Sample records for drop evaporation test

  1. Simulations of Evaporating Multicomponent Fuel Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Le Clercq, Patrick

    2005-01-01

    A paper presents additional information on the subject matter of Model of Mixing Layer With Multicomponent Evaporating Drops (NPO-30505), NASA Tech Briefs, Vol. 28, No. 3 (March 2004), page 55. To recapitulate: A mathematical model of a three-dimensional mixing layer laden with evaporating fuel drops composed of many chemical species has been derived. The model is used to perform direct numerical simulations in continuing studies directed toward understanding the behaviors of sprays of liquid petroleum fuels in furnaces, industrial combustors, and engines. The model includes governing equations formulated in an Eulerian and a Lagrangian reference frame for the gas and drops, respectively, and incorporates a concept of continuous thermodynamics, according to which the chemical composition of a fuel is described by use of a distribution function. In this investigation, the distribution function depends solely on the species molar weight. The present paper reiterates the description of the model and discusses further in-depth analysis of the previous results as well as results of additional numerical simulations assessing the effect of the mass loading. The paper reiterates the conclusions reported in the cited previous article, and states some new conclusions. Some new conclusions are: 1. The slower evaporation and the evaporation/ condensation process for multicomponent-fuel drops resulted in a reduced drop-size polydispersity compared to their single-component counterpart. 2. The inhomogeneity in the spatial distribution of the species in the layer increases with the initial mass loading. 3. As evaporation becomes faster, the assumed invariant form of the molecular- weight distribution during evaporation becomes inaccurate.

  2. Effects of Evaporation/Condensation on Spreading and Contact Angle of a Volatile Liquid Drop

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    Effects of evaporation/condensation on spreading and contact angle were experimentally studied. A sessile drop of R-113 was tested at different vapor environments to determine the effects of evaporation/condensation on the evolution of contact diameter and contact angle of the drop. Condensation on the drop surface occurs at both the saturated and a nonsaturated vapor environments and promotes the spreading. When the drop is placed in the saturated vapor environment it tends to completely wetting and spreads rapidly. In a nonsaturated vapor environment, the evolution of the sessile drop is divided three stages: condensation-spreading stage, evaporation-retracting stage and rapid contracting stage. In the first stage the drop behaves as in the saturated environment. In the evaporation -retracting stage, the competition between spreading and evaporation of the drop determines the evolution characteristics of the contact diameter and the contact angle. A lower evaporation rate struggles against the spreading power to turn the drop from spreading to retracting with a continuous increase of the contact angle. The drop placed in open air has a much higher evaporation rate. The strong evaporation suppresses the spreading and accelerates the retraction of the drop with a linear decrease of the contact diameter. The contraction of the evaporating drops is gradually accelerated when the contact diameter decreases to 3 min and less till drying up, though the evaporation rate is gradually slowing down.

  3. Marangoni Flow Induced Evaporation Enhancement on Binary Sessile Drops.

    PubMed

    Chen, Pin; Harmand, Souad; Ouenzerfi, Safouene; Schiffler, Jesse

    2017-06-15

    The evaporation processes of pure water, pure 1-butanol, and 5% 1-butanol aqueous solution drops on heated hydrophobic substrates are investigated to determine the effect of temperature on the drop evaporation behavior. The evolution of the parameters (contact angle, diameter, and volume) during evaporation measured using a drop shape analyzer and the infrared thermal mapping of the drop surface recorded by an infrared camera were used in investigating the evaporation process. The pure 1-butanol drop does not show any thermal instability at different substrate temperatures, while the convection cells created by the thermal Marangoni effect appear on the surface of the pure water drop from 50 °C. Because 1-butanol and water have different surface tensions, the infrared video of the 5% 1-butanol aqueous solution drop shows that the convection cells are generated by the solutal Marangoni effect at any substrate temperature. Furthermore, when the substrate temperature exceeds 50 °C, coexistence of the thermal and solutal Marangoni flows is observed. By analyzing the relation between the ratio of the evaporation rate of pure water and 1-butanol aqueous solution drops and the Marangoni number, a series of empirical equations for predicting the evaporation rates of pure water and 1-butanol aqueous solution drops at the initial time as well as the equations for the evaporation rate of 1-butanol aqueous solution drop before the depletion of alcohol are derived. The results of these equations correspond fairly well to the experimental data.

  4. Evaporation of pure liquid sessile and spherical suspended drops: a review.

    PubMed

    Erbil, H Yildirim

    2012-01-15

    A sessile drop is an isolated drop which has been deposited on a solid substrate where the wetted area is limited by a contact line and characterized by contact angle, contact radius and drop height. Diffusion-controlled evaporation of a sessile drop in an ambient gas is an important topic of interest because it plays a crucial role in many scientific applications such as controlling the deposition of particles on solid surfaces, in ink-jet printing, spraying of pesticides, micro/nano material fabrication, thin film coatings, biochemical assays, drop wise cooling, deposition of DNA/RNA micro-arrays, and manufacture of novel optical and electronic materials in the last decades. This paper presents a review of the published articles for a period of approximately 120 years related to the evaporation of both sessile drops and nearly spherical droplets suspended from thin fibers. After presenting a brief history of the subject, we discuss the basic theory comprising evaporation of micrometer and millimeter sized spherical drops, self cooling on the drop surface and evaporation rate of sessile drops on solids. The effects of drop cooling, resultant lateral evaporative flux and Marangoni flows on evaporation rate are also discussed. This review also has some special topics such as drop evaporation on superhydrophobic surfaces, determination of the receding contact angle from drop evaporation, substrate thermal conductivity effect on drop evaporation and the rate evaporation of water in liquid marbles. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Building micro-soccer-balls with evaporating colloidal fakir drops

    NASA Astrophysics Data System (ADS)

    Gelderblom, Hanneke; Marín, Álvaro G.; Susarrey-Arce, Arturo; van Housselt, Arie; Lefferts, Leon; Gardeniers, Han; Lohse, Detlef; Snoeijer, Jacco H.

    2013-11-01

    Drop evaporation can be used to self-assemble particles into three-dimensional microstructures on a scale where direct manipulation is impossible. We present a unique method to create highly-ordered colloidal microstructures in which we can control the amount of particles and their packing fraction. To this end, we evaporate colloidal dispersion drops from a special type of superhydrophobic microstructured surface, on which the drop remains in Cassie-Baxter state during the entire evaporative process. The remainders of the drop consist of a massive spherical cluster of the microspheres, with diameters ranging from a few tens up to several hundreds of microns. We present scaling arguments to show how the final particle packing fraction of these balls depends on the drop evaporation dynamics, particle size, and number of particles in the system.

  6. Evaporation kinetics in the hanging drop method of protein crystal growth

    NASA Technical Reports Server (NTRS)

    Baird, James K.; Frieden, Richard W.; Meehan, E. J., Jr.; Twigg, Pamela J.; Howard, Sandra B.; Fowlis, William A.

    1987-01-01

    An engineering analysis of the rate of evaporation of solvent in the hanging drop method of protein crystal growth is presented; these results are applied to 18 different drop and well arrangements commonly encountered in the laboratory, taking into account the chemical nature of the salt, the drop size and shape, the drop concentration, the well size, the well concentration, and the temperature. It is found that the rate of evaporation increases with temperature, drop size, and with the salt concentration difference between the drop and the well. The evaporation possesses no unique half-life. Once the salt in the drop achieves about 80 percent of its final concentration, further evaporation suffers from the law of diminishing returns.

  7. Surfactant-Enhanced Benard Convection on an Evaporating Drop

    NASA Astrophysics Data System (ADS)

    Nguyen, Van X.; Stebe, Kathleen J.

    2001-11-01

    Surfactant effects on an evaporating drop are studied experimentally. Using a fluorescent probe, the distribution and surface phase of the surfactant is directly imaged throughout the evaporation process. From these experiments, we identify conditions in which surfactants promote surface tension-driven Benard instabilities in aqueous systems. The drops under study contain finely divided particles, which act as tracers in the flow, and form well-defined patterns after the drop evaporates. Two flow fields have been reported in this system. The first occurs because the contact line becomes pinned by solid particles at the contact line region. In order for the contact line to remain fixed, an outward flow toward the ring results, driving further accumulation at the contact ring. A ‘coffee ring’ of particles is left as residue after the drop evaporates[1]. The second flow is Benard convection, driven by surface tension gradients on the drop[2,3]. In our experiments, an insoluble monolayer of pentadecanoic acid is spread at the interface of a pendant drop. The surface tension is recorded, and the drop is deposited on a well-defined solid substrate. Fluorescent images of the surface phase of the surfactant are recorded as the drop evaporates. The surfactant monolayer assumes a variety of surface states as a function of the area per molecule at the interface: surface gaseous, surface liquid expanded, and surface liquid condensed phases[4]. Depending upon the surface state of the surfactant as the drop evaporates, transitions of residue patterns left by the particles occur, from the coffee ring pattern to Benard cells to irregular patterns, suggesting a strong resistance to outward flow are observed. The occurrence of Benard cells on a surfactant-rich interface occurs when the interface is in LE-LC coexistence. Prior research concerning surfactant effects on this instability predict that surfactants are strongly stabilizing[5]. The mechanisms for this change in behavior

  8. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    NASA Astrophysics Data System (ADS)

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef

    2016-11-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called "Ouzo effect." Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.

  9. Evaporation of a sessile water drop and a drop of aqueous salt solution.

    PubMed

    Misyura, S Y

    2017-11-07

    The influence of various factors on the evaporation of drops of water and aqueous salt solution has been experimentally studied. Typically, in the studies of drop evaporation, only the diffusive vapor transfer, radiation and the molecular heat conduction are taken into account. However, vapor-gas convection plays an important role at droplet evaporation. In the absence of droplet boiling, the influence of gas convection turns out to be the prevailing factor. At nucleate boiling, a prevailing role is played by bubbles generation and vapor jet discharge at a bubble collapse. The gas convection behavior for water and aqueous salt solution is substantially different. With a growth of salt concentration over time, the influence of the convective component first increases, reaches an extremum and then significantly decreases. At nucleate boiling in a salt solution it is incorrect to simulate the droplet evaporation and the heat transfer in quasi-stationary approximation. The evaporation at nucleate boiling in a liquid drop is divided into several characteristic time intervals. Each of these intervals is characterized by a noticeable change in both the evaporation rate and the convection role.

  10. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop.

    PubMed

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J G M; Zhang, Xuehua; Lohse, Detlef

    2016-08-02

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life-a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called "Ouzo effect." Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.

  11. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    NASA Astrophysics Data System (ADS)

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef

    2016-08-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life—a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called “Ouzo effect.” Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.

  12. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    PubMed Central

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef

    2016-01-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life—a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called “Ouzo effect.” Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop. PMID:27418601

  13. Analysis of the convective evaporation of nondilute clusters of drops

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Harstad, K.

    1987-01-01

    The penetration distance of an outer flow into a drop cluster volume is the critical, evaporation mode-controlling parameter in the present model for nondilute drop clusters' convective evaporation. The model is found to perform well for such low penetration distances as those obtained for dense clusters in hot environments and low relative velocities between the outer gases and the cluster. For large penetration distances, however, the predictive power of the model deteriorates; in addition, the evaporation time is found to be a weak function of the initial relative velocity and a strong function of the initial drop temperature. The results generally show that the interior drop temperature was transient throughout the drop lifetime, although temperature nonuniformities persisted up to the first third of the total evaporation time at most.

  14. Flow visualization and characterization of evaporating liquid drops

    NASA Technical Reports Server (NTRS)

    Chao, David F. (Inventor); Zhang, Nengli (Inventor)

    2004-01-01

    An optical system, consisting of drop-reflection image, reflection-refracted shadowgraphy and top-view photography, is used to measure the spreading and instant dynamic contact angle of a volatile-liquid drop on a non-transparent substrate. The drop-reflection image and the shadowgraphy is shown by projecting the images of a collimated laser beam partially reflected by the drop and partially passing through the drop onto a screen while the top view photograph is separately viewed by use of a camera video recorder and monitor. For a transparent liquid on a reflective solid surface, thermocapillary convection in the drop, induced by evaporation, can be viewed nonintrusively, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this technique clearly reveal that evaporation and thermocapillary convection greatly affect the spreading process and the characteristics of dynamic contact angle of the drop.

  15. Lubrication model for evaporation of binary sessile drops

    NASA Astrophysics Data System (ADS)

    Williams, Adam; Sáenz, Pedro; Karapetsas, George; Matar, Omar; Sefiane, Khellil; Valluri, Prashant

    2017-11-01

    Evaporation of a binary mixture sessile drop from a solid substrate is a highly dynamic and complex process with flow driven both thermal and solutal Marangoni stresses. Experiments on ethanol/water drops have identified chaotic regimes on both the surface and interior of the droplet, while mixture composition has also been seen to govern drop wettability. Using a lubrication-type approach, we present a finite element model for the evaporation of an axisymmetric binary drop deposited on a heated substrate. We consider a thin drop with a moving contact line, taking also into account the commonly ignored effects of inertia which drives interfacial instability. We derive evolution equations for the film height, the temperature and the concentration field considering that the mixture comprises two ideally mixed volatile components with a surface tension linearly dependent on both temperature and concentration. The properties of the mixture such as viscosity also vary locally with concentration. We explore the parameter space to examine the resultant effects on wetting and evaporation where we find qualitative agreement with experiments in both these areas. This enables us to understand the nature of the instabilities that spontaneously emerge over the drop lifetime. EPSRC - EP/K00963X/1.

  16. Clustering of particles and pathogens within evaporating drops

    NASA Astrophysics Data System (ADS)

    Park, Jaebum; Kim, Ho-Young

    2017-11-01

    The evaporation of sessile suspension drops leads to accumulation of the particles around the pinned contact line, which is widely termed the coffee ring effect. However, the evaporation behavior of a liquid drop containing a small number of particles with the size comparable to the host drop is unclear yet. Thus, here we investigate the motion and spatial distribution of large particles within a sessile drop. The spherical particles cluster only when their initial distance is below a critical value, which is a function of the diameter and wettability of particle as well as the surface tension and size of the host drop. We rationalize such a critical distance for self-assembly based on the balance of the capillary force and the frictional resistance to sliding and rolling of the particles on a solid substrate. We further discuss the physical significance of this drop-mediated ``Cheerios effect'' in connection with the fate of pathogens residing in drops as a result of sneezing and coughing.

  17. Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation

    PubMed Central

    Sáenz, P. J.; Wray, A. W.; Che, Z.; Matar, O. K.; Valluri, P.; Kim, J.; Sefiane, K.

    2017-01-01

    The evaporation of a liquid drop on a solid substrate is a remarkably common phenomenon. Yet, the complexity of the underlying mechanisms has constrained previous studies to spherically symmetric configurations. Here we investigate well-defined, non-spherical evaporating drops of pure liquids and binary mixtures. We deduce a universal scaling law for the evaporation rate valid for any shape and demonstrate that more curved regions lead to preferential localized depositions in particle-laden drops. Furthermore, geometry induces well-defined flow structures within the drop that change according to the driving mechanism. In the case of binary mixtures, geometry dictates the spatial segregation of the more volatile component as it is depleted. Our results suggest that the drop geometry can be exploited to prescribe the particle deposition and evaporative dynamics of pure drops and the mixing characteristics of multicomponent drops, which may be of interest to a wide range of industrial and scientific applications. PMID:28294114

  18. Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation.

    PubMed

    Sáenz, P J; Wray, A W; Che, Z; Matar, O K; Valluri, P; Kim, J; Sefiane, K

    2017-03-15

    The evaporation of a liquid drop on a solid substrate is a remarkably common phenomenon. Yet, the complexity of the underlying mechanisms has constrained previous studies to spherically symmetric configurations. Here we investigate well-defined, non-spherical evaporating drops of pure liquids and binary mixtures. We deduce a universal scaling law for the evaporation rate valid for any shape and demonstrate that more curved regions lead to preferential localized depositions in particle-laden drops. Furthermore, geometry induces well-defined flow structures within the drop that change according to the driving mechanism. In the case of binary mixtures, geometry dictates the spatial segregation of the more volatile component as it is depleted. Our results suggest that the drop geometry can be exploited to prescribe the particle deposition and evaporative dynamics of pure drops and the mixing characteristics of multicomponent drops, which may be of interest to a wide range of industrial and scientific applications.

  19. An evaporation model of multicomponent solution drops

    NASA Astrophysics Data System (ADS)

    Sartori, Silvana; Liñán, Amable; Lasheras, Juan C.

    2010-11-01

    Solutions of polymers are widely used in the pharmaceutical industry as tablets coatings. These allow controlling the rate at which the drug is delivered, taste or appearance. The coating is performed by spraying and drying the tablets at moderate temperatures. The wetting of the coating solution on the pill's surface depends on the droplet Webber and Re numbers, angle of impact and on the rheological properties of the droplet. We present a model for the evaporation of multicomponent solutions droplets in a hot air environment with temperatures substantially lower than the boiling temperature of the solvent. As the liquid vaporizes from the surface the fluid in the drop increases in concentration, until reaching its saturation point. After saturation, precipitation occurs uniformly within the drop. As the surface regresses, a compacting front formed by the precipitate at its maximum packing density advances into the drop, while the solute continues precipitating uniformly. This porous shell grows fast due to the double effect of surface regression and precipitation. The evaporation rate is determined by the rates at which heat is transported to the droplet surface and at which liquid vapor diffuses away from it. When the drop is fully compacted, the evaporation is drastically reduced.

  20. Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface.

    PubMed

    Tan, Huanshu; Diddens, Christian; Versluis, Michel; Butt, Hans-Jürgen; Lohse, Detlef; Zhang, Xuehua

    2017-04-12

    Evaporation of multi-component drops is crucial to various technologies and has numerous potential applications because of its ubiquity in nature. Superamphiphobic surfaces, which are both superhydrophobic and superoleophobic, can give a low wettability not only for water drops but also for oil drops. In this paper, we experimentally, numerically and theoretically investigate the evaporation process of millimetric sessile ouzo drops (a transparent mixture of water, ethanol, and trans-anethole) with low wettability on a superamphiphobic surface. The evaporation-triggered ouzo effect, i.e. the spontaneous emulsification of oil microdroplets below a specific ethanol concentration, preferentially occurs at the apex of the drop due to the evaporation flux distribution and volatility difference between water and ethanol. This observation is also reproduced by numerical simulations. The volume decrease of the ouzo drop is characterized by two distinct slopes. The initial steep slope is dominantly caused by the evaporation of ethanol, followed by the slower evaporation of water. At later stages, thanks to Marangoni forces the oil wraps around the drop and an oil shell forms. We propose an approximate diffusion model for the drying characteristics, which predicts the evaporation of the drops in agreement with experiment and numerical simulation results. This work provides an advanced understanding of the evaporation process of ouzo (multi-component) drops.

  1. Fluid flow inside and outside an evaporating sessile drop

    NASA Astrophysics Data System (ADS)

    Bouchenna, C.; Aitsaada, M.; Chikh, S.; Tadrist, L.

    2017-11-01

    The sessile drop evaporation is a phenomena which is extensively studied in the literature, but the governing effects are far from being well understood especially those involving movements taking place in both liquid and gas phases. The present work numerically studies the flow within and around an evaporating sessile drop. The flow is induced by the strong mass loss at contact line, the thermo-capillary effect and the buoyancy effect in the surrounding air. The results showed that buoyancy-induced flow in gas phase weakly influences thermo-capillarity-induced flow in the liquid phase. Buoyancy effect can strongly modify the temperature distribution at liquid-gas interface and thus the overall evaporation rate of the drop when the substrate is heated.

  2. Control of stain geometry by drop evaporation of surfactant containing dispersions.

    PubMed

    Erbil, H Yildirim

    2015-08-01

    Control of stain geometry by drop evaporation of surfactant containing dispersions is an important topic of interest because it plays a crucial role in many applications such as forming templates on solid surfaces, in ink-jet printing, spraying of pesticides, micro/nano material fabrication, thin film coatings, biochemical assays, deposition of DNA/RNA micro-arrays, and manufacture of novel optical and electronic materials. This paper presents a review of the published articles on the diffusive drop evaporation of pure liquids (water), the surfactant stains obtained from evaporating drops that do not contain dispersed particles and deposits obtained from drops containing polymer colloids and carbon based particles such as carbon nanotubes, graphite and fullerenes. Experimental results of specific systems and modeling attempts are discussed. This review also has some special subtopics such as suppression of coffee-rings by surfactant addition and "stick-slip" behavior of evaporating nanosuspension drops. In general, the drop evaporation process of a surfactant/particle/substrate system is very complex since dissolved surfactants adsorb on both the insoluble organic/inorganic micro/nanoparticles in the drop, on the air/solution interface and on the substrate surface in different extends. Meanwhile, surfactant adsorbed particles interact with the substrate giving a specific contact angle, and free surfactants create a solutal Marangoni flow in the drop which controls the location of the particle deposition together with the rate of evaporation. In some cases, the presence of a surfactant monolayer at the air/solution interface alters the rate of evaporation. At present, the magnitude of each effect cannot be predicted adequately in advance and consequently they should be carefully studied for any system in order to control the shape and size of the final deposit. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics.

    PubMed

    Ramos, S M M; Dias, J F; Canut, B

    2015-02-15

    In the present study, we experimentally study the evaporation modes and kinetics of sessile drops of water on highly hydrophobic surfaces (contact angle ∼160°), heated to temperatures ranging between 40° and 70 °C. These surfaces were initially constructed by means of controlled tailoring of polytetrafluoroethylene (PTFE) substrates. The evaporation of droplets was observed to occur in three distinct phases, which were the same for the different substrate temperatures. The drops started to evaporate in the constant contact radius (CCR) mode, then switched to a more complex mode characterized by a set of stick-slip events accompanied by a decrease in contact angle, and finally shifted to a mixed mode in which the contact radius and contact angle decreased simultaneously until the drops had completely evaporated. It is shown that in the case of superhydrophobic surfaces, the energy barriers (per unit length) associated with the stick-slip motion of a drop ranges in the nJ m(-1) scale. Furthermore, analysis of the evaporation rates, determined from experimental data show that, even in the CCR mode, a linear relationship between V(2/3) and the evaporation time is verified. The values of the evaporation rate constants are found to be higher in the pinned contact line regime (the CCR mode) than in the moving contact line regime. This behavior is attributed to the drop's higher surface to volume ratio in the CCR mode. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A model of the evaporation of binary-fuel clusters of drops

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    1991-01-01

    A formulation has been developed to describe the evaporation of dense or dilute clusters of binary-fuel drops. The binary fuel is assumed to be made of a solute and a solvent whose volatility is much lower than that of the solute. Convective flow effects, inducing a circulatory motion inside the drops, are taken into account, as well as turbulence external to the cluster volume. Results obtained with this model show that, similar to the conclusions for single isolated drops, the evaporation of the volatile is controlled by liquid mass diffusion when the cluster is dilute. In contrast, when the cluster is dense, the evaporation of the volatile is controlled by surface layer stripping, that is, by the regression rate of the drop, which is in fact controlled by the evaporation rate of the solvent. These conclusions are in agreement with existing experimental observations. Parametric studies show that these conclusions remain valid with changes in ambient temperature, initial slip velocity between drops and gas, initial drop size, initial cluster size, initial liquid mass fraction of the solute, and various combinations of solvent and solute. The implications of these results for computationally intensive combustor calculations are discussed.

  5. Measurement of an Evaporating Drop on a Reflective Substrate

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Zhang, Nengli

    2004-01-01

    A figure depicts an apparatus that simultaneously records magnified ordinary top-view video images and laser shadowgraph video images of a sessile drop on a flat, horizontal substrate that can be opaque or translucent and is at least partially specularly reflective. The diameter, contact angle, and rate of evaporation of the drop as functions of time can be calculated from the apparent diameters of the drop in sequences of the images acquired at known time intervals, and the shadowgrams that contain flow patterns indicative of thermocapillary convection (if any) within the drop. These time-dependent parameters and flow patterns are important for understanding the physical processes involved in the spreading and evaporation of drops. The apparatus includes a source of white light and a laser (both omitted from the figure), which are used to form the ordinary image and the shadowgram, respectively. Charge-coupled-device (CCD) camera 1 (with zoom) acquires the ordinary video images, while CCD camera 2 acquires the shadowgrams. With respect to the portion of laser light specularly reflected from the substrate, the drop acts as a plano-convex lens, focusing the laser beam to a shadowgram on the projection screen in front of CCD camera 2. The equations for calculating the diameter, contact angle, and rate of evaporation of the drop are readily derived on the basis of Snell s law of refraction and the geometry of the optics.

  6. Resolving an ostensible inconsistency in calculating the evaporation rate of sessile drops.

    PubMed

    Chini, S F; Amirfazli, A

    2017-05-01

    This paper resolves an ostensible inconsistency in the literature in calculating the evaporation rate for sessile drops in a quiescent environment. The earlier models in the literature have shown that adapting the evaporation flux model for a suspended spherical drop to calculate the evaporation rate of a sessile drop needs a correction factor; the correction factor was shown to be a function of the drop contact angle, i.e. f(θ). However, there seemed to be a problem as none of the earlier models explicitly or implicitly mentioned the evaporation flux variations along the surface of a sessile drop. The more recent evaporation models include this variation using an electrostatic analogy, i.e. the Laplace equation (steady-state continuity) in a domain with a known boundary condition value, or known as the Dirichlet problem for Laplace's equation. The challenge is that the calculated evaporation rates using the earlier models seemed to differ from that of the recent models (note both types of models were validated in the literature by experiments). We have reinvestigated the recent models and found that the mathematical simplifications in solving the Dirichlet problem in toroidal coordinates have created the inconsistency. We also proposed a closed form approximation for f(θ) which is valid in a wide range, i.e. 8°≤θ≤131°. Using the proposed model in this study, theoretically, it was shown that the evaporation rate in the CWA (constant wetted area) mode is faster than the evaporation rate in the CCA (constant contact angle) mode for a sessile drop. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Evaporation Flux Distribution of Drops on a Hydrophilic or Hydrophobic Flat Surface by Molecular Simulations.

    PubMed

    Xie, Chiyu; Liu, Guangzhi; Wang, Moran

    2016-08-16

    The evaporation flux distribution of sessile drops is investigated by molecular dynamic simulations. Three evaporating modes are classified, including the diffusion dominant mode, the substrate heating mode, and the environment heating mode. Both hydrophilic and hydrophobic drop-substrate interactions are considered. To count the evaporation flux distribution, which is position dependent, we proposed an azimuthal-angle-based division method under the assumption of spherical crown shape of drops. The modeling results show that the edge evaporation, i.e., near the contact line, is enhanced for hydrophilic drops in all the three modes. The surface diffusion of liquid molecular absorbed on solid substrate for hydrophilic cases plays an important role as well as the space diffusion on the enhanced evaporation rate at the edge. For hydrophobic drops, the edge evaporation flux is higher for the substrate heating mode, but lower than elsewhere of the drop for the diffusion dominant mode; however, a nearly uniform distribution is found for the environment heating mode. The evidence shows that the temperature distribution inside drops plays a key role in the position-dependent evaporation flux.

  8. Diffusion Of Mass In Evaporating Multicomponent Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1992-01-01

    Report summarizes study of diffusion of mass and related phenomena occurring in evaporation of dense and dilute clusters of drops of multicomponent liquids intended to represent fuels as oil, kerosene, and gasoline. Cluster represented by simplified mathematical model, including global conservation equations for entire cluster and conditions on boundary between cluster and ambient gas. Differential equations of model integrated numerically. One of series of reports by same authors discussing evaporation and combustion of sprayed liquid fuels.

  9. Modeling Evaporation of Drops of Different Kerosenes

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2007-01-01

    A mathematical model describes the evaporation of drops of a hydrocarbon liquid composed of as many as hundreds of chemical species. The model is intended especially for application to any of several types of kerosenes commonly used as fuels. The concept of continuous thermodynamics, according to which the chemical composition of the evaporating multicomponent liquid is described by use of a probability distribution function (PDF). However, the present model is more generally applicable than is its immediate predecessor.

  10. The evaporation of a drop of mercury

    NASA Astrophysics Data System (ADS)

    Winter, Thomas G.

    2003-08-01

    The evaporative rates of two drops of mercury at room temperature are determined experimentally and theoretically. The resulting mercury vapor levels are estimated and measured, compared with the OSHA permissible exposure limit, and found to be small by comparison.

  11. Large Eddy Simulation of jets laden with evaporating drops

    NASA Technical Reports Server (NTRS)

    Leboissetier, A.; Okong'o, N.; Bellan, J.

    2004-01-01

    LES of a circular jet laden with evaporating liquid drops are conducted to assess computational-drop modeling and three different SGS-flux models: the Scale Similarity model (SSC), using a constant coefficient calibrated on a temporal mixing layer DNS database, and dynamic-coefficient Gradient and Smagorinsky models.

  12. Evaporation of oil-water emulsion drops when heated at high temperature

    NASA Astrophysics Data System (ADS)

    Strizhak, P. A.; Piskunov, M. V.; Kuznetsov, G. V.; Voytkov, I. S.

    2017-10-01

    An experimental study on conditions and main characteristics for high-temperature (more than 700 K) evaporation of oil-water drops is presented. The high-temperature water purification from impurities can be the main practical application of research results. Thus, the heating of drops is implemented by the two typical schemes: on a massive substrate (the heating conditions are similar to those achieved in a heating chamber) and in a flow of the heated air. In the latter case, the heating conditions correspond to those attained while moving water drops with impurities in a counter high-temperature gaseous flow in the process of water purification. Evaporation time as function of heating temperature is presented. The influence of oil product concentration in an emulsion drop on evaporation characteristics is discussed. The conditions for intensive flash boiling of an emulsion drop and its explosive breakup with formation of the fine droplets cloud are pointed out. Heat fluxes required for intensive flash boiling and explosive breakup of a drop with further formation of the fine aerosol are determined in the boundary layer of a drop. The fundamental differences between flash boiling and explosive breakup of an emulsion drop when heated on a substrate and in a flow of the heated air are described. The main prospects for the development of the high-temperature water purification technology are detailed taking into account the fast emulsion drop breakup investigated in the paper.

  13. Drop evaporation in a single-axis acoustic levitator

    NASA Technical Reports Server (NTRS)

    Lierke, E. G.; Croonquist, A. P.

    1990-01-01

    A 20 kHz single-axis acoustic positioner is used to levitate aqueous-solution drops (volumes less than or approximately equal to 100 micro-liters). Drop evaporation rates are measured under ambient, isothermal conditions for different relative humidities. Acoustic convection around the levitated sample enhances the mass loss over that due to natural convection and diffusion. A theoretical treatment of the mass flow is developed in analogy to previous studies of the heat transfer from a sphere in an acoustic field. Predictions of the enhanced mass loss, in the form of Nusselt (Sherwood) numbers, are compared with observed rages of drop shrinking. The work is part of an ESA crystal growth from levitated solution drops.

  14. Model of Mixing Layer With Multicomponent Evaporating Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Le Clercq, Patrick

    2004-01-01

    A mathematical model of a three-dimensional mixing layer laden with evaporating fuel drops composed of many chemical species has been derived. The study is motivated by the fact that typical real petroleum fuels contain hundreds of chemical species. Previously, for the sake of computational efficiency, spray studies were performed using either models based on a single representative species or models based on surrogate fuels of at most 15 species. The present multicomponent model makes it possible to perform more realistic simulations by accounting for hundreds of chemical species in a computationally efficient manner. The model is used to perform Direct Numerical Simulations in continuing studies directed toward understanding the behavior of liquid petroleum fuel sprays. The model includes governing equations formulated in an Eulerian and a Lagrangian reference frame for the gas and the drops, respectively. This representation is consistent with the expected volumetrically small loading of the drops in gas (of the order of 10 3), although the mass loading can be substantial because of the high ratio (of the order of 103) between the densities of liquid and gas. The drops are treated as point sources of mass, momentum, and energy; this representation is consistent with the drop size being smaller than the Kolmogorov scale. Unsteady drag, added-mass effects, Basset history forces, and collisions between the drops are neglected, and the gas is assumed calorically perfect. The model incorporates the concept of continuous thermodynamics, according to which the chemical composition of a fuel is described probabilistically, by use of a distribution function. Distribution functions generally depend on many parameters. However, for mixtures of homologous species, the distribution can be approximated with acceptable accuracy as a sole function of the molecular weight. The mixing layer is initially laden with drops in its lower stream, and the drops are colder than the gas

  15. Evaporation dynamics of completely wetting drops on geometrically textured surfaces

    NASA Astrophysics Data System (ADS)

    Mekhitarian, Loucine; Sobac, Benjamin; Dehaeck, Sam; Haut, Benoît; Colinet, Pierre

    2017-10-01

    This study deals with the evaporation dynamics of completely wetting and highly volatile drops deposited on geometrically textured but chemically homogeneous surfaces. The texturation consists in a cylindrical pillars array with a square pitch. The triple line dynamics and the drop shape are characterized by an interferometric method. A parametric study is realized by varying the radius and the height of the pillars (at fixed interpillar distance), allowing to distinguish three types of dynamics: i) an evaporation-dominated regime with a receding triple line; ii) a spreading-dominated regime with an initially advancing triple line; iii) a cross-over region with strong pinning effects. The overall picture is in qualitative agreement with a mathematical model showing that the selected regime mostly depends on the value of a dimensionless parameter comparing the time scales for evaporation and spreading into the substrate texture.

  16. Deposition of bi-dispersed particles in inkjet-printed evaporating colloidal drops

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Joshi, Abhijit; Chhasatia, Viral

    2010-11-01

    In this study, the deposition behaviors of inkjet-printed evaporating colloidal drops consisting of bi-dispersed micro and nano-sized particles are investigated by fluorescence microscopy and SEM. The results on hydrophilic glass substrates show that, evaporatively-driven outward flow drives the nanoparticles to deposit close to the pinned contact line while an inner ring deposition is formed by microparticles. This size-induced particle separation is consistent with the existence of a wedge-shaped drop edge near the contact line region of an evaporating drop on a hydrophilic substrate. The replenishing evaporatively-driven flow assembles nanoparticles closer to the pinned contact line forming an outer ring of nanoparticles and this particle jamming further enhances the contact line pinning. Microparticles are observed to form an inner ring inside the nano-sized deposits. This size-induced particle separation presents a new challenge to the uniformity of functional materials in bioprinting applications where nanoparticles and micro-sized cells are mixed together. On the other hand, particle self-assembly based on their sizes provides enables easy and well-controlled pattern formation. The effects of particle size contrast, particle volume fraction, substrate surface energy, and relative humidity of the printing environment on particle separation are examined in detail.

  17. Crystalline desiccation patterns and film break up from evaporating drops on hydrophobic oxide surfaces

    NASA Astrophysics Data System (ADS)

    McBride, Samantha; Dash, Susmita; Khan, Sami; Varanasi, Kripa

    2017-11-01

    Solute-laden sessile drops evaporating on a substrate will often force crystallization of the solute at the triple phase contact line between the drop, substrate, and air in an effect similar to the ``coffee-ring'' deposition of particles from a particle-laden drop. We report new observations of ring-shaped desiccation patterns of gypsum crystals on hydrophobic oxide substrates; ceria, erbia, and silica. These surfaces have similar contact angles ( 105 degrees), and evaporation of sessile drops proceeds at the same rate and without contact angle hysteresis on all three substrates. However, despite the apparent similarity, the patterns of crystal deposits exhibit large differences across the substrates. The supersaturation and elapsed time at the onset of crystallization also varied across substrates, despite overall evaporation rates being identical. The differences in patterns can be explained in light of the position and morphology of the crystals just prior to completion of evaporation when the sessile drop has transitioned to a thin film spread over the deposit area. Break-up of this film occurs very differently on the different surfaces, and is simultaneously influenced by existing crystals while also influencing final crystalline patterns. This work was supported by the NSF GRFP.

  18. Evaporation of sessile drops containing colloidal rods: coffee-ring and order-disorder transition.

    PubMed

    Dugyala, Venkateshwar Rao; Basavaraj, Madivala G

    2015-03-05

    Liquid drops containing insoluble solutes when dried on solid substrates leave distinct ring-like deposits at the periphery or along the three-phase contact line-a phenomena popularly known as the coffee-ring or the coffee stain effect. The formation of such rings as well as their suppression is shown to have applications in particle separation and disease diagnostics. We present an experimental study of the evaporation of sessile drops containing silica rods to elucidate the structural arrangement of particles in the ring, an effect of the addition of surfactant and salt. To this end, the evaporation of aqueous sessile drops containing model rod-like silica particles of aspect ratio ranging from ∼4 to 15 on a glass slide is studied. We first show that when the conditions such as (1) solvent evaporation, (2) nonzero contact angle, (3) contact line pinning, (4) no surface tension gradient driven flow, and (5) repulsive particle-particle/particle-substrate interactions, that are necessary for the formation of the coffee-ring are met, the suspension drops containing silica rods upon evaporation leave a ring-like deposit. A closer examination of the ring deposits reveals that several layers of silica rods close to the edge of the drop are ordered such that the major axis of the rods are oriented parallel to the contact line. After the first few layers of ordered arrangement of particles, a random arrangement of particles in the drop interior is observed indicating an order-disorder transition in the ring. We monitor the evolution of the ring width and particle velocity during evaporation to elucidate the mechanism of the order-disorder transition. Moreover, when the evaporation rate is lowered, the ordering of silica rods is observed to extend over large areas. We demonstrate that the nature of the deposit can be tuned by the addition of a small quantity of surfactant or salt.

  19. Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation.

    PubMed

    Fukatani, Yuki; Orejon, Daniel; Kita, Yutaku; Takata, Yasuyuki; Kim, Jungho; Sefiane, Khellil

    2016-04-01

    Understanding drop evaporation mechanisms is important for many industrial, biological, and other applications. Drops of organic solvents undergoing evaporation have been found to display distinct thermal patterns, which in turn depend on the physical properties of the liquid, the substrate, and ambient conditions. These patterns have been reported previously to be bulk patterns from the solid-liquid to the liquid-gas drop interface. In the present work the effect of ambient temperature and humidity during the first stage of evaporation, i.e., pinned contact line, is studied paying special attention to the thermal information retrieved at the liquid-gas interface through IR thermography. This is coupled with drop profile monitoring to experimentally investigate the effect of ambient temperature and relative humidity on the drop interfacial thermal patterns and the evaporation rate. Results indicate that self-generated thermal patterns are enhanced by an increase in ambient temperature and/or a decrease in humidity. The more active thermal patterns observed at high ambient temperatures are explained in light of a greater temperature difference generated between the apex and the edge of the drop due to greater evaporative cooling. On the other hand, the presence of water humidity in the atmosphere is found to decrease the temperature difference along the drop interface due to the heat of adsorption, absorption and/or that of condensation of water onto the ethanol drops. The control, i.e., enhancement or suppression, of these thermal patterns at the drop interface by means of ambient temperature and relative humidity is quantified and reported.

  20. Irreversible entropy production in two-phase flows with evaporating drops

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Okong'o, N. A.

    2002-01-01

    A derivation of the irreversible entropy production, that is the dissipation, in two-phase flows is presented for the purpose of examining the effect of evaporative-drop modulation of flows having turbulent features.

  1. Water Drop Evaporation on Mushroom-like Superhydrophobic Surfaces: Temperature Effects.

    PubMed

    do Nascimento, Rodney Marcelo; Cottin-Bizonne, Cécile; Pirat, Christophe; Ramos, Stella M M

    2016-03-01

    We report on experiments of drop evaporation on heated superhydrophobic surfaces decorated with micrometer-sized mushroom-like pillars. We analyze the influence of two parameters on the evaporation dynamics: the solid-liquid fraction and the substrate temperature, ranging between 30 and 80 °C. In the different configurations investigated, the drop evaporation appears to be controlled by the contact line dynamics (pinned or moving). The experimental results show that (i) in the pinned regime, the depinning angles increase with decreasing contact fraction and the substrate heating promotes the contact line depinning and (ii) in the moving regime, the droplet motion is described by periodic stick-slip events and contact-angle oscillations. These features are highly smoothed at the highest temperatures, with two possible mechanisms suggested to explain such a behavior, a reduction in the elasticity of the triple line and a decrease in the depinning energy barriers. For all surfaces, the observed remarkable stability of the "fakir" state to the temperature is attributed to the re-entrant micropillar curvature that prevents surface imbibition.

  2. A New Approach to Measure Contact Angle and Evaporation Rate with Flow Visualization in a Sessile Drop

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.

    1999-01-01

    The contact angle and the spreading process of sessile droplet are very crucial in many technological processes, such as painting and coating, material processing, film-cooling applications, lubrication, and boiling. Additionally, as it is well known that the surface free energy of polymers cannot be directly, measured for their elastic and viscous restraints. The measurements of liquid contact angle on the polymer surfaces become extremely important to evaluate the surface free energy of polymers through indirect methods linked with the contact angle data. Due to the occurrence of liquid evaporation is inevitable, the effects of evaporation on the contact angle and the spreading become very important for more complete understanding of these processes. It is of interest to note that evaporation can induce Marangoni-Benard convection in sessile drops. However, the impacts of the inside convection on the wetting and spreading processes are not clear. The experimental methods used by previous investigators cannot simultaneously measure the spreading process and visualize the convection inside. Based on the laser shadowgraphic system used by the present author, a very simple optical procedure has been developed to measure the contact angle, the spreading speed, the evaporation rate, and to visualize inside convection of a sessile drop simultaneously. Two CCD cameras were used to synchronously record the real-time diameter of the sessile drop, which is essential for determination of both spreading speed and evaporation rate, and the shadowgraphic image magnified by the sessile drop acting as a thin plano-convex lens. From the shadowgraph, the inside convection of the drop can be observed if any and the image outer diameter, which linked to the drop profile, can be measured. Simple equations have been derived to calculate the drop profile, including the instantaneous contact angle, height, and volume of the sessile drop, as well as the evaporation rate. The influence of

  3. Structural and evaporative evolutions in desiccating sessile drops of blood

    NASA Astrophysics Data System (ADS)

    Sobac, B.; Brutin, D.

    2011-07-01

    We report an experimental investigation of the drying of a deposited drop of whole blood. Flow motion, adhesion, gelation, and fracturation all occur during the evaporation of this complex matter, leading to a final typical pattern. Two distinct regimes of evaporation are highlighted: the first is driven by convection, diffusion, and gelation in a liquid phase, whereas the second, with a much slower rate of evaporation, is characterized by the mass transport of the liquid left over in the gellified biocomponent matter. A diffusion model of the drying process allows a prediction of the transition between these two regimes of evaporation. Moreover, the formation of cracks and other events occurring during the drying are examined and shown to be driven by critical solid mass concentrations.

  4. A comprehensive analysis of the evaporation of a liquid spherical drop.

    PubMed

    Sobac, B; Talbot, P; Haut, B; Rednikov, A; Colinet, P

    2015-01-15

    In this paper, a new comprehensive analysis of a suspended drop of a pure liquid evaporating into air is presented. Based on mass and energy conservation equations, a quasi-steady model is developed including diffusive and convective transports, and considering the non-isothermia of the gas phase. The main original feature of this simple analytical model lies in the consideration of the local dependence of the physico-chemical properties of the gas on the gas temperature, which has a significant influence on the evaporation process at high temperatures. The influence of the atmospheric conditions on the interfacial evaporation flux, molar fraction and temperature is investigated. Simplified versions of the model are developed to highlight the key mechanisms governing the evaporation process. For the conditions considered in this work, the convective transport appears to be opposed to the evaporation process leading to a decrease of the evaporation flux. However, this effect is relatively limited, the Péclet numbers happening to be small. In addition, the gas isothermia assumption never appears to be valid here, even at room temperature, due to the large temperature gradient that develops in the gas phase. These two conclusions are explained by the fact that heat transfer from the gas to the liquid appears to be the step limiting the evaporation process. Regardless of the complexity of the developed model, yet excluding extremely small droplets, the square of the drop radius decreases linearly over time (R(2) law). The assumptions of the model are rigorously discussed and general criteria are established, independently of the liquid-gas couple considered. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity.

    PubMed

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2015-07-01

    The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (T(s)≈0.96) is close to the theoretically derived value of T(s)=1 at zero ambient pressure for this vdW fluid.

  6. Morphogenesis of polycrystalline dendritic patterns from evaporation of a reactive nanofluid sessile drop

    NASA Astrophysics Data System (ADS)

    Wu, Hua; Briscoe, Wuge H.

    2018-04-01

    We report polycrystalline residual patterns with dendritic micromorphologies upon fast evaporation of a mixed-solvent sessile drop containing reactive ZnO nanoparticles. The molecular and particulate species generated in situ upon evaporative drying collude with and modify the Marangoni solvent flows and Bénard-Marangoni instabilities, as they undergo self-assembly and self-organization under conditions far from equilibrium, leading to the ultimate hierarchical central cellular patterns surrounded by a peripheral coffee ring upon drying.

  7. The influence of gravity on the distribution of the deposit formed onto a substrate by sessile, hanging, and sandwiched hanging drop evaporation.

    PubMed

    Sandu, Ion; Fleaca, Claudiu Teodor

    2011-06-15

    The focus of the present article is the study of the influence of gravity on the particle deposition profiles on a solid substrate during the evaporation of sessile, hanging and sandwiched hanging drops of colloidal particle suspensions. For concentrations of nanoparticles in the colloidal solutions in the range 0.0001-1 wt.%, highly diluted suspensions will preferentially form rings while concentrated suspensions will preferentially form spots in both sessile and hanging drop evaporation. For intermediary concentrations, the particle deposition profiles will depend on the nanoparticle aggregation dynamics in the suspension during the evaporation process, gravity and on the detailed evaporation geometry. The evaporation of a drop of toluene/carbon nanoparticle suspension hanging from a pendant water drop will leave on the substrate a circular spot with no visible external ring. By contrast, a clear external ring is formed on the substrate by the sessile evaporation of a similar drop of suspension sandwiched between a water drop and the substrate. From the application viewpoint, these processes can be used to create preferential electrical conductive carbon networks and contacts for arrays of self-assembled nanostructures fabricated on solid substrates as well as on flexible polymeric substrates. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Reduction, partial evaporation, and spattering - Possible chemical and physical processes in fluid drop chondrule formation

    NASA Technical Reports Server (NTRS)

    King, E. A.

    1983-01-01

    The major chemical differences between fluid drop chondrules and their probable parent materials may have resulted from the loss of volatiles such as S, H2O, Fe, and volatile siderophile elements by partial evaporation during the chondrule-forming process. Vertical access solar furnace experiments in vacuum and hydrogen have demonstrated such chemical fractionation trends using standard rock samples. The formation of immiscible iron droplets and spherules by in situ reduction of iron from silicate melt and the subsequent evaporation of the iron have been observed directly. During the time that the main sample bead is molten, many small spatter spherules are thrown off the main bead, thereby producing many additional chondrule-like melt spherules that cool rapidly and generate a population of spherules with size frequency distribution characteristics that closely approximate some populations of fluid drop chondrules in chondrites. It is possible that spatter-produced fluid drop chondrules dominate the meteoritic fluid drop chondrule populations. Such meteoritic chondrule populations should be chemically related by various relative amounts of iron and other volatile loss by vapor fractionation.

  9. Flow Visualization in Evaporating Liquid Drops and Measurement of Dynamic Contact Angles and Spreading Rate

    NASA Technical Reports Server (NTRS)

    Zhang, Neng-Li; Chao, David F.

    2001-01-01

    A new hybrid optical system, consisting of reflection-refracted shadowgraphy and top-view photography, is used to visualize flow phenomena and simultaneously measure the spreading and instant dynamic contact angle in a volatile-liquid drop on a nontransparent substrate. Thermocapillary convection in the drop, induced by evaporation, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this unique technique clearly reveal that thermocapillary convection strongly affects the spreading process and the characteristics of dynamic contact angle of the drop. Comprehensive information of a sessile drop, including the local contact angle along the periphery, the instability of the three-phase contact line, and the deformation of the drop shape is obtained and analyzed.

  10. B-52B/DTV (Drop Test Vehicle) flight test results: Drop test missions

    NASA Technical Reports Server (NTRS)

    Doty, L. J.

    1985-01-01

    The NASA test airplane, B-52B-008, was a carrier for drop tests of the shuttle booster recovery parachute system. The purpose of the test support by Boeing was to monitor the vertical loads on the pylon hooks. The hooks hold the Drop Test Vehicle to the B-52 pylon during drop test missions. The loads were monitored to assure the successful completion of the flight and the safety of the crew.

  11. Investigating performance of microchannel evaporators for automobile air conditioning with different port structures

    NASA Astrophysics Data System (ADS)

    Zhou, Guoliang; Su, Lin; Cheng, Qia; Wu, Longbing

    2017-08-01

    Microchannel evaporator has been widely applied in automobile air conditioning, while it faces the problem of refrigerant maldistribution which deteriorates the thermal performance of evaporator. In this study, the performances of microchannel evaporators with different port structures are experimentally investigated for purpose of reducing evaporator pressure drop. Four evaporator samples with different port number and hydraulic diameter are made for this study. The performances of the evaporator samples are tested on a psychometric calorimeter test bench with the refrigerant R-134A at a real automobile air conditioning. The results on the variations of the evaporator pressure drop and evaporator surface temperature distribution are presented and analyzed. By studying the performance of an evaporator, seeking proper port structure is an approach to reduce refrigerant pressure drop as well as improve refrigerant distribution.

  12. Evaporative Optical Marangoni Assembly: Tailoring the Three-Dimensional Morphology of Individual Deposits of Nanoparticles from Sessile Drops.

    PubMed

    Anyfantakis, Manos; Varanakkottu, Subramanyan Namboodiri; Rudiuk, Sergii; Morel, Mathieu; Baigl, Damien

    2017-10-25

    We have recently devised the evaporative optical Marangoni assembly (eOMA), a novel and versatile interfacial flow-based method for directing the deposition of colloidal nanoparticles (NPs) on solid substrates from evaporating sessile drops along desired patterns using shaped UV light. Here, we focus on a fixed UV spot irradiation resulting in a cylinder-like deposit of assembled particles and show how the geometrical features of the single deposit can be tailored in three dimensions by simply adjusting the optical conditions or the sample composition, in a quantitative and reproducible manner. Sessile drops containing cationic NPs and a photosensitive surfactant at various concentrations are allowed to evaporate under a single UV beam with a diameter much smaller than that of the drop. After complete evaporation, the geometrical characteristics of the NP deposits are precisely assessed using optical profilometry. We show that both the volume and the radial size of the light-directed NP deposit can be adjusted by varying the diameter or the intensity of the UV beam or alternatively by changing the concentration of the photosensitive surfactant. Notably, in all these cases, the deposits display an almost constant median height corresponding to a few layers of particles. Moreover, both the radial and the axial extent of the patterns are tuned by changing the NP concentration. These results are explained by the correlation among the strength of Marangoni flow, the particle trapping efficiency, and the volume of the deposit, and by the role of evaporation-driven flow in strongly controlling the deposit height. Finally, we extend the versatility of eOMA by demonstrating that NPs down to 30 nm in diameter can be effectively patterned on glass or polymeric substrates.

  13. DWPF Recycle Evaporator Simulant Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming,more » scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite

  14. Flash evaporator systems test

    NASA Technical Reports Server (NTRS)

    Dietz, J. B.

    1976-01-01

    A flash evaporator heat rejection system representative of that proposed for the space shuttle orbiter underwent extensive system testing at the NASA Johnson Space Center (JSC) to determine its operational suitability and to establish system performance/operational characteristics for use in the shuttle system. During the tests the evaporator system demonstrated its suitability to meet the shuttle requirements by: (1) efficient operation with 90 to 95% water evaporation efficiency, (2) control of outlet temperature to 40 + or - 2 F for partial heat load operation, (3) stability of control system for rapid changes in Freon inlet temperature, and (4) repeated dormant-to-active device operation without any startup procedures.

  15. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.810 Section 178.810 Transportation... Drop test. (a) General. The drop test must be conducted for the qualification of all IBC design types... the drop test. (1) Metal, rigid plastic, and composite IBCs intended to contain solids must be filled...

  16. 49 CFR 178.1045 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.1045 Section 178.1045... Containers § 178.1045 Drop test. (a) General. The drop test must be conducted for the qualification of all... subpart. (b) Special preparation for the drop test. Flexible Bulk Containers must be filled to their...

  17. 49 CFR 178.965 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.965 Section 178.965 Transportation... Packagings § 178.965 Drop test. (a) General. The drop test must be conducted for the qualification of all...) Special preparation for the drop test. Large Packagings must be filled in accordance with § 178.960. (c...

  18. 49 CFR 178.603 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.603 Section 178.603 Transportation... Packagings and Packages § 178.603 Drop test. (a) General. The drop test must be conducted for the... than flat drops, the center of gravity of the test packaging must be vertically over the point of...

  19. Smoothed particle hydrodynamics method for evaporating multiphase flows.

    PubMed

    Yang, Xiufeng; Kong, Song-Charng

    2017-09-01

    The smoothed particle hydrodynamics (SPH) method has been increasingly used for simulating fluid flows; however, its ability to simulate evaporating flow requires significant improvements. This paper proposes an SPH method for evaporating multiphase flows. The present SPH method can simulate the heat and mass transfers across the liquid-gas interfaces. The conservation equations of mass, momentum, and energy were reformulated based on SPH, then were used to govern the fluid flow and heat transfer in both the liquid and gas phases. The continuity equation of the vapor species was employed to simulate the vapor mass fraction in the gas phase. The vapor mass fraction at the interface was predicted by the Clausius-Clapeyron correlation. An evaporation rate was derived to predict the mass transfer from the liquid phase to the gas phase at the interface. Because of the mass transfer across the liquid-gas interface, the mass of an SPH particle was allowed to change. Alternative particle splitting and merging techniques were developed to avoid large mass difference between SPH particles of the same phase. The proposed method was tested by simulating three problems, including the Stefan problem, evaporation of a static drop, and evaporation of a drop impacting a hot surface. For the Stefan problem, the SPH results of the evaporation rate at the interface agreed well with the analytical solution. For drop evaporation, the SPH result was compared with the result predicted by a level-set method from the literature. In the case of drop impact on a hot surface, the evolution of the shape of the drop, temperature, and vapor mass fraction were predicted.

  20. Effect of External Pressure Drop on Loop Heat Pipe Operating Temperature

    NASA Technical Reports Server (NTRS)

    Jentung, Ku; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper discusses the effect of the pressure drop on the operating temperature in a loop heat pipe (LHP). Because the evaporator and the compensation chamber (CC) both contain two-phase fluid, a thermodynamic constraint exists between the temperature difference and the pressure drop for these two components. As the pressure drop increases, so will the temperature difference. The temperature difference in turn causes an increase of the heat leak from the evaporator to the CC, resulting in a higher CC temperature. Furthermore, the heat leak strongly depends on the vapor void fraction inside the evaporator core. Tests were conducted by installing a valve on the vapor line so as to vary the pressure drop, and by charging the LHP with various amounts of fluid. Test results verify that the LHP operating temperature increases with an increasing differential pressure, and the temperature increase is a strong function of the fluid inventory in the loop.

  1. Consistent Large-Eddy Simulation of a Temporal Mixing Layer Laden with Evaporating Drops. Part 2; A Posteriori Modelling

    NASA Technical Reports Server (NTRS)

    Leboissertier, Anthony; Okong'O, Nora; Bellan, Josette

    2005-01-01

    Large-eddy simulation (LES) is conducted of a three-dimensional temporal mixing layer whose lower stream is initially laden with liquid drops which may evaporate during the simulation. The gas-phase equations are written in an Eulerian frame for two perfect gas species (carrier gas and vapour emanating from the drops), while the liquid-phase equations are written in a Lagrangian frame. The effect of drop evaporation on the gas phase is considered through mass, species, momentum and energy source terms. The drop evolution is modelled using physical drops, or using computational drops to represent the physical drops. Simulations are performed using various LES models previously assessed on a database obtained from direct numerical simulations (DNS). These LES models are for: (i) the subgrid-scale (SGS) fluxes and (ii) the filtered source terms (FSTs) based on computational drops. The LES, which are compared to filtered-and-coarsened (FC) DNS results at the coarser LES grid, are conducted with 64 times fewer grid points than the DNS, and up to 64 times fewer computational than physical drops. It is found that both constant-coefficient and dynamic Smagorinsky SGS-flux models, though numerically stable, are overly dissipative and damp generated small-resolved-scale (SRS) turbulent structures. Although the global growth and mixing predictions of LES using Smagorinsky models are in good agreement with the FC-DNS, the spatial distributions of the drops differ significantly. In contrast, the constant-coefficient scale-similarity model and the dynamic gradient model perform well in predicting most flow features, with the latter model having the advantage of not requiring a priori calibration of the model coefficient. The ability of the dynamic models to determine the model coefficient during LES is found to be essential since the constant-coefficient gradient model, although more accurate than the Smagorinsky model, is not consistently numerically stable despite using DNS

  2. Water evaporation on highly viscoelastic polymer surfaces.

    PubMed

    Pu, Gang; Severtson, Steven J

    2012-07-03

    Results are reported for a study on the evaporation of water droplets from a highly viscoelastic acrylic polymer surface. These are contrasted with those collected for the same measurements carried out on polydimethylsiloxane (PDMS). For PDMS, the evaporation process involves the expected multistep process including constant drop area, constant contact angle, and finally a combination of these steps until the liquid is gone. In contrast, water evaporation from the acrylic polymer shows a constant drop area mode throughout. Furthermore, during the evaporation process, the drop area actually expands on the acrylic polymer. The single mode evaporation process is consistent with formation of wetting structures, which cannot be propagated by the capillary forces. Expansion of the drop area is attributed to the influence of the drop capillary pressure. Furthermore, the rate of drop area expansion is shown to be dependent on the thickness of the polymer film.

