Science.gov

Sample records for droplet-based ion sources

  1. Electrohydrodynamics of Charge Separation in Droplet-Based Ion Sources with Time-Varying Electrical and Mechanical Actuation

    PubMed Central

    Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.

    2010-01-01

    Charge transport and separation in mechanically-driven, droplet-based ion sources are investigated using computational analysis and supporting experiments. A first-principles model of electrohydrodynamics (EHD) and charge migration is formulated and implemented using FLUENT CFD software for jet/droplet formation. For validation, classical experiments of electrospraying from a thin capillary are simulated, specifically, the transient EHD cone-jet formation of a fluid with finite electrical conductivity, and the Taylor cone formation in a perfectly electrically-conducting fluid. The model is also used to investigate the microscopic physics of droplet charging in mechanically-driven droplet-based ion sources, such as AMUSE (Array of Micromachined UltraSonic Electrospray). Here, AMUSE is subject to DC and AC electric fields of varying amplitude and phase, with respect to a time-varying mechanical force driving the droplet formation. For the DC-charging case, a linear relationship is demonstrated between the charge carried by each droplet and an applied electric field magnitude, in agreement with previously reported experiments. For the AC-charging case, a judiciously-chosen phase-shift in the time-varying mechanical (driving ejection) and electrical (driving charge transport) signals allows for a significantly increased amount of charge, of desired polarity, to be pumped into a droplet upon ejection. Complementary experimental measurements of electrospray electrical current and charge-per-droplet, produced by the AMUSE ion source, are performed and support theoretical predictions for both DC and AC-charging cases. The theoretical model and simulation tools provide a versatile and general analytical framework for fundamental investigations of coupled electrohydrodynamics and charge transport. The model also allows for the exploration of different configurations and operating modes to optimize charge separation in atmospheric pressure electrohydrodynamic ion sources

  2. Neutral cluster debris dynamics in droplet-based laser-produced plasma sources

    NASA Astrophysics Data System (ADS)

    Hudgins, Duane; Gambino, Nadia; Rollinger, Bob; Abhari, Reza

    2016-05-01

    The neutral cluster debris dynamics of a droplet-based laser-produced plasma is studied experimentally and analytically. Experiments were done imaging the debris with a high-speed shadowgraph system and using image processing to determine the droplet debris mean radial velocity \\overline{V} dependence on laser pulse irradiance E e. The data shows a power law dependence between the mean radial debris velocity and the incident irradiance giving \\overline{V}\\propto E\\text{e}n with n≈ 0.65 . A scaled analytical model was derived modeling the plasma ablation pressure on the droplet surface as the primary momentum exchange mechanism between the unablated droplet material and the laser pulse. The relationship between droplet debris trajectory and the droplet alignment with the laser was quantified analytically. The derived analytical model determines that the neutral cluster debris trajectory for an ablated droplet is a function of the laser profile f L, the droplet diameter D and the axial misalignment h between the laser axis and the droplet center. The analytical calculations from these models were found to be in good agreement with the measurements. This analysis has practical significance for understanding ablated droplet debris, droplet deformation by laser pulsing, and droplet breakup from very short timescale shocks.

  3. Ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  4. Angular ion species distribution in droplet-based laser-produced plasmas

    SciTech Connect

    Giovannini, Andrea Z.; Gambino, Nadia; Rollinger, Bob; Abhari, Reza S.

    2015-01-21

    The angular distribution of the ion species generated from a laser irradiated droplet target is measured. The employed instrument was an electrostatic energy analyzer with differential pumping. Singly and doubly charged ions were detected at an argon ambient gas pressure of 2 × 10{sup −2} mbar. The amount of Sn{sup +} and Sn{sup 2+} and their kinetic energy is measured from 45° to 120° from the laser axis. Sn{sup +} expands approximately isotropically, and Sn{sup 2+} expansion is peaked towards the incoming laser radiation. The singly charged ion kinetic energy is close to constant over the measurement range, while it decreases by around 30% for Sn{sup 2+}. A calibrated model of the ion expansion that includes recombinations correctly predicts the mean ion charge distribution. The model is able to qualitatively estimate the influence of the laser wavelength on the mean ion charge distribution. The results show a more pronounced isotropic distribution for shorter wavelengths, and a more forward-peaked distribution for longer wavelengths. The ion charge distribution expected without the ambient gas is estimated through the measured ion kinetic energy. The presence of the ambient gas results in a decrease of the mean ion charge state and a decrease in angular anisotropy.

  5. ION SOURCE

    DOEpatents

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  6. ION SOURCE

    DOEpatents

    Leland, W.T.

    1960-01-01

    The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

  7. ION SOURCE

    DOEpatents

    Blue, C.W.; Luce, J.S.

    1960-07-19

    An ion source is described and comprises an arc discharge parallel to the direction of and inside of a magnetic field. an accelerating electrode surrounding substantially all of the discharge except for ion exit apertures, and means for establishing an electric field between that electrode and the arc discharge. the electric field being oriented at an acute angle to the magnetic field. Ions are drawn through the exit apertures in the accelrating electrcde in a direction substantially divergent to the direction of the magnetic field and so will travel in a spiral orbit along the magnetic field such that the ions will not strike the source at any point in their orbit within the magnetic field.

  8. ION SOURCE

    DOEpatents

    Bell, W.A. Jr.; Love, L.O.; Prater, W.K.

    1958-01-28

    An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.

  9. Ion source

    DOEpatents

    Brobeck, W. M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from the source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a vacuum lock arrangement in conjunction with an arm for manipulating the bottle.

  10. ION SOURCE

    DOEpatents

    Brobeck, W.M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from thc source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a varuum lock arrangement in conjunction with an arm for manipulating the bottle.

  11. Improved ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1982-05-04

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

  12. Spherical ion source

    NASA Technical Reports Server (NTRS)

    Hall, L. G.

    1969-01-01

    Radial focusing of electrons in ion source produces greater ion densities, resulting in higher resolution and focus capability for a given source volume. Electron beam is focused near exit aperture by spherical fields. High density ions allow focusing ion beam to high density at echo, allowing high current through small aperture.

  13. Industrial ion source technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1976-01-01

    A 30 cm electron bombardment ion source was designed and fabricated for micromachining and sputtering applications. This source has a multipole magnetic field that employs permanent magnets between permeable pole pieces. An average ion current density of 1 ma/sq cm with 500 eV argon ions was selected as a design operating condition. The ion beam at this operating condition was uniform and well collimated, with an average variation of plus or minus 5 percent over the center 20 cm of the beam at distances up to 30 cm from the ion source. A variety of sputtering applications were undertaken with a small 10 cm ion source to better understand the ion source requirements in these applications. The results of these experimental studies are also included.

  14. Metal Ion Sources for Ion Beam Implantation

    SciTech Connect

    Zhao, W. J.; Zhao, Z. Q.; Ren, X. T.

    2008-11-03

    In this paper a theme touched upon the progress of metal ion sources devoted to metal ion beam implantation (MIBI) will be reviewed. A special emphasis will be given to some kinds of ion sources such as ECR, MEVVA and Cluster ion sources. A novel dual hollow cathode metal ion source named DUHOCAMIS will be introduced and discussed.

  15. PULSED ION SOURCE

    DOEpatents

    Anderson, C.E.; Ehlers, K.W.

    1958-06-17

    An ion source is described for producing very short high density pulses of ions without bcam scattering. The ions are created by an oscillating electron discharge within a magnetic field. After the ions are drawn from the ionization chamber by an accelerating electrode the ion beam is under the influence of the magnetic field for separation of the ions according to mass and, at the same time, passes between two neutralizing plntes maintained nt equal negative potentials. As the plates are formed of a material having a high ratio of secondary electrons to impinging ions, the ion bombardment of the plntes emits electrons which neutralize the frirge space-charge of the beam and tend to prevent widening of the beam cross section due to the mutual repulsion of the ions.

  16. ION SOURCE FOR CALUTRONS

    DOEpatents

    Tolmie, J.R.

    1958-09-16

    An improvement is presented in ion sources of the type employed in calutron devices. The described ion source has for its inventive contribution the incorporation of a plate-like cathode having the general configuration of a polygon including a given number of apices. When a polyphase source of current has a phase connected to each of the apices, the cathode is heated and rendered electron emissive. This particular cathode configuration is of sturdy construction and provides unuform emission over a considerable area.

  17. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1997-01-01

    An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.

  18. Microwave ion source

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  19. Selective ion source

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.

  20. Selective ion source

    DOEpatents

    Leung, K.N.

    1996-05-14

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P{sup +} from PH{sub 3}. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P{sup +}, As{sup +}, and B{sup +} without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices. 6 figs.

  1. HIGH VOLTAGE ION SOURCE

    DOEpatents

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  2. BERNAS ION SOURCE DISCHARGE SIMULATION

    SciTech Connect

    RUDSKOY,I.; KULEVOY, T.V.; PETRENKO, S.V.; KUIBEDA, R.P.; SELEZNEV, D.N.; PERSHIN, V.I.; HERSHCOVITCH, A.; JOHNSON, B.M.; GUSHENETS, V.I.; OKS, E.M.; POOLE, H.J.

    2007-08-26

    The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Bemas ion source is the wide used ion source for ion implantation industry. The new simulation code was developed for the Bemas ion source discharge simulation. We present first results of the simulation for several materials interested in semiconductors. As well the comparison of results obtained with experimental data obtained at the ITEP ion source test-bench is presented.

  3. Industrial ion source technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    In reactive ion etching of Si, varying amounts of O2 were added to the CF4 background. The experimental results indicated an etch rate less than that for Ar up to an O2 partial pressure of about .00006 Torr. Above this O2 pressure, the etch rate with CF4 exceeded that with Ar alone. For comparison the random arrival rate of O2 was approximately equal to the ion arrival rate at a partial pressure of about .00002 Torr. There were also ion source and ion pressure gauge maintenance problems as a result of the use of CF4. Large scale (4 sq cm) texturing of Si was accomplished using both Cu and stainless steel seed. The most effective seeding method for this texturing was to surround the sample with large inclined planes. Designing, fabricating, and testing a 200 sq cm rectangular beam ion source was emphasized. The design current density was 6 mA/sq cm with 500 eV argon ions, although power supply limitations permitted operation to only 2 mA/sq cm. The use of multiple rectangular beam ion sources for continuous processing of wider areas than would be possible with a single source was also studied. In all cases investigated, the most uniform coverage was obtained with 0 to 2 cm beam overlay. The maximum departure from uniform processing at optimum beam overlap was found to be +15%.

  4. COASTING ARC ION SOURCE

    DOEpatents

    Foster, J.S. Jr.

    1957-09-10

    An improved ion source is described and in particular a source in which the ions are efficiently removed. The plasma is generated in a tubular amode structure by the oscillation of electrons in an axial magnetic field, as in the Phillips Ion Gage. The novel aspect of the source is the expansion of the plasma as it leaves the anode structure, so as to reduce the ion density at the axis of the anode and present a uniform area of plasma to an extraction grid. The structure utilized in the present patent to expand the plasma comprises flange members of high permeability at the exitgrid end of the amode to diverge the magnetic field adjacent the exit.

  5. A hemispherical Langmuir probe array detector for angular resolved measurements on droplet-based laser-produced plasmas

    SciTech Connect

    Gambino, Nadia Brandstätter, Markus; Rollinger, Bob; Abhari, Reza

    2014-09-15

    In this work, a new diagnostic tool for laser-produced plasmas (LPPs) is presented. The detector is based on a multiple array of six motorized Langmuir probes. It allows to measure the dynamics of a LPP in terms of charged particles detection with particular attention to droplet-based LPP sources for EUV lithography. The system design permits to temporally resolve the angular and radial plasma charge distribution and to obtain a hemispherical mapping of the ions and electrons around the droplet plasma. The understanding of these dynamics is fundamental to improve the debris mitigation techniques for droplet-based LPP sources. The device has been developed, built, and employed at the Laboratory for Energy Conversion, ETH Zürich. The experimental results have been obtained on the droplet-based LPP source ALPS II. For the first time, 2D mappings of the ion kinetic energy distribution around the droplet plasma have been obtained with an array of multiple Langmuir probes. These measurements show an anisotropic expansion of the ions in terms of kinetic energy and amount of ion charge around the droplet target. First estimations of the plasma density and electron temperature were also obtained from the analysis of the probe current signals.

  6. CALUTRON ION SOURCE

    DOEpatents

    Lofgren, E.J.

    1959-02-17

    An improvement is described in ion source mechanisms whereby the source structure is better adapted to withstanid the ravages of heat, erosion, and deterioration concomitant with operation of an ion source of the calutron type. A pair of molybdenum plates define the exit opening of the arc chamber and are in thermal contact with the walls of the chamber. These plates are maintained at a reduced temperature by a pair of copper blocks in thermal conducting contact therewith to form subsequent diverging margins for the exit opening.

  7. Nanophotonic Ion Sources

    NASA Astrophysics Data System (ADS)

    Stolee, Jessica A.; Walker, Bennett N.; Chen, Yong; Vertes, Akos

    2010-10-01

    Interactions between laser radiation and photonic structures at elevated laser intensities give rise to the production of positive and negative ions from adsorbates. These new types of ion sources exhibit properties that are significantly different from conventional laser desorption ionization sources. In this contribution comparisons are made between matrix-assisted laser desorption ionization (MALDI) of biomolecules with ion production from laser-induced silicon microcolumn arrays (LISMA) and nanopost arrays (NAPA). The sharp increase of ion yields from the nanophotonic ion sources follow a power law behavior with an exponent of up to n≈7, whereas in the case of MALDI n≈5. The strong field enhancement in the vicinity of the columns and posts scales with their aspect ratio. Slender high aspect ratio posts show reduced laser fluence threshold for ionization. Posts with diameters at or below the thermal diffusion length demonstrate high surface temperatures due to the radial confinement of the deposited energy. As a consequence enhanced fragmentation, i.e., lower survival yield of the molecular ions is observed. The origin of protons in the ionization of adsorbates was identified as the entrapped residues of the solvent.

  8. Pulsed ion beam source

    DOEpatents

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  9. Ion source apparatus

    SciTech Connect

    Sugawara, T.; Ito, Y.

    1985-03-19

    A gas is introduced into a discharge chamber of an ion source apparatus, and a gas discharge is performed between a thermionic cathode and an anode. Ions are extracted from the plasma formed in this gas discharge by a grid electrode. The thermionic cathode has a hollow cylindrical shape. A cathode chamber is defined by the thermionic cathode and a cylindrical partition wall supporting it. A columnar auxiliary electrode is coaxially inserted in the thermionic cathode. An A.C. voltage from a power source unit is supplied between the thermionic cathode and the auxiliary electrode such that effective power for keeping the thermionic cathode at a positive potential with respect to the auxiliary electrode is higher than that for keeping the auxiliary electrode at a positive potential with respect to the thermionic cathode.

  10. CALUTRON ION SOURCE

    DOEpatents

    Oppenheimer, F.

    1958-08-19

    The construction of an ion source is descrtbed wherein a uniform and elongated arc is established for employment in a calutron. The novel features of the . source include the positioning of a cathode at one end of an elongated extt slit of an arc chamber. and anode electrodes defintng the longitudinal margins of the exit opening. When the exit slit is orientated in a parallel relation to a magnetic field, the arc extends in the direction of the magnetic field along and between the anode electrodes, which are held at a positsve potential with respect to the cathode.

  11. Improved negative ion source

    DOEpatents

    Delmore, J.E.

    1984-05-01

    A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reaccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200 to 500/sup 0/C for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

  12. Industrial ion source technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1978-01-01

    An analytical model was developed to describe the development of a coned surface texture with ion bombardment and simultaneous deposition of an impurity. A mathematical model of sputter deposition rate from a beveled target was developed in conjuction with the texturing models to provide an important input to that model. The establishment of a general procedure that will allow the treatment of manay different sputtering configurations is outlined. Calculation of cross sections for energetic binary collisions was extened to Ar, Kr.. and Xe with total cross sections for viscosity and diffusion calculated for the interaction energy range from leV to 1000eV. Physical sputtering and reactive ion etching experiments provided experimental data on the operating limits of a broad beam ion source using CF4 as a working gas to produce reactive species in a sputtering beam. Magnetic clustering effects are observed when Al is seeded with Fe and sputtered with Ar(?) ions. Silicon was textured at a micron scale by using a substrate temperature of 600 C.

  13. Off line ion source terminal

    NASA Astrophysics Data System (ADS)

    Jayamanna, K.

    2014-01-01

    The off-line ion source (OLIS) terminal provides beams from stable isotopes to ISAC (see Fig. 1) experiments as well as for accelerator commissioning and for pilot beams for radioactive beam experiments. The OLIS terminal (see Fig. 2) is equipped with a microwave driven cusp source for single and double charge ions, a surface ion source for low energy spread alkali beams, and a multi-charge ion source.

  14. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  15. Compact ion accelerator source

    SciTech Connect

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali

    2014-04-29

    An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.

  16. A Cold Strontium Ion Source

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher J.; Lyon, Mary; Blaser, Kelvin; Harper, Stuart; Durfee, Dallin

    2010-03-01

    We present a cold ion source for strontium 87. The source is based off of a standard Low-Velocity-Intense-Source (LVIS) for strontium using permanent magnets in place of anti-Helmholtz coils. Atoms from the LVIS are then ionized in a two photon process as they pass a 20kV anode plate. The result is a mono-energetic beam of ions whose velocity is tunable. Applications for the ions include spectroscopy and ion interferometry.

  17. Ion sources for ion implantation technology (invited)

    SciTech Connect

    Sakai, Shigeki Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  18. Review of Polarized Ion Sources

    NASA Astrophysics Data System (ADS)

    Zelenski, A.

    2016-02-01

    Recent progress in polarized ion sources development is reviewed. New techniques for production of polarized H‑ ion (proton), D‑ (D+) and 3He++ ion beams will be discussed. A novel polarization technique was successfully implemented for the upgrade of the RHIC polarized H‑ ion source to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from an external source) in the He-gas ionizer cell. Polarized electron capture from the optically-pumped Rb vapor further produces proton polarization (Optically Pumped Polarized Ion Source technique). The upgraded source reliably delivered beam for the 2013 polarized run in RHIC at S = 510 GeV. This was a major factor contributing to RHIC polarization increase to over 60 % for colliding beams. Feasibility studies of a new polarization technique for polarized 3He++ source based on BNL Electron Beam Ion Source is also discussed.

  19. ORNL ECR multicharged ion source

    SciTech Connect

    Meyer, F.W.

    1984-01-01

    A multicharged ion source based on Electron Cyclotron Resonance (ECR) heating has been designed and built at ORNL. The ECR ion source, which is completely dedicated for atomic physics collision studies, produces higher charge states and higher beam intensities than the present ORNL PIG multicharged ion source, and will thus permit study of collision processes involving ions of higher charge states in experiments requiring higher beam intensities than could be previously obtained in our laboratory. The source has already produced up to fully stripped C and O beams, as well as up to He-like Ar beams. Measurements of the energy spread of ions extracted from the ion source operating in both single-stage and two-stage mode are described. In addition, initial results of total cross section measurements for fully stripped light ions incident on atomic hydrogen in the energy range 0.2 to 10 keV are presented. 13 references, 7 figures, 1 table.

  20. Ion sources for heavy ion fusion

    SciTech Connect

    Yu, S.S.; Eylon, S.; Chupp, W.

    1995-09-01

    The development of ion sources for heavy ion fusion will be reported with particular emphasis on a recently built 2 MV injector. The new injector is based on an electrostatic quadrupole configuration, and has produced pulsed K{sup +} ions of 950 mA peak from a 6.7 inch curved alumino silicate source. The ion beam has reached 2.3 MV with an energy flatness of {+-}0.2% over 1 {micro}s. The measured normalized edge emittance of less than 1 {pi} mm-mr is close to the source temperature limit. The design, construction, performance, and comparisons with three-dimensional particle-in-cell simulations will be described.

  1. ECR ion source

    SciTech Connect

    Billquist, P.J.; Harkewicz, R.; Pardo, R.C.

    1995-08-01

    The feasibility of using a 30-watt pulsed NdYAG laser to ablate or evaporate material directly into the ECR had some initial exploratory runs and produced two distinctly interesting results. This technique holds the possibility of using small quantities of material, with a high efficiency, and being applicable to all solids. The laser illuminates a sample through one of the radial ports in the ECR main plasma chamber. The off-line tests indicated that our surplus (free) laser is capable of ablating significant quantities of interesting materials. The first tests of the laser ablation idea were carried out using a bismuth sample. The inherent pulsed nature of the technique allowed us to immediately study the time evolution of charge states in the ECR plasma. The results are directly comparable to model calculations and are completely consistent with the sequential stepwise stripping process which was assumed to dominate the high charge state production process. A paper describing our results will be presented at the 1995 International Ion Source Conference.

  2. Negative ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1982-08-06

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  3. Negative ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1984-12-04

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field. 14 figs.

  4. Negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  5. ION SOURCE UNIT FOR CALUTRON

    DOEpatents

    Sloan, D.H.; Yockey, H.P.; Schmidt, F.H.

    1959-04-14

    An improvement in the mounting arrangement for an ion source within the vacuum tank of a calutron device is reported. The cathode and arc block of the source are independently supported from a stem passing through the tank wall. The arc block may be pivoted and moved longitudinally with respect to the stem to thereby align the arc chamber in the biock with the cathode and magnetic field in the tank. With this arrangement the elements of the ion source are capable of precise adjustment with respect to one another, promoting increased source efficiency.

  6. Cold Strontium Ion Source for Ion Interferometry

    NASA Astrophysics Data System (ADS)

    Jackson, Jarom; Durfee, Dallin

    2015-05-01

    We are working on a cold source of Sr Ions to be used in an ion interferometer. The beam will be generated from a magneto-optical trap (MOT) of Sr atoms by optically ionizing atoms leaking out a carefully prepared hole in the MOT. A single laser cooling on the resonant transition (461 nm) in Sr should be sufficient for trapping, as we've calculated that losses to the atom beam will outweigh losses to dark states. Another laser (405 nm), together with light from the trapping laser, will drive a two photon transition in the atom beam to an autoionizing state. Supported by NSF Award No. 1205736.

  7. Negative-ion source applications.

    PubMed

    Ishikawa, J

    2008-02-01

    In this paper heavy negative-ion sources which we developed and their applications for materials science are reviewed. Heavy negative ions can be effectively produced by the ejection of a sputtered atom through the optimally cesiated surface of target with a low work function. Then, enough continuous negative-ion currents for materials-science applications can be obtained. We developed several kinds of sputter-type heavy negative-ion sources such as neutral- and ionized-alkaline metal bombardment-type heavy negative-ion source and rf-plasma sputter type. In the case where a negative ion is irradiated on a material surface, surface charging seldom takes place because incoming negative charge of the negative ion is well balanced with outgoing negative charge of the released secondary electron. In the negative-ion implantation into an insulator or insulated conductive material, high precision implantation processing with charge-up free properties can be achieved. Negative-ion implantation technique, therefore, can be applied to the following novel material processing systems: the surface modification of micrometer-sized powders, the nanoparticle formation in an insulator for the quantum devices, and the nerve cell growth manipulation by precise control of the biocompatibility of polymer surface. When a negative ion with low kinetic energy approaches the solid surface, the kinetic energy causes the interatomic bonding (kinetic bonding), and formation of a metastable material is promoted. Carbon films with high constituent of sp(3) bonding, therefore, can be formed by carbon negative-ion beam deposition. PMID:18315249

  8. Solenoid and monocusp ion source

    SciTech Connect

    Brainard, J.P.; Burns, E.J.T.; Draper, C.H.

    1995-12-31

    An ion source which generates ions having high atomic purity incorporates a solenoidal magnetic field to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures.

  9. Solenoid and monocusp ion source

    SciTech Connect

    Brainard, John Paul; Burns, Erskine John Thomas; Draper, Charles Hadley

    1997-01-01

    An ion source which generates hydrogen ions having high atomic purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures.

  10. STATUS OF ITEP DECABORANE ION SOURCE PROGRAM.

    SciTech Connect

    KULEVOY,T.V.; PETRENKO, S.V.; KUIBEDA, R.P.; SELEZNEV, D.N.; KOZLOV, A.V.; STASEVICH, YU.B.; SITNIKOV, A.L.; SHAMAILOV, I.M.; PERSHIN, V.I.; HERSHCOVITCH, A.; JOHNSON, B.M.; GUSHENETS, V.I.; OKS, E.M.; POOLE, H.J.; MASUNOV, E.S.; POLOZOV, S.M.

    2007-08-26

    The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Both Freeman and Bemas ion sources for decaborane ion beam generation were investigated. Decaborane negative ion beam as well as positive ion beam were generated and delivered to the output of mass separator. Experimental results obtained in ITEP are presented.

  11. Multi-source ion funnel

    DOEpatents

    Tang, Keqi; Belov, Mikhail B.; Tolmachev, Aleksey V.; Udseth, Harold R.; Smith, Richard D.

    2005-12-27

    A method for introducing ions generated in a region of relatively high pressure into a region of relatively low pressure by providing at least two electrospray ion sources, providing at least two capillary inlets configured to direct ions generated by the electrospray sources into and through each of the capillary inlets, providing at least two sets of primary elements having apertures, each set of elements having a receiving end and an emitting end, the primary sets of elements configured to receive a ions from the capillary inlets at the receiving ends, and providing a secondary set of elements having apertures having a receiving end and an emitting end, the secondary set of elements configured to receive said ions from the emitting end of the primary sets of elements and emit said ions from said emitting end of the secondary set of elements. The method may further include the step of providing at least one jet disturber positioned within at least one of the sets of primary elements, providing a voltage, such as a dc voltage, in the jet disturber, thereby adjusting the transmission of ions through at least one of the sets of primary elements.

  12. The DCU laser ion source.

    PubMed

    Yeates, P; Costello, J T; Kennedy, E T

    2010-04-01

    Laser ion sources are used to generate and deliver highly charged ions of various masses and energies. We present details on the design and basic parameters of the DCU laser ion source (LIS). The theoretical aspects of a high voltage (HV) linear LIS are presented and the main issues surrounding laser-plasma formation, ion extraction and modeling of beam transport in relation to the operation of a LIS are detailed. A range of laser power densities (I approximately 10(8)-10(11) W cm(-2)) and fluences (F=0.1-3.9 kJ cm(-2)) from a Q-switched ruby laser (full-width half-maximum pulse duration approximately 35 ns, lambda=694 nm) were used to generate a copper plasma. In "basic operating mode," laser generated plasma ions are electrostatically accelerated using a dc HV bias (5-18 kV). A traditional einzel electrostatic lens system is utilized to transport and collimate the extracted ion beam for detection via a Faraday cup. Peak currents of up to I approximately 600 microA for Cu(+) to Cu(3+) ions were recorded. The maximum collected charge reached 94 pC (Cu(2+)). Hydrodynamic simulations and ion probe diagnostics were used to study the plasma plume within the extraction gap. The system measured performance and electrodynamic simulations indicated that the use of a short field-free (L=48 mm) region results in rapid expansion of the injected ion beam in the drift tube. This severely limits the efficiency of the electrostatic lens system and consequently the sources performance. Simulations of ion beam dynamics in a "continuous einzel array" were performed and experimentally verified to counter the strong space-charge force present in the ion beam which results from plasma extraction close to the target surface. Ion beam acceleration and injection thus occur at "high pressure." In "enhanced operating mode," peak currents of 3.26 mA (Cu(2+)) were recorded. The collected currents of more highly charged ions (Cu(4+)-Cu(6+)) increased considerably in this mode of operation

  13. ION SOURCE FOR A CALUTRON

    DOEpatents

    Backus, J.G.

    1957-12-24

    This patent relates to ion sources and more particularly describes an ion source for a calutron which has the advantage of efficient production of an ion beam and long operation time without recharging. The source comprises an arc block provided with an arc chamber connected to a plurality of series-connected charge chambers and means for heating the charge within the chambers. A cathode is disposed at one end of the arc chamber and enclosed hy a vapor tight housing to protect the cathode. The arc discharge is set up between the cathode and the block due to a difference in potentials placed on these parts, and a magnetic field is aligned with the arc discharge. Cooling of the arc block is accomplished by passing coolant through a hollow stem secured at one end to the block and rotatably mounted at the other end through the wall of the calutron. The ions are removed through a slit in the arc chamber by accelerating electrodes.

  14. Relating to monitoring ion sources

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan

    2002-01-01

    The apparatus and method provide techniques for monitoring the position on alpha contamination in or on items or locations. The technique is particularly applicable to pipes, conduits and other locations to which access is difficult. The technique uses indirect monitoring of alpha emissions by detecting ions generated by the alpha emissions. The medium containing the ions is moved in a controlled manner frog in proximity with the item or location to the detecting unit and the signals achieved over time are used to generate alpha source position information.

  15. Linac4 H⁻ ion sources.

    PubMed

    Lettry, J; Aguglia, D; Alessi, J; Andersson, P; Bertolo, S; Briefi, S; Butterworth, A; Coutron, Y; Dallocchio, A; David, N; Chaudet, E; Faircloth, D; Fantz, U; Fink, D A; Garlasche, M; Grudiev, A; Guida, R; Hansen, J; Haase, M; Hatayama, A; Jones, A; Koszar, I; Lallement, J-B; Lombardi, A M; Machado, C; Mastrostefano, C; Mathot, S; Mattei, S; Moyret, P; Nisbet, D; Nishida, K; O'Neil, M; Paoluzzi, M; Scrivens, R; Shibata, T; Steyaert, D; Thaus, N; Voulgarakis, G

    2016-02-01

    CERN's 160 MeV H(-) linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ⋅ mm ⋅ mrad. The optimum ratio of the co-extracted electron- to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H(-) source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H(-) source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described. PMID:26932021

  16. Linac4 H- ion sources

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Aguglia, D.; Alessi, J.; Andersson, P.; Bertolo, S.; Briefi, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; David, N.; Chaudet, E.; Faircloth, D.; Fantz, U.; Fink, D. A.; Garlasche, M.; Grudiev, A.; Guida, R.; Hansen, J.; Haase, M.; Hatayama, A.; Jones, A.; Koszar, I.; Lallement, J.-B.; Lombardi, A. M.; Machado, C.; Mastrostefano, C.; Mathot, S.; Mattei, S.; Moyret, P.; Nisbet, D.; Nishida, K.; O'Neil, M.; Paoluzzi, M.; Scrivens, R.; Shibata, T.; Steyaert, D.; Thaus, N.; Voulgarakis, G.

    2016-02-01

    CERN's 160 MeV H- linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ṡ mm ṡ mrad. The optimum ratio of the co-extracted electron- to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H- source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H- source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described.

  17. Ion optics of RHIC electron beam ion source

    SciTech Connect

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2012-02-15

    RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  18. Liquid metal ion source and alloy

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Behrens, Robert G.; Szklarz, Eugene G.; Storms, Edmund K.; Santandrea, Robert P.; Swanson, Lynwood W.

    1988-10-04

    A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.

  19. Hydrogen hollow cathode ion source

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J., Jr.; Sovey, J. S.; Roman, R. F. (Inventor)

    1980-01-01

    A source of hydrogen ions is disclosed and includes a chamber having at one end a cathode which provides electrons and through which hydrogen gas flows into the chamber. Screen and accelerator grids are provided at the other end of the chamber. A baffle plate is disposed between the cathode and the grids and a cylindrical baffle is disposed coaxially with the cathode at the one end of the chamber. The cylindrical baffle is of greater diameter than the baffle plate to provide discharge impedance and also to protect the cathode from ion flux. An anode electrode draws the electrons away from the cathode. The hollow cathode includes a tubular insert of tungsten impregnated with a low work function material to provide ample electrons. A heater is provided around the hollow cathode to initiate electron emission from the low work function material.

  20. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS)

    NASA Astrophysics Data System (ADS)

    Segal, M. J.; Bark, R. A.; Thomae, R.; Donets, E. E.; Donets, E. D.; Boytsov, A.; Ponkin, D.; Ramsdorf, A.

    2016-02-01

    An assembly for a commercial Ga+ liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga+ ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga+ and Au+ ion beams will be reported as well.

  1. Laser ion source for isobaric heavy ion collider experiment

    NASA Astrophysics Data System (ADS)

    Kanesue, T.; Kumaki, M.; Ikeda, S.; Okamura, M.

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is 96Ru + 96Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  2. Laser ion source for isobaric heavy ion collider experiment.

    PubMed

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions. PMID:26931981

  3. High current vacuum arc ion source for heavy ion fusion

    SciTech Connect

    Qi, N.; Schein, J.; Gensler, S.; Prasad, R.R.; Krishnan, M.; Brown, I.

    1999-07-01

    Heavy Ion fusion (HIF) is one of the approaches for the controlled thermonuclear power production. A source of heavy ions with charge states 1+ to 2+, in {approximately}0.5 A current beams with {approximately}20 {micro}s pulse widths and {approximately}10 Hz repetition rates are required. Thermionic sources have been the workhorse for the HIF program to date, but suffer from sloe turn-on, heating problems for large areas, are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states, in short and long pulse bursts, with low emittance and high beam currents. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications is investigated. An existing ion source at LBNL was modified to produce {approximately}0.5 A, {approximately}60 keV Gd (A{approximately}158) ion beams. The experimental effort concentrated on beam noise reduction, pulse-to-pulse reproducibility and achieving low beam emittance at 0.5 A ion current level. Details of the source development will be reported.

  4. A 30-cm diameter argon ion source

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1976-01-01

    A 30 cm diameter argon ion source was evaluated. Ion source beam currents up to 4a were extracted with ion energies ranging from 0.2 to 1.5 KeV. An ion optics scaling relation was developed for predicting ion beam extraction capability as a function of total extraction voltage, gas type, and screen grid open area. Ignition and emission characteristics of several hollow cathode geometries were assessed for purposes of defining discharge chamber and neutralizer cathodes. Also presented are ion beam profile characteristics which exhibit broad beam capability well suited for ion beam sputtering applications.

  5. Resonant Ionization Laser Ion Source for Radioactive Ion Beams

    SciTech Connect

    Liu, Yuan; Beene, James R; Havener, Charles C; Vane, C Randy; Gottwald, T.; Wendt, K.; Mattolat, C.; Lassen, J.

    2009-01-01

    A resonant ionization laser ion source based on all-solid-state, tunable Ti:Sapphire lasers is being developed for the production of pure radioactive ion beams. It consists of a hot-cavity ion source and three pulsed Ti:Sapphire lasers operating at a 10 kHz pulse repetition rate. Spectroscopic studies are being conducted to develop ionization schemes that lead to ionizing an excited atom through an auto-ionization or a Rydberg state for numerous elements of interest. Three-photon resonant ionization of 12 elements has been recently demonstrated. The overall efficiency of the laser ion source measured for some of these elements ranges from 1 to 40%. The results indicate that Ti:Sapphire lasers could be well suited for laser ion source applications. The time structures of the ions produced by the pulsed lasers are investigated. The information may help to improve the laser ion source performance.

  6. Compact RF ion source for industrial electrostatic ion accelerator.

    PubMed

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described. PMID:26932115

  7. Compact RF ion source for industrial electrostatic ion accelerator

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  8. Inductively generated streaming plasma ion source

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.; Greenly, John B.

    2006-07-25

    A novel pulsed, neutralized ion beam source is provided. The source uses pulsed inductive breakdown of neutral gas, and magnetic acceleration and control of the resulting plasma, to form a beam. The beam supplies ions for applications requiring excellent control of ion species, low remittance, high current density, and spatial uniformity.

  9. High Current Ion Sources and Injectors for Heavy Ion Fusion

    SciTech Connect

    Kwan, Joe W.

    2005-02-15

    Heavy ion beam driven inertial fusion requires short ion beam pulses with high current and high brightness. Depending on the beam current and the number of beams in the driver system, the injector can use a large diameter surface ionization source or merge an array of small beamlets from a plasma source. In this paper, we review the scaling laws that govern the injector design and the various ion source options including the contact ionizer, the aluminosilicate source, the multicusp plasma source, and the MEVVA source.

  10. Ion source with corner cathode

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A. (Inventor); Roman, Patrick A. (Inventor)

    2012-01-01

    An ion source may include first, second, and third electrodes. The first electrode may be a repeller having a V-shaped groove. The second electrode may be an electron emitter filament disposed adjacent the base of the V-shaped groove. The third electrode may be an anode that defines an enclosed volume with an aperture formed therein adjacent the electron emitter filament. A potential of the first electrode may be less than a potential of the second electrode, and the potential of the second electrode may be less than a potential of the third electrode. A fourth electrode that is disposed between the electron emitter filament and the anode may be used to produce a more collimated electron beam.

  11. Laser ion source with solenoid field

    SciTech Connect

    Kanesue, Takeshi Okamura, Masahiro; Fuwa, Yasuhiro; Kondo, Kotaro

    2014-11-10

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 10{sup 11}, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  12. Laser ion source with solenoid field

    SciTech Connect

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-12

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. In this study, the laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  13. Laser ion source with solenoid field

    DOE PAGESBeta

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-12

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. In this study, the laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, whichmore » was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.« less

  14. Laser ion source with solenoid field

    NASA Astrophysics Data System (ADS)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-01

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  15. The Electron Beam Ion Source (EBIS)

    ScienceCinema

    Brookhaven Lab

    2010-01-08

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  16. The Electron Beam Ion Source (EBIS)

    SciTech Connect

    Brookhaven Lab

    2009-06-09

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  17. Performance of Nanoliter-Sized Droplet-based Microfluidic PCR

    PubMed Central

    Wang, Fang; Burns, Mark A.

    2010-01-01

    A microfluidic device was used to characterize PCR in aqueous-in-oil droplets for potential point-of-care applications. Droplets with a volume range of 5–250nL can be formed on-chip reproducibly, and PCR in the droplets shows amplification efficiencies comparable to benchtop reactions with no evaporation loss. A higher polymerase concentration is required in the reaction droplet while the optimal Magnesium ion concentration is the same for both on-chip and benchtop systems. The optimal hold time is 9 and 30 seconds for denaturation and annealing/extension in thermal cycling, respectively. With the optimized cycling parameters, the total reaction time is reduced to half of that required for benchtop PCR. For the droplets containing the same quantity of template DNA, the PCR yield is approximately the same with either fixed droplet size or fixed template DNA concentration. The droplet-based PCR can be monitored in real time with FRET probes, and provide amplification with a cycle threshold of ~10 cycles earlier than the benchtop instruments. PMID:19479169

  18. High-charge-state ion sources

    SciTech Connect

    Clark, D.J.

    1983-06-01

    Sources of high charge state positive ions have uses in a variety of research fields. For heavy ion particle accelerators higher charge state particles give greater acceleration per gap and greater bending strength in a magnet. Thus higher energies can be obtained from circular accelerators of a given size, and linear accelerators can be designed with higher energy gain per length using higher charge state ions. In atomic physics the many atomic transitions in highly charged ions supplies a wealth of spectroscopy data. High charge state ion beams are also used for charge exchange and crossed beam experiments. High charge state ion sources are reviewed. (WHK)

  19. Upgraded vacuum arc ion source for metal ion implantation

    SciTech Connect

    Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu.; Brown, I. G.

    2012-02-15

    Vacuum arc ion sources have been made and used by a large number of research groups around the world over the past twenty years. The first generation of vacuum arc ion sources (dubbed ''Mevva,'' for metal vapor vacuum arc) was developed at Lawrence Berkeley National Laboratory in the 1980s. This paper considers the design, performance parameters, and some applications of a new modified version of this kind of source which we have called Mevva-V.Ru. The source produces broad beams of metal ions at an extraction voltage of up to 60 kV and a time-averaged ion beam current in the milliampere range. Here, we describe the Mevva-V.Ru vacuum arc ion source that we have developed at Tomsk and summarize its beam characteristics along with some of the applications to which we have put it. We also describe the source performance using compound cathodes.

  20. Production of highly charged ion beams from ECR ion sources

    SciTech Connect

    Xie, Z.Q.

    1997-09-01

    Electron Cyclotron Resonance (ECR) ion source development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECR ion sources. So far at cw mode operation, up to 300 e{mu}A of O{sup 7+} and 1.15 emA of O{sup 6+}, more than 100 e{mu}A of intermediate heavy ions for charge states up to Ar{sup 13+}, Ca{sup 13+}, Fe{sup 13+}, Co{sup 14+} and Kr{sup 18+}, and tens of e{mu}A of heavy ions with charge states to Kr{sup 26+}, Xe{sup 28+}, Au{sup 35+}, Bi{sup 34+} and U{sup 34+} have been produced from ECR ion sources. At an intensity of at least 1 e{mu}A, the maximum charge state available for the heavy ions are Xe{sup 36+}, Au{sup 46+}, Bi{sup 47+} and U{sup 48+}. An order of magnitude enhancement for fully stripped argon ions (I {ge} 60 enA) also has been achieved. This article will review the ECR ion source progress and discuss key requirement for ECR ion sources to produce the highly charged ion beams.

  1. Vacuum arc ion source for heavy ion fusion

    SciTech Connect

    Liu, F.; Qi, N.; Gensler, S.; Prasad, R.R.; Krishnan, M.; Brown, I.G.

    1998-02-01

    Heavy ion fusion is one approach to the problem of controlled thermonuclear power production, in which a small DT target is bombarded by an intense flux of heavy ions and compressed to fusion temperatures. There is a need in present HIF research and development for a reliable ion source for the production of heavy ion beams with low emittance, low beam noise, ion charge states Q=1+ to 3+, beam current {approximately}0.5A, pulse width {approximately}5{endash}20 {mu}s, and repetition rate {approximately}10 pulses per second. We have explored the suitability of a vacuum arc ion source for this application. Energetic, high current, gadolinium ion beams were produced with parameters as required or close to those required. The performance parameters can all be improved yet further in an optimized ion source design. Here we describe the ion source configuration used, the experiments conducted, and the results obtained. We conclude that a vacuum arc based metal ion source of this kind could be an excellent candidate for heavy ion fusion research application. {copyright} {ital 1998 American Institute of Physics.}

  2. Laser ion source for low charge heavy ion beams

    SciTech Connect

    Okamura,M.; Pikin, A.; Zajic, V.; Kanesue, T.; Tamura, J.

    2008-08-03

    For heavy ion inertial fusion application, a combination of a laser ion source and direct plasma injection scheme into an RFQ is proposed. The combination might provide more than 100 mA of singly charged heavy ion beam from a single laser shot. A planned feasibility test with moderate current is also discussed.

  3. Cesium in hydrogen negative-ion sources

    SciTech Connect

    Belchenko, Yu.I.; Davydenko, V.I.

    2006-03-15

    Experimental data on the dynamics of cesium particles in the pulsed magnetron and Penning surface-plasma ion sources are presented. Cesium escape from the source emission apertures and the cesium ion current to discharge electrodes was measured. The low value of cesium flux from the source was detected. An intense cesium ion current to the cathode (up to 0.8 A/cm{sup 2}) was measured. The high value of cesium ion current to surface-plasma source cathode confirms the cesium circulation near the cathode.

  4. A hollow cathode hydrogen ion source

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.; Mirtich, M. J.

    1977-01-01

    High current density ion sources have been used to heat plasmas in controlled thermonuclear reaction experiments. High beam currents imply relatively high emission currents from cathodes which have generally taken the form of tungsten filaments. A hydrogen ion source is described which was primarily developed to assess the emission current capability and design requirements for hollow cathodes for application in neutral injection devices. The hydrogen source produced ions by electron bombardment via a single hollow cathode. Source design followed mercury ion thruster technology, using a weak magnetic field to enhance ionization efficiency.

  5. Electron beam ion source and electron beam ion trap (invited)

    SciTech Connect

    Becker, Reinard; Kester, Oliver

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  6. Molecular ion sources for low energy semiconductor ion implantation (invited)

    NASA Astrophysics Data System (ADS)

    Hershcovitch, A.; Gushenets, V. I.; Seleznev, D. N.; Bugaev, A. S.; Dugin, S.; Oks, E. M.; Kulevoy, T. V.; Alexeyenko, O.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Vizir, A.; Yushkov, G. Yu.

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described.

  7. Molecular ion sources for low energy semiconductor ion implantation (invited).

    PubMed

    Hershcovitch, A; Gushenets, V I; Seleznev, D N; Bugaev, A S; Dugin, S; Oks, E M; Kulevoy, T V; Alexeyenko, O; Kozlov, A; Kropachev, G N; Kuibeda, R P; Minaev, S; Vizir, A; Yushkov, G Yu

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4(+) ion beams were extracted. Results from devices and some additional concepts are described. PMID:26932065

  8. Ionization phenomena and sources of negative ions

    SciTech Connect

    Alton, G.D.

    1983-01-01

    Negative ion source technology has rapidly advanced during the past several years as a direct consequence of the discovery of Krohn that negative ion yields can be greatly enhanced by sputtering in the presence of Group IA elements. Today, most negative ion sources use this discovery directly or the principles implied to effect negative ion formation through surface ionization. As a consequence, the more traditional direct extraction plasma and charge exchange sources are being used less frequently. However, the charge exchange generation mechanism appears to be as universal, is very competitive in terms of efficiency and has the advantage in terms of metastable ion formation. In this review, an attempt has been made to briefly describe the principal processes involved in negative ion formation and sources which are representative of a particular principle. The reader is referred to the literature for specific details concerning the operational characteristics, emittances, brightnesses, species and intensity capabilities of particular sources. 100 references.

  9. Enhanced life ion source for germanium and carbon ion implantation

    SciTech Connect

    Hsieh, Tseh-Jen; Colvin, Neil; Kondratenko, Serguei

    2012-11-06

    Germanium and carbon ions represent a significant portion of total ion implantation steps in the process flow. Very often ion source materials that used to produce ions are chemically aggressive, especially at higher temperatures, and result in fast ion source performance degradation and a very limited lifetime [B.S. Freer, et. al., 2002 14th Intl. Conf. on Ion Implantation Technology Proc, IEEE Conf. Proc., p. 420 (2003)]. GeF{sub 4} and CO{sub 2} are commonly used to generate germanium and carbon beams. In the case of GeF{sub 4} controlling the tungsten deposition due to the de-composition of WF{sub 6} (halogen cycle) is critical to ion source life. With CO{sub 2}, the materials oxidation and carbon deposition must be controlled as both will affect cathode thermionic emission and anti-cathode (repeller) efficiencies due to the formation of volatile metal oxides. The improved ion source design Extended Life Source 3 (Eterna ELS3) together with its proprietary co-gas material implementation has demonstrated >300 hours of stable continuous operation when using carbon and germanium ion beams. Optimizing cogas chemistries retard the cathode erosion rate for germanium and carbon minimizes the adverse effects of oxygen when reducing gas is introduced for carbon. The proprietary combination of hardware and co-gas has improved source stability and the results of the hardware and co-gas development are discussed.

  10. Molecular phosphorus ion source for semiconductor technology

    SciTech Connect

    Gushenets V. I.; Hershcovitch A.; Bugaev, A.S.; Oks, E.M.; Kulevoy, T.V.

    2012-02-15

    This paper presents results on the generation of molecular phosphorus ion beams in a hot filament ion source. Solid red phosphorous is evaporated mainly as tetra-atomic molecules up to a temperature of 800 C. Thus, one of the main conditions for producing maximum P{sub 4}{sup +} fraction in the beam is to keep the temperature of the phosphorous oven, the steam line and the discharge chamber walls no greater than 800 C. The prior version of our ion source was equipped with a discharge chamber cooling system. The modified source ensured a P{sub 4}{sup +} ion beam current greater than 30% of the total beam current.

  11. Sample inlet tube for ion source

    DOEpatents

    Prior, David [Hermiston, OR; Price, John [Richland, WA; Bruce, Jim [Oceanside, CA

    2002-09-24

    An improved inlet tube is positioned within an aperture through the device to allow the passage of ions from the ion source, through the improved inlet tube, and into the interior of the device. The inlet tube is designed with a larger end and a smaller end wherein the larger end has a larger interior diameter than the interior diameter of the smaller end. The inlet tube is positioned within the aperture such that the larger end is pointed towards the ion source, to receive ions therefrom, and the smaller end is directed towards the interior of the device, to deliver the ions thereto. Preferably, the ion source utilized in the operation of the present invention is a standard electrospray ionization source. Similarly, the present invention finds particular utility in conjunction with analytical devices such as mass spectrometers.

  12. ION SOURCES FOR ENERGY EXTREMES OF ION IMPLANTATION.

    SciTech Connect

    HERSCHCOVITCH,A.; JOHNSON, B.M.; BATALIN, V.A.; KROPACHEV, G.N.; KUIBEDA, R.P.; KULEVOY, T.V.; KOLOMIETS, A.A.; PERSHIN, V.I.; PETRENKO, S.V.; RUDSKOY, I.; SELEZNEV, D.N.; BUGAEV, A.S.; GUSHENETS, V.I.; LITOVKO, I.V.; OKS, E.M.; YUSHKOV, G. YU.; MASEUNOV, E.S.; POLOZOV, S.M.; POOLE, H.J.; STOROZHENKO, P.A.; SVAROVSKI, YA.

    2007-08-26

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques, which meet the two energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of Antimony and Phosphorous ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive Decaborane ions were extracted at 10 keV and smaller currents of negative Decaborane ions were also extracted. Additionally, Boron current fraction of over 70% was extracted from a Bemas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  13. Beam current controller for laser ion source

    SciTech Connect

    Okamura, Masahiro

    2014-10-28

    The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.

  14. Recent advances in vacuum arc ion sources

    SciTech Connect

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.; Oks, E.M.

    1995-07-01

    Intense beams of metal ions can be formed from a vacuum arc ion source. Broadbeam extraction is convenient, and the time-averaged ion beam current delivered downstream can readily be in the tens of milliamperes range. The vacuum arc ion source has for these reasons found good application for metallurgical surface modification--it provides relatively simple and inexpensive access to high dose metal ion implantation. Several important source developments have been demonstrated recently, including very broad beam operation, macroparticle removal, charge state enhancement, and formation of gaseous beams. The authors have made a very broad beam source embodiment with beam formation electrodes 50 cm in diameter, producing a beam of width {approximately}35 cm for a nominal beam area of {approximately}1,000 cm{sup 2}, and a pulsed Ti beam current of about 7 A was formed at a mean ion energy of {approximately}100 keV. Separately, they`ve developed high efficiency macroparticle-removing magnetic filters and incorporated such a filter into a vacuum arc ion source so as to form macroparticle-free ion beams. Jointly with researchers at the High Current Electronics Institute at Tomsk, Russia, and the Gesellschaft fuer Schwerionenforschung at Darmstadt, Germany, they`ve developed a compact technique for increasing the charge states of ions produced in the vacuum arc plasma and thus providing a simple means of increasing the ion energy at fixed extractor voltage. Finally, operation with mixed metal and gaseous ion species has been demonstrated. Here, they briefly review the operation of vacuum marc ion sources and the typical beam and implantation parameters that can be obtained, and describe these source advances and their bearing on metal ion implantation applications.

  15. Radio frequency multicusp ion source development (invited)

    SciTech Connect

    Leung, K.N.

    1996-03-01

    The radio-frequency (rf) driven multicusp source was originally developed for use in the Superconducting Super Collider injector. It has been demonstrated that the source can meet the H{sup {minus}} beam current and emittance requirements for this application. By employing a porcelain-coated antenna, a clean plasma discharge with very long-life operation can be achieved. Today, the rf source is used to generate both positive and negative hydrogen ion beams and has been tested in various particle accelerator laboratories throughout the world. Applications of this ion source have been extended to other fields such as ion beam lithography, oil-well logging, ion implantation, accelerator mass spectrometry and medical therapy machines. This paper summarizes the latest rf ion source technology and development at the Lawrence Berkeley National Laboratory. {copyright} {ital 1996 American Institute of Physics.}

  16. Peltier Refrigerators for Molecular Ion Sources

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2008-11-01

    Molecular ion sources have been considered for various applications. In particular, there is considerable effort to develop decaborane and octadecaborane ion sources for the semiconductor industry. Since the invention of the transistor, the trend has been to miniaturize semiconductor devices. As semiconductors become smaller (and get miniaturized), ion energy needed for implantation decreases, since shallow implantation is desired. But, due to space charge (intra-ion repulsion) effects, forming and transporting ion beams becomes a rather difficult task. These problems associated with lower energy ion beams limit implanter ion currents, thus leading to low production rates. One way to tackle the space charge problem is to use singly charged molecular ions. A crucial aspect in generating large molecular ion beam currents is ion source temperature control. Peltier coolers, which have in the past successfully utilized in BaF2 and CSI gamma ray detectors, may be ideal for this application. Clogging prevention of molecular ion sources is also a hurdle, which was overcome with special slots. Both topics are to be presented.

  17. Note: Ion source design for ion trap systems

    NASA Astrophysics Data System (ADS)

    Noriega, J. R.; Quevedo, M.; Gnade, B.; Vasselli, J.

    2013-06-01

    A small plasma (glow discharge) based ion source and circuit are described in this work. The ion source works by producing a high voltage pulsed discharge between two electrodes in a pressure range of 50-100 mTorr. A third mesh electrode is used for ion extraction. The electrodes are small stainless steel screws mounted in a MACOR ionization chamber in a linear arrangement. The electrode arrangement is driven by a circuit, design for low power operation. This design is a proof of concept intended for applications on small cylindrical ion traps.

  18. Performance of an inverted ion source

    SciTech Connect

    Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Araujo, W. W. R.; Spirin, R. E.; Oks, E. M.; Brown, I. G.

    2013-02-15

    Whereas energetic ion beams are conventionally produced by extracting ions (say, positive ions) from a plasma that is held at high (positive) potential, with ion energy determined by the potential drop through which the ions fall in the beam formation electrode system, in the device described here the plasma and its electronics are held at ground potential and the ion beam is formed and injected energetically into a space maintained at high (negative) potential. We refer to this configuration as an 'inverted ion source.' This approach allows considerable savings both technologically and economically, rendering feasible some ion beam applications, in particular small-scale ion implantation, that might otherwise not be possible for many researchers and laboratories. We have developed a device of this kind utilizing a metal vapor vacuum arc plasma source, and explored its operation and beam characteristics over a range of parameter variation. The downstream beam current has been measured as a function of extraction voltage (5-35 kV), arc current (50-230 A), metal ion species (Ti, Nb, Au), and extractor grid spacing and beamlet aperture size (3, 4, and 5 mm). The downstream ion beam current as measured by a magnetically-suppressed Faraday cup was up to as high as 600 mA, and with parametric variation quite similar to that found for the more conventional metal vapor vacuum arc ion source.

  19. Pseudo ribbon metal ion beam source

    SciTech Connect

    Stepanov, Igor B. Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-02-15

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  20. ION SOURCE WITH SPACE CHARGE NEUTRALIZATION

    DOEpatents

    Flowers, J.W.; Luce, J.S.; Stirling, W.L.

    1963-01-22

    This patent relates to a space charge neutralized ion source in which a refluxing gas-fed arc discharge is provided between a cathode and a gas-fed anode to provide ions. An electron gun directs a controlled, monoenergetic electron beam through the discharge. A space charge neutralization is effected in the ion source and accelerating gap by oscillating low energy electrons, and a space charge neutralization of the source exit beam is effected by the monoenergetic electron beam beyond the source exit end. The neutralized beam may be accelerated to any desired energy at densities well above the limitation imposed by Langmuir-Child' s law. (AEC)

  1. An overview of LINAC ion sources

    SciTech Connect

    Keller, Roderich

    2008-01-01

    This paper discusses ion sources used in high-duty-factor proton and H{sup -} Linacs as well as in accelerators utilizing multi-charged heavy ions, mostly for nuclear physics applications. The included types are Electron Cyclotron Resonance (ECR) sources as well as filament and rf driven multicusp sources. The paper does not strive to attain encyclopedic character but rather to highlight major lines of development, peak performance parameters and type-specific limitations and problems of these sources. The main technical aspects being discussed are particle feed, plasma generation and ion production by discharges, and plasma confinement.

  2. Electron string ion sources for carbon ion cancer therapy accelerators.

    PubMed

    Boytsov, A Yu; Donets, D E; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C(4+) and C(6+) ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10(10) C(4+) ions per pulse and about 5 × 10(9) C(6+) ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10(11) C(6+) ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the (11)C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C(4+) ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of (11)C, transporting to the tumor with the primary accelerated (11)C(4+) beam, this efficiency is preliminarily considered to be large enough to produce the (11)C(4+) beam from radioactive methane and to inject this beam into synchrotrons. PMID:26329182

  3. Electron string ion sources for carbon ion cancer therapy accelerators

    NASA Astrophysics Data System (ADS)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Katagiri, K.; Noda, K.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C4+ and C6+ ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 1010 C4+ ions per pulse and about 5 × 109 C6+ ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 1011 C6+ ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the 11C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C4+ ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of 11C, transporting to the tumor with the primary accelerated 11C4+ beam, this efficiency is preliminarily considered to be large enough to produce the 11C4+ beam from radioactive methane and to inject this beam into synchrotrons.

  4. Ion sources for sealed neutron tubes

    SciTech Connect

    Burns, E.J.T.; Bischoff, G.C.

    1996-11-01

    Fast and thermal neutron activation analysis with sealed neutron generators has been used to detect oil (oil logging), hazardous waste, fissile material, explosives, and contraband (drugs). Sealed neutron generators, used in the above applications, must be small and portable, have good electrical efficiency and long life. The ion sources used in the sealed neutron tubes require high gas utilization efficiencies or low pressure operation with high ionization efficiencies. In this paper, the authors compare a number of gas ion sources that can be used in sealed neutron tubes. The characteristics of the most popular ion source, the axial Penning discharge will be discussed as part of the zetatron neutron generator. Other sources to be discussed include the SAMIS source and RF ion source.

  5. Cold atomic beam ion source for focused ion beam applications

    SciTech Connect

    Knuffman, B.; Steele, A. V.; McClelland, J. J.

    2013-07-28

    We report measurements and modeling of an ion source that is based on ionization of a laser-cooled atomic beam. We show a high brightness and a low energy spread, suitable for use in next-generation, high-resolution focused ion beam systems. Our measurements of total ion current as a function of ionization conditions support an analytical model that also predicts the cross-sectional current density and spatial distribution of ions created in the source. The model predicts a peak brightness of 2 × 10{sup 7} A m{sup −2} sr{sup −1} eV{sup −1} and an energy spread less than 0.34 eV. The model is also combined with Monte-Carlo simulations of the inter-ion Coulomb forces to show that the source can be operated at several picoamperes with a brightness above 1 × 10{sup 7} A m{sup −2} sr{sup −1} eV{sup −1}. We estimate that when combined with a conventional ion focusing column, an ion source with these properties could focus a 1 pA beam into a spot smaller than 1 nm. A total current greater than 5 nA was measured in a lower-brightness configuration of the ion source, demonstrating the possibility of a high current mode of operation.

  6. Vacuum ultraviolet spectral emission properties of Ga, In and Sn droplet-based laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Gambino, Nadia; Rollinger, Bob; Brandstätter, Markus; Abhari, Reza S.

    2016-08-01

    The Emission Spectra of gallium, indium and tin droplet-based laser produced plasmas are presented in the Vacuum Ultraviolet (VUV) emission range from 30 nm to 160 nm. The Ga ion transitions are investigated in detail as a function of background pressure level and laser irradiance. Different wavelength emission regions were detected according to the level of background gas. At short wavelengths (i.e. 30-50 nm) the line emission from the higher charge states is reduced with increasing pressure, while at longer wavelengths (i.e. 100-160 nm) the trend is inverted, as the plasma emission intensity of the lower charge states increases with higher background gas pressure level. The emitted lines are fitted with Voigt profiles to determine the electron density. The electron temperature is obtained from a fit based on the Planck distribution. These estimations are then used to identify the relevant processes that lead to the different charge state emissions as a function of background gas. Langmuir Probe measurements are also reported for evaluating the ion kinetic energy as a function of background gas. The gallium spectra are calibrated in units of spectral radiance, together with spectra from indium and tin. This calibration allows absolute power estimations from the light source in the VUV region. The presented experimental results are relevant as fundamental plasma emission spectroscopic measurements in an almost unexplored wavelength region as well as for applications such as Extreme Ultraviolet Lithography to determine the so-called Out-of-Band (OoB) radiation emission and for metrology applications for future inspection tools.

  7. Key issues in plasma source ion implantation

    SciTech Connect

    Rej, D.J.; Faehl, R.J.; Matossian, J.N.

    1996-09-01

    Plasma source ion implantation (PSII) is a scaleable, non-line-of-sight method for the surface modification of materials. In this paper, we consider three important issues that should be addressed before wide-scale commercialization of PSII: (1) implant conformality; (2) ion sources; and (3) secondary electron emission. To insure uniform implanted dose over complex shapes, the ion sheath thickness must be kept sufficiently small. This criterion places demands on ion sources and pulsed-power supplies. Another limitation to date is the availability of additional ion species beyond B, C, N, and 0. Possible solutions are the use of metal arc vaporization sources and plasma discharges in high-vapor-pressure organometallic precursors. Finally, secondary electron emission presents a potential efficiency and x-ray hazard issue since for many metallurgic applications, the emission coefficient can be as large as 20. Techniques to suppress secondary electron emission are discussed.

  8. Thirty-centimeter-diameter ion milling source

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1978-01-01

    A 30-cm beam diameter ion source has been designed and fabricated for micromachining and sputtering applications. An argon ion current density of 1 mA/cu cm at 500 eV ion energy was selected as a design operating condition. The completed ion source met the design criteria at this operating condition with a uniform and well-collimated beam having an average variation in current density of + or - 5% over the center of 20 cm of the beam. This ion source has a multipole magnetic field that employs permanent magnets between permeable pole pieces. Langmuir probe surveys of the source plasma support the design concepts of a multipole field and a circumferential cathode to enhance plasma uniformity.

  9. ECR ion source with electron gun

    DOEpatents

    Xie, Z.Q.; Lyneis, C.M.

    1993-10-26

    An Advanced Electron Cyclotron Resonance ion source having an electron gun for introducing electrons into the plasma chamber of the ion source is described. The ion source has a injection enclosure and a plasma chamber tank. The plasma chamber is defined by a plurality of longitudinal magnets. The electron gun injects electrons axially into the plasma chamber such that ionization within the plasma chamber occurs in the presence of the additional electrons produced by the electron gun. The electron gun has a cathode for emitting electrons therefrom which is heated by current supplied from an AC power supply while bias potential is provided by a bias power supply. A concentric inner conductor and outer conductor carry heating current to a carbon chuck and carbon pusher which hold the cathode in place and also heat the cathode. In the Advanced Electron Cyclotron Resonance ion source, the electron gun replaces the conventional first stage used in prior electron cyclotron resonance ion generators. 5 figures.

  10. Ion source design for industrial applications

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    The design of broad-beam industrial ion sources is described. The approach used emphasizes refractory metal cathodes and permanent-magnet multipole discharge chambers. Design procedures and sample calculations are given for the discharge chamber, ion optics, cathodes, and magnetic circuit. Hardware designs are included for the isolator, cathode supports, anode supports, pole-piece assembly, and ion-optics supports. There are other ways of designing most ion source components, but the designs presented are representative of current technology and adaptable to a wide range of configurations.

  11. Progress in ISOL target ion source systems

    NASA Astrophysics Data System (ADS)

    Köster, U.; Arndt, O.; Bouquerel, E.; Fedoseyev, V. N.; Frånberg, H.; Joinet, A.; Jost, C.; Kerkines, I. S. K.; Kirchner, R.; Targisol Collaboration

    2008-10-01

    The heart of every ISOL (isotope separation on-line) facility is its target and ion source system. Its efficiency, selectivity and rapidity is decisive for the production of intense and pure ion beams of short-lived isotopes. Recent progress in ISOL target and ion source technology is discussed at the examples of radioactive ion beams of exotic zinc and tin isotopes that were purified by isothermal chromatography and molecular sideband separation respectively. An outlook is given to which other elements these purification methods are applicable.

  12. Inert gas ion source program

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1978-01-01

    THe original 12 cm hexagonal magneto-electrostatic containment discharge chamber has been optimized for argon and xenon operation. Argon mass utilization efficiencies of 65 to 77 percent were achieved at keeper-plus-main discharge energy consumptions of 200 to 458 eV/ion, respectively. Xenon performance of 84 to 96 percent mass utilization was realized at 203 to 350 eV/ion. The optimization process and test results are discussed.

  13. Ion source with external RF antenna

    DOEpatents

    Leung, Ka-Ngo; Ji, Qing; Wilde, Stephen

    2005-12-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source.

  14. Electrospray ion source with reduced analyte electrochemistry

    DOEpatents

    Kertesz, Vilmos; Van Berkel, Gary J

    2013-07-30

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  15. Electrospray ion source with reduced analyte electrochemistry

    DOEpatents

    Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN

    2011-08-23

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  16. Design and simulation of ion optics for ion sources for production of singly charged ions

    NASA Astrophysics Data System (ADS)

    Zelenak, A.; Bogomolov, S. L.

    2004-05-01

    During the last 2 years different types of the singly charged ion sources were developed for FLNR (JINR) new projects such as Dubna radioactive ion beams, (Phase I and Phase II), the production of the tritium ion beam and the MASHA mass separator. The ion optics simulations for 2.45 GHz electron cyclotron resonance source, rf source, and the plasma ion source were performed. In this article the design and simulation results of the optics of new ion sources are presented. The results of simulation are compared with measurements obtained during the experiments.

  17. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  18. Ion production from solid state laser ion sources

    SciTech Connect

    Gottwald, T.; Havener, Charles C; Lassen, J.; Liu, Yuan; Mattolat, C.; Raeder, S.; Rothe, S.; Wendt, K.

    2010-01-01

    Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. Recent developments are focused on the use of the state-of-the-art all solid-state laser systems. To date, 35 elements of the periodic table are available from laser ion sources based on tunable Ti:sapphire lasers. Recent progress in this field regarding the establishment of suitable optical excitation schemes for Ti:sapphire lasers are reported.

  19. Ion production from solid state laser ion sources

    SciTech Connect

    Gottwald, T.; Mattolat, C.; Raeder, S.; Wendt, K.; Havener, C.; Liu, Y.; Lassen, J.; Rothe, S.

    2010-02-15

    Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. Recent developments are focused on the use of the state-of-the-art all solid-state laser systems. To date, 35 elements of the periodic table are available from laser ion sources based on tunable Ti:sapphire lasers. Recent progress in this field regarding the establishment of suitable optical excitation schemes for Ti:sapphire lasers are reported.

  20. Development of a microwave ion source for ion implantations.

    PubMed

    Takahashi, N; Murata, H; Kitami, H; Mitsubori, H; Sakuraba, J; Soga, T; Aoki, Y; Katoh, T

    2016-02-01

    A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P(+) beam currents. The volume of the plasma chamber is optimized by varying the length of a boron nitride block installed within the chamber. The extracted P(+) beam current is more than 30 mA, at a 25 kV acceleration voltage, using PH3 gas. PMID:26932118

  1. Development of a microwave ion source for ion implantations

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Murata, H.; Kitami, H.; Mitsubori, H.; Sakuraba, J.; Soga, T.; Aoki, Y.; Katoh, T.

    2016-02-01

    A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P+ beam currents. The volume of the plasma chamber is optimized by varying the length of a boron nitride block installed within the chamber. The extracted P+ beam current is more than 30 mA, at a 25 kV acceleration voltage, using PH3 gas.

  2. ION SOURCE (R.F. INDUCTION TYPE)

    DOEpatents

    Mills, C.B.

    1963-04-01

    A method is given for producing energetic ions by ionizing a gas with an oscillating electric field which is parallel to a confining magnetic field, then reorienting the fields perpendicular to each other to accelerate the ions to higher energies. An ion source is described wherein a secondary coil threads the bottom of a rectangular ionization chamber and induces an oscillating field parallel to a fixed intense magnetic field through the chamber. (AEC)

  3. H(-) ion source developments at the SNS.

    PubMed

    Welton, R F; Stockli, M P; Murray, S N; Pennisi, T R; Han, B; Kang, Y; Goulding, R H; Crisp, D W; Sparks, D O; Luciano, N P; Carmichael, J R; Carr, J

    2008-02-01

    The U.S. Spallation Neutron Source (SNS) will require substantially higher average and pulse H(-) beam currents than can be produced from conventional ion sources such as the base line SNS source. H(-) currents of 40-50 mA (SNS operations) and 70-100 mA (power upgrade project) with a rms emittance of 0.20-0.35pi mm mrad and a approximately 7% duty factor will be needed. We are therefore investigating several advanced ion source concepts based on rf plasma excitation. First, the performance characteristics of an external antenna source based on an Al(2)O(3) plasma chamber combined with an external multicusp magnetic configuration, an elemental Cs system, and plasma gun will be discussed. Second, the first plasma measurements of a helicon-driven H(-) ion source will also be presented. PMID:18315274

  4. H- ion source developments at the SNS

    SciTech Connect

    Welton, Robert F; Stockli, Martin P; Murray Jr, S N; Pennisi, Terry R; Han, Baoxi; Kang, Yoon W; Goulding, Richard Howell; Crisp, Danny W; Sparks, Dennis O; Luciano, Nicholas P; Carmichael, Justin R; Carr, Jr, Jerry

    2008-01-01

    The U.S. Spallation Neutron Source (SNS) will require substantially higher average and pulse H- beam currents than can be produced from conventional ion sources such as the base line SNS source. H- currents of 40-50 mA (SNS operations) and 70-100 mA (power upgrade project) with an rms emittance of 0.20-0.35 Pi mm mrad and a ~7% duty factor will be needed. We are therefore investigating several advanced ion source concepts based on RF excitation. First, the performance characteristics of an external antenna source based on an Al2O3 plasma chamber combined with an external multicusp magnetic configuration, an elemental Cs system, and plasma gun will be discussed. Second, the first plasma measurements of a helicon-driven H- ion source will also be presented.

  5. Hollow cathode and ion accelerator system for current ion sources

    SciTech Connect

    Aston, G.

    1981-01-01

    A small self-heating hollow cathode has been designed and tested which uses a novel flowing plasma starting concept to eliminate the need for cathode heating elements and low work function insert materials. In a magnetic field free ion source, this cathode has reliably and repeatedly produced arc currents, using argon, of 100 ampere (the power supply limit) at arc voltages of 22 volts. The cathode operates with a high gas stagnation pressure and plasma density to produce field enhanced thermionic emission from the electron emitting surface, a 0.02mm thick rolled tungsten foil cylinder, without appreciable erosion of this surface. Possible applications of larger versions of this hollow cathode for use in neutral beam injector ion sources are discussed. An ion accelerator system has also been designed and tested which combines a unique arrangement of multiple hole and slit apertures to amplify the extracted ion current density by a factor of four during the ion acceleration process.

  6. Highly Stripped Ion Sources for MeV Ion Implantation

    SciTech Connect

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  7. Fabrication of ion source components by electroforming

    SciTech Connect

    Schechter, D.E.; Sluss, F.

    1983-01-01

    Several components of the Oak Ridge National Laboratory (ORNL)/Magnetic Fusion Test Facility (MFTF-B) ion source have been fabricated utilizing an electroforming process. A procedure has been developed for enclosing coolant passages in copper components by electrodepositing a thick (greater than or equal to 0.75-mm) layer of copper (electroforming) over the top of grooves machined into the copper component base. Details of the procedure to fabricate acceleration grids and other ion source components are presented.

  8. Simulation and analysis of solenoidal ion sources

    SciTech Connect

    Alderwick, A. R.; Jardine, A. P.; Hedgeland, H.; MacLaren, D. A.; Allison, W.; Ellis, J.

    2008-12-15

    We present a detailed analysis and simulation of solenoidal, magnetically confined electron bombardment ion sources, aimed at molecular beam detection. The aim is to achieve high efficiency for singly ionized species while minimizing multiple ionization. Electron space charge plays a major role and we apply combined ray tracing and finite element simulations to determine the properties of a realistic geometry. The factors controlling electron injection and ion extraction are discussed. The results from simulations are benchmarked against experimental measurements on a prototype source.

  9. An advanced negative hydrogen ion source.

    PubMed

    Goncharov, Alexey A; Dobrovolsky, Andrey N; Goretskii, Victor P

    2016-02-01

    The results of investigation of emission productivity of negative particles source with cesiated combined discharge are presented. A cylindrical beam of negative hydrogen ions with density about 2 A/cm(2) in low noise mode on source emission aperture is obtained. The total beam current values are up to 200 mA for negative hydrogen ions and up to 1.5 A for all negative particles with high divergence after source. The source has simple design and can produce stable discharge with low level of oscillation. PMID:26931996

  10. Negative ion source with external RF antenna

    DOEpatents

    Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.

    2007-02-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.

  11. Laser ion sources for particle accelerators

    NASA Astrophysics Data System (ADS)

    Sherwood, T. R.

    1996-05-01

    There is an interest in accelerating atomic nuclei to produce particle beams for medical therapy, atomic and nuclear physics, inertial confinement fusion and particle physics. Laser Ion Sources, in which ions are extracted from plasma created when a high power density laser beam pulse strikes a solid surface in a vacuum, are not in common use. However, some new developments in which heavy ions have been accelerated show that such sources have the potential to provide the beams required for high-energy accelerator systems.

  12. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    PubMed

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline. PMID:22380298

  13. Electron string ion sources for carbon ion cancer therapy accelerators

    SciTech Connect

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.; Katagiri, K.; Noda, K.

    2015-08-15

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C{sup 4+} and C{sup 6+} ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10{sup 10} C{sup 4+} ions per pulse and about 5 × 10{sup 9} C{sup 6+} ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10{sup 11} C{sup 6+} ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the {sup 11}C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C{sup 4+} ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of {sup 11}C, transporting to the tumor with the primary accelerated {sup 11}C{sup 4+} beam, this efficiency is preliminarily considered to be large enough to produce the {sup 11}C{sup 4+} beam from radioactive methane and to inject this beam into synchrotrons.

  14. Negative hydrogen ion sources for accelerators

    SciTech Connect

    Moehs, D.P.; Peters, J.; Sherman, J.; /Los Alamos

    2005-08-01

    A variety of H{sup -} ion sources are in use at accelerator laboratories around the world. A list of these ion sources includes surface plasma sources with magnetron, Penning and surface converter geometries as well as magnetic-multipole volume sources with and without cesium. Just as varied is the means of igniting and maintaining magnetically confined plasmas. Hot and cold cathodes, radio frequency, and microwave power are all in use, as well as electron tandem source ignition. The extraction systems of accelerator H{sup -} ion sources are highly specialized utilizing magnetic and electric fields in their low energy beam transport systems to produce direct current, as well as pulsed and/or chopped beams with a variety of time structures. Within this paper, specific ion sources utilized at accelerator laboratories shall be reviewed along with the physics of surface and volume H{sup -} production in regard to source emittance. Current research trends including aperture modeling, thermal modeling, surface conditioning, and laser diagnostics will also be discussed.

  15. Low temperature ion source for calutrons

    DOEpatents

    Veach, A.M.; Bell, W.A. Jr.; Howell, G.D. Jr.

    1979-10-10

    A new ion source assembly for calutrons has been provided for the efficient separation of elements having high vapor pressures. The strategic location of cooling pads and improved insulation permits operation of the source at lower temperatures. A vapor valve constructed of graphite and located in a constantly increasing temperature gradient provides reliable control of the vapor flow from the charge bottle to the arc chamber. A pronounced saving in calutron operating time and equipment maintenance has been achieved with the use of the present ion source.

  16. Low temperature ion source for calutrons

    DOEpatents

    Veach, Allen M.; Bell, Jr., William A.; Howell, Jr., George D.

    1981-01-01

    A new ion source assembly for calutrons has been provided for the efficient separation of elements having high vapor pressures. The strategic location of cooling pads and improved insulation permits operation of the source at lower temperatures. A vapor valve constructed of graphite and located in a constantly increasing temperature gradient provides reliable control of the vapor flow from the charge bottle to the arc chamber. A pronounced saving in calutron operating time and equipment maintenance has been achieved with the use of the present ion source.

  17. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications

    SciTech Connect

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.

    2007-08-15

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Si{sub n}{sup -} and Cu{sub n}{sup -}. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  18. Plasma uniformity of microwave ion sources

    SciTech Connect

    Tokiguichi, K.; Sakudo, N.; Suzuki, K.; Kanomata, I.

    1980-09-01

    The ion saturation current uniformities of two different type plasma sources, a coaxial and a Lisitano coil type, are investigated using a moveable Langmuir probe. They both operate under off-resonance microwave discharge. H/sub 2/ or Ar is used as the discharge gas. The coaxial source provides better uniformities for ion saturation current, electron temperature, and electon density than the Lisitano coil, independent of the discharge gas species. The ion saturation current with the coaxial source is uniform within approx.15% inside a 40-mm-diam circle for a 0.17 Pa H/sub 2/ discharge. However, with the Lisitano coil, uniformity is limited to a 20-mm-diam circle. Furthermore, the Lisitano coil easily suffers from heat distortion because of difficulties in realizing a cooled system. It is also experimentally confirmed that the coaxial-type source is more appropriate for obtaining high density plasma under continuous operation.

  19. Saddle antenna radio frequency ion sources

    NASA Astrophysics Data System (ADS)

    Dudnikov, V.; Johnson, R.; Murray, S.; Pennisi, T.; Santana, M.; Piller, C.; Stockli, M.; Welton, R.; Breitschopf, J.; Dudnikova, G.

    2016-02-01

    Existing RF ion sources for accelerators have specific efficiencies for H+ and H- ion generation ˜3-5 mA/cm2 kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) surface plasma source (SPS) described here was developed to improve H- ion production efficiency, reliability, and availability. In SA RF ion source, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 kW. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ˜1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ˜4 kW RF. Continuous wave (CW) operation of the SA SPS has been tested on the test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. CW operation with negative ion extraction was tested with RF power up to ˜1.2 kW in the plasma with production up to Ic = 7 mA. A stable long time generation of H- beam without degradation was demonstrated in RF discharge with AlN discharge chamber.

  20. Saddle antenna radio frequency ion sources.

    PubMed

    Dudnikov, V; Johnson, R; Murray, S; Pennisi, T; Santana, M; Piller, C; Stockli, M; Welton, R; Breitschopf, J; Dudnikova, G

    2016-02-01

    Existing RF ion sources for accelerators have specific efficiencies for H(+) and H(-) ion generation ∼3-5 mA/cm(2) kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) surface plasma source (SPS) described here was developed to improve H(-) ion production efficiency, reliability, and availability. In SA RF ion source, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm(2) kW. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ∼1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ∼4 kW RF. Continuous wave (CW) operation of the SA SPS has been tested on the test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. CW operation with negative ion extraction was tested with RF power up to ∼1.2 kW in the plasma with production up to Ic = 7 mA. A stable long time generation of H(-) beam without degradation was demonstrated in RF discharge with AlN discharge chamber. PMID:26931988

  1. Development of polarized 3He ion source

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Takahashi, Y.; Shimoda, T.; Yasui, S.; Yosoi, M.; Takahisa, K.; Shimakura, N.

    2007-02-01

    A long history on the polarized 3He ion source developed at RCNP is presented. We started with an "OPPIS" (Optical Pumping Polarized Ion Source) and later found the fundamental difficulties in the OPPIS. To overcome them an "EPPIS" (Electron Pumping Polarized Ion Source) was proposed and its validity was experimentally proven. However, a serious technical disadvantage was also found in the EPPIS. To avoid this disadvantage we proposed a new concept, "SEPIS" (Spin Exchange Polarized Ion Source), which uses an enhanced spin-exchange cross section theoretically expected at low 3He+ incident energies for the 3He+ + Rb system. Next, we describe the present status of the SEPIS development; construction of a bench test device allowing the measurements of not only the spin-exchange cross sections σse but also the electron capture cross sections σec for the 3He+ + Rb system. The latest experimental data on σec are presented and compared with other previous experimental data and the theoretical calculations. A design study of the SEPIS for practical use in nuclear (cyclotron) and particle physics (synchrotron) is shortly mentioned. Finally, we mention possibility to polarize ions heavier than 3He as an application of SEPIS. The theoretical calculation showed that σse comparable to that for the 3He+ + Rb is expected for the Li2+ + Rb system, which suggests that the SEPIS will hopefully be a general tool to polarize any heavy ions.

  2. Ion Source Development at the SNS

    SciTech Connect

    Welton, R. F.; Han, B. X.; Kenik, E. A.; Murray, S. N.; Pennisi, T. R.; Potter, K. G.; Lang, B. R.; Santana, M.; Stockli, M. P.; Desai, N. J.

    2011-09-26

    The Spallation Neutron Source (SNS) now routinely operates near 1 MW of beam power on target with a highly-persistent {approx}38 mA peak current in the linac and an availability of {approx}90%. The {approx}1 ms-long, 60 Hz, {approx}50 mA H{sup -} beam pulses are extracted from a Cs-enhanced, multi-cusp, RF-driven, internal-antenna ion source. An electrostatic LEBT (Low Energy Beam Transport) focuses the 65 kV beam into the RFQ accelerator. The ion source and LEBT have normally a combined availability of {approx}99%. Although much progress has been made over the last years to achieve this level of availability further improvements are desirable. Failures of the internal antenna and occasionally impaired electron dump insulators require several source replacements per year. An attempt to overcome the antenna issues with an AlN external antenna source early in 2009 had to be terminated due to availability issues. This report provides a comprehensive review of the design, experimental history, status, and description of recently updated components and future plans for this ion source. The mechanical design for improved electron dump vacuum feedthroughs is also presented, which is compatible with the baseline and both external antenna ion sources.

  3. Ion Source Development at the SNS

    SciTech Connect

    Welton, Robert F; Desai, Nandishkumar J; Han, Baoxi; Kenik, Edward A; Murray Jr, S N; Pennisi, Terry R; Potter, Kerry G; Lang, Bonnie R; Santana, Manuel; Stockli, Martin P

    2011-01-01

    The Spallation Neutron Source (SNS) now routinely operates near 1 MW of beam power on target with a highly-persistent ~38 mA peak current in the linac and an availability of ~90%. The ~1 ms-long, 60 Hz, ~50 mA H- beam pulses are extracted from a Cs-enhanced, multi-cusp, RF-driven, internal-antenna ion source. An electrostatic LEBT (Low Energy Beam Transport) focuses the 65 kV beam into the RFQ accelerator. The ion source and LEBT have normally a combined availability of ~99%. Although much progress has been made over the last years to achieve this level of availability further improvements are desirable. Failures of the internal antenna and occasionally impaired electron dump insulators require several source replacements per year. An attempt to overcome the antenna issues with an AlN external antenna source early in 2009 had to be terminated due to availability issues. This report provides a comprehensive review of the design, experimental history, status, and description of recently updated components and future plans for this ion source. The mechanical design for improved electron dump vacuum feedthroughs is also presented, which is compatible with the baseline and both external antenna ion sources.

  4. DUAL HEATED ION SOURCE STRUCTURE HAVING ARC SHIFTING MEANS

    DOEpatents

    Lawrence, E.O.

    1959-04-14

    An ion source is presented for calutrons, particularly an electrode arrangement for the ion generator of a calutron ion source. The ion source arc chamber is heated and an exit opening with thermally conductive plates defines the margins of the opening. These plates are electrically insulated from the body of the ion source and are connected to a suitable source of voltage to serve as electrodes for shaping the ion beam egressing from the arc chamber.

  5. Ion source based on the cathodic arc

    DOEpatents

    Sanders, D.M.; Falabella, S.

    1994-02-01

    A cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated, is described. An array of electrically isolated rings positioned in the source serves the dual purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles. 3 figures.

  6. Ion source based on the cathodic arc

    DOEpatents

    Sanders, David M.; Falabella, Steven

    1994-01-01

    A cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated. An array of electrically isolated rings positioned in the source serves the dual purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles.

  7. Vacuum arc ion source development at GSI

    SciTech Connect

    Spaedtke, P.; Emig, H.; Wolf, B.H.

    1996-08-01

    Ion beams produced by the Mevva ion source are well suited for the injection into a synchrotron accelerator due to the low repetition rate (0.2 ... 5 Hz, the higher repetition rate is for the optimization of the linear accelerator only) and the short pulse length (up to 0.5ms). From the beginning of the authors experience with the Mevva ion source at GSI they tried to improve the reliability of pulse-to-pulse reproducibility and to minimize the noise on the extracted ion beam. For accelerator application this is highly necessary, otherwise the accelerator tuning and optimization becomes very difficult or even impossible. Already the beam transport becomes difficult for a noisy beam, because space charge compensation can be destroyed (at least partially). Furthermore a noisy dc-beam results in some rf-buckets which might be even empty.

  8. Compact ion source neutron generator

    SciTech Connect

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali; Chang-Hasnain, Constance; Rangelow, Ivo; Kwan, Joe

    2015-10-13

    A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.

  9. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    PubMed

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented. PMID:20192366

  10. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, K.N.

    1996-09-24

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted. 16 figs.

  11. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted.

  12. Fourth generation electron cyclotron resonance ion sources.

    PubMed

    Lyneis, Claude M; Leitner, D; Todd, D S; Sabbi, G; Prestemon, S; Caspi, S; Ferracin, P

    2008-02-01

    The concepts and technical challenges related to developing a fourth generation electron cyclotron resonance (ECR) ion source with a rf frequency greater than 40 GHz and magnetic confinement fields greater than twice B(ECR) will be explored in this article. Based on the semiempirical frequency scaling of ECR plasma density with the square of operating frequency, there should be significant gains in performance over current third generation ECR ion sources, which operate at rf frequencies between 20 and 30 GHz. While the third generation ECR ion sources use NbTi superconducting solenoid and sextupole coils, the new sources will need to use different superconducting materials, such as Nb(3)Sn, to reach the required magnetic confinement, which scales linearly with rf frequency. Additional technical challenges include increased bremsstrahlung production, which may increase faster than the plasma density, bremsstrahlung heating of the cold mass, and the availability of high power continuous wave microwave sources at these frequencies. With each generation of ECR ion sources, there are new challenges to be mastered, but the potential for higher performance and reduced cost of the associated accelerator continues to make this a promising avenue for development. PMID:18315111

  13. Ion sources and targets for radioactive beams

    SciTech Connect

    Schiffer, J.P.; Back, B.B.; Ahmad, I.

    1995-08-01

    A high-intensity ISOL-type radioactive beam facility depends critically on the performance of the target/ion source system. We developed a concept for producing high-intensity secondary beams of fission fragments, such as {sup 132}Sn, using a two-part target and ion source combination. The idea involves stopping a 1000-kW beam of 200-MeV deuterons in a target of Be or U to produce a secondary beam of neutrons. Just behind the neutron production target is a second target, typically a porous form of UC, coupled to an ISOL-type ion source. In December 1994, we tested this concept with 200-MeV deuterons at low intensity in an experiment at the NSCL. The yields of characteristic gamma rays were measured and confirmed our predictions.

  14. The RHIC polarized H- ion source

    NASA Astrophysics Data System (ADS)

    Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Steski, D.

    2016-02-01

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H- ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H- ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC.

  15. Plasma uniformity of microwave ion sources

    NASA Astrophysics Data System (ADS)

    Tokiguichi, K.; Sakudo, N.; Suzuki, K.; Kanomata, I.

    1980-10-01

    The ion saturation current uniformities of two different type plasma sources, a coaxial and a Lisitano coil type, are investigated using a moveable Langmuir probe. They both operate under off-resonance microwave discharge; H2 or Ar is used as the discharge gas. The coaxial source provides better uniformities for ion saturation current, electron temperature, and electron density than the Lisitano coil, independent of the discharge gas species. The ion saturation current with the coaxial source is uniform within about 15% inside a 40-mm-diam circle for a 0.17 Pa H2 discharge. However, with the Lisitano coil uniformity is limited to a 20-mm-diam circle and the coil is subject to heat distortion because of difficulties in realizing a cooled system

  16. The RHIC polarized H⁻ ion source.

    PubMed

    Zelenski, A; Atoian, G; Raparia, D; Ritter, J; Steski, D

    2016-02-01

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H(-) ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H(-) ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC. PMID:26932068

  17. Ion plating with an induction heating source

    NASA Technical Reports Server (NTRS)

    Spalvins, T.; Brainard, W. A.

    1976-01-01

    Induction heating is introduced as an evaporation heat source in ion plating. A bare induction coil without shielding can be directly used in the glow discharge region with no arcing. The only requirement is to utilize an rf inductive generator with low operating frequency of 75 kHz. Mechanical simplicity of the ion plating apparatus and ease of operation is a great asset for industrial applications; practically any metal such as nickel, iron, and the high temperature refractories can be evaporated and ion plated.

  18. Focused ion beam source method and apparatus

    DOEpatents

    Pellin, Michael J.; Lykke, Keith R.; Lill, Thorsten B.

    2000-01-01

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  19. Liquid metal alloy ion source based metal ion injection into a room-temperature electron beam ion source

    SciTech Connect

    Thorn, A.; Ritter, E.; Zschornack, G.; Ullmann, F.; Pilz, W.; Bischoff, L.

    2012-02-15

    We have carried out a series of measurements demonstrating the feasibility of using the Dresden electron beam ion source (EBIS)-A, a table-top sized, permanent magnet technology based electron beam ion source, as a charge breeder. Low charged gold ions from an AuGe liquid metal alloy ion source were injected into the EBIS and re-extracted as highly charged ions, thereby producing charge states as high as Au{sup 60+}. The setup, the charge breeding technique, breeding efficiencies as well as acceptance and emittance studies are presented.

  20. Plasma ion sources and ion beam technology inmicrofabrications

    SciTech Connect

    Ji, Lili

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 μm-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25

  1. ECR ion source with electron gun

    DOEpatents

    Xie, Zu Q.; Lyneis, Claude M.

    1993-01-01

    An Advanced Electron Cyclotron Resonance ion source (10) having an electron gun (52) for introducing electrons into the plasma chamber (18) of the ion source (10). The ion source (10) has a injection enclosure (12) and a plasma chamber tank (14). The plasma chamber (18) is defined by a plurality of longitudinal magnets (16). The electron gun (52) injects electrons axially into the plasma chamber (18) such that ionization within the plasma chamber (18) occurs in the presence of the additional electrons produced by the electron gun (52). The electron gun (52) has a cathode (116) for emitting electrons therefrom which is heated by current supplied from an AC power supply (96) while bias potential is provided by a bias power supply (118). A concentric inner conductor (60) and Outer conductor (62) carry heating current to a carbon chuck (104) and carbon pusher (114) Which hold the cathode (116) in place and also heat the cathode (16). In the Advanced Electron Cyclotron Resonance ion source (10), the electron gun (52) replaces the conventional first stage used in prior art electron cyclotron resonance ion generators.

  2. A Novel One-Step Fabricated, Droplet-Based Electrochemical Sensor for Facile Biochemical Assays.

    PubMed

    Yao, Yong; Zhang, Chunsun

    2016-01-01

    A simple, novel concept for the one-step fabrication of a low-cost, easy-to-use droplet-based electrochemical (EC) sensor is described, in which the EC reagents are contained in a droplet and the droplet assay is operated on a simple planar surface instead of in a complicated closed channel/chamber. In combination with an elegant carbon electrode configuration, screen-printed on a widely available polyethylene terephthalate (PET) substrate, the developed sensor exhibits a stable solution-restriction capacity and acceptable EC response, and thus can be used directly for the detection of different analytes (including ascorbic acid (AA), copper ions (Cu(2+)), 2'-deoxyguanosine 5'-triphosphate (dGTP) and ferulic acid (FA)), without any pretreatment. The obtained, acceptable linear ranges/detection limits for AA, Cu(2+), dGTP and FA are 0.5-10/0.415 mM, (0.0157-0.1574 and 0.1574-1.5736)/0.011 mM, 0.01-0.1/0.008 mM and 0.0257-0.515/0.024 mM, respectively. Finally, the utility of the droplet-based EC sensor was demonstrated for the determination of AA in two commercial beverages, and of Cu(2+) in two water samples, with reliable recovery and good stability. The applicability of the droplet-based sensor demonstrates that the proposed EC strategy is potentially a cost-effective solution for a series of biochemical sensing applications in public health, environmental monitoring, and the developing world. PMID:27527176

  3. A negative ion source test facility.

    PubMed

    Melanson, S; Dehnel, M; Potkins, D; Theroux, J; Hollinger, C; Martin, J; Philpott, C; Stewart, T; Jackle, P; Williams, P; Brown, S; Jones, T; Coad, B; Withington, S

    2016-02-01

    Progress is being made in the development of an Ion Source Test Facility (ISTF) by D-Pace Inc. in collaboration with Buckley Systems Ltd. in Auckland, NZ. The first phase of the ISTF is to be commissioned in October 2015 with the second phase being commissioned in March 2016. The facility will primarily be used for the development and the commercialization of ion sources. It will also be used to characterize and further develop various D-Pace Inc. beam diagnostic devices. PMID:26931991

  4. Laser Ion Source Development at HRIBF

    SciTech Connect

    Liu, Yuan; Beene, James R; Havener, Charles C; Howe, Jane Y; Kiggans Jr, James O; Vane, C Randy; Mattolat, C.; Gottwald, T.; Wendt, K.

    2012-01-01

    This report describes the efforts made to develop a resonant-ionization laser ion source based on tunable Ti:Sapphire lasers for nuclear physics and astrophysics research at HRIBF. Three Ti:Sapphire lasers have been upgraded with individual pump lasers to eliminate laser power losses due to synchronization delays. Ionization schemes for 14 elements have been obtained. Off-line studies show that the overall efficiency of the laser ion source can be as high as 40%. TaC surface coatings have been investigated for minimizing surface and bulk trapping of the atoms of interest.

  5. Low energy ion beam dynamics of NANOGAN ECR ion source

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  6. rf improvements for Spallation Neutron Source H-ion source

    SciTech Connect

    Kang, Yoon W; Fuja, Raymond E; Goulding, Richard Howell; Hardek, Thomas W; Lee, Sung-Woo; McCarthy, Mike; Piller, Chip; Shin, Ki; Stockli, Martin P; Welton, Robert F

    2010-01-01

    The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering 38 mA H beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride AlN plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier. 2010 American Institute of Physics.

  7. rf improvements for Spallation Neutron Source H- ion source.

    PubMed

    Kang, Y W; Fuja, R; Goulding, R H; Hardek, T; Lee, S-W; McCarthy, M P; Piller, M C; Shin, K; Stockli, M P; Welton, R F

    2010-02-01

    The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering approximately 38 mA H(-) beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride (AlN) plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier. PMID:20192394

  8. Negative ion source with low temperature transverse divergence optical system

    DOEpatents

    Whealton, John H.; Stirling, William L.

    1986-01-01

    A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.

  9. Negative ion source with low temperature transverse divergence optical system

    DOEpatents

    Whealton, J.H.; Stirling, W.L.

    1985-03-04

    A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.

  10. Recent negative ion source activity at JYFL

    NASA Astrophysics Data System (ADS)

    Kalvas, T.; Tarvainen, O.; Komppula, J.; Laitinen, M.; Sajavaara, T.; Koivisto, H.; Jokinen, A.; Dehnel, M. P.

    2013-02-01

    A filament-powered multicusp ion source for production of H- has been developed for the Jyväskylä Pelletron accelerator for use in ion beam lithography and particle induced X-ray emission applications. The source can be considered conventional with the exception of the filter field being created with an electric magnet for continuous adjustability. A permanent magnet dipoleantidipole electron dump is integrated in the puller electrode. The source provides 50 μA H- beam at 10 keV energy with 0.019 mm mrad 95 % normalized rms emittance through a 2 mm aperture. Lower emittance is achievable by changing the plasma electrode insert to a smaller aperture one if application requires. A new commercial MCC30/15 cyclotron has been installed at the Jyväskylä accelerator laboratory providing 30MeV H+ and 15Mev D+ for use in nuclear physics experiments and applications. The ion source delivered with the cyclotron is a a filament-powered multicusp source capable of about 130 h continuous operation at 1 mA H- output between filament changes. The ion source is located in the cyclotron vault and therefore a significant waiting time for the vault cooldown is required before filament change is possible. This kind of operation is not acceptable as 350 h and longer experiments are expected. Therefore a project for developing a CW 13.56 MHz RF ion source has been initiated. A planar RF antenna replacing the filament back plate of the existing TRIUMF-type ion source has been used in the first tests with 240 μA of H- and 21 mA of electrons measured at 1.5 kW of RF power. Tests with higher RF power levels were prevented by electron beam induced sparking. A new plasma chamber has been built and a new extraction is being designed for the RF ion source. The extraction code IBSimu has recently gone through a major update on how smooth electrode surfaces are implemented in the Poisson solvers. This has made it possible to implement a fast multigrid solver with low memory consumption. Also

  11. New types of negative ion sources

    SciTech Connect

    Borisko, V.N.; Lapshin, V.I.

    1995-12-31

    The plasma sources of negative ions which were elaborated in Kharkov State University are considered in this paper. These sources use the mechanism of dissociative stick of electrons with low energies to molecules of a working gas. The effective work of such sources needs a special system of low energy electrons formation. The effect of secondary electron emission used in negative ion sources is considered. The electrode material with a great coefficient of secondary electron emission allows one to obtain a few slow electrons per one bombarding electron. A plasma of Penning discharge is an emitter of initial elections. The electron electromagnetic trap in the secondary electron emission region allows one to enlarge volume of interaction of low energy electrons with the working gas molecules. The lifetime of slow electrons grows in this trap.

  12. RF H- Ion Source with Saddle Antenna

    SciTech Connect

    Dudnikov, Vadim G; Johnson, Rolland P; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Stockli, Martin P; Welton, Robert F

    2010-01-01

    In this project we are developing an RF H- surface plasma source (SPS) which will synthesize the most important developments in the field of negative ion sources to provide high pulsed and average current, higher brightness, longer lifetime and higher reliability by improving a power efficiency. Several versions of new plasma generators with different antennas and magnetic field configurations were tested in a small AlN test chamber in the SNS ion source Test Stand. Then a prototype saddle antenna was installed in the Test Stand with a larger, normal-sized SNS AlN chamber that achieved a peak current of 67 mA and an apparent efficiency of 1.6 mA/kW. These values are comparable to those of the present SNS sources and can be expected to be improved when the prototype is developed into an operational version in the next phase of the project.

  13. Development of versatile multiaperture negative ion sources

    SciTech Connect

    Cavenago, M.; Minarello, A.; Sattin, M.; Serianni, G.; Antoni, V.; Bigi, M.; Pasqualotto, R.; Recchia, M.; Veltri, P.; Agostinetti, P.; Barbisan, M.; Baseggio, L.; Cervaro, V.; Degli Agostini, F.; Franchin, L.; Laterza, B.; Ravarotto, D.; Rossetto, F.; Zaniol, B.; Zucchetti, S.; and others

    2015-04-08

    Enhancement of negative ion sources for production of large ion beams is a very active research field nowadays, driven from demand of plasma heating in nuclear fusion devices and accelerator applications. As a versatile test bench, the ion source NIO1 (Negative Ion Optimization 1) is being commissioned by Consorzio RFX and INFN. The nominal beam current of 135 mA at −60 kV is divided into 9 beamlets, with multiaperture extraction electrodes. The plasma is sustained by a 2 MHz radiofrequency power supply, with a standard matching box. A High Voltage Deck (HVD) placed inside the lead shielding surrounding NIO1 contains the radiofrequency generator, the gas control, electronics and power supplies for the ion source. An autonomous closed circuit water cooling system was installed for the whole system, with a branch towards the HVD, using carefully optimized helical tubing. Insulation transformer is installed in a nearby box. Tests of several magnetic configurations can be performed. Status of experiments, measured spectra and plasma luminosity are described. Upgrades of magnetic filter, beam calorimeter and extraction grid and related theoretical issues are reviewed.

  14. Survey of ion plating sources. [conferences

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    Based on the type of evaporation source, gaseous media and mode of transport, the following is discussed: resistance, electron beam, sputtering, reactive and ion beam evaporation. Ionization efficiencies and ion energies in the glow discharge determine the percentage of atoms which are ionized under typical ion plating conditions. The plating flux consists of a small number of energetic ions and a large number of energetic neutrals. The energy distribution ranges from thermal energies up to a maximum energy of the discharge. The various reaction mechanisms which contribute to the exceptionally strong adherence - formation of a graded sustrate/coating interface are not fully understood, however the controlling factors are evaluated. The influence of process variables on the nucleation and growth characteristics are illustrated in terms of morphological changes which affect the mechanical and tribological properties of the coating.

  15. Secondary electron ion source neutron generator

    DOEpatents

    Brainard, John P.; McCollister, Daryl R.

    1998-01-01

    A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter. The target contains occluded deuterium, tritium, or a mixture thereof

  16. Secondary electron ion source neutron generator

    DOEpatents

    Brainard, J.P.; McCollister, D.R.

    1998-04-28

    A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter is disclosed. The target contains occluded deuterium, tritium, or a mixture thereof. 4 figs.

  17. Ion source choices - an h- source for the high intensity neutrino source

    SciTech Connect

    Moehs, Douglas P.; Welton, Robert F.; Stockli, Martin P.; Peters, Jens; Alessi, James; /Brookhaven

    2006-08-01

    The High Intensity Neutrino Source (HINS) program at Fermilab (formerly the Proton Driver) aims to develop a multi-mission linear accelerator (LINAC) capable of accelerate H{sup -} ions to 8 GeV. This paper touches on the ion source requirements for the HINS and discusses long pulse length testing of three ion sources which appear to have the capability of meeting these requirements.

  18. The SNS External Antenna H- Ion Source

    SciTech Connect

    Welton, Robert F; Stockli, Martin P; Murray Jr, S N; Crisp, Danny W; Carmichael, Justin R; Goulding, Richard Howell; Han, Baoxi; Pennisi, Terry R; Santana, Manuel

    2010-01-01

    The U.S. Spallation Neutron Source (SNS) is an accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to insure that we will meet our operational commitments as well as provide for future facility upgrades with high reliability, we have developed an RF-driven, H- ion source based on a ceramic aluminum nitride (AlN) plasma chamber [1]. This source is expected to be utilized by the SNS for neutron production starting in 2009. This report details the design of the production source which features an AlN plasma chamber, 2-layer external antenna, cooled-multicusp magnet array, Cs2CrO4 cesium system and a Molybdenum plasma ignition gun. Performance of the production source both on the SNS accelerator and SNS test stand is reported. The source has also been designed to accommodate an elemental Cs system with an external reservoir which has demonstrated unanalyzed beam currents up to ~100mA (60Hz, 1ms) on the SNS ion source test stand.

  19. Proceedings of the ninth symposium on ion sources and ion-assisted technology

    SciTech Connect

    Not Available

    1985-01-01

    This book presents papers on Ion Sources and ion-assisted technology. Topics covered include: microwave ion sources; analysis on vaporized metal cluster formation by Classical Nucleation Theory; a plasma filament ion source; and an expansion cup and grid electrode system for the extraction of a wide ion beam.

  20. A laser ablation source for offline ion production at LEBIT

    NASA Astrophysics Data System (ADS)

    Izzo, C.; Bollen, G.; Bustabad, S.; Eibach, M.; Gulyuz, K.; Morrissey, D. J.; Redshaw, M.; Ringle, R.; Sandler, R.; Schwarz, S.; Valverde, A. A.

    2016-06-01

    A laser ablation ion source has been developed and implemented at the Low-Energy Beam and Ion Trap (LEBIT) facility at the National Superconducting Cyclotron Laboratory. This offline ion source enhances the capabilities of LEBIT by providing increased access to ions used for calibration measurements and checks of systematic effects as well as stable and long-lived ions of scientific interest. The design of the laser ablation ion source and a demonstration of its successful operation are presented.

  1. HIGH CURRENT RADIO FREQUENCY ION SOURCE

    DOEpatents

    Abdelaziz, M.E.

    1963-04-01

    This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)

  2. Extracted current saturation in negative ion sources

    SciTech Connect

    Mochalskyy, S.; Lifschitz, A. F.; Minea, T.

    2012-06-01

    The extraction of negatively charged particles from a negative ion source is one of the crucial issues in the development of the neutral beam injector system for future experimental reactor ITER. Full 3D electrostatic particle-in-cell Monte Carlo collision code - ONIX [S. Mochalskyy et al., Nucl. Fusion 50, 105011 (2010)] - is used to simulate the hydrogen plasma behaviour and the extracted particle features in the vicinity of the plasma grid, both sides of the aperture. It is found that the contribution to the extracted negative ion current of ions born in the volume is small compared with that of ions created at the plasma grid walls. The parametric study with respect to the rate of negative ions released from the walls shows an optimum rate. Beyond this optimum, a double layer builds-up by the negative ion charge density close to the grid aperture surface reducing thus extraction probability, and therefore the extracted current. The effect of the extraction potential and magnetic field magnitudes on the extraction is also discussed. Results are in good agreement with available experimental data.

  3. Ion source development for various applications in Korea (invited) (abstract)

    SciTech Connect

    Hwang, Y. S.

    2008-02-15

    Ion source development in Korea has been related with various applications from accelerator to nanotechnology. Conventional ion sources such as Duoplasmatron and PIG ion sources were developed for high power proton accelerator and small cyclotron accelerators. To improve lifetime of the high current proton ion source, helicon plasma ion sources were developed with external rf antenna and applied for neutron generation in drive-in-target configuration. Negative hydrogen ion sources were also developed for tandem and cyclotron accelerators by using both rf and filament discharges. Large-area high-current ion sources for the KSTAR NBI system were developed and successfully tested for long-pulse operation of up to 300 s. Several broad beam ion sources for industrial applications such as ion implantation and surface treatment were also developed by using arc, rf, and microwave discharges. Recently, ion source applications become diversified to the area of nano- and biotechnologies. For example, C60 ion source was developed for the use of bioapplications in nanometer scale. For focused ion beam as a nanofabrication tool, liquid metal ion sources were improved and a novel plasma ion source was developed by utilizing localized sheath discharges. Research and development activities of these ion sources will be discussed with short description of appropriate applications.

  4. Lossless droplet transfer of droplet-based microfluidic analysis

    DOEpatents

    Kelly, Ryan T; Tang, Keqi; Page, Jason S; Smith, Richard D

    2011-11-22

    A transfer structure for droplet-based microfluidic analysis is characterized by a first conduit containing a first stream having at least one immiscible droplet of aqueous material and a second conduit containing a second stream comprising an aqueous fluid. The interface between the first conduit and the second conduit can define a plurality of apertures, wherein the apertures are sized to prevent exchange of the first and second streams between conduits while allowing lossless transfer of droplets from the first conduit to the second conduit through contact between the first and second streams.

  5. DNA sequence analysis with droplet-based microfluidics

    PubMed Central

    Abate, Adam R.; Hung, Tony; Sperling, Ralph A.; Mary, Pascaline; Rotem, Assaf; Agresti, Jeremy J.; Weiner, Michael A.; Weitