is yet to be established, a potential range of applications for iron-based superconductors in the high field low temperature regime can be envisaged, where they may become competitors to RE-123 coated conductors.

  9. Current driven vortex-antivortex pair breaking and vortex explosion in the Bi2Te3/FeTe interfacial superconductor

    NASA Astrophysics Data System (ADS)

    Dean, C. L.; Kunchur, M. N.; He, Q. L.; Liu, H.; Wang, J.; Lortz, R.; Sou, I. K.

    2016-08-01

    We investigated the dissipative regime of the Bi2Te3/FeTe topological insulator-chalcogenide interface superconductor at temperatures well below the Berezinski-Kosterlitz-Thouless transition. We observe a transition in the current-resistance and temperature-resistance curves that quantitatively agrees with the Likharev vortex-explosion phenomenon. In the limit of low temperatures and high current densities, we were able to demonstrate the regime of complete vortex-antivortex dissociation arising from current driven vortex-antivortex pair breaking.

  10. Cold-spots and glassy nematicity in underdoped cuprates

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmin; Kivelson, Steven A.; Kim, Eun-Ah

    2016-07-01

    There is now copious direct experimental evidence of various forms of (short-range) charge order in underdoped cuprate high temperature superconductors, and spectroscopic signatures of a nodal-antinodal dichotomy in the structure of the single-particle spectral functions. In this context we analyze the Bogoliubov quasiparticle spectrum in a superconducting nematic glass. The coincidence of the superconducting "nodal points" and the nematic "cold-spots" on the Fermi surface naturally accounts for many of the most salient features of the measured spectral functions (from angle-resolved photoemission) and the local density of states (from scanning tunneling microscopy).

  11. Optical spectra of high temperature superconductors

    SciTech Connect

    Ruvalds, J.

    1996-12-31

    The concept of free electrons which yields the Drude description of the conductivity works surprisingly well in conventional metals. By contrast, the infrared reflectivity of the cuprate superconductors deviates dramatically from Drude behavior and thus challenges theory to explain the origin of the anomalous electron damping and the related mass divergence which has implications for the existence of a Fermi surface. The controversial key issue of the carrier concentration in cuprates needs to be resolved by a conserving analysis of the puzzling conductivity. Raman spectra of cuprates also exhibit unconventional electronic contributions over a wide frequency range up to 1 eV, and recent data provide evidence for the symmetry of the superconducting energy gap. A microscopic theory for both the optical conductivity and the Raman anomalies in cuprates derives a linear frequency variation of the damping from electron-electron collisions on a nested Fermi surface that refers to nearly parallel segments of an electron trajectory. Thus the nesting theory links the cuprate anomalies to phenomena in chromium and rare earth metals. Nesting also yields a novel mechanism for d-wave superconductivity that requires a Coulomb repulsion of intermediate strength and key nesting features that distinguish high {Tc} cuprates from other materials. 41 refs., 7 figs.

  12. On d+id Density Wave and Superconducting Orderings in Hole-Doped Cuprates

    NASA Astrophysics Data System (ADS)

    Goswami, Partha; Gahlot, Ajay Pratap Singh; Singh, Pankaj

    2013-05-01

    The d+id-density wave (chiral DDW) order, at the anti-ferromagnetic wave vector Q = (π, π), is assumed to represent the pseudo-gap (PG) state of a hole-doped cuprate superconductor. The pairing interaction U(k, k‧) required for d+id ordering comprises of (Ux2-y2(k, k‧), Uxy(k, k‧)), where Ux2-y2(k, k') = U1(cos kxa-cos kya)(cos k'xa- cos k'ya) and Uxy(k, k') = U2sin(kxa)sin(kya) sin(k'xa) sin(k'ya) with U1 > U2. The d-wave superconductivity (DSC), driven by an assumed attractive interaction of the form V(k, k') = -ěrt V1ěrt(cos kxa-cos kya)(cos k'xa- cos k'ya) where V1 is a model parameter, is discussed within the mean-field framework together with the d+id ordering. The single-particle excitation spectrum in the CDDW + DSC state is characterized by the Bogoluibov quasi-particle bands — a characteristic feature of SC state. The coupled gap equations are solved self-consistently together with the equation to determine the chemical potential (μ). With the pinning of the van Hove-singularities close to μ, one is able to calculate the thermodynamic and transport properties of the under-doped cuprates in a consistent manner. The electron specific heat displays non-Fermi liquid feature in the CDDW state. The CDDW and DSC are found to represent two competing orders as the former brings about a depletion of the spectral weight (and Raman response function density) available for pairing in the anti-nodal region of momentum space. It is also shown that the depletion of the spectral weight below Tc at energies larger than the gap amplitude occurs. This is an indication of the strong-coupling superconductivity in cuprates. The calculation of the ratio of the quasi-particle thermal conductivity αxx and temperature in the superconducting phase is found to be constant in the limit of near-zero quasi-particle scattering rate.

  13. Materials design for new superconductors.

    PubMed

    Norman, M R

    2016-07-01

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues. PMID:27214291

  14. Interpretation of scanning tunneling quasiparticle interference and impurity states in cuprates.

    PubMed

    Kreisel, A; Choubey, Peayush; Berlijn, T; Ku, W; Andersen, B M; Hirschfeld, P J

    2015-05-29

    We apply a recently developed method combining first principles based Wannier functions with solutions to the Bogoliubov-de Gennes equations to the problem of interpreting STM data in cuprate superconductors. We show that the observed images of Zn on the surface of Bi_{2}Sr_{2}CaCu_{2}O_{8} can only be understood by accounting for the tails of the Cu Wannier functions, which include significant weight on apical O sites in neighboring unit cells. This calculation thus puts earlier crude "filter" theories on a microscopic foundation and solves a long-standing puzzle. We then study quasiparticle interference phenomena induced by out-of-plane weak potential scatterers, and show how patterns long observed in cuprates can be understood in terms of the interference of Wannier functions above the surface. Our results show excellent agreement with experiment and enable a better understanding of novel phenomena in the cuprates via STM imaging. PMID:26066452

  15. Infrared conductivity of cuprates using Yang-Rice-Zhang ansatz: Review of our recent investigations

    SciTech Connect

    Singh, Navinder; Sharma, Raman

    2015-05-15

    A review of our recent investigations related to the ac transport properties in the psedogapped state of cuprate high temperature superconductors is presented. For our theoretical calculations we use a phenomenological Green’s function proposed by Yang, Rice and Zhang (YRZ). This is based upon the renormalized mean-field theory of the Hubbard model and takes into account the strong electron-electron interaction present in Cuprates. The pseudogap is also taken into account through a proposed self energy. We have tested the form of the Green’s function by computing ac conductivity of cuprates and then compared with experimental results. We found agreement between theory and experiment in reproducing the doping evolution of ac conductivity but there is a problem with absolute magnitudes and their frequency dependence. This shows a partial success of the YRZ ansatz. The ways to rectify it are suggested and worked out.

  16. Itinerant effects and enhanced magnetic interactions in Bi-based multilayer cuprates

    SciTech Connect

    Dean, M. P. M.; James, A. J. A.; Walters, A. C.; Bisogni, V.; Jarrige, I.; Hücker, M.; Giannini, E.; Fujita, M.; Pelliciari, J.; Huang, Y. B.; Konik, R. M.; Schmitt, T.; Hill, J. P.

    2014-12-04

    The cuprate high temperature superconductors exhibit a pronounced trend in which the superconducting transition temperature, T c, increases with the number of CuO₂ planes, n, in the crystal structure. We compare the magnetic excitation spectrum of Bi₂₊xSr₂₋xCuO₆+δ (Bi-2201) and Bi₂Sr₂Ca₂Cu₃O₁₀₊δ (Bi-2223), with n = 1 and n = 3 respectively, using Cu L₃-edge resonant inelastic x-ray scattering (RIXS). Near the anti-nodal zone boundary we find the paramagnon energy in Bi-2223 is substantially higher than that in Bi-2201, indicating that multilayer cuprates host stronger effective magnetic exchange interactions, providing a possible explanation for the Tc vs. n scaling. In contrast, the nodal direction exhibits very strongly damped, almost non-dispersive excitations. As a result, we argue that this implies that the magnetism in the doped cuprates is partially itinerant in nature.

  17. Gutzwiller charge phase diagram of cuprates, including electron–phonon coupling effects

    DOE PAGESBeta

    Markiewicz, R. S.; Seibold, G.; Lorenzana, J.; Bansil, A.

    2015-02-01

    Besides significant electronic correlations, high-temperature superconductors also show a strong coupling of electrons to a number of lattice modes. Combined with the experimental detection of electronic inhomogeneities and ordering phenomena in many high-Tc compounds, these features raise the question as to what extent phonons are involved in the associated instabilities. Here we address this problem based on the Hubbard model including a coupling to phonons in order to capture several salient features of the phase diagram of hole-doped cuprates. Charge degrees of freedom, which are suppressed by the large Hubbard U near half-filling, are found to become active at amore » fairly low doping level. We find that possible charge order is mainly driven by Fermi surface nesting, with competition between a near-(π, π) order at low doping and antinodal nesting at higher doping, very similar to the momentum structure of magnetic fluctuations. The resulting nesting vectors are generally consistent with photoemission and tunneling observations, evidence for charge density wave order in YBa₂Cu₃O7-δ including Kohn anomalies, and suggestions of competition between one- and two-q-vector nesting.« less

  18. Gutzwiller charge phase diagram of cuprates, including electron–phonon coupling effects

    SciTech Connect

    Markiewicz, R. S.; Seibold, G.; Lorenzana, J.; Bansil, A.

    2015-02-01

    Besides significant electronic correlations, high-temperature superconductors also show a strong coupling of electrons to a number of lattice modes. Combined with the experimental detection of electronic inhomogeneities and ordering phenomena in many high-Tc compounds, these features raise the question as to what extent phonons are involved in the associated instabilities. Here we address this problem based on the Hubbard model including a coupling to phonons in order to capture several salient features of the phase diagram of hole-doped cuprates. Charge degrees of freedom, which are suppressed by the large Hubbard U near half-filling, are found to become active at a fairly low doping level. We find that possible charge order is mainly driven by Fermi surface nesting, with competition between a near-(π, π) order at low doping and antinodal nesting at higher doping, very similar to the momentum structure of magnetic fluctuations. The resulting nesting vectors are generally consistent with photoemission and tunneling observations, evidence for charge density wave order in YBa₂Cu₃O7-δ including Kohn anomalies, and suggestions of competition between one- and two-q-vector nesting.

  19. Direct cupration of fluoroform.

    PubMed

    Zanardi, Alessandro; Novikov, Maxim A; Martin, Eddy; Benet-Buchholz, Jordi; Grushin, Vladimir V

    2011-12-28

    We have found the first reaction of direct cupration of fluoroform, the most attractive CF(3) source for the introduction of the trifluoromethyl group into organic molecules. Treatment of CuX (X = Cl, Br, I) with 2 equiv of MOR (M = K, Na) in DMF or NMP produces novel alkoxycuprates that readily react with CF(3)H at room temperature and atmospheric pressure to give CuCF(3) derivatives. The CuCl and t-BuOK (1:2) combination provides best results, furnishing the CuCF(3) product within seconds in nearly quantitative yield. As demonstrated, neither CF(3)(-) nor CF(2) mediate the Cu-CF(3) bond formation, which accounts for its remarkably high selectivity. The fluoroform-derived CuCF(3) solutions can be efficiently stabilized with TREAT HF to produce CuCF(3) reagents that readily trifluoromethylate organic and inorganic electrophiles in the absence of additional ligands such as phenanthroline. A series of novel Cu(I) complexes have been structurally characterized, including K(DMF)[Cu(OBu-t)(2)] (1), Na(DMF)(2)[Cu(OBu-t)(2)] (2), [K(8)Cu(6)(OBu-t)(12)(DMF)(8)(I)](+) I(-) (3), and [Cu(4)(CF(3))(2)(C(OBu-t)(2))(2)(μ(3)-OBu-t)(2)] (7). PMID:22136628

  20. Nematicity in stripe ordered cuprates probed via resonant x-ray scattering

    DOE PAGESBeta

    Achkar, A. J.; Zwiebler, M.; McMahon, Christopher; He, F.; Sutarto, R.; Dijianto, Isaiah; Hao, Zhihao; Gingras, Michael J.P.; Hucker, M.; Gu, G. D.; et al

    2016-02-05

    We found that in underdoped cuprate superconductors, a rich competition occurs between superconductivity and charge density wave (CDW) order. Whether rotational symmetry-breaking (nematicity) occurs intrinsically and generically or as a consequence of other orders is under debate. Here, we employ resonant x-ray scattering in stripe-ordered superconductors (La,M)2CuO4 to probe the relationship between electronic nematicity of the Cu 3d orbitals, structure of the (La,M)2O2 layers, and CDW order. We find distinct temperature dependences for the structure of the (La,M)2O2 layers and the electronic nematicity of the CuO2 planes, with only the latter being enhanced by the onset of CDW order. Ourmore » results identify electronic nematicity as an order parameter that is distinct from a purely structural order parameter in underdoped striped cuprates.« less

  1. The specific heat of the 2201 BISCO high-T c superconductor

    NASA Astrophysics Data System (ADS)

    Yu, M. K.; Franck, J. P.

    1994-04-01

    The specific heat of two samples of the single-plane 2201 bismuth superconductor was measured. No linear term in Cp was observed at low temperatures. The lattice molar specific heat below 14 K exceeds that of the 2221 and 2223 bismuth superconductors considerably. As a consequence no peak in Cp/ T3 is observed in this superconductor, in contrast to other high- Tc cuprates. The specific-heat anomaly near Tc could not be resolved.

  2. Present status of the theory of the high-Tc cuprates

    NASA Astrophysics Data System (ADS)

    Anderson, P. W.

    2006-04-01

    The Gutzwiller-projected mean-field theory, also called plain vanilla or renormalized mean-field theory, is explained, and its successes and possible extensions in describing the phenomenology of the cuprate superconductors are discussed. Throughout, we emphasize that while this is a Hartree-Fock-based BCS theory, it embodies fundamental differences from conventional perturbative many-body theory which may be characterized by calling it a theory of the doped Mott insulator.

  3. The anisotropic properties of high temperature superconductors - an ARPES study

    NASA Astrophysics Data System (ADS)

    Kaminski, Adam; Fretwell, Helen; Mesot, Joel; Rozenkrantz, Stephan; Djendjinovic, Marin; Campuzano, Juan; Randeria, Mohit; Norman, Michael; Sato, Takafumi; Takahashi, Takashi; Kadowaki, Kazuo; Hinks, David; Raffy, Helen

    2001-03-01

    It is now well established that cuprates are d-wave superconductors. Natural question arises concerning the symmetry of other electronic properties in these materials and their relation to anisotropic order parameter. We present our recent ARPES measurements of these properties performed on a the same sample of single cristal BISCO 2212.

  4. Holographic superconductors from the massive gravity

    NASA Astrophysics Data System (ADS)

    Zeng, Hua Bi; Wu, Jian-Pin

    2014-08-01

    A holographic superconductor is constructed in the background of a massive gravity theory. In the normal state without condensation, the conductivity exhibits a Drude peak that approaches a delta function in the massless gravity limit as studied by David Vegh. In the superconducting state, besides the infinite dc conductivity, the ac conductivity has Drude behavior at low frequency followed by a power-law fall. These results are in agreement with that found earlier by Horowitz and Santos, who studied a holographic superconductor with an implicit periodic potential beyond the probe limit. The results also agree with measurements on some cuprates.

  5. Electron-phonon driven spin frustration in multi-band Hubbard models: MX chains and oxide superconductors

    SciTech Connect

    Gammel, J.T.; Yonemitsu, K.; Saxena, A.; Bishop, A.R.; Roeder, H.

    1992-12-01

    We discuss the consequences of both electron-phonon and electron-electron couplings in 1D and 2D multi-band (Peierls-Hubbard) models are discussed. After a brief discussion of various analytic limits, we focused on (Hartree-Fock and exact) numerical studies in the intermediate regime for both couplings, where unusual spin-Peierls as well as long-period, frustrated ground states are found. Doping into such phases or near the phase boundaries can lead to further interesting phenomena such as separation of spin and charge, a dopant-induced phase transition of the global (parent) phase, or real-space (``bipolaronic``) pairing. Possible experimentally observable consequences of this rich phase diagram for halogen-bridged, transition metal, linear chain complexes (MX chains) in 1D and the oxide superconductors in 2D are discussed.

  6. Electronic evidence of an insulator–superconductor crossover in single-layer FeSe/SrTiO3 films

    PubMed Central

    He, Junfeng; Liu, Xu; Zhang, Wenhao; Zhao, Lin; Liu, Defa; He, Shaolong; Mou, Daixiang; Li, Fangsen; Tang, Chenjia; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X. J.

    2014-01-01

    In high-temperature cuprate superconductors, it is now generally agreed that superconductivity is realized by doping an antiferromagnetic Mott (charge transfer) insulator. The doping-induced insulator-to-superconductor transition has been widely observed in cuprates, which provides important information for understanding the superconductivity mechanism. In the iron-based superconductors, however, the parent compound is mostly antiferromagnetic bad metal, raising a debate on whether an appropriate starting point should go with an itinerant picture or a localized picture. No evidence of doping-induced insulator–superconductor transition (or crossover) has been reported in the iron-based compounds so far. Here, we report an electronic evidence of an insulator–superconductor crossover observed in the single-layer FeSe film grown on a SrTiO3 substrate. By taking angle-resolved photoemission measurements on the electronic structure and energy gap, we have identified a clear evolution of an insulator to a superconductor with increasing carrier concentration. In particular, the insulator–superconductor crossover in FeSe/SrTiO3 film exhibits similar behaviors to that observed in the cuprate superconductors. Our results suggest that the observed insulator–superconductor crossover may be associated with the two-dimensionality that enhances electron localization or correlation. The reduced dimensionality and the interfacial effect provide a new pathway in searching for new phenomena and novel superconductors with a high transition temperature. PMID:25502774

  7. Buckley Prize Talk: Bosons on the Boundaries: The magnetic field driven superconductor-insulator quantum phase transition

    NASA Astrophysics Data System (ADS)

    Hebard, Arthur

    2015-03-01

    Experiments probing the competition between superconductivity and disorder in two-dimensional (2D) thin-film systems have provided fascinating glimpses into the physics of superconductor-insulator (S-I) quantum phase transitions (QPTs). This talk will address the use of externally applied magnetic fields to tune through the S-I transition of amorphous composite indium oxide (α-InOx) thin films prepared at different stages of disorder. Air-stable α-InOx films are particularly advantageous for these studies: the disorder parameter as measured by the sheet resistance can be reproducibly controlled during deposition and the films are uniformly homogeneous out to macroscopic length scales. Temperature-dependent resistance and current-voltage measurements confirm the power-law decay of the order-parameter correlation function appropriate to a Kosterlitz-Thouless description of phase transitions in 2D systems. Accordingly, the superconducting phase transition temperature Tc is related to the unbinding of vortex-antivortex pairs either by temperature and/or disorder. The application of magnetic fields unveils fundamentally different physics in which, rather than a vortex unbinding transition, a field-tuned QPT emerges with the signature of a disorder-dependent critical field Bc that identifies the delocalization and Bose condensation of field-induced vortices. The concomitant pronounced divergence in resistance, which becomes increasing sharp as the temperature is lowered, marks the boundary between a superconductor harboring both Bose condensed Cooper pairs and localized vortices and an insulator harboring both Bose condensed vortices and localized Cooper pairs. The data for this putative QPT are well described by finite temperature scaling theory with critical exponent values accurately determined. At higher fields there is a second critical field where the transverse resistance appears to diverge, signaling the unbinding of pairs with the superconducting energy gap

  8. Neutron and Synchrotron X-Ray Scattering Studies of Superconductors

    SciTech Connect

    Tranquada,J.M.

    2008-09-01

    Superconductors hold the promise for a more stable and efficient electrical grid, but new isotropic, high-temperature superconductors are needed in order to reduce cable manufacturing costs. The effort to understand high-temperature superconductivity, especially in the layered cuprates, provides guidance to the search for new superconductors. Neutron scattering has long provided an important probe of the collective excitations that are involved in the pairing mechanism. For the cuprates, neutron and x-ray diffraction techniques also provide information on competing types of order, such as charge and spin stripes, that appear to be closely connected to the superconductivity. Recently, inelastic x-ray scattering has become competitive for studying phonons and may soon provide valuable information on electronic excitations. Examples of how these techniques contribute to our understanding of superconductivity are presented.

  9. Theoretical prediction of nematic orbital-ordered state in the Ti oxypnictide superconductor BaTi2(As,Sb ) 2O

    NASA Astrophysics Data System (ADS)

    Nakaoka, Hironori; Yamakawa, Youichi; Kontani, Hiroshi

    2016-06-01

    The electronic nematic state without magnetization emerges in various strongly correlated metals such as Fe-based and cuprate superconductors. To understand this universal phenomenon, we focus on the nematic state in Ti oxypnictide BaTi2(As,Sb ) 2O , which is expressed as the three-dimensional ten-orbital Hubbard model. The antiferromagnetic fluctuations are caused by the Fermi surface nesting. Interestingly, we find the spin-fluctuation-driven orbital order due to the strong orbital-spin interference, which is described by the Aslamazov-Larkin vertex correction (AL-VC). The predicted intra-unit-cell nematic orbital order is consistent with the recent experimental reports on BaTi2(As,Sb ) 2O . Thus, the spin-fluctuation-driven orbital order due to the AL-VC mechanism is expected to be universal in various two- and three-dimensional multiorbital metals.

  10. Doping-dependent charge order correlations in electron-doped cuprates

    PubMed Central

    da Silva Neto, Eduardo H.; Yu, Biqiong; Minola, Matteo; Sutarto, Ronny; Schierle, Enrico; Boschini, Fabio; Zonno, Marta; Bluschke, Martin; Higgins, Joshua; Li, Yangmu; Yu, Guichuan; Weschke, Eugen; He, Feizhou; Le Tacon, Mathieu; Greene, Richard L.; Greven, Martin; Sawatzky, George A.; Keimer, Bernhard; Damascelli, Andrea

    2016-01-01

    Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2−xCexCuO4 and Nd2−xCexCuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2−xCexCuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates. PMID:27536726

  11. Doping-dependent charge order correlations in electron-doped cuprates.

    PubMed

    da Silva Neto, Eduardo H; Yu, Biqiong; Minola, Matteo; Sutarto, Ronny; Schierle, Enrico; Boschini, Fabio; Zonno, Marta; Bluschke, Martin; Higgins, Joshua; Li, Yangmu; Yu, Guichuan; Weschke, Eugen; He, Feizhou; Le Tacon, Mathieu; Greene, Richard L; Greven, Martin; Sawatzky, George A; Keimer, Bernhard; Damascelli, Andrea

    2016-08-01

    Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2-x Ce x CuO4 and Nd2-x Ce x CuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2-x Ce x CuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates. PMID:27536726

  12. "Fluctuoscopy" of Superconductors

    NASA Astrophysics Data System (ADS)

    Varlamov, A. A.

    Study of fluctuation phenomena in superconductors (SCs) is the subject of great fundamental and practical importance. Understanding of their physics allowed to clear up the fundamental properties of SC state. Being predicted in 1968, one of the fluctuation effects, namely paraconductivity, was experimentally observed almost simultaneously. Since this time, fluctuations became a noticeable part of research in the field of superconductivity, and a variety of fluctuation effects have been discovered. The new wave of interest to fluctuations (FL) in superconductors was generated by the discovery of cuprate oxide superconductors (high-temperature superconductors, HTS), where, due to extremely short coherence length and low effective dimensionality of the electron system, superconductive fluctuations manifest themselves in a wide range of temperatures. Moreover, anomalous properties of the normal state of HTS were attributed by many theorists to strong FL in these systems. Being studied in the framework of the phenomenological Ginzburg-Landau theory and, more extensively, in diagrammatic microscopic approach, SC FLs side by side with other quantum corrections (weak localization, etc.) became a new tool for investigation and characterization of such new systems as HTS, disordered electron systems, granular metals, Josephson structures, artificial super-lattices, etc. The characteristic feature of SC FL is their strong dependence on temperature and magnetic fields in the vicinity of phase transition. This allows one to definitely separate the fluctuation effects from other contributions and to use them as the source of information about the microscopic parameters of a material. By their origin, SC FLs are very sensitive to relaxation processes, which break phase coherence. This allows using them for versatile characterization of SC. Today, one can speak about the " fluctuoscopy" of superconductive systems. In review, we present the qualitative picture both of thermodynamic

  13. Conventional magnetic superconductors

    DOE PAGESBeta

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led tomore » the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.« less

  14. Conventional magnetic superconductors

    SciTech Connect

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led to the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.

  15. Luttinger Liquid, Singular Interaction and Quantum Criticality in Cuprate Materials

    NASA Astrophysics Data System (ADS)

    di Castro, C.; Caprara, S.

    2014-10-01

    With particular reference to the role of the renormalization group (RG) approach and Ward identities (WI's), we start by recalling some old features of the one-dimensional Luttinger liquid as the prototype of non-Fermi-liquid behavior. Its dimensional crossover to the Landau normal Fermi liquid implies that a non-Fermi liquid, as, e.g., the normal phase of the cuprate high temperature superconductors, can be maintained in d > 1 only in the presence of a sufficiently singular effective interaction among the charge carriers. This is the case when, nearby an instability, the interaction is mediated by critical fluctuations. We are then led to introduce the specific case of superconductivity in cuprates as an example of avoided quantum criticality. We will disentangle the fluctuations which act as mediators of singular electron-electron interaction, enlightening the possible order competing with superconductivity and a mechanism for the non-Fermi-liquid behavior of the metallic phase. This paper is not meant to be a comprehensive review. Many important contributions will not be considered. We will also avoid using extensive technicalities and making full calculations for which we refer to the original papers and to the many good available reviews. We will here only follow one line of reasoning which guided our research activity in this field.

  16. Paired electron pockets in the hole-doped cuprates

    NASA Astrophysics Data System (ADS)

    Galitski, Victor; Sachdev, Subir

    2009-04-01

    We propose a theory for the underdoped hole-doped cuprates, focusing on the “nodal-antinodal dichotomy” observed in recent experiments. Our theory begins with an ordered antiferromagnetic Fermi liquid with electron and hole pockets. We argue that it is useful to consider a quantum transition at which the loss of antiferromagnetic order leads to a hypothetical metallic “algebraic charge liquid” (ACL) with pockets of charge -e and +e fermions, and an emergent U(1) gauge field; the instabilities of the ACL lead to the low-temperature phases of the underdoped cuprates. The pairing instability leads to a superconductor with the strongest pairing within the -e Fermi pockets, a d -wave pairing signature for electrons, and very weak nodal-point pairing of the +e fermions near the Brillouin-zone diagonals. The influence of an applied magnetic field is discussed using a proposed phase diagram as a function of field strength and doping. We describe the influence of gauge field and pairing fluctuations on the quantum Shubnikov-de Haas oscillations in the normal states induced by the field. For the finite-temperature pseudogap region, our theory has some similarities to the phenomenological two-fluid model of -2e bosons and +e fermions proposed by Geshkenbein [Phys. Rev. B 55, 3173 (1997)], which describes anomalous aspects of transverse transport in a magnetic field.

  17. Searching for spectroscopic signatures of density wave correlations in cuprates

    NASA Astrophysics Data System (ADS)

    He, Rui-Hua

    2015-03-01

    Recent developments in the research on high-temperature cuprate superconductors highlight the relevance of some density wave correlations to the superconductivity and its normal state in this generic class of materials. Depending on specific cuprate systems, these density wave correlations can have diverse manifestations in different (charge, spin, pairing) sectors and likely break (time reversal, space inversion, point group, gauge) symmetries in addition to the lattice translation. A unified understanding of their microscopic nature hinges on further characterizations using direct (imaging scattering) probes for these correlations themselves, as well as indirect probes for their interplay with other degrees of freedom in the system. ARPES can provide information about a density wave order through probing modifications in the electron structure it induces, while other spectroscopy techniques can shed unique lights on the broken symmetry aspect of the order. In this talk, I will review the density-wave signatures that have been or yet to be found in ARPES mainly in terms of the spectral weight, energy gap, and renormalized band dispersions. These experimental observations/proposals, coupled with simple theoretical modeling, promise new insights into the (wavevector, order parameter, form factor) characters of associated density wave correlations. Time permitting, I will introduce a novel x-ray spectroscopy technique that can detect broken time-reversal versus space-inversion symmetry of an electronic order in a way complementary to the polar Kerr effect.

  18. Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography.

    PubMed

    Gedik, Nuh; Yang, Ding-Shyue; Logvenov, Gennady; Bozovic, Ivan; Zewail, Ahmed H

    2007-04-20

    Nonequilibrium phase transitions, which are defined by the formation of macroscopic transient domains, are optically dark and cannot be observed through conventional temperature- or pressure-change studies. We have directly determined the structural dynamics of such a nonequilibrium phase transition in a cuprate superconductor. Ultrafast electron crystallography with the use of a tilted optical geometry technique afforded the necessary atomic-scale spatial and temporal resolutions. The observed transient behavior displays a notable "structural isosbestic" point and a threshold effect for the dependence of c-axis expansion (Deltac) on fluence (F), with Deltac/F = 0.02 angstrom/(millijoule per square centimeter). This threshold for photon doping occurs at approximately 0.12 photons per copper site, which is unexpectedly close to the density (per site) of chemically doped carriers needed to induce superconductivity. PMID:17446397

  19. Strong-coupling approach to nematicity in the cuprates

    NASA Astrophysics Data System (ADS)

    Orth, Peter Philipp; Jeevanesan, Bhilahari; Schmalian, Joerg; Fernandes, Rafael

    The underdoped cuprate superconductor YBa2Cu3O7-δ is known to exhibit an electronic nematic phase in proximity to antiferromagnetism. While nematicity sets in at large temperatures of T ~ 150 K, static spin density wave order only emerges at much lower temperatures. The magnetic response shows a strong in-plane anisotropy, displaying incommensurate Bragg peaks along one of the crystalline directions and a commensurate peak along the other one. Such an anisotropy persists even in the absence of long-range magnetic order at higher temperatures, marking the onset of nematic order. Here we theoretically investigate this situation using a strong-coupling method that takes into account both the localized Cu spins and the holes doped into the oxygen orbitals. We derive an effective spin Hamiltonian and show that charge fluctuations promote an enhancement of the nematic susceptibility near the antiferromagnetic transition temperature.

  20. Effect of Extended Saddle Point Singularities in Cuprates and Evidences

    NASA Astrophysics Data System (ADS)

    Zhao, Guang-Lin

    First-principles calculations and angle-resolved photoemission spectroscopy measurements showed extended saddle point singularities in the electron structures of some cuprates such as YBa2Cu3O7 (YBCO). The extended saddle point singularities in the electronic structures of the materials can lead to anomalous physical properties. In this work, a new methodology is implemented by integrating first-principles calculations of electronic structures of the materials into the theory of many-body physics for superconductivity. The aim is to seek a unified methodology to calculate the electronic and superconducting properties of the materials. It is demonstrated from first-principles that the extended saddle point singularities in the materials such as YBCO strongly correlate to the anomalous isotope effect in the superconductors. The work was funded in part by NSF LASIGMA Project (Award # EPS-1003897, NSF92010-15-RII-SUBR) and by ARO (Award # W911NF-15-1-0483).

  1. 2011 Aspen Winter Conference on Contrasting Superconductivity of Pnictides and Cuprates

    SciTech Connect

    Johnson, P.; Schmalian, J.; Canfield, P.; Chakravarty, S.

    2011-05-02

    Our quest for materials with better properties is closely integral to the fabric of our society. Currently the development of materials that will allow for improved generation, transport, and storage of energy is at the forefront of our research in condensed matter physics and materials science. Among these materials, compounds that exhibit correlated electron states and emergent phenomena such as superconductivity have great promise, but also difficulties that need to be overcome: problems associated with our need to reliably find, understand, improve and control these promising materials. At the same time, the field of correlated electrons represents the frontier of our understanding of the electronic properties of solids. It contains deep open scientific issues within the broad area of quantum phenomena in matter. The aim of this workshop is to explore and understand the physics of recently discovered Fe-based high-temperature superconductors and contrast and compare them with the cuprates. The superconductivity in iron pnictides, with transition temperatures in excess of 55 K, was discovered in early 2008. The impact of this discovery is comparable to cuprates discovered in 1986. At the same time a number of recent experimental developments in cuprates may lead to a shift in our thinking with regards to these materials. There is therefore much to be learned by devoting a conference in which both classes of superconductors are discussed, especially at this nascent stage of the pnictides.

  2. Pump probe spectroscopy of quasiparticle dynamics in cuprate superconductors

    SciTech Connect

    Segre, Gino P.

    2001-05-01

    Pump probe spectroscopy is used to examine the picosecond response of a BSCCO thin film, and two YBCO crystals in the near infrared. The role of pump fluence and temperature have been closely examined in an effort to clarify the mechanism by which the quasiparticles rejoin the condensate. BSCCO results suggest that the recombination behavior is consistent with the d-wave density of states in that quasiparticles appear to relax to the nodes immediately before they rejoin the condensate. The first substantial investigation of polarized pump probe response in detwinned YBCO crystals is also reported. Dramatic doping dependent anisotropies along the a and b axes are observed in time and temperature resolved studies. Among many results, we highlight the discovery of an anomalous temperature and time dependence of a- axis response in optimally doped YBCO. We also report on the first observation of the photoinduced response in a magnetic field. We find the amplitude of the response, and in some cases, the dynamics considerably changed with the application of a 6T field. Finally, we speculate on two of the many theoretical directions stimulated by our results. We find that the two-fluid model suggests a mechanism to explain how changes at very low energies are visible to a high-energy probe. Also discussed are basic recombination processes which may play a role in the observed decay.

  3. Collective nature of spin excitations in superconducting cuprates probed by resonant inelastic X-ray scattering.

    PubMed

    Minola, M; Dellea, G; Gretarsson, H; Peng, Y Y; Lu, Y; Porras, J; Loew, T; Yakhou, F; Brookes, N B; Huang, Y B; Pelliciari, J; Schmitt, T; Ghiringhelli, G; Keimer, B; Braicovich, L; Le Tacon, M

    2015-05-29

    We used resonant inelastic x-ray scattering (RIXS) with and without analysis of the scattered photon polarization, to study dispersive spin excitations in the high temperature superconductor YBa_{2}Cu_{3}O_{6+x} over a wide range of doping levels (0.1≤x≤1). The excitation profiles were carefully monitored as the incident photon energy was detuned from the resonant condition, and the spin excitation energy was found to be independent of detuning for all x. These findings demonstrate that the largest fraction of the spin-flip RIXS profiles in doped cuprates arises from magnetic collective modes, rather than from incoherent particle-hole excitations as recently suggested theoretically [Benjamin et al. Phys. Rev. Lett. 112, 247002 (2014)]. Implications for the theoretical description of the electron system in the cuprates are discussed. PMID:26066453

  4. Proximity Effect at Graphene - High Tc Superconductor Junctions

    NASA Astrophysics Data System (ADS)

    Wang, Da; Shih, En-Min; Arefe, Ghidewon; Kim, Youngduck; Edelberg, Drew; Andrade, Erick; Wang, Dennis; Hone, James; Dean, Cory; Pasupathy, Abhay; Department of Physics, Columbia University, New York, NY 10027, USA Collaboration

    The proximity effect is a well-known mesoscopic phenomenon where Cooper pairs from a superconductor (S) enter into a normal metal (N) that is well coupled to it. Since graphene was discovered a decade ago, the proximity effect at superconductor-graphene junctions has been extensively studied and interesting phenomena such as specular Andreev reflection and ballistic transport at graphene Josephson junctions have been observed. However, superconductors used in these experiments to date are of conventional low Tc, such as aluminum(Tc=1.2K), NbSe2(Tc=7K), and MoRe(Tc=8K). Understanding how the proximity effect works between high-Tc superconductors (pnictides and cuprates) and the Dirac Fermions of graphene remains largely unexplored. The chief technical challenge here is to create high-quality junctions between high-Tc superconductors and graphene. In this work, we will introduce a home-made setup that allows us to exfoliate, transfer and encapsulate superconductor-graphene junctions in a well controlled inert atmosphere. Transport measurements of the proximity effect at graphene-iron pnictide(FeSe, FeTeSe) and graphene-cuprate(BSCCO) junctions will be described.

  5. Organic Superconductors

    SciTech Connect

    Charles Mielke

    2009-02-27

    Intense magnetic fields are an essential tool for understanding layered superconductors. Fundamental electronic properties of organic superconductors are revealed in intense (60 tesla) magnetic fields. Properties such as the topology of the Fermi surface and the nature of the superconducting order parameter are revealed. With modest maximum critical temperatures~13K the charge transfer salt organic superconductors prove to be incredibly valuable materials as their electronically clean nature and layered (highly anisotropic) structures yield insights to the high temperature superconductors. Observation of de Haas-van Alphen and Shubnikov-de Haas quantum oscillatory phenomena, magnetic field induced superconductivity and re-entrant superconductivity are some of the physical phenomena observed in the charge transfer organic superconductors. In this talk, I will discuss the nature of organic superconductors and give an overview of the generation of intense magnetic fields; from the 60 tesla millisecond duration to the extreme 1000 tesla microsecond pulsed magnetic fields.

  6. Edge instabilities of topological superconductors

    NASA Astrophysics Data System (ADS)

    Hofmann, Johannes S.; Assaad, Fakher F.; Schnyder, Andreas P.

    2016-05-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of dx y-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s -wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.

  7. Material properties of oxide superconductors

    SciTech Connect

    Phillips, J.C.

    1996-12-31

    The differences between the old (inter-) metallic superconductors and the new oxide superconductors are not limited to the much higher values of {Tc} attainable in the latter. There are many pervasive differences caused directly by oxide chemistry, quasi-perovskite local coordination configurations, and layered metal-semiconductor-metal{prime}-semiconductor-structures. When these differences are ignored, for instance in theoretical models which make effective medium approximations, many experiments appear to present anomalous results. These anomalies largely disappear when account is taken of the real materials properties of the cuprates and other new oxide superconductors, for instance in theoretical models which treat transport as a partially percolative process. This percolative process directly reflects the fact that the highest values of {Tc}, as well as the most anomalous normal-state transport properties, occur in materials vicinal to a metal-insulator transition. As the metallic and insulating regions alternate even in single-crystal samples, effective medium models, and most effective-medium parameters, lose their significance. Examples of attempts to measure microscopic properties illustrate the importance of filamentary effects on both normal-state and superconductive properties.

  8. Charge ordering in the electron-doped superconductor Nd(2-x)Ce(x)CuO₄.

    PubMed

    da Silva Neto, Eduardo H; Comin, Riccardo; He, Feizhou; Sutarto, Ronny; Jiang, Yeping; Greene, Richard L; Sawatzky, George A; Damascelli, Andrea

    2015-01-16

    In cuprate high-temperature superconductors, an antiferromagnetic Mott insulating state can be destabilized toward unconventional superconductivity by either hole or electron doping. In hole-doped (p-type) cuprates, a charge ordering (CO) instability competes with superconductivity inside the pseudogap state. We report resonant x-ray scattering measurements that demonstrate the presence of charge ordering in the n-type cuprate Nd(2-x)Ce(x)CuO4 near optimal doping. We find that the CO in Nd(2-x)Ce(x)CuO4 occurs with similar periodicity, and along the same direction, as in p-type cuprates. However, in contrast to the latter, the CO onset in Nd(2-x)Ce(x)CuO4 is higher than the pseudogap temperature, and is in the temperature range where antiferromagnetic fluctuations are first detected. Our discovery opens a parallel path to the study of CO and its relationship to antiferromagnetism and superconductivity. PMID:25593186

  9. Analysis of a Superconductor: Development of a Practical Exam for the International Chemistry Olympiad

    ERIC Educational Resources Information Center

    Nick, Sabine; Nather, Christian

    2007-01-01

    In July 2004 the 36th International Chemistry Olympiad was held in Kiel, Germany. Competition for medals included 236 students from 61 countries, accompanied by about 150 teachers and other mentors. During this Olympiad the students performed qualitative and quantitative analyses of a superconductor, based on lanthanum barium cuprate. In the…

  10. Chemistry and Electronic Structure of Iron-Based Superconductors

    SciTech Connect

    Safa-Sefat, Athena; Singh, David J

    2011-01-01

    The solid state provides a richly varied fabric for intertwining chemical bonding, electronic structure, and magnetism. The discovery of superconductivity in iron pnictides and chalcogenides has revealed new aspects of this interplay, especially involving magnetism and superconductivity. Moreover, it has challenged prior thinking about high-temperature superconductivity by providing a set of materials that differ in many crucial aspects from the previously known cuprate superconductors. Here we review some of what is known about the superconductivity and its interplay with magnetism, chemistry, and electronic structure in Fe-based superconductors.

  11. Progress in Neutron Scattering Studies of Spin Excitations in High-T(c) Cuprates

    SciTech Connect

    Fujita M.; Tranquada J.; Hiraka, H.; Matsuda, M.; Matsuura, M.; Wakimoto, S.; Xu, G.; Yamada, K.

    2012-01-01

    Neutron scattering experiments continue to improve our knowledge of spin fluctuations in layered cuprates, excitations that are symptomatic of the electronic correlations underlying high-temperature superconductivity. Time-of-flight spectrometers, together with new and varied single crystal samples, have provided a more complete characterization of the magnetic energy spectrum and its variation with carrier concentration. While the spin excitations appear anomalous in comparison with simple model systems, there is clear consistency among a variety of cuprate families. Focusing initially on hole-doped systems, we review the nature of the magnetic spectrum, and variations in magnetic spectral weight with doping. We consider connections with the phenomena of charge and spin stripe order, and the potential generality of such correlations as suggested by studies of magnetic-field and impurity induced order. We contrast the behavior of the hole-doped systems with the trends found in the electron-doped superconductors. Returning to hole-doped cuprates, studies of translation-symmetry-preserving magnetic order are discussed, along with efforts to explore new systems. We conclude with a discussion of future challenges.

  12. Itinerant effects and enhanced magnetic interactions in Bi-based multilayer cuprates

    DOE PAGESBeta

    Dean, M. P. M.; James, A. J. A.; Walters, A. C.; Bisogni, V.; Jarrige, I.; Hücker, M.; Giannini, E.; Fujita, M.; Pelliciari, J.; Huang, Y. B.; et al

    2014-12-04

    The cuprate high temperature superconductors exhibit a pronounced trend in which the superconducting transition temperature, T c, increases with the number of CuO₂ planes, n, in the crystal structure. We compare the magnetic excitation spectrum of Bi₂₊xSr₂₋xCuO₆+δ (Bi-2201) and Bi₂Sr₂Ca₂Cu₃O₁₀₊δ (Bi-2223), with n = 1 and n = 3 respectively, using Cu L₃-edge resonant inelastic x-ray scattering (RIXS). Near the anti-nodal zone boundary we find the paramagnon energy in Bi-2223 is substantially higher than that in Bi-2201, indicating that multilayer cuprates host stronger effective magnetic exchange interactions, providing a possible explanation for the Tc vs. n scaling. In contrast, themore » nodal direction exhibits very strongly damped, almost non-dispersive excitations. As a result, we argue that this implies that the magnetism in the doped cuprates is partially itinerant in nature.« less

  13. Underlying mechanisms of pseudogap phenomena and Bose-liquid superconductivity in high-Tc cuprates

    NASA Astrophysics Data System (ADS)

    Dzhumanov, S.; Karimboev, E. X.; Djumanov, Sh. S.

    2016-06-01

    We show that the high-Tc cuprates are non-BCS superconductors exhibiting distinct pseudogap (PG) behaviors (related to real and momentum space excitations) and other anomalies above Tc, novel Bose-liquid superconductivity below Tc, and also a λ-like superconducting (SC) transition at Tc similar to the λ transition in liquid 4He. In these materials, the relevant charge carriers are polarons which are bound into bosonic Cooper pairs above Tc followed by condensing into a Bose superfluid at Tc. We found that the polaronic effects and related PG weaken with increasing of the doping level and disappear in the overdoped region, where the crossover from Bose-liquid to Fermi-liquid (BCS-type) superconductivity occurs at the quantum critical point. We identify the real phase diagrams of the cuprates, the PG and vortex-like states above Tc, the novel SC state and two distinct SC phases below Tc like two superfluid phases of 3He, and explain the rich cuprate phenomenology from lightly doped to overdoped region.

  14. Interpretation of Scanning Tunneling Quasiparticle Interference and Impurity States in Cuprates

    SciTech Connect

    Kreisel, A.; Choubey, P.; Berlijn, T.; Ku, W.; Andersen, B. M.; Hirschfeld, P. J.

    2015-05-27

    We apply a recently developed method combining first principles based Wannier functions with solutions to the Bogoliubov-de Gennes equations to the problem of interpreting STM data in cuprate superconductors. We show that the observed images of Zn on the surface of Bi2Sr2CaCu2O8 can only be understood by accounting for the tails of the Cu Wannier functions, which include significant weight on apical O sites in neighboring unit cells. This calculation thus puts earlier crude “filter” theories on a microscopic foundation and solves a long standing puzzle. We then study quasiparticle interference (QPI) phenomena induced by out-of-plane weak potential scatterers, and show how patterns long observed in cuprates can be understood in terms of the interference of Wannier functions above the surface. Our results show excellent agreement with experiment and enable a better understanding of novel phenomena in the cuprates via STM imaging.

  15. Interpretation of scanning tunneling quasiparticle interference and impurity states in cuprates

    SciTech Connect

    Kreisel, Andreas; Choubey, Peayush; Berlijn, Tom; Ku, W.; Andersen, Brian M.; Hirschfeld, Peter J.

    2015-05-27

    We apply a recently developed method combining first principles based Wannier functions with solutions to the Bogoliubov–de Gennes equations to the problem of interpreting STM data in cuprate superconductors. We show that the observed images of Zn on the surface of Bi2Sr2CaCu2O8 can only be understood by accounting for the tails of the Cu Wannier functions, which include significant weight on apical O sites in neighboring unit cells. This calculation thus puts earlier crude “filter” theories on a microscopic foundation and solves a long-standing puzzle. We then study quasiparticle interference phenomena induced by out-of-plane weak potential scatterers, and show how patterns long observed in cuprates can be understood in terms of the interference of Wannier functions above the surface. Furthermore, our results show excellent agreement with experiment and enable a better understanding of novel phenomena in the cuprates via STM imaging.

  16. Interpretation of Scanning Tunneling Quasiparticle Interference and Impurity States in Cuprates

    DOE PAGESBeta

    Kreisel, A.; Choubey, P.; Berlijn, T.; Ku, W.; Andersen, B. M.; Hirschfeld, P. J.

    2015-05-27

    We apply a recently developed method combining first principles based Wannier functions with solutions to the Bogoliubov-de Gennes equations to the problem of interpreting STM data in cuprate superconductors. We show that the observed images of Zn on the surface of Bi2Sr2CaCu2O8 can only be understood by accounting for the tails of the Cu Wannier functions, which include significant weight on apical O sites in neighboring unit cells. This calculation thus puts earlier crude “filter” theories on a microscopic foundation and solves a long standing puzzle. We then study quasiparticle interference (QPI) phenomena induced by out-of-plane weak potential scatterers, andmore » show how patterns long observed in cuprates can be understood in terms of the interference of Wannier functions above the surface. Our results show excellent agreement with experiment and enable a better understanding of novel phenomena in the cuprates via STM imaging.« less

  17. Interpretation of scanning tunneling quasiparticle interference and impurity states in cuprates

    DOE PAGESBeta

    Kreisel, Andreas; Choubey, Peayush; Berlijn, Tom; Ku, W.; Andersen, Brian M.; Hirschfeld, Peter J.

    2015-05-27

    We apply a recently developed method combining first principles based Wannier functions with solutions to the Bogoliubov–de Gennes equations to the problem of interpreting STM data in cuprate superconductors. We show that the observed images of Zn on the surface of Bi2Sr2CaCu2O8 can only be understood by accounting for the tails of the Cu Wannier functions, which include significant weight on apical O sites in neighboring unit cells. This calculation thus puts earlier crude “filter” theories on a microscopic foundation and solves a long-standing puzzle. We then study quasiparticle interference phenomena induced by out-of-plane weak potential scatterers, and show howmore » patterns long observed in cuprates can be understood in terms of the interference of Wannier functions above the surface. Furthermore, our results show excellent agreement with experiment and enable a better understanding of novel phenomena in the cuprates via STM imaging.« less

  18. Superconductor Composite

    DOEpatents

    Dorris, Stephen E.; Burlone, Dominick A.; Morgan; Carol W.

    1999-02-02

    A superconducting conductor fabricated from a plurality of wires, e.g., fine silver wires, coated with a superconducting powder. A process of applying superconducting powders to such wires, to the resulting coated wires and superconductors produced therefrom.

  19. The behavior of grain boundaries in the Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Durrell, J. H.; Eom, C.-B.; Gurevich, A.; Hellstrom, E. E.; Tarantini, C.; Yamamoto, A.; Larbalestier, D. C.

    2011-12-01

    The Fe-based superconductors (FBSs) are an important new class of superconducting materials. As with any new superconductor with a high transition temperature and upper critical field, there is a need to establish what their applications potential might be. Applications require high critical current densities, so the usefulness of any new superconductor is determined both by the capability to develop strong vortex pinning and by the absence or ability to overcome any strong current-limiting mechanisms of which grain boundaries (GBs) in the cuprates are a cautionary example. In this review we first consider the positive role that GB properties play in the metallic, low-temperature superconductors and then review the theoretical background and current experimental data relating to the properties of GBs in FBS polycrystals, bicrystal thin films and wires. Based on this evidence, we conclude that GBs in FBS are weak linked in a qualitatively similar way to GBs in the cuprate superconductors, but also that the effects are a little less marked. Initial experiments with the textured substrates used for cuprate coated conductors show similar benefit for the critical current density of FBS thin films too. We also note that the particular richness of the pairing symmetry and the multiband parent state in FBS may provide opportunities for GB modification as a better understanding of their pairing state and GB properties are developed.

  20. Superconductor consolidation

    NASA Astrophysics Data System (ADS)

    Staudhammer, K. P.

    A program to develop explosively shock consolidated monoliths of YBa2Cu3O(sub 7-x) ceramic superconductors has been ongoing at Los Alamos National Laboratory since last year. Shock consolidation can produce a near 100 percent theoretical density, bulk superconductor that does not require a post anneal in oxygen. Shock compaction is also an excellent means of creating a good electrical contact weld between the ceramic superconductor and a metal such as copper. Elimination of the post anneal and low temperature shock welding of the cladding metal are unique advantages stemming from the shock compaction processing. Successful shock compaction processing will enable production of a wide variety of complex ceramic superconductor forms tailored for specific defense application requirements. Shock compaction can be developed into industrial manufacturing processes. Shock compacted superconductor billets can be used in applications where a solid superconductor form is required (e.g., magnetic bearings, bus bar for a niobium-tin FEL SMES, motor rotors, etc.) or they can be post processed by extrusion and other swaging processes to produce textured wires and tapes for electrical current carrying applications.

  1. Superconductor consolidation

    SciTech Connect

    Staudhammer, K.P.

    1988-01-01

    A program to develop explosively shock consolidated monoliths of YBa/sub 2/Cu/sub 3/O/sub 7/minus/x/ ceramic superconductors has been ongoing at Los Alamos National Laboratory since last year. Shock consolidation can produce a near 100% theoretical density, bulk superconductor that does not require a post anneal in oxygen. Shock compaction is also an excellent means of creating a good electrical contact weld between the ceramic superconductor and a metal such as copper. Elimination of the post anneal and low temperature shock welding of the cladding metal are unique advantages stemming from the shock compaction processing. Successful shock compaction processing will enable production of a wide variety of complex ceramic-superconductor forms tailored for specific defense application requirements. Shock compaction can be developed into industrial manufacturing processes. DuPont now makes diamond powder this way. Shock compacted superconductor billets can be used in applications where a solid superconductor form is required (e.g., magnetic bearings, bus bar for a niobium-tin FEL SMES, motor rotors, etc.), or they can be post processed by extrusion and other swaging processes to produce textured wires and tapes for electrical current carrying applications. 11 refs., 1 fig.

  2. A simple model for normal state in- and out-of-plane resistivities of hole doped cuprates

    NASA Astrophysics Data System (ADS)

    Naqib, S. H.; Azam, M. Afsana; Uddin, M. Borhan; Cole, J. R.

    2016-05-01

    The highly anisotropic and qualitatively different nature of the normal state in- and out-of-plane charge dynamics in high-Tc cuprates cannot be accommodated within the conventional Boltzmann transport theory. The variation of in-plane and out-of-plane resistivities with temperature and hole content are anomalous and cannot be explained by Fermi-liquid theory. In this study, we have proposed a simple phenomenological model for the dc resistivity of cuprates by incorporating two firmly established generic features of all hole doped cuprate superconductors-(i) the pseudogap in the quasiparticle energy spectrum and (ii) the T-linear resistivity at high temperatures. This T-linear behavior over an extended temperature range can be attributed to a quantum criticality, affecting the electronic phase diagram of cuprates. Experimental in-plane and out-of-plane resistivities (ρp(T) and ρc(T), respectively) of double-layer Y(Ca)123 have been analyzed using the proposed model. This phenomenological model describes the temperature and the hole content dependent resistivity over a wide range of temperature and hole content, p. The characteristic PG energy scale, εg(p), extracted from the analysis of the resistivity data, agrees quite well with those found in variety of other experiments. Various other extracted parameters from the analysis of ρp(T) and ρc(T) data showed systematic trends with changing hole concentration. We have discussed important features found from the analysis in detail in this paper.

  3. Self-optimized superconductivity attainable by interlayer phase separation at cuprate interfaces.

    PubMed

    Misawa, Takahiro; Nomura, Yusuke; Biermann, Silke; Imada, Masatoshi

    2016-07-01

    Stabilizing superconductivity at high temperatures and elucidating its mechanism have long been major challenges of materials research in condensed matter physics. Meanwhile, recent progress in nanostructuring offers unprecedented possibilities for designing novel functionalities. Above all, thin films of cuprate and iron-based high-temperature superconductors exhibit remarkably better superconducting characteristics (for example, higher critical temperatures) than in the bulk, but the underlying mechanism is still not understood. Solving microscopic models suitable for cuprates, we demonstrate that, at an interface between a Mott insulator and an overdoped nonsuperconducting metal, the superconducting amplitude is always pinned at the optimum achieved in the bulk, independently of the carrier concentration in the metal. This is in contrast to the dome-like dependence in bulk superconductors but consistent with the astonishing independence of the critical temperature from the carrier density x observed at the interfaces of La2CuO4 and La2-x Sr x CuO4. Furthermore, we identify a self-organization mechanism as responsible for the pinning at the optimum amplitude: An emergent electronic structure induced by interlayer phase separation eludes bulk phase separation and inhomogeneities that would kill superconductivity in the bulk. Thus, interfaces provide an ideal tool to enhance and stabilize superconductivity. This interfacial example opens up further ways of shaping superconductivity by suppressing competing instabilities, with direct perspectives for designing devices. PMID:27482542

  4. Self-optimized superconductivity attainable by interlayer phase separation at cuprate interfaces

    PubMed Central

    Misawa, Takahiro; Nomura, Yusuke; Biermann, Silke; Imada, Masatoshi

    2016-01-01

    Stabilizing superconductivity at high temperatures and elucidating its mechanism have long been major challenges of materials research in condensed matter physics. Meanwhile, recent progress in nanostructuring offers unprecedented possibilities for designing novel functionalities. Above all, thin films of cuprate and iron-based high-temperature superconductors exhibit remarkably better superconducting characteristics (for example, higher critical temperatures) than in the bulk, but the underlying mechanism is still not understood. Solving microscopic models suitable for cuprates, we demonstrate that, at an interface between a Mott insulator and an overdoped nonsuperconducting metal, the superconducting amplitude is always pinned at the optimum achieved in the bulk, independently of the carrier concentration in the metal. This is in contrast to the dome-like dependence in bulk superconductors but consistent with the astonishing independence of the critical temperature from the carrier density x observed at the interfaces of La2CuO4 and La2−xSrxCuO4. Furthermore, we identify a self-organization mechanism as responsible for the pinning at the optimum amplitude: An emergent electronic structure induced by interlayer phase separation eludes bulk phase separation and inhomogeneities that would kill superconductivity in the bulk. Thus, interfaces provide an ideal tool to enhance and stabilize superconductivity. This interfacial example opens up further ways of shaping superconductivity by suppressing competing instabilities, with direct perspectives for designing devices. PMID:27482542

  5. Lattice, spin, and charge excitations in cuprates

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Sheng

    2014-03-01

    Tracking doping evolution of elementary excitations is a crucial approach to understand the complex phenomena exhibited in cuprates. In the first part of my talk, I will discuss the role of the lattice in the quasi-one-dimensional edge-sharing cuprate Y2+xCa2-xCu5O10. Using O K-edge RIXS, we resolve site-dependent harmonic phonon excitations of a 70 meV mode. Coupled with theory, this provides a direct measurement of electron-lattice coupling strength. We show that such electron-lattice coupling causes doping-dependent distortions of the Cu-O-Cu bond angle, which sets the intra-chain spin exchange interactions. In the second part of my talk, I will discuss collective excitations in the electron-doped superconducting cuprate, Nd2-xCexCuO4 observed using Cu L-edge RIXS. Surprisingly, despite the fact that the spin stiffness is zero and the AFM correlations are short-ranged, magnetic excitations harden significantly across the AFM-HTSC phase boundary, in stark contrast with the hole-doped cuprates. Furthermore, we found an unexpected and highly dispersive mode emanating from the zone center in superconducting NCCO that is undetected in the hole-doped compounds. This may signal a quantum phase distinct from superconductivity. Thus, our results indicate an asymmetry of the collective excitations in electron- and hole-doped cuprates, providing a new perspective on the doping evolution of the cuprate ground state. This work is supported by DOE Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC02-76SF00515.

  6. Optical non-reciprocity in magnetic structures related to high-T_c superconductors

    SciTech Connect

    Orenstein, Joseph W

    2011-06-02

    Rotation of the plane of polarization of reflected light (Kerr effect) is a direct manifestation of broken time reversal symmetry and is generally associated with the appearance of a ferromagnetic moment. Here I identify magnetic structures that may arise within the unit cell of cuprate superconductors that generate polarization rotation despite the absence of a net moment. For these magnetic symmetries the Kerr effect is mediated by magnetoelectric coupling, which can arise when antiferromagnetic order breaks inversion symmetry. The structures identifed are candidates for a time-reversal breaking phase in the pseudogap regime of the cuprates.

  7. Unraveling electronic and magnetic structure at cuprate-manganite interfaces

    NASA Astrophysics Data System (ADS)

    Freeland, John

    2014-03-01

    Oxide interfaces offer a rich variety of physics and a pathway to create new classes of functional oxide materials. The interface between the cuprate high-temperature superconductors and ferromagnetic manganites is of particular interest due to the strongly antagonistic nature of the superconducting and ferromagnetic phases. Advancements in the synthesis of oxide heterostructure offers the opportunity to merge these two dissimilar oxides with atomic precision to understand the fundamental limits of bringing such states into close proximity. However, the main challenge is to understand the physical framework that describes the behavior of strongly correlated electrons near oxide interfaces. One aspect that will be addressed here is the use of advanced tools to gain detailed electronic and magnetic information from the boundary region. In this talk, recent work will be addressed both in connection to visualizing the interface with spatially resolved tools as well as harnessing layer-by-layer growth to explore the limits in ultrathin superlattices. These insights allow us to better understand the physics behind the interfacial spin and orbital reconstruction observed in this system. Work at Argonne is supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.

  8. Unified Picture for Magnetic Correlations in Iron-Based Superconductors

    SciTech Connect

    Yin, W.G.; Lee, E.-C.; Ku, W.

    2010-09-02

    The varying metallic antiferromagnetic correlations observed in iron-based superconductors are unified in a model consisting of both itinerant electrons and localized spins. The decisive factor is found to be the sensitive competition between the superexchange antiferromagnetism and the orbital-degenerate double-exchange ferromagnetism. Our results reveal the crucial role of Hund's rule coupling for the strongly correlated nature of the system and suggest that the iron-based superconductors are closer kin to manganites than cuprates in terms of their diverse magnetism and incoherent normal-state electron transport. This unified picture would be instrumental for exploring other exotic properties and the mechanism of superconductivity in this new class of superconductors.

  9. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1990-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of the broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  10. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1991-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.