  3. Fate of sulfur mustard on soil: Evaporation, degradation, and vapor emission.

    PubMed

    Jung, Hyunsook; Kah, Dongha; Chan Lim, Kyoung; Lee, Jin Young

    2017-01-01

    After application of sulfur mustard to the soil surface, its possible fate via evaporation, degradation following absorption, and vapor emission after decontamination was studied. We used a laboratory-sized wind tunnel, thermal desorber, gas chromatograph-mass spectrometry (GC-MS), and 13 C nuclear magnetic resonance ( 13 C NMR) for systematic analysis. When a drop of neat HD was deposited on the soil surface, it evaporated slowly while being absorbed immediately into the matrix. The initial evaporation or drying rates of the HD drop were found to be power-dependent on temperature and initial drop volume. Moreover, drops of neat HD, ranging in size from 1 to 6 μL, applied to soil, evaporated at different rates, with the smaller drops evaporating relatively quicker. HD absorbed into soil remained for a month, degrading eventually to nontoxic thiodiglycol via hydrolysis through the formation of sulfonium ions. Finally, a vapor emission test was performed for HD contaminant after a decontamination process, the results of which suggest potential risk from the release of trace chemical quantities of HD into the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. CPAS Preflight Drop Test Analysis Process

    NASA Technical Reports Server (NTRS)

    Englert, Megan E.; Bledsoe, Kristin J.; Romero, Leah M.

    2015-01-01

    Throughout the Capsule Parachute Assembly System (CPAS) drop test program, the CPAS Analysis Team has developed a simulation and analysis process to support drop test planning and execution. This process includes multiple phases focused on developing test simulations and communicating results to all groups involved in the drop test. CPAS Engineering Development Unit (EDU) series drop test planning begins with the development of a basic operational concept for each test. Trajectory simulation tools include the Flight Analysis and Simulation Tool (FAST) for single bodies, and the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulation for the mated vehicle. Results are communicated to the team at the Test Configuration Review (TCR) and Test Readiness Review (TRR), as well as at Analysis Integrated Product Team (IPT) meetings in earlier and intermediate phases of the pre-test planning. The ability to plan and communicate efficiently with rapidly changing objectives and tight schedule constraints is a necessity for safe and successful drop tests.

  5. 49 CFR 572.102 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Drop test. 572.102 Section 572.102 Transportation..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Free Motion Headform § 572.102 Drop test. (a) When the headform is dropped from a height of 14.8 inches in accordance with paragraph (b) of...

  6. 49 CFR 572.102 - Drop test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Drop test. 572.102 Section 572.102 Transportation..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Free Motion Headform § 572.102 Drop test. (a) When the headform is dropped from a height of 14.8 inches in accordance with paragraph (b) of...

  7. 49 CFR 572.102 - Drop test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Drop test. 572.102 Section 572.102 Transportation..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Free Motion Headform § 572.102 Drop test. (a) When the headform is dropped from a height of 14.8 inches in accordance with paragraph (b) of...

  8. B-52B-008/DTV (Drop Test Vehicle) configuration 1 (with and without fins) flight test results - captive flight and drop test missions

    NASA Technical Reports Server (NTRS)

    Quade, D. A.

    1978-01-01

    The B-52B-008 drop test consisted of one takeoff roll to 60 KCAS, two captive flights to accomplish limited safety of flight flutter and structural demonstration testing, and seven drop test flights. Of the seven drop test missions, one flight was aborted due to the failure of the hook mechanism to release the drop test vehicle (DTV); but the other six flights successfully dropped the DTV.

  9. Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting

    NASA Astrophysics Data System (ADS)

    Eral, Burak; Mampallil Augustine, Dileep; Duits, Michel; Mugele, Frieder; Physics of Complex Fluids Group, University of Twente Team

    2011-11-01

    We study the influence of electrowetting on the evaporative self-assembly and formation of undesired solute residues, so-called coffee stains, during the evaporation of a drop containing non-volatile solvents. Electrowetting is found to suppress coffee stains of both colloidal particles of various sizes and DNA solutions at alternating (AC) frequencies ranging from a few Hertz to a few tens of kHz. Two main effects are shown to contribute to the suppression: (i) the time-dependent electrostatic force prevents pinning of the three phase contact line and (ii) internal flow fields generated by AC electrowetting counteract the evaporation driven flux and thereby prevent the accumulation of solutes along the contact line Please see the link below for a short presentation and movies: http://www.youtube.com/watch?v=xwipCVZnN4E We thank the Chemical Sciences division of the Netherlands Organization for Scientific Research (NWO-CW) for financial support (ECHO grant).

  10. Drop Testing Representative Multi-Canister Overpacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, Spencer D.; Morton, Dana K.

    The objective of the work reported herein was to determine the ability of the Multi- Canister Overpack (MCO) canister design to maintain its containment boundary after an accidental drop event. Two test MCO canisters were assembled at Hanford, prepared for testing at the Idaho National Engineering and Environmental Laboratory (INEEL), drop tested at Sandia National Laboratories, and evaluated back at the INEEL. In addition to the actual testing efforts, finite element plastic analysis techniques were used to make both pre-test and post-test predictions of the test MCOs structural deformations. The completed effort has demonstrated that the canister design is capablemore » of maintaining a 50 psig pressure boundary after drop testing. Based on helium leak testing methods, one test MCO was determined to have a leakage rate not greater than 1x10 -5 std cc/sec (prior internal helium presence prevented a more rigorous test) and the remaining test MCO had a measured leakage rate less than 1x10 -7 std cc/sec (i.e., a leaktight containment) after the drop test. The effort has also demonstrated the capability of finite element methods using plastic analysis techniques to accurately predict the structural deformations of canisters subjected to an accidental drop event.« less

  11. Desiccation of a Sessile Drop of Blood: Cracks Formation and Delamination

    NASA Astrophysics Data System (ADS)

    Sobac, Benjamin; Brutin, David

    2011-11-01

    The evaporation of drops of biological fluids has been studied since few years du to several applications in medical fields such as medical tests, drug screening, biostabilization... The evaporation of a drop of whole blood leads to the formation of final typical pattern of cracks. Flow motion, adhesion, gelation and fracturation all occur during the evaporation of this complex matter. During the drying, a sol-gel transition develops. The drying kinetics is explained by a simple model of evaporation taking account of the evolution of the gelation front. The system solidifies and when stresses are too important, cracks nucleate. The cracks formation and the structure of the crack pattern are investigated. The initial crack spacing is found in good agreement with the implementation in open geometry of the model of cracks formation induced by evaporation proposed by Allain and Limat. Finally, the drop is still drying after the end of the formation of cracks which leads, like in the situation of colloid suspensions, to the observation of a delamination phenomenon.

  12. On the uniqueness of the receding contact angle: effects of substrate roughness and humidity on evaporation of water drops.

    PubMed

    Pittoni, Paola G; Lin, Chia-Hui; Yu, Teng-Shiang; Lin, Shi-Yow

    2014-08-12

    Could a unique receding contact angle be indicated for describing the wetting properties of a real gas-liquid-solid system? Could a receding contact angle be defined if the triple line of a sessile drop is not moving at all during the whole measurement process? To what extent is the receding contact angle influenced by the intrinsic properties of the system or the measurement procedures? In order to answer these questions, a systematic investigation was conducted in this study on the effects of substrate roughness and relative humidity on the behavior of pure water drops spreading and evaporating on polycarbonate (PC) surfaces characterized by different morphologies. Dynamic, advancing, and receding contact angles were found to be strongly affected by substrate roughness. Specifically, a receding contact angle could not be measured at all for drops evaporating on the more rugged PC surfaces, since the drops were observed strongly pinning to the substrate almost until their complete disappearance. Substrate roughness and system relative humidity were also found responsible for drastic changes in the depinning time (from ∼10 to ∼60 min). Thus, for measurement observations not sufficiently long, no movement of the triple line could be noted, with, again, the failure to find a receding contact angle. Therefore, to keep using concepts such as the receding contact angle as meaningful specifications of a given gas-liquid-solid system, the imperative to carefully investigate and report the inner characteristics of the system (substrate roughness, topography, impurities, defects, chemical properties, etc.) is pointed out in this study. The necessity of establishing methodological standards (drop size, measurement method, system history, observation interval, relative humidity, etc.) is also suggested.

  13. 49 CFR 178.603 - Drop test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... aluminum boxes, Composite packagings which are in the shape of a box Five—(one for each drop) First drop... impact. Where more than one orientation is possible for a given drop test, the orientation most likely to... example a closure or, for some 7 cylindrical drums, the welded longitudinal seam of the drum body. Boxes...

  14. 49 CFR 178.965 - Drop test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... Water/anti-freeze solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or... of 0.45 cubic meters (15.9 cubic feet) or less must be subject to an additional drop test. (e) Drop... having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...

  15. 49 CFR 178.965 - Drop test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... Water/anti-freeze solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or... of 0.45 cubic meters (15.9 cubic feet) or less must be subject to an additional drop test. (e) Drop... having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...

  16. 49 CFR 178.965 - Drop test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Water/anti-freeze solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or... of 0.45 cubic meters (15.9 cubic feet) or less must be subject to an additional drop test. (e) Drop... having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...

  17. Organization of microbeads in Leidenfrost drops.

    PubMed

    Maquet, Laurent; Colinet, Pierre; Dorbolo, Stéphane

    2014-06-21

    We investigated the organization of micrometric hydrophilic beads (glass or basalt) immersed in Leidenfrost drops. Starting from a large volume of water compared to the volume of the beads, while the liquid evaporates, we observed that the grains are eventually trapped at the interface of the droplet and accumulate. At a moment, the grains entirely cover the droplet. We measured the surface area at this moment as a function of the total mass of particles inserted in the droplet. We concluded that the grains form a monolayer around the droplet assuming (i) that the packing of the beads at the surface is a random close packing and (ii) that the initial surface of the drop is larger than the maximum surface that the beads can cover. Regarding the evaporation dynamics, the beads are found to reduce the evaporation rate of the drop. The slowdown of the evaporation is interpreted as being the consequence of the dewetting of the particles located at the droplet interface which makes the effective surface of evaporation smaller. As a matter of fact, contact angles of the beads with the water deduced from the evaporation rates are consistent with contact angles of beads directly measured at a flat air-water interface of water in a container.

  18. 49 CFR 572.102 - Drop test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... surface when the midsagittal plane is vertical. (4) Drop the headform from the specified height by means... test. (a) When the headform is dropped from a height of 14.8 inches in accordance with paragraph (b) of...

  19. 14 CFR 23.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be less...

  20. 14 CFR 23.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be less...

  1. 14 CFR 23.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be less...

  2. 14 CFR 23.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be less...

  3. 14 CFR 23.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be less...

  4. DIME Students Witness Test Drop

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Students watch a test run on their experiment before the actual drop. They designed and built their apparatus to fit within a NASA-provided drop structure. This was part of the second Dropping in a Microgravity Environment (DIME) competition held April 23-25, 2002, at NASA's Glenn Research Center. Competitors included two teams from Sycamore High School, Cincinnati, OH, and one each from Bay High School, Bay Village, OH, and COSI Academy, Columbus, OH. DIME is part of NASA's education and outreach activities. Details are on line at http://microgravity.grc.nasa.gov/DIME_2002.html.

  5. Model for determining vapor equilibrium rates in the hanging drop method for protein crystal growth

    NASA Technical Reports Server (NTRS)

    Baird, James K.; Frieden, Richard W.; Meehan, E. J., Jr.; Twigg, Pamela J.; Howard, Sandra B.; Fowlis, William A.

    1987-01-01

    An engineering analysis of the rate of evaporation of solvent in the hanging drop method of protein crystal growth is presented. Results are applied to 18 drop and well arrangements commonly encountered in the laboratory. The chemical nature of the salt, drop size and shape, drop concentration, well size, well concentration, and temperature are taken into account. The rate of evaporation increases with temperature, drop size, and the salt concentration difference between the drop and the well. The evaporation in this model possesses no unique half-life. Once the salt in the drop achieves 80 percent of its final concentration, further evaporation suffers from the law of diminishing returns.

  6. Thermodynamic performance testing of the orbiter flash evaporator system

    NASA Technical Reports Server (NTRS)

    Jaax, J. R.; Melgares, M. A.; Frahm, J. P.

    1980-01-01

    System level testing of the space shuttle orbiter's development flash evaporator system (FES) was performed in a thermal vacuum chamber capable of simulating ambient ascent, orbital, and entry temperature and pressure profiles. The test article included the evaporator assembly, high load and topping exhaust duct and nozzle assemblies, and feedwater supply assembly. Steady state and transient heat load, water pressure/temperature and ambient pressure/temperature profiles were imposed by especially designed supporting test hardware. Testing in 1978 verified evaporator and duct heater thermal design, determined FES performance boundaries, and assessed topping evaporator plume characteristics. Testing in 1979 combined the FES with the other systems in the orbiter active thermal control subsystem (ATCS). The FES met or exceeded all nominal and contingency performance requirements during operation with the integrated ATCS. During both tests stability problems were encountered during steady state operations which resulted in subsequent design changes to the water spray nozzle and valve plate assemblies.

  7. Inverted drop testing and neck injury potential.

    PubMed

    Forrest, Stephen; Herbst, Brian; Meyer, Steve; Sances, Anthony; Kumaresan, Srirangam

    2003-01-01

    Inverted drop testing of vehicles is a methodology that has long been used by the automotive industry and researchers to test roof integrity and is currently being considered by the National Highway Traffic Safety Administration as a roof strength test. In 1990 a study was reported which involved 8 dolly rollover tests and 5 inverted drop tests. These studies were conducted with restrained Hybrid III instrumented Anthropometric Test Devices (ATD) in production and rollcaged vehicles to investigate the relationship between roof strength and occupant injury potential. The 5 inverted drop tests included in the study provided a methodology producing "repeatable roof impacts" exposing the ATDs to the similar impact environment as those seen in the dolly rollover tests. Authors have conducted two inverted drop test sets as part of an investigation of two real world rollover accidents. Hybrid-III ATD's were used in each test with instrumented head and necks. Both test sets confirm that reduction of roof intrusion and increased headroom can significantly enhance occupant protection. In both test pairs, the neck force of the dummy in the vehicle with less crush and more survival space was significantly lower. Reduced roof crush and dynamic preservation of the occupant survival space resulted in only minor occupant contact and minimal occupant loading, establishing a clear causal relationship between roof crush and neck injuries.

  8. 14 CFR 29.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...

  9. 14 CFR 27.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as follows...

  10. 14 CFR 27.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as follows...

  11. 14 CFR 27.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as follows...

  12. 14 CFR 29.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...

  13. 14 CFR 27.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as follows...

  14. 14 CFR 27.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as follows...

  15. 14 CFR 29.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...

  16. 14 CFR 29.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...

  17. 14 CFR 29.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...

  18. Controlling Vapor Pressure In Hanging-Drop Crystallization

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Smith, Robbie

    1988-01-01

    Rate of evaporation adjusted to produce larger crystals. Device helps to control vapor pressure of water and other solvents in vicinity of hanging drop of solution containing dissolved enzyme protein. Well of porous frit (sintered glass) holds solution in proximity to drop of solution containing protein or enzyme. Vapor from solution in frit controls evaporation of solvent from drop to control precipitation of protein or enzyme. With device, rate of nucleation limited to decrease number and increase size (and perhaps quality) of crystals - large crystals of higher quality needed for x-ray diffraction studies of macromolecules.

  19. Electrochemistry in an acoustically levitated drop.

    PubMed

    Chainani, Edward T; Ngo, Khanh T; Scheeline, Alexander

    2013-02-19

    Levitated drops show potential as microreactors, especially when radicals are present as reactants or products. Solid/liquid interfaces are absent or minimized, avoiding adsorption and interfacial reaction of conventional microfluidics. We report amperometric detection in an acoustically levitated drop with simultaneous ballistic addition of reactant. A gold microelectrode sensor was fabricated with a lithographic process; active electrode area was defined by a photosensitive polyimide mask. The microdisk gold working electrode of radius 19 μm was characterized using ferrocenemethanol in aqueous buffer. Using cyclic voltammetry, the electrochemically active surface area was estimated by combining a recessed microdisk electrode model with the Randles-Sevcik equation. Computer-controlled ballistic introduction of reactant droplets into the levitated drop was developed. Chronoamperometric measurements of ferrocyanide added ballistically demonstrate electrochemical monitoring using the microfabricated electrode in a levitated drop. Although concentration increases with time due to drop evaporation, the extent of concentration is predictable with a linear evaporation model. Comparison of diffusion-limited currents in pendant and levitated drops show that convection arising from acoustic levitation causes an enhancement of diffusion-limited current on the order of 16%.

  20. Sheet Membrane Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  1. Evaporation of Binary Sessile Drops: Infrared and Acoustic Methods To Track Alcohol Concentration at the Interface and on the Surface.

    PubMed

    Chen, Pin; Toubal, Malika; Carlier, Julien; Harmand, Souad; Nongaillard, Bertrand; Bigerelle, Maxence

    2016-09-27

    Evaporation of droplets of three pure liquids (water, 1-butanol, and ethanol) and four binary solutions (5 wt % 1-butanol-water-based solution and 5, 25, and 50 wt % ethanol-water-based solutions) deposited on hydrophobic silicon was investigated. A drop shape analyzer was used to measure the contact angle, diameter, and volume of the droplets. An infrared camera was used for infrared thermal mapping of the droplet's surface. An acoustic high-frequency echography technique was, for the first time, applied to track the alcohol concentration in a binary-solution droplet. Evaporation of pure alcohol droplets was executed at different values of relative humidity (RH), among which the behavior of pure ethanol evaporation was notably influenced by the ambient humidity as a result of high hygrometry. Evaporation of droplets of water and binary solutions was performed at a temperature of 22 °C and a mean humidity of approximately 50%. The exhaustion times of alcohol in the droplets estimated by the acoustic method and the visual method were similar for the water-1-butanol mixture; however, the time estimated by the acoustic method was longer when compared with that estimated by the visual method for the water-ethanol mixture due to the residual ethanol at the bottom of the droplet.

  2. Droplet evaporation on a horizontal substrate under gravity field by mesoscopic modeling.

    PubMed

    Xie, Chiyu; Zhang, Jianying; Bertola, Volfango; Wang, Moran

    2016-02-01

    The evaporation of water drop deposited on a horizontal substrate is investigated using a lattice Boltzmann method (LBM) for multiphase flows with a large-density ratio. To account for the variation of evaporation flux distribution along the drop interface, a novel evaporation scheme is introduced into the LBM framework, and validated by comparison with experimental data. We aim at discovering the effect of gravity on the evaporating drop in detail, and various evaporation conditions are considered as well as different wetting properties of the substrates. An effective diameter is introduced as an indicator of the critical drop size under which gravity is negligible. Our results show that such critical diameter is much smaller than the capillary length, which has been widely accepted as the critical size in previous and current works. The critical diameter is found to be almost independent of the evaporation conditions and the surface wettability. A correlation between this critical diameter and the capillary length is also proposed for easy use in applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. An Experimental Study of Pressure Oscillation in a Capillary Pumped Loop with Multiple Evaporators and Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jen-Tung; Hoang, Triem T.

    1998-01-01

    The heat transport capability of a capillary pumped loop (CPL) is limited by the pressure drop that its evaporator wick can sustain. The pressure drop in a CPL is not constant even under seemingly steady operation, but rather exhibits an oscillatory behavior. A hydrodynamic theory based on a mass-spring-dashpot model was previously developed to predict the pressure oscillation in a CPL with a single evaporator and a single condenser. The theory states that the pressure oscillation is a function of physical dimensions of the CPL components and operating conditions. Experimental data agreed very well with theoretical predictions. The hydrodynamic stability theory has recently been extended to predict the pressure oscillations in CPLs with multiple evaporators and multiple condensers. Concurrently, an experimental study was conducted to verify the theory and to investigate the effects of various parameters on the pressure oscillation. Four evaporators with different wick properties were tested using a test loop containing two condenser plates. The test loop allowed the four evaporators to be tested in a single-pump, two-pump or four-pump configuration, and the two condenser plates to be plumbed either in parallel or in series. Test conditions included varying the power input, the reservoir set point temperature, the condenser sink temperature, and the flow resistance between the reservoir and the loop. Experimental results agreed well with theoretical predictions.

  4. Ball feeder for replenishing evaporator feed

    DOEpatents

    Felde, David K.; McKoon, Robert H.

    1993-01-01

    Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.

  5. Ball feeder for replenishing evaporator feed

    DOEpatents

    Felde, D.K.; McKoon, R.H.

    1993-03-23

    Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.

  6. Anomalous interfacial tension temperature dependence of condensed phase drops in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Ivanov, Aleksey S.

    2018-05-01

    Interfacial tension temperature dependence σ(T) of the condensed phase (drop-like aggregates) in magnetic fluids undergoing field induced phase transition of the "gas-liquid" type was studied experimentally. Numerical analysis of the experimental data has revealed the anomalous (if compared to ordinary one-component fluids) behavior of the σ(T) function for all tested magnetic colloid samples: the condensed phase drops at high T ≈ 75 C exhibit higher σ(T) than the drops condensed at low T ≈ 20 C. The σ(T) behavior is explained by the polydispersity of magnetic colloids: at high T, only the largest colloidal particles are able to take part in the field induced condensation; thus, the increase of T causes the growth of the average particle diameters inside the drop-like aggregates, what in its turn results in the growth of σ(T). The result is confirmed by qualitative theoretical estimations and qualitative experimental observation of the condensed phase "evaporation" process after the applied magnetic field is removed: the drops that are formed due to capillary instability of the drop-like aggregates retract by one order of magnitude faster at high T, and the evaporation of the drops slows down at high T.

  7. Theoretical and testing performance of an innovative indirect evaporative chiller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yi; Xie, Xiaoyun

    2010-12-15

    An indirect evaporative chiller is a device used to produce chilled water at a temperature between the wet bulb temperature and dew point of the outdoor air, which can be used in building HVAC systems. This article presents a theoretical analysis and practical performance of an innovative indirect evaporative chiller. First, the process of the indirect evaporative chiller is introduced; then, the matching characteristics of the process are presented and analyzed. It can be shown that the process that produces cold water by using dry air is a nearly-reversible process, so the ideal produced chilled water temperature of the indirectmore » evaporative chiller can be set close to the dew point temperature of the chiller's inlet air. After the indirect evaporative chiller was designed, simulations were done to analyze the output water temperature, the cooling efficiency relative to the inlet dew point temperature, and the COP that the chiller can performance. The first installation of the indirect evaporative chiller of this kind has been run for 5 years in a building in the city of Shihezi. The tested output water temperature of the chiller is around 14-20 C, which is just in between of the outdoor wet bulb temperature and dew point. The tested COP{sub r,s} of the developed indirect evaporative chiller reaches 9.1. Compared with ordinary air conditioning systems, the indirect evaporative chiller can save more than 40% in energy consumption due to the fact that the only energy consumed is from pumps and fans. An added bonus is that the indirect evaporative chiller uses no CFCs that pollute to the aerosphere. The tested internal parameters, such as the water-air flow rate ratio and heat transfer area for each heat transfer process inside the chiller, were analyzed and compared with designed values. The tested indoor air conditions, with a room temperature of 23-27 C and relative humidity of 50-70%, proved that the developed practical indirect evaporative chiller

  8. Ion evaporation from the surface of a Taylor cone.

    PubMed

    Higuera, F J

    2003-07-01

    An analysis is carried out of the electric field-induced evaporation of ions from the surface of a polar liquid that is being electrosprayed in a vacuum. The high-field cone-to-jet transition region of the electrospray, where ion evaporation occurs, is studied taking advantage of its small size and neglecting the inertia of the liquid and the space charge around the liquid. Evaporated ions and charged drops coexist in a range of flow rates, which is investigated numerically. The structure of the cone-to-jet transition comprises: a hydrodynamic region where the nearly equipotential surface of the liquid departs from a Taylor cone and becomes a jet; a slender region where the radius of the jet decreases and the electric field increases while the pressure and the viscous stress balance the electric stress at the surface; the ion evaporation region of high, nearly constant field; and a charged, continuously strained jet that will eventually break into drops. Estimates of the ion and drop contributions to the total, conduction-limited current show that the first of these contributions dominates for small flow rates, while most of the mass is still carried by the drops.

  9. Instrumentation and telemetry systems for free-flight drop model testing

    NASA Technical Reports Server (NTRS)

    Hyde, Charles R.; Massie, Jeffrey J.

    1993-01-01

    This paper presents instrumentation and telemetry system techniques used in free-flight research drop model testing at the NASA Langley Research Center. The free-flight drop model test technique is used to conduct flight dynamics research of high performance aircraft using dynamically scaled models. The free-flight drop model flight testing supplements research using computer analysis and wind tunnel testing. The drop models are scaled to approximately 20 percent of the size of the actual aircraft. This paper presents an introduction to the Free-Flight Drop Model Program which is followed by a description of the current instrumentation and telemetry systems used at the NASA Langley Research Center, Plum Tree Test Site. The paper describes three telemetry downlinks used to acquire the data, video, and radar tracking information from the model. Also described are two telemetry uplinks, one used to fly the model employing a ground-based flight control computer and a second to activate commands for visual tracking and parachute recovery of the model. The paper concludes with a discussion of free-flight drop model instrumentation and telemetry system development currently in progress for future drop model projects at the NASA Langley Research Center.

  10. 49 CFR 178.603 - Drop test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... drums, Plastic drums and Jerricans, Composite packagings which are in the shape of a drum Six—(three for... of natural wood, Plywood boxes, Reconstituted wood boxes, Fiberboard boxes, Plastic boxes, Steel or... Administrator. (c) Special preparation of test samples for the drop test. (1) Testing of plastic drums, plastic...

  11. Behavior of sulfur mustard in sand, concrete, and asphalt matrices: Evaporation, degradation, and decontamination.

    PubMed

    Jung, Hyunsook; Choi, Seungki

    2017-10-15

    The evaporation, degradation, and decontamination of sulfur mustard on environmental matrices including sand, concrete, and asphalt are described. A specially designed wind tunnel and thermal desorber in combination with gas chromatograph (GC) produced profiles of vapor concentration obtained from samples of the chemical agent deposited as a drop on the surfaces of the matrices. The matrices were exposed to the chemical agent at room temperature, and the degradation reactions were monitored and characterized. A vapor emission test was also performed after a decontamination process. The results showed that on sand, the drop of agent spread laterally while evaporating. On concrete, the drop of the agent was absorbed immediately into the matrix while spreading and evaporating. However, the asphalt surface conserved the agent and slowly released parts of the agent over an extended period of time. The degradation reactions of the agent followed pseudo first order behavior on the matrices. Trace amounts of the residual agent present at the surface were also released as vapor after decontamination, posing a threat to the exposed individual and environment.

  12. New Method Developed to Measure Contact Angles of a Sessile Drop

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Zhang, Nengli

    2002-01-01

    The spreading of an evaporating liquid on a solid surface occurs in many practical processes and is of importance in a number of practical situations such as painting, textile dyeing, coating, gluing, and thermal engineering. Typical processes involving heat transfer where the contact angle plays an important role are film cooling, boiling, and the heat transfer through heat pipes. The biological phenomenon of cell spreading also is analogous to a drop spreading (ref. 1). In the study of spreading, the dynamic contact angle describes the interfacial properties on solid substrates and, therefore, has been studied by physicists and fluid mechanics investigators. The dynamic contact angle of a spreading nonvolatile liquid drop provides a simple tool in the study of the free-boundary problem, but the study of the spreading of a volatile liquid drop is of more practical interest because the evaporation of common liquids is inevitable in practical processes. The most common method to measure the contact angle, the contact radius, and the height of a sessile drop on a solid surface is to view the drop from its edge through an optical microscope. However, this method gives only local information in the view direction. Zhang and Yang (ref. 2) developed a laser shadowgraphy method to investigate the evaporation of sessile drop on a glass plate. As described here, Zhang and Chao (refs. 3 and 4) improved the method and suggested a new optical arrangement to measure the dynamic contact angle and the instant evaporation rate of a sessile drop with much higher accuracy (less than 1 percent). With this method, any fluid motion in the evaporating drop can be visualized through shadowgraphy without using a tracer, which often affects the field under investigation.

  13. Internally damped, self-arresting vertical drop-weight impact test apparatus

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R. (Inventor); Prasad, Chunchu B. (Inventor); Waters, Jr., William A. (Inventor); Stockum, Robert W. (Inventor); Walter, Manfred A. (Inventor)

    1996-01-01

    A vertical dropped-weight impact test machine has a dropped-weight barrel vertically supported on upper and lower support brackets. The dropped-weight barrel is chambered to receive a dropped-weight assembly having a latch pin at its upper end, a damping unit in the middle, and a tup at its lower end. The tup is adapted for gathering data during impact testing. The latch pin releasably engages a latch pin coupling assembly. The latch pin coupling assembly is attached to a winch via a halyard for raising and lowering the dropped-weight assembly. The lower end of the dropped-weight barrel is provided with a bounce-back arresting mechanism which is activated by the descending passage of the dropped-weight assembly. After striking the specimen, the dropped-weight assembly rebounds vertically and is caught by the bounce-back arresting mechanism. The damping unit of the dropped-weight assembly serves to dissipate energy from the rebounding dropped-weight assembly and prevents the dropped-weight assembly from rebounding from the self-arresting mechanism.

  14. Internally damped, self-arresting vertical drop-weight impact test apparatus

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R. (Inventor); Prasad, Chunchu B. (Inventor); Waters, Jr., William A. (Inventor); Stockum, Robert W. (Inventor); Water, Manfred A. (Inventor)

    1995-01-01

    A vertical dropped-weight impact test machine has a dropped-weight barrel vertically supported on upper and lower support brackets. The dropped-weight barrel is chambered to receive a dropped-weight assembly having a latch pin at its upper end, a damping unit in the middle, and a tup at its lower end. The tup is adapted for gathering data during impact testing. The latch pin releasably engages a latch pin coupling assembly. The latch pin coupling assembly is attached to a winch via a halyard for raising and lowering the dropped-weight assembly. The lower end of the dropped-weight barrel is provided with a bounce-back arresting mechanism which is activated by the descending passage of the dropped-weight assembly. After striking the specimen, the dropped-weight assembly rebounds vertically and is caught by the bounce-back arresting mechanism. The damping unit of the dropped-weight assembly serves to dissipate energy from the rebounding dropped-weight assembly and prevents the dropped-weight assembly from rebounding from the self-arresting mechanism.

  15. 14 CFR 27.725 - Limit drop test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... introduced into the drop test by appropriate energy absorbing devices or by the use of an effective mass. (c... critical from the standpoint of the energy to be absorbed by it. (d) When an effective mass is used in...=specified free drop height (inches). L=ration of assumed rotor lift to the rotorcraft weight. d=deflection...

  16. 14 CFR 27.725 - Limit drop test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... introduced into the drop test by appropriate energy absorbing devices or by the use of an effective mass. (c... critical from the standpoint of the energy to be absorbed by it. (d) When an effective mass is used in...=specified free drop height (inches). L=ration of assumed rotor lift to the rotorcraft weight. d=deflection...

  17. 14 CFR 27.725 - Limit drop test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... introduced into the drop test by appropriate energy absorbing devices or by the use of an effective mass. (c... critical from the standpoint of the energy to be absorbed by it. (d) When an effective mass is used in...=specified free drop height (inches). L=ration of assumed rotor lift to the rotorcraft weight. d=deflection...

  18. Flame propagation in heterogeneous mixtures of fuel drops and air

    NASA Technical Reports Server (NTRS)

    Myers, G. D.; Lefebvre, A. H.

    1984-01-01

    Photographic methods are used to measure flame speeds in flowing mixtures of fuel props and air at atmospheric pressure. The fuels employed include a conventional fuel oil plus various blends JP 7 with stocks containing single-ring and mullti-ring aromatics. The results for stoichiometric mixtures show that flame propagation cannot occur in mixtures containing mean drop sizes larger than 300 to 400 microns, depending on the fuel type. For smaller drop sizes, down to around 60 microns, flame speed is inversely proportional to drop size, indicating that evaporation rates are limiting to flame speed. Below around 60 microns, the curves of flame speed versus mean drop size flatten out, thereby demonstrating that for finely atomized sprays flame speeds are much less dependent on evaporation rates, and are governed primarily by mixing and/or chemical reaction rates. The fuels exhibiting the highest flame speeds are those containing multi-ring aromatics. This is attributed to the higher radiative heat flux emanating from their soot-bearing flames which enhances the rate of evaporation of the fuel drops approaching the flame front.

  19. Testing of the Multi-Fluid Evaporator Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory; O'Connor, Ed; Riga, Ken; Anderson, Molly; Westheimer, David

    2007-01-01

    Hamilton Sundstrand is under contract with the NASA Johnson Space Center to develop a scalable, evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It is being designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. The current Shuttle configuration utilizes an ammonia boiler and flash evaporator system to achieve cooling at all altitudes. The MFE system combines both functions into a single compact package with significant weight reduction and improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. The full scale MFE prototype will be constructed with four core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A sub-scale MFE engineering development unit (EDU) has been built, and is identical to one of the four sections of a full scale prototype. The EDU has completed testing at Hamilton Sundstrand. The overall test objective was to determine the thermal performance of the EDU. The first set of tests simulated how each of the four sections of the prototype would perform by varying the chamber pressure, evaporant flow rate, coolant flow rate and coolant temperature. A second set of tests was conducted with an outlet steam header in place to verify that the outlet steam orifices prevent freeze-up in the core while also allowing the desired thermal turn-down ratio. This paper discusses the EDU tests and results.

  20. Simulated Waste Testing Of Glycolate Impacts On The 2H-Evaporator System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C. J.

    2013-08-13

    Glycolic acid is being studied as a total or partial replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste tank farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the tank farm were addressed via a literature review, but several outstanding issues remained. This report documents the non-radioactive simulant tests impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The testing for which non-radioactive simulants could be used involved the following: the partitioning ofmore » glycolate into the evaporator condensate, the impacts of glycolate on metal solubility, and the impacts of glycolate on the formation and dissolution of sodium aluminosilicate scale within the evaporator. The following are among the conclusions from this work: Evaporator condensate did not contain appreciable amounts of glycolate anion. Of all tests, the highest glycolate concentration in the evaporator condensate was 0.38 mg/L. A significant portion of the tests had glycolate concentration in the condensate at less than the limit of quantification (0.1 mg/L). At ambient conditions, evaporator testing did not show significant effects of glycolate on the soluble components in the evaporator concentrates. Testing with sodalite solids and silicon containing solutions did not show significant effects of glycolate on sodium aluminosilicate formation or dissolution.« less

  1. Multi-Terrain Vertical Drop Tests of a Composite Fuselage Section

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Karen E.

    2008-01-01

    A 5-ft-diameter composite fuselage section was retrofitted with four identical blocks of deployable honeycomb energy absorber and crash tested on two different surfaces: soft soil, and water. The drop tests were conducted at the 70-ft. drop tower at the Landing and Impact Research (LandIR) Facility of NASA Langley. Water drop tests were performed into a 15-ft-diameter pool of water that was approximately 42-in. deep. For the soft soil impact, a 15-ft-square container filled with fine-sifted, unpacked sand was located beneath the drop tower. All drop tests were vertical with a nominally flat attitude with respect to the impact surface. The measured impact velocities were 37.4, and 24.7-fps for soft soil and water, respectively. A fuselage section without energy absorbers was also drop tested onto water to provide a datum for comparison with the test, which included energy absorbers. In order to facilitate this type of comparison and to ensure fuselage survivability for the no-energy-absorber case, the velocity of the water impact tests was restricted to 25-fps nominal. While all tests described in this paper were limited to vertical impact velocities, the implications and design challenges of utilizing external energy absorbers during combined forward and vertical impact velocities are discussed. The design, testing and selection of a honeycomb cover, which was required in soft surface and water impacts to transmit the load into the honeycomb cell walls, is also presented.

  2. Experimental and theoretical analysis of the rate of solvent equilibration in the hanging drop method of protein crystal growth

    NASA Technical Reports Server (NTRS)

    Fowlis, William W.; Delucas, Lawrence J.; Twigg, Pamela J.; Howard, Sandra B.; Meehan, Edward J.

    1988-01-01

    The principles of the hanging-drop method of crystal growth are discussed, and the rate of water evaporation in a water droplet (containing protein, buffer, and a precipitating agent) suspended above a well containing a double concentration of precipitating agent is investigated theoretically. It is shown that, on earth, the rate of evaporation may be determined from diffusion theory and the colligative properties of solutions. The parameters affecting the rate of evaporation include the temperature, the vapor pressure of water, the ionization constant of the salt, the volume of the drop, the contact angle between the droplet and the coverslip, the number of moles of salt in the droplet, the number of moles of water and salt in the well, the molar volumes of water and salt, the distance from the droplet to the well, and the coefficient of diffusion of water vapor through air. To test the theoretical equations, hanging-drop experiments were conducted using various reagent concentrations in 25-microliter droplets and measuring the evaporation times at 4 C and 25 C. The results showed good agreement with the theory.

  3. Evaporative oxidation treatability test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatmentmore » Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment.« less

  4. Nitrogen stars: morphogenesis of a liquid drop

    NASA Astrophysics Data System (ADS)

    Strier, D. E.; Duarte, A. A.; Ferrari, H.; Mindlin, G. B.

    2000-08-01

    We report a study of a symmetry-breaking instability which ocurrs during the free evaporation of liquid nitrogen placed on a concave container initially at room temperature. The system evolves spontaneously from a highly disordered boiling state to one characterized by sequence of well-defined spatio-temporal structures. This sequence starts with the formation of a levitating drop. As the evaporation proceeds the drop undergoes an alternation between different star-like-shaped patterns with decreasing number of tips. In addition, each of this patterns oscillates. We frame the observed phenomena within the qualitative theory of bifurcations.

  5. [Interlaboratory Study on Evaporation Residue Test for Food Contact Products (Report 1)].

    PubMed

    Ohno, Hiroyuki; Mutsuga, Motoh; Abe, Tomoyuki; Abe, Yutaka; Amano, Homare; Ishihara, Kinuyo; Ohsaka, Ikue; Ohno, Haruka; Ohno, Yuichiro; Ozaki, Asako; Kakihara, Yoshiteru; Kobayashi, Hisashi; Sakuragi, Hiroshi; Shibata, Hiroshi; Shirono, Katsuhiro; Sekido, Haruko; Takasaka, Noriko; Takenaka, Yu; Tajima, Yoshiyasu; Tanaka, Aoi; Tanaka, Hideyuki; Tonooka, Hiroyuki; Nakanishi, Toru; Nomura, Chie; Haneishi, Nahoko; Hayakawa, Masato; Miura, Toshihiko; Yamaguchi, Miku; Watanabe, Kazunari; Sato, Kyoko

    2018-01-01

    An interlaboratory study was performed to evaluate the equivalence between an official method and a modified method of evaporation residue test using three food-simulating solvents (water, 4% acetic acid and 20% ethanol), based on the Japanese Food Sanitation Law for food contact products. Twenty-three laboratories participated, and tested the evaporation residues of nine test solutions as blind duplicates. For evaporation, a water bath was used in the official method, and a hot plate in the modified method. In most laboratories, the test solutions were heated until just prior to evaporation to dryness, and then allowed to dry under residual heat. Statistical analysis revealed that there was no significant difference between the two methods, regardless of the heating equipment used. Accordingly, the modified method provides performance equal to the official method, and is available as an alternative method.

  6. Evaporation of inclined water droplets.

    PubMed

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-02-16

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets.

  7. Evaporation of inclined water droplets

    PubMed Central

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  8. Static, Drop, and Flight Tests on Musselman Type Airwheels

    NASA Technical Reports Server (NTRS)

    Peck, William C; Beard, Albert P

    1932-01-01

    The purpose of this investigation was to obtain quantitative information on the shock-reducing and energy-dissipating qualities of a set of 30 by 13-6 Musselman type airwheels. The investigation consisted of static, drop, and flight tests. The static tests were made with inflation pressures of approximately 0, 5, 10, 15, 20, and 25 pounds per square inch and loadings up to 9,600 pounds. The drop tests were with the inflation pressures approximately 5, 10, 15, 20, and 25 pounds per square inch and loadings of 1,840, 2,440, 3,050, and 3,585 pounds. The flight tests were made with VE-7 airplane weighing 2,153 pounds, with the tires inflated to 5, 10, and 15 pounds per square inch. The landing gears used in conjunction with airwheels were practically rigid structures. The results of the tests showed that the walls of the tires carried a considerable portion of the load, each tire supporting a load of 600 pounds with a depression of approximately 6 inches. The shock-reducing qualities, under severe tests, and the energy dissipating characteristics of the tires, under all tests, were poor. The latter was evidenced by the rebound present in all landings made. In the severe drop tests, the free rebound reached as much as 60 per cent of the free drop. The results indicate that a shock-reducing and energy-dissipating mechanism should be used in conjunction with airwheels.

  9. Evaporation from a meniscus within a capillary tube in microgravity

    NASA Technical Reports Server (NTRS)

    Hallinan, K. P.

    1993-01-01

    The following represents a summary of progress made on the project 'Evaporation from a Capillary Meniscus in Microgravity' being conducted at the University of Dayton during the period 1 Dec. 1992 to 30 Nov. 1993. The efforts during this first year of the grant focused upon the following specific tasks: (1) application of a 3-D scattering particle image velocimetry technique to thin film velocity field measurement; (2) modeling the thermo-fluid behavior of the evaporating meniscus in 0-g within large diameter capillaries; (3) conceptualization of the space flight test cell (loop) configuration; (4) construction of prototypes of the test loop configuration; (5) conduct of experiments in 0-g in the 2.2 second drop tower at NASA-LeRC to study evaporation from a capillary meniscus within a square cuvette; and (6) investigation of the effect of vibrations on the stability of the meniscus. An overview of the work completed within these six task areas is presented.

  10. Numerical simulations of sessile droplet evaporating on heated substrate

    NASA Astrophysics Data System (ADS)

    Chen, Xue; Chen, Paul G.; Ouazzani, Jalil; Liu, Qiusheng

    2017-04-01

    Motivated by the space project EFILE, a 2D axisymmetric numerical model in the framework of ALE method is developed to investigate the coupled physical mechanism during the evaporation of a pinned drop that partially wets on a heated substrate. The model accounts for mass transport in surrounding air, Marangoni convection inside the drop and heat conduction in the substrate as well as moving interface. Numerical results predict simple scaling laws for the evaporation rate which scales linearly with drop radius but follows a power-law with substrate temperature. It is highlighted that thermal effect of the substrate has a great impact on the temperature profile at the drop surface, which leads to a multicellular thermocapillary flow pattern. In particular, the structure of the multicellular flow behavior induced within a heated drop is mainly controlled by a geometric parameter (aspect ratio). A relationship between the number of thermal cells and the aspect ratio is proposed.

  11. Modified Drop Tower Impact Tests for American Football Helmets.

    PubMed

    Rush, G Alston; Prabhu, R; Rush, Gus A; Williams, Lakiesha N; Horstemeyer, M F

    2017-02-19

    A modified National Operating Committee on Standards for Athletic Equipment (NOCSAE) test method for American football helmet drop impact test standards is presented that would provide better assessment of a helmet's on-field impact performance by including a faceguard on the helmet. In this study, a merger of faceguard and helmet test standards is proposed. The need for a more robust systematic approach to football helmet testing procedures is emphasized by comparing representative results of the Head Injury Criterion (HIC), Severity Index (SI), and peak acceleration values for different helmets at different helmet locations under modified NOCSAE standard drop tower tests. Essentially, these comparative drop test results revealed that the faceguard adds a stiffening kinematic constraint to the shell that lessens total energy absorption. The current NOCSAE standard test methods can be improved to represent on-field helmet hits by attaching the faceguards to helmets and by including two new helmet impact locations (Front Top and Front Top Boss). The reported football helmet test method gives a more accurate representation of a helmet's performance and its ability to mitigate on-field impacts while promoting safer football helmets.

  12. Evaluation of a locally homogeneous model of spray evaporation

    NASA Technical Reports Server (NTRS)

    Shearer, A. J.; Faeth, G. M.; Tamura, H.

    1978-01-01

    Measurements were conducted on an evaporating spray in a stagnant environment. The spray was formed using an air-atomizing injector to yield a Sauter mean diameter of the order of 30 microns. The region where evaporation occurred extended approximately 1 m from the injector for the test conditions. Profiles of mean velocity, temperature, composition, and drop size distribution, as well as velocity fluctuations and Reynolds stress, were measured. The results are compared with a locally homogeneous two-phase flow model which implies no velocity difference and thermodynamic equilibrium between the phases. The flow was represented by a k-epsilon-g turbulence model employing a clipped Gaussian probability density function for mixture fraction fluctuations. The model provides a good representation of earlier single-phase jet measurements, but generally overestimates the rate of development of the spray. Using the model predictions to represent conditions along the centerline of the spray, drop life-history calculations were conducted which indicate that these discrepancies are due to slip and loss of thermodynamic equilibrium between the phases.

  13. Evaluation of a locally homogeneous model of spray evaporation

    NASA Technical Reports Server (NTRS)

    Shearer, A. J.; Faeth, G. M.

    1979-01-01

    A model of spray evaporation which employs a second-order turbulence model in conjunction with the locally homogeneous flow approximation, which implies infinitely fast interphase transport rates is presented. Measurements to test the model were completed for single phase constant and variable density jets, as well as an evaporating spray in stagnant air. Profiles of mean velocity, composition, temperature and drop size distribution as well as velocity fluctuations and Reynolds stress, were measured within the spray. Predictions were in agreement with measurements in single phase flows and also with many characteristics of the spray, e.g. flow width, radial profiles of mean and turbulent quantities, and the axial rate of decay of mean velocity and mixture fraction.

  14. Max Launch Abort System (MLAS) Landing Parachute Demonstrator (LPD) Drop Test

    NASA Technical Reports Server (NTRS)

    Shreves, Christopher M.

    2011-01-01

    The Landing Parachute Demonstrator (LPD) was conceived as a low-cost, rapidly-developed means of providing soft landing for the Max Launch Abort System (MLAS) crew module (CM). Its experimental main parachute cluster deployment technique and off-the-shelf hardware necessitated a full-scale drop test prior to the MLAS mission in order to reduce overall mission risk. This test was successfully conducted at Wallops Flight Facility on March 6, 2009, with all vehicle and parachute systems functioning as planned. The results of the drop test successfully qualified the LPD system for the MLAS flight test. This document captures the design, concept of operations and results of the drop test.

  15. Cavity optomechanics in a levitated helium drop

    NASA Astrophysics Data System (ADS)

    Childress, L.; Schmidt, M. P.; Kashkanova, A. D.; Brown, C. D.; Harris, G. I.; Aiello, A.; Marquardt, F.; Harris, J. G. E.

    2017-12-01

    We describe a proposal for a type of optomechanical system based on a drop of liquid helium that is magnetically levitated in vacuum. In the proposed device, the drop would serve three roles: its optical whispering-gallery modes would provide the optical cavity, its surface vibrations would constitute the mechanical element, and evaporation of He atoms from its surface would provide continuous refrigeration. We analyze the feasibility of such a system in light of previous experimental demonstrations of its essential components: magnetic levitation of mm-scale and cm-scale drops of liquid He , evaporative cooling of He droplets in vacuum, and coupling to high-quality optical whispering-gallery modes in a wide range of liquids. We find that the combination of these features could result in a device that approaches the single-photon strong-coupling regime, due to the high optical quality factors attainable at low temperatures. Moreover, the system offers a unique opportunity to use optical techniques to study the motion of a superfluid that is freely levitating in vacuum (in the case of 4He). Alternatively, for a normal fluid drop of 3He, we propose to exploit the coupling between the drop's rotations and vibrations to perform quantum nondemolition measurements of angular momentum.

  16. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... preparation for the drop test. (1) Metal, rigid plastic, and composite IBCs intended to contain solids must be.... (4) Rigid plastic IBCs and composite IBCs with plastic inner receptacles must be conditioned for... material having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...

  17. Accounting for rainfall evaporation using dual-polarization radar and mesoscale model data

    NASA Astrophysics Data System (ADS)

    Pallardy, Quinn; Fox, Neil I.

    2018-02-01

    Implementation of dual-polarization radar should allow for improvements in quantitative precipitation estimates due to dual-polarization capability allowing for the retrieval of the second moment of the gamma drop size distribution. Knowledge of the shape of the DSD can then be used in combination with mesoscale model data to estimate the motion and evaporation of each size of drop falling from the height at which precipitation is observed by the radar to the surface. Using data from Central Missouri at a range between 130 and 140 km from the operational National Weather Service radar a rain drop tracing scheme was developed to account for the effects of evaporation, where individual raindrops hitting the ground were traced to the point in space and time where they interacted with the radar beam. The results indicated evaporation played a significant role in radar rainfall estimation in situations where the atmosphere was relatively dry. Improvements in radar estimated rainfall were also found in these situations by accounting for evaporation. The conclusion was made that the effects of raindrop evaporation were significant enough to warrant further research into the inclusion high resolution model data in the radar rainfall estimation process for appropriate locations.

  18. Blood drop patterns: Formation and applications.

    PubMed

    Chen, Ruoyang; Zhang, Liyuan; Zang, Duyang; Shen, Wei

    2016-05-01

    The drying of a drop of blood or plasma on a solid substrate leads to the formation of interesting and complex patterns. Inter- and intra-cellular and macromolecular interactions in the drying plasma or blood drop are responsible for the final morphologies of the dried patterns. Changes in these cellular and macromolecular components in blood caused by diseases have been suspected to cause changes in the dried drop patterns of plasma and whole blood, which could be used as simple diagnostic tools to identify the health of humans and livestock. However, complex physicochemical driving forces involved in the pattern formation are not fully understood. This review focuses on the scientific development in microscopic observations and pattern interpretation of dried plasma and whole blood samples, as well as the diagnostic applications of pattern analysis. Dried drop patterns of plasma consist of intricate visible cracks in the outer region and fine structures in the central region, which are mainly influenced by the presence and concentration of inorganic salts and proteins during drying. The shrinkage of macromolecular gel and its adhesion to the substrate surface have been thought to be responsible for the formation of the cracks. Dried drop patterns of whole blood have three characteristic zones; their formation as functions of drying time has been reported in the literature. Some research works have applied engineering treatment to the evaporation process of whole blood samples. The sensitivities of the resultant patterns to the relative humidity of the environment, the wettability of the substrates, and the size of the drop have been reported. These research works shed light on the mechanisms of spreading, evaporation, gelation, and crack formation of the blood drops on solid substrates, as well as on the potential applications of dried drop patterns of plasma and whole blood in diagnosis. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  19. 14 CFR 29.725 - Limit drop test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Landing Gear § 29.725 Limit drop test. The... energy absorbing devices or by the use of an effective mass. (c) Each landing gear unit must be tested in... to be absorbed by it. (d) When an effective mass is used in showing compliance with paragraph (b) of...

  20. Large charged drop levitation against gravity

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang Kun; Hyson, Michael T.; Trinh, Eugene H.; Elleman, Daniel D.

    1987-01-01

    A hybrid electrostatic-acoustic levitator that can levitate and manipulate a large liquid drop in one gravity is presented. To the authors' knowledge, this is the first time such large drops (up to 4 mm in diameter in the case of water) have been levitated against 1-gravity. This makes possible, for the first time, many new experiments both in space and in ground-based laboratories, such as 1)supercooling and superheating, 2) containerless crystal growth from various salt solutions or melts, 3) drop dynamics of oscillating or rotating liquid drops, 4) drop evaporation and Rayleigh bursting, and 5) containerless material processing in space. The digital control system, liquid drop launch process, principles of electrode design, and design of a multipurpose room temperature levitation chamber are described. Preliminary results that demonstrate drop oscillation and rotation, and crystal growth from supersaturated salt solutions are presented.

  1. Star-shaped oscillations of Leidenfrost drops

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Liétor-Santos, Juan-José; Burton, Justin C.

    2017-03-01

    We experimentally investigate the self-sustained, star-shaped oscillations of Leidenfrost drops. The drops levitate on a cushion of evaporated vapor over a heated, curved surface. We observe modes with n =2 -13 lobes around the drop periphery. We find that the wavelength of the oscillations depends only on the capillary length of the liquid and is independent of the drop radius and substrate temperature. However, the number of observed modes depends sensitively on the liquid viscosity. The dominant frequency of pressure variations in the vapor layer is approximately twice the drop oscillation frequency, consistent with a parametric forcing mechanism. Our results show that the star-shaped oscillations are driven by capillary waves of a characteristic wavelength beneath the drop and that the waves are generated by a large shear stress at the liquid-vapor interface.

  2. X-38 Drop Model: Testing Parafoil Landing System during Drop Tests

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 4-foot-long model of NASA's X-38, an experimental crew return vehicle, glides to earth after being dropped from a Cessna aircraft in late 1995. The model was used to test the ram-air parafoil landing system, which could allow for accurate and controlled landings of an emergency Crew Return Vehicle spacecraft returning to Earth. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to

  3. Vertical drop test of a transport fuselage center section including the wheel wells

    NASA Technical Reports Server (NTRS)

    Williams, M. S.; Hayduk, R. J.

    1983-01-01

    A Boeing 707 fuselage section was drop tested to measure structural, seat, and anthropomorphic dummy response to vertical crash loads. The specimen had nominally zero pitch, roll and yaw at impact with a sink speed of 20 ft/sec. Results from this drop test and other drop tests of different transport sections will be used to prepare for a full-scale crash test of a B-720.

  4. [Interlaboratory Study on Evaporation Residue Test for Food Contact Products (Report 2)].

    PubMed

    Ohno, Hiroyuki; Mutsuga, Motoh; Abe, Tomoyuki; Abe, Yutaka; Amano, Homare; Ishihara, Kinuyo; Ohsaka, Ikue; Ohno, Haruka; Ohno, Yuichiro; Ozaki, Asako; Kakihara, Yoshiteru; Kobayashi, Hisashi; Sakuragi, Hiroshi; Shibata, Hiroshi; Shirono, Katsuhiro; Sekido, Haruko; Takasaka, Noriko; Takenaka, Yu; Tajima, Yoshiyasu; Tanaka, Aoi; Tanaka, Hideyuki; Nakanishi, Toru; Nomura, Chie; Haneishi, Nahoko; Hayakawa, Masato; Miura, Toshihiko; Yamaguchi, Miku; Yamada, Kyohei; Watanabe, Kazunari; Sato, Kyoko

    2018-01-01

    An interlaboratory study was performed to evaluate the equivalence between an official method and a modified method of evaporation residue test using heptane as a food-simulating solvent for oily or fatty foods, based on the Japanese Food Sanitation Law for food contact products. Twenty-three laboratories participated, and tested the evaporation residues of nine test solutions as blind duplicates. In the official method, heating for evaporation was done with a water bath. In the modified method, a hot plate was used for evaporation, and/or a vacuum concentration procedure was skipped. In most laboratories, the test solutions were heated until just prior to dryness, and then allowed to dry under residual heat. Statistical analysis revealed that there was no significant difference between the two methods. Accordingly, the modified method provides performance equal to the official method, and is available as an alternative method. Furthermore, an interlaboratory study was performed to evaluate and compare two leaching solutions (95% ethanol and isooctane) used as food-simulating solvents for oily or fatty foods in the EU. The results demonstrated that there was no significant difference between heptane and these two leaching solutions.

  5. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or lower are considered... with a capacity of 0.45 cubic meters (15.9 cubic feet) or less must be subject to an additional drop... material having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...

  6. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or lower are considered... with a capacity of 0.45 cubic meters (15.9 cubic feet) or less must be subject to an additional drop... material having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...

  7. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or lower are considered... with a capacity of 0.45 cubic meters (15.9 cubic feet) or less must be subject to an additional drop... material having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...

  8. 14 CFR 23.725 - Limit drop tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... assumed wing lift to the airplane weight, but not more than 0.667. (c) The limit inertia load factor must... test. (e) The limit inertia load factor must be determined from the drop test in paragraph (b) of this... paragraph (e) may not be more than the limit inertia load factor used in the landing conditions in § 23.473...

  9. 14 CFR 23.725 - Limit drop tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... assumed wing lift to the airplane weight, but not more than 0.667. (c) The limit inertia load factor must... test. (e) The limit inertia load factor must be determined from the drop test in paragraph (b) of this... paragraph (e) may not be more than the limit inertia load factor used in the landing conditions in § 23.473...

  10. 14 CFR 23.725 - Limit drop tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... assumed wing lift to the airplane weight, but not more than 0.667. (c) The limit inertia load factor must... test. (e) The limit inertia load factor must be determined from the drop test in paragraph (b) of this... paragraph (e) may not be more than the limit inertia load factor used in the landing conditions in § 23.473...

  11. 14 CFR 23.725 - Limit drop tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... assumed wing lift to the airplane weight, but not more than 0.667. (c) The limit inertia load factor must... test. (e) The limit inertia load factor must be determined from the drop test in paragraph (b) of this... paragraph (e) may not be more than the limit inertia load factor used in the landing conditions in § 23.473...

  12. Space Shuttle Solid Rocket Booster decelerator subsystem - Air drop test vehicle/B-52 design

    NASA Technical Reports Server (NTRS)

    Runkle, R. E.; Drobnik, R. F.

    1979-01-01

    The air drop development test program for the Space Shuttle Solid Rocket Booster Recovery System required the design of a large drop test vehicle that would meet all the stringent requirements placed on it by structural loads, safety considerations, flight recovery system interfaces, and sequence. The drop test vehicle had to have the capability to test the drogue and the three main parachutes both separately and in the total flight deployment sequence and still be low-cost to fit in a low-budget development program. The design to test large ribbon parachutes to loads of 300,000 pounds required the detailed investigation and integration of several parameters such as carrier aircraft mechanical interface, drop test vehicle ground transportability, impact point ground penetration, salvageability, drop test vehicle intelligence, flight design hardware interfaces, and packaging fidelity.

  13. Prospective, randomized, controlled comparison of SYSTANE UD eye drops versus VISINE INTENSIV 1% EDO eye drops for the treatment of moderate dry eye.

    PubMed

    Jacobi, Christina; Kruse, Friedrich E; Cursiefen, Claus

    2012-12-01

    The aim of this prospective, randomized, clinical, single-center study was to compare the safety and efficacy of 2 ocular surface lubricant eye drops: preservative-free hydroxypropyl (HP)-Guar (SYSTANE UD(®)) eye drops versus preservative-free Tamarindus indica seed polysaccharide (TSP) 1% (VISINE INTENSIV 1% EDO(®)) eye drops. Fifty-six eyes of 28 patients with moderate keratoconjunctivitis sicca (DEWS severity level 2) were enrolled in the trial. Patients were randomized for 2 treatment groups (SYSTANE UD eye drops vs. VISINE INTENSIV 1% EDO eye drops). The eye drops in both groups were applied 5 times per day for 3 months. Statistical analyses were performed using Statistica™ software (Mann-Whitney U-test and Wilcoxon test). P-Values<0.05 were considered significant. After 3 months of treatment the patients of both groups had subjective benefit in the relief of symptoms of dry eye disease evaluated by the Ocular Surface Disease Index (OSDI) questionnaire score. Patients treated with HP-Guar and TSP showed improvements in tear film stability measured by tear break-up time (TBUT), which are statistically significant in the HP-Guar group (P=0.02). The results of this clinical trial show improvements of symptoms and signs in patients with moderate dry eye after the consistent use of preservative-free HP-Guar and TSP lubricant eye drops. Both artificial tear formulations produce amelioration in tear film stability improving eye conditions and patient quality of life. HP-Guar seems to be slightly more effective in improving ocular surface protection by decreasing tear film evaporation.

  14. Correction of Pressure Drop in Steam and Water System in Performance Test of Boiler

    NASA Astrophysics Data System (ADS)

    Liu, Jinglong; Zhao, Xianqiao; Hou, Fanjun; Wu, Xiaowu; Wang, Feng; Hu, Zhihong; Yang, Xinsen

    2018-01-01

    Steam and water pressure drop is one of the most important characteristics in the boiler performance test. As the measuring points are not in the guaranteed position and the test condition fluctuation exsits, the pressure drop test of steam and water system has the deviation of measuring point position and the deviation of test running parameter. In order to get accurate pressure drop of steam and water system, the corresponding correction should be carried out. This paper introduces the correction method of steam and water pressure drop in boiler performance test.

  15. Sheet Membrane Spacesuit Water Membrane Evaporator Thermal Test

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Bue, Grant C.

    2009-01-01

    For future lunar extravehicular activities (EVA), one method under consideration for rejecting crew and electronics heat involves evaporating water through a hydrophobic, porous Teflon(Registered Trademark) membrane. A Spacesuit Water Membrane Evaporator (SWME) prototype using this membrane was successfully tested by Ungar and Thomas (2001) with predicted performance matching test data well. The above referenced work laid the foundation for the design of a compact sheet membrane SWME development unit for use in the Constellation System Spacesuit Element Portable Life Support System (Vogel and et. al., ICES 2008). Major design objectives included minimizing mass, volume, and manufacturing complexity while rejecting a minimum of 810 watts of heat from water flowing through the SWME at 91 kg/hr with an inlet temperature of 291K. The design meeting these objectives consisted of three concentric cylindrical water channels interlaced with four water vapor channels. Two units were manufactured for the purpose of investigating manufacturing techniques and performing thermal testing. The extensive thermal test measured SWME heat rejection as a function of water inlet temperatures, water flow-rates, water absolute pressures, water impurities, and water vapor back-pressures. This paper presents the test results and subsequent analysis, which includes a comparison of SWME heat rejection measurements to pretest predictions. In addition, test measurements were taken such that an analysis of the commercial-off-the-shelf vapor pressure control valve could be performed.

  16. Lysozyme pattern formation in evaporating droplets

    NASA Astrophysics Data System (ADS)

    Gorr, Heather Meloy

    Liquid droplets containing suspended particles deposited on a solid, flat surface generally form ring-like structures due to the redistribution of solute during evaporation (the "coffee ring effect"). The forms of the deposited patterns depend on complex interactions between solute(s), solvent, and substrate in a rapidly changing, far from equilibrium system. Solute self-organization during evaporation of colloidal sessile droplets has attracted the attention of researchers over the past few decades due to a variety of technological applications. Recently, pattern formation during evaporation of various biofluids has been studied due to potential applications in medical screening and diagnosis. Due to the complexity of 'real' biological fluids and other multicomponent systems, a comprehensive understanding of pattern formation during droplet evaporation of these fluids is lacking. In this PhD dissertation, the morphology of the patterns remaining after evaporation of droplets of a simplified model biological fluid (aqueous lysozyme solutions + NaCl) are examined by atomic force microscopy (AFM) and optical microscopy. Lysozyme is a globular protein found in high concentration, for example, in human tears and saliva. The drop diameters, D, studied range from the micro- to the macro- scale (1 microm -- 2 mm). In this work, the effect of evaporation conditions, solution chemistry, and heat transfer within the droplet on pattern formation is examined. In micro-scale deposits of aqueous lysozyme solutions (1 microm < D < 50 microm), the protein motion and the resulting dried residue morphology are highly influenced by the decreased evaporation time of the drop. The effect of electrolytes on pattern formation is also investigated by adding varying concentrations NaCl to the lysozyme solutions. Finally, a novel pattern recognition program is described and implemented which classifies deposit images by their solution chemistries. The results presented in this Ph

  17. Towards a sharp-interface volume-of-fluid methodology for modeling evaporation

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Raessi, Mehdi

    2017-11-01

    In modeling evaporation, the diffuse-interface (one-domain) formulation yields inaccurate results. Recent efforts approaching the problem via a sharp-interface (two-domain) formulation have shown significant improvements. The reasons behind their better performance are discussed in the present work. All available sharp-interface methods, however, exclusively employ the level-set. In the present work, we develop a sharp-interface evaporation model in a volume-of-fluid (VOF) framework in order to leverage its mass-conserving property as well as its ability to handle large topographical changes. We start with a critical review of the assumptions underlying the mathematical equations governing evaporation. For example, it is shown that the assumption of incompressibility can only be applied in special circumstances. The famous D2 law used for benchmarking is valid exclusively to steady-state test problems. Transient is present over significant lifetime of a micron-size droplet. Therefore, a 1D spherical fully transient model is developed to provide a benchmark transient solution. Finally, a 3D Cartesian Navier-Stokes evaporation solver is developed. Some preliminary validation test-cases are presented for static and moving drop evaporation. This material is based upon work supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy and the Department of Defense, Tank and Automotive Research, Development, and Engineering Center, under Award Number DEEE0007292.

  18. Electrowetting-driven spreading and jumping of drops in oil

    NASA Astrophysics Data System (ADS)

    Hong, Jiwoo; Lee, Sang Joon

    2013-11-01

    Electrowetting-based practical applications include digital microfluidics, liquid lenses, and reflective displays. Most of them are performed in water/oil system, because oil medium reduces the contact-angle hysteresis and prevents drop evaporation. In this study, the effects of drop volume, oil viscosity, and applied voltage on the dynamic behaviors of spreading drops, such as transition of spreading pattern and response time, are investigated. Interestingly, jumping phenomena of drops are observed in oil when the applied voltage is turned off after reaching the electrowetted equilibrium radius of drops. A numerical model to predict the transient behavior of jumping drops is formulated based on the phase-field method. The numerical results for the transient deformation of jumping drops show quantitative agreement with the experimental results.

  19. Laser precipitation monitor for measurement of drop size and velocity of moving spray-plate sprinklers

    USDA-ARS?s Scientific Manuscript database

    Sprinkler drop size distribution and associated drop velocities have a major influence on sprinkler performance in regards to application intensity, uniformity of water application, wind drift, evaporation losses and kinetic energy transferred to the soil surface. Sprinkler drop size measurements a...

  20. Droplet combustion experiment drop tower tests using models of the space flight apparatus

    NASA Technical Reports Server (NTRS)

    Haggard, J. B.; Brace, M. H.; Kropp, J. L.; Dryer, F. L.

    1989-01-01

    The Droplet Combustion Experiment (DCE) is an experiment that is being developed to ultimately operate in the shuttle environment (middeck or Spacelab). The current experiment implementation is for use in the 2.2 or 5 sec drop towers at NASA Lewis Research Center. Initial results were reported in the 1986 symposium of this meeting. Since then significant progress was made in drop tower instrumentation. The 2.2 sec drop tower apparatus, a conceptual level model, was improved to give more reproducible performance as well as operate over a wider range of test conditions. Some very low velocity deployments of ignited droplets were observed. An engineering model was built at TRW. This model will be used in the 5 sec drop tower operation to obtain science data. In addition, it was built using the flight design except for changes to accommodate the drop tower requirements. The mechanical and electrical assemblies have the same level of complexity as they will have in flight. The model was tested for functional operation and then delivered to NASA Lewis. The model was then integrated into the 5 sec drop tower. The model is currently undergoing initial operational tests prior to starting the science tests.

  1. Small Liquid Hydrogen Tank for Drop Tower Tests

    NASA Image and Video Library

    1964-11-21

    A researcher fills a small container used to represent a liquid hydrogen tank in preparation for a microgravity test in the 2.2-Second Drop Tower at the National Aeronautics and Space Administration (NASA) Lewis Research Center. For over a decade, NASA Lewis endeavored to make liquid hydrogen a viable propellant. Hydrogen’s light weight and high energy made it very appealing for rocket propulsion. One of the unknowns at the time was the behavior of fluids in the microgravity of space. Rocket designers needed to know where the propellant would be inside the fuel tank in order to pump it to the engine. NASA Lewis utilized sounding rockets, research aircraft, and the 2.2 Second Drop Tower to study liquids in microgravity. The drop tower, originally built as a fuel distillation tower in 1948, descended into a steep ravine. By early 1961 the facility was converted into an eight-floor, 100-foot tower connected to a shop and laboratory space. Small glass tanks, like this one, were installed in experiment carts with cameras to film the liquid’s behavior during freefall. Thousands of drop tower tests in the early 1960s provided an increased understanding of low-gravity processes and phenomena. The tower only afforded a relatively short experiment time but was sufficient enough that the research could be expanded upon using longer duration freefalls on sounding rockets or aircraft. The results of the early experimental fluid studies verified predictions made by Lewis researchers that the total surface energy would be minimized in microgravity.

  2. 14 CFR 29.725 - Limit drop test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... energy absorbing devices or by the use of an effective mass. (c) Each landing gear unit must be tested in the attitude simulating the landing condition that is most critical from the standpoint of the energy...-up attitude considered in the nose-up landing conditions. h=specified free drop height (inches). L...

  3. 14 CFR 29.725 - Limit drop test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... energy absorbing devices or by the use of an effective mass. (c) Each landing gear unit must be tested in the attitude simulating the landing condition that is most critical from the standpoint of the energy...-up attitude considered in the nose-up landing conditions. h=specified free drop height (inches). L...

  4. Testing of a Miniature Loop Heat Pipe with Multiple Evaporators and Multiple Condensers for Space Applications

    NASA Technical Reports Server (NTRS)

    Nagano, Hosei; Ku, Jentung

    2006-01-01

    Thermal performance of a miniature loop heat pipe (MLHP) with two evaporators and two condensers is described. A comprehensive test program, including start-up, high power, low power, power cycle, and sink temperature cycle tests, has been executed at NASA Goddard Space Flight Center for potential space applications. Experimental data showed that the loop could start with heat loads as low as 2W. The loop operated stably with even and uneven evaporator heat loads, and even and uneven condenser sink temperatures. Heat load sharing between the two evaporators was also successfully demonstrated. The loop had a heat transport capability of l00W to 120W, and could recover from a dry-out by reducing the heat load to evaporators. Low power test results showed the loop could work stably for heat loads as low as 1 W to each evaporator. Excellent adaptability of the MLHP to rapid changes of evaporator power and sink temperature were also demonstrated.

  5. Mechanical tuning of the evaporation rate of liquid on crossed fibers.

    PubMed

    Boulogne, François; Sauret, Alban; Soh, Beatrice; Dressaire, Emilie; Stone, Howard A

    2015-03-17

    We investigate experimentally the drying of a small volume of perfectly wetting liquid on two crossed fibers. We characterize the drying dynamics for the three liquid morphologies that are encountered in this geometry: drop, column, and a mixed morphology, in which a drop and a column coexist. For each morphology, we rationalize our findings with theoretical models that capture the drying kinetics. We find that the evaporation rate significantly depends upon the liquid morphology and that the drying of the liquid column is faster than the evaporation of the drop and the mixed morphology for a given liquid volume. Finally, we illustrate that shearing a network of fibers reduces the angle between them, changes the morphology toward the column state, and therefore, enhances the drying rate of a volatile liquid deposited on it.

  6. Chemical analysis of acoustically levitated drops by Raman spectroscopy.

    PubMed

    Tuckermann, Rudolf; Puskar, Ljiljana; Zavabeti, Mahta; Sekine, Ryo; McNaughton, Don

    2009-07-01

    An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid-base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension.

  7. Characteristics of Evaporator with a Lipuid-Vapor Separator

    NASA Astrophysics Data System (ADS)

    Ikeguchi, Masaki; Tanaka, Naoki; Yumikura, Tsuneo

    Flow pattern of refrigerant in a heat exchanger tube changes depending on vapor quality, tube diameter, refrigerant flow rate and refrigerant properties. High flow rate causes mist flow where the quality is from 0.8 to 1.0. 1n this flow pattern, the liquid film detaches from the tube wall so that the heat flow is intervened. The heat transfer coefficient generally increases with the flow rate. But the pressure drop of refrigerant flow simultaneously increases and the region of the mist flow enlarges. In order to reduce the pressure drop and suppress the mist flow, we have developped a small liquid-vapor separator that removes the vapor from the evaporating refrigerant flow. This separator is equipped in the middle of the evaporator where the flow pattern is annular. The experiments to evaluate the effect of this separator were carried out and the following conclutions were obtained. (1) Average heat transfer coefficient increases by 30-60 %. (2) Pressure drop reduces by 20-30 %. (3) Cooling Capacity increases by 2-9 %.

  8. Method and apparatus for flash evaporation of liquids

    DOEpatents

    Bharathan, Desikan

    1984-01-01

    A vertical tube flash evaporator for introducing a superheated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

  9. Method and apparatus for flash evaporation of liquids

    DOEpatents

    Bharathan, D.

    1984-01-01

    A vertical tube flash evaporator for introducing a super-heated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

  10. X-38 Drop Model: Used to Test Parafoil Landing System during Drop Tests

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 4-foot-long model of NASA's X-38, an experimental crew return vehicle, glides to earth after being dropped from a Cessna aircraft in late 1995. The model was used to test the ram-air parafoil landing system, which could allow for accurate and controlled landings of an emergency Crew Return Vehicle spacecraft returning to Earth. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to

  11. Brief Communication: A Simplified Approach to Transient Convective Droplet Evaporation and Burning

    NASA Technical Reports Server (NTRS)

    Madooglu, K.; Karagozian, A. R.

    1994-01-01

    Empirical correlations for evaporation rates from single fuel droplets have existed since the 1930s. These correlations, which will be referred to in this article as Froessling/Ranz-Marshall types of correlations, are appropriate to the special cases of steady-state evaporation in the absence of chemical reaction. In a previous article by the authors, the quasi-steady evaporation and burning processes associated with a fuel drop in a convective environment are examined through a droplet model based on the boundary layer approach. For droplet Reynolds numbers of practical interest, this model produces very reasonable steady state as well as quasi-time-dependent droplet simulations, requiring relatively short computational times and yielding good agreement with the above-mentioned empirical correlations. The steady-state case, however, is usually relevant to practical combustor situations only when the drop has reached a nearly uniform temperature since the heating process of the drop cannot be considered to be quasi-steady. In the present study, the transient heating process of the droplet interior during evaporation and/or burning is taken into account, and thus calculations pertaining to the entire life-time of the droplet are carried out. It is of particular interest here to obtain simplified correlations to describe the transient behavior of evaporating and burning droplets; these may be incorporated with greater ease into spray calculations. Accordingly, we have chosen to use stagnation conditions in the present model in a modification of the Froessling/Ranz-Marshall correlations. These modified correlations, incorporating an effective transfer number, produce a fairly accurate representation of droplet evaporation and burning, while requiring only one tenth the computational effort used in a full boundary layer solution.

  12. Evaporation control research, 1959-60

    USGS Publications Warehouse

    ,

    1963-01-01

    Two hundred and forty-five dispersions of long-chain alkanols were formulated by using various emulsifiers and alkanols. The dispensing and spreading ability of each of these formulations was tested. The most promising emulsifier that could be used with any of the alkanols was glyceryl monostearate (self-emulsifying). However, the concentration of the alkanol in the dispersion form varied somewhat: with the length of the carbon chain. A maximum concentration of 16 percent was obtained using the longer chain alkanols in the dispersion form without losing any of the properties of a fluid. Nine field tests were undertaken on small stock tanks. The retardant materials used in these tests were dodecanol, hexadecanol, and octadecanol. These materials were applied in either liquid or dispersion form. Four types of dispensing equipment were tested. The first type used a pressure system which sprayed a liquid onto the surface of the water. An anemometer and wind-controlled vane, operated by an electrical system, determined the length End frequency of application. The second type was similar to the first except that gravity was utilized to force the liquid onto the surface. The third type. used a drip system with rates of about 10 drops per minute. The fourth type used a gravity feed and a wind-controlled valve which allowed the dispersion material to flow onto the surface of the water when the wind was in the proper direction. In the field tests, the best reduction in evaporation was obtained using octadecanol in dispersion form and dispensed with the wind-controlled valve and gravity feed system. The maximum reduction in evaporation for a 2-week period was 27 percent. However, the economics of suppressing evaporation from stock tanks is questionable because of the short travel time across the tank by the film. There are still many problems unsolved. Some of these can be resolved in the laboratory whereas others can be resolved only in the field. Some of the more serious

  13. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.

    2014-01-01

    melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable

  14. 49 CFR 178.603 - Drop test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the fourth sample). Fifth drop: On a corner (using the fifth sample). Bags—single-ply with a side seam...). Bags—single-ply without a side seam, or multi-ply Three—(two drops per bag) First drop: Flat on a wide...) For a bag, neither the outermost ply nor an outer packaging exhibits any damage likely to adversely...

  15. 49 CFR 178.603 - Drop test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (using the fourth sample). Fifth drop: On a corner (using the fifth sample). Bags—single-ply with a side... samples). Bags—single-ply without a side seam, or multi-ply Three—(two drops per bag) First drop: Flat on... the drum is no longer sift-proof; (3) For a bag, neither the outermost ply nor an outer packaging...

  16. Evaporation of Nanosuspensions on Substrates with Different Hydrophobicity.

    PubMed

    Perrin, Lionel; Pajor-Swierzy, Anna; Magdassi, Shlomo; Kamyshny, Alexander; Ortega, Francisco; Rubio, Ramón G

    2018-01-24

    Liquid drop evaporation on surfaces is present in many industrial and medical applications, e.g., printed electronics, spraying of pesticides, DNA mapping, etc. Despite this strong interest, a theoretical description of the dynamic of the evaporation of complex liquid mixtures and nanosuspensions is still lacking. Indeed, one of the aspects that have not been included in the current theoretical descriptions is the competition between the kinetics of evaporation and the adsorption of surfactants and/or particles at the liquid/vapor and liquid/solid interfaces. Materials formed by an electrically isolating solid on which a patterned conducting layer was formed by the deposits left after drop evaporation have been considered as very promising for building electrical circuits on flexible plastic substrates. In this work, we have done an exhaustive study of the evaporation of nanosuspensions of latex and hydrophobized silver nanoparticles on four substrates of different hydrophobicity. The advancing and receding contact angles as well as the time dependence of the volume of the droplets have been measured over a broad range of particle concentrations. Also, mixtures of silver particles and a surfactant, commonly used in industrial printing, have been examined. Furthermore, the adsorption kinetics at both the air/liquid and solid/liquid interfaces have been measured. Whereas the latex particles do not adsorb at the solid/liquid and only slightly reduce the surface tension, the silver particles strongly adsorb at both interfaces. The experimental results of the evaporation process were compared with the predictions of the theory of Semenov et al. (Evaporation of Sessile Water Droplets: Universal Behavior in the Presence of Contact Angle Hysteresis. Colloids Surf. Physicochem. Eng. Asp. 2011, 391 (1-3), 135-144) and showed surprisingly good agreement despite that the theory was developed for pure liquids. The morphology of the deposits left by the droplets after total

  17. Space Shuttle Solid Rocket Booster Decelerator Subsystem Drop Test 3 - Anatomy of a failure

    NASA Technical Reports Server (NTRS)

    Runkle, R. E.; Woodis, W. R.

    1979-01-01

    A test failure dramatically points out a design weakness or the limits of the material in the test article. In a low budget test program, with a very limited number of tests, a test failure sparks supreme efforts to investigate, analyze, and/or explain the anomaly and to improve the design such that the failure will not recur. The third air drop of the Space Shuttle Solid Rocket Booster Recovery System experienced such a dramatic failure. On air drop 3, the 54-ft drogue parachute was totally destroyed 0.7 sec after deployment. The parachute failure investigation, based on analysis of drop test data and supporting ground element test results is presented. Drogue design modifications are also discussed.

  18. Long Duration Testing of a Spacesuit Water Membrane Evaporator Prototype

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice; Cox, Marlon; Watts, Carly; Campbell, Colin; Vogel, Matthew; Colunga, Aaron

    2011-01-01

    The Spacesuit Water Membrane Evaporator (SWME) is a heat-rejection device that is being developed to perform thermal control for advanced spacesuits. Cooling is achieved by circulating water from the liquid cooling garment (LCG) through hollow fibers (HoFi?s), which are small hydrophobic tubes. Liquid water remains within the hydrophobic tubes, but water vapor is exhausted to space, thereby removing heat. A SWME test article was tested over the course of a year, for a total of 1200 cumulative hours. In order to evaluate SWME tolerance to contamination due to constituents caused by distillation processes, these constituents were allowed to accumulate in the water as evaporation occurred. A test article was tested over the course of a year for a total of 1200 cumulative hours. The heat rejection performance of the SWME degraded significantly--below 700 W, attributable to the accumulation of rust in the circulating loop and biofilm growth. Bubble elimination capability, a feature that was previously proven with SWME, was compromised during the test, most likely due to loss of hydrophobic properties of the hollow fibers. The utilization of water for heat rejection was shown not to be dependent on test article, life cycle, heat rejection rate, or freezing of the membranes.

  19. Long Duration Testing of a Spacesuit Water Membrane Evaporator Prototype

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice; Cox, Marlon; Watts, Carly; Campbell, Colin; Vogel, Matthew; Colunga, Aaron; Conger, Bruce

    2012-01-01

    The Spacesuit Water Membrane Evaporator (SWME) is a heat-rejection device that is being developed to perform thermal control for advanced spacesuits. Cooling is achieved by circulating water from the liquid cooling garment (LCG) through hollow fibers (HoFi s), which are small hydrophobic tubes. Liquid water remains within the hydrophobic tubes, but water vapor is exhausted to space, thereby removing heat. A SWME test article was tested over the course of a year, for a total of 600 cumulative hours. In order to evaluate SWME tolerance to contamination due to constituents caused by distillation processes, these constituents were allowed to accumulate in the water as evaporation occurred. A test article was tested over the course of a year for a total of 600 cumulative hours. The heat rejection performance of the SWME degraded significantly--below 700 W, attributable to the accumulation of rust in the circulating loop and biofilm growth. Bubble elimination capability, a feature that was previously proven with SWME, was compromised during the test, most likely due to loss of hydrophobic properties of the hollow fibers. The utilization of water for heat rejection was shown not to be dependent on test article, life cycle, heat rejection rate, or freezing of the membranes.

  20. Investigation of Concrete Floor Vibration Using Heel-Drop Test

    NASA Astrophysics Data System (ADS)

    Azaman, N. A. Mohd; Ghafar, N. H. Abd; Azhar, A. F.; Fauzi, A. A.; Ismail, H. A.; Syed Idrus, S. S.; Mokhjar, S. S.; Hamid, F. F. Abd

    2018-04-01

    In recent years, there is an increased in floor vibration problems of structures like residential and commercial building. Vibration is defined as a serviceability issue related to the comfort of the occupant or damage equipment. Human activities are the main source of vibration in the building and it could affect the human comfort and annoyance of residents in the building when the vibration exceed the recommend level. A new building, Madrasah Tahfiz located at Yong Peng have vibration problem when load subjected on the first floor of the building. However, the limitation of vibration occurs on building is unknown. Therefore, testing is needed to determine the vibration behaviour (frequency, damping ratio and mode shape) of the building. Heel-drop with pace 2Hz was used in field measurement to obtain the vibration response. Since, the heel-drop test results would vary in light of person performance, test are carried out three time to reduce uncertainty. Natural frequency from Frequency Response Function analysis (FRF) is 17.4Hz, 16.8, 17.4Hz respectively for each test.

  1. A theoretical and experimental study of turbulent evaporating sprays

    NASA Technical Reports Server (NTRS)

    Solomon, A. S. P.; Shuen, J. S.; Zhang, Q. F.; Faeth, G. M.

    1984-01-01

    Measurements and analysis limited to the dilute portions of turbulent evaporating sprays, injected into a still air environment were completed. Mean and fluctuating velocities and Reynolds stress were measured in the continuous phase. Liquid phase measurements included liquid mass fluxes, drop sizes and drop size and velocity correlation. Initial conditions needed for model evaluation were measured at a location as close to the injector exit as possible. The test sprays showed significant effects of slip and turbulent dispersion of the discrete phase. The measurements were used to evaluate three typical models of these processes: (1) a locally homogeneous flow (LHF) model, where slip between the phases were neglected; (2) a deterministic separated flow (DSF) model, where slip was considered but effects of drop dispersion by turbulence were ignored; and (3) a stochastic separated flow (SSF) model, where effects of interphase slip and turbulent dispersion were considered using random-walk computations for drop motion. For all three models, a k-epsilon model as used to find the properties of the continuous phase. The LHF and DSF models did not provide very satisfactory predictions for the present measurements. In contrast, the SSF model performed reasonably well--with no modifications in the prescription of eddy properties from its original calibration.

  2. PROCESS WATER BUILDING, TRA605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), AND STEAM EJECTOR (ALONG REAR WALL). INL NEGATIVE NO. 4377. M.H. Bartz, Photographer, 3/5/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  3. Drop-Weight Impact Test on U-Shape Concrete Specimens with Statistical and Regression Analyses

    PubMed Central

    Zhu, Xue-Chao; Zhu, Han; Li, Hao-Ran

    2015-01-01

    According to the principle and method of drop-weight impact test, the impact resistance of concrete was measured using self-designed U-shape specimens and a newly designed drop-weight impact test apparatus. A series of drop-weight impact tests were carried out with four different masses of drop hammers (0.875, 0.8, 0.675 and 0.5 kg). The test results show that the impact resistance results fail to follow a normal distribution. As expected, U-shaped specimens can predetermine the location of the cracks very well. It is also easy to record the cracks propagation during the test. The maximum of coefficient of variation in this study is 31.2%; it is lower than the values obtained from the American Concrete Institute (ACI) impact tests in the literature. By regression analysis, the linear relationship between the first-crack and ultimate failure impact resistance is good. It can suggested that a minimum number of specimens is required to reliably measure the properties of the material based on the observed levels of variation. PMID:28793540

  4. Control of solvent evaporation in hen egg white lysozyme crystallization

    NASA Technical Reports Server (NTRS)

    Wilson, L. J.; Suddath, F. L.

    1992-01-01

    An investigation of the role of solvent evaporation in tetragonal lysozyme crystallization was preformed with a device that employs N2(g) to control the evaporation of solvent from a micro-volume crystallization hanging drop. The number of crystals was found to vary with the rate at which the final supersaturation level was achieved. It was found that the more rapid the approach to supersaturation the larger the number of crystals. Accordingly, the crystals reached a smaller terminal size. Elongation of the (110) face parallel to the four-fold axis was observed with the slower evaporation rates.

  5. Leidenfrost drops on a heated liquid pool

    NASA Astrophysics Data System (ADS)

    Maquet, L.; Sobac, B.; Darbois-Texier, B.; Duchesne, A.; Brandenbourger, M.; Rednikov, A.; Colinet, P.; Dorbolo, S.

    2016-09-01

    We show that a volatile liquid drop placed at the surface of a nonvolatile liquid pool warmer than the boiling point of the drop can be held in a Leidenfrost state even for vanishingly small superheats. Such an observation points to the importance of the substrate roughness, negligible in the case considered here, in determining the threshold Leidenfrost temperature. A theoretical model based on the one proposed by Sobac et al. [Phys. Rev. E 90, 053011 (2014), 10.1103/PhysRevE.90.053011] is developed in order to rationalize the experimental data. The shapes of the drop and of the liquid substrate are analyzed. The model notably provides scalings for the vapor film thickness profile. For small drops, these scalings appear to be identical to the case of a Leidenfrost drop on a solid substrate. For large drops, in contrast, they are different, and no evidence of chimney formation has been observed either experimentally or theoretically in the range of drop sizes considered in this study. Concerning the evaporation dynamics, the radius is shown to decrease linearly with time whatever the drop size, which differs from the case of a Leidenfrost drop on a solid substrate. For high superheats, the characteristic lifetime of the drops versus the superheat follows a scaling law that is derived from the model, but, at low superheats, it deviates from this scaling by rather saturating.

  6. Parachute Compartment Drop Test Vehicle for Testing the Crew Exploration Vehicle's Parachute Assembly System

    NASA Technical Reports Server (NTRS)

    Lubey, Daniel P.; Thiele, Sara R.; Gruseck, Madelyn L.; Evans, Carol T.

    2010-01-01

    Though getting astronauts safely into orbit and beyond has long been one of NASA?s chief goals, their safe return has always been equally as important. The Crew Exploration Vehicle?s (CEV) Parachute Assembly System (CPAS) is designed to safely return astronauts to Earth on the next-generation manned spacecraft Orion. As one means for validating this system?s requirements and testing its functionality, a test article known as the Parachute Compartment Drop Test Vehicle (PC-DTV) will carry a fully-loaded yet truncated CPAS Parachute Compartment (PC) in a series of drop tests. Two aerodynamic profiles for the PC-DTV currently exist, though both share the same interior structure, and both have an Orion-representative weight of 20,800 lbf. Two extraction methods have been developed as well. The first (Cradle Monorail System 2 - CMS2) uses a sliding rail technique to release the PC-DTV midair, and the second (Modified DTV Sled; MDS) features a much less constrained separation method though slightly more complex. The decision as to which aerodynamic profile and extraction method to use is still not finalized. Additional CFD and stress analysis must be undertaken in order to determine the more desirable options, though at present the "boat tail" profile and the CMS2 extraction method seem to be the favored options in their respective categories. Fabrication of the PC-DTV and the selected extraction sled is set to begin in early October 2010 with an anticipated first drop test in mid-March 2011.

  7. Accelerated evaporation of water on graphene oxide.

    PubMed

    Wan, Rongzheng; Shi, Guosheng

    2017-03-29

    Using molecular dynamics simulations, we show that the evaporation of nanoscale volumes of water on patterned graphene oxide is faster than that on homogeneous graphene oxide. The evaporation rate of water is insensitive to variation in the oxidation degree of the oxidized regions, so long as the water film is only distributed on the oxidized regions. The evaporation rate drops when the water film spreads onto the unoxidized regions. Further analysis showed that varying the oxidation degree observably changed the interaction between the outmost water molecules and the solid surface, but the total interaction for the outmost water molecules only changed a very limited amount due to the correspondingly regulated water-water interaction when the water film is only distributed on the oxidized regions. When the oxidation degree is too low and some unoxidized regions are also covered by the water film, the thickness of the water film decreases, which extends the lifetime of the hydrogen bonds for the outmost water molecules and lowers the evaporation rate of the water. The insensitivity of water evaporation to the oxidation degree indicates that we only need to control the scale of the unoxidized and oxidized regions for graphene oxide to regulate the evaporation of nanoscale volumes of water.

  8. Measurements of evaporation from a mine void lake and testing of modelling approaches

    NASA Astrophysics Data System (ADS)

    McJannet, David; Hawdon, Aaron; Van Niel, Tom; Boadle, Dave; Baker, Brett; Trefry, Mike; Rea, Iain

    2017-12-01

    Pit lakes often form in the void that remains after open cut mining operations cease. As pit lakes fill, hydrological and geochemical processes interact and these need to be understood for appropriate management actions to be implemented. Evaporation is important in the evolution of pit lakes as it acts to concentrate various constituents, controls water level and changes the thermal characteristics of the water body. Despite its importance, evaporation from pit lakes is poorly understood. To address this, we used an automated floating evaporation pan and undertook measurements at a pit lake over a 12 month period. We also developed a new procedure for correcting floating pan evaporation estimates to lake evaporation estimates based on surface temperature differences. Total annual evaporation was 2690 mm and reflected the strong radiation inputs, high temperatures and low humidity experienced in this region. Measurements were used to test the performance of evaporation estimates derived using both pan coefficient and aerodynamic modelling techniques. Daily and monthly evaporation estimates were poorly reproduced using pan coefficient techniques and their use is not recommended for such environments. Aerodynamic modelling was undertaken using a range of input datasets that may be available to those who manage pit lake systems. Excellent model performance was achieved using over-water or local over-land meteorological observations, particularly when the sheltering effects of the pit were considered. Model performance was reduced when off-site data were utilised and differences between local and off-site vapor pressure and wind speed were found to be the major cause.

  9. Evaluation of malodor for automobile air conditioner evaporator by using laboratory-scale test cooling bench.

    PubMed

    Kim, Kyung Hwan; Kim, Sun Hwa; Jung, Young Rim; Kim, Man Goo

    2008-09-12

    As one of the measures to improve the environment in an automobile, malodor caused by the automobile air-conditioning system evaporator was evaluated and analyzed using laboratory-scale test cooling bench. The odor was simulated with an evaporator test cooling bench equipped with an airflow controller, air temperature and relative humidity controller. To simulate the same odor characteristics that occur from automobiles, one previously used automobile air conditioner evaporator associated with unpleasant odors was selected. The odor was evaluated by trained panels and collected with aluminum polyester bags. Collected samples were analyzed by thermal desorption into a cryotrap and subsequent gas chromatographic separation, followed by simultaneous olfactometry, flame ionization detector and identified by atomic emission detection and mass spectrometry. Compounds such as alcohols, aldehydes, and organic acids were identified as responsible odor-active compounds. Gas chromatography/flame ionization detection/olfactometry combined sensory method with instrumental analysis was very effective as an odor evaluation method in an automobile air-conditioning system evaporator.

  10. Evaporative Emissions from In-Use Vehicles: Test Fleet Expansion (CRC E-77-2b) Final Report

    EPA Pesticide Factsheets

    Report describes the ongoing investigation into the evaporative emission performance of aging light-duty vehicles. The objective was to add additional data to the Coordinating Research Council's (CRC) E-77-2 evaporative emission/permeation test program

  11. Digital antimicrobial susceptibility testing using the MilliDrop technology.

    PubMed

    Jiang, L; Boitard, L; Broyer, P; Chareire, A-C; Bourne-Branchu, P; Mahé, P; Tournoud, M; Franceschi, C; Zambardi, G; Baudry, J; Bibette, J

    2016-03-01

    We present the MilliDrop Analyzer (MDA), a droplet-based millifluidic system for digital antimicrobial susceptibility testing (D-AST), which enables us to determine minimum inhibitory concentrations (MICs) precisely and accurately. The MilliDrop technology was validated by using resazurin for fluorescence readout, for comparison with standard methodology, and for conducting reproducibility studies. In this first assessment, the susceptibility of a reference Gram-negative strain Escherichia coli ATCC 25922 to gentamicin, chloramphenicol, and nalidixic acid were tested by the MDA, VITEK®2, and broth microdilution as a reference standard. We measured the susceptibility of clinically relevant Gram-positive strains of Staphylococcus aureus to vancomycin, including vancomycin-intermediate S. aureus (VISA), heterogeneous vancomycin-intermediate S. aureus (hVISA), and vancomycin-susceptible S. aureus (VSSA) strains. The MDA provided results which were much more accurate than those of VITEK®2 and standard broth microdilution. The enhanced accuracy enabled us to reliably discriminate between VSSA and hVISA strains.

  12. Virtual prototyping of drop test using explicit analysis

    NASA Astrophysics Data System (ADS)

    Todorov, Georgi; Kamberov, Konstantin

    2017-12-01

    Increased requirements for reliability and safety, included in contemporary standards and norms, has high impact over new product development. New numerical techniques based on virtual prototyping technology, facilitates imrpoving product development cycle, resutling in reduced time/money spent for this stage as well as increased knowledge about certain failure mechanism. So called "drop test" became nearly a "must" step in development of any human operated product. This study aims to demonstrate dynamic behaviour assessment of a structure under impact loads, based on virtual prototyping using a typical nonlinear analysis - explicit dynamics. An example is presneted, based on a plastic container that is used as cartridge for a dispenser machine exposed to various work conditions. Different drop orientations were analyzed and critical load cases and design weaknesses have been found. Several design modifications have been proposed, based on detailed analyses results review.

  13. Coefficient of restitution of sports balls: A normal drop test

    NASA Astrophysics Data System (ADS)

    Haron, Adli; Ismail, K. A.

    2012-09-01

    Dynamic behaviour of bodies during impact is investigated through impact experiment, the simplest being a normal drop test. Normally, a drop test impact experiment involves measurement of kinematic data; this includes measurement of incident and rebound velocity in order to calculate a coefficient of restitution (COR). A high speed video camera is employed for measuring the kinematic data where speed is calculated from displacement of the bodies. Alternatively, sensors can be employed to measure speeds, especially for a normal impact where there is no spin of the bodies. This paper compares experimental coefficients of restitution (COR) for various sports balls, namely golf, table tennis, hockey and cricket. The energy loss in term of measured COR and effects of target plate are discussed in relation to the material and construction of these sports balls.

  14. Football helmet drop tests on different fields using an instrumented Hybrid III head.

    PubMed

    Viano, David C; Withnall, Chris; Wonnacott, Michael

    2012-01-01

    An instrumented Hybrid III head was placed in a Schutt ION 4D football helmet and dropped on different turfs to study field types and temperature on head responses. The head was dropped 0.91 and 1.83 m giving impacts of 4.2 and 6.0 m/s on nine different football fields (natural, Astroplay, Fieldturf, or Gameday turfs) at turf temperatures of -2.7 to 23.9 °C. Six repeat tests were conducted for each surface at 0.3 m (1') intervals. The Hybrid III was instrumented with triaxial accelerometers to determine head responses for the different playing surfaces. For the 0.91-m drops, peak head acceleration varied from 63.3 to 117.1 g and HIC(15) from 195 to 478 with the different playing surfaces. The lowest response was with Astroplay, followed by the engineered natural turf. Gameday and Fieldturf involved higher responses. The differences between surfaces decreased in the 1.83 m tests. The cold weather testing involved higher accelerations, HIC(15) and delta V for each surface. The helmet drop test used in this study provides a simple and convenient means of evaluating the compliance and energy absorption of football playing surfaces. The type and temperature of the playing surface influence head responses.

  15. The structure of evaporating and combusting sprays: Measurements and predictions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Solomon, A. S. P.; Faeth, F. M.

    1983-01-01

    The structure of particle-laden jets and nonevaporating and evaporating sprays was measured in order to evaluate models of these processes. Three models are being evaluated: (1) a locally homogeneous flow model, where slip between the phases is neglected and the flow is assumed to be in local thermodynamic equilibrium; (2) a deterministic separated flow model, where slip and finite interphase transport rates are considered but effects of particle/drop dispersion by turbulence and effects of turbulence on interphase transport rates are ignored; and (3) a stochastic separated flow model, where effects of interphase slip, turbulent dispersion and turbulent fluctuations are considered using random sampling for turbulence properties in conjunction with random-walk computations for particle motion. All three models use a k-e-g turbulence model. All testing and data reduction are completed for the particle laden jets. Mean and fluctuating velocities of the continuous phase and mean mixture fraction were measured in the evaporating sprays.

  16. Experimental and numerical study of drill bit drop tests on Kuru granite.

    PubMed

    Fourmeau, Marion; Kane, Alexandre; Hokka, Mikko

    2017-01-28

    This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit-rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist-Johnson-Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  17. Experimental and numerical study of drill bit drop tests on Kuru granite

    PubMed Central

    Kane, Alexandre; Hokka, Mikko

    2017-01-01

    This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit–rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist–Johnson–Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956511

  18. Experimental and numerical study of drill bit drop tests on Kuru granite

    NASA Astrophysics Data System (ADS)

    Fourmeau, Marion; Kane, Alexandre; Hokka, Mikko

    2017-01-01

    This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit-rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist-Johnson-Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  19. Hollow Fiber Ground Evaporator Unit Testing

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus

    2010-01-01

    A candidate technology for 1-atmosphere suited heat rejection was developed and tested at NASA Johnson Space Center. The concept is to use a collection of microporous hydrophobic tubes potted between inlet and outlet headers with water as coolant. A pump provides flow between headers through the tubes which are subjected to fan driven cross flow of relatively dry air. The forced ventilation would sweep out the water vapor from the evaporation of the coolant rejecting heat from the coolant stream. The hollow fibers are obtained commercially (X50-215 Celgard) which are arranged in a sheet containing 5 fibers per linear inch. Two engineering development units were produced that vary the fold direction of the fiber sheets relative to the ventilation. These units were tested at inlet water temperatures ranging from 20 deg C to 30 deg C, coolant flow rates ranging from 10 to 90 kg/hr, and at three fan speeds. These results were used to size a system that could reject heat at a rate of 340 W.

  20. The origin of star-shaped oscillations of Leidenfrost drops

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Burton, Justin C.

    We experimentally investigate the oscillations of Leidenfrost drops of water, liquid nitrogen, ethanol, methanol, acetone and isopropyl alcohol. The drops levitate on a cushion of evaporated vapor over a hot, curved surface which keeps the drops stationary. We observe star-shaped modes along the periphery of the drop, with mode numbers n = 2 to 13. The number of observed modes is sensitive to the properties of the liquid. The pressure oscillation frequency in the vapor layer under the drop is approximately twice that of the drop frequency, which is consistent with a parametric forcing mechanism. However, the Rayleigh and thermal Marangoni numbers are of order 10,000, indicating that convection should play a dominating role as well. Surprisingly, we find that the wavelength and frequency of the oscillations only depend on the thickness of the liquid, which is twice the capillary length, and do not depend on the mode number, substrate temperature, or the substrate curvature. This robust behavior suggests that the wavelength for the oscillations is set by thermal convection inside the drop, and is less dependent on the flow in the vapor layer under the drop

  1. Characterization of Martian Rock Shape for MER Airbag Drop Tests

    NASA Astrophysics Data System (ADS)

    Dimaggio, E. N.; Schroeder, R.; Castle, N.; Golombek, M.

    2002-12-01

    Rock distributions for the final platforms used in airbag drop tests are currently being designed for the Mars Exploration Rovers (MER) scheduled to launch in 2003. Like Mars Pathfinder (MPF), launched in 1996, MER will use a series of airbags to cushion its landing on the surface of Mars. Previous MER airbag drop tests have shown that sharp, angular (triangular) rocks >20 cm high may be hazardous. To aid in defining the rock distributions for the final airbag tests, images from the Viking Landers 1 and 2 and MPF were used to identify rocks that are >20 cm high, and characterize them as triangular, square or round. Approximately 33% of all rocks analyzed are triangular. Of the rocks analyzed that are ~20-60 cm high, ~14% are triangular. Most of these triangular rocks are small, ~20-30 cm high. Rock distributions of previous airbag platforms were similarly classified and show a greater percentage of triangular and square rocks that are ~20-60 cm high than at the landing sites. The burial of a rock (perched, partially buried or buried) was also considered because perched rocks may pose less of a threat to the airbags than those buried because perched rocks can be dislodged and roll during impact. Approximately 19% of all rocks analyzed, and ~19% of rocks that are ~20-60 cm high, are triangular and partially buried or buried. These data suggest that the platform rock distributions appropriately represented the risks to the airbags associated with triangular rocks. A similar percentage of >20 cm high triangular rocks will be added to the drop test platforms to represent landing site rock distributions.

  2. Crash Simulation of a Boeing 737 Fuselage Section Vertical Drop Test

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Jones, Yvonne T.; Frings, Gary; Vu, Tong

    2004-01-01

    A 30-ft/s vertical drop test of a fuselage section of a Boeing 737 aircraft was conducted in October of 1999 at the FAA Technical Center in Atlantic City, NJ. This test was performed to evaluate the structural integrity of a conformable auxiliary fuel tank mounted beneath the floor and to determine its effect on the impact response of the airframe structure and the occupants. The test data were used to compare with a finite element simulation of the fuselage structure and to gain a better understanding of the impact physics through analytical/experimental correlation. To perform this simulation, a full-scale 3-dimensional finite element model of the fuselage section was developed using the explicit, nonlinear transient-dynamic finite element code, MSC.Dytran. The emphasis of the simulation was to predict the structural deformation and floor-level acceleration responses obtained from the drop test of the B737 fuselage section with the auxiliary fuel tank.

  3. Vertical Drop Testing and Analysis of the Wasp Helicopter Skid Gear

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fuchs, Yvonne T.

    2007-01-01

    This report describes an experimental program to assess the impact performance of a skid gear for use on the Wasp kit-built helicopter, which is marketed by HeloWerks, Inc. of Hampton, Virginia. In total, five vertical drop tests were performed. The test article consisted of a skid gear mounted beneath a steel plate. A seating platform was attached to the upper surface of the steel plate, and two 95th percentile Hybrid III male Anthropomorphic Test Devices (ATDs) were seated on the platform and secured using a four-point restraint system. The test article also included ballast weights to ensure the correct position of the Center-of-Gravity (CG). Twenty-six channels of acceleration data were collected per test at 50,000 samples per second. The five drop tests were conducted on two different gear configurations. The details of these test programs are presented, as well as an occupant injury assessment. Finally, a finite element model of the skid gear test article was developed for execution in LS-DYNA, an explicit nonlinear transient dynamic code, for predicting the skid gear and occupant dynamic responses due to impact.

  4. Mia Mikre Stagona (The Little Drop of Water).

    ERIC Educational Resources Information Center

    Palandra, Maria; Spiridakis, Eugenia

    This Greek reader for children in kindergarten and first grade is about a drop of water that comes to life in a trip through the water cycle of evaporation, condensation, and subsequent return to a drier part of the earth's surface environment. The story is suitable for reading aloud or independent reading. The text is entirely in Greek.…

  5. Transport of Colloids along Corners: Visualization of Evaporation-Induced Flows beyond the Axisymmetric Condition.

    PubMed

    Vélez-Cordero, J Rodrigo; Yáñez Soto, Bernardo; Arauz-Lara, José L

    2016-08-16

    Nonhomogeneous evaporation fluxes have been shown to promote the formation of internal currents in sessile droplets, explaining the patterns that suspended particles leave after the droplet has dried out. Although most evaporation experiments have been conducted using spherical-cap-shaped drops, which are essentially in an axisymmetric geometry, here we show an example of nonhomogeneous evaporation in asymmetric geometries, which is visualized by following the motion of colloidal particles along liquid fingers forming a meniscus at square corners. It is found that the particle's velocity increases with the diffusive evaporation factor [Formula: see text] for the three tested fluids: water, isopropyl alcohol (IPA), and ethanol (EtOH). Here, [Formula: see text] is the vapor diffusivity in air, RH is the relative amount of vapor in the atmosphere, and cs is the saturated vapor concentration. We observed that in IPA and EtOH the internal currents promote a 3D spiral motion, whereas in water the particle's trajectory is basically unidirectional. By adding 0.25 critical micelle concentration (CMC) of sodium dodecyl sulfate (SDS) surfactant in water, a velocity blast was observed in the whole circulation flow pattern, going from [Formula: see text] to nearly [Formula: see text] in the longitudinal velocity component. To assess the effect of breaking the axisymmetric condition on the evaporation flux profile, we numerically solved the diffusive equation in model geometries that preserve the value of the contact angle θ but introduce an additional angle ϕ that characterizes the solid substrate. By testing different combinations of θ and ϕ, we corroborated that the evaporation flux increases when the substrate and the gas-liquid curves meet at corners with increasing sharpness.

  6. DNSs of Multicomponent Gaseous and Drop-Laden Mixing Layers Achieving Transition to Turbulence

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Selle, Laurent

    2007-01-01

    A paper describes direct numerical simulations (DNSs) of three-dimensional mixing-layer flows undergoing transition to turbulence; the mixing layers may or may not be laden with evaporating liquid drops.

  7. Detailed characteristics of drop-laden mixing layers: LES predictions compared to DNS

    NASA Technical Reports Server (NTRS)

    Okong'o, N.; Leboissetier, A.; Bellan, J.

    2004-01-01

    Results have been compared from Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) of a temporal mixing layer laden with evaporating drops, to assess the ability of LES to reproduce detailed characteristics of DNS.

  8. TRACT 2 Frame Drop Test AT NASA Langley Research Center's Landin

    NASA Image and Video Library

    2014-05-09

    (Tract)2 Transport Rotorcraft Airframe Crash Testbed; Full Frame Drop Test: rotary wing crash worthiness, impact research at NASA Langley Research Center's Landing and Impact Research (LandIR) Facility Building 1297

  9. Molecular dynamics study on the microscopic details of the evaporation of water.

    PubMed

    Mason, Phillip E

    2011-06-16

    Molecular dynamics simulations were conducted on a drop of water (containing 4890 TIP3P waters) at 350 K. About 70 evaporation events were found and characterized in enough detail to determine significant patterns relating to the mechanism of evaporation. It was found that in almost all evaporation events that a single, high-energy state immediately preceded the evaporation event. In ∼50% of the cases, this high-energy state involved a short oxygen-oxygen distance, suggesting a van der Waals collision, whereas in the remaining cases, a short hydrogen-hydrogen distance was found, suggesting an electrostatic "collision". Of the high-energy states that led to evaporation, about half occurred when the coordination number of water was 1, and about half, when the coordination number was 2. It was found that the 1-coordinated waters (∼1% of the surface waters) and 2-coordinated waters (6% of the surface waters) were responsible for almost all the evaporation events. © 2011 American Chemical Society

  10. An experimental study on the design, performance and suitability of evaporative cooling system using different indigenous materials

    NASA Astrophysics Data System (ADS)

    Alam, Md. Ferdous; Sazidy, Ahmad Sharif; Kabir, Asif; Mridha, Gowtam; Litu, Nazmul Alam; Rahman, Md. Ashiqur

    2017-06-01

    The present study aimed to evaluate the feasibility of coconut coir pads, jute fiber pads and sackcloth pads as alternative pad materials. Experimental measurements were conducted and the experimental data were quantitative. The experimental work mainly focused on the effects of different types and thicknesses of evaporative cooling pads by using forced draft fan while changing the environmental conditions. Experiments are conducted in a specifically constructed test chamber having dimensions of 12'X8'X8', using a number of cooling pads (36"X26") with a variable thickness parameters of the evaporative cooling pads i.e., 50, 75 and 100 mm. Moreover, the experimental work involved the measurement of environmental parameters such as temperature, relative humidity, air velocity, water mass flow rate and pressure drops at different times during the day. Experiments were conducted at three different water mass flow rates (0.25 kgs-1, 0.40 kgs-1 & 0.55 kgs-1) and three different air velocities (3.6 ms-1, 4.6 ms-1& 5.6 ms-1). There was a significant difference between evaporative cooling pad types and cooling efficiency. The coconut coir pads yielded maximum cooling efficiency of 85%, whereas other pads yielded the following maximum cooling efficiency: jute fiber pads 78% and sackcloth 69% for higher air velocity and minimum mass flow rate. It is found that the maximum reduction in temperature between cooling pad inlet and outlet is 4°C with a considerable increase in humidity. With the increase of pad thickness there was an increment of cooling efficiency. The results obtained for environmental factors, indicated that there was a significant difference between environmental factors and cooling efficiency. In terms of the effect of air velocity on saturation efficiency and pressure drop, higher air velocity decreases saturation efficiency and increases pressure drop across the wetted pad for maximum flow rate. Convective heat transfer co-efficient has an almost linear

  11. Development of Drop/Shock Test in Microelectronics and Impact Dynamic Analysis for Uniform Board Response

    NASA Astrophysics Data System (ADS)

    Kallolimath, Sharan Chandrashekar

    For the past several years, many researchers are constantly developing and improving board level drop test procedures and specifications to quantify the solder joint reliability performance of consumer electronics products. Predictive finite element analysis (FEA) by utilizing simulation software has become widely acceptable verification method which can reduce time and cost of the real-time test process. However, due to testing and metrological limitations it is difficult not only to simulate exact drop condition and capture critical measurement data but also tedious to calibrate the system to improve test methods. Moreover, some of the important ever changing factors such as board flexural rigidity, damping, drop height, and drop orientation results in non-uniform stress/strain distribution throughout the test board. In addition, one of the most challenging tasks is to quantify uniform stress and strain distribution throughout the test board and identify critical failure factors. The major contributions of this work are in the four aspects of the drop test in electronics as following. First of all, an analytical FEA model was developed to study the board natural frequencies and responses of the system with the consideration of dynamic stiffness, damping behavior of the material and effect of impact loading condition. An approach to find the key parameters that affect stress and strain distributions under predominate mode responses was proposed and verified with theoretical solutions. Input-G method was adopted to study board response behavior and cut boundary interpolation methods was used to analyze local model solder joint stresses with the development of global/local FEA model in ANSYS software. Second, no ring phenomenon during the drop test was identified theoretically when the test board was modeled as both discrete system and continuous system. Numerical analysis was then conducted by FEA method for detailed geometry of attached chips with solder

  12. Representative shuttle evaporative heat sink

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1978-01-01

    The design, fabrication, and testing of a representative shuttle evaporative heat sink (RSEHS) system which vaporizes an expendable fluid to provide cooling for the shuttle heat transport fluid loop is reported. The optimized RSEHS minimum weight design meets or exceeds the shuttle flash evaporator system requirements. A cold trap which cryo-pumps flash evaporator exhaust water from the CSD vacuum chamber test facility to prevent water contamination of the chamber pumping equipment is also described.

  13. Thermal Vacuum Testing of a Proto-flight Miniature Loop Heat Pipe with Two Evaporators and Two Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura

    2011-01-01

    This paper describes thermal vacuum testing of a proto-flight miniature loop heat pipe (MLHP) with two evaporators and two condensers designed for future small systems applications requiring low mass, low power and compactness. Each evaporator contains a wick with an outer diameter of 6.35 mm, and each has its own integral compensation chamber (CC). Miniaturization of the loop components reduces the volume and mass of the thermal system. Multiple evaporators provide flexibility for placement of instruments that need to be maintained at the same temperature, and facilitate heat load sharing among instruments, reducing the auxiliary heater power requirement. A flow regulator is used to regulate heat dissipations between the two condensers, allowing flexible placement of radiators on the spacecraft. A thermoelectric converter (TEC) is attached to each CC for control of the operating temperature and enhancement of start-up success. Tests performed include start-up, power cycle, sink temperature cycle, high power and low power operation, heat load sharing, and operating temperature control. The proto-flight MLHP demonstrated excellent performance in the thermal vacuum test. The loop started successfully and operated stably under various evaporator heat loads and condenser sink temperatures. The TECs were able to maintain the loop operating temperature within b1K of the desired set point temperature at all power levels and all sink temperatures. The un-powered evaporator would automatically share heat from the other powered evaporator. The flow regulator was able to regulate the heat dissipation among the radiators and prevent vapor from flowing into the liquid line.

  14. La Gotita de Agua (The Little Drop of Water).

    ERIC Educational Resources Information Center

    Palandra, Maria; Puigdollers, Carmen

    This Spanish reader for children in kindergarten and first grade is about a drop of water that comes to life in a trip through the water cycle of evaporation, condensation, and subsequent return to a drier part of the earth's surface environment. The story is suitable for reading aloud or independent reading. The text is entirely in Spanish.…

  15. Effluent Management Facility Evaporator Bottom-Waste Streams Formulation and Waste Form Qualification Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.

    This report describes the results from grout formulation and cementitious waste form qualification testing performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). These results are part of a screening test that investigates three grout formulations proposed for wide-range treatment of different waste stream compositions expected for the Hanford Effluent Management Facility (EMF) evaporator bottom waste. This work supports the technical development need for alternative disposition paths for the EMF evaporator bottom wastes and future direct feed low-activity waste (DFLAW) operations at the Hanford Site. High-priority activities included simulant production, grout formulation, and cementitious wastemore » form qualification testing. The work contained within this report relates to waste form development and testing, and does not directly support the 2017 Integrated Disposal Facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY 2017 and future waste form development efforts. The provided results and data should be used by (1) cementitious waste form scientists to further the understanding of cementitious leach behavior of contaminants of concern (COCs), (2) decision makers interested in off-site waste form disposal, and (3) the U.S. Department of Energy, their Hanford Site contractors and stakeholders as they assess the IDF PA program at the Hanford Site. The results reported help fill existing data gaps, support final selection of a cementitious waste form for the EMF evaporator bottom waste, and improve the technical defensibility of long-term waste form risk estimates.« less

  16. European type-approval test procedure for evaporative emissions from passenger cars against real-world mobility data from two Italian provinces.

    PubMed

    Martini, Giorgio; Paffumi, Elena; De Gennaro, Michele; Mellios, Giorgos

    2014-07-15

    This paper presents an evaluation of the European type-approval test procedure for evaporative emissions from passenger cars based on real-world mobility data. The study relies on two large databases of driving patterns from conventional fuel vehicles collected by means of on-board GPS systems in the Italian provinces of Modena and Firenze. Approximately 28,000 vehicles were monitored, corresponding to approximately 36 million kilometres over a period of one month. The driving pattern of each vehicle was processed to derive the relation between trip length and parking duration, and the rate of occurrence of parking events against multiple evaporative cycles, defined on the basis of the type-approval test procedure as 12-hour diurnal time windows. These results are used as input for an emission simulation model, which calculates the total evaporative emissions given the characteristics of the evaporative emission control system of the vehicle and the ambient temperature conditions. The results suggest that the evaporative emission control system, fitted to the vehicles from Euro 3 step and optimised for the current type-approval test procedure, could not efficiently work under real-world conditions, resulting in evaporative emissions well above the type-approval limit, especially for small size vehicles and warm climate conditions. This calls for a revision of the type-approval test procedure in order to address real-world evaporative emissions. Copyright © 2014. Published by Elsevier B.V.

  17. Influence of Electrification of Droplet on Hydrophobicity Reduction of Polymer Material during a Dynamic Drop Test

    NASA Astrophysics Data System (ADS)

    Haji, Kenichi; Shiibara, Daiki; Arata, Yoshihiro; Sakoda, Tatsuya; Otsubo, Masahisa

    The dynamic drop test was proposed as a method to evaluate hydrophobicity reduction of polymer materials. In this test, the formation change of a water channel was confirmed, and thereafter, the remained droplets and the dropped droplets on the sampled surface were repulsed each other. The distributions of electrification on the droplet and the sample surface were measured. The influence of the electrified droplet on the hydrophobicity reduction was examined. The results showed that the polarity on the sample surface changed by the dropped droplet, leading to the hydrophobicity loss.

  18. Finite Element Simulations of Two Vertical Drop Tests of F-28 Fuselage Sections

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Littell, Justin D.; Annett, Martin S.; Haskin, Ian M.

    2018-01-01

    In March 2017, a vertical drop test of a forward fuselage section of a Fokker F-28 MK4000 aircraft was conducted as part of a joint NASA/FAA project to investigate the performance of transport aircraft under realistic crash conditions. In June 2017, a vertical drop test was conducted of a wing-box fuselage section of the same aircraft. Both sections were configured with two rows of aircraft seats, in a triple-double configuration. A total of ten Anthropomorphic Test Devices (ATDs) were secured in seats using standard lap belt restraints. The forward fuselage section was also configured with luggage in the cargo hold. Both sections were outfitted with two hat racks, each with added ballast mass. The drop tests were performed at the Landing and Impact Research facility located at NASA Langley Research Center in Hampton, Virginia. The measured impact velocity for the forward fuselage section was 346.8-in/s onto soil. The wing-box section was dropped with a downward facing pitch angle onto a sloping soil surface in order to create an induced forward acceleration in the airframe. The vertical impact velocity of the wing-box section was 349.2-in/s. A second objective of this project was to assess the capabilities of finite element simulations to predict the test responses. Finite element models of both fuselage sections were developed for execution in LS-DYNA(Registered Trademark), a commercial explicit nonlinear transient dynamic code. The models contained accurate representations of the airframe structure, the hat racks and hat rack masses, the floor and seat tracks, the luggage in the cargo hold for the forward section, and the detailed under-floor structure in the wing-box section. Initially, concentrated masses were used to represent the inertial properties of the seats, restraints, and ATD occupants. However, later simulations were performed that included finite element representations of the seats, restraints, and ATD occupants. These models were developed to more

  19. Drop-casted self-assembling graphene oxide membranes for scanning electron microscopy on wet and dense gaseous samples.

    PubMed

    Krueger, Mark; Berg, Shannon; Stone, D'Arcy; Strelcov, Evgheni; Dikin, Dmitriy A; Kim, Jaemyung; Cote, Laura J; Huang, Jiaxing; Kolmakov, Andrei

    2011-12-27

    Graphene oxide sheets dispersed in water and many other solvents can spontaneously assemble into a surface film covering an evaporating droplet due to their amphiphilicity. Thus, graphene oxide membranes with controllable thickness suspended over an orifice have been directly fabricated using a simple drop-cast approach. Mechanical properties and electron transparency tests of these membranes show their use as electron transparent, but molecularly impenetrable, windows for environmental electron microscopy in liquids and dense gaseous media. The foreseeable, broader application of this drop-cast window methodology is the creation of access spots for electron probes to study isolated microsamples in their natural, undisrupted state within the interior of prefabricated devices (such as microfluidic chips or sealed containers of biological, chemically reactive, toxic, or forensic materials).

  20. Laboratory prototype flash evaporator

    NASA Technical Reports Server (NTRS)

    Gaddis, J. L.

    1972-01-01

    A laboratory prototype flash evaporator that is being developed as a candidate for the space shuttle environmental control system expendable heat sink is described. The single evaporator configuration uses water as an evaporant to accommodate reentry and on-orbit peak heat loads, and Freon 22 for terrestrial flight phases below 120,000 feet altitude. The design features, fabrication techniques used for the prototype unit, redundancy considerations, and the fluid temperature control arrangement are reported in detail. The results of an extensive test program to determine the evaporator operational characteristics under a wide variety of conditions are presented.

  1. Hanging colloidal drop: A new photonic crystal synthesis route

    NASA Astrophysics Data System (ADS)

    Sandu, Ion; Dumitru, Marius; Fleaca, Claudiu Teodor; Dumitrache, Florian

    2018-05-01

    High-quality photonic crystals (hundreds of micrometres in thickness) were grown by the free evaporation of a colloidal drop consisting of silica and polystyrene nanospheres with dimensions of 300 nm, 500 nm, and 1000 nm. The essence of experimental findings is that the drop has to hang on a pillar. This leads to the inhibition of the droplet spreading, the minimisation of the convective force, and the zeroing of the static frictional force between nanospheres and the liquid/air interface, where the first layer is formed. The theoretical essence is the continuous adjustment of nanospheres positions during the growth of photonic crystal, a key condition of the self-assembling phenomenon.

  2. Boundary conditions for a one-sided numerical model of evaporative instabilities in sessile drops of ethanol on heated substrates

    NASA Astrophysics Data System (ADS)

    Semenov, Sergey; Carle, Florian; Medale, Marc; Brutin, David

    2017-12-01

    The work is focused on obtaining boundary conditions for a one-sided numerical model of thermoconvective instabilities in evaporating pinned sessile droplets of ethanol on heated substrates. In the one-sided model, appropriate boundary conditions for heat and mass transfer equations are required at the droplet surface. Such boundary conditions are obtained in the present work based on a derived semiempirical theoretical formula for the total droplet's evaporation rate, and on a two-parametric nonisothermal approximation of the local evaporation flux. The main purpose of these boundary conditions is to be applied in future three-dimensional (3D) one-sided numerical models in order to save a lot of computational time and resources by solving equations only in the droplet domain. Two parameters, needed for the nonisothermal approximation of the local evaporation flux, are obtained by fitting computational results of a 2D two-sided numerical model. Such model is validated here against parabolic flight experiments and the theoretical value of the total evaporation rate. This study combines theoretical, experimental, and computational approaches in convective evaporation of sessile droplets. The influence of the gravity level on evaporation rate and contributions of different mechanisms of vapor transport (diffusion, Stefan flow, natural convection) are shown. The qualitative difference (in terms of developing thermoconvective instabilities) between steady-state and unsteady numerical approaches is demonstrated.

  3. Drop-in substitute for dichlorodifluoromethane refrigerant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goble, G.H.

    1993-06-01

    A method for producing refrigeration in a refrigeration system designed for a dichlorodifluoromethane refrigerant is described, comprising drop-in substituting for said dichlorodifluoromethane a ternary mixture of about 2 to 20 weight percent isobutane, about 21 to 51 weight percent 1-chloro-1,1-difluoroethane, and about 41 to 71 weight percent chlorodifluoromethane, with the weight percentages of said components being weight percentages of the overall mixture; condensing said ternary mixture; and thereafter evaporating said ternary mixture in the vicinity of a body to be cooled.

  4. Compound Capillary Flows in Complex Containers: Drop Tower Test Results

    NASA Astrophysics Data System (ADS)

    Bolleddula, Daniel A.; Chen, Yongkang; Semerjian, Ben; Tavan, Noël; Weislogel, Mark M.

    2010-10-01

    Drop towers continue to provide unique capabilities to investigate capillary flow phenomena relevant to terrestrial and space-based capillary fluidics applications. In this study certain `capillary rise' flows and the value of drop tower experimental investigations are briefly reviewed. A new analytic solution for flows along planar interior edges is presented. A selection of test cell geometries are then discussed where compound capillary flows occur spontaneously and simultaneously over local and global length scales. Sample experimental results are provided. Tertiary experiments on a family of asymmetric geometries that isolate the global component of such flows are then presented along with a qualitative analysis that may be used to either avoid or exploit such flows. The latter may also serve as a design tool with which to assess the impact of inadvertent container asymmetry.

  5. Testing of Commercial Hollow Fiber Membranes for Space Suit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis; Tsioulos, Gus; Hanford, Anthony

    2009-01-01

    Three commercial-off-the-shelf (COTS) hollow fiber (HoFi) membrane evaporators, modified for low pressure, were tested in a vacuum chamber at pressures below 33 pascals as potential space suit water membrane evaporator (SWME) heat rejection technologies. Water quality was controlled in a series of 25 tests, first simulating potable water reclaimed from waste water and then changing periodically to simulate the ever concentrating make-up of the circulating coolant over that is predicted over the course of 100 EVAs. Two of the systems, comprised of non-porous tubes with hydrophilic molecular channels as the water vapor transport mechanism, were severely impacted by the increasing concentrations of cations in the water. One of the systems, based on hydrophobic porous polypropylene tubes was not affected by the degrading water quality, or the presence of microbes. The polypropylene system, called SWME 1, was selected for further testing. An inverse flow configuration was also tested with SWME 1, with vacuum exposure on the inside of the tubes, provided only 20% of the performance of the standard configuration. SWME 1 was also modified to block 50% and 90% of the central tube layers, and tested to investigate performance efficiency. Performance curves were also developed in back-pressure regulation tests, and revealed important design considerations arising from the fully closed valve. SWME 1 was shown to be insensitive to air bubbles injected into the coolant loop. Development and testing of a full-scale prototype based on this technology and these test results is in progress.

  6. Assessment of water droplet evaporation mechanisms on hydrophobic and superhydrophobic substrates.

    PubMed

    Pan, Zhenhai; Dash, Susmita; Weibel, Justin A; Garimella, Suresh V

    2013-12-23

    Evaporation rates are predicted and important transport mechanisms identified for evaporation of water droplets on hydrophobic (contact angle ~110°) and superhydrophobic (contact angle ~160°) substrates. Analytical models for droplet evaporation in the literature are usually simplified to include only vapor diffusion in the gas domain, and the system is assumed to be isothermal. In the comprehensive model developed in this study, evaporative cooling of the interface is accounted for, and vapor concentration is coupled to local temperature at the interface. Conjugate heat and mass transfer are solved in the solid substrate, liquid droplet, and surrounding gas. Buoyancy-driven convective flows in the droplet and vapor domains are also simulated. The influences of evaporative cooling and convection on the evaporation characteristics are determined quantitatively. The liquid-vapor interface temperature drop induced by evaporative cooling suppresses evaporation, while gas-phase natural convection acts to enhance evaporation. While the effects of these competing transport mechanisms are observed to counterbalance for evaporation on a hydrophobic surface, the stronger influence of evaporative cooling on a superhydrophobic surface accounts for an overprediction of experimental evaporation rates by ~20% with vapor diffusion-based models. The local evaporation fluxes along the liquid-vapor interface for both hydrophobic and superhydrophobic substrates are investigated. The highest local evaporation flux occurs at the three-phase contact line region due to proximity to the higher temperature substrate, rather than at the relatively colder droplet top; vapor diffusion-based models predict the opposite. The numerically calculated evaporation rates agree with experimental results to within 2% for superhydrophobic substrates and 3% for hydrophobic substrates. The large deviations between past analytical models and the experimental data are therefore reconciled with the

  7. Simultaneous spreading and evaporation: recent developments.

    PubMed

    Semenov, Sergey; Trybala, Anna; Rubio, Ramon G; Kovalchuk, Nina; Starov, Victor; Velarde, Manuel G

    2014-04-01

    The recent progress in theoretical and experimental studies of simultaneous spreading and evaporation of liquid droplets on solid substrates is discussed for pure liquids including nanodroplets, nanosuspensions of inorganic particles (nanofluids) and surfactant solutions. Evaporation of both complete wetting and partial wetting liquids into a nonsaturated vapour atmosphere are considered. However, the main attention is paid to the case of partial wetting when the hysteresis of static contact angle takes place. In the case of complete wetting the spreading/evaporation process proceeds in two stages. A theory was suggested for this case and a good agreement with available experimental data was achieved. In the case of partial wetting the spreading/evaporation of a sessile droplet of pure liquid goes through four subsequent stages: (i) the initial stage, spreading, is relatively short (1-2 min) and therefore evaporation can be neglected during this stage; during the initial stage the contact angle reaches the value of advancing contact angle and the radius of the droplet base reaches its maximum value, (ii) the first stage of evaporation is characterised by the constant value of the radius of the droplet base; the value of the contact angle during the first stage decreases from static advancing to static receding contact angle; (iii) during the second stage of evaporation the contact angle remains constant and equal to its receding value, while the radius of the droplet base decreases; and (iv) at the third stage of evaporation both the contact angle and the radius of the droplet base decrease until the drop completely disappears. It has been shown theoretically and confirmed experimentally that during the first and second stages of evaporation the volume of droplet to power 2/3 decreases linearly with time. The universal dependence of the contact angle during the first stage and of the radius of the droplet base during the second stage on the reduced time has been

  8. Initial basalt target site selection evaluation for the Mars penetrator drop test

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Quaide, W. L.; Polkowski, G.

    1976-01-01

    Potential basalt target sites for an air drop penetrator test were described and the criteria involved in site selection were discussed. A summary of the background field geology and recommendations for optimum sites are also presented.

  9. Males that drop a sexually selected weapon grow larger testes.

    PubMed

    Joseph, Paul N; Emberts, Zachary; Sasson, Daniel A; Miller, Christine W

    2018-01-01

    Costly sexually selected weapons are predicted to trade off with postcopulatory traits, such as testes. Although weapons can be important for achieving access to females, individuals of some species can permanently drop (i.e. autotomize) their weapons, without regeneration, to escape danger. We capitalized on this natural behavior to experimentally address whether the loss of a sexually selected weapon leads to increased testes investment in the leaf-footed cactus bug, Narnia femorata Stål (Hemiptera: Coreidae). In a second experiment, we measured offspring production for males that lost a weapon during development. As predicted, males that dropped a hind limb during development grew significantly larger testes than the control treatments. Hind-limb autotomy did not result in the enlargement of other nearby traits. Our results are the first to experimentally demonstrate that males compensate for natural weapon loss by investing more in testes. In a second experiment we found that females paired with males that lost a hind limb had 40% lower egg hatching success than females paired with intact males, perhaps because of lower mating receptivity to males with a lost limb. Importantly, in those cases where viable offspring were produced, males missing a hind limb produced 42% more offspring than males with intact limbs. These results suggest that the loss of a hind-limb weapon can, in some cases, lead to greater fertilization success. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  10. FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEDESCHI AR; CORBETT JE; WILSON RA

    2012-01-26

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactivemore » species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.« less

  11. Results for the Brine Evaporation Bag (BEB) Brine Processing Test

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Flynn, Michael; Fisher, John; Shaw, Hali; Kawashima, Brian; Beeler, David; Howard, Kevin

    2015-01-01

    The recent Brine Processing Test compared the NASA Forward Osmosis Brine Dewatering (FOBD), Paragon Ionomer Water Processor (IWP), UMPQUA Ultrasonic Brine Dewatering System (UBDS), and the NASA Brine Evaporation Bag (BEB). This paper reports the results of the BEB. The BEB was operated at 70 deg C and a base pressure of 12 torr. The BEB was operated in a batch mode, and processed 0.4L of brine per batch. Two different brine feeds were tested, a chromic acid-urine brine and a chromic acid-urine-hygiene mix brine. The chromic acid-urine brine, known as the ISS Alternate Pretreatment Brine, had an average processing rate of 95 mL/hr with a specific power of 5kWhr/L. The complete results of these tests will be reported within this paper.

  12. Low-cost thin-film absorber/evaporator for an absorption chiller. Final report, May 1992-April 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowenstein, A.; Sibilia, M.

    1993-04-01

    The feasibility of making the absorber and evaporator of a small lithium-bromide absorption chiller from thin plastic films was studied. Tests were performed to measure (1) pressure limitations for a plastic thin-film heat exchanger, (2) flow pressure-drop characteristics, (3) air permeation rates across the plastic films, and (4) creep characteristics of the plastic films. Initial tests were performed on heat exchangers made of either low-density polyethylene (LDPE), high-density polyethylene (HDPE), or a LDPE/HDPE blend. While initial designs for the heat exchanger failed at internal pressures of only 5 to 6 psi, the final design could withstand pressures of 34 psi.

  13. Two stage indirect evaporative cooling system

    DOEpatents

    Bourne, Richard C.; Lee, Brian E.; Callaway, Duncan

    2005-08-23

    A two stage indirect evaporative cooler that moves air from a blower mounted above the unit, vertically downward into dry air passages in an indirect stage and turns the air flow horizontally before leaving the indirect stage. After leaving the dry passages, a major air portion travels into the direct stage and the remainder of the air is induced by a pressure drop in the direct stage to turn 180.degree. and returns horizontally through wet passages in the indirect stage and out of the unit as exhaust air.

  14. Thermal imaging of levitated fresh and salt water drops during laser irradiation

    NASA Astrophysics Data System (ADS)

    Brownell, Cody; Biggs, Harrison

    2017-11-01

    Simulation of high energy laser propagation and scattering in the maritime environment is problematic, due to the high likelihood of turbulence, fog, and rain or sea spray within the beam path. Considering large water drops (diameters of approximately 1-mm), such as those found in a light rain, an incident high energy laser will lead to rapid evaporation of the water drop as it traverses the beam path. In this work we present surface temperature measurements of a water drop obtained using a FLIR IR camera. The drop is acoustically levitated, and subject to a continuous wave laser with a wavelength of 1070-nm and a mean irradiance of approximately 800 W/cm2. These measurements show that the steady-state surface temperature of the drop is well below the saturation temperature, and for pure substances the equilibrium temperature decreases with decreasing drop volume similar to observations with smaller aqueous aerosols. Temperature non-uniformity within the drop is also assessed from statistics of the surface temperature fluctuations. Preliminary results from irradiated salt water drops show notably different behavior from fresh water drops, including temperature spikes as the drop volume decreases and occasional nucleate boiling. Acknowledge support from ONR #N00014-17-WX-00031.

  15. A drop in performance on a fluid intelligence test due to instructed-rule mindset.

    PubMed

    ErEl, Hadas; Meiran, Nachshon

    2017-09-01

    A 'mindset' is a configuration of processing resources that are made available for the task at hand as well as their suitable tuning for carrying it out. Of special interest, remote-relation abstract mindsets are introduced by activities sharing only general control processes with the task. To test the effect of a remote-relation mindset on performance on a Fluid Intelligence test (Raven's Advanced Progressive Matrices, RAPM), we induced a mindset associated with little usage of executive processing by requiring participants to execute a well-defined classification rule 12 times, a manipulation known from previous work to drastically impair rule-generation performance and associated cognitive processes. In Experiment 1, this manipulation led to a drop in RAPM performance equivalent to 10.1 IQ points. No drop was observed in a General Knowledge task. In Experiment 2, a similar drop in RAPM performance was observed (equivalent to 7.9 and 9.2 IQ points) regardless if participants were pre-informed about the upcoming RAPM test. These results indicate strong (most likely, transient) adverse effects of a remote-relation mindset on test performance. They imply that although the trait of Fluid Intelligence has probably not changed, mindsets can severely distort estimates of this trait.

  16. Orion Swing Drop 6

    NASA Image and Video Library

    2017-09-25

    Water impact test of an 18,000-pound (8,165 kilogram) test version of the Orion spacecraft at NASA's Langley Research Center. NASA is swing drop testing this Orion capsule mock-up at Langley's Hydro Impact Basin to certify the actual Orion spacecraft for water landings. In a series of tests, Orion is being dropped in a variety of different conditions to help fine-tune NASA's predictions of Orion's landing loads.

  17. DNS of moderate-temperature gaseous mixing layers laden with multicomponent-fuel drops

    NASA Technical Reports Server (NTRS)

    Clercq, P. C. Le; Bellan, J.

    2004-01-01

    A formulation representing multicomponent-fuel (MC-fuel) composition as a Probability Distribution Function (PDF) depending on the molar weight is used to construct a model of a large number of MC-fuel drops evaporating in a gas flow, so as to assess the extent of fuel specificity on the vapor composition.

  18. Scanning drop sensor

    DOEpatents

    Jin, Jian; Xiang, Chengxiang; Gregoire, John

    2017-05-09

    Electrochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  19. Evaporation of liquid droplets on solid substrates. I. Flat substrate with pinned or moving contact line

    NASA Astrophysics Data System (ADS)

    Amini, Amirhossein; Homsy, G. M.

    2017-04-01

    We study the evolution of the profile of a two-dimensional volatile liquid droplet that is evaporating on a flat heated substrate. We adopt a one-sided model with thermal control that, together with the lubrication approximation, results in an evolution equation for the local height of the droplet. Without requiring any presumption for the shape of the drop, the problem is formulated for the two modes of evaporation: a pinned contact line and a moving contact line with fixed contact angle. Numerical solutions are provided for each case. For the pinned contact line case, we observe that after a time interval the contact angle dynamics become nonlinear and, interestingly, the local contact angle goes to zero in advance of total evaporation of the drop. For the case of a moving contact line, in which the singularity at the contact line is treated by a numerical slip model, we find that the droplet nearly keeps its initial circular shape and that the contact line recedes with constant speed.

  20. Hollow Fiber Space Water Membrane Evaporator Flight Prototype Design and Testing

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice; Vogel, Mtthew; Honas, Matt; Dillon, Paul; Colunga, Aaron; Truong, Lily; Porwitz, Darwin; Tsioulos, Gus

    2011-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform thermal control for advanced spacesuits and to take advantage of recent advances in micropore membrane technology. This results in a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. The current design was based on a previous design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape. This was developed into a full-scale prototype consisting of 14,300 tube bundled into 30 stacks, each of which is formed into a chevron shape and separated by spacers and organized into three sectors of 10 nested stacks. The new design replaced metal components with plastic ones, eliminated the spacers, and has a custom built flight like backpressure valve mounted on the side of the SWME housing to reduce backpressure when fully open. A number of tests were performed in order to improve the strength of the polyurethane header that holds the fibers in place while the system is pressurized. Vacuum chamber testing showed similar heat rejection as a function of inlet water temperature and water vapor backpressure was similar to the previous design. Other tests pushed the limits of tolerance to freezing and showed suitability to reject heat in a Mars pressure environment with and without a sweep gas. Tolerance to contamination by constituents expected to be found in potable water produced by distillation processes was tested in a conventional way by allowing constituents to accumulate in the coolant as evaporation occurs. For this purpose, the SWME cartridge has endured an equivalent of 30 EVAs exposure and demonstrated acceptable performance decline.

  1. Test-Analysis Correlation of a Crash Simulation of a Vertical Drop Test of a Commuter-Category Aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    2004-01-01

    A finite element model of an ATR42-300 commuter-class aircraft was developed and a crash simulation was executed. Analytical predictions were correlated with data obtained from a 30-feet per second (9.14-meters per second) vertical drop test of the aircraft. The purpose of the test was to evaluate the structural response of the aircraft when subjected to a severe, but survivable, impact. The aircraft was configured with seats, dummies, luggage, and other ballast. The wings were filled with 8,700 lb. (3,946 kilograms) of water to represent the fuel. The finite element model, which consisted of 57,643 nodes and 62,979 elements, was developed from direct measurements of the airframe geometry. The seats, dummies, luggage, simulated engines and fuel, and other ballast were represented using concentrated masses. The model was executed in LS-DYNA, a commercial finite element code for performing explicit transient dynamic simulations. Analytical predictions of structural deformation and selected time-history responses were correlated with experimental data from the drop test to validate the simulation.

  2. Simulating New Drop Test Vehicles and Test Techniques for the Orion CEV Parachute Assembly System

    NASA Technical Reports Server (NTRS)

    Morris, Aaron L.; Fraire, Usbaldo, Jr.; Bledsoe, Kristin J.; Ray, Eric; Moore, Jim W.; Olson, Leah M.

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) project is engaged in a multi-year design and test campaign to qualify a parachute recovery system for human use on the Orion Spacecraft. Test and simulation techniques have evolved concurrently to keep up with the demands of a challenging and complex system. The primary simulations used for preflight predictions and post-test data reconstructions are Decelerator System Simulation (DSS), Decelerator System Simulation Application (DSSA), and Drop Test Vehicle Simulation (DTV-SIM). The goal of this paper is to provide a roadmap to future programs on the test technique challenges and obstacles involved in executing a large-scale, multi-year parachute test program. A focus on flight simulation modeling and correlation to test techniques executed to obtain parachute performance parameters are presented.

  3. Scanning drop sensor

    DOEpatents

    Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Shinde, Aniketa A.; Guevarra, Dan W.; Jones, Ryan J.; Marcin, Martin R.; Mitrovic, Slobodan

    2017-05-09

    Electrochemical or electrochemical and photochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  4. Automated single cell sorting and deposition in submicroliter drops

    NASA Astrophysics Data System (ADS)

    Salánki, Rita; Gerecsei, Tamás; Orgovan, Norbert; Sándor, Noémi; Péter, Beatrix; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint

    2014-08-01

    Automated manipulation and sorting of single cells are challenging, when intact cells are needed for further investigations, e.g., RNA or DNA sequencing. We applied a computer controlled micropipette on a microscope admitting 80 PCR (Polymerase Chain Reaction) tubes to be filled with single cells in a cycle. Due to the Laplace pressure, fluid starts to flow out from the micropipette only above a critical pressure preventing the precise control of drop volume in the submicroliter range. We found an anomalous pressure additive to the Laplace pressure that we attribute to the evaporation of the drop. We have overcome the problem of the critical dropping pressure with sequentially operated fast fluidic valves timed with a millisecond precision. Minimum drop volume was 0.4-0.7 μl with a sorting speed of 15-20 s per cell. After picking NE-4C neuroectodermal mouse stem cells and human primary monocytes from a standard plastic Petri dish we could gently deposit single cells inside tiny drops. 94 ± 3% and 54 ± 7% of the deposited drops contained single cells for NE-4C and monocytes, respectively. 7.5 ± 4% of the drops contained multiple cells in case of monocytes. Remaining drops were empty. Number of cells deposited in a drop could be documented by imaging the Petri dish before and after sorting. We tuned the adhesion force of cells to make the manipulation successful without the application of microstructures for trapping cells on the surface. We propose that our straightforward and flexible setup opens an avenue for single cell isolation, critically needed for the rapidly growing field of single cell biology.

  5. Vertical Force-deflection Characteristics of a Pair of 56-inch-diameter Aircraft Tires from Static and Drop Tests with and Without Prerotation

    NASA Technical Reports Server (NTRS)

    Smiley, Robert F; Horne, Walter B

    1957-01-01

    The vertical force-deflection characteristics were experimentally determined for a pair of 56-inch-diameter tires under static and drop-test conditions with and without prerotation. For increasing force, the tires were found to be least stiff for static tests, almost the same as for the static case for prerotation drop tests as long as the tires remain rotating, and appreciably stiffer for drop tests without prerotation.

  6. Thermal stabilities of drops of burning thermoplastics under the UL 94 vertical test conditions.

    PubMed

    Wang, Yong; Zhang, Jun

    2013-02-15

    The properties of polymer melts will strongly affect the fire hazard of the pool induced by polymer melt flow. In this study the thermal stabilities of eight thermoplastic polymers as well as their melting drops generated under the UL 94 vertical burning test conditions were investigated by thermogravimetric experiments. It was found that the kinetic compensation effect existed for the decomposition reactions of the polymers and their drops. For polymethylmethacrylate (PMMA), high impact polystyrene (HIPS), poly(acrylonitrile-butadiene-styrene) (ABS), polyamide 6 (PA6), polypropylene (PP) and low density polyethylene (LDPE), the onset decomposition temperature and the two decomposition kinetic parameters (the pre-exponential factor and the activation energy) of the drop were less than those of the polymer. However, the onset decomposition temperature and the two kinetic parameters of PC's drop were greater than those of polycarbonate (PC). Interestingly, for polyethylenevinylacetate (EVA18) the drop hardly contained the vinyl acetate chain segments. Similarly, for the PMMA/LDPE blends and the PMMA/PP blends, when the volume fraction of PMMA was less than 50% the drop hardly contained PMMA, implying that the blend would not drip until PMMA burned away and its surface temperature approached the decomposition temperature of the continuous phase composed of LDPE or PP. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Are the Stress Drops of Small Earthquakes Good Predictors of the Stress Drops of Larger Earthquakes?

    NASA Astrophysics Data System (ADS)

    Hardebeck, J.

    2017-12-01

    Uncertainty in PSHA could be reduced through better estimates of stress drop for possible future large earthquakes. Studies of small earthquakes find spatial variability in stress drop; if large earthquakes have similar spatial patterns, their stress drops may be better predicted using the stress drops of small local events. This regionalization implies the variance with respect to the local mean stress drop may be smaller than the variance with respect to the global mean. I test this idea using the Shearer et al. (2006) stress drop catalog for M1.5-3.1 events in southern California. I apply quality control (Hauksson, 2015) and remove near-field aftershocks (Wooddell & Abrahamson, 2014). The standard deviation of the distribution of the log10 stress drop is reduced from 0.45 (factor of 3) to 0.31 (factor of 2) by normalizing each event's stress drop by the local mean. I explore whether a similar variance reduction is possible when using the Shearer catalog to predict stress drops of larger southern California events. For catalogs of moderate-sized events (e.g. Kanamori, 1993; Mayeda & Walter, 1996; Boyd, 2017), normalizing by the Shearer catalog's local mean stress drop does not reduce the standard deviation compared to the unmodified stress drops. I compile stress drops of larger events from the literature, and identify 15 M5.5-7.5 earthquakes with at least three estimates. Because of the wide range of stress drop estimates for each event, and the different techniques and assumptions, it is difficult to assign a single stress drop value to each event. Instead, I compare the distributions of stress drop estimates for pairs of events, and test whether the means of the distributions are statistically significantly different. The events divide into 3 categories: low, medium, and high stress drop, with significant differences in mean stress drop between events in the low and the high stress drop categories. I test whether the spatial patterns of the Shearer catalog

  8. Evaluation of wheelchair drop seat crashworthiness.

    PubMed

    Bertocci, G; Ha, D; van Roosmalen, L; Karg, P; Deemer, E

    2001-05-01

    Wheelchair seating crash performance is critical to protecting wheelchair users who remain seated in their wheelchairs during transportation. Relying upon computer simulation and sled testing seat loads associated with a 20 g/48 kph (20 g/30 mph) frontal impact and 50th percentile male occupant were estimated to develop test criteria. Using a static test setup we evaluated the performance of various types of commercially available drop seats against the loading test criteria. Five different types of drop seats (two specimens each) constructed of various materials (i.e. plastics, plywood, metal) were evaluated. Two types of drop seats (three of the total 10 specimens) met the 16650 N (3750 lb) frontal impact test criteria. While additional validation of the test protocol is necessary, this study suggests that some drop seat designs may be incapable of withstanding crash level loads.

  9. Hollow Fiber Flight Prototype Spacesuit Water Membrane Evaporator Design and Testing

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Vogel, Matt; Makinen, Janice; Tsioulos, Gus

    2010-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform thermal control for advanced spacesuits and to take advantage of recent advances in micropore membrane technology. This results in a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. The Membrana Celgard X50-215 microporous hollow-fiber (HoFi) membrane was selected after recent extensive testing as the most suitable candidate among commercial alternatives for continued SWME prototype development. The current design was based on a previous design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape. This was developed into a full-scale prototype consisting of 14,300 tube bundled into 30 stacks, each of which is formed into a chevron shape and separated by spacers and organized into three sectors of 10 nested stacks. The new design replaced metal components with plastic ones, and has a custom built flight like backpressure valve mounted on the side of the SWME housing to reduce backpressure when fully open. The spacers that provided separation of the chevron fiber stacks were eliminated. Vacuum chamber testing showed improved heat rejection as a function of inlet water temperature and water vapor backpressure compared with the previous design. Other tests pushed the limits of tolerance to freezing and showed suitability to reject heat in a Mars pressure environment with and without a sweep gas. Tolerance to contamination by constituents expected to be found in potable water produced by distillation processes was tested in a conventional way by allowing constituents to accumulate in the coolant as evaporation occurs. For this purpose, the SWME cartridge has endured an equivalent of 30 EVAs exposure and demonstrated minimal performance decline.

  10. Thermal Vacuum Testing of a Multi-Evaporator Miniature Loop Heat Pipe

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Nagano, Hosei

    2008-01-01

    Under NASA's New Millennium Program Space Technology 8 Project, four experiments are being developed for future small system applications requiring low mass, low power, and compactness. GSFC is responsible for developing the Thermal Loop experiment, which is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and condensers. The objective is to validate the operation of an MLHP, including reliable start-ups, steady operation, heat load sharing, and tight temperature control over the range of 273K to 308K. An MLHP Breadboard has been built and tested for 1200 hours under the laboratory environment and 500 hours in a thermal vacuum chamber. Results of the TV tests are presented here.

  11. An evaporation model of colloidal suspension droplets

    NASA Astrophysics Data System (ADS)

    Sartori, Silvana; Li\\ Nán, Amable; Lasheras, Juan C.

    2009-11-01

    Colloidal suspensions of polymers in water or other solvents are widely used in the pharmaceutical industry to coat tablets with different agents. These allow controlling the rate at which the drug is delivered, taste or physical appearance. The coating is performed by simultaneously spraying and drying the tablets with the colloidal suspension at moderately high temperatures. The spreading of the coating on the pills surface depends on the droplet Webber and Reynolds numbers, angle of impact, but more importantly on the rheological properties of the drop. We present a model for the evaporation of a colloidal suspension droplet in a hot air environment with temperatures substantially lower than the boiling temperature of the carrier fluid. As the liquid vaporizes from the surface, a compacting front advances into the droplet faster than the liquid surface regresses, forming a shell of a porous medium where the particles reach their maximum packing density. While the surface regresses, the evaporation rate is determined by both the rate at which heat is transported to the droplet surface and the rate at which liquid vapor is diffused away from it. This regime continues until the compacting front reaches the center of the droplet, at which point the evaporation rate is drastically reduced.

  12. Evaporator Development for an Evaporative Heat Pipe System

    NASA Technical Reports Server (NTRS)

    Peters, Leigh C.

    2004-01-01

    As fossil fuel resources continue to deplete, research for alternate power sources continues to develop. One of these alternate technologies is fuel cells. They are a practical fuel source able to provide significant amounts of power for applications from laptops to automobiles and their only byproduct is water. However, although this technology is over a century old and NASA has been working with it since the early 1960 s there is still room for improvement. The research I am involved in at NASA's Glenn Research Center is focusing on what is called a regenerative fuel cell system. The unique characteristic of this type of system is that it used an outside power source to create electrolysis of the water it produces and it then reuses the hydrogen and oxygen to continue producing power. The advantage of this type of system is that, for example, on space missions it can use solar power to recharge its gas supplies between periods when the object being orbited blocks out the sun. This particular system however is far from completion. This is because of the many components that are required to make up a fuel cell that need to be tested individually. The specific part of the system that is being worked on this summer of 2004 is the cooling system. The fuel cell stack, that is the part that actually creates the power, also produces a lot of heat. When not properly cooled, it has been known to cause fires which, needless to say are not conducive to the type of power that is trying to be created. In order to cool the fuel cell stack in this system we are developing a heat pipe cooling system. One of the main components of a heat pipe cooling system is what is known as the evaporator, and that is what happens to be the part of the system we are developing this summer. In most heat pipe systems the evaporator is a tube in which the working fluid is cooled and then re-circulated through the system to absorb more heat energy from the fuel cell stack. For this system, instead

  13. 242-16H 2H EVAPORATOR POT SAMPLING FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krementz, D; William Cheng, W

    2008-06-11

    Due to the materials that are processed through 2H Evaporator, scale is constantly being deposited on the surfaces of the evaporator pot. In order to meet the requirements of the Nuclear Criticality Safety Analysis/Evaluation (NCSA/NCSE) for 2H Evaporator, inspections of the pot are performed to determine the extent of scaling. Once the volume of scale reaches a certain threshold, the pot must be chemically cleaned to remove the scale. Prior to cleaning the pot, samples of the scale are obtained to determine the concentration of uranium and plutonium and also to provide information to assist with pot cleaning. Savannah Rivermore » National Laboratory (SRNL) was requested by Liquid Waste Organization (LWO) Engineering to obtain these samples from two locations within the evaporator. Past experience has proven the difficulty of successfully obtaining solids samples from the 2H Evaporator pot. To mitigate this risk, a total of four samplers were designed and fabricated to ensure that two samples could be obtained. Samples had previously been obtained from the cone surface directly below the vertical access riser using a custom scraping tool. This tool was fabricated and deployed successfully. A second scraper was designed to obtain sample from the nearby vertical thermowell and a third scraper was designed to obtain sample from the vertical pot wall. The newly developed scrapers both employed a pneumatically actuated elbow. The scrapers were designed to be easily attached/removed from the elbow assembly. These tools were fabricated and deployed successfully. A fourth tool was designed to obtain sample from the opposite side of the pot under the tube bundle. This tool was fabricated and tested, but the additional modifications required to make the tool field-ready could not be complete in time to meet the aggressive deployment schedule. Two samples were obtained near the pot entry location, one from the pot wall and the other from the evaporator feed pipe. Since a

  14. Self-reflection and self-transmission of pulsed radiation by laser-evaporated media

    NASA Astrophysics Data System (ADS)

    Furzikov, Nickolay P.

    1991-05-01

    Analysis of the known laser-induced evaporation (thermodestruction) model predicts the quasiperiodic oscillation of the effective absorption depth between its normal value and some minute quantity consisting of a part of the incident wavelength. This prediction explains the experimental data on the polymer laser ablation depth as well as the reflection transient drop of the laserdestructed aluminum.

  15. Prediction of dynamic and mixing characteristics of drop-laden mixing layers using DNS and LES

    NASA Technical Reports Server (NTRS)

    Okong'o, N.; Leboissetier, A.; Bellan, J.

    2004-01-01

    Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) have been conducted of a temporal mixing layer laden with evaporating drops, in order to assess the ability of LES to reproduce dynamic and mixing aspects of the DNS which affect combustion, independently of combustion models.

  16. Generation and characterization of surface layers on acoustically levitated drops.

    PubMed

    Tuckermann, Rudolf; Bauerecker, Sigurd; Cammenga, Heiko K

    2007-06-15

    Surface layers of natural and technical amphiphiles, e.g., octadecanol, stearic acid and related compounds as well as perfluorinated fatty alcohols (PFA), have been investigated on the surface of acoustically levitated drops. In contrast to Langmuir troughs, traditionally used in the research of surface layers at the air-water interface, acoustic levitation offers the advantages of a minimized and contact-less technique. Although the film pressure cannot be directly adjusted on acoustically levitated drops, it runs through a wide pressure range due to the shrinking surface of an evaporating drop. During this process, different states of the generated surface layer have been identified, in particular the phase transition from the gaseous or liquid-expanded to the liquid-condensed state of surface layers of octadecanol and other related amphiphiles. Characteristic parameters, such as the relative permeation resistance and the area per molecule in a condensed surface layer, have been quantified and were found comparable to results obtained from surface layers generated on Langmuir troughs.

  17. Micromachined evaporators for AMTEC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izenson, M.G.; Crowley, C.J.

    1996-12-31

    To achieve high cell efficiency and reliability, the capillary pumping system for Alkali Metal Thermal to Electric Conversion (AMTEC) must have three key characteristics: (1) very small pores to achieve a high capillary pumping head, (2) high permeability for the flow of liquid sodium to minimize internal losses, and (3) be made from a material that is exceptionally stable at high temperatures in a sodium environment. The authors have developed micromachining techniques to manufacture high performance evaporators for AMTEC cells. The evaporators have been fabricated from stainless steel, molybdenum, and a niobium alloy (Nb-1Zr). The regular, micromachined structure leads tomore » very high capillary pumping head with high permeability for liquid flow. Data from tests performed with common fluids at room temperature characterize the capillary pumping head and permeability of these structures. Three micromachined evaporators have been built into AMTEC cells and operated at temperatures up to 1,100 K. Results from these tests confirm the excellent pumping capabilities of the micromachined evaporators.« less

  18. Growth directions of C8-BTBT thin films during drop-casting

    NASA Astrophysics Data System (ADS)

    Iizuka, Naoki; Zanka, Tomohiko; Onishi, Yosuke; Fujieda, Ichiro

    2016-02-01

    Because charge transport in a single crystal is anisotropic, control of its orientation is important for enhancing electrical characteristics and reducing variations among devices. For growing an organic thin film, a solution process such as inkjet printing offers advantages in throughput. We have proposed to apply an external temperature gradient during drop-casting and to control the direction of solvent evaporation. In experiment, a temperature gradient was generated in a bare Si substrate by placing it on a Si plate bridging two heat stages. When a solution containing 2,7-dioctyl [1]benzothieno[3,2-b]benzothiophene (C8-BTBT) was dropped on the substrate, evaporation started at the hotter side of the droplet and proceeded toward the colder side. The front line of the liquid was not pinned and the solution extended toward the colder region. As a result, a thin film was formed in a 7mm-long region. The peripheral region of the film was significantly thicker due to the coffee ring effect. The surface of the rest of the film was mostly smooth and terrace structures with 2.6nm steps were observed. The step roughly corresponds to the length of the C8-BTBT molecule. The film thickness varied from 20nm to 50nm over the distance of 3mm. Another film was grown on a glass substrate under a similar condition. Observation of the film with a polarizing microscope revealed that fan-shaped domains were formed in the film and that their optical axes were mostly along the directions of the solvent evaporation.

  19. Evaporation estimates from the Dead Sea and their implications on its water balance

    NASA Astrophysics Data System (ADS)

    Oroud, Ibrahim M.

    2011-12-01

    The Dead Sea (DS) is a terminal hypersaline water body situated in the deepest part of the Jordan Valley. There is a growing interest in linking the DS to the open seas due to severe water shortages in the area and the serious geological and environmental hazards to its vicinity caused by the rapid level drop of the DS. A key issue in linking the DS with the open seas would be an accurate determination of evaporation rates. There exist large uncertainties of evaporation estimates from the DS due to the complex feedback mechanisms between meteorological forcings and thermophysical properties of hypersaline solutions. Numerous methods have been used to estimate current and historical (pre-1960) evaporation rates, with estimates differing by ˜100%. Evaporation from the DS is usually deduced indirectly using energy, water balance, or pan methods with uncertainty in many parameters. Accumulated errors resulting from these uncertainties are usually pooled into the estimates of evaporation rates. In this paper, a physically based method with minimum empirical parameters is used to evaluate historical and current evaporation estimates from the DS. The more likely figures for historical and current evaporation rates from the DS were 1,500-1,600 and 1,200-1,250 mm per annum, respectively. Results obtained are congruent with field observations and with more elaborate procedures.

  20. Light-Directed Particle Patterning by Evaporative Optical Marangoni Assembly.

    PubMed

    Varanakkottu, Subramanyan Namboodiri; Anyfantakis, Manos; Morel, Mathieu; Rudiuk, Sergii; Baigl, Damien

    2016-01-13

    Controlled particle deposition on surfaces is crucial for both exploiting collective properties of particles and their integration into devices. Most available methods depend on intrinsic properties of either the substrate or the particles to be deposited making them difficult to apply to complex, naturally occurring or industrial formulations. Here we describe a new strategy to pattern particles from an evaporating drop, regardless of inherent particle characteristics and suspension composition. We use light to generate Marangoni surface stresses resulting in flow patterns that accumulate particles at predefined positions. Using projected images, we generate a broad variety of complex patterns, including multiple spots, lines and letters. Strikingly, this method, which we call evaporative optical Marangoni assembly (eOMA), allows us to pattern particles regardless of their size or surface properties, in model suspensions as well as in complex, real-world formulations such as commercial coffee.

  1. Extension of drop experiments with the MIKROBA balloon drop facility

    NASA Astrophysics Data System (ADS)

    Sommer, K.; Kretzschmar, K.; Dorn, C.

    1992-12-01

    The German balloon drop facility MIKROBA extends the worldwide available drop experiment opportunities to the presently highest usable experimentation time span of 55 s at microgravity conditions better than 0.001 g. The microgravity period is started with the typical quasi-deal step function from 1 to 0 g. MIKROBA allows flexible experiment design, short access time, and easy hands-on payload integration. The transport to the operational height is realized by soft energies and technologies compatible with the earth's environment. Balloon campaigns are not restricted to a certain test range, i.e., several suitable sites are available all over the world. MIKROBA combines negligible mechanical loads at the mission start, typical of all drop facilities, with extremely low drop deceleration loads (less than g), due to the implemented three-stage parachute and airbag recovery subsystem.

  2. Pinning-Depinning Mechanisms of the Contact Line during Evaporation of Microdroplets on Rough Surfaces: A Lattice Boltzmann Simulation.

    PubMed

    Yuan, Wu-Zhi; Zhang, Li-Zhi

    2018-06-22

    In this study, pinning and depinning of the contact line during droplet evaporation on the rough surfaces with randomly distributed structures is theoretically analyzed and numerically investigated. A fast Fourier transformation (FFT) method is used to generate the rough surfaces, whose skewness ( Sk), kurtosis ( K), and root-mean-square ( Rq) are obtained from real surfaces. A thermal multiphase LB model is proposed to simulate the isothermal pinning and depinning processes. The evaporation processes are recorded with the variations in contact angle, contact radius, and drop shape. It is found that the drops sitting on rough surfaces show different behavior from those on smoother surfaces. The former shows a pinned contact line during almost the whole lifetime. By contrast, the latter experiences a stick-slip-jump behavior until the drop disappears. At mesoscopic scale, the pinning of the contact line is actually a slow motion rather than a complete immobilization at the sharp edges. The dynamic equilibrium is achieved by the self-adjustment of the contact line according to each edge.

  3. Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.

    2015-05-15

    Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films depositedmore » by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.« less

  4. Evaporation control research, 1955-58

    USGS Publications Warehouse

    Cruse, Robert R.; Harbeck, Guy Earl

    1960-01-01

    One hundred fifty-two compounds and compositions of matter were screened as potential evaporation retardants. The homologous straight-chain fatty alkanols are considered the best materials for retardants. Several methods of application of the alkanols to the reservoir surface were investigated. Although wick-type drippers for the application of liquids and cage rafts for the application of solids appear to be the most promising methods from an economic standpoint, both methods have serious disadvantages. Considerable study was given to reducing biochemical oxidation of the evaporation retardants. Copper in several forms was found adequate as a bacteriostatic agent but posed a potential hazard because of its toxicity. Many other bactericides that were tested were also toxic. Two sets of large-scale field tests have been completed and several others are still in progress. On the larger reservoirs, the reduction of evaporation was not more than 20 percent under the prevailing conditions and the application procedure used. Three major practical problems remain; namely, the effects and action of wind on the monofilm, the effects of biochemical oxidation, and the most effective method of application. Fundamental problems remaining include the effects of various impurities, and the composition of the best evaporation retardant; the long-range effects of monofilms on the limnology of a reservoir, including the transfer of oxygen and carbon dioxide; toxicological aspects of all components of any evaporation-retardant composition, plus toxicology of any composition chosen for large-scale use; and further studies of the calorimetry and thermodynamics involved in the mechanism of evaporation and its reduction by a monofilm.

  5. Fluid Flow in An Evaporating Droplet

    NASA Technical Reports Server (NTRS)

    Hu, H.; Larson, R.

    1999-01-01

    Droplet evaporation is a common phenomenon in everyday life. For example, when a droplet of coffee or salt solution is dropped onto a surface and the droplet dries out, a ring of coffee or salt particles is left on the surface. This phenomenon exists not only in everyday life, but also in many practical industrial processes and scientific research and could also be used to assist in DNA sequence analysis, if the flow field in the droplet produced by the evaporation could be understood and predicted in detail. In order to measure the fluid flow in a droplet, small particles can be suspended into the fluid as tracers. From the ratio of gravitational force to Brownian force a(exp 4)(delta rho)(g)/k(sub B)T, we find that particle's tendency to settle is proportional to a(exp 4) (a is particle radius). So, to keep the particles from settling, the droplet size should be chosen to be in a range 0.1 -1.0 microns in experiments. For such small particles, the Brownian force will affect the motion of the particle preventing accurate measurement of the flow field. This problem could be overcome by using larger particles as tracers to measure fluid flow under microgravity since the gravitational acceleration g is then very small. For larger particles, Brownian force would hardly affect the motion of the particles. Therefore, accurate flow field could be determined from experiments in microgravity. In this paper, we will investigate the fluid flow in an evaporating droplet under normal gravity, and compare experiments to theories. Then, we will present our ideas about the experimental measurement of fluid flow in an evaporating droplet under microgravity.

  6. Vertical drop test of a transport fuselage section located forward of the wing

    NASA Technical Reports Server (NTRS)

    Williams, M. S.; Hayduk, R. J.

    1983-01-01

    A Boeing 707 fuselage section was drop tested at the NASA Langley Research Center to measure structural, seat, and occupant response to vertical crack loads. Post-test inspection showed that the section bottom collapsed inward approximately 2 ft. Preliminary data traces indicated maximum normal accelerations of 20 g on the fuselage bottom, 10 to 12 g on the cabin floor, and 6.5 to 8 g in the pelvises of the anthropomorphic dummies.

  7. Is evaporative colling important for shallow clouds?

    NASA Astrophysics Data System (ADS)

    Gentine, P.; Park, S. B.; Davini, P.; D'Andrea, F.

    2017-12-01

    We here investigate and test using large-eddy simulations the hypothesis that evaporative cooling might not be crucial for shallow clouds. Results from various Shallow convection and stratocumulus LES experiments show that the influence of evaporative cooling is secondary compared to turbulent mixing, which dominates the buoyancy reversal. In shallow cumulus subising shells are not due to evaporative cooling but rather reflect a vortical structure, with a postive buoyancy anomaly in the core due to condensation. Disabling evaporative cooling has negligible impact on this vortical structure and on buoyancy reversal. Similarly in non-precipitating stratocumuli evaporative cooling is negeligible copmared to other factors, especially turbulent mixing and pressure effects. These results emphasize that it may not be critical to icnlude evaporative cooling in parameterizations of shallow clouds and that it does not alter entrainment.

  8. Thermal Management Optimization of a Thermoelectric-Integrated Methanol Evaporator Using a Compact CFD Modeling Approach

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Chen, Min; Snyder, G. Jeffrey; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2013-07-01

    To better manage the magnitude and direction of the heat flux in an exchanger-based methanol evaporator of a fuel cell system, thermoelectric (TE) modules can be deployed as TE heat flux regulators (TERs). The performance of the TE-integrated evaporator is strongly influenced by its heat exchange structure. The structure transfers the fuel cell exhaust heat to the evaporation chamber to evaporate the methanol, where TE modules are installed in between to facilitate the heat regulation. In this work, firstly, a numerical study is conducted to determine the working currents and working modes of the TERs under the system working condition fluctuations and during the system cold start. A three-dimensional evaporator model is generated in ANSYS FLUENT® by combining a compact TE model with various heat exchange structure geometries. The compact TE model can dramatically improve the computational efficiency, and uses a different material property acquisition method based on module manufacturers' datasheets. Secondly, a simulation study is carried out on the novel evaporator to minimize its thermal resistance and to assess the evaporator pressure drop. The factors studied include the type of fins in the heat exchange structure, the thickness of the fins, the axial conduction penalty, etc. Results show that the TE-integrated evaporator can work more efficiently and smoothly during both load fluctuations and system cold start, offering superior performance.

  9. Zero-Gravity Research Facility Drop Test (2/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physcis, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 2 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  10. Zero-Gravity Research Facility Drop Test (1/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No.1 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  11. Zero-Gravity Research Facility Drop Test (3/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one-meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 3 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  12. Zero-Gravity Research Facility Drop Test (4/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 4 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  13. Cost effectiveness of introducing a new European evaporative emissions test procedure for petrol vehicles

    NASA Astrophysics Data System (ADS)

    Haq, Gary; Martini, Giorgio; Mellios, Giorgos

    2014-10-01

    Evaporative emissions of non-methane volatile organic compounds (NMVOCs) arise from the vehicle's fuel system due to changes in ambient and vehicle temperatures, and contribute to urban smog. This paper presents an economic analysis of the societal costs and benefits of implementing a revised European evaporative emission test procedure for petrol vehicles under four scenarios for the period 2015-2040. The paper concludes that the most cost-effective option is the implementation of an aggressive purging strategy over 48 h and improved canister durability (scenario 2+). The average net benefit of implementing this scenario is €146,709,441 at a 6% discount rate. Per vehicle benefits range from €6-9 but when fuel savings benefits are added, total benefits range from €13-18. This is compared to average additional cost per vehicle of €9.

  14. Analytical Model for Diffusive Evaporation of Sessile Droplets Coupled with Interfacial Cooling Effect.

    PubMed

    Nguyen, Tuan A H; Biggs, Simon R; Nguyen, Anh V

    2018-05-30

    Current analytical models for sessile droplet evaporation do not consider the nonuniform temperature field within the droplet and can overpredict the evaporation by 20%. This deviation can be attributed to a significant temperature drop due to the release of the latent heat of evaporation along the air-liquid interface. We report, for the first time, an analytical solution of the sessile droplet evaporation coupled with this interfacial cooling effect. The two-way coupling model of the quasi-steady thermal diffusion within the droplet and the quasi-steady diffusion-controlled droplet evaporation is conveniently solved in the toroidal coordinate system by applying the method of separation of variables. Our new analytical model for the coupled vapor concentration and temperature fields is in the closed form and is applicable for a full range of spherical-cap shape droplets of different contact angles and types of fluids. Our analytical results are uniquely quantified by a dimensionless evaporative cooling number E o whose magnitude is determined only by the thermophysical properties of the liquid and the atmosphere. Accordingly, the larger the magnitude of E o , the more significant the effect of the evaporative cooling, which results in stronger suppression on the evaporation rate. The classical isothermal model is recovered if the temperature gradient along the air-liquid interface is negligible ( E o = 0). For substrates with very high thermal conductivities (isothermal substrates), our analytical model predicts a reversal of temperature gradient along the droplet-free surface at a contact angle of 119°. Our findings pose interesting challenges but also guidance for experimental investigations.

  15. Spreading of blood drops over dry porous substrate: complete wetting case.

    PubMed

    Chao, Tzu Chieh; Arjmandi-Tash, Omid; Das, Diganta B; Starov, Victor M

    2015-05-15

    The process of dried blood spot sampling involves simultaneous spreading and penetration of blood into a porous filter paper with subsequent evaporation and drying. Spreading of small drops of blood, which is a non-Newtonian liquid, over a dry porous layer is investigated from both theoretical and experimental points of view. A system of two differential equations is derived, which describes the time evolution of radii of both the drop base and the wetted region inside the porous medium. The system of equations does not include any fitting parameters. The predicted time evolutions of both radii are compared with experimental data published earlier. For a given power law dependency of viscosity of blood with different hematocrit level, radii of both drop base and wetted region, and contact angle fell on three universal curves if appropriate scales are used with a plot of the dimensionless radii of the drop base and the wetted region inside the porous layer and dynamic contact angle on dimensionless time. The predicted theoretical relationships are three universal curves accounting satisfactorily for the experimental data. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Characterization of new eye drops with choline salicylate and assessment of their irritancy by in vitro short time exposure tests.

    PubMed

    Wroblewska, Katarzyna; Kucinska, Małgorzata; Murias, Marek; Lulek, Janina

    2015-09-01

    The aim of our study was to examine the irritation potential of new eye drops containing 2% choline salicylate (CS) as an active pharmaceutical ingredient (API) and various polymers increasing eye drop viscosity (hydroxyethylcellulose, hydroxypropyl methylcellulose, methylcellulose, polyvinyl alcohol, polyvinylpyrrolidone). The standard method for assessing the potential of irritating substances has been the Draize rabbit eye test. However the European Centre for Validation of Alternative Methods and the Coordinating Committee for Validation of Alternative Methods recommend, short time exposure (STE) in vitro tests as an alternative method for assessing eye irritation. The eye irritation potential was determined using cytotoxicity test methods for rabbit corneal cell line (SIRC) after 5 min exposure. The viability of cells was determined using two cytotoxicity assays: MTT and Neutral Red Uptake. According to the irritation rankings for the short time exposure test, all tested eye drops are classified as non-irritating (cell viability >70%).

  17. Performance evaluation of Space Shuttle SRB parachutes from air drop and scaled model wind tunnel tests. [Solid Rocket Booster recovery system

    NASA Technical Reports Server (NTRS)

    Moog, R. D.; Bacchus, D. L.; Utreja, L. R.

    1979-01-01

    The aerodynamic performance characteristics have been determined for the Space Shuttle Solid Rocket Booster drogue, main, and pilot parachutes. The performance evaluation on the 20-degree conical ribbon parachutes is based primarily on air drop tests of full scale prototype parachutes. In addition, parametric wind tunnel tests were performed and used in parachute configuration development and preliminary performance assessments. The wind tunnel test data are compared to the drop test results and both sets of data are used to determine the predicted performance of the Solid Rocket Booster flight parachutes. Data from other drop tests of large ribbon parachutes are also compared with the Solid Rocket Booster parachute performance characteristics. Parameters assessed include full open terminal drag coefficients, reefed drag area, opening characteristics, clustering effects, and forebody interference.

  18. A cloud-evaporation parameterization for general ciculation models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlesinger, M.E.; Oh, J.H.

    1993-04-01

    An evaporation-zone (EZ) model for cloud evaporation is developed. In this model a cloud consists of I [open quotes]cloudlets,[close quotes] each comprising cloud droplets with radii from zero to r[sub max], the latter value depending on the drop size distribution (DSD). Evaporation occurs only within the EZ comprised of J[le]I cloudlets. When the cloudlet at cloud edge evaporates, the EZ progresses one cloudlet into the cloud's interior. This eventually results in evaporation of the cloud in time t[sub E] = K(H/h)r[sup 2][sub max](1[minus]S[sub e])[sup [minus]1] where H is the cloud thickness, h the EZ thickness, S[sub e] the environmental saturationmore » ratio, and K a constant. Values of t[sub E](1[minus]S[sub e]) versus h are presented for eight observed DSDs. For use in atmospheric general circulation models (GCMs), the cloud evaporation process is represented by dm/dt=[minus](1[minus]S[sub e])m/[tau], where m is the cloud-water mixing ratio and [tau]=K(H/h)r[sup 2][sub max]n[sup [minus]1]. With parameter n chosen sufficiently large, a GCM cloud will evaporate virtually entirely in time t[sub E], for example, 99.3% for n = 5. Values of [tau] for use in the multilayer atmospheric CRCM have been determined by performing ten perpetual-January simulations and ten perpetual-July simulations, each set of ten for prescribed pairs of [tau] values for stratiform ([tau][sub s]) and cumuloform ([tau][sub c]) clouds. An optimum choice of [tau][sub s] and [tau][sub c], based on minimizing the errors of the model's simulated cloudiness, planetary albedo, outgoing longwave radiation, and precipitation, is [tau][sub s]=[tau][sub c] = 3 min. This corresponds to t[sub E](1-S[sub e]) = 15 min for both stratiform and cumuloform clouds; hence, to an EZ thickness of about 0.6-0.8 m for stratus, stratocumulus, and altostratus clouds, 2-3 m for nimbostratus and cumulus clouds, and 17 m for cumulonimbus clouds. 18 refs., 6 figs.« less

  19. Testing of a 4 K to 2 K heat exchanger with an intermediate pressure drop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, Peter N.; Ganni, Venkatarao

    2015-12-01

    Most large sub-atmospheric helium refrigeration systems incorporate a heat exchanger at the load, or in the distribution system, to counter-flow the sub-atmospheric return with the super-critical or liquid supply. A significant process improvement is theoretically obtainable by handling the exergy loss across the Joule-Thompson throttling valve supplying the flow to the load in a simple but different manner. As briefly outlined in previous publications, the exergy loss can be minimized by allowing the supply flow pressure to decrease to a sub-atmospheric pressure concurrent with heat exchange flow from the load. One practical implementation is to sub-divide the supply flow pressuremore » drop between two heat exchanger sections, incorporating an intermediate pressure drop. Such a test is being performed at Jefferson Lab's Cryogenic Test Facility (CTF). This paper will briefly discuss the theory, practical implementation and test results and analysis obtained to date.« less

  20. Hollow Fiber Spacesuit Water Membrane Evaporator Development and Testing for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis; Tsioulos, Gus; Settles, Joseph; Colunga, Aaron; Vogel, Matthew; Vonau, Walt

    2010-01-01

    Grant Bue and Matthew Vogel presented the two types of Spacesuit Water Membrane Evaporators (SWME) that were developed based on hydrophobic microporous membranes. One type, the Sheet Membrane (SaM) SWME, is composed of six concentric Teflon sheet membranes fixed on cylindrical-supporting screens to form three concentric annular water channels. Those water channels are surrounded by vacuum passages to draw off the water vapor that passes through the membrane. The other type, the Hollow Fiber (HoFi) SWME, is composed of more than 14,000 tubes. Water flows through the tubes and water vapor passes through the tube wall to the shell side that vents to the vacuum of space. Both SWME types have undergone testing to baseline the performance at predicted operating temperatures and flow rates; the units also have been subjected to contamination testing and other conditions to test resiliency.

  1. Internally damped, self-arresting vertical drop-weight apparatus

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R. (Inventor); Prasad, Chunchu B. (Inventor); Waters, William A. (Inventor); Stockum, Robert W. (Inventor); Walter, Manfred A. (Inventor)

    1994-01-01

    A vertical dropped-weight impact test machine has a dropped-weight barrel vertically supported on upper and lower support brackets. The dropped-weight barrel is chambered to receive a dropped-weight assembly having a latch pin at its upper end, a damping unit in the middle, and a tup at its lower end. The tup is adapted for gathering data during impact testing. The latch pin releasably engages a latch pin coupling assembly. The latch pin coupling assembly is attached to a winch via a halyard for raising and lowering the dropped-weight assembly. The lower end of the dropped-weight barrel is provided with a bounce-back arresting mechanism which is activated by the descending passage of the dropped-weight assembly. After striking the specimen, the dropped-weight assembly rebounds vertically and is caught by the bounce-back arresting mechanism. The damping unit of the dropped-weight assembly serves to dissipate energy from the rebounding dropped-weight assembly and prevents the dropped-weight assembly from rebounding from the self-arresting mechanism.

  2. Self-assembly of colloidal particles from evaporating droplets: role of DLVO interactions and proposition of a phase diagram.

    PubMed

    Bhardwaj, Rajneesh; Fang, Xiaohua; Somasundaran, Ponisseril; Attinger, Daniel

    2010-06-01

    The shape of deposits obtained from drying drops containing colloidal particles matters for technologies such as inkjet printing, microelectronics, and bioassay manufacturing. In this work, the formation of deposits during the drying of nanoliter drops containing colloidal particles is investigated experimentally with microscopy and profilometry, and theoretically with an in-house finite-element code. The system studied involves aqueous drops containing titania nanoparticles evaporating on a glass substrate. Deposit shapes from spotted drops at different pH values are measured using a laser profilometer. Our results show that the pH of the solution influences the dried deposit pattern, which can be ring-like or more uniform. The transition between these patterns is explained by considering how DLVO interactions such as the electrostatic and van der Waals forces modify the particle deposition process. Also, a phase diagram is proposed to describe how the shape of a colloidal deposit results from the competition among three flow patterns: a radial flow driven by evaporation at the wetting line, a Marangoni recirculating flow driven by surface tension gradients, and the transport of particles toward the substrate driven by DLVO interactions. This phase diagram explains three types of deposits commonly observed experimentally, such as a peripheral ring, a small central bump, or a uniform layer. Simulations and experiments are found in very good agreement.

  3. Full-Scale Hollow Fiber Spacesuit Water Membrane Evaporator Prototype Development and Testing for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Dillon, Paul; Weaver, Gregg

    2009-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the superior candidate among commercial alternatives for HoFi SWME prototype development. Although a number of design variants were considered, one that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was deemed best for further development. An analysis of test data showed that eight layer stacks of the HoFi sheets that had good exposure on each side of the stack would evaporate water with high efficiency. A design that has 15,000 tubes, with 18 cm of exposed tubes between headers has been built and tested that meets the size, weight, and performance requirements of the SWME. This full-scale prototype consists of 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Testing has been performed to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the sensitivity to surfactants.

  4. Effervescence in champagne and sparkling wines: From bubble bursting to droplet evaporation

    NASA Astrophysics Data System (ADS)

    Séon, T.; Liger-Belair, G.

    2017-01-01

    When a bubble reaches an air-liquid interface, it ruptures, projecting a multitude of tiny droplets in the air. Across the oceans, an estimated 1018 to 1020 bubbles burst every second, and form the so called sea spray, a major player in earth's climate system. At a smaller scale, in a glass of champagne about a million bubbles nucleate on the wall, rise towards the surface and burst, giving birth to a particular aerosol that holds a concentrate of wine aromas. Based on the model experiment of a single bubble bursting in simple liquids, we depict each step of this effervescence, from bubble bursting to drop evaporation. In particular, we propose simple scaling laws for the jet velocity and the top drop size. We unravel experimentally the intricate roles of bubble shape, capillary waves, gravity, and liquid properties in the jet dynamics and the drop detachment. We demonstrate how damping action of viscosity produces faster and smaller droplets and more generally how liquid properties enable to control the bubble bursting aerosol characteristics. In this context, the particular case of Champagne wine aerosol is studied in details and the key features of this aerosol are identified. We demonstrate that compared to a still wine, champagne fizz drastically enhances the transfer of liquid into the atmosphere. Conditions on bubble radius and wine viscosity that optimize aerosol evaporation are provided. These results pave the way towards the fine tuning of aerosol characteristics and flavor release during sparkling wine tasting, a major issue of the sparkling wine industry.

  5. Particle-size dependence of immersion freezing: Investigation of INUIT test aerosol particles with freely suspended water drops.

    NASA Astrophysics Data System (ADS)

    Diehl, Karoline; Debertshäuser, Michael; Eppers, Oliver; Jantsch, Evelyn; Mitra, Subir K.

    2014-05-01

    One goal of the research group INUIT (Ice Nuclei research UnIT) is to investigate the efficiencies of several test ice nuclei under comparable conditions but with different experimental techniques. In the present studies, two methods are used: the Mainz vertical wind tunnel and an acoustic levitator placed inside a cold chamber. In both cases drops are freely levitated, either at their terminal velocity in the wind tunnel updraft or around the nodes of a standing ultrasonic wave in the acoustic levitator. Thus, heat transfer conditions are well approximated, and wall contact effects on freezing as well as electrical charges of the drops are avoided. Drop radii are 370 μm and 1 mm, respectively. In the wind tunnel, drops are investigated at constant temperatures within a certain time period and the onset of freezing is observed directly. In the acoustic levitator, the drop temperature decreases during the experiments and is measured by an in-situ calibrated Infrared thermometer. The onset of freezing is indicated by a rapid rise of the drop surface temperature because of the release of latent heat. Investigated test ice nuclei are Snomax® as a proxy of biological particles and illite NX as well as K-feldspar as represents of mineral dust. The particle concentrations are 1 × 10-12 to 3 × 10-6 g Snomax® per drop and 5 × 10-9 to 5 × 10-5 g mineral dust per drop. Freezing temperatures are between -2 and -18° C in case of Snomax® and between -14 and -26° C in case of mineral dust. The lower the particle masses per drop the lower are the freezing temperatures. For similar particle concentrations in the drops, the median freezing temperatures determined by the two techniques agree well within the measurement errors. With the knowledge of the specific particle surface area of the mineral dusts, the results are interpreted also in terms of particle surface area per drop. Results from the wind tunnel experiments which are performed at constant temperatures indicate

  6. Characterization of new eye drops with choline salicylate and assessment of their irritancy by in vitro short time exposure tests

    PubMed Central

    Wroblewska, Katarzyna; Kucinska, Małgorzata; Murias, Marek; Lulek, Janina

    2014-01-01

    The aim of our study was to examine the irritation potential of new eye drops containing 2% choline salicylate (CS) as an active pharmaceutical ingredient (API) and various polymers increasing eye drop viscosity (hydroxyethylcellulose, hydroxypropyl methylcellulose, methylcellulose, polyvinyl alcohol, polyvinylpyrrolidone). The standard method for assessing the potential of irritating substances has been the Draize rabbit eye test. However the European Centre for Validation of Alternative Methods and the Coordinating Committee for Validation of Alternative Methods recommend, short time exposure (STE) in vitro tests as an alternative method for assessing eye irritation. The eye irritation potential was determined using cytotoxicity test methods for rabbit corneal cell line (SIRC) after 5 min exposure. The viability of cells was determined using two cytotoxicity assays: MTT and Neutral Red Uptake. According to the irritation rankings for the short time exposure test, all tested eye drops are classified as non-irritating (cell viability >70%). PMID:27134543

  7. Gravity Effects in Condensing and Evaporating Films

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Som, S. M.; Allen, J. S.; Pedersen, P. C.

    2004-01-01

    A general overview of gravity effects in condensing and evaporating films is presented. The topics include: 1) Research Overview; 2) NASA Recognizes Critical Need for Condensation & Evaporation Research to Enable Human Exploration of Space; 3) Condensation and Evaporation Research in Reduced Gravity is Enabling for AHST Technology Needs; 4) Differing Role of Surface Tension on Condensing/Evaporating Film Stability; 5) Fluid Mechanisms in Condensing and Evaporating Films in Reduced Gravity; 6) Research Plan; 7) Experimental Configurations for Condensing Films; 8) Laboratory Condensation Test Cell; 9) Aircraft Experiment; 10) Condensation Study Current Test Conditions; 11) Diagnostics; 12) Shadowgraph Images of Condensing n- pentane Film in Unstable (-1g) Configuration; 13) Condensing n-Pentane Film in Normal Gravity (-1g) at Constant Pressure; 14) Condensing n-Pentane Film in Normal Gravity (-1g) with Cyclic Pressure; 15) Non-condensing Pumped Film in Normal Gravity (-1g); 16) Heat Transfer Coefficient in Developing, Unstable Condensing Film in Normal Gravity; 17) Heat Transfer for Unsteady Condensing Film (-1g); 18) Ultrasound Measurement of Film Thickness N-pentane Film, Stable (+1g) Configuration; and 19) Ultrasound Measurement of Film Thickness N-pentane Film, Unstable (-1g) Configuration.

  8. A method for improving the drop test performance of a MEMS microphone

    NASA Astrophysics Data System (ADS)

    Winter, Matthias; Ben Aoun, Seifeddine; Feiertag, Gregor; Leidl, Anton; Scheele, Patrick; Seidel, Helmut

    2009-05-01

    Most micro electro mechanical system (MEMS) microphones are designed as capacitive microphones where a thin conductive membrane is located in front of a rigid counter electrode. The membrane is exposed to the environment to convert sound into vibrations of the membrane. The movement of the membrane causes a change in the capacitance between the membrane and the counter electrode. The resonance frequency of the membrane is designed to occur above the acoustic spectrum to achieve a linear frequency response. To obtain a good sensitivity the thickness of the membrane must be as small as possible, typically below 0.5 μm. These fragile membranes may be damaged by rapid pressure changes. For cell phones, drop tests are among the most relevant reliability tests. The extremely high acceleration during the drop impact leads to fast pressure changes in the microphone which could result in a rupture of the membrane. To overcome this problem a stable protection layer can be placed at a small distance to the membrane. The protective layer has small holes to form a low pass filter for air pressure. The low pass filter reduces pressure changes at high frequencies so that damage to the membrane by excitation in resonance will be prevented.

  9. Selective retardation of perfume oil evaporation from oil-in-water emulsions stabilized by either surfactant or nanoparticles.

    PubMed

    Binks, Bernard P; Fletcher, Paul D I; Holt, Benjamin L; Beaussoubre, Pascal; Wong, Kenneth

    2010-12-07

    We have used dynamic headspace analysis to investigate the evaporation rates of perfume oils from stirred oil-in-water emulsions into a flowing gas stream. We compare the behavior of an oil of low water solubility (limonene) and one of high water solubility (benzyl acetate). It is shown how the evaporation of an oil of low water solubility is selectively retarded and how the retardation effect depends on the oil volume fraction in the emulsion. We compare how the evaporation retardation depends on the nature of the adsorbed film stabilizing the emulsion. Surfactant films are less effective than adsorbed films of nanoparticles, and the retardation can be further enhanced by compression of the adsorbed nanoparticle films by preshrinking the emulsion drops.

  10. Predicting the Drop Performance of Solder Joints by Evaluating the Elastic Strain Energy from High-Speed Ball Pull Tests

    NASA Astrophysics Data System (ADS)

    You, Taehoon; Kim, Yunsung; Kim, Jina; Lee, Jaehong; Jung, Byungwook; Moon, Jungtak; Choe, Heeman

    2009-03-01

    Despite being expensive and time consuming, board-level drop testing has been widely used to assess the drop or impact resistance of the solder joints in handheld microelectronic devices, such as cellphones and personal digital assistants (PDAs). In this study, a new test method, which is much simpler and quicker, is proposed. The method involves evaluating the elastic strain energy and relating it to the impact resistance of the solder joint by considering the Young’s modulus of the bulk solder and the fracture stress of the solder joint during a ball pull test at high strain rates. The results show that solder joints can be ranked in order of descending elastic strain energy as follows: Sn-37Pb, Sn-1Ag-0.5Cu, Sn-3Ag-0.5Cu, and Sn-4Ag-0.5Cu. This order is consistent with the actual drop performances of the samples.

  11. Coarsening of protein clusters on subcellular drops exhibits strong and sudden size selectivity

    NASA Astrophysics Data System (ADS)

    Brown, Aidan; Rutenberg, Andrew

    2015-03-01

    Autophagy is an important process for the degradation of cellular components, with receptor proteins targeting substrates to downstream autophagy machinery. An important question is how receptor protein interactions lead to their selective accumulation on autophagy substrates. Receptor proteins have recently been observed in clusters, raising the possibility that clustering could affect autophagy selectivity. We investigate the clustering dynamics of the autophagy receptor protein NBR1. In addition to standard receptor protein domains, NBR1 has a ``J'' domain that anchors it to membranes, and a coiled-coil domain that enhances self-interaction. We model coarsening clusters of NBR1 on the surfaces of a polydisperse collection of drops, representing organelles. Despite the disconnected nature of the drop surfaces, we recover dynamical scaling of cluster sizes. Significantly, we find that at a well-defined time after coarsening begins, clusters evaporate from smaller drops and grow on larger drops. Thus, coarsening-driven size selection will localize protein clusters to larger substrates, leaving smaller substrates without clusters. This provides a possible physical mechanism for autophagy selectivity, and can explain reports of size selection during peroxisome degradation.

  12. Evaporation behavior of lithium, potassium, uranium and rare earth chlorides in pyroprocessing

    NASA Astrophysics Data System (ADS)

    Jang, Junhyuk; Kim, Tackjin; Park, Sungbin; Kim, Gha-Young; Kim, Sihyoung; Lee, Sungjai

    2017-12-01

    The evaporation behaviors of Li, K, U, and rare earth (RE) chlorides were examined for the cathode process in pyroprocessing. The evaporation temperatures of the chlorides were evaluated in vacuum by measuring the weight decrease. In addition, an evaporation test up to 1473 K of the cathode process using a surrogate mixture of uranium and chlorides was conducted. It was found that LiCl evaporated more readily than the other chlorides. The weight of LiCl was rapidly decreased at temperatures above 981 K, while that of KCl was decreased above 1035 K, indicating the evaporation. UCl3 evaporated at temperatures above 1103 K. RE chlorides showed a similar evaporation behavior, evaporating first at 1158 K then rapidly evaporating at temperatures above 1230 K. Thus, the order of evaporation with increasing temperature was found to be LiCl < KCl < UCl3 < RE chlorides, with different RE chlorides evaporating at similar temperature. The surrogate test confirmed the observed evaporation trend of the chlorides during the cathode process, and revealed that the contamination of uranium remains by the back-reaction of RE chlorides is negligible.

  13. Specialized moisture retention eyewear for evaporative dry eye.

    PubMed

    Waduthantri, Samanthila; Tan, Chien Hua; Fong, Yee Wei; Tong, Louis

    2015-05-01

    To evaluate the suitablity of commercially available moisture retention eyewear for treating evaporative dry eye. Eleven patients with evaporative dry eyes were prescibed moisture retention eyewear for 3 months in addition to regular lubricant eye drops. Frequency and severity of dry eye symptoms, corneal fluorescein staining and tear break up time (TBUT) were evaluated at baseline and 3-month post-treatment. Main outcome measure was global symptom score (based on severity and frequency of dry eye symptoms on a visual analog scale) and secondary outcomes were changes in sectoral corneal fluorescein staining and tear break up time (TBUT) from pre-treatment level. There was a significant improvement in dry eye symptoms after using moisture retention eyewear for 3 months (p < 0.05). Corneal fluorescein staining in all five zones of the cornea in both eyes improved significantly (p < 0.05). There was no significant improvement in TBUT. Patients used ocular lubricants less frequently (p < 0.05) compared to the commencement of the study. Patients found moisture retention eyewear to be useful in relieving dry eye symptoms in windy, air-conditioned environments or when doing vision-related daily tasks. This study shows that moisture retention eyewear might be a valuable adjunct in management of evaporative dry eye and this new design of commercially available eyewear could have a good acceptability rate.

  14. Automated Droplet Manipulation Using Closed-Loop Axisymmetric Drop Shape Analysis.

    PubMed

    Yu, Kyle; Yang, Jinlong; Zuo, Yi Y

    2016-05-17

    Droplet manipulation plays an important role in a wide range of scientific and industrial applications, such as synthesis of thin-film materials, control of interfacial reactions, and operation of digital microfluidics. Compared to micron-sized droplets, which are commonly considered as spherical beads, millimeter-sized droplets are generally deformable by gravity, thus introducing nonlinearity into control of droplet properties. Such a nonlinear drop shape effect is especially crucial for droplet manipulation, even for small droplets, at the presence of surfactants. In this paper, we have developed a novel closed-loop axisymmetric drop shape analysis (ADSA), integrated into a constrained drop surfactometer (CDS), for manipulating millimeter-sized droplets. The closed-loop ADSA generalizes applications of the traditional drop shape analysis from a surface tension measurement methodology to a sophisticated tool for manipulating droplets in real time. We have demonstrated the feasibility and advantages of the closed-loop ADSA in three applications, including control of drop volume by automatically compensating natural evaporation, precise control of surface area variations for high-fidelity biophysical simulations of natural pulmonary surfactant, and steady control of surface pressure for in situ Langmuir-Blodgett transfer from droplets. All these applications have demonstrated the accuracy, versatility, applicability, and automation of this new ADSA-based droplet manipulation technique. Combining with CDS, the closed-loop ADSA holds great promise for advancing droplet manipulation in a variety of material and surface science applications, such as thin-film fabrication, self-assembly, and biophysical study of pulmonary surfactant.

  15. The interaction of evaporative and convective instabilities

    NASA Astrophysics Data System (ADS)

    Ozen, O.

    Evaporative convection arises in a variety of natural and industrial processes, such as drying of lakebeds, heat pipe technology and dry-eye syndrome. The phenomenon of evaporative convection leads to an interfacial instability where an erstwhile flat surface becomes undulated as a control variable, such as temperature drop, exceeds a critical value. This instability has been investigated by others assuming that the vapor phase is infinitely deep and passive, i.e. vapor fluid dynamics has been ignored. However, when we look at some engineering processes, such as distillation columns, heat pipes and drying technologies where phase change takes place we might imagine that the assumption of an infinitely deep vapor layer or at least that of a passive vapor is inappropriate. Previous work on convection in bilayer systems with no phase-change suggests that active vapor layers play a major role in determining the stability of an interface. Hence, for the case of convection with phase-change, we will address this issue and try to answer the question whether the infinitely deep and passive vapor layer is a valid assumption. We have also investigated, theoretically, the gravity and surface tension gradient-driven instabilities occurring during the evaporation of a liquid into its own vapor taking into account the fluid dynamics of both phases and the finiteness of the domains of each phase, i.e. the liquid and its vapor are assumed to be confined between two horizontal plates, and different heating arrangements are applied. The effects of fluid layer depths, the evaporation rate and the temperature gradient applied across the fluids on the stability of the interface are studied. The modes of the flow pattern are determined for each scenario. The physics of the instability are explained and a comparison is made with the results of similar, yet physically different problems.

  16. From bubble bursting to droplet evaporation in the context of champagne aerosols

    NASA Astrophysics Data System (ADS)

    Seon, Thomas; Ghabache, Elisabeth; Antkowiak, Arnaud; Liger-Belair, Gerard

    2015-11-01

    As champagne or sparkling wine is poured into a glass, a myriad of ascending bubbles collapse and therefore radiate a multitude of tiny droplets above the free surface into the form of very characteristic and refreshing aerosols. Because these aerosols have been found to hold the organoleptic ``essence'' of champagne they are believed to play a crucial role in the flavor release in comparison with that from a flat wine for example. Based on the model experiment of a single bubble bursting in idealized champagnes, the velocity, radius and maximum height of the first jet drop following bubble collapse have been characterized, with varying bubble size and liquid properties in the context of champagne aerosols. Using the experimental results and simple theoretical models for drop and surface evaporation, we show that bubble bursting aerosols drastically enhance the transfer of liquid in the atmosphere with respect to a flat liquid surface. Contrary to popular opinion, we exhibit that small bubbles are negative in terms of aroma release, and we underline bubble radii enabling to optimize the droplet height and evaporation in the whole range of champagne properties. These results pave the road to the fine tuning of champagne aroma diffusion, a major issue of the sparkling wine industry.

  17. A simple technique to reduce evaporation of crystallization droplets by using plate lids with apertures for adding liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zipper, Lauren E.; Binghamton University, 4400 Vestal Parkway East, Vestal, NY 13902; Aristide, Xavier

    This article describes the use of evaporation control lids that are fitted to crystallization plates to improve the reproducibility of trials using as little as 5 nl. The plate lids contain apertures which are large enough for the transfer of protein containing droplets, but small enough to greatly reduce the rate of evaporation during the time needed to prepare the plate. A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fittingmore » the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. The results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.« less

  18. Crash Simulation of a Vertical Drop Test of a B737 Fuselage Section with Overhead Bins and Luggage

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    2004-01-01

    The focus of this paper is to describe a crash simulation of a 30-ft/s vertical drop test of a Boeing 737 (B737) fuselage section. The drop test of the 10-ft. long fuselage section of a B737 aircraft was conducted in November of 2000 at the FAA Technical Center in Atlantic City, NJ. The fuselage section was outfitted with two different commercial overhead stowage bins. In addition, 3,229-lbs. of luggage were packed in the cargo hold to represent a maximum take-off weight condition. The main objective of the test was to evaluate the response and failure modes of the overhead stowage bins in a narrow-body transport fuselage section when subjected to a severe, but survivable, impact. A secondary objective of the test was to generate experimental data for correlation with the crash simulation. A full-scale 3-dimensional finite element model of the fuselage section was developed and a crash simulation was conducted using the explicit, nonlinear transient dynamic code, MSC.Dytran. Pre-test predictions of the fuselage and overhead bin responses were generated for correlation with the drop test data. A description of the finite element model and an assessment of the analytical/experimental correlation are presented. In addition, suggestions for modifications to the model to improve correlation are proposed.

  19. 30 CFR 35.22 - Test to determine effect of evaporation on flammability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... shall be to determine the effect of evaporation on the reduction of fire resistance of a hydraulic fluid..., capable of maintaining the specified evaporation temperature constant within ±2 °F., shall be used in the... shall be inserted in the oven, that shall have been heated to a temperature of 150 °F., ±2 °F., which...

  20. 30 CFR 35.22 - Test to determine effect of evaporation on flammability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... shall be to determine the effect of evaporation on the reduction of fire resistance of a hydraulic fluid..., capable of maintaining the specified evaporation temperature constant within ±2 °F., shall be used in the... shall be inserted in the oven, that shall have been heated to a temperature of 150 °F., ±2 °F., which...

  1. 30 CFR 35.22 - Test to determine effect of evaporation on flammability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... shall be to determine the effect of evaporation on the reduction of fire resistance of a hydraulic fluid..., capable of maintaining the specified evaporation temperature constant within ±2 °F., shall be used in the... shall be inserted in the oven, that shall have been heated to a temperature of 150 °F., ±2 °F., which...

  2. 30 CFR 35.22 - Test to determine effect of evaporation on flammability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... shall be to determine the effect of evaporation on the reduction of fire resistance of a hydraulic fluid..., capable of maintaining the specified evaporation temperature constant within ±2 °F., shall be used in the... shall be inserted in the oven, that shall have been heated to a temperature of 150 °F., ±2 °F., which...

  3. Quasi-Uniform High Speed Foam Crush Testing Using a Guided Drop Mass Impact

    NASA Technical Reports Server (NTRS)

    Jones, Lisa E. (Technical Monitor); Kellas, Sotiris

    2004-01-01

    A relatively simple method for measuring the dynamic crush response of foam materials at various loading rates is described. The method utilizes a drop mass impact configuration with mass and impact velocity selected such that the crush speed remains approximately uniform during the entire sample crushing event. Instrumentation, data acquisition, and data processing techniques are presented, and limitations of the test method are discussed. The objective of the test method is to produce input data for dynamic finite element modeling involving crash and energy absorption characteristics of foam materials.

  4. A Ghost Fluid/Level Set Method for boiling flows and liquid evaporation: Application to the Leidenfrost effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rueda Villegas, Lucia; Alis, Romain; Lepilliez, Mathieu

    2016-07-01

    The development of numerical methods for the direct numerical simulation of two-phase flows with phase change, in the framework of interface capturing or interface tracking methods, is the main topic of this study. We propose a novel numerical method, which allows dealing with both evaporation and boiling at the interface between a liquid and a gas. Indeed, in some specific situations involving very heterogeneous thermodynamic conditions at the interface, the distinction between boiling and evaporation is not always possible. For instance, it can occur for a Leidenfrost droplet; a water drop levitating above a hot plate whose temperature is muchmore » higher than the boiling temperature. In this case, boiling occurs in the film of saturated vapor which is entrapped between the bottom of the drop and the plate, whereas the top of the water droplet evaporates in contact of ambient air. The situation can also be ambiguous for a superheated droplet or at the contact line between a liquid and a hot wall whose temperature is higher than the saturation temperature of the liquid. In these situations, the interface temperature can locally reach the saturation temperature (boiling point), for instance near a contact line, and be cooler in other places. Thus, boiling and evaporation can occur simultaneously on different regions of the same liquid interface or occur successively at different times of the history of an evaporating droplet. Standard numerical methods are not able to perform computations in these transient regimes, therefore, we propose in this paper a novel numerical method to achieve this challenging task. Finally, we present several accuracy validations against theoretical solutions and experimental results to strengthen the relevance of this new method.« less

  5. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array.

    PubMed

    Tung, Yi-Chung; Hsiao, Amy Y; Allen, Steven G; Torisawa, Yu-suke; Ho, Mitchell; Takayama, Shuichi

    2011-02-07

    Culture of cells as three-dimensional (3D) aggregates can enhance in vitro tests for basic biological research as well as for therapeutics development. Such 3D culture models, however, are often more complicated, cumbersome, and expensive than two-dimensional (2D) cultures. This paper describes a 384-well format hanging drop culture plate that makes spheroid formation, culture, and subsequent drug testing on the obtained 3D cellular constructs as straightforward to perform and adapt to existing high-throughput screening (HTS) instruments as conventional 2D cultures. Using this platform, we show that drugs with different modes of action produce distinct responses in the physiological 3D cell spheroids compared to conventional 2D cell monolayers. Specifically, the anticancer drug 5-fluorouracil (5-FU) has higher anti-proliferative effects on 2D cultures whereas the hypoxia activated drug commonly referred to as tirapazamine (TPZ) are more effective against 3D cultures. The multiplexed 3D hanging drop culture and testing plate provides an efficient way to obtain biological insights that are often lost in 2D platforms.

  6. 40 CFR 1042.107 - Evaporative emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fuels (for example, natural gas). (b) If an engine uses a volatile liquid fuel, such as methanol, the engine's fuel system and the vessel in which the engine is installed must meet the evaporative emission... emissions are controlled. (2) Present test data to show that fuel systems and vessels meet the evaporative...

  7. 40 CFR 1042.107 - Evaporative emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fuels (for example, natural gas). (b) If an engine uses a volatile liquid fuel, such as methanol, the engine's fuel system and the vessel in which the engine is installed must meet the evaporative emission... emissions are controlled. (2) Present test data to show that fuel systems and vessels meet the evaporative...

  8. A Novel Acousto-Electric Levitator for Studies of Drop and Particle Clusters and Arrays

    NASA Technical Reports Server (NTRS)

    Tian, Yuren; Apfel, Robert E.; Zheng, Yibing

    1999-01-01

    A novel and compact instrumentation for studying the behavior of drop sprays and of clusters of drops now permits fundamental research into the behavior of reacting and non-reacting fluid and solid species. The new capability is made possible by simultaneous acousto-electric levitation and charging of "seed" droplets (10-30 microns in diameter) which come together in 2-D clusters (with up to 300 droplets). These clusters are interesting in their own right because of their crystalline and quasi-crystalline forms, which depend on the acoustic and electric field parameters. By varying the electric and acoustic field intensities, one can cause a cluster of droplets to condense into larger drops (e.g. 50-300 microns) which, because of their charge, form uniformly spaced 2-D arrays of monodispersed drops (e.g. 30-40 array drops in preliminary experiments). One or more layers of these 2-D arrays can form in the acoustic standing wave. Such a configuration permits a wide range of fundamental studies of drop evaporation, combustion, and nucleation. The drops can be single or multicomponent. Therefore, fundamental materials studies can also be performed. Using this same Cluster and Array Generation (CAG) instrumentation, it has been also possible in preliminary experiments to demonstrate the clustering and arraying of solid particles, both coated with an electrically conducting layer and uncoated, and both charged and uncharged.

  9. A simple technique to reduce evaporation of crystallization droplets by using plate lids with apertures for adding liquids

    PubMed Central

    Zipper, Lauren E.; Aristide, Xavier; Bishop, Dylan P.; Joshi, Ishita; Kharzeev, Julia; Patel, Krishna B.; Santiago, Brianna M.; Joshi, Karan; Dorsinvil, Kahille; Sweet, Robert M.; Soares, Alexei S.

    2014-01-01

    A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. The results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations. PMID:25484231

  10. A simple technique to reduce evaporation of crystallization droplets by using plate lids with apertures for adding liquids.

    PubMed

    Zipper, Lauren E; Aristide, Xavier; Bishop, Dylan P; Joshi, Ishita; Kharzeev, Julia; Patel, Krishna B; Santiago, Brianna M; Joshi, Karan; Dorsinvil, Kahille; Sweet, Robert M; Soares, Alexei S

    2014-12-01

    A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63-82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. The results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.

  11. Coalescence of a Drop inside another Drop

    NASA Astrophysics Data System (ADS)

    Mugundhan, Vivek; Jian, Zhen; Yang, Fan; Li, Erqiang; Thoroddsen, Sigurdur

    2016-11-01

    Coalescence dynamics of a pendent drop sitting inside another drop, has been studied experimentally and in numerical simulations. Using an in-house fabricated composite micro-nozzle, a smaller salt-water drop is introduced inside a larger oil drop which is pendent in a tank containing the same liquid as the inner drop. On touching the surface of outer drop, the inner drop coalesces with the surrounding liquid forming a vortex ring, which grows in time to form a mushroom-like structure. The initial dynamics at the first bridge opening up is quantified using Particle Image Velocimetry (PIV), while matching the refractive index of the two liquids. The phenomenon is also numerically simulated using the open-source code Gerris. The problem is fully governed by two non-dimensional parameters: the Ohnesorge number and the diameter ratios of the two drops. The validated numerical model is used to better understand the dynamics of the phenomenon. In some cases a coalescence cascade is observed with liquid draining intermittently and the inner drop reducing in size.

  12. Development of an evaporation-optimized and water-permeable pavement

    NASA Astrophysics Data System (ADS)

    Starke, P.; Göbel, P.; Coldewey, W. G.

    2009-04-01

    During recent decades, urban areas have been threatened more frequently by flood events. Furthermore, the potential for damage from these events has increased on average. The construction of houses, streets and parking lots has caused this trend by sealing the ground surface, i.e. these water-impermeable areas reduce the natural infiltration and evaporation-rates, and in some cases it is even completely stopped. The consequence is the so called "urban water cycle". Water from precipitation cannot be stored anywhere and so there is an immediate and very high surface run-off effect. Especially after intense rain events, canalisations and sewage-treatment plants are overloaded and this leads to higher costs for water treatment and to environmental damage. A practical solution to this problem is the use of water-permeable pavements. Here higher infiltration rates lead to a groundwater recharge that is greater than that of natural soils. The consequences from using these surfaces are already noticeable in many places through increasing groundwater levels. These increases cause damage to buildings. A second difference from a natural-soil water-balance is a lower evapotranspiration rate. Up to now the evaporation rates for water-permeable pavements has not been established accurately. The aim of the applied research project at the University of Muenster, which is sponsored by the DBU (The German Federal Environmental Foundation), is to gain knowledge of urban evaporation rates and of water-permeable surfaces, especially water-permeable pavements. Water-permeable pavements consist of the paving stone surface and the two sub-base layers below. Pre-investigations show that evaporation can be influenced by the complete sub-base. Therefore, the first step was to investigate which materials are used for sub-base construction. All in all, 27 materials were collected from throughout Germany and these materials were then tested (in terms of physical and hydraulic attributes) in

  13. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Hodgson, Ed; Izenso, Mike; Chan, Weibo; Cupples, Scott

    2011-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust non-venting system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's lithium chloride Heat Pump Radiator (HPR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. The SEAR is evacuated at the onset of operations and thereafter, the water vapor absorption rate of the HPR maintains a low pressure environment for the SWME to evaporate effectively. This water vapor captured by solid LiCl in the HPR with a high enthalpy of absorption, results in sufficient temperature lift to reject most of the heat to space by radiation. After the sortie, the HPR would be heated up in a regenerator to drive off and recover the absorbed evaporant. A one-fourth scale prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The HPR was able to stably reject 60 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  14. Adaptive Chemical Networks under Non-Equilibrium Conditions: The Evaporating Droplet.

    PubMed

    Armao, Joseph J; Lehn, Jean-Marie

    2016-10-17

    Non-volatile solutes in an evaporating drop experience an out-of-equilibrium state due to non-linear concentration effects and complex flow patterns. Here, we demonstrate a small molecule chemical reaction network that undergoes a rapid adaptation response to the out-of-equilibrium conditions inside the droplet leading to control over the molecular constitution and spatial arrangement of the deposition pattern. Adaptation results in a pronounced coffee stain effect and coupling to chemical concentration gradients within the drop is demonstrated. Amplification and suppression of network species are readily identifiable with confocal fluorescence microscopy. We anticipate that these observations will contribute to the design and exploration of out-of-equilibrium chemical systems, as well as be useful towards the development of point-of-care medical diagnostics and controlled deposition of small molecules through inkjet printing. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for evaporative emissions. Eligible small-volume manufacturers or small-volume test groups may...-based measurements except the bleed emission test. The standard for bleed emissions applies for the full... manufacturer must conduct at least one evaporative emission test at each of the five different mileage points...

  16. Critical point wetting drop tower experiment

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F.; Tcherneshoff, L. M.; Straits, S. R.

    1984-01-01

    Preliminary results for the Critical Point Wetting CPW Drop Tower Experiment are produced with immiscible systems. Much of the observed phenomena conformed to the anticipated behavior. More drops will be needed to test the CPW theory with these immiscible systems.

  17. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  18. A High Performance Impedance-based Platform for Evaporation Rate Detection.

    PubMed

    Chou, Wei-Lung; Lee, Pee-Yew; Chen, Cheng-You; Lin, Yu-Hsin; Lin, Yung-Sheng

    2016-10-17

    This paper describes the method of a novel impedance-based platform for the detection of the evaporation rate. The model compound hyaluronic acid was employed here for demonstration purposes. Multiple evaporation tests on the model compound as a humectant with various concentrations in solutions were conducted for comparison purposes. A conventional weight loss approach is known as the most straightforward, but time-consuming, measurement technique for evaporation rate detection. Yet, a clear disadvantage is that a large volume of sample is required and multiple sample tests cannot be conducted at the same time. For the first time in literature, an electrical impedance sensing chip is successfully applied to a real-time evaporation investigation in a time sharing, continuous and automatic manner. Moreover, as little as 0.5 ml of test samples is required in this impedance-based apparatus, and a large impedance variation is demonstrated among various dilute solutions. The proposed high-sensitivity and fast-response impedance sensing system is found to outperform a conventional weight loss approach in terms of evaporation rate detection.

  19. Measurements of clothing evaporative resistance using a sweating thermal manikin: an overview

    PubMed Central

    WANG, Faming

    2017-01-01

    Evaporative resistance has been widely used to describe the evaporative heat transfer property of clothing. It is also a critical variable in heat stress models for predicting human physiological responses in various environmental conditions. At present, sweating thermal manikins provide a fast and cost-effective way to determine clothing evaporative resistance. Unfortunately, the measurement repeatability and reproducibility of evaporative resistance are rather low due to the complicated moisture transfer processes through clothing. This review article presents a systematical overview on major influential factors affecting the measurement precision of clothing evaporative resistance measurements. It also illustrates the state-of-the-art knowledge on the development of test protocol to measure clothing evaporative resistance by means of a sweating manikin. Some feasible and robust test procedures for measurement of clothing evaporative resistance using a sweating manikin are described. Recommendations on how to improve the measurement accuracy of clothing evaporative resistance are addressed and expected future trends on development of advanced sweating thermal manikins are finally presented. PMID:28566566

  20. Internuclear cascade-evaporation model for LET spectra of 200 MeV protons used for parts testing.

    PubMed

    O'Neill, P M; Badhwar, G D; Culpepper, W X

    1998-12-01

    The Linear Energy Transfer (LET) spectrum produced in microelectronic components during testing with 200 MeV protons is calculated with an intemuclear cascade-evaporation code. This spectrum is compared to the natural space heavy ion environment for various earth orbits. This comparison is used to evaluate the results of proton testing in terms of determining a firm upper bound to the on-orbit heavy ion upset rate and the risk of on-orbit heavy ion failures that would not be detected with protons.

  1. The continuous similarity model of bulk soil-water evaporation

    NASA Technical Reports Server (NTRS)

    Clapp, R. B.

    1983-01-01

    The continuous similarity model of evaporation is described. In it, evaporation is conceptualized as a two stage process. For an initially moist soil, evaporation is first climate limited, but later it becomes soil limited. During the latter stage, the evaporation rate is termed evaporability, and mathematically it is inversely proportional to the evaporation deficit. A functional approximation of the moisture distribution within the soil column is also included in the model. The model was tested using data from four experiments conducted near Phoenix, Arizona; and there was excellent agreement between the simulated and observed evaporation. The model also predicted the time of transition to the soil limited stage reasonably well. For one of the experiments, a third stage of evaporation, when vapor diffusion predominates, was observed. The occurrence of this stage was related to the decrease in moisture at the surface of the soil. The continuous similarity model does not account for vapor flow. The results show that climate, through the potential evaporation rate, has a strong influence on the time of transition to the soil limited stage. After this transition, however, bulk evaporation is independent of climate until the effects of vapor flow within the soil predominate.

  2. Effects of drop freezing on microphysics of an ascending cloud parcel under biomass burning conditions

    NASA Astrophysics Data System (ADS)

    Diehl, K.; Simmel, M.; Wurzler, S.

    There is some evidence that the initiation of warm rain is suppressed in clouds over regions with vegetation fires. Thus, the ice phase becomes important as another possibility to initiate precipitation. Numerical simulations were performed to investigate heterogeneous drop freezing for a biomass-burning situation. An air parcel model with a sectional two-dimensional description of the cloud microphysics was employed with parameterizations for immersion and contact freezing which consider the different ice nucleating efficiencies of various ice nuclei. Three scenarios were simulated resulting to mixed-phase or completely glaciated clouds. According to the high insoluble fraction of the biomass-burning particles drop freezing via immersion and contact modes was very efficient. The preferential freezing of large drops followed by riming (i.e. the deposition of liquid drops on ice particles) and the evaporation of the liquid drops (Bergeron-Findeisen process) caused a further decrease of the liquid drops' effective radius in higher altitudes. In turn ice particle sizes increased so that they could serve as germs for graupel or hailstone formation. The effects of ice initiation on the vertical cloud dynamics were fairly significant leading to a development of the cloud to much higher altitudes than in a warm cloud without ice formation.

  3. Theoretical and Experimental Investigations on Droplet Evaporation and Droplet Ignition at High Pressures

    NASA Technical Reports Server (NTRS)

    Ristau, R.; Nagel, U.; Iglseder, H.; Koenig, J.; Rath, H. J.; Normura, H.; Kono, M.; Tanabe, M.; Sato, J.

    1993-01-01

    The evaporation of fuel droplets under high ambient pressure and temperature in normal gravity and microgravity has been investigated experimentally. For subcritical ambient conditions, droplet evaporation after a heat-up period follows the d(exp 2)-law. For all data the evaporation constant increases as the ambient temperature increases. At identical ambient conditions the evaporation constant under microgravity is smaller compared to normal gravity. This effect can first be observed at 1 bar and increases with ambient pressure. Preliminary experiments on ignition delay for self-igniting fuel droplets have been performed. Above a 1 s delay time, at identical ambient conditions, significant differences in the results of the normal and microgravity data are observed. Self-ignition occurs within different temperature ranges due to the influence of gravity. The time dependent behavior of the droplet is examined theoretically. In the calculations two different approaches for the gas phase are applied. In the first approach the conditions at the interface are given using a quasi steady theory approximation. The second approach uses a set of time dependent governing equations for the gas phase which are then evaluated. In comparison, the second model shows a better agreement with the drop tower experiments. In both cases a time dependent gasification rate is observed.

  4. Freezing of Water Droplet due to Evaporation

    NASA Astrophysics Data System (ADS)

    Satoh, Isao; Fushinobu, Kazuyoshi; Hashimoto, Yu

    In this study, the feasibility of cooling/freezing of phase change.. materials(PCMs) due to evaporation for cold storage systems was experimentally examined. A pure water was used as the test PCM, since the latent heat due to evaporation of water is about 7 times larger than that due to freezing. A water droplet, the diameter of which was 1-4 mm, was suspended in a test cell by a fine metal wire (O. D.= 100μm),and the cell was suddenly evacuated up to the pressure lower than the triple-point pressure of water, so as to enhance the evaporation from the water surface. Temperature of the droplet was measured by a thermocouple, and the cooling/freezing behavior and the temperature profile of the droplet surface were captured by using a video camera and an IR thermo-camera, respectively. The obtained results showed that the water droplet in the evacuated cell is effectively cooled by the evaporation of water itself, and is frozen within a few seconds through remarkable supercooling state. When the initial temperature of the droplet is slightly higher than the room temperature, boiling phenomena occur in the droplet simultaneously with the freezing due to evaporation. Under such conditions, it was shown that the degree of supercooling of the droplet is reduced by the bubbles generated in the droplet.

  5. Development of a laboratory prototype spraying flash evaporator.

    NASA Technical Reports Server (NTRS)

    Gaddis, J. L.

    1972-01-01

    A functional description of the flash evaporator that is being developed as a candidate for the Space Shuttle Environmental Control System thermal control is presented. A single evaporator configuration uses water as an evaporant to accommodate on-orbit peak heat loads and Freon 22 for terrestrial flight phases below 120,000 ft altitude. Development history, test plans, and operational characteristics are described. Detailed information is included to show: design features, fabrication techniques used for a prototype unit, redundancy considerations, and the control arrangement.

  6. A Validated All-Pressure Fluid Drop Model and Lewis Number Effects for a Binary Mixture

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    1999-01-01

    The differences between subcritical liquid drop and supercritical fluid drop behavior are discussed. Under subcritical, evaporative high emission rate conditions, a film layer is present in the inner part of the drop surface which contributes to the unique determination of the boundary conditions; it is this film layer which contributes to the solution's convective-diffusive character. In contrast, under supercritical condition as the boundary conditions contain a degree of arbitrariness due to the absence of a surface, and the solution has then a purely diffusive character. Results from simulations of a free fluid drop under no-gravity conditions are compared to microgravity experimental data from suspended, large drop experiments at high, low and intermediary temperatures and in a range of pressures encompassing the sub-and supercritical regime. Despite the difference between the conditions of the simulations and experiments (suspension vs. free floating), the time rate of variation of the drop diameter square is remarkably well predicted in the linear curve regime. The drop diameter is determined in the simulations from the location of the maximum density gradient, and agrees well with the data. It is also shown that the classical calculation of the Lewis number gives qualitatively erroneous results at supercritical conditions, but that an effective Lewis number previously defined gives qualitatively correct estimates of the length scales for heat and mass transfer at all pressures.

  7. An evaporative and engine-cycle model for fuel octane sensitivity prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, D.P.; Taylor, A.B.

    The Motor Octane Number (MON) ranks fuels by their chemical resistance to knock. Evaporative cooling coupled with fuel chemistry determine Research Octane Number (RON) antiknock ratings. It is shown in this study that fuel Octane sensitivity (numerically RON minus MON) is liked to an important difference between the two test methods; the RON test allows each fuel`s evaporative cooling characteristics to affect gas temperature, while the MON test generally eliminates this effect by pre-evaporation. In order to establish RON test charge temperatures, a computer model of fuel evaporation was adapted to Octane Engine conditions, and simulations were compared with realmore » Octane Test Engine measurements including droplet and gas temperatures. A novel gas temperature probe yielded data that corresponded well with model predictions. Tests spanned single component fuels and blends of isomers, n-paraffins, aromatics and alcohols. Commercially available automotive and aviation gasolines were also tested. A good correlation was observed between the computer predictions and measured temperature data across the range of pure fuels and blends. A numerical method to estimate the effect of precombustion temperature differences on Octane sensitivity was developed and applied to analyze these data, and was found to predict the widely disparate sensitivities of the tested fuels with accuracy. Data are presented showing mixture temperature histories of various tested fuels, and consequent sensitivity predictions. It is concluded that a fuel`s thermal-evaporative behavior gives rise to fuel Octane sensitivity as measured by differences between the RON and MON tests. This is demonstrated by the success, over a wide range of fuels, of the sensitivity predictor method describes. Evaporative cooling, must therefore be regarded as an important parameter affecting the general road performance of automobiles.« less

  8. Force-displacement differences in the lower extremities of young healthy adults between drop jumps and drop landings.

    PubMed

    Hackney, James M; Clay, Rachel L; James, Meredith

    2016-10-01

    We measured ground reaction force and lower extremity shortening in ten healthy, young adults in order to compare five trials of drop jumps to drop landings. Our dependent variable was the percentage of displacement (shortening) between the markers on the ASIS and second metatarsal heads on each LE, relative to the maximum shortening (100% displacement) for that trial at the point of greatest ground reaction force. We defined this as "percent displacement at maximum force" (%dFmax). The sample mean %dFmax was 0.73%±0.14% for the drop jumps, and 0.47%±0.09% for the drop landings. The mean within-subject difference score was 0.26%±0.20%. Two-tailed paired t test comparing %dFmax between the drop jump and drop landing yielded P=0.002. For all participants in this study, the %dFmax was greater in drop jumps than in drop landings. This indicates that in drop jumps, the point of maximum force and of maximum shortening was nearly simultaneous, compared to drop landings, where the point of maximum shortening followed that of maximum force by a greater proportion. This difference in force to displacement behavior is explained by linear spring behavior in drop jumps, and linear damping behavior in drop landings. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank.

    PubMed

    Yang, Xianfeng; Zhang, Zhiqiang; Yang, Jialing; Sun, Yuxin

    2016-01-01

    The crashworthiness of helicopter fuel tank is vital to the survivability of the passengers and structures. In order to understand and improve the crashworthiness of the soft fuel tank of helicopter during the crash, this paper investigated the dynamic behavior of the nylon woven fabric composite fuel tank striking on the ground. A fluid-structure interaction finite element model of the fuel tank based on the arbitrary Lagrangian-Eulerian method was constructed to elucidate the dynamic failure behavior. The drop impact tests were conducted to validate the accuracy of the numerical simulation. Good agreement was achieved between the experimental and numerical results of the impact force with the ground. The influences of the impact velocity, the impact angle, the thickness of the fuel tank wall and the volume fraction of water on the dynamic responses of the dropped fuel tank were studied. The results indicated that the corner of the fuel tank is the most vulnerable location during the impact with ground.

  10. Single-Drop Raman Imaging Exposes the Trace Contaminants in Milk.

    PubMed

    Tan, Zong; Lou, Ting-Ting; Huang, Zhi-Xuan; Zong, Jing; Xu, Ke-Xin; Li, Qi-Feng; Chen, Da

    2017-08-02

    Better milk safety control can offer important means to promote public health. However, few technologies can detect different types of contaminants in milk simultaneously. In this regard, the present work proposes a single-drop Raman imaging (SDRI) strategy for semiquantitation of multiple hazardous factors in milk solutions. By developing SDRI strategy that incorporates the coffee-ring effect (a natural phenomenon often presents in a condensed circle pattern after a drop evaporated) for sample pretreatment and discrete wavelet transform for spectra processing, the method serves well to expose typical hazardous molecular species in milk products, such as melamine, sodium thiocyanate and lincomycin hydrochloride, with little sample preparation. The detection sensitivity for melamine, sodium thiocyanate, and lincomycin hydrochloride are 0.1 mg kg -1 , 1 mg kg -1 , and 0.1 mg kg -1 , respectively. Theoretically, we establish that the SDRI represents a novel and environment-friendly method that screens the milk safety efficiently, which could be well extended to inspection of other food safety.

  11. Direct Numerical Simulation of Transitional Multicomponent-Species Gaseous and Multicomponent-Liquid Drop-Laden Mixing

    NASA Technical Reports Server (NTRS)

    Selle, Laurent C.; Bellan, Josette

    2006-01-01

    A model of multicomponent-liquid (MC-liquid) drop evaporation in a three-dimensional mixing layer is here exercised at larger Reynolds numbers than in a previous study, and transitional states are obtained. The gas phase is followed in an Eulerian frame and the multitude of drops is described in a Lagrangian frame. Complete coupling between phases is included with source terms in the gas conservation equations accounting for the drop/flow interaction in terms of drop drag, drop heating and species evaporation. The liquid composition, initially specified as a single-Gamma (SG) probability distribution function (PDF) depending on the molar mass is allowed to evolve into a linear combination of two SGPDFs, called the double-Gamma PDF (DGPDF). The compositions of liquid and vapor emanating from the drops are calculated through four moments of the DGPDFs, which are drop-specific and location-specific, respectively. The mixing layer is initially excited to promote the double pairing of its four initial spanwise vortices into an ultimate vortex in which small scales proliferate. Simulations are performed for four liquids of different compositions and the effect of the initial mass loading and initial free-stream gas temperature are explored. For reference, Simulations are also performed for gaseous multicomponent mixing layers for which the effect of Reynolds number is investigated. The results encompass examination of the global layer characteristics, flow visualizations and homogeneous-plane statistics at transition. Comparisons are performed with previous pre-transitional MC-liquid simulations and with transitional single-component (SC) liquid studies. It is found that MCC flows at transition, the classical energy cascade is of similar strength, but that the smallest scales contain orders of magnitude less energy than SC flows, which is confirmed by the larger viscous dissipation in the former case. Contrasting to pre-transitional MC flows, the vorticity and drop

  12. Dynamically controlled deposition of colloidal nanoparticle suspension in evaporating drops using laser radiation.

    PubMed

    Ta, V D; Carter, R M; Esenturk, E; Connaughton, C; Wasley, T J; Li, J; Kay, R W; Stringer, J; Smith, P J; Shephard, J D

    2016-05-18

    Dynamic control of the distribution of polystyrene suspended nanoparticles in evaporating droplets is investigated using a 2.9 μm high power laser. Under laser radiation a droplet is locally heated and fluid flows are induced that overcome the capillary flow, and thus a reversal of the coffee-stain effect is observed. Suspension particles are accumulated in a localised area, one order of magnitude smaller than the original droplet size. By scanning the laser beam over the droplet, particles can be deposited in an arbitrary pattern. This finding raises the possibility for direct laser writing of suspended particles through a liquid layer. Furthermore, a highly uniform coating is possible by manipulating the laser beam diameter and exposure time. The effect is expected to be universally applicable to aqueous solutions independent of solutes (either particles or molecules) and deposited substrates.

  13. Expressions for the evaporation of sessile liquid droplets incorporating the evaporative cooling effect.

    PubMed

    Wang, Yilin; Ma, Liran; Xu, Xuefeng; Luo, Jianbin

    2016-12-15

    The evaporation along the surface of pinned, sessile droplets is investigated numerically by using the combined field approach. In the present model, the evaporative cooling at the droplet surface which leads to a reduction in the evaporation is taken into account. Simple, yet accurate analytical expressions for the local evaporation flux and for the total evaporation rate of sessile droplets are obtained. The theoretical analyses indicate that the reduction in the evaporation becomes more pronounced as the evaporative cooling number Ec increases. The results also reveal that the variation of total evaporation rate with contact angle will change its trend as the intensity of the evaporative cooling changes. For small values of Ec, the total evaporation rate increases with the contact angle, the same as predicted by Deegan et al. and by Hu and Larson in their isothermal models in which the evaporative cooling is neglected. Contrarily, when the evaporative cooling effect is strong enough, the total evaporation rate will decrease as the contact angle increases. The present theory is corroborated experimentally, and found in good agreement with the expressions proposed by Hu and Larson in the limiting isothermal case. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Effect of using a combination of lid wipes, eye drops, and omega-3 supplements on meibomian gland functionality in patients with lipid deficient/evaporative dry eye.

    PubMed

    Korb, Donald R; Blackie, Caroline A; Finnemore, Victor M; Douglass, Teresa

    2015-04-01

    The aim of this study was to assess the efficacy of using a combination treatment approach consisting of lipid emulsion eye drops, eyelid cleansing wipes, and omega-3 vitamin supplements compared with warm compresses in improving meibomian gland functionality in patients with lipid-deficient/evaporative dry eye disease (LDDE). This single-center, open-label, investigator-masked, randomized study enrolled patients aged ≥18 years, clinically diagnosed with LDDE defined as having ≤6 functional meibomian glands [meibomian gland yielding liquid secretion (MGYLS)] and positive for dry eye symptoms at screening. Patients were randomized to receive either the combination treatment (lipid emulsion eye drops, omega-3 supplements, and lid hygiene with eyelid wipes) or to apply warm, wet compresses once daily, 8 minutes per day, for 3 months. Meibomian gland functionality (number of MGYLS; primary outcome) and patient-reported subjective assessments (SPEED and OSDI questionnaires; secondary outcomes) were evaluated. Adverse events (AEs) and visual acuity were assessed as safety endpoints. Mean patient age was 41.7 years (n = 26; n = 13 per group). Mean ± SD number of MGYLS was not statistically significantly different between groups at baseline (combination treatment, 3.5 ± 1.5; warm compresses, 4.2 ± 1.4, P > 0.5), and was significantly greater with combination treatment versus warm compresses after 3 months of treatment (9.3 ± 2.7 vs. 4.7 ± 2.3; P = 0.006). Dry eye symptoms were significantly improved in both groups at all follow-up visits. Two AEs unrelated to treatment were reported; the BCVA was unchanged from baseline in both groups. The combination treatment regimen resulted in significant improvement in meibomian gland functionality and dry eye symptoms. No safety issues were observed.

  15. Correlations for Saturation Efficiency of Evaporative Cooling Pads

    NASA Astrophysics Data System (ADS)

    Jain, J. K.; Hindoliya, D. A.

    2014-01-01

    This paper presents some experimental investigations to obtain correlations for saturation efficiency of evaporative cooling pads. Two commonly used materials namely aspen and khus fibers along with new materials namely coconut fibers and palash fibers were tested in a laboratory using suitably fabricated test setup. Simple mathematical correlations have been developed for calculating saturation efficiency of evaporating cooling pads which can be used to predict their performance at any desired mass flow rate. Performances of four different pad materials were also compared using developed correlations. An attempt was made to test two new materials (i.e. fibers of palash wood and coconut) to check their suitability as wetted media for evaporative cooling pads. It was found that Palash wood fibers offered highest saturation efficiency compared to that of other existing materials such as aspen and khus fibers at different mass flow rate of air.

  16. Ionic solubility and solutal advection governed augmented evaporation kinetics of salt solution pendant droplets

    NASA Astrophysics Data System (ADS)

    Jaiswal, Vivek; Harikrishnan, A. R.; Khurana, Gargi; Dhar, Purbarun

    2018-01-01

    The presence of dispersed inclusions is known to modify the interfacial characteristics in liquids by adsorption-desorption of the ions at interfaces. The present article reports the influencing role of dissolved ions in a polar fluid on its evaporation dynamics. The evaporation dynamics of pendant droplets of aqueous solutions of variant simple salts and concentrations have been experimentally studied. The presence of salts is observed to enhance the evaporation rate (obeying the classical D2 law), and the enhancement has been found to hold a direct proportionality to the concentration of the dissolved salt. Furthermore, it is observed that the degree of enhancement in the evaporation rate is also directly proportional to the solubility of the salt in question. The phenomenon is explained based on the chemical kinetics and thermodynamics of hydration of the ionic species in the polar fluid. The classical evaporation rate constant formulation is found to be inadequate in modeling the enhanced species transport. Additional probing via particle image velocimetry reveals augmented internal circulation within the evaporating salt based drops compared to pure water. Mapping the dynamic surface tension reveals that a salt concentration gradient is generated between the bulk and periphery of the droplet and it could be responsible for the internal advection cells visualized. A thermo-solutal Marangoni and Rayleigh convection based mathematical formulation has been put forward, and it is shown that the enhanced solute-thermal convection could play a major role in enhanced evaporation. The internal circulation mapped from experiments is found to be in good quantitative agreement with the model predictions. Scaling analysis further reveals that the stability of the solutal Marangoni convection surpasses the thermal counterpart with higher salt concentration and solubility. The present article sheds insight into the possible domineering role of conjugate thermohydraulic and

  17. Probing loop quantum gravity with evaporating black holes.

    PubMed

    Barrau, A; Cailleteau, T; Cao, X; Diaz-Polo, J; Grain, J

    2011-12-16

    This Letter aims at showing that the observation of evaporating black holes should allow the usual Hawking behavior to be distinguished from loop quantum gravity (LQG) expectations. We present a full Monte Carlo simulation of the evaporation in LQG and statistical tests that discriminate between competing models. We conclude that contrarily to what was commonly thought, the discreteness of the area in LQG leads to characteristic features that qualify evaporating black holes as objects that could reveal quantum gravity footprints. © 2011 American Physical Society

  18. A simple technique to reduce evaporation of crystallization droplets by using plate lids with apertures for adding liquids

    DOE PAGES

    Zipper, Lauren E.; Aristide, Xavier; Bishop, Dylan P.; ...

    2014-11-28

    A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under differentmore » conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. Ultimately, the results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.« less

  19. Modeling evaporation of Jet A, JP-7 and RP-1 drops at 1 to 15 bars

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    2003-01-01

    A model describing the evaportion of an isolated drop of a multicomponent fuel containing hundreds of species has been developed. The model is based on Continuous Thermodynamics concepts wherein the composition of a fuel is statistically described using a Probability Distribution Function (PDF).

  20. The structure of evaporating and combusting sprays: Measurements and predictions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Solomon, A. S. P.; Faeth, G. M.

    1984-01-01

    An apparatus developed, to allow observations of monodisperse sprays, consists of a methane-fueled turbulent jet diffusion flame with monodisperse methanol drops injected at the burner exit. Mean and fluctuating-phase velocities, drop sizes, drop-mass fluxes and mean-gas temperatures were measured. Initial drop diameters of 100 and 180 microns are being considered in order to vary drop penetration in the flow and effects of turbulent dispersion. Baseline tests of the burner flame with no drops present were also conducted. Calibration tests, needed to establish methods for predicting drop transport, involve drops supported in the post-flame region of a flat-flame burner operated at various mixture ratios. Spray models which are being evaluated include: (1) locally homogeneous flow (LFH) analysis, (2) deterministic separated flow (DSF) analysis and (3) stochastic separated flow (SSF) analysis.

  1. Results from the Water Flow Test of the Tank 37 Backflush Valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowley, M.D.

    2002-11-01

    A flow test was conducted in the Thermal Fluids Lab with the Tank 37 Backflush Valve to determine the pressure drop of water flow through the material transfer port. The flow rate was varied from 0 to 100 gpm. The pressure drop through the Backflush Valve for flow rates of 20 and 70 gpm was determined to be 0.18 and 1.77 feet of H2O, respectively. An equivalent length of the Backflush Valve was derived from the flow test data. The equivalent length was used in a head loss calculation for the Tank 37 Gravity Drain Line. The calculation estimated themore » flow rate that would fill the line up to the Separator Tank, and the additional flow rate that would fill the Separator Tank. The viscosity of the fluid used in the calculation was 12 centipoise. Two specific gravities were investigated, 1.4 and 1.8. The Gravity Drain Line was assumed to be clean, unobstructed stainless steel pipe. The flow rate that would fill the line up to the Separator Tank was 73 and 75 gpm for the 1.4 or 1.8 specific gravity fluids, respectively. The flow rate that would fill the Separator Tank was 96 and 100 gpm for the 1.4 or 1.8 specific gravity fluids, respectively. These results indicate that concentrate will not back up into the Separator Tank during evaporator normal operation, 15-25 gpm, or pot liftout, 70 gpm. A noteworthy observation during the flow test was water pouring from the holes in the catheterization tube. Water poured from the holes at 25 gpm and above. Data from the water flow test indicates that at 25 gpm the pressure drop through the Backflush Valve is 0.26 ft of H2O. A concentrate with a specific gravity of 1.8 and a viscosity of 12 cp will produce the same pressure drop at 20 gpm. This implies that concentrate from the evaporator may spill out into the BFV riser during a transfer.« less

  2. Potable water recovery for spacecraft application by electrolytic pretreatment/air evaporation

    NASA Technical Reports Server (NTRS)

    Wells, G. W.

    1975-01-01

    A process for the recovery of potable water from urine using electrolytic pretreatment followed by distillation in a closed-cycle air evaporator has been developed and tested. Both the electrolytic pretreatment unit and the air evaporation unit are six-person, flight-concept prototype, automated units. Significantly extended wick lifetimes have been achieved in the air evaporation unit using electrolytically pretreated, as opposed to chemically pretreated, urine feed. Parametric test data are presented on product water quality, wick life, process power, maintenance requirements, and expendable requirements.

  3. An experimental study of evaporation waves in a superheated liquid

    NASA Astrophysics Data System (ADS)

    Hill, Larry G.

    1990-01-01

    Evaporation waves in superheated liquids are studied using a rapid-depressurization facility consisting of a vertical glass test cell situated beneath a large, low-pressure reservoir. The objective of this study is to learn more about the physical mechanisms of explosive boiling (of which an evaporation wave is a specific example), as well as properties of the flow it produces.The test cell is initially sealed from the reservoir by a foil diaphragm, and is partially filled with a volatile liquid (Refrigerant 12 or 114). An experiment is initiated by rupturing the diaphragm via a pneumatically driven cutter. The instrumentation consists of fast-response pressure measurements, high-speed motion pictures, and spark-illuminated still photographs. The liquid temperature is typically 20°C; the liquid superheat is controlled by setting the reservoir pressure to values between vacuum and 1 atm. The pressures subsequent to depressurization are very much less than the critical pressure, and the initial temperatures are sufficiently low that, although the test liquid is highly superheated, the superheat limit is not approached. Evaporation waves in which bubble nucleation within the liquid column is suppressed entirely are considered almost exclusively.When the diaphragm is ruptured, the liquid pressure drops to virtually the reservoir value within a few milliseconds. Provided that the liquid superheat so obtained is sufficiently high, the free surface then erupts in a process known as explosive boiling, which is characterized by violent, fine-scale fragmentation of the superheated liquid and extremely rapid evaporation. The explosive boiling process proceeds as a "wavefront" into the liquid column, producing a highspeed, two-phase flow that travels upward into the low-pressure reservoir, emptying the test cell in a few hundred milliseconds. The speed of the wavefront varies between 0.2 and 0.6 m/s, depending on run conditions; the corresponding two-phase flow varies between

  4. Tank 26F-2F Evaporator Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adu-Wusu, K.

    2012-12-19

    Tank 26F supernate sample was sent by Savannah River Remediation to Savannah River National Laboratory for evaporation test to help understand the underlying cause of the recent gravity drain line (GDL) pluggage during operation of the 2F Evaporator system. The supernate sample was characterized prior to the evaporation test. The evaporation test involved boiling the supernate in an open beaker until the density of the concentrate (evaporation product) was between 1.4 to 1.5 g/mL. It was followed by filtering and washing of the precipitated solids with deionized water. The concentrate supernate (or concentrate filtrate), the damp unwashed precipitated solids, andmore » the wash filtrates were characterized. All the precipitated solids dissolved during water washing. A semi-quantitative X-ray diffraction (XRD) analysis on the unwashed precipitated solids revealed their composition. All the compounds with the exception of silica (silicon oxide) are known to be readily soluble in water. Hence, their dissolution during water washing is not unexpected. Even though silica is a sparingly water-soluble compound, its dissolution is also not surprising. This stems from its small fraction in the solids as a whole and also its relative freshness. Assuming similar supernate characteristics, flushing the GDL with water (preferably warm) should facilitate dissolution and removal of future pluggage events as long as build up/aging of the sparingly soluble constituent (silica) is limited. On the other hand, since the amount of silica formed is relatively small, it is quite possible dissolution of the more soluble larger fraction will cause disintegration or fragmentation of the sparingly soluble smaller fraction (that may be embedded in the larger soluble solid mass) and allow its removal via suspension in the flushing water.« less

  5. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping.

    PubMed

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    1987-08-01

    In the literature, athletes preparing for explosive activities are recommended to include drop jumping in their training programs. For the execution of drop jumps, different techniques and different dropping heights can be used. This study was designed to investigate for the performance of bounce drop jumps the influence of dropping height on the biomechanics of the jumps. Six subjects executed bounce drop jumps from heights of 20 cm (designated here as DJ20), 40 cm (designated here as DJ40), and 60 cm (designated here as DJ60). During jumping, they were filmed, and ground reaction forces were recorded. The results of a biomechanical analysis show no difference between DJ20 and DJ40 in mechanical output about the joints during the push-off phase. Peak values of moment and power output about the ankles during the push-off phase were found to be smaller in DJ60 than in DJ40 (DJ20 = DJ60). The amplitude of joint reaction forces increased with dropping height. During DJ60, the net joint reaction forces showed a sharp peak on the instant that the heels came down on the ground. Based on the results, researchers are advised to limit dropping height to 20 or 40 cm when investigating training effects of the execution of bounce drop jumps.

  6. Evaporation heat transfer of carbon dioxide at low temperature inside a horizontal smooth tube

    NASA Astrophysics Data System (ADS)

    Yoon, Jung-In; Son, Chang-Hyo; Jung, Suk-Ho; Jeon, Min-Ju; Yang, Dong-Il

    2017-05-01

    In this paper, the evaporation heat transfer coefficient of carbon dioxide at low temperature of -30 to -20 °C in a horizontal smooth tube was investigated experimentally. The test devices consist of mass flowmeter, pre-heater, magnetic gear pump, test section (evaporator), condenser and liquid receiver. Test section is made of cooper tube. Inner and outer diameter of the test section is 8 and 9.52 mm, respectively. The experiment is conducted at mass fluxes from 100 to 300 kg/m2 s, saturation temperature from -30 to -20 °C. The main results are summarized as follows: In case that the mass flux of carbon dioxide is 100 kg/m2 s, the evaporation heat transfer coefficient is almost constant regardless of vapor quality. In case of 200 and 300 kg/m2 s, the evaporation heat transfer coefficient increases steadily with increasing vapor quality. For the same mass flux, the evaporation heat transfer coefficient increases as the evaporation temperature of the refrigerant decreases. In comparison of heat transfer correlations with the experimental result, the evaporation heat transfer correlations do not predict them exactly. Therefore, more accurate heat transfer correlation than the previous one is required.

  7. Munitions Test Area and Incendiary Drop Site, Site 36-2, Data Addendum, Phase 2.

    DTIC Science & Technology

    1988-09-01

    MUNITIONS TEST AREA AND INCENDIARY DROP SITE (NI September 1988 Contract Number DAAK11-84-D-0016 | • (Version 3.1) Environmental Science And Engineering, Inc...SITE, September 1988 Contract Number DAAK11-84-D-0016 (Version 3.1)I PREPARED BY ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. Harding Lawson Associates I...the Program Managers Office (PMO). Environmental Science and Engineering (ESE), Morrison-Knudsen Engineers (MKE), and Harding Lawson Associates (HLA

  8. Evaporation rate and vapor pressure of selected polymeric lubricating oils.

    NASA Technical Reports Server (NTRS)

    Gardos, M. N.

    1973-01-01

    A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

  9. The impact of non-isothermal soil moisture transport on evaporation fluxes in a maize cropland

    NASA Astrophysics Data System (ADS)

    Shao, Wei; Coenders-Gerrits, Miriam; Judge, Jasmeet; Zeng, Yijian; Su, Ye

    2018-06-01

    The process of evaporation interacts with the soil, which has various comprehensive mechanisms. Multiphase flow models solve air, vapour, water, and heat transport equations to simulate non-isothermal soil moisture transport of both liquid water and vapor flow, but are only applied in non-vegetated soils. For (sparsely) vegetated soils often energy balance models are used, however these lack the detailed information on non-isothermal soil moisture transport. In this study we coupled a multiphase flow model with a two-layer energy balance model to study the impact of non-isothermal soil moisture transport on evaporation fluxes (i.e., interception, transpiration, and soil evaporation) for vegetated soils. The proposed model was implemented at an experimental agricultural site in Florida, US, covering an entire maize-growing season (67 days). As the crops grew, transpiration and interception became gradually dominated, while the fraction of soil evaporation dropped from 100% to less than 20%. The mechanisms of soil evaporation vary depending on the soil moisture content. After precipitation the soil moisture content increased, exfiltration of the liquid water flow could transport sufficient water to sustain evaporation from soil, and the soil vapor transport was not significant. However, after a sufficient dry-down period, the soil moisture content significantly reduced, and the soil vapour flow significantly contributed to the upward moisture transport in topmost soil. A sensitivity analysis found that the simulations of moisture content and temperature at the soil surface varied substantially when including the advective (i.e., advection and mechanical dispersion) vapour transport in simulation, including the mechanism of advective vapour transport decreased soil evaporation rate under wet condition, while vice versa under dry condition. The results showed that the formulation of advective soil vapor transport in a soil-vegetation-atmosphere transfer continuum can

  10. Influence of magnetic field on evaporation of a ferrofluid droplet

    NASA Astrophysics Data System (ADS)

    Jadav, Mudra; Patel, R. J.; Mehta, R. V.

    2017-10-01

    This paper reports the influence of the static magnetic field on the evaporation of a ferrofluid droplet placed on a plane glass substrate. A water based ferrofluid drop is allowed to dry under ambient conditions. Like all other fluids, this fluid also exhibits well-known coffee ring patterns under zero field conditions. This pattern is shown to be modulated by applying the static magnetic field. When the field is applied in a direction perpendicular to the plane of the substrate, the thickness of the ring decreases with an increase in the field, and under a critical value of the field, the coffee-ring effect is suppressed. For the parallel field configuration, linear chains parallel to the plane of the substrate are observed. The effect of the field on the evaporation rate and temporal variation of the contact angle is also studied. The results are analyzed in light of available models. These findings may be useful in applications like ink-jet printing, lithography, and painting and display devices involving ferrofluids.

  11. Deployment and Drop Test of Inflatable Aeroshell for Atmospheric Entry Capsule with using Large Scientific Balloon

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Suzuki, Kojiro; Honma, Naohiko; Abe, Daisuke; Makino, Hitoshi; Nagata, Yasunori; Kimura, Yusuke; Koyama, Masashi; Akita, Daisuke; Hayashi, Koichi; Abe, Takashi

    A deployable and flexible aeroshell for atmospheric entry vehicles has attracted attention as an innovative space transportation system in the near future, because the large-area, low-mass aeroshell dramatically reduces aerodynamic heating and achieves a soft landing without a conventional parachute system thanks to its low ballistic coefficient. Various concepts of flexible aeroshell have been proposed in the past. Our group are researching and developing a flare-type membrane aeroshell sustained by inflatable torus. As a part of the development, a deployment and drop test of a capsule-type experimental vehicle with a 1.264-m-diameter flare-type membrane aeroshell sustained by inflatable torus was carried out using a large scientific balloon in August, 2009. The objectives of this experiment are 1) to demonstrate the remote inflation system of inflatable aeroshell, 2) to acquire aerodynamic performance of a low ballistic coefficient vehicle including an inflatable structure in subsonic region, and 3) to observe behavior and deformation of the flexible aeroshell during free flight. In this test, the inflatable aeroshell was deployed at an altitude 24.6km by radio command from ground station. After deployment, the experimental vehicle was dropped from the balloon and underwent free flight. The flight data and images of the aeroshell collected using onboard sensors were transmitted successfully during the flight by the telemetry system. The data showed that the vehicle was almost stable in free flight condition and the inflatable aeroshell was collapsed at expected altitude. This deployment and drop test was very successful and useful data for design of actual atmospheric-entry vehicles with inflatable structure was acquired as planned.

  12. Crash Simulation of a Vertical Drop Test of a Commuter-Class Aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    2004-01-01

    A finite element model of an ATR42-300 commuter-class aircraft was developed and a crash simulation was executed. Analytical predictions were correlated with data obtained from a 30-ft/s (9.14-m/s) vertical drop test of the aircraft. The purpose of the test was to evaluate the structural response of the aircraft when subjected to a severe, but survivable, impact. The aircraft was configured with seats, dummies, luggage, and other ballast. The wings were filled with 8,700 lb. (3,946 kg) of water to represent the fuel. The finite element model, which consisted of 57,643 nodes and 62,979 elements, was developed from direct measurements of the airframe geometry. The seats, dummies, luggage, fuel, and other ballast were represented using concentrated masses. The model was executed in LS-DYNA, a commercial code for performing explicit transient dynamic simulations. Predictions of structural deformation and selected time-history responses were generated. The simulation was successfully validated through extensive test-analysis correlation.

  13. Part 2 of a Computational Study of a Drop-Laden Mixing Layer

    NASA Technical Reports Server (NTRS)

    Okongo, Nora; Bellan, Josette

    2004-01-01

    This second of three reports on a computational study of a mixing layer laden with evaporating liquid drops presents the evaluation of Large Eddy Simulation (LES) models. The LES models were evaluated on an existing database that had been generated using Direct Numerical Simulation (DNS). The DNS method and the database are described in the first report of this series, Part 1 of a Computational Study of a Drop-Laden Mixing Layer (NPO-30719), NASA Tech Briefs, Vol. 28, No.7 (July 2004), page 59. The LES equations, which are derived by applying a spatial filter to the DNS set, govern the evolution of the larger scales of the flow and can therefore be solved on a coarser grid. Consistent with the reduction in grid points, the DNS drops would be represented by fewer drops, called computational drops in the LES context. The LES equations contain terms that cannot be directly computed on the coarser grid and that must instead be modeled. Two types of models are necessary: (1) those for the filtered source terms representing the effects of drops on the filtered flow field and (2) those for the sub-grid scale (SGS) fluxes arising from filtering the convective terms in the DNS equations. All of the filtered-sourceterm models that were developed were found to overestimate the filtered source terms. For modeling the SGS fluxes, constant-coefficient Smagorinsky, gradient, and scale-similarity models were assessed and calibrated on the DNS database. The Smagorinsky model correlated poorly with the SGS fluxes, whereas the gradient and scale-similarity models were well correlated with the SGS quantities that they represented.

  14. In vitro comparison of Günther Tulip and Celect filters: testing filtering efficiency and pressure drop.

    PubMed

    Nicolas, M; Malvé, M; Peña, E; Martínez, M A; Leask, R

    2015-02-05

    In this study, the trapping ability of the Günther Tulip and Celect inferior vena cava filters was evaluated. Thrombus capture rates of the filters were tested in vitro in horizontal position with thrombus diameters of 3 and 6mm and tube diameter of 19mm. The filters were tested in centered and tilted positions. Sets of 30 clots were injected into the model and the same process was repeated 20 times for each different condition simulated. Pressure drop experienced along the system was also measured and the percentage of clots captured was recorded. The Günther Tulip filter showed superiority in all cases, trapping almost 100% of 6mm clots both in an eccentric and tilted position and trapping 81.7% of the 3mm clots in a centered position and 69.3% in a maximum tilted position. The efficiency of all filters tested decreased as the size of the embolus decreased and as the filter was tilted. The injection of 6 clots raised the pressure drop to 4.1mmHg, which is a reasonable value that does not cause the obstruction of blood flow through the system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Comparison of hemagglutination inhibition test and ELISA in quantification of antibodies to egg drop syndrome virus.

    PubMed

    Raj, G Dhinakar; Ratnapraba, S; Matheswaran, K; Nachimuthu, K

    2004-01-01

    A single-serum dilution ELISA for egg drop syndrome (EDS) virus-specific antibodies was developed. In testing 425 chicken sera it was found to have a 93.6% sensitivity and 98.7% specificity relative to a hemagglutination inhibition (HI) test. The correlation coefficient for ELISA and HI titers was 0.793. The ELISA was efficacious in quantification of both vaccinal and infection antibodies and could routinely be used for screening large numbers of field sera.

  16. Reconciling Isotopic Partitioning Estimates of Moisture Fluxes in Semi-arid Landscapes Through a New Modeling Approach for Evaporation

    NASA Astrophysics Data System (ADS)

    Kaushik, A.; Berkelhammer, M. B.; O'Neill, M.; Noone, D.

    2017-12-01

    The partitioning of land surface latent heat flux into evaporation and transpiration remains a challenging problem despite a basic understanding of the underlying mechanisms. Water isotopes are useful tracers for separating evaporation and transpiration contributions because E and T have distinct isotopic ratios. Here we use the isotope-based partitioning method at a semi-arid grassland tall-tower site in Colorado. Our results suggest that under certain conditions evaporation cannot be isotopically distinguished from transpiration without modification of existing partitioning techniques. Over a 4-year period, we measured profiles of stable oxygen and hydrogen isotope ratios of water vapor from the surface to 300 m and soil water down to 1 m along with standard meteorological fluxes. Using these data, we evaluated the contributions of rainfall, equilibration, surface water vapor exchange and sub-surface vapor diffusion to the isotopic composition of evapotranspiration (ET). Applying the standard isotopic approach to find the transpiration portion of ET (i.e., T/ET), we see a significant discrepancy compared with a method to constrain T/ET based on gross primary productivity (GPP). By evaluating the kinetic fractionation associated with soil evaporation and vapor diffusion we find that a significant proportion (58-84%) of evaporation following precipitation is non-fractionating. This is possible when water from isolated soil layers is being nearly completely evaporated. Non-fractionating evaporation looks isotopically like transpiration and therefore leads to an overestimation of T/ET. Including non-fractionating evaporation reconciles the isotope-based partitioning estimates of T/ET with the GPP method, and may explain the overestimation of T/ET from isotopes compared to other methods. Finally, we examine the application of non-fractionating evaporation to other boundary layer moisture flux processes such as rain evaporation, where complete evaporation of smaller

  17. Boiling regimes of impacting drops on a heated substrate under reduced pressure

    NASA Astrophysics Data System (ADS)

    van Limbeek, Michiel A. J.; Hoefnagels, Paul B. J.; Shirota, Minori; Sun, Chao; Lohse, Detlef

    2018-05-01

    We experimentally investigate the boiling behavior of impacting ethanol drops on a heated smooth sapphire substrate at pressures ranging from P =0.13 bar to atmospheric pressure. We employ frustrated total internal reflection imaging to study the wetting dynamics of the contact between the drop and the substrate. The spreading drop can be in full contact (contact boiling), it can partially touch (transition boiling), or the drop can be fully levitated (Leidenfrost boiling). We show that the temperature of the boundary between contact and transition boiling shows at most a weak dependence on the impact velocity, but a significant decrease with decreasing ambient gas pressure. A striking correspondence is found between the temperature of this boundary and the static Leidenfrost temperature for all pressures. We therefore conclude that both phenomena share the same mechanism and are dominated by the dynamics taking place at the contact line. On the other hand, the boundary between transition boiling and Leidenfrost boiling, i.e., the dynamic Leidenfrost temperature, increases for increasing impact velocity for all ambient gas pressures. Moreover, the dynamic Leidenfrost temperature coincides for pressures between P =0.13 and 0.54 bar, whereas for atmospheric pressure the dynamic Leidenfrost temperature is slightly elevated. This indicates that the dynamic Leidenfrost temperature is at most weakly dependent on the enhanced evaporation by the lower saturation temperature of the liquid.

  18. The simultaneous mass and energy evaporation (SM2E) model.

    PubMed

    Choudhary, Rehan; Klauda, Jeffery B

    2016-01-01

    In this article, the Simultaneous Mass and Energy Evaporation (SM2E) model is presented. The SM2E model is based on theoretical models for mass and energy transfer. The theoretical models systematically under or over predicted at various flow conditions: laminar, transition, and turbulent. These models were harmonized with experimental measurements to eliminate systematic under or over predictions; a total of 113 measured evaporation rates were used. The SM2E model can be used to estimate evaporation rates for pure liquids as well as liquid mixtures at laminar, transition, and turbulent flow conditions. However, due to limited availability of evaporation data, the model has so far only been tested against data for pure liquids and binary mixtures. The model can take evaporative cooling into account and when the temperature of the evaporating liquid or liquid mixture is known (e.g., isothermal evaporation), the SM2E model reduces to a mass transfer-only model.

  19. Vertical Drop Testing and Analysis of the WASP Helicopter Skid Gear

    NASA Technical Reports Server (NTRS)

    Fuchs, Yvonne T.; Jackson, Karen E.

    2008-01-01

    Human occupant modeling and injury risk assessment have been identified as areas of research for improved prediction of rotorcraft crashworthiness within the NASA Aeronautics Program's Subsonic Rotary Wing Project. As part of this effort, an experimental program was conducted to assess the impact performance of a skid gear for use on the WASP kit-built helicopter, which is marketed by HeloWerks, Inc. of Hampton, Virginia. Test data from a drop test at an impact velocity of 8.4 feet-per-second were used to assess a finite element model of the skid gear test article. This assessment included human occupant analytic models developed for execution in LS-DYNA. The test article consisted of an aluminum skid gear mounted beneath a steel plate. A seating platform was attached to the upper surface of the steel plate, and two 95th percentile Hybrid III male Aerospace Anthropomorphic Test Devices (ATDs) were seated on the platform and secured using a four-point restraint system. The goal of the test-analysis correlation is to further the understanding of LS-DYNA ATD occupant models and responses in the vertical (or spinal) direction. By correlating human occupant experimental test data for a purely vertical impact with the LS-DYNA occupant responses, improved confidence in the use of these tools and better understanding of the limitations of the automotive-based occupant models for aerospace application can begin to be developed.

  20. Vertical Drop Testing and Analysis of the WASP Helicopter Skid Gear

    NASA Technical Reports Server (NTRS)

    Fuchs, Yvonne T.; Jackson, Karen E.

    2008-01-01

    Human occupant modeling and injury risk assessment have been identified as areas of research for improved prediction of rotorcraft crashworthiness within the NASA Aeronautics Program s Subsonic Rotary Wing Project. As part of this effort, an experimental program was conducted to assess the impact performance of a skid gear for use on the WASP kit-built helicopter, which is marketed by HeloWerks, Inc. of Hampton, Virginia. Test data from a drop test at an impact velocity of 8.4 feet-per-second were used to assess a finite element model of the skid gear test article. This assessment included human occupant analytic models developed for execution in LS-DYNA. The test article consisted of an aluminum skid gear mounted beneath a steel plate. A seating platform was attached to the upper surface of the steel plate, and two 95th percentile Hybrid III male Aerospace Anthropomorphic Test Devices (ATDs) were seated on the platform and secured using a four-point restraint system. The goal of the test-analysis correlation is to further the understanding of LS-DYNA ATD occupant models and responses in the vertical (or spinal) direction. By correlating human occupant experimental test data for a purely vertical impact with the LS-DYNA occupant responses, improved confidence in the use of these tools and better understanding of the limitations of the automotive-based occupant models for aerospace application can begin to be developed.

  1. Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Almlie, Jay C.

    2010-01-01

    A water membrane evaporator (WME) has been conceived and tested as an alternative to the contamination-sensitive and corrosion-prone evaporators currently used for dissipating heat from space vehicles. The WME consists mainly of the following components: An outer stainless-steel screen that provides structural support for the components mentioned next; Inside and in contact with the stainless-steel screen, a hydrophobic membrane that is permeable to water vapor; Inside and in contact with the hydrophobic membrane, a hydrophilic membrane that transports the liquid feedwater to the inner surface of the hydrophobic membrane; Inside and in contact with the hydrophilic membrane, an annular array of tubes through which flows the spacecraft coolant carrying the heat to be dissipated; and An inner exclusion tube that limits the volume of feedwater in the WME. In operation, a pressurized feedwater reservoir is connected to the volume between the exclusion tube and the coolant tubes. Feedwater fills the volume, saturates the hydrophilic membrane, and is retained by the hydrophobic membrane. The outside of the WME is exposed to space vacuum. Heat from the spacecraft coolant is conducted through the tube walls and the water-saturated hydrophilic membrane to the liquid/vapor interface at the hydrophobic membrane, causing water to evaporate to space. Makeup water flows into the hydrophilic membrane through gaps between the coolant tubes.

  2. Capillary Limit in a Loop Heat Pipe with Dual Evaporators

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Birur, Gajanana; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper describes a study on the capillary limit of a loop heat pipe (LHP) with two evaporators and two condensers. Both theoretical analysis and experimental investigation are conducted. Tests include heat load to one evaporator only, even heat loads to both evaporators and uneven heat load to both evaporators. Results show that after the capillary limit is exceeded, vapor will penetrate through the wick of the weaker evaporator and the compensation chamber (CC) of that evaporator will control the loop operating temperature regardless of which CC has been in control prior to the event Because the evaporator can tolerate vapor bubbles, the loop may continue to work and reach a new steady state at a higher operating temperature. The loop may even function with a modest increase in the heat load past the capillary limit With a heat load to only one evaporator, the capillary limit can be identified by rapid increases in the operating temperature and in the temperature difference between the evaporator and the CC. However, it is more difficult to tell when the capillary limit is exceeded if heat loads are applied to both evaporators. In all cases, the loop can recover by reducing the heat load to the loop.

  3. Hollow Fiber Spacesuit Water Membrane Evaporator Development and Testing for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis A.; Tsioulos, Gus; Settles, Joseph; Colunga, Aaron; Vogel, Matthew; Vonau, Walt

    2010-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the most suitable candidate among commercial alternatives for HoFi SWME prototype development. A design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype consisting 14,300 tube bundled into 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Vacuum chamber testing has been performed characterize heat rejection as a function of inlet water temperature and water vapor backpressure and to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the tolerance to freezing and suitability to reject heat in a Mars pressure environment.

  4. Influences of Electrification and Salt on Hydrophobicity of Sample Surface in Dynamic Drop Test

    NASA Astrophysics Data System (ADS)

    Shiibara, Daiki; Arata, Yoshihiro; Haji, Kenichi; Miyake, Takuma; Sakoda, Tatsuya; Otsubo, Masahisa

    Studies on the development of deterioration/ performance evaluation method for outdoor electric insulation of polymer materials are pushed forward now in the International Council on Large Electric Systems (CIGRE). The small scale test method (Dynamic drop test; DDT) which could evaluate disappearance characteristics of hydrophobicity easily was suggested. This test is to evaluate resistance of a sample to loss of hydrophobicity due to moisture and simultaneous electric stress. As factors for deterioration of hydrophobicity on a sample in DDT, various factors such as electrical influence, physical influence by water droplets and so on were considered. In this study, we investigated two kinds of factors (electrification and salt) affecting deterioration of hydrophobicity on the surface of a silicone rubber until ignition of continuous electrical discharge in DDT.

  5. Introducing ultrasonic falling film evaporator for moderate temperature evaporation enhancement.

    PubMed

    Dehbani, Maryam; Rahimi, Masoud

    2018-04-01

    In the present study, Ultrasonic Falling Film (USFF), as a novel technique has been proposed to increase the evaporation rate of moderate temperature liquid film. It is a proper method for some applications which cannot be performed at high temperature, such as foodstuff industry, due to their sensitivity to high temperatures. Evaporation rate of sodium chloride solution from an USFF on an inclined flat plate compared to that for Falling Film without ultrasonic irradiation (FF) at various temperatures was investigated. The results revealed that produced cavitation bubbles have different effects on evaporation rate at different temperatures. At lower temperatures, size fluctuation and collapse of bubbles and in consequence induced physical effects of cavitation bubbles resulted in more turbulency and evaporation rate enhancement. At higher temperatures, the behavior was different. Numerous created bubbles joined together and cover the plate surface, so not only decreased the ultrasound vibrations but also reduced the evaporation rate in comparison with FF. The highest evaporation rate enhancement of 353% was obtained at 40 °C at the lowest Reynolds number of 250. In addition, the results reveal that at temperature of 40 °C, USFF has the highest efficiency compared to FF. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Marangoni Effect on the Shape of Freely Receding Evaporating Sessile Droplets of Perfectly Wetting Liquids

    NASA Astrophysics Data System (ADS)

    Tsoumpas, Yannis; Dehaeck, Sam; Rednikov, Alexey; Colinet, Pierre

    2014-11-01

    Freely receding evaporating sessile droplets of perfectly wetting liquids (HFE-7100, 7200 and 7500), with small finite contact angles induced by evaporation, are studied with a Mach-Zehnder interferometer. Surprisingly, the experimentally obtained profiles turn out to deviate from the classical macroscopic static shape of a sessile droplet (as determined by gravity and capillarity), often used when modeling evaporating droplets. These deviations can be seen in two ways. Namely, either the droplet appears to be inflated as compared to the classical static shape assuming the same contact angle and contact radius, or the apparent contact angle appears lower than the classical static one assuming the same volume and contact radius. In reality, the experimental profiles exhibit a local decrease of the slope near the contact line, which we attribute to the Marangoni effect in an evaporating sessile droplet. In this case, the radially inward (along the liquid-air interface) direction of the flow delivers more liquid to the center of the droplet making it appear inflated. When the Marangoni effect is weak, as in the case of the poorly volatile HFE-7500, no significant influence is noticed on the drop shape. The experimental results are compared with the predictions of a lubrication-type theoretical model that incorporates the evaporation-induced Marangoni flow. Financial support of FP7 Marie Curie MULTIFLOW Network (PITN-GA-2008-214919), ESA/BELSPO-PRODEX, BELSPO- μMAST (IAP 7/38) & FRS-FNRS is gratefully acknowledged.

  7. Rain Drop Charge Sensor

    NASA Astrophysics Data System (ADS)

    S, Sreekanth T.

    begin{center} Large Large Rain Drop Charge Sensor Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , S. Murali Das (2) *Atmospheric Sciences Division, Centre for Earth Science Studies, Thiruvananthapuram 695011 (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) Kavyam, Manacaud, Thiruvananthapuram 695009 begin{center} ABSTRACT To study the inter-relations with precipitation electricity and precipitation microphysical parameters a rain drop charge sensor was designed and developed at CESS Electronics & Instrumentation Laboratory. Simultaneous measurement of electric charge and fall speed of rain drops could be done using this charge sensor. A cylindrical metal tube (sensor tube) of 30 cm length is placed inside another thick metal cover opened at top and bottom for electromagnetic shielding. Mouth of the sensor tube is exposed and bottom part is covered with metal net in the shielding cover. The instrument is designed in such a way that rain drops can pass only through unhindered inside the sensor tube. When electrically charged rain drops pass through the sensor tube, it is charged to the same magnitude of drop charge but with opposite polarity. The sensor tube is electrically connected the inverted input of a current to voltage converter operational amplifier using op-amp AD549. Since the sensor is electrically connected to the virtual ground of the op-amp, the charge flows to the ground and the generated current is converted to amplified voltage. This output voltage is recorded using a high frequency (1kHz) voltage recorder. From the recorded pulse, charge magnitude, polarity and fall speed of rain drop are calculated. From the fall speed drop diameter also can be calculated. The prototype is now under test running at CESS campus. As the magnitude of charge in rain drops is an indication of accumulated charge in clouds in lightning, this instrument has potential application in the field of risk and disaster management. By knowing the charge

  8. The Ability of an Aftermarket Helmet Add-On Device to Reduce Impact-Force Accelerations During Drop Tests.

    PubMed

    Breedlove, Katherine M; Breedlove, Evan; Nauman, Eric; Bowman, Thomas G; Lininger, Monica R

    2017-09-01

      The Guardian Cap provides a soft covering intended to mitigate energy transfer to the head during football contact. Yet how well it attenuates impacts remains unknown.   To evaluate the changes in the Gadd Severity Index (GSI) and linear acceleration during drop tests on helmeted headforms with or without Guardian Caps.   Crossover study.   Laboratory.   Nine new football helmets sent directly from the manufacturer.   We dropped the helmets at 3 velocities on 6 helmet locations (front, side, right front boss, top, rear right boss, and rear) as prescribed by the National Operating Committee on Standards for Athletic Equipment. Helmets were tested with facemasks in place but no Guardian Cap and then retested with the facemasks in place and the Guardian Cap affixed.   The GSI scores and linear accelerations measured in g forces.   For the GSI, we found a significant interaction among drop location, Guardian Cap presence, and helmet brand at the high velocity (F 10,50 = 3.01, P = .005) but not at the low (F 3.23,16.15 = 0.84, P = .50) or medium (F 10,50 = 1.29, P = .26) velocities. Similarly for linear accelerations, we found a significant interaction among drop location, Guardian Cap presence, and helmet brand at the high velocity (F 10,50 = 3.01, P = .002, ω 2 = 0.05) but not at the low (F 10,50 = 0.49, P = .89, ω 2 < 0.01, 1-β = 0.16) or medium (F 5.20,26.01 = 2.43, P = .06, ω 2 < 0.01, 1-β = 0.68) velocities.   The Guardian Cap failed to significantly improve the helmets' ability to mitigate impact forces at most locations. Limited evidence indicates how a reduction in GSI would provide clinically relevant benefits beyond reducing the risk of skull fracture or a similar catastrophic event.

  9. Parametric study of thin film evaporation from nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Wilke, Kyle L.; Barabadi, Banafsheh; Lu, Zhengmao; Zhang, TieJun; Wang, Evelyn N.

    2017-10-01

    The performance and lifetime of advanced electronics are often dictated by the ability to dissipate heat generated within the device. Thin film evaporation from nanoporous membranes is a promising thermal management approach, which reduces the thermal transport distance across the liquid film while also providing passive capillary pumping of liquid to the evaporating interface. In this work, we investigated the dependence of thin film evaporation from nanoporous membranes on a variety of geometric parameters. Anodic aluminum oxide membranes were used as experimental templates, where pore radii of 28-75 nm, porosities of 0.1-0.35, and meniscus locations down to 1 μm within the pore were tested. We demonstrated different heat transfer regimes and observed more than an order of magnitude increase in dissipated heat flux by operating in the pore-level evaporation regime. The pore diameter had little effect on pore-level evaporation performance due to the negligible conduction resistance from the pore wall to the evaporating interface. The dissipated heat flux scaled with porosity as the evaporative area increased. Furthermore, moving the meniscus as little as 1 μm into the pore decreased the dissipated heat flux by more than a factor of two due to the added resistance to vapor escaping the pore. The experimental results elucidate thin film evaporation from nanopores and confirm findings of recent modeling efforts. This work also provides guidance for the design of future thin film evaporation devices for advanced thermal management. Furthermore, evaporation from nanopores is relevant to water purification, chemical separations, microfluidics, and natural processes such as transpiration.

  10. Continuous shear rheometry of o/w emulsions; control of evaporation in cone/plate geometry.

    PubMed

    Orafidiya, L O

    1989-05-01

    Volatile solvents may evaporate during cone/plate viscometry so that false rheograms develop. This surface evaporation was prevented in a cod-liver oil-in-water emulsion stabilized with zanthoxylum gum by layering a film of cod-liver oil on the exposed surface of the emulsion test sample. The oil layer effectively prevented evaporation and did not alter significantly the rheological behaviour of the test material.

  11. Non-equilibrium ionization around clouds evaporating in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Ballet, J.; Luciani, J. F.; Mora, P.

    1986-01-01

    It is of prime importance for global models of the interstellar medium to know whether dense clouds do or do not evaporate in the hot coronal gas. The rate of mass exchanges between phases depends very much on that. McKee and Ostriker's model, for instance, assumes that evaporation is important enough to control the expansion of supernova remnants, and that mass loss obeys the law derived by Cowie and McKee. In fact, the geometry of the magnetic field is nearly unknown, and it might totally inhibit evaporation, if the clouds are not regularly connected to the hot gas. Up to now, the only test of the theory is the U.V. observation (by the Copernicus and IUE satellites) of absorption lines of ions such as OVI or NV, that exist at temperatures of a few 100,000 K typical of transition layers around evaporating clouds. Other means of testing the theory are discussed.

  12. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    NASA Technical Reports Server (NTRS)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  13. On the link between potential evaporation and regional evaporation from a CBL perspective

    NASA Astrophysics Data System (ADS)

    Lhomme, J. P.; Guilioni, L.

    2010-07-01

    The relationship between potential evaporation and actual evaporation was first examined by Bouchet (Proc Berkeley Calif Symp IAHS Publ, 62:134-142, 1963) who considered potential evaporation as the consequence of regional evaporation due to atmospheric feedbacks. Using a heuristic approach, he derived a complementary relationship which, despite no real theoretical background, has proven to be very useful in interpreting many experimental data under various climatic conditions. Here, the relationship between actual and potential evaporation is reinterpreted in the context of the development of the convective boundary layer (CBL): first, with a closed-box approach, where the CBL has an impermeable lid; and then with an open system, where air is exchanged between the CBL and its external environment. By applying steady forcing to these systems, it is shown that an equilibrium state is reached, where potential evaporation has a specific equilibrium formulation as a function of two parameters: one representing large-scale advection and the other the feedback effect of regional evaporation on potential evaporation, i.e. a kind of “medium-scale advection”. It is also shown that the original form of Bouchet’s complementary relationship is not verified in the equilibrium state. This analysis leads us to propose a new and more rational approach of the relationship between potential and actual evaporation through the effective surface resistance of the region.

  14. Exergoeconomic analysis and optimization of an evaporator for a binary mixture of fluids in an organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Li, You-Rong; Du, Mei-Tang; Wang, Jian-Ning

    2012-12-01

    This paper focuses on the research of an evaporator with a binary mixture of organic working fluids in the organic Rankine cycle. Exergoeconomic analysis and performance optimization were performed based on the first and second laws of thermodynamics, and the exergoeconomic theory. The annual total cost per unit heat transfer rate was introduced as the objective function. In this model, the exergy loss cost caused by the heat transfer irreversibility and the capital cost were taken into account; however, the exergy loss due to the frictional pressure drops, heat dissipation to surroundings, and the flow imbalance were neglected. The variation laws of the annual total cost with respect to the number of transfer units and the temperature ratios were presented. Optimal design parameters that minimize the objective function had been obtained, and the effects of some important dimensionless parameters on the optimal performances had also been discussed for three types of evaporator flow arrangements. In addition, optimal design parameters of evaporators were compared with those of condensers.

  15. Entrainment and cloud evaporation deduced from the stable isotope chemistry of clouds during ORACLES

    NASA Astrophysics Data System (ADS)

    Noone, D.; Henze, D.; Rainwater, B.; Toohey, D. W.

    2017-12-01

    The magnitude of the influence of biomass burning aerosols on cloud and rain processes is controlled by a series of processes which are difficult to measure directly. A consequence of this limitation is the emergence of significant uncertainty in the representation of cloud-aerosol interactions in models and the resulting cloud radiative forcing. Interaction between cloud and the regional atmosphere causes evaporation, and the rate of evaporation at cloud top is controlled in part by entrainment of air from above which exposes saturated cloud air to drier conditions. Similarly, the size of cloud droplets also controls evaporation rates, which in turn is linked to the abundance of condensation nuclei. To quantify the dependence of cloud properties on biomass burning aerosols the dynamic relationship between evaporation, drop size and entrainment on aerosol state, is evaluated for stratiform clouds in the southeast Atlantic Ocean. These clouds are seasonally exposed to biomass burning plumes from agricultural fires in southern Africa. Measurements of the stable isotope ratios of cloud water and total water are used to deduce the disequilibrium responsible for evaporation within clouds. Disequilibrium is identified by the relationship between hydrogen and oxygen isotope ratios of water vapor and cloud water in and near clouds. To obtain the needed information, a custom-built, dual inlet system was deployed alongside isotopic gas analyzers on the NASA Orion aircraft as part of the Observations of Aerosols above Clouds and their Interactions (ORACLES) campaign. The sampling system obtains both total water and cloud liquid content for the population of droplets above 7 micrometer diameter. The thermodynamic modeling required to convert the observed equilibrium and kinetic isotopic is linked to evaporation and entrainment is described, and the performance of the measurement system is discussed.

  16. Drop and Flight Tests on NY-2 Landing Gears Including Measurements of Vertical Velocities at Landing

    NASA Technical Reports Server (NTRS)

    Peck, W D; Beard, A P

    1933-01-01

    This investigation was conducted to obtain quantitative information on the effectiveness of three landing gears for the NY-2 (consolidated training) airplane. The investigation consisted of static, drop, and flight tests on landing gears of the oleo-rubber-disk and the mercury rubber-chord types, and flight tests only on a landing gear of the conventional split-axle rubber-cord type. The results show that the oleo gear is the most effective of the three landing gears in minimizing impact forces and in dissipating the energy taken.

  17. Effect of ice contamination on liquid-nitrogen drops in film boiling

    NASA Technical Reports Server (NTRS)

    Schoessow, G. J.; Chmielewski, C. E.; Baumeister, K. J.

    1977-01-01

    Previously reported vaporization time data of liquid nitrogen drops in film boiling on a flat plate are about 30 percent shorter than predicted from standard laminar film boiling theory. This theory, however, had been found to successfully correlate the data for conventional fluids such as water, ethanol, benzene, or carbon tetrachloride. This paper presents experimental evidence that some of the discrepancy for cryogenic fluids results from ice contamination due to condensation. The data indicate a fairly linear decrease in droplet evaporation time with the diameter of the ice crystal residue. After correcting the raw data for ice contamination along with convection, a comparison of theory with experiment shows good agreement.

  18. Effect of ice contamination of liquid-nitrogen drops in film boiling

    NASA Technical Reports Server (NTRS)

    Schoessow, G. J.; Chmielewski, C. E.; Baumeister, K. J.

    1977-01-01

    Previously reported vaporization time data of liquid nitrogen drops in film boiling on a flat plate are about 30 percent shorter than predicted from standard laminar film boiling theory. This theory, however, had been found to successfully correlate the data for conventional fluids such as water, ethanol, benzene, or carbon tetrachloride. Experimental evidence that some of the discrepancy for cryogenic fluids results from ice contamination due to condensation is presented. The data indicate a fairly linear decrease in droplet evaporation time with the diameter of the ice crystal residue. After correcting the raw data for ice contamination along with convection, a comparison of theory with experiment shows good agreement.

  19. Thermal Performance of a Multi-Evaporator Loop Heat Pipe with Thermal Masses and Thermoelectric Coolers

    NASA Technical Reports Server (NTRS)

    Ku, Jen-Tung; Ottenstein, Laura; Birur, Gajanana

    2004-01-01

    This paper describes thermal performance of a loop heat pipe (LHP) with two evaporators and two condensers in ambient testing. Each evaporator has an outer diameter of 15mm and a length of 76mm, and has an integral compensation chamber (CC). An aluminum mass of 500 grams is attached to each evaporator to simulate the instrument mass. A thermoelectric cooler (TEC) is installed on each CC to provide heating as well as cooling for CC temperature control. A flow regulator is installed in the condenser section to prevent vapor from going back to the evaporators in the event that one of the condensers is fully utilized. Ammonia was used as the working fluid. Tests conducted included start-up, power cycle, heat load sharing, sink temperature cycle, operating temperature control with TECs, and capillary limit tests. Experimental data showed that the loop could start with a heat load of less than 10W even with added thermal masses. The loop operated stably with even and uneven evaporator heat loads, and even and uneven condenser sink temperatures. The operating temperature could be controlled within +/- 0.5K of the set point temperature using either or both TECs, and the required TEC control heater power was less than 2W under most test conditions. Heat load sharing between the two evaporators was also successfully demonstrated. The loop had a heat transport capability of 120W to 140W, and could recover from a dry-out when the heat load was reduced. The 500-gram aluminum mass on each evaporator had a negligible effect on the loop operation. Existing LHPs servicing orbiting spacecraft have a single evaporator with an outer diameter of about 25mm. Important performance characteristics demonstrated by this LHP included: 1) Operation of an LHP with 15mm diameter evaporators; 2) Robustness and reliability of an LHP with multiple evaporators and multiple condensers under various test conditions; 3) Heat load sharing among LHP evaporators; 4) Effectiveness of TECs in controlling

  20. Part 1 of a Computational Study of a Drop-Laden Mixing Layer

    NASA Technical Reports Server (NTRS)

    Okong'o, Nora A.; Bellan, Josette

    2004-01-01

    This first of three reports on a computational study of a drop-laden temporal mixing layer presents the results of direct numerical simulations (DNS) of well-resolved flow fields and the derivation of the large-eddy simulation (LES) equations that would govern the larger scales of a turbulent flow field. The mixing layer consisted of two counterflowing gas streams, one of which was initially laden with evaporating liquid drops. The gas phase was composed of two perfect gas species, the carrier gas and the vapor emanating from the drops, and was computed in an Eulerian reference frame, whereas each drop was tracked individually in a Lagrangian manner. The flow perturbations that were initially imposed on the layer caused mixing and eventual transition to turbulence. The DNS database obtained included transitional states for layers with various liquid mass loadings. For the DNS, the gas-phase equations were the compressible Navier-Stokes equations for conservation of momentum and additional conservation equations for total energy and species mass. These equations included source terms representing the effect of the drops on the mass, momentum, and energy of the gas phase. From the DNS equations, the expression for the irreversible entropy production (dissipation) was derived and used to determine the dissipation due to the source terms. The LES equations were derived by spatially filtering the DNS set and the magnitudes of the terms were computed at transitional states, leading to a hierarchy of terms to guide simplification of the LES equations. It was concluded that effort should be devoted to the accurate modeling of both the subgridscale fluxes and the filtered source terms, which were the dominant unclosed terms appearing in the LES equations.

  1. Analysis and testing of a new method for drop size measurement using laser scatter interferometry

    NASA Technical Reports Server (NTRS)

    Bachalo, W. D.; Houser, M. J.

    1984-01-01

    Research was conducted on a laser light scatter detection method for measuring the size and velocity of spherical particles. The method is based upon the measurement of the interference fringe pattern produced by spheres passing through the intersection of two laser beams. A theoretical analysis of the method was carried out using the geometrical optics theory. Experimental verification of the theory was obtained by using monodisperse droplet streams. Several optical configurations were tested to identify all of the parametric effects upon the size measurements. Both off-axis forward and backscatter light detection were utilized. Simulated spray environments and fuel spray nozzles were used in the evaluation of the method. The measurements of the monodisperse drops showed complete agreement with the theoretical predictions. The method was demonstrated to be independent of the beam intensity and extinction resulting from the surrounding drops. Signal processing concepts were considered and a method was selected for development.

  2. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CORBETT JE; TEDESCH AR; WILSON RA

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal.more » This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.« less

  3. Evaporation as the transport mechanism of metals in arid regions.

    PubMed

    Lima, Ana T; Safar, Zeinab; Loch, J P Gustav

    2014-09-01

    Soils of arid regions are exposed to drought and drastic temperature oscillations throughout the year. Transport mechanisms in these soils are therefore very different from the ones in temperate regions, where rain dictates the fate of most elements in soils. Due to the low rainfall and high evaporation rates in arid regions, groundwater quality is not threatened and all soil contamination issues tend to be overlooked. But if soil contamination happens, where do contaminants go? This study tests the hypothesis of upward metal movement in soils when evaporation is the main transport mechanism. Laboratory evaporation tests were carried out with heavy metal spiked Saudi soil, using circulation of air as the driving force (Fig. 1). Main results show that loamy soil retains heavy metals quite well while evaporation drives heavy metals to the surface of a sandy soil. Evaporation transports heavy metals upward in sandy soils of arid regions, making them accumulate at the soil surface. Sand being the dominating type of soil in arid regions, soils can then be a potential source of contaminated aerosols and atmospheric pollution - a transboundary problem. Some other repercussions for this problem are foreseen, such as the public ingestion or inhalation of dust. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Design and performance of a 4He-evaporator at <1.0 K

    NASA Astrophysics Data System (ADS)

    Das, N. K.; Pradhan, J.; Naser, Md. Z. A.; Roy, A.; Mandal, B. Ch.; Mallik, C.; Bhandari, R. K.

    2012-12-01

    A helium evaporator for obtaining 1 K temperature has been built and tested in laboratory. This will function primarily as the precooling stage for the circulating helium isotopic gas mixture. This works on evaporative cooling by way of pumping out the vapour from the top of the pot. A precision needle valve is used initially to fill up the pot and subsequently a permanent flow impedance maintains the helium flow from the bath into the pot to replenish the evaporative loss of helium. Considering the cooling power of 10 mW @1.0 K, a 99.0 cm3 helium evaporator was designed, fabricated from OFE copper and tested in the laboratory. A pumping station comprising of a roots pump backed by a dry pump was used for evacuation. The calibrated RuO thermometer and kapton film heater were used for measuring the temperature and cooling power of the system respectively. The continuously filled 1 K bath is tested in the laboratory and found to offer a temperature less than 1.0 K by withdrawing vapour from the evaporator. In order to minimize the heat load and to prevent film creep across the pumping tube, size optimization of the pumping line and pump-out port has been performed. The results of test run along with relevant analysis, mechanical fabrication of flow impedance are presented here.

  5. A technique based on droplet evaporation to recognize alcoholic drinks

    NASA Astrophysics Data System (ADS)

    González-Gutiérrez, Jorge; Pérez-Isidoro, Rosendo; Ruiz-Suárez, J. C.

    2017-07-01

    Chromatography is, at present, the most used technique to determine the purity of alcoholic drinks. This involves a careful separation of the components of the liquid elements. However, since this technique requires sophisticated instrumentation, there are alternative techniques such as conductivity measurements and UV-Vis and infrared spectrometries. We report here a method based on salt-induced crystallization patterns formed during the evaporation of alcoholic drops. We found that droplets of different samples form different structures upon drying, which we characterize by their radial density profiles. We prove that using the dried deposit of a spirit as a control sample, our method allows us to differentiate between pure and adulterated drinks. As a proof of concept, we study tequila.

  6. Experimental investigation of the two-phase flow regimes and pressure drop in horizontal mini-size rectangular test section

    NASA Astrophysics Data System (ADS)

    Elazhary, Amr Mohamed; Soliman, Hassan M.

    2012-10-01

    An experimental study was conducted in order to investigate two-phase flow regimes and fully developed pressure drop in a mini-size, horizontal rectangular channel. The test section was machined in the form of an impacting tee junction in an acrylic block (in order to facilitate visualization) with a rectangular cross-section of 1.87-mm height on 20-mm width on the inlet and outlet sides. Pressure drop measurement and flow regime identification were performed on all three sides of the junction. Air-water mixtures at 200 kPa (abs) and room temperature were used as the test fluids. Four flow regimes were identified visually: bubbly, plug, churn, and annular over the ranges of gas and liquid superficial velocities of 0.04 ≤ JG ≤ 10 m/s and 0.02 ≤ JL ≤ 0.7 m/s, respectively, and a flow regime map was developed. Accuracy of the pressure-measurement technique was validated with single-phase, laminar and turbulent, fully developed data. Two-phase experiments were conducted for eight different inlet conditions and various mass splits at the junction. Comparisons were conducted between the present data and former correlations for the fully developed two-phase pressure drop in rectangular channels with similar sizes. Wide deviations were found among these correlations, and the correlations that agreed best with the present data were identified.

  7. Drop dynamics

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.

    1981-01-01

    The drop dynamics module is a Spacelab-compatible acoustic positioning and control system for conducting drop dynamics experiments in space. It consists basically of a chamber, a drop injector system, an acoustic positioning system, and a data collection system. The principal means of collecting data is by a cinegraphic camera. The drop is positioned in the center of the chamber by forces created by standing acoustic waves generated in the nearly cubical chamber (about 12 cm on a side). The drop can be spun or oscillated up to fission by varying the phse and amplitude of the acoustic waves. The system is designed to perform its experiments unattended, except for start-up and shutdown events and other unique events that require the attention of the Spacelab payload specialist.

  8. Influence of Computational Drop Representation in LES of a Droplet-Laden Mixing Layer

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Radhakrishnan, Senthilkumaran

    2013-01-01

    Multiphase turbulent flows are encountered in many practical applications including turbine engines or natural phenomena involving particle dispersion. Numerical computations of multiphase turbulent flows are important because they provide a cheaper alternative to performing experiments during an engine design process or because they can provide predictions of pollutant dispersion, etc. Two-phase flows contain millions and sometimes billions of particles. For flows with volumetrically dilute particle loading, the most accurate method of numerically simulating the flow is based on direct numerical simulation (DNS) of the governing equations in which all scales of the flow including the small scales that are responsible for the overwhelming amount of dissipation are resolved. DNS, however, requires high computational cost and cannot be used in engineering design applications where iterations among several design conditions are necessary. Because of high computational cost, numerical simulations of such flows cannot track all these drops. The objective of this work is to quantify the influence of the number of computational drops and grid spacing on the accuracy of predicted flow statistics, and to possibly identify the minimum number, or, if not possible, the optimal number of computational drops that provide minimal error in flow prediction. For this purpose, several Large Eddy Simulation (LES) of a mixing layer with evaporating drops have been performed by using coarse, medium, and fine grid spacings and computational drops, rather than physical drops. To define computational drops, an integer NR is introduced that represents the ratio of the number of existing physical drops to the desired number of computational drops; for example, if NR=8, this means that a computational drop represents 8 physical drops in the flow field. The desired number of computational drops is determined by the available computational resources; the larger NR is, the less computationally

  9. Sodium chloride crystallization from thin liquid sheets, thick layers, and sessile drops in microgravity

    NASA Astrophysics Data System (ADS)

    Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha

    2015-10-01

    Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.

  10. Drop Impact Dynamics with Sessile Drops and Geometries: Spreading, Jetting, and Fragmentation

    NASA Astrophysics Data System (ADS)

    Tilger, Christopher F.

    The tendency of surface tension to cause small parcels of fluid to form into drops allows convenient packaging, transport, dispersal of liquid phase matter. Liquid drop impacts with solids, liquids, and other drops have realized and additional future applications in biological, manufacturing, heat transfer, and combustion systems. Experiments were conducted to investigate the dynamics of multiple drop collisions, rather than the most-studied phenomenon of single drop impacts. Additional drop impacts were performed on rigid hemispheres representing sessile drops, angled substrates, and into the vertex of two tilted surfaces arranged into a vee shape. A qualitative inspection of drop-sessile drop impacts shows distinct post-impact shapes depending on the offset distance between the drops. At intermediate offset distances, distinct jets issue from the overlap region between the two drops projected areas. These jets are observed to reach their maximum extent at a critical offset distance ratio, epsilon epsilon ˜ 0.75-0.80, with substrate contact angle and W e having a lesser effect. Capillary waves that traverse the sessile drop after collision cause a lower aspect ratio liquid column to emanate from the sessile drop opposite the impact. In order to better understand the jetting phenomenon seen in the offset drop-sessile drop impacts, simpler solid geometries are investigated that elicit a similar behavior. Solid hemispheres do not show the singular jetting observed in the fluidic case, however, a simple vee formed by two intersection planar substrates do jet in a similar fashion to the fluidic case. A geometric model with partnered experiments is developed to describe the bisymmetric spread of an impacting drop on an angled substrate. This geometric model is used to guide a time of arrival based model for various features of the drop impact, which is used to predict jetting in various vee channel experiments.

  11. Modeling of drop breakup in the bag breakup regime

    NASA Astrophysics Data System (ADS)

    Wang, C.; Chang, S.; Wu, H.; Xu, J.

    2014-04-01

    Several analytic models for predicting the drop deformation and breakup have been developed over the last three decades, but modeling drop breakup in the bag-type regime is less reported. In this Letter, a breakup model has been proposed to predict the drop deformation length and breakup time in the bag-type breakup regime in a more accurate manner. In the present model, the drop deformation which is approximately as the displacement of the centre of mass (c. m.) along the axis located at the centre of the drop, and the movement of c. m. is obtained by solving the pressure balance equation. The effects of the drop deformation on the drop external aerodynamic force are considered in this model. Drop breakup occurs when the deformation length reaches the maximum value and the maximum deformation length is a function of Weber number. The performance and applicability of the proposed breakup model are tested against the published experimental data.

  12. Hollow-Fiber Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph

    2013-01-01

    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  13. Piling-to-buckling transition in the drying process of polymer solution drop on substrate having a large contact angle.

    PubMed

    Kajiya, Tadashi; Nishitani, Eisuke; Yamaue, Tatsuya; Doi, Masao

    2006-01-01

    We studied the drying process of polymer solution drops placed on a substrate having a large contact angle with the drop. The drying process takes place in three stages. First, the droplet evaporates keeping the contact line fixed. Second, the droplet shrinks uniformly with receding contact line. Finally the contact line is pinned again, and the droplet starts to be deformed. The shape of the final polymer deposit changes from concave dot, to flat dot, and then to concave dot again with the increase of the initial polymer concentration. This shape change is caused by the gradual transition from the solute piling mechanism proposed by Deegan to the crust buckling mechanism proposed by de Gennes and Pauchard.

  14. [Stability of physical state on compound hawthorn dropping pills].

    PubMed

    Zhang, Wei; Chen, Hong-Yan; Jiang, Jian-Lan

    2008-11-01

    To evaluate the stability of physical state with accelerate test and dropping in process before and after on compound hawthorn dropping pills. Scanning electron microscope, TG-DTA, FT-IR and XRD were used. The active components presented amorphous, tiny crystal and molecular state in dropping pills, and it had no obvious reaction between PEG 4000 and active components. With time prolonging, a little of active components changed from amorphous state to tiny crystal or molecular state. Solid dispersion improved the stability and dissolution of compound hawthorn dropping pills.

  15. Drop Hammer Tests with Three Oleo Strut Models and Three Different Shock Strut Oils at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Kranz, M

    1954-01-01

    Drop hammer tests with different shock strut models and shock strut oils were performed at temperatures ranging to -40 C. The various shock strut models do not differ essentially regarding their springing and damping properties at low temperatures; however, the influence of the different shock strut oils on the springing properties at low temperatures varies greatly.

  16. Thermal performance of a multi-evaporator loop heat pipe with thermal masses and thermal electrical coolers

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Birur, Gajanana

    2004-01-01

    This paper describes thermal performance of a loop heat pipe (LHP) with two evaporators and two condensers in ambient testing. Each evaporator has an outer diameter of 15mm and a length of 76mm, and has an integral compensation chamber (CC). An aluminum mass of 500 grams is attached to each evaporator to simulate the instrument mass. A thermal electric cooler (TEC) is installed on each CC to provide heating as well as cooling for CC temperature control. A flow regulator is installed in the condenser section to prevent vapor from going back to the evaporators in the event that one of condenser is fully utilized. Ammonia was used ad the working fluid. Tests conducted included start-up, power cycle, heat load sharing, sink temperature cycle, operating temperature control with TECs, and capillary limit tests. Experimental data showed that the loop could start with a heat load of less than 1OW even with added thermal masses. The loop operated stably with even and uneven evaporator heat loads, and even and uneven condenser sink temperatures. The operating temperature could be controlled within +/-0.5K of the set point temperature using either or both TECs, and the required TEC control heater power was less than 2W under most test conditions. Heat load sharing between the two evaporators was also successfully demonstrated. The loop had a heat transport capability of 120W to 140W, and could recover from a dry-out when the heat load was reduced. The 500-gram aluminum mass on each evaporator had a negligible effect on the loop operation. Existing LHPs servicing the orbiting spacecraft have a single evaporator with an outer diameter of about 25mm. Important performance characteristics demonstrated by this LHP included: 1) Operation of an LHP with 15mm diameter evaporators; 2) Robustness and reliability of an LHP with multiple evaporators and multiple condensers under various test conditions; 3) Heat load sharing among LHP evaporators; 4) Effectiveness of TECs in controlling

  17. Vertical drop test of a transport fuselage section located aft of the wing

    NASA Technical Reports Server (NTRS)

    Fasanella, E. L.; Alfaro-Bou, E.

    1986-01-01

    A 12-foot long Boeing 707 aft fuselage section with a tapering cross section was drop tested at the NASA Langley Research Center to measure structural, seat, and occupant response to vertical crash laods and to provide data for nonlinear finite element modeling. This was the final test in a series of three different transport fuselage sections tested under identical conditions. The test parameters at impact were: 20 ft/s velocity, and zero pitch, roll, and yaw. In addition, the test was an operational shock test of the data acquisition system used for the Controlled Impact Demonstration (CID) of a remotely piloted Boeing 720 that was crash tested at NASA Ames Dryden Flight Research Facility on December 1, 1984. Post-test measurements of the crush showed that the front of the section (with larger diameter) crushed vertically approximately 14 inches while the rear crushed 18 inches. Analysis of the data traces indicate the maximum peak normal (vertical) accelerations at the bottom of the frames were approximately 109 G at body station 1040 and 64 G at body station 1120. The peak floor acceleration varied from 14 G near the wall to 25 G near the center where high frequency oscillations of the floor were evident. The peak anthropomorphic dummy pelvis normal (vertical) acceleration was 19 G's.

  18. Evaporation of droplets in a Champagne wine aerosol

    NASA Astrophysics Data System (ADS)

    Ghabache, Elisabeth; Liger-Belair, Gérard; Antkowiak, Arnaud; Séon, Thomas

    2016-04-01

    In a single glass of champagne about a million bubbles nucleate on the wall and rise towards the surface. When these bubbles reach the surface and rupture, they project a multitude of tiny droplets in the form of a particular aerosol holding a concentrate of wine aromas. Based on the model experiment of a single bubble bursting in idealized champagnes, the key features of the champagne aerosol are identified. In particular, we show that film drops, critical in sea spray for example, are here nonexistent. We then demonstrate that compared to a still wine, champagne fizz drastically enhances the transfer of liquid into the atmosphere. There, conditions on bubble radius and wine viscosity that optimize aerosol evaporation are provided. These results pave the way towards the fine tuning of flavor release during sparkling wine tasting, a major issue for the sparkling wine industry.

  19. Evaporation of droplets in a Champagne wine aerosol.

    PubMed

    Ghabache, Elisabeth; Liger-Belair, Gérard; Antkowiak, Arnaud; Séon, Thomas

    2016-04-29

    In a single glass of champagne about a million bubbles nucleate on the wall and rise towards the surface. When these bubbles reach the surface and rupture, they project a multitude of tiny droplets in the form of a particular aerosol holding a concentrate of wine aromas. Based on the model experiment of a single bubble bursting in idealized champagnes, the key features of the champagne aerosol are identified. In particular, we show that film drops, critical in sea spray for example, are here nonexistent. We then demonstrate that compared to a still wine, champagne fizz drastically enhances the transfer of liquid into the atmosphere. There, conditions on bubble radius and wine viscosity that optimize aerosol evaporation are provided. These results pave the way towards the fine tuning of flavor release during sparkling wine tasting, a major issue for the sparkling wine industry.

  20. Turkish Undergraduates' Misconceptions of Evaporation, Evaporation Rate, and Vapour Pressure

    ERIC Educational Resources Information Center

    Canpolat, Nurtac

    2006-01-01

    This study focused on students' misconceptions related to evaporation, evaporation rate, and vapour pressure. Open-ended diagnostic questions were used with 107 undergraduates in the Primary Science Teacher Training Department in a state university in Turkey. In addition, 14 students from that sample were interviewed to clarify their written…

  1. Marangoni-Benard Convection in a Evaporating Liquid Thin Layer

    NASA Technical Reports Server (NTRS)

    Chai, An-Ti; Zhang, Nengli

    1996-01-01

    Marangoni-Benard convection in evaporating liquid thin layers has been investigated through flow visualization and temperature profile measurement. Twelve liquids, namely ethyl alcohol, methanol, chloroform, acetone, cyclohexane, benzine, methylene chloride, carbon tetrachloride, ethyl acetate, n-pentane, silicone oil (0.65 cSt.), and freon-113, were tested and convection patterns in thin layers of these samples were observed. Comparison among these tested samples shows that some liquids are sensitive to surface contamination from aluminum powder but some are not. The latter is excellent to be used for the investigation of surface-tension driven convection through visualization using the tracer. Two sample liquids, alcohol and freon-113 were particularly selected for systematic study. It was found that the wavelength of Benard cells would not change with thickness of the layer when it evaporates at room temperature. Special attention was focused on cases in which a liquid layer was cooled from below, and some interesting results were obtained. Convection patterns were recorded during the evaporation process and the patterns at certain time frame were compared. Benard cells were observed in thin layers with a nonlinear temperature profile and even with a zero or positive temperature gradient. Wavelength of the cells was found to increase as the evaporation progressed.

  2. Effects of solvent evaporation time on immediate adhesive properties of universal adhesives to dentin.

    PubMed

    Luque-Martinez, Issis V; Perdigão, Jorge; Muñoz, Miguel A; Sezinando, Ana; Reis, Alessandra; Loguercio, Alessandro D

    2014-10-01

    To evaluate the microtensile bond strengths (μTBS) and nanoleakage (NL) of three universal or multi-mode adhesives, applied with increasing solvent evaporation times. One-hundred and forty caries-free extracted third molars were divided into 20 groups for bond strength testing, according to three factors: (1) Adhesive - All-Bond Universal (ABU, Bisco, Inc.), Prime&Bond Elect (PBE, Dentsply), and Scotchbond Universal Adhesive (SBU, 3M ESPE); (2) Bonding strategy - self-etch (SE) or etch-and-rinse (ER); and (3) Adhesive solvent evaporation time - 5s, 15s, and 25s. Two extra groups were prepared with ABU because the respective manufacturer recommends a solvent evaporation time of 10s. After restorations were constructed, specimens were stored in water (37°C/24h). Resin-dentin beams (0.8mm(2)) were tested at 0.5mm/min (μTBS). For NL, forty extracted molars were randomly assigned to each of the 20 groups. Dentin disks were restored, immersed in ammoniacal silver nitrate, sectioned and processed for evaluation under a FESEM in backscattered mode. Data from μTBS were analyzed using two-way ANOVA (adhesive vs. drying time) for each strategy, and Tukey's test (α=0.05). NL data were computed with non-parametric tests (Kruskal-Wallis and Mann-Whitney tests, α=0.05). Increasing solvent evaporation time from 5s to 25s resulted in statistically higher mean μTBS for all adhesives when used in ER mode. Regarding NL, ER resulted in greater NL than SE for each of the evaporation times regardless of the adhesive used. A solvent evaporation time of 25s resulted in the lowest NL for SBU-ER. Residual water and/or solvent may compromise the performance of universal adhesives, which may be improved with extended evaporation times. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Normal evaporation of binary alloys

    NASA Technical Reports Server (NTRS)

    Li, C. H.

    1972-01-01

    In the study of normal evaporation, it is assumed that the evaporating alloy is homogeneous, that the vapor is instantly removed, and that the alloy follows Raoult's law. The differential equation of normal evaporation relating the evaporating time to the final solute concentration is given and solved for several important special cases. Uses of the derived equations are exemplified with a Ni-Al alloy and some binary iron alloys. The accuracy of the predicted results are checked by analyses of actual experimental data on Fe-Ni and Ni-Cr alloys evaporated at 1600 C, and also on the vacuum purification of beryllium. These analyses suggest that the normal evaporation equations presented here give satisfactory results that are accurate to within an order of magnitude of the correct values, even for some highly concentrated solutions. Limited diffusion and the resultant surface solute depletion or enrichment appear important in the extension of this normal evaporation approach.

  4. Drop-on-demand drop formation of polyethylene oxide solutions

    NASA Astrophysics Data System (ADS)

    Yan, Xuejia; Carr, Wallace W.; Dong, Hongming

    2011-10-01

    The dynamics of drop-on-demand (DOD) drop formation for solutions containing polyethylene oxide (PEO) have been studied experimentally. Using a piezoelectrical actuated inkjet printhead with the nozzle orifice diameter of 53 μm, experiments were conducted for a series of PEO aqueous solutions with molecular weights ranging from 14 to 1000 kg/mol, polydispersity from 1.02 to 2.5, and concentrations from 0.005 to 10 wt. %. The addition of a small amount of PEO can have a significant effect on the DOD drop formation process, increasing breakup time, decreasing primary drop speed, and decreasing the number of satellite drops in some cases. The effects depend on both molecular weight and concentration. At lower molecular weights (14 and 35 kg/mol), the effect of PEO over the dilute solution regime is insignificant even at concentrations large enough that the solution does not fall in the dilute regime. As PEO molecular weight increased, the effects became significant. For monodispersed PEO solutions, breakup time and primary drop speed closely correlated with effective relaxation time but not for polydispersed PEO. Effective relaxation time depended greatly on molecular weight distribution. Viscosity-average molecular weight, used in calculating effective relaxation time for polydispersed PEO solutions, did not adequately account for high molecular fractions in the molecular weight distribution of the polydispersed PEOs. A mixture rule was developed to calculate the effective relaxation times for aqueous solutions containing mixtures of monodispersed PEO, and breakup times and primary drop speeds correlated well with effective relaxation times. For our experiments, DOD drop formation was limited to Deborah number ≲ 23.

  5. Cooperative breakups induced by drop-to-drop interactions in one-dimensional flows of drops against micro-obstacles.

    PubMed

    Schmit, Alexandre; Salkin, Louis; Courbin, Laurent; Panizza, Pascal

    2015-03-28

    Depending on the capillary number at play and the parameters of the flow geometry, a drop may or may not break when colliding with an obstacle in a microdevice. Modeling the flow of one-dimensional trains of monodisperse drops impacting a micro-obstacle, we show numerically that complex dynamics may arise through drop-to-drop hydrodynamic interactions: we observe sequences of breakup events in which the size of the daughter drops created upon breaking mother ones becomes a periodic function of time. We demonstrate the existence of numerous bifurcations between periodic breakup regimes and we establish diagrams mapping the possible breakup dynamics as a function of the governing (physicochemical, hydrodynamic, and geometric) parameters. Microfluidic experiments validate our model as they concur very well with predictions.

  6. Blast Mitigation Sea Analysis - Evaluation of Lumbar Compression Data Trends in 5th Percentile Female Anthropomorphic Test Device Performance Compared to 50th Percentile Male Anthropomorphic Test Device in Drop Tower Testing

    DTIC Science & Technology

    2016-08-21

    less pronounced for pelvis velocity • Seat velocity and dynamic displacement not recorded for this test series – Would provide key information for...effectiveness of seat – Displacement /time history data should be recorded for all future test series UNCLASSIFIED UNCLASSIFIED Conclusions/Future...interfacing with seat manufacturers to broaden occupant protection range – Record dynamic stroke on all drop tower tests to evaluate correlation between displacement rate and lumbar compression UNCLASSIFIED UNCLASSIFIED 17

  7. Taking the Easy Way Out: How the GED Testing Program Induces Students to Drop Out. NBER Working Paper No. 14044

    ERIC Educational Resources Information Center

    Heckman, James J.; LaFontaine, Paul A.; Rodriguez, Pedro L.

    2008-01-01

    We exploit an exogenous increase in General Educational Development (GED) testing requirements to determine whether raising the difficulty of the test causes students to finish high school rather than drop out and GED certify. We find that a six point decrease in GED pass rates induces a 1.3 point decline in overall dropout rates. The effect size…

  8. Standardized Sample Preparation Using a Drop-on-Demand Printing Platform

    DTIC Science & Technology

    2013-05-07

    successful and robust methodology for energetic sample preparation. Keywords: drop-on-demand; inkjet printing; sample preparation OPEN ACCESS...on a similar length scale. Recently, drop-on-demand inkjet printing technology has emerged as an effective approach to produce test materials to...which most of the material is concentrated along the edges, samples prepared using drop-on-demand inkjet technology demonstrate excellent uniform

  9. A Rinsing Effluent Evaporator for Dismantling Operations - 13271

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rives, Rachel; Asou-Pothet, Marielle; Chambon, Frederic

    2013-07-01

    Between 1958 and 1997, the UP1 plant at Marcoule - located in the south of France - reprocessed and recycled nearly 20,000 MT of used fuel from special defense applications reactors, as well as fuel from the first generation of electricity generating reactors in France (natural uranium fuel, CO{sub 2}-cooled, graphite-moderated). Decommissioning and Dismantling of the UP1 plant and its associated units started in 1998. Since 2005, the UP1 facility has been operated by AREVA as the Marcoule Management and Operation contractor for French Atomic Energy Commission (CEA). An important part of this decommissioning program deals with the vitrification facilitymore » of Marcoule. This facility includes 20 tanks devoted to interim storage of highly active solutions, prior to vitrification. In 2006, a rinsing program was defined as part of the tank cleanup strategy. The main objective of the rinsing phases was to decrease activity in order to limit the volume of 'long-life active' waste produced during the decommissioning operations, so the tanks can be dismantled without the need of remote operations. To enable this rinsing program, and anticipating large volumes of generated effluent, the construction of an evaporation unit proved to be essential. The main objective of this unit was to concentrate the effluent produced during tank rinsing operations by a factor of approximately 10, prior to it being treated by vitrification. The evaporator design phase was launched in September 2006. The main challenge for the Project team was the installation of this new unit within a nuclear facility still in operation and in existing compartments not initially designed for this purpose. Cold operating tests were completed in 2008, and in May 2009, the final connections to the process were activated to start the hot test phase. During the first hot test operations performed on the first batches of clean-up effluent, the evaporator had a major operating problem. Extremely large

  10. A phylogenetic approach to total evaporative water loss in mammals.

    PubMed

    Van Sant, Matthew J; Oufiero, Christopher E; Muñoz-Garcia, Agustí; Hammond, Kimberly A; Williams, Joseph B

    2012-01-01

    Maintaining appropriate water balance is a constant challenge for terrestrial mammals, and this problem can be exacerbated in desiccating environments. It has been proposed that natural selection has provided desert-dwelling mammals physiological mechanisms to reduce rates of total evaporative water loss. In this study, we evaluated the relationship between total evaporative water loss and body mass in mammals by using a recent phylogenetic hypothesis. We compared total evaporative water loss in 80 species of arid-zone mammals to that in 56 species that inhabit mesic regions, ranging in size from 4 g to 3,500 kg, to test the hypothesis that mammals from arid environments have lower rates of total evaporative water loss than mammals from mesic environments once phylogeny is taken into account. We found that arid species had lower rates of total evaporative water loss than mesic species when using a dichotomous variable to describe habitat (arid or mesic). We also found that total evaporative water loss was negatively correlated with the average maximum and minimum environmental temperature as well as the maximum vapor pressure deficit of the environment. Annual precipitation and the variable Q (a measure of habitat aridity) were positively correlated with total evaporative water loss. These results support the hypothesis that desert-dwelling mammals have lower rates of total evaporative water loss than mesic species after controlling for body mass and evolutionary relatedness regardless of whether categorical or continuous variables are used to describe habitat.

  11. Measured and simulated soil water evaporation from four Great Plains soils

    USDA-ARS?s Scientific Manuscript database

    The amount of soil water lost during stage one and stage two soil water evaporation is of interest to crop water use modelers. The ratio of measured soil surface temperature (Ts) to air temperature (Ta) was tested as a signal for the transition in soil water evaporation from stage one to stage two d...

  12. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices.

    PubMed

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-12-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.

  13. Vapor-based interferometric measurement of local evaporation rate and interfacial temperature of evaporating droplets.

    PubMed

    Dehaeck, Sam; Rednikov, Alexey; Colinet, Pierre

    2014-03-04

    The local evaporation rate and interfacial temperature are two quintessential characteristics for the study of evaporating droplets. Here, it is shown how one can extract these quantities by measuring the vapor concentration field around the droplet with digital holographic interferometry. As a concrete example, an evaporating freely receding pending droplet of 3M Novec HFE-7000 is analyzed at ambient conditions. The measured vapor cloud is shown to deviate significantly from a pure-diffusion regime calculation, but it compares favorably to a new boundary-layer theory accounting for a buoyancy-induced convection in the gas and the influence upon it of a thermal Marangoni flow. By integration of the measured local evaporation rate over the interface, the global evaporation rate is obtained and validated by a side-view measurement of the droplet shape. Advective effects are found to boost the global evaporation rate by a factor of 4 as compared to the diffusion-limited theory.

  14. Dropping fire retardants by helicopter: tests of three new helitanks

    Treesearch

    James B. Davis

    1963-01-01

    Late model helicopters equipped with new helitanks and adequately supplied can accurately deliver as much fire retardant as most fixed-wing air tankers at a potentially lower cost. Viscous water dropped from helicopters clung to fuel surfaces and was concentrated in a narrower pattern than plain water.

  15. An Ultrathin Nanoporous Membrane Evaporator.

    PubMed

    Lu, Zhengmao; Wilke, Kyle L; Preston, Daniel J; Kinefuchi, Ikuya; Chang-Davidson, Elizabeth; Wang, Evelyn N

    2017-10-11

    Evaporation is a ubiquitous phenomenon found in nature and widely used in industry. Yet a fundamental understanding of interfacial transport during evaporation remains limited to date owing to the difficulty of characterizing the heat and mass transfer at the interface, especially at high heat fluxes (>100 W/cm 2 ). In this work, we elucidated evaporation into an air ambient with an ultrathin (≈200 nm thick) nanoporous (≈130 nm pore diameter) membrane. With our evaporator design, we accurately monitored the temperature of the liquid-vapor interface, reduced the thermal-fluidic transport resistance, and mitigated the clogging risk associated with contamination. At a steady state, we demonstrated heat fluxes of ≈500 W/cm 2 across the interface over a total evaporation area of 0.20 mm 2 . In the high flux regime, we showed the importance of convective transport caused by evaporation itself and that Fick's first law of diffusion no longer applies. This work improves our fundamental understanding of evaporation and paves the way for high flux phase-change devices.

  16. Estimation of dynamic stability parameters from drop model flight tests

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Iliff, K. W.

    1981-01-01

    A recent NASA application of a remotely-piloted drop model to studies of the high angle-of-attack and spinning characteristics of a fighter configuration has provided an opportunity to evaluate and develop parameter estimation methods for the complex aerodynamic environment associated with high angles of attack. The paper discusses the overall drop model operation including descriptions of the model, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods used. Static and dynamic stability derivatives were obtained for an angle-of-attack range from -20 deg to 53 deg. The results of the study indicated that the variations of the estimates with angle of attack were consistent for most of the static derivatives, and the effects of configuration modifications to the model (such as nose strakes) were apparent in the static derivative estimates. The dynamic derivatives exhibited greater uncertainty levels than the static derivatives, possibly due to nonlinear aerodynamics, model response characteristics, or additional derivatives.

  17. Effects of the local structure dependence of evaporation fields on field evaporation behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Lan; Marquis, Emmanuelle A., E-mail: emarq@umich.edu; Withrow, Travis

    2015-12-14

    Accurate three dimensional reconstructions of atomic positions and full quantification of the information contained in atom probe microscopy data rely on understanding the physical processes taking place during field evaporation of atoms from needle-shaped specimens. However, the modeling framework for atom probe microscopy has only limited quantitative justification. Building on the continuum field models previously developed, we introduce a more physical approach with the selection of evaporation events based on density functional theory calculations. This model reproduces key features observed experimentally in terms of sequence of evaporation, evaporation maps, and depth resolution, and provides insights into the physical limit formore » spatial resolution.« less

  18. Evaporative Cooling Membrane Device

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Moskito, John (Inventor)

    1999-01-01

    An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.

  19. Computer simulations of nematic drops: Coupling between drop shape and nematic order

    NASA Astrophysics Data System (ADS)

    Rull, L. F.; Romero-Enrique, J. M.; Fernandez-Nieves, A.

    2012-07-01

    We perform Monte Carlo computer simulations of nematic drops in equilibrium with their vapor using a Gay-Berne interaction between the rod-like molecules. To generate the drops, we initially perform NPT simulations close to the nematic-vapor coexistence region, allow the system to equilibrate and subsequently induce a sudden volume expansion, followed with NVT simulations. The resultant drops coexist with their vapor and are generally not spherical but elongated, have the rod-like particles tangentially aligned at the surface and an overall nematic orientation along the main axis of the drop. We find that the drop eccentricity increases with increasing molecular elongation, κ. For small κ the nematic texture in the drop is bipolar with two surface defects, or boojums, maximizing their distance along this same axis. For sufficiently high κ, the shape of the drop becomes singular in the vicinity of the defects, and there is a crossover to an almost homogeneous texture; this reflects a transition from a spheroidal to a spindle-like drop.

  20. Dispersion in Spherical Water Drops.

    ERIC Educational Resources Information Center

    Eliason, John C., Jr.

    1989-01-01

    Discusses a laboratory exercise simulating the paths of light rays through spherical water drops by applying principles of ray optics and geometry. Describes four parts: determining the output angles, computer simulation, explorations, model testing, and solutions. Provides a computer program and some diagrams. (YP)

  1. Forced Spreading of Aqueous Solutions on Zwitterionic Sulfobetaine Surfaces for Rapid Evaporation and Solute Separation.

    PubMed

    Wu, Cyuan-Jhang; Singh, Vickramjeet; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2017-08-01

    Solute separation of aqueous mixtures is mainly dominated by water vaporization. The evaporation rate of an aqueous drop grows with increasing the liquid-gas interfacial area. The spontaneous spreading behavior of a water droplet on a total wetting surface provides huge liquid-gas interfacial area per unit volume; however, it is halted by the self-pinning phenomenon upon addition of nonvolatile solutes. In this work, it is shown that the solute-induced self-pinning can be overcome by gravity, leading to anisotropic spreading much faster than isotropic spreading. The evaporation rate of anisotropic spreading on a zwitterionic sulfobetaine surface is 25 times larger as that on a poly(methyl methacrylate) surface. Dramatic enhancement of evaporation is demonstrated by simultaneous formation of fog atop liquid film. During anisotropic spreading, the solutes are quickly precipitated out within 30 s, showing the rapid solute-water separation. After repeated spreading process for the dye-containing solution, the mean concentration of the collection is doubled, revealing the concentration efficiency as high as 100%. Gravity-enhanced spreading on total wetting surfaces at room temperature is easy to scale-up with less energy consumption, and thus it has great potentials for the applications of solute separation and concentration.

  2. The Evaporative Function of Cockroach Hygroreceptors

    PubMed Central

    Tichy, Harald; Kallina, Wolfgang

    2013-01-01

    Insect hygroreceptors associate as antagonistic pairs of a moist cell and a dry cell together with a cold cell in small cuticular sensilla on the antennae. The mechanisms by which the atmospheric humidity stimulates the hygroreceptive cells remain elusive. Three models for humidity transduction have been proposed in which hygroreceptors operate either as mechanical hygrometers, evaporation detectors or psychrometers. Mechanical hygrometers are assumed to respond to the relative humidity, evaporation detectors to the saturation deficit and psychrometers to the temperature depression (the difference between wet-bulb and dry-bulb temperatures). The models refer to different ways of expressing humidity. This also means, however, that at different temperatures these different types of hygroreceptors indicate very different humidity conditions. The present study tested the adequacy of the three models on the cockroach’s moist and dry cells by determining whether the specific predictions about the temperature-dependence of the humidity responses are indeed observed. While in previous studies stimulation consisted of rapid step-like humidity changes, here we changed humidity slowly and continuously up and down in a sinusoidal fashion. The low rates of change made it possible to measure instantaneous humidity values based on UV-absorption and to assign these values to the hygroreceptive sensillum. The moist cell fitted neither the mechanical hygrometer nor the evaporation detector model: the temperature dependence of its humidity responses could not be attributed to relative humidity or to saturation deficit, respectively. The psychrometer model, however, was verified by the close relationships of the moist cell’s response with the wet-bulb temperature and the dry cell’s response with the dry-bulb temperature. Thus, the hygroreceptors respond to evaporation and the resulting cooling due to the wetness or dryness of the air. The drier the ambient air (absolutely) and

  3. The evaporative function of cockroach hygroreceptors.

    PubMed

    Tichy, Harald; Kallina, Wolfgang

    2013-01-01

    Insect hygroreceptors associate as antagonistic pairs of a moist cell and a dry cell together with a cold cell in small cuticular sensilla on the antennae. The mechanisms by which the atmospheric humidity stimulates the hygroreceptive cells remain elusive. Three models for humidity transduction have been proposed in which hygroreceptors operate either as mechanical hygrometers, evaporation detectors or psychrometers. Mechanical hygrometers are assumed to respond to the relative humidity, evaporation detectors to the saturation deficit and psychrometers to the temperature depression (the difference between wet-bulb and dry-bulb temperatures). The models refer to different ways of expressing humidity. This also means, however, that at different temperatures these different types of hygroreceptors indicate very different humidity conditions. The present study tested the adequacy of the three models on the cockroach's moist and dry cells by determining whether the specific predictions about the temperature-dependence of the humidity responses are indeed observed. While in previous studies stimulation consisted of rapid step-like humidity changes, here we changed humidity slowly and continuously up and down in a sinusoidal fashion. The low rates of change made it possible to measure instantaneous humidity values based on UV-absorption and to assign these values to the hygroreceptive sensillum. The moist cell fitted neither the mechanical hygrometer nor the evaporation detector model: the temperature dependence of its humidity responses could not be attributed to relative humidity or to saturation deficit, respectively. The psychrometer model, however, was verified by the close relationships of the moist cell's response with the wet-bulb temperature and the dry cell's response with the dry-bulb temperature. Thus, the hygroreceptors respond to evaporation and the resulting cooling due to the wetness or dryness of the air. The drier the ambient air (absolutely) and the

  4. Evaporation of droplets in a Champagne wine aerosol

    PubMed Central

    Ghabache, Elisabeth; Liger-Belair, Gérard; Antkowiak, Arnaud; Séon, Thomas

    2016-01-01

    In a single glass of champagne about a million bubbles nucleate on the wall and rise towards the surface. When these bubbles reach the surface and rupture, they project a multitude of tiny droplets in the form of a particular aerosol holding a concentrate of wine aromas. Based on the model experiment of a single bubble bursting in idealized champagnes, the key features of the champagne aerosol are identified. In particular, we show that film drops, critical in sea spray for example, are here nonexistent. We then demonstrate that compared to a still wine, champagne fizz drastically enhances the transfer of liquid into the atmosphere. There, conditions on bubble radius and wine viscosity that optimize aerosol evaporation are provided. These results pave the way towards the fine tuning of flavor release during sparkling wine tasting, a major issue for the sparkling wine industry. PMID:27125240

  5. Multi-leg heat pipe evaporator

    NASA Technical Reports Server (NTRS)

    Alario, J. P.; Haslett, R. A. (Inventor)

    1986-01-01

    A multileg heat pipe evaporator facilitates the use and application of a monogroove heat pipe by providing an evaporation section which is compact in area and structurally more compatible with certain heat exchangers or heat input apparatus. The evaporation section of a monogroove heat pipe is formed by a series of parallel legs having a liquid and a vapor channel and a communicating capillary slot therebetween. The liquid and vapor channels and interconnecting capillary slots of the evaporating section are connected to the condensing section of the heat pipe by a manifold connecting liquid and vapor channels of the parallel evaporation section legs with the corresponding liquid and vapor channels of the condensing section.

  6. Shuttle orbiter flash evaporator operational flight test performance

    NASA Technical Reports Server (NTRS)

    Nason, J. R.; Behrend, A. F., Jr.

    1982-01-01

    The Flash evaporator System (FES is part of the Shuttle Orbiter Active Thermal Control Subsystem. The FES provides total heat rejection for the vehicle Freon Coolant Loops during ascent and entry and supplementary heat rejection during orbital mission phases. This paper reviews the performance of the FES during the first two Shuttle orbital missions (STS-1 and STS-2). A comparison of actual mission performance against design requirements is presented. Mission profiles (including Freon inlet temperature and feedwater pressure transients), control temperature, and heat load variations are evaluated. Anomalies that occurred during STS-2 are discussed along with the procedures conducted, both in-flight and post-flight, to isolate the causes. Finally, the causes of the anomalies and resulting corrective action taken for STS-3 and subsequent flights are presented.

  7. Use of a Spacer Vest to Increase Evaporative Cooling Under Military Body Armor

    DTIC Science & Technology

    2006-07-01

    could significantly improve wearer thermal comfort . A study that tested six different configurations (closed, open front, open sides, all with and...thermal and evaporative resistances of the IBA, allowing for increases in predicted human sweat evaporation and overall thermal comfort during exposure

  8. Simplified conditions holding at the gas-liquid interface during evaporation

    NASA Astrophysics Data System (ADS)

    Morris, S. J. S.

    2017-11-01

    We show that on the gas side of the interface between a pure liquid and a binary mixture of its vapour with an insoluble gas, the normal derivative of vapour partial pressure pv satisfies ∂pv/∂n +αc/2 πpD (P -pv) (p -pv) = 0 . Constants α, c, D denote the dimensionless accommodation coefficient, a molecular speed and the diffusivity. Provided the continuum approximation holds within the gas, and α = O(1) , this boundary condition implies that evaporation can take one of two forms. (a) If the coexistence pressure P evaluated at the interface is less than the constant total gas pressure p, liquid at the interface is in local thermodynamic equilibrium with its vapour, and the evaporation rate is determined by diffusion through the gas. (b) Conversely, if P > p , gas at the interface consists of pure vapour, and the evaporation rate is determined by processes within the liquid. In the Wayner theory of the heated evaporating meniscus, such as that in a heat pipe, case (b) is assumed. As an application of our result, we show that some of the published experiments intended to test the Wayner theory instead operate under conditions in which case (a) holds. As a result, they do not perform the test intended.

  9. On the theory relating changes in area-average and pan evaporation (Invited)

    NASA Astrophysics Data System (ADS)

    Shuttleworth, W.; Serrat-Capdevila, A.; Roderick, M. L.; Scott, R.

    2009-12-01

    Theory relating changes in area-average evaporation with changes in the evaporation from pans or open water is developed. Such changes can arise by Type (a) processes related to large-scale changes in atmospheric concentrations and circulation that modify surface evaporation rates in the same direction, and Type (b) processes related to coupling between the surface and atmospheric boundary layer (ABL) at the landscape scale that usually modify area-average evaporation and pan evaporation in different directions. The interrelationship between evaporation rates in response to Type (a) changes is derived. They have the same sign and broadly similar magnitude but the change in area-average evaporation is modified by surface resistance. As an alternative to assuming the complementary evaporation hypothesis, the results of previous modeling studies that investigated surface-atmosphere coupling are parameterized and used to develop a theoretical description of Type (b) coupling via vapor pressure deficit (VPD) in the ABL. The interrelationship between appropriately normalized pan and area-average evaporation rates is shown to vary with temperature and wind speed but, on average, the Type (b) changes are approximately equal and opposite. Long-term Australian pan evaporation data are analyzed to demonstrate the simultaneous presence of Type (a) and (b) processes, and observations from three field sites in southwestern USA show support for the theory describing Type (b) coupling via VPD. England's victory over Australia in 2009 Ashes cricket test match series will not be mentioned.

  10. EXPERIMENTAL EVALUATION OF A NOVEL FULL-SCALE EVAPORATIVELY COOLED CONDENSER

    EPA Science Inventory

    The report compares the performance of a novel evaporatively cooled condenser with that of a conventional air-cooled condenser for a split-system heat pump. The system was tested in an environmentally controlled test chamber that is able to simulate test conditions as specified b...

  11. Experimental Measurements of Spreading of Volatile Liquid Droplets

    NASA Technical Reports Server (NTRS)

    Zhang, Neng-Li; Chao, David F.

    2001-01-01

    Based on the laser shadowgraphic system used by the first author of the present paper, a simple optical system, which combined the laser shadowgraphy and the direct magnified-photography, has been developed to measure the contact angle, the spreading speed, and the evaporation rate. Additionally, the system can also visualize thermocapillary convection inside of a sessile drop simultaneously. The experimental results show that evaporation/condensation and thermocapillary convection in the sessile drop induced by the evaporation strongly affects the wetting and spreading of the drop. Condensation always promotes the wetting and spreading of the drop. Evaporation may increase or decrease the contact angle of the evaporating sessile drops, depending on the evaporation rate. The thermocapillary convection in the drop induced by the evaporation enhances the effects of evaporation to suppress the spreading.

  12. Critical processes and parameters in the development of accident tolerant fuels drop-in capsule irradiation tests

    DOE PAGES

    Barrett, K. E.; Ellis, K. D.; Glass, C. R.; ...

    2015-12-01

    The goal of the Accident Tolerant Fuel (ATF) program is to develop the next generation of Light Water Reactor (LWR) fuels with improved performance, reliability, and safety characteristics during normal operations and accident conditions and with reduced waste generation. An irradiation test series has been defined to assess the performance of proposed ATF concepts under normal LWR operating conditions. The Phase I ATF irradiation test series is planned to be performed as a series of drop-in capsule tests to be irradiated in the Advanced Test Reactor (ATR) operated by the Idaho National Laboratory (INL). Design, analysis, and fabrication processes formore » ATR drop-in capsule experiment preparation are presented in this paper to demonstrate the importance of special design considerations, parameter sensitivity analysis, and precise fabrication and inspection techniques for figure innovative materials used in ATF experiment assemblies. A Taylor Series Method sensitivity analysis approach was used to identify the most critical variables in cladding and rodlet stress, temperature, and pressure calculations for design analyses. The results showed that internal rodlet pressure calculations are most sensitive to the fission gas release rate uncertainty while temperature calculations are most sensitive to cladding I.D. and O.D. dimensional uncertainty. The analysis showed that stress calculations are most sensitive to rodlet internal pressure uncertainties, however the results also indicated that the inside radius, outside radius, and internal pressure were all magnified as they propagate through the stress equation. This study demonstrates the importance for ATF concept development teams to provide the fabricators as much information as possible about the material properties and behavior observed in prototype testing, mock-up fabrication and assembly, and chemical and mechanical testing of the materials that may have been performed in the concept development phase

  13. Mini-Membrane Evaporator for Contingency Spacesuit Cooling

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Bue, Grant C.; Campbell, Colin; Petty, Brian; Craft, Jesse; Lynch, William; Wilkes, Robert; Vogel, Matthew

    2015-01-01

    The next-generation Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is integrating a number of new technologies to improve reliability and functionality. One of these improvements is the development of the Auxiliary Cooling Loop (ACL) for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feedwater assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the full-sized AEMU PLSS cooling device, the Spacesuit Water Membrane Evaporator (SWME), but Mini-ME occupies only approximately 25% of the volume of SWME, thereby providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology, which relies upon a Secondary Oxygen Vessel; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a reduction in SOV size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The first iteration of Mini-ME was developed and tested in-house. Mini-ME is currently packaged in AEMU PLSS 2.0, where it is being tested in environments and situations that are representative of potential future Extravehicular Activities (EVA's). The second iteration of Mini-ME, known as Mini-ME2, is currently being developed to offer more heat rejection capability. The development of this contingency evaporative cooling system will contribute to a more robust and comprehensive AEMU PLSS.

  14. Mini-Membrane Evaporator for Contingency Spacesuit Cooling

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Bue, Grant C.; Campbell, Colin; Craft, Jesse; Lynch, William; Wilkes, Robert; Vogel, Matthew

    2014-01-01

    The next-generation Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is integrating a number of new technologies to improve reliability and functionality. One of these improvements is the development of the Auxiliary Cooling Loop (ACL) for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feedwater assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the full-sized AEMU PLSS cooling device, the Spacesuit Water Membrane Evaporator (SWME), but Mini-ME occupies only 25% of the volume of SWME, thereby providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology, which relies upon a Secondary Oxygen Vessel; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a reduction in SOV size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The first iteration of Mini-ME was developed and tested in-house. Mini-ME is currently packaged in AEMU PLSS 2.0, where it is being tested in environments and situations that are representative of potential future Extravehicular Activities (EVA's). The second iteration of Mini-ME, known as Mini- ME2, is currently being developed to offer more heat rejection capability. The development of this contingency evaporative cooling system will contribute to a more robust and comprehensive AEMU PLSS.

  15. Viscosity Measurement Using Drop Coalescence in Microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin C.; Maxwell, Daniel; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We present in here validation studies of a new method for application in microgravity environment which measures the viscosity of highly viscous undercooled liquids using drop coalescence. The method has the advantage of avoiding heterogeneous nucleation at container walls caused by crystallization of undercooled liquids during processing. Homogeneous nucleation can also be avoided due to the rapidity of the measurement using this method. The technique relies on measurements from experiments conducted in near zero gravity environment as well as highly accurate analytical formulation for the coalescence process. The viscosity of the liquid is determined by allowing the computed free surface shape relaxation time to be adjusted in response to the measured free surface velocity for two coalescing drops. Results are presented from two sets of validation experiments for the method which were conducted on board aircraft flying parabolic trajectories. In these tests the viscosity of a highly viscous liquid, namely glycerin, was determined at different temperatures using the drop coalescence method described in here. The experiments measured the free surface velocity of two glycerin drops coalescing under the action of surface tension alone in low gravity environment using high speed photography. The liquid viscosity was determined by adjusting the computed free surface velocity values to the measured experimental data. The results of these experiments were found to agree reasonably well with the known viscosity for the test liquid used.

  16. Liquid drop stability for protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Owen, Robert B.; Broom, Beth H.; Snyder, Robert S.; Daniel, Ron

    1987-01-01

    It is possible to grow protein crystals for biomedical research in microgravity by deploying a protein-rich solution from a syringe, forming a drop in which crystallization can occur with the proper degree of supersaturation. Drop stability is critical to the success of this research, due to the large drop sizes which can be achieved in space. In order to determine the type of syringe tips most suitable to support these large drops, tests were performed during brief periods of weightlessness onboard the NASA KC-135 low-gravity simulation aircraft. The drops were analyzed using three simple models in which the samples were approximated by modified pendulum and spring systems. It was concluded that the higher frequency systems were the most stable, indicating that of the syringes utilized, a disk-shaped configuration provided the most stable environment of low-gravity protein crystal growth.

  17. Rectangular Drop Vehicle in the Zero Gravity Research Facility

    NASA Image and Video Library

    1969-03-21

    A rectangular drop test vehicle perched above 450-foot shaft at the Zero Gravity Research Facility at NASA Lewis Research Center. The drop tower was designed to provide five seconds of microgravity during a normal drop, but had a pneumatic gun that could quickly propel the vehicle to the top of the shaft prior to its drop, thus providing ten seconds of microgravity. The shaft contained a steel-lined vacuum chamber 20 feet in diameter and 469 feet deep. The package was stopped at the bottom of the pit by a 15-foot deep deceleration cart filled with polystyrene pellets. During normal operations, a cylindrical 3-foot diameter and 11-foot long vehicle was used to house the experiments, instrumentation, and high speed cameras. The 4.5-foot long and 1.5-foot wide rectangular vehicle, seen in this photograph, was used less frequently. A 3-foot diameter orb was used for the ten second drops. After the test vehicle was prepared it was suspended above the shaft from the top of the chamber. A lid was used to seal the top of the chamber. The vacuum system reduced the pressure levels inside the chamber. The bolt holding the vehicle was then sheared and the vehicle plummeted into the deceleration cart.

  18. Evaluation of thermal and evaporative resistances in cricket helmets using a sweating manikin.

    PubMed

    Pang, Toh Yen; Subic, Aleksandar; Takla, Monir

    2014-03-01

    The main objective of this study is to establish an approach for measuring the dry and evaporative heat dissipation cricket helmets. A range of cricket helmets has been tested using a sweating manikin within a controlled climatic chamber. The thermal manikin experiments were conducted in two stages, namely the (i) dry test and (ii) wet test. The ambient air temperature for the dry tests was controlled to ~ 23 °C, and the mean skin temperatures averaged ~ 35 °C. The thermal insulation value measured for the manikin with helmet ensemble ranged from 1.0 to 1.2 clo. The results showed that among the five cricket helmets, the Masuri helmet offered slightly more thermal insulation while the Elite helmet offered the least. However, under the dry laboratory conditions and with minimal air movement (air velocity = 0.08 ± 0.01 ms(-1)), small differences exist between the thermal resistance values for the tested helmets. The wet tests were conducted in an isothermal condition, with an ambient and skin mean temperatures averaged ~ 35 °C, the evaporative resistance, Ret, varied between 36 and 60 m(2) Pa W(-1). These large variations in evaporative heat dissipation values are due to the presence of a thick layer of comfort lining in certain helmet designs. This finding suggests that the type and design of padding may influence the rate of evaporative heat dissipation from the head and face; hence the type of material and thickness of the padding is critical for the effectiveness of evaporative heat loss and comfort of the wearer. Issues for further investigations in field trials are discussed. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  19. Osmolarity of prevalent eye drops, side effects, and therapeutic approaches.

    PubMed

    Dutescu, Ralf M; Panfil, Claudia; Schrage, Norbert

    2015-05-01

    Little is known about how the osmolarity of ophthalmic formulations affects the ocular surface. Because hyperosmolar eye drops could be therapeutic for treating corneal edema, this article presents an ex vivo model of corneal edema for testing ophthalmic drugs based on their osmolarity. The respective osmolarity of common eye drops found in the German market is also analyzed here. For modeling corneal edema, an Ex Vivo Eye Irritation Test was used to simulate an ocular anterior chamber with a physiological corneal barrier. To induce corneal edema, the anterior chamber was supplied with a hypoosmolar medium (148 mOsm/L) for 24 hours. Preserved and preservative-free 5% sodium chloride (hyperosmolar Omnisorb and Ocusalin 5% UD) were used for 1 hour, on 5 corneas each, to test their efficiency to reduce corneal edema in this model. Corneal thickness was determined by optical coherence tomography. Osmolarity of 87 common eye drops was measured by freezing point osmometry. Ex vivo, the tested hypoosmolar condition induced corneal edema from 450 μm (±50 μm) at baseline to 851 μm (±94 μm, P < 0.0001). Omnisorb and Ocusalin 5% UD significantly reduced the corneal thickness by 279 μm (±28 μm, P < 0.001) for Omnisorb and 258 μm (±29 μm, P < 0.001) for Ocusalin 5% UD. Forty-three (49%) of the tested products had an osmolarity below and 44 (51%) above the physiological tear osmolarity of 289 mOsm/L. Osmolarity values of less than 200 mOsm/L were found in lubricant drops. The highest osmolarity was detected in Omnisorb (1955 mOsm/L). The Ex Vivo Eye Irritation Test has proven to be a reliable novel model of corneal edema for evaluating osmotic eye drops. Osmolarity measurements revealed a wide range from hypotonic to hypertonic formulations for commonly marketed ophthalmic drugs.

  20. Short Duration Reduced Gravity Drop Tower Design and Development

    NASA Astrophysics Data System (ADS)

    Osborne, B.; Welch, C.

    The industrial and commercial development of space-related activities is intimately linked to the ability to conduct reduced gravity research. Reduced gravity experimentation is important to many diverse fields of research in the understanding of fundamental and applied aspects of physical phenomena. Both terrestrial and extra-terrestrial experimental facilities are currently available to allow researchers access to reduced gravity environments. This paper discusses two drop tower designs, a 2.0 second facility built in Australia and a proposed 2.2 second facility in the United Kingdom. Both drop towers utilise a drag shield for isolating the falling experiment from the drag forces of the air during the test. The design and development of The University of Queensland's (Australia) 2.0 second drop tower, including its specifications and operational procedures is discussed first. Sensitive aspects of the design process are examined. Future plans are then presented for a new short duration (2.2 sec) ground-based reduced gravity drop tower. The new drop tower has been designed for Kingston University (United Kingdom) to support teaching and research in the field of reduced gravity physics. The design has been informed by the previous UQ drop tower design process and utilises a catapult mechanism to increase test time and also incorporates features to allow participants for a variety of backgrounds (from high school students through to university researchers) to learn and experiment in reduced gravity. Operational performance expectations for this new facility are also discussed.

  1. Static shape of an acoustically levitated drop with wave-drop interaction

    NASA Astrophysics Data System (ADS)

    Lee, C. P.; Anilkumar, A. V.; Wang, T. G.

    1994-11-01

    The static shape of a drop levitated and flattened by an acoustic standing wave field in air is calculated, requiring self-consistency between the drop shape and the wave. The wave is calculated for a given shape using the boundary integral method. From the resulting radiation stress on the drop surface, the shape is determined by solving the Young-Laplace equation, completing an iteration cycle. The iteration is continued until both the shape and the wave converge. Of particular interest are the shapes of large drops that sustain equilibrium, beyond a certain degree of flattening, by becoming more flattened at a decreasing sound pressure level. The predictions for flattening versus acoustic radiation stress, for drops of different sizes, compare favorably with experimental data.

  2. [Optimize dropping process of Ginkgo biloba dropping pills by using design space approach].

    PubMed

    Shen, Ji-Chen; Wang, Qing-Qing; Chen, An; Pan, Fang-Lai; Gong, Xing-Chu; Qu, Hai-Bin

    2017-07-01

    In this paper, a design space approach was applied to optimize the dropping process of Ginkgo biloba dropping pills. Firstly, potential critical process parameters and potential process critical quality attributes were determined through literature research and pre-experiments. Secondly, experiments were carried out according to Box-Behnken design. Then the critical process parameters and critical quality attributes were determined based on the experimental results. Thirdly, second-order polynomial models were used to describe the quantitative relationships between critical process parameters and critical quality attributes. Finally, a probability-based design space was calculated and verified. The verification results showed that efficient production of Ginkgo biloba dropping pills can be guaranteed by operating within the design space parameters. The recommended operation ranges for the critical dropping process parameters of Ginkgo biloba dropping pills were as follows: dropping distance of 5.5-6.7 cm, and dropping speed of 59-60 drops per minute, providing a reference for industrial production of Ginkgo biloba dropping pills. Copyright© by the Chinese Pharmaceutical Association.

  3. 3D Drop Size Distribution Extrapolation Algorithm Using a Single Disdrometer

    NASA Technical Reports Server (NTRS)

    Lane, John

    2012-01-01

    Determining the Z-R relationship (where Z is the radar reflectivity factor and R is rainfall rate) from disdrometer data has been and is a common goal of cloud physicists and radar meteorology researchers. The usefulness of this quantity has traditionally been limited since radar represents a volume measurement, while a disdrometer corresponds to a point measurement. To solve that problem, a 3D-DSD (drop-size distribution) method of determining an equivalent 3D Z-R was developed at the University of Central Florida and tested at the Kennedy Space Center, FL. Unfortunately, that method required a minimum of three disdrometers clustered together within a microscale network (.1-km separation). Since most commercial disdrometers used by the radar meteorology/cloud physics community are high-cost instruments, three disdrometers located within a microscale area is generally not a practical strategy due to the limitations of these kinds of research budgets. A relatively simple modification to the 3D-DSD algorithm provides an estimate of the 3D-DSD and therefore, a 3D Z-R measurement using a single disdrometer. The basis of the horizontal extrapolation is mass conservation of a drop size increment, employing the mass conservation equation. For vertical extrapolation, convolution of a drop size increment using raindrop terminal velocity is used. Together, these two independent extrapolation techniques provide a complete 3DDSD estimate in a volume around and above a single disdrometer. The estimation error is lowest along a vertical plane intersecting the disdrometer position in the direction of wind advection. This work demonstrates that multiple sensors are not required for successful implementation of the 3D interpolation/extrapolation algorithm. This is a great benefit since it is seldom that multiple sensors in the required spatial arrangement are available for this type of analysis. The original software (developed at the University of Central Florida, 1998.- 2000) has

  4. Log-normal spray drop distribution...analyzed by two new computer programs

    Treesearch

    Gerald S. Walton

    1968-01-01

    Results of U.S. Forest Service research on chemical insecticides suggest that large drops are not as effective as small drops in carrying insecticides to target insects. Two new computer programs have been written to analyze size distribution properties of drops from spray nozzles. Coded in Fortran IV, the programs have been tested on both the CDC 6400 and the IBM 7094...

  5. Usefulness of a semi-quantitative procalcitonin test and the A-DROP Japanese prognostic scale for predicting mortality among adults hospitalized with community-acquired pneumonia.

    PubMed

    Kasamatsu, Yu; Yamaguchi, Toshimasa; Kawaguchi, Takashi; Tanaka, Nagaaki; Oka, Hiroko; Nakamura, Tomoyuki; Yamagami, Keiko; Yoshioka, Katsunobu; Imanishi, Masahito

    2012-02-01

    The solid-phase immunoassay, semi-quantitative procalcitonin (PCT) test (B R A H M S PCT-Q) can be used to rapidly categorize PCT levels into four grades. However, the usefulness of this kit for determining the prognosis of adult patients with community-acquired pneumonia (CAP) is unclear. A prospective study was conducted in two Japanese hospitals to evaluate the usefulness of this PCT test in determining the prognosis of adult patients with CAP. The accuracy of the age, dehydration, respiratory failure, orientation disturbance, pressure (A-DROP) scale proposed by the Japanese Respiratory Society for prediction of mortality due to CAP was also investigated. Hospitalized CAP patients (n = 226) were enrolled in the study. Comprehensive examinations were performed to determine PCT and CRP concentrations, disease severity based on the A-DROP, pneumonia severity index (PSI) and confusion, urea, respiratory rate, blood pressure, age ≥65 (CURB-65) scales and the causative pathogens. The usefulness of the biomarkers and prognostic scales for predicting each outcome were then examined. Twenty of the 170 eligible patients died. PCT levels were strongly positively correlated with PSI (ρ = 0.56, P < 0.0001), A-DROP (ρ = 0.61, P < 0.0001) and CURB-65 scores (ρ = 0.58, P < 0.0001). The areas under the receiver operating characteristic curves (95% CI) for prediction of survival, for CRP, PCT, A-DROP, CURB-65, and PSI were 0.54 (0.42-0.67), 0.80 (0.70-0.90), 0.88 (0.82-0.94), 0.88 (0.82-0.94), and 0.89 (0.85-0.94), respectively. The 30-day mortality among patients who were PCT-positive (≥0.5 ng/mL) was significantly higher than that among PCT-negative patients (log-rank test, P < 0.001). The semi-quantitative PCT test and the A-DROP scale were found to be useful for predicting mortality in adult patients with CAP. © 2011 The Authors. Respirology © 2011 Asian Pacific Society of Respirology.

  6. Pre-Harvest Dropped Kinnow ( Citrus reticulata Blanco) Waste Management through the Extraction of Naringin and Pectin from their Peels using Indigenous Resin

    NASA Astrophysics Data System (ADS)

    Laxmi Deepak Bhatlu, M.; Katiyar, Prashant; Singh, Satya Vir; Verma, Ashok Kumar

    2016-09-01

    About 10-20 % kinnow fruits are dropped in preharvest stage which are waste and are problem to farmer as these create nuisance by rotting and insect rearing ground. The peels of these dropped fruits as well as peels from kinnow processing may be good source of naringin and pectin. Naringin is used in pharmaseutics while pectin is used in food industry. For recovery of naringin and pectn, peels of preharvest dropped kinnow fruits were boiled in water. The extract was passed through macroporus polymeric adsorbent resin Indion PA 800, naringin was adsorbed on it. The adsorbed naringin was desorbed with ethanol. This solution was passed through membrane filter and filtrate was evaporated to obtain naringin. The extract remaining after adsorption of naringin was used to recover pectin using acid extraction method. The recovery of naringin and pectin was about 52 and 58 % respectively. The naringin finally obtained had 91-93 % purity.

  7. A transient analysis of frost formation on a parallel plate evaporator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Frias, J.; Aceves, S.M.; Hernandez-Guerrero, A.

    1996-12-31

    This paper presents the development of a transient model for evaluating frost formation on a parallel plate evaporator for heat pump applications. The model treats the frost layer as a porous substance, and applies the equations of conservation of mass, momentum and energy to calculate the growth and densification of the frost layer. Empirical correlations for thermal conductivity and tortuosity as a function of density are incorporated from previous studies. Frost growth is calculated as a function of time, Reynolds number, longitudinal location, plate temperature, and ambient air temperature and humidity. The main assumptions are: ideal gas behavior for airmore » and water vapor, uniform frost density and thermal conductivity across the thickness of the frost layer; and quasi-steady conditions during the whole process. The mathematical model is validated by comparing the predicted values of frost thickness and frost density with results obtained in recent experimental studies. A good agreement was obtained in the comparison. The frost formation model calculates pressure drop and heat transfer resistance that result from the existence of the frost layer, and it can therefore be incorporated into a heat pump model to evaluate performance losses due to frosting as a function of weather conditions and time of operation since the last evaporator defrost.« less

  8. Evaporative CO2 microchannel cooling for the LHCb VELO pixel upgrade

    NASA Astrophysics Data System (ADS)

    de Aguiar Francisco, O. A.; Buytaert, J.; Collins, P.; Dumps, R.; John, M.; Mapelli, A.; Romagnoli, G.

    2015-05-01

    The LHCb Vertex Detector (VELO) will be upgraded in 2018 to a lightweight pixel detector capable of 40 MHz readout and operation in very close proximity to the LHC beams. The thermal management of the system will be provided by evaporative CO2 circulating in microchannels embedded within thin silicon plates. This solution has been selected due to the excellent thermal efficiency, the absence of thermal expansion mismatch with silicon ASICs and sensors, the radiation hardness of CO2, and very low contribution to the material budget. Although microchannel cooling is gaining considerable attention for applications related to microelectronics, it is still a novel technology for particle physics experiments, in particular when combined with evaporative CO2 cooling. The R&D effort for LHCb is focused on the design and layout of the channels together with a fluidic connector and its attachment which must withstand pressures up to 170 bar. Even distribution of the coolant is ensured by means of the use of restrictions implemented before the entrance to a race track like layout of the main cooling channels. The coolant flow and pressure drop have been simulated as well as the thermal performance of the device. This proceeding describes the design and optimization of the cooling system for LHCb and the latest prototyping results.

  9. Reusable Material for Drop Tower

    DTIC Science & Technology

    2011-08-01

    R3 Buna-N Rubber ............................................................................................... 32 B-3. R5 EPDM Rubber ...Butyl Rubber . Figure B-2. R3 Buna-N Rubber . Figure B-3. R5 EPDM Rubber . Figure B-4. R6 Gel Rubber . UNCLASSIFIED 33...11 Current Drop Tower Material & Setup .......................................................... 11 Bowling Ball Rubber Material Sample Test

  10. Semifluorinated Alkane Eye Drops for Treatment of Dry Eye Disease Due to Meibomian Gland Disease.

    PubMed

    Steven, Philipp; Augustin, Albert J; Geerling, Gerd; Kaercher, Thomas; Kretz, Florian; Kunert, Kathleen; Menzel-Severing, Johannes; Schrage, Norbert; Schrems, Wolfgang; Krösser, Sonja; Beckert, Michael; Messmer, Elisabeth M

    2017-11-01

    Meibomian gland disease is generally accepted as the leading cause for evaporative dry eye disease (DED). In a previous study, perfluorohexyloctane, a semifluorinated alkane, has been demonstrated to significantly increase tear film breakup time and to reduce corneal fluorescein staining in patients with evaporative DED, thereby vastly reducing dry eye-related symptoms. This study was set up to evaluate perfluorohexyloctane in a larger population of patients with Meibomian gland dysfunction. Seventy-two patients with Meibomian gland disease and associated dry eye received 1 drop of perfluorohexyloctane 4 times daily during an observational, prospective, multicenter, 6-8-week study. Clinical assessment included best-corrected visual acuity, intraocular pressure, Schirmer test I, tear film breakup time, anterior and posterior blepharitis assessment, number of expressible Meibomian glands, meibum quality and quantity, ocular surface fluorescein staining, lid margin and symptom assessment, and Ocular Surface Disease Index (OSDI © ). From the 72 patients recruited, 61 completed the trial per protocol. Nine patients did not apply the medication as recommended and 2 patients were lost to follow-up. Tear film breakup time, corneal and conjunctival fluorescein staining, number of expressible Meibomian glands, and severity of anterior and posterior blepharitis significantly improved after 6-8 weeks of perfluorohexyloctane application. In addition, symptoms improved as demonstrated by a significant decrease of OSDI-values from 37 (±13) to 26 (±16). In concordance with previous findings, 6-8 weeks of topical application of perfluorohexyloctane significantly improves clinical signs of Meibomian gland disease and associated mild to moderate DED.

  11. Evaporation of Lennard-Jones fluids.

    PubMed

    Cheng, Shengfeng; Lechman, Jeremy B; Plimpton, Steven J; Grest, Gary S

    2011-06-14

    Evaporation and condensation at a liquid/vapor interface are ubiquitous interphase mass and energy transfer phenomena that are still not well understood. We have carried out large scale molecular dynamics simulations of Lennard-Jones (LJ) fluids composed of monomers, dimers, or trimers to investigate these processes with molecular detail. For LJ monomers in contact with a vacuum, the evaporation rate is found to be very high with significant evaporative cooling and an accompanying density gradient in the liquid domain near the liquid/vapor interface. Increasing the chain length to just dimers significantly reduces the evaporation rate. We confirm that mechanical equilibrium plays a key role in determining the evaporation rate and the density and temperature profiles across the liquid/vapor interface. The velocity distributions of evaporated molecules and the evaporation and condensation coefficients are measured and compared to the predictions of an existing model based on kinetic theory of gases. Our results indicate that for both monatomic and polyatomic molecules, the evaporation and condensation coefficients are equal when systems are not far from equilibrium and smaller than one, and decrease with increasing temperature. For the same reduced temperature T/T(c), where T(c) is the critical temperature, these two coefficients are higher for LJ dimers and trimers than for monomers, in contrast to the traditional viewpoint that they are close to unity for monatomic molecules and decrease for polyatomic molecules. Furthermore, data for the two coefficients collapse onto a master curve when plotted against a translational length ratio between the liquid and vapor phase.

  12. ACID EVAPORATION OF ULTIMA GOLD TM AB LIQUID SCINTILLATION COCKTAIL RESIDUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyser, E.; Fondeur, F.; Crump, S.

    2011-12-21

    Prior analyses of samples from the F/H Lab solutions showed the presence of diisopropylnapthalene (DIN), a major component of Ultima Gold{trademark} AB liquid scintillation cocktail (LSC). These solutions are processed through H-Canyon Tank 10.5 and ultimately through the 17.8E evaporator. Similar solutions originated in SRNL streams sent to the same H Canyon tanks. This study examined whether the presence of these organics poses a process-significant hazard for the evaporator. Evaporation and calorimetry testing of surrogate samples containing 2000 ppm of Ultima Gold{trademark} AB LSC in 8 M nitric acid have been completed. These experiments showed that although reactions between nitricmore » acid and the organic components do occur, they do not appear to pose a significant hazard for runaway reactions or generation of energetic compounds in canyon evaporators. The amount of off-gas generated was relatively modest and appeared to be well within the venting capacity of the H-Canyon evaporators. A significant fraction of the organic components likely survives the evaporation process primarily as non-volatile components that are not expected to represent any new process concerns during downstream operations such as neutralization. Laboratory Waste solutions containing minor amounts of DIN can be safely received, stored, transferred, and processed through the canyon waste evaporator.« less

  13. Multileg Heat-Pipe Evaporator

    NASA Technical Reports Server (NTRS)

    Alario, J. P.; Haslett, R. A.

    1986-01-01

    Parallel pipes provide high heat flow from small heat exchanger. Six parallel heat pipes extract heat from overlying heat exchanger, forming evaporator. Vapor channel in pipe contains wick that extends into screen tube in liquid channel. Rods in each channel hold wick and screen tube in place. Evaporator compact rather than extended and more compatible with existing heat-exchanger geometries. Prototype six-pipe evaporator only 0.3 m wide and 0.71 m long. With ammonia as working fluid, transports heat to finned condenser at rate of 1,200 W.

  14. Quadricep and hamstring activation during drop jumps with changes in drop height.

    PubMed

    Peng, Hsien-Te; Kernozek, Thomas W; Song, Chen-Yi

    2011-08-01

    Compare the muscle activation patterns of the quadricep-hamstring during drop jumps with increasing demands of drop heights. Observational. University biomechanics laboratory. Fifteen male and eight female college physical education students. Electromyographic activity of the rectus femoris (RF) and biceps femoris (BF) during the landing and takeoff phase of drop jumps from 20 to 60-cm heights. The ground contact time, vertical ground reaction force (vGRF), knee flexion angle during ground contact, and jump height after takeoff were also analyzed. The activation of RF was higher in the drop jump from 60-cm than that from 20- and 30-cm (comparing 107.0 ± 45.9 to 82.3 ± 30.8 and 88.9 ± 38.9 %MVIC, P<.05) during the landing phase. Activation of BF remained similar across all drop heights. Drop jump from 60-cm resulted in greater contact time during takeoff phase and peak vGRF, and resulted in greater maximum knee flexion but straighter knee at ground contact than from lower drop heights. At drop height of 60-cm, the altered knee muscular activation and movement patterns may diminish the effectiveness of plyometric training and increase the potential injury risk of knee. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Group evaporation

    NASA Technical Reports Server (NTRS)

    Shen, Hayley H.

    1991-01-01

    Liquid fuel combustion process is greatly affected by the rate of droplet evaporation. The heat and mass exchanges between gas and liquid couple the dynamics of both phases in all aspects: mass, momentum, and energy. Correct prediction of the evaporation rate is therefore a key issue in engineering design of liquid combustion devices. Current analytical tools for characterizing the behavior of these devices are based on results from a single isolated droplet. Numerous experimental studies have challenged the applicability of these results in a dense spray. To account for the droplets' interaction in a dense spray, a number of theories have been developed in the past decade. Herein, two tasks are examined. One was to study how to implement the existing theoretical results, and the other was to explore the possibility of experimental verifications. The current theoretical results of group evaporation are given for a monodispersed cluster subject to adiabatic conditions. The time evolution of the fluid mechanic and thermodynamic behavior in this cluster is derived. The results given are not in the form of a subscale model for CFD codes.

  16. Higher Drop in Speed during a Repeated Sprint Test in Soccer Players Reporting Former Hamstring Strain Injury

    PubMed Central

    Røksund, Ola D.; Kristoffersen, Morten; Bogen, Bård E.; Wisnes, Alexander; Engeseth, Merete S.; Nilsen, Ann-Kristin; Iversen, Vegard V.; Mæland, Silje; Gundersen, Hilde

    2017-01-01

    Aim: Hamstring strain injury is common in soccer. The aim of this study was to evaluate the physical capacity of players who have and have not suffered from hamstring strain injury in a sample of semi-professional and professional Norwegian soccer players in order to evaluate characteristics and to identify possible indications of insufficient rehabilitation. Method: Seventy-five semi-professional and professional soccer players (19 ± 3 years) playing at the second and third level in the Norwegian league participated in the study. All players answered a questionnaire, including one question about hamstring strain injury (yes/no) during the previous 2 years. They also performed a 40 m maximal sprint test, a repeated sprint test (8 × 20 m), a countermovement jump, a maximal oxygen consumption (VO2max) test, strength tests and flexibility tests. Independent sample t-tests were used to evaluate differences in the physical capacity of the players who had suffered from hamstring strain injury and those who had not. Mixed between-within subject's analyses of variance was used to compare changes in speed during the repeated sprint test between groups. Results: Players who reported hamstring strain injury during the previous two years (16%) had a significantly higher drop in speed (0.07 vs. 0.02 s, p = 0.007) during the repeated sprint test, compared to players reporting no previous hamstring strain injury. In addition, there was a significant interaction (groups × time) (F = 3.22, p = 0.002), showing that speed in the two groups changed differently during the repeated sprint test. There were no significant differences in relations to age, weight, height, body fat, linear speed, countermovement jump height, leg strength, VO2max, or hamstring flexibility between the groups. Conclusion: Soccer players who reported hamstring strain injury during the previous 2 years showed significant higher drop in speed during the repeated sprint test compared to players with no hamstring

  17. PROCESS WATER BUILDING, TRA605. INSIDE A FLASH EVAPORATOR. INL NEGATIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. INSIDE A FLASH EVAPORATOR. INL NEGATIVE NO. 3323. Unknown Photographer, 9/12/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. Research Status of Evaporative Condenser

    NASA Astrophysics Data System (ADS)

    Wang, Feifei; Yang, Yongan

    2018-02-01

    Reducing energy consumption, saving water resources, recycling cool water are main directions of China’s development. Evaporative condenser using latent heat reduces water resources waste, with energy-saving advantages. This paper reviews the research status of evaporative condenser at home and abroad, and introduces the principle, classification, various influencing factors of evaporative condenser, and puts forward the future research direction.

  19. New insights into saline water evaporation from porous media: Complex interaction between evaporation rates, precipitation, and surface temperature

    NASA Astrophysics Data System (ADS)

    Shokri-Kuehni, Salomé M. S.; Vetter, Thomas; Webb, Colin; Shokri, Nima

    2017-06-01

    Understanding salt transport and deposition patterns during evaporation from porous media is important in many engineering and hydrological processes such as soil salinization, ecosystem functioning, and land-atmosphere interaction. As evaporation proceeds, salt concentration increases until it exceeds solubility limits, locally, and crystals precipitate. The interplay between transport processes, crystallization, and evaporation influences where crystallization occurs. During early stages, the precipitated salt creates an evolving porous structure affecting the evaporation kinetics. We conducted a comprehensive series of experiments to investigate how the salt concentration and precipitation influence evaporation dynamics. Our results illustrate the contribution of the evolving salt crust to the evaporative mass losses. High-resolution thermal imaging enabled us to investigate the complex temperature dynamics at the surface of precipitated salt, providing further confirmation of salt crust contribution to the evaporation. We identify different phases of saline water evaporation from porous media with the corresponding dominant mechanisms in each phase and extend the physical understanding of such processes.

  20. Desiccation of a pool of blood: from fluid mechanics to forensic investigations

    NASA Astrophysics Data System (ADS)

    Nicloux, Celine; Brutin, David

    2012-11-01

    The evaporation of biological fluids (with droplet configuration) has been studied since a few years due to several applications in medical fields such as medical tests, drug screening, biostabilization... The evaporation of a drop of whole blood leads to the formation of final typical pattern of cracks. Flow motion, adhesion, gelation and fracturation all occur during the evaporation of this complex matter. During the drying, a sol-gel transition develops. The evaporation of a pool of blood is studied in order to link the pattern formation and the evaporation dynamics. We intend to transfer the knowledge acquired for drops on pool to improve the forensic investigations. In this study, we focus on both pool of blood and pure water to determine the transition region from drop to pool and then to characterize the evaporation rate in the pool configuration. The spreading of blood which can be seen as a complex fluid is strongly influenced the substrate nature. The initial contact angle of blood on different substrate nature will influence the maximum thickness of the layer and then will influence the evaporation mass flux. The authors gratefully acknowledge the help and the fruitful discussions raised with A. Boccoz.

  1. Comparison of ALE and SPH Simulations of Vertical Drop Tests of a Composite Fuselage Section into Water

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fuchs, Yvonne T.

    2008-01-01

    Simulation of multi-terrain impact has been identified as an important research area for improved prediction of rotorcraft crashworthiness within the NASA Subsonic Rotary Wing Aeronautics Program on Rotorcraft Crashworthiness. As part of this effort, two vertical drop tests were conducted of a 5-ft-diameter composite fuselage section into water. For the first test, the fuselage section was impacted in a baseline configuration without energy absorbers. For the second test, the fuselage section was retrofitted with a composite honeycomb energy absorber. Both tests were conducted at a nominal velocity of 25-ft/s. A detailed finite element model was developed to represent each test article and water impact was simulated using both Arbitrary Lagrangian Eulerian (ALE) and Smooth Particle Hydrodynamics (SPH) approaches in LS-DYNA, a nonlinear, explicit transient dynamic finite element code. Analytical predictions were correlated with experimental data for both test configurations. In addition, studies were performed to evaluate the influence of mesh density on test-analysis correlation.

  2. Effect of lubricant on spray evaporation heat transfer performance of R-134a and R-22 in tube bundles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeykens, S.A.; Pate, M.B.

    1996-11-01

    This study evaluates the effects of lubricant on spray evaporation heat transfer performance. Tests were conducted with refrigerant R-134a and triangular-pitch tube bundles made from enhanced-condensation, enhanced-boiling, low-finned, and plain-surface tubes. A 340-SUS polyol-ester (POE) oil was used for the R-134a testing because this lubricant is being integrated into industry for use with this refrigerant. Refrigerant was sprayed onto the tube bundles with low-pressure-drop, wide-angle nozzles located directly above the bundle. Collector testing was conducted with both R-134a and R-22 to determine the percentage of refrigerant contacting the tue bundle. It was found that small concentrations of the polyol-ester lubricantmore » yielded significant improvement in the heat transfer performance of R-134a. The shell-side heat transfer coefficient was more dependent on lubricant concentration than on film-feed supply rate within the range of the respective parameters evaluated in this study. As expected, pure R-22 results show higher heat transfer coefficients than those obtained with pure R-134a at the same saturation temperature of 2.0 C (35.6 F).« less

  3. Evaporation of impact water droplets in interception processes: Historical precedence of the hypothesis and a brief literature overview

    NASA Astrophysics Data System (ADS)

    Dunkerley, David L.

    2009-10-01

    SummaryIntra-storm evaporation depths exceed post-storm evaporation depths in the interception of rainfall on plant canopies. An important fraction of the intra-storm evaporation may involve the small impact (or splash) droplets produced when raindrops, and perhaps gravity drops (drips released from plant parts), collide with wet plant surfaces. This idea has been presented as a new conception by Murakami [Murakami, S., 2006. A proposal for a new forest canopy interception mechanism: splash droplet evaporation. Journal of Hydrology 319, 72-82; Murakami, S., 2007a. Application of three canopy interception models to a young stand of Japanese cypress and interpretation in terms of interception mechanism. Journal of Hydrology 342, 305-319; Murakami, S., 2007b. A follow-up for the splash droplet evaporation hypothesis of canopy interception and remaining problems: why is humidity unsaturated during rainfall? In: Proceedings of the 20th Annual Conference. Japan Society of Hydrology and Water Resources (in Japanese). < http://www.jstage.jst.go.jp/article/jshwr/20/0/20_62/_article>] but was in fact advanced by Dunin [Dunin, F.X., O'Loughlin, E.M., Reyenga, W., 1988. Interception loss from eucalypt forest: lysimeter determination of hourly rates for long term evaluation. Hydrological Processes 2, 315-329] more than 20 years ago. In addition, Dunin et al. considered that canopy ventilation might be enhanced in intense rain. This note draws attention to the historical precedence of the work of Dunin et al. and also presents a short review of literature on impact droplet production, highlighting areas where data are still required for the full exploration of the role of droplet evaporation in canopy interception. Droplet production needs to be properly parameterised and included in models of interception processes and landsurface-atmosphere interactions.

  4. Micro-explosion of compound drops

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuei; Lin, Ta-Hui

    2014-08-01

    Introducing water into spray combustion systems, by either water-in-oil emulsification or supplementary water injection, is one of the major techniques for combustion improvement and NOx reduction. Plentiful researches are available on combustion of water-in-oil emulsion fuel drops. The emulsified liquid is a heterogeneous mixture of immiscible liquids. One component forms the continuous phase and the other component forms the discrete phase. The discrete phase consists of globules of the one fluid that are suspended in the continuous phase fluid. Water-in-oil emulsions are commonly considered for combustion applications because emulsions can result in micro-explosion, thereby reducing the average drop diameter to enhance liquid vaporization, and suppressing the formation of soot and NOx. However, the water addition generally does not exceed about 20% for smooth engine operations[!, 21. The combustion characteristics and micro-explosion of emulsion drop were studied by many researchers. The micro-explosion of water in fuel emulsion drops was caused by very fast growth of superheated water vapor bubbles, its superheat limits must be lower than the boiling point temperature of the fuel. These bubbles were primarily governed by the pressure difference between the superheated vapor and the liquid, and by the inertia imparted to the liquid by the motion of the bubble surface[3 6 In this study, we used a coaxial nozzle to generation the multi-component drop. The different type of water-in-oil fuel drops called the compound drops. Unlike an emulsion drop, a compound drop consists of a water core and a fuel shell, which can originate from the phase separation of emulsion[7, 81 or a water drop colliding with a fuel drop[9, 101 Burning and micro-explosion of compound drops have been found to be distinct from those of emulsion drops[9-111 Wang et al.[9 , 101 studied the combustion characteristics of collision merged alkane-water drops. The merged drops appeared in adhesive

  5. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  6. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and adaptability to highly variable thermal environments. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flightlike, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  7. Controlling charge on levitating drops.

    PubMed

    Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M

    2007-08-01

    Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation.

  8. Comparison of drop size data from ground and aerial application nozzles at three testing laboratories

    USDA-ARS?s Scientific Manuscript database

    Spray drop size is a critical factor in the performance of any agrochemical solution and is a function of spray solution, nozzle selection, and nozzle operation. Applicators generally base their selection of a particular nozzle based on the drop size reported by manufacturers and researchers. Like m...

  9. Drop test analysis of fuselage section of R80 commuter aircraft by using finite element method

    NASA Astrophysics Data System (ADS)

    Anggono, Agus Dwi; Ardianto, Adik Nofa Rochma Wahyu

    2017-04-01

    In commercial aerospace development, feasibility accidents design or crashworthiness is a major concern in aviation safety. Fuselage structure plays an important role in absorbing energy during an accident. The research aims are to determine drop test phenomenon on the fuselage, to investigate deformation occurred in the structure of the fuselage, and to know the influence of the airframe falls position to the stress strain which occurred in the structure of the fuselage. This research was conducted by varying the fall angle of the fuselage in a vertical position or 0° and 15°. Fuselage design was modeled by using SolidWorks. Then the model is imported to the Abaqus for drop test simulation. From the simulation results, it can be obtained the phenomenon of deformation on the structure of the fuselage when it comes in contact with the rigid ground. The high deformation occurs shows the structure capabilities in order to absorb the impact. It could be happened because the deformation is influenced by internal energy and strain energy. The various positions shows the structure capability in order to withstand impact loads during periods of 4-8 seconds and the maximum deformation was reached in 12 seconds. The experiment on the vertical position and the position falls of 15° angle was delivered the highest stress strain. The stress was 483 MPa in struts section, 400.78 MPa in skin section, 358.28 MPa in the floor and 483 MPa in the cargo frame section.

  10. Formation of Soil Water Repellency by Laboratory Burning and Its Effect on Soil Evaporation

    NASA Astrophysics Data System (ADS)

    Ahn, Sujung; Im, Sangjun

    2010-05-01

    Fire-induced soil water repellency can vary with burning conditions, and may lead to significant changes in soil hydraulic properties. However, isolation of the effects of soil water repellency from other factors is difficult, particularly under field conditions. This study was conducted to (i) investigate the effects of burning using different plant leaf materials and (ii) of different burning conditions on the formation of soil water repellency, and (iii) isolate the effects of the resulting soil water repellency on soil evaporation from other factors. Burning treatments were performed on the surface of homogeneous fully wettable sand soil contained in a steel frame (60 x 60 cm; 40 cm depth). As controls a sample without a heat treatment, and a heated sample without fuel, were also used. Ignition and heat treatments were carried out with a gas torch. For comparing the effects of different burning conditions, fuel types included oven-dried pine needles (fresh needles of Pinus densiflora), pine needle litter (litter on a coniferous forest floor, P. densiflora + P. rigida), and broad-leaf litter (Quercus mongolica + Q. aliena + Prunus serrulata var. spontanea + other species); fuel loads were 200 g, 300 g, and 500 g; and heating duration was 40 s, 90 s and 180 s. The heating duration was adjusted to control the temperature, based on previous experiments. The temperature was measured continuously at 3-second intervals and logged with two thermometers. After burning, undisturbed soil columns were sampled for subsequent experiments. Water Drop Penetration Time (WDPT) test was performed at every 1 mm depth of the soil columns to measure the severity of soil water repellency and its vertical extent. Soil water repellency was detected following all treatments. As the duration of heating increased, the thickness of the water repellent layer increased, whilst the severity of soil water repellency decreased. As regards fuel amount, the most severe soil water repellency was

  11. Apparatus and method for evaporator defrosting

    DOEpatents

    Mei, Viung C.; Chen, Fang C.; Domitrovic, Ronald E.

    2001-01-01

    An apparatus and method for warm-liquid defrosting of the evaporator of a refrigeration system. The apparatus includes a first refrigerant expansion device that selectively expands refrigerant for cooling the evaporator, a second refrigerant expansion device that selectively expands the refrigerant after the refrigerant has passed through the evaporator, and a defrosting control for the first refrigerant expansion device and second refrigerant expansion device to selectively defrost the evaporator by causing warm refrigerant to flow through the evaporator. The apparatus is alternately embodied with a first refrigerant bypass and/or a second refrigerant bypass for selectively directing refrigerant to respectively bypass the first refrigerant expansion device and the second refrigerant expansion device, and with the defrosting control connected to the first refrigerant bypass and/or the second refrigerant bypass to selectively activate and deactivate the bypasses depending upon the current cycle of the refrigeration system. The apparatus alternately includes an accumulator for accumulating liquid and/or gaseous refrigerant that is then pumped either to a refrigerant receiver or the first refrigerant expansion device for enhanced evaporator defrosting capability. The inventive method of defrosting an evaporator in a refrigeration system includes the steps of compressing refrigerant in a compressor and cooling the refrigerant in the condenser such that the refrigerant is substantially in liquid form, passing the refrigerant substantially in liquid form through the evaporator, and expanding the refrigerant with a refrigerant expansion device after the refrigerant substantially passes through the evaporator.

  12. Thermoelectric integrated membrane evaporation water recovery technology

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.

    1982-01-01

    The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.

  13. Localised boundary air layer and clothing evaporative resistances for individual body segments.

    PubMed

    Wang, Faming; del Ferraro, Simona; Lin, Li-Yen; Sotto Mayor, Tiago; Molinaro, Vincenzo; Ribeiro, Miguel; Gao, Chuansi; Kuklane, Kalev; Holmér, Ingvar

    2012-01-01

    Evaporative resistance is an important parameter to characterise clothing thermal comfort. However, previous work has focused mainly on either total static or dynamic evaporative resistance. There is a lack of investigation of localised clothing evaporative resistance. The objective of this study was to study localised evaporative resistance using sweating thermal manikins. The individual and interaction effects of air and body movements on localised resultant evaporative resistance were examined in a strict protocol. The boundary air layer's localised evaporative resistance was investigated on nude sweating manikins at three different air velocity levels (0.18, 0.48 and 0.78 m/s) and three different walking speeds (0, 0.96 and 1.17 m/s). Similarly, localised clothing evaporative resistance was measured on sweating manikins at three different air velocities (0.13, 0.48 and 0.70 m/s) and three walking speeds (0, 0.96 and 1.17 m/s). Results showed that the wind speed has distinct effects on local body segments. In contrast, walking speed brought much more effect on the limbs, such as thigh and forearm, than on body torso, such as back and waist. In addition, the combined effect of body and air movement on localised evaporative resistance demonstrated that the walking effect has more influence on the extremities than on the torso. Therefore, localised evaporative resistance values should be provided when reporting test results in order to clearly describe clothing local moisture transfer characteristics. Localised boundary air layer and clothing evaporative resistances are essential data for clothing design and assessment of thermal comfort. A comprehensive understanding of the effects of air and body movement on localised evaporative resistance is also necessary by both textile and apparel researchers and industry.

  14. Evaluating The Reliability of Point Estimates of Wetland Evaporation

    NASA Astrophysics Data System (ADS)

    Gavin, H.; Agnew, C. T.

    The Penman-Monteith formulation of evaporation has been criticised for its reliance upon point estimates raising concerns that areal estimates of wetland evaporation based upon single weather stations can be misleading. Typically wetlands are composed of a complex mosaic of land cover types each of which can produce different evaporative rates. The need to account for wetland patches when monitoring hydrological fluxes has been noted, while Morton (1983) has long argued for a fundamentally different approach to the calculation of regional evaporation. This paper presents the work carried out at wet grassland in Southern England that was monitored with several automatic weather stations (AWS) and a bowen ratio station to investigate microclimate variations. The significance of fetch was examined using the approach adopted by Gash (1986) based upon surface roughness to estimate the fraction of evaporation sensed from a specific distance upwind of the monitoring station. This theoretical analysis reveals that the fraction of evaporation contributed by the surrounding area steadily increases to a value of 77% at a distance of 224m and thereafter declines rapidly, under stable atmospheric conditions. Thus point climate observations may not reflect surface conditions at greater distances. This result was tested through the deployment offour AWS around the wetland. The data yielded a different response, suggesting that homogeneous conditions prevailed and the central AWS did provide reliable areal estimates of evaporation. The apparent contradiction is a result of not accounting for wind speeds found in wetlands that lead to widespread atmospheric mixing. These findings are typical of moist conditions whereas for example Guo and Scheupp (1994) found that a patchwork of dry fields and wet ditches, characteristic of the study site in summer, could produce differences of up to 50% in evaporation. The paper will also present the initial results of an investigation of the role

  15. Combining spray nozzle simulators with meshes: characterization of rainfall intensity and drop properties

    NASA Astrophysics Data System (ADS)

    Carvalho, Sílvia C. P.; de Lima, João L. M. P.; de Lima, M. Isabel P.

    2013-04-01

    Rainfall simulators can be a powerful tool to increase our understanding of hydrological and geomorphological processes. Nevertheless, rainfall simulators' design and operation might be rather demanding, for achieving specific rainfall intensity distributions and drop characteristics. The pressurized simulators have some advantages over the non-pressurized simulators: drops do not rely on gravity to reach terminal velocity, but are sprayed out under pressure; pressurized simulators also yield a broad range of drop sizes in comparison with drop-formers simulators. The main purpose of this study was to explore in the laboratory the potential of combining spray nozzle simulators with meshes in order to change rainfall characteristics (rainfall intensity and diameters and fall speed of drops). Different types of spray nozzles were tested, such as single full-cone and multiple full-cone nozzles. The impact of the meshes on the simulated rain was studied by testing different materials (i.e. plastic and steel meshes), square apertures and wire thicknesses, and different vertical distances between the nozzle and the meshes underneath. The diameter and fall speed of the rain drops were measured using a Laser Precipitation Monitor (Thies Clima). The rainfall intensity range and coefficients of uniformity of the sprays and the drop size distribution, fall speed and kinetic energy were analysed. Results show that when meshes intercept drop trajectories the spatial distribution of rainfall intensity and the drop size distribution are affected. As the spray nozzles generate typically small drop sizes and narrow drop size distributions, meshes can be used to promote the formation of bigger drops and random their landing positions.

  16. Small-Scale Drop-Size Variability: Empirical Models for Drop-Size-Dependent Clustering in Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Larsen, Michael L.; Wiscombe, Warren J.

    2005-01-01

    By analyzing aircraft measurements of individual drop sizes in clouds, it has been shown in a companion paper that the probability of finding a drop of radius r at a linear scale l decreases as l(sup D(r)), where 0 less than or equals D(r) less than or equals 1. This paper shows striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and a Poisson distribution of cloud drops, these models illustrate strong drop clustering, especially with larger drops. The degree of clustering is determined by the observed exponents D(r). The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics, including how fast rain can form. For radiative transfer theory, clustering of large drops enhances their impact on the cloud optical path. The clustering phenomenon also helps explain why remotely sensed cloud drop size is generally larger than that measured in situ.

  17. Evaporation and transpiration from forests in Central Europe - relevance of patch-level studies for spatial scaling

    NASA Astrophysics Data System (ADS)

    Köstner, B.

    Spatial scaling from patch to the landscape level requires knowledge on the effects of vegetation structure on maximum surface conductances and evaporation rates. The following paper summarizes results on atmospheric, edaphic, and structural controls on forest evaporation and transpiration observed in stands of Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and European beech (Fagus sylvatica). Forest canopy transpiration (Ec) was determined by tree sapflow measurements scaled to the stand level. Estimates of understory transpiration and forest floor evaporation were derived from lysimeter and chamber measurements. Strong reduction of Ec due to soil drought was only observed at a Scots pine stand when soil water content dropped below 16% v/v. Although relative responses of Ec on atmospheric conditions were similar, daily maximum rates of could differ more than 100% between forest patches of different structure (1.5-3.0mmd-1 and 2.6-6.4mmd-1 for spruce and beech, respectively). A significant decrease of Ecmax per leaf area index with increasing stand age was found for monocultures of Norway spruce, whereas no pronounced changes in were observed for beech stands. It is concluded that structural effects on Ecmax can be specified and must be considered for spatial scaling from forest stands to landscapes. Hereby, in conjunction with LAI, age-related structural parameters are important for Norway spruce stands. Although compensating effects of tree canopy layers and understory on total evaporation of forests were observed, more information is needed to quantify structure-function relationships in forests of heterogenous structure.

  18. Evaluation of three energy balance-based evaporation models for estimating monthly evaporation for five lakes using derived heat storage changes from a hysteresis model

    NASA Astrophysics Data System (ADS)

    Duan, Zheng; Bastiaanssen, W. G. M.

    2017-02-01

    reasonable Q t to force energy balance-based evaporation models to improve evaporation modelling at monthly timescales for conditions and long-term periods when measured Q t are not available. We call on scientific community to further test and refine the hysteresis model in more lakes in different geographic locations and environments.

  19. Drop impact and wettability: From hydrophilic to superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Antonini, Carlo; Amirfazli, Alidad; Marengo, Marco

    2012-10-01

    Experiments to understand the effect of surface wettability on impact characteristics of water drops onto solid dry surfaces were conducted. Various surfaces were used to cover a wide range of contact angles (advancing contact angle from 48° to 166°, and contact angle hysteresis from 5° to 56°). Several different impact conditions were analyzed (12 impact velocities on 9 different surfaces, among which 2 were superhydrophobic). Results from impact tests with millimetric drops show that two different regimes can be identified: a moderate Weber number regime (30 < We < 200), in which wettability affects both drop maximum spreading and spreading characteristic time; and a high Weber number regime (We > 200), in which wettability effect is secondary, because capillary forces are overcome by inertial effects. In particular, results show the role of advancing contact angle and contact angle hysteresis as fundamental wetting parameters to allow understanding of different phases of drop spreading and beginning of recoiling. It is also shown that drop spreading on hydrophilic and superhydrophobic surfaces occurs with different time scales. Finally, if the surface is superhydrophobic, eventual impalement, i.e., transition from Cassie to Wenzel wetting state, which might occur in the vicinity of the drop impact area, does not influence drop maximum spreading.

  20. Comparison of explicit finite element and mechanical simulation of the proximal femur during dynamic drop-tower testing.

    PubMed

    Ariza, O; Gilchrist, S; Widmer, R P; Guy, P; Ferguson, S J; Cripton, P A; Helgason, B

    2015-01-21

    Current screening techniques based on areal bone mineral density (aBMD) measurements are unable to identify the majority of people who sustain hip fractures. Biomechanical examination of such events may help determine what predisposes a hip to be susceptible to fracture. Recently, drop-tower simulations of in-vitro sideways falls have allowed the study of the mechanical response of the proximal human femur at realistic impact speeds. This technique has created an opportunity to validate explicit finite element (FE) models against dynamic test data. This study compared the outcomes of 15 human femoral specimens fractured using a drop tower with complementary specimen-specific explicit FE analysis. Correlation coefficient and root mean square error (RMSE) were found to be moderate for whole bone stiffness comparison (R(2)=0.3476 and 22.85% respectively). No correlation was found between experimentally and computationally predicted peak force, however, energy absorption comparison produced moderate correlation and RMSE (R(2)=0.4781 and 29.14% respectively). By comparing predicted strain maps to high speed video data we demonstrated the ability of the FE models to detect vulnerable portions of the bones. Based on our observations, we conclude that there exists a need to extend the current apparent level material models for bone to cover higher strain rates than previously tested experimentally. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Lifetime of oil drops pressed by buoyancy against a planar interface: Large drops

    NASA Astrophysics Data System (ADS)

    Rojas, Clara; García-Sucre, Máximo; Urbina-Villalba, Germán

    2010-11-01

    In a previous report [C. Rojas, G. Urbina-Villalba, and M. García-Sucre, Phys. Rev. E 81, 016302 (2010)10.1103/PhysRevE.81.016302] it was shown that emulsion stability simulations are able to reproduce the lifetime of micrometer-size drops of hexadecane pressed by buoyancy against a planar water-hexadecane interface. It was confirmed that small drops (ri<10μm) stabilized with β -casein behave as nondeformable particles, moving with a combination of Stokes and Taylor tensors as they approach the interface. Here, a similar methodology is used to parametrize the potential of interaction of drops of soybean oil stabilized with bovine serum albumin. The potential obtained is then employed to study the lifetime of deformable drops in the range 10≤ri≤1000μm . It is established that the average lifetime of these drops can be adequately replicated using the model of truncated spheres. However, the results depend sensibly on the expressions of the initial distance of deformation and the maximum film radius used in the calculations. The set of equations adequate for large drops is not satisfactory for medium-size drops (10≤ri≤100μm) , and vice versa. In the case of large particles, the increase in the interfacial area as a consequence of the deformation of the drops generates a very large repulsive barrier which opposes coalescence. Nevertheless, the buoyancy force prevails. As a consequence, it is the hydrodynamic tensor of the drops which determine the characteristic behavior of the lifetime as a function of the particle size. While the average values of the coalescence time of the drops can be justified by the mechanism of film thinning, the scattering of the experimental data of large drops cannot be rationalized using the methodology previously described. A possible explanation of this phenomenon required elaborate simulations which combine deformable drops, capillary waves, repulsive interaction forces, and a time-dependent surfactant adsorption.

  2. Viscosity Measurement via Drop Coalescence: A Space Station Experiment

    NASA Technical Reports Server (NTRS)

    Antar, Basil; Ethridge, Edwin C.

    2010-01-01

    The concept of using low gravity experimental data together with CFD simulations for measuring the viscosity of highly viscous liquids was recently validated on onboard the International Space Station (ISS). A series of microgravity tests were conducted for this purpose on the ISS in July, 2004 and in May of 2005. In these experiments two liquid drops were brought manually together until they touched and were allowed to coalesce under the action of the capillary force alone. The coalescence process was recorded photographically from which the contact radius speed of the merging drops was measured. The liquid viscosity was determined by fitting the measured data with accurate numerical simulation of the coalescence process. Several liquids were tested and for each liquid several drop diameters were employed. Experimental and numerical results will be presented in which the viscosity of several highly viscous liquids were determined using this technique.

  3. Mixed feed evaporator

    DOEpatents

    Vakil, Himanshu B.; Kosky, Philip G.

    1982-01-01

    In the preparation of the gaseous reactant feed to undergo a chemical reaction requiring the presence of steam, the efficiency of overall power utilization is improved by premixing the gaseous reactant feed with water and then heating to evaporate the water in the presence of the gaseous reactant feed, the heating fluid utilized being at a temperature below the boiling point of water at the pressure in the volume where the evaporation occurs.

  4. Estimation of open water evaporation using land-based meteorological data

    NASA Astrophysics Data System (ADS)

    Li, Fawen; Zhao, Yong

    2017-10-01

    Water surface evaporation is an important process in the hydrologic and energy cycles. Accurate simulation of water evaporation is important for the evaluation of water resources. In this paper, using meteorological data from the Aixinzhuang reservoir, the main factors affecting water surface evaporation were determined by the principal component analysis method. To illustrate the influence of these factors on water surface evaporation, the paper first adopted the Dalton model to simulate water surface evaporation. The results showed that the simulation precision was poor for the peak value zone. To improve the model simulation's precision, a modified Dalton model considering relative humidity was proposed. The results show that the 10-day average relative error is 17.2%, assessed as qualified; the monthly average relative error is 12.5%, assessed as qualified; and the yearly average relative error is 3.4%, assessed as excellent. To validate its applicability, the meteorological data of Kuancheng station in the Luan River basin were selected to test the modified model. The results show that the 10-day average relative error is 15.4%, assessed as qualified; the monthly average relative error is 13.3%, assessed as qualified; and the yearly average relative error is 6.0%, assessed as good. These results showed that the modified model had good applicability and versatility. The research results can provide technical support for the calculation of water surface evaporation in northern China or similar regions.

  5. EVA space suit Evaporative Cooling/Heating Glove System (ECHGS)

    NASA Technical Reports Server (NTRS)

    Coss, F. A.

    1976-01-01

    A new astronaut glove, the Evaporative Cooling/Heating Glove System (ECHGS), was designed and developed to allow the handling of objects between -200 F and +200 F. Active heating elements, positioned at each finger pad, provide additional heat to the finger pads from the rest of the finger. A water evaporative cooling system provides cooling by the injection of water to the finger areas and the subsequent direct evaporation to space. Thin, flexible insulation has been developed for the finger areas to limit thermal conductivity. Component and full glove tests have shown that the glove meets and exceeds the requirements to hold a 11/2 inch diameter bar at + or - 200 F for three minutes within comfort limits. The ECHGS is flexible, lightweight and comfortable. Tactility is reasonable and small objects can be identified especially by the fingertips beyond the one half width active elements.

  6. Evaporation Kinetics of Polyol Droplets: Determination of Evaporation Coefficients and Diffusion Constants

    NASA Astrophysics Data System (ADS)

    Su, Yong-Yang; Marsh, Aleksandra; Haddrell, Allen E.; Li, Zhi-Ming; Reid, Jonathan P.

    2017-11-01

    In order to quantify the kinetics of mass transfer between the gas and condensed phases in aerosol, physicochemical properties of the gas and condensed phases and kinetic parameters (mass/thermal accommodation coefficients) are crucial for estimating mass fluxes over a wide size range from the free molecule to continuum regimes. In this study, we report measurements of the evaporation kinetics of droplets of 1-butanol, ethylene glycol (EG), diethylene glycol (DEG), and glycerol under well-controlled conditions (gas flow rates and temperature) using the previously developed cylindrical electrode electrodynamic balance technique. Measurements are compared with a model that captures the heat and mass transfer occurring at the evaporating droplet surface. The aim of these measurements is to clarify the discrepancy in the reported values of mass accommodation coefficient (αM, equals to evaporation coefficient based on microscopic reversibility) for 1-butanol, EG, and DEG and improve the accuracy of the value of the diffusion coefficient for glycerol in gaseous nitrogen. The uncertainties in the thermophysical and experimental parameters are carefully assessed, the literature values of the vapor pressures of these components are evaluated, and the plausible ranges of the evaporation coefficients for 1-butanol, EG, and DEG as well as uncertainty in diffusion coefficient for glycerol are reported. Results show that αM should be greater than 0.4, 0.2, and 0.4 for EG, DEG, and 1-butanol, respectively. The refined values are helpful for accurate prediction of the evaporation/condensation rates.

  7. Analysis of the effects of evaporative cooling on the evaporation of liquid droplets using a combined field approach

    PubMed Central

    Xu, Xuefeng; Ma, Liran

    2015-01-01

    During liquid evaporation, the equations for the vapor concentration in the atmosphere and for the temperature in the liquid are coupled and must be solved in an iterative manner. In the present paper, a combined field approach which unifies the coupled fields into one single hybrid field and thus makes the iteration unnecessary is proposed. By using this approach, the influences of the evaporative cooling on the evaporation of pinned sessile droplets are investigated, and its predictions are found in good agreement with the previous theoretical and experimental results. A dimensionless number Ec which can evaluate the strength of the evaporative cooling is then introduced, and the results show that both the evaporation flux along the droplet surface and the total evaporation rate of the droplet decrease as the evaporative cooling number Ec increases. For drying droplets, there exists a critical value EcCrit below which the evaporative cooling effect can be neglected and above which the significance of the effect increases dramatically. The present work may also have more general applications to coupled field problems in which all the fields have the same governing equation. PMID:25721987

  8. Investigation of the quality of stored red blood cells after simulated air drop in the maritime environment.

    PubMed

    Meli, Athinoula; Hancock, Vicky; Doughty, Heidi; Smedley, Steve; Cardigan, Rebecca; Wiltshire, Michael

    2018-02-01

    Maritime medical capability may be compromised by blood resupply. Air-dropped red blood cells (RBCs) is a possible mitigation factor. This study set out to evaluate RBC storage variables after a simulated parachute air drop into the sea, as limited data exist. The air load construction for the air drop of blood was subject to static drop assessment to simulate a worst-case parachute drop scenario. One control and two test Golden Hour shipping containers were each packaged with 10 RBC units. The control box was not dropped; Test Boxes 1 and 2 were further reinforced with waterproof boxes and underwent a simulated air drop on Day 7 or Day 8 postdonation, respectively. One day after the drop and once a week thereafter until Day 43 of storage, RBCs from each box were sampled and tested for full blood counts, hemolysis, adenosine triphosphate, 2,3-diphosphoglycerate, pH, extracellular potassium, glucose, lactate, deformability, and RBC microvesicles. The packaging configuration completed the air drop with no water ingress or physical damage. All units met UK specifications for volume, hemoglobin, and hemolysis. There were no significant differences for any of the variables studied between RBCs in the control box compared to RBCs in Test Boxes 1 and 2 combined over storage. The test proved that the packaging solution and the impact of a maritime air drop as performed in this study, on Day 7 or Day 8 postdonation, did not affect the in vitro quality of RBCs in SAGM over storage for 35 days. © 2017 AABB.

  9. Horst Meyer and Quantum Evaporation

    NASA Astrophysics Data System (ADS)

    Balibar, S.

    2016-11-01

    With their 1963 article in Cryogenics Horst Meyer and his collaborators triggered intense research activity on the evaporation of superfluid helium. Discussing this subject with him in 1975 was enlightening. Fifty years later, the analogy between the photoelectric effect and the evaporation of superfluid helium in the low temperature limit is not yet clear, although remarkable progress has been made in its observation and its understanding. This special issue of the Journal of Low Temperature Physics is an opportunity to recall the history of quantum evaporation, and to express my gratitude to Horst Meyer. It describes quickly most of the experimental and theoretical works which have been published on quantum evaporation during the last 50 years, but it is not a comprehensive review of this fascinating subject.

  10. Effect of Variable Gravity on Evaporation of Binary Fluids in a Capillary Pore Evaporator

    NASA Technical Reports Server (NTRS)

    Girgis, Morris M.; Matta, Nabil S.; Kolli, Kiran; Brown, Leon; Bain, James, Jr.; McGown, Juantonio

    1996-01-01

    The research project focuses on experimental investigation of the capillary-pumped evaporative heat transfer phenomenon. The objective is to examine whether the heat transfer and stability of a heated meniscus in a capillary pore can be enhanced by adding trace amounts of a non-volatile solute to a solvent and to understand the changes that occur. The experimental setup consists of a single pore evaporator connected to a reservoir which supplies liquid to the evaporator. In addition to the experiments of capillary-pumped evaporation, a parallel experimental study has been conducted to systematically investigate the effects of gravity as well as the effects of bulk composition on the heat transfer characteristics of evaporating binary thin films near the contact line region along an inclined heated surface. To investigate the buoyancy effects on evaporation along an inclined heated surface, the angle of inclination from a horizontal plane was varied fro 15 C to 90 C. An optimum concentration between 0.5% and 1% decane in pentane/decane solutions has been demonstrated at different angles of inclination. Improved heat transfer was found for the geometry with the smallest angle of inclination of 15 degrees. In addition, flow visualization has revealed that at low inclination angles effective heat transfer takes place primarily due to an extension of the thin film near the contact line. At these low inclination angles, the optimum concentration is associated with enhanced wetting characteristics and reduced thermocapillary stresses along the interface.

  11. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing

  12. Polycrystalline structures formed in evaporating droplets as a parameter to test the action of Zincum metallicum 30c in a wheat seed model.

    PubMed

    Kokornaczyk, Maria Olga; Baumgartner, Stephan; Betti, Lucietta

    2016-05-01

    Polycrystalline structures formed inside evaporating droplets of different biological fluids have been shown sensitive towards various influences, including ultra high dilutions (UHDs), representing so a new approach potentially useful for basic research in homeopathy. In the present study we tested on a wheat seed model Zincum metallicum 30c efficacy versus lactose 30c and water. Stressed and non-stressed wheat seeds were watered with the three treatments. Seed-leakage droplets were evaporated and the polycrystalline structures formed inside the droplet residues were analyzed for their local connected fractal dimensions (LCFDs) (measure of complexity) using the software ImageJ. We have found significant differences in LCFD values of polycrystalline structures obtained from stressed seeds following the treatments (p<0.0001); Zincum metallicum 30c lowered the structures' complexity compared to lactose 30c and water. In non-stressed seeds no significant differences were found. The droplet evaporation method (DEM) might represent a potentially useful tool in basic research in homeopathy. Furthermore our results suggest a sensitization of the stressed model towards the treatment action, which is conforming to previous findings. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  13. Adhesion between polymers and evaporated gold and nickel films

    NASA Technical Reports Server (NTRS)

    Yamada, Y.; Wheeler, D. R.; Buckley, D. H.

    1984-01-01

    To obtain information on the adhesion between metal films and polymeric solids, the adhesion force was measured by means of a tensile pull test. It was found that the adhesion strengths between polymeric solids and gold films evaporated on polymer substrates were (1.11 + or - 0.53) multiplied by 10(6) N/M(2) on PTFE, about 5.49 multiplied by 10(6) N/m(2) on UHMWPE, and 6.54x10(6) on 6/6 nylon. The adhesion strengths for nickel films evaporated on PTFE, UHMWPE, and 6/6 nylon were found to be a factor of 1.7 higher than those for the gold coated PTFE, UHMWPE, and 6/6 nylon. To confirm quantitatively the effect of electron irradiation on the adhesion strength between a PTFE solid and metal films, a tensile pull test was performed on the irradiated PTFE specimens, which were prepared by evaporating nickel or gold on PTFE surfaces irradiated by 2-keV electrons for various times. After irradiation, the adhesion strength increased to (4.92 + or - 0.92)x10(6) N/m(2) for nickel coated PTFE and (1.82 + or - 0.48)x10(6) N/m(2) for gold coated PTFE. The improvement in adhesion for nickel is higher than that for gold.

  14. Correlation of chemical evaporation rate with vapor pressure.

    PubMed

    Mackay, Donald; van Wesenbeeck, Ian

    2014-09-02

    A new one-parameter correlation is developed for the evaporation rate (ER) of chemicals as a function of molar mass (M) and vapor pressure (P) that is simpler than existing correlations. It applies only to liquid surfaces that are unaffected by the underlying solid substrate as occurs in the standard ASTM evaporation rate test and to quiescent liquid pools. The relationship has a sounder theoretical basis than previous correlations because ER is correctly correlated with PM rather than P alone. The inclusion of M increases the slope of previous log ER versus log P regressions to a value close to 1.0 and yields a simpler one-parameter correlation, namely, ER (μg m(-1) h(-1)) = 1464P (Pa) × M (g mol(-1)). Applications are discussed for the screening level assessment and ranking of chemicals for evaporation rate, such as pesticides, fumigants, and hydrocarbon carrier fluids used in pesticide formulations, liquid consumer products used indoors, and accidental spills of liquids. The mechanistic significance of the single parameter as a mass-transfer coefficient or velocity is discussed.

  15. Drop Tower tests in preparation of a Tethered Electromagnetic Docking space demonstration

    NASA Astrophysics Data System (ADS)

    Olivieri, Lorenzo; Francesconi, Alessandro; Antonello, Andrea; Bettiol, Laura; Branz, Francesco; Duzzi, Matteo; Mantellato, Riccardo; Sansone, Francesco; Savioli, Livia

    2016-07-01

    A group of students of the University of Padova is recently developing some technologies to implement a Tethered Electromagnetic Docking (TED) experiment, a novel system for close rendezvous and mating manoeuvres between two spacecraft, consisting in a small tethered probe ejected by the chaser and magnetically guided by a receiving electromagnet mounted on the target. Because of the generated magnetic field, automatic self-alignment and mating are possible; then, as the tether is rewinded, the chaser is able to dock with the target. This concept allows to simplify standard docking procedures, thanks to the reduction of proximity navigation and guidance requirements, as well as consequent fuel reduction. Other interesting applications are expected, from active debris removal to space tugging; in particular, the utilization of the tethered connection for detumbling operations is considered. The realization of a space demonstrator requires a preliminary verification of the critical technologies employed in TED, in particular the magnetic guidance and the probe deploy and retrieve; in the framework of ESA "Drop your Thesis!" 2014 and 2016 campaigns the experiments FELDs (Flexible Electromagnetic Leash Docking system) and STAR (System for Tether Automatic Retrieval) have been focused on the test of such critical elements in the relevant microgravity environment of ZARM Drop Tower in Bremen. In particular, FELDs consisted in a simplified model of TED with a magnetic target interface, a passive tethered probe and its launch system: the experiment allowed to assess the passive self-alignment of the probe with respect to the target and to study the effect of friction between the tether and the release system. Similarly, STAR is investigating the tether actively controlled deployment and retrieval, with the experiment campaign planned on November 2016. In addition, another microgravity experiment is in preparation for the investigation of active magnetic navigation: PACMAN

  16. [Predicting drop-out during the systems training for emotional predictability and problem solving (STEPPS)].

    PubMed

    van Diepen, J B; de Groot, I W

    2016-01-01

    Drop-out is a complex problem in mental health care and in STEPPS. Research has revealed a variety of predicting factors and has produced contradictory results. To investigate whether the information available at the start of STEPPS can pinpoint predictors of drop-out. The ROM data for 150 patients were used to test the link between the following factors: age, gender, education, employment, substance abuse, anxiety, hostility, interpersonal relations, responsibility and social concordance with drop-out. The method used for testing was logistic regression analysis. Factors that contributed significantly to the prediction of drop-out were gender and employment status. These factors made up 16% of the explained variation (R2 Nagelkerkes) in drop-out. Gender was the strongest predictive factor. Concerning the other factors, no differences were found between groups (drop-out and non-dropouts). In its present form STEPPS does not suit a large number of the male participants. Drop-out during STEPPS is hard to predict on the basis of ROM-questionnaires. Future research should focus on preconditions and marginal conditions that influence patients to complete their training.

  17. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems.

    PubMed

    Chimeli, Talita Baumgratz Cachapuz; D'Alpino, Paulo Henrique Perlatti; Pereira, Patrícia Nóbrega; Hilgert, Leandro Augusto; Di Hipólito, Vinicius; Garcia, Fernanda Cristina Pimentel

    2014-01-01

    To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake) and nanoleakage of adhesive systems. Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness) were produced (N=48) using the adhesives: Clearfil S3 Bond (CS3)/Kuraray, Clearfil SE Bond - control group (CSE)/Kuraray, Optibond Solo Plus (OS)/Kerr and Scotchbond Universal Adhesive (SBU)/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group), and then photoactivated for 80 s (550 mW/cm2). After desiccation, the specimens were weighed and stored in distilled water (N=12) or mineral oil (N=12) to evaluate the water diffusion over a 7-day period. Net water uptake (%) was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%). The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Statistical analysis revealed that only the factor "adhesive" was significant (p<0.05). Solvent evaporation had no influence in the WS and SL of the adhesives. CSE (control) presented significantly lower net uptake (5.4%). The nanoleakage was enhanced by the presence of solvent in the adhesives. Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated.

  18. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems

    PubMed Central

    CHIMELI, Talita Baumgratz Cachapuz; D'ALPINO, Paulo Henrique Perlatti; PEREIRA, Patrícia Nóbrega; HILGERT, Leandro Augusto; DI HIPÓLITO, Vinicius; GARCIA, Fernanda Cristina Pimentel

    2014-01-01

    Objective To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake) and nanoleakage of adhesive systems. Material and Methods Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness) were produced (N=48) using the adhesives: Clearfil S3 Bond (CS3)/Kuraray, Clearfil SE Bond - control group (CSE)/Kuraray, Optibond Solo Plus (OS)/Kerr and Scotchbond Universal Adhesive (SBU)/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group), and then photoactivated for 80 s (550 mW/cm2). After desiccation, the specimens were weighed and stored in distilled water (N=12) or mineral oil (N=12) to evaluate the water diffusion over a 7-day period. Net water uptake (%) was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%). The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Results Statistical analysis revealed that only the factor "adhesive" was significant (p<0.05). Solvent evaporation had no influence in the WS and SL of the adhesives. CSE (control) presented significantly lower net uptake (5.4%). The nanoleakage was enhanced by the presence of solvent in the adhesives. Conclusions Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated. PMID:25141201

  19. Student Drop Tower Competitions: Dropping In a Microgravity Environment (DIME) and What If No Gravity? (WING)

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Stocker, Dennis P.; DeLombard, Richard

    2011-01-01

    This paper describes two student competition programs that allow student teams to conceive a science or engineering experiment for a microgravity environment. Selected teams design and build their experimental hardware, conduct baseline tests, and ship their experiment to NASA where it is operated in the 2.2 Second Drop Tower. The hardware and acquired data is provided to the teams after the tests are conducted so that the teams can prepare their final reports about their findings.

  20. Looking Under a Leidenfrost Drop

    NASA Astrophysics Data System (ADS)

    Burton, Justin; Sharpe, Aaron; van der Veen, Roeland; Franco, Andres; Nagel, Sidney

    2011-11-01

    The Leidenfrost effect can be observed when small water drops move around effortlessly without sticking on a hot pan. The transition to a levitated state, where the drops rest on an insulating layer of vapor, occurs at the Leidenfrost temperature. Experiment and theory have examined the lifetime and maximum size of Leidenfrost drops. However, the liquid-vapor interface beneath the drop has not been fully charcterized. We report experiments using laser-light interference to measure the geometry of the liquid-vapor interface. By imaging the interference fringes produced between the bottom surface of the liquid and the hot substrate, we can measure the curvature of the vapor pocket beneath the drop as well as the azimuthal undulations along the neck that sits closest to the surface. From these measurements, we can extrapolate the shape of the bottom of the drop, which fluctuates in time with a period of a few milliseconds for millimeter-sized water drops. Our measurements of the azimuthal neck radius agree with predictions: the difference between the drop and neck radii, (Rd -Rn) ~0.53 λ in the limit of large drops where λ is the capillary length of the fluid. For small drops we recover the result found in that Rn ~Rd2 / λ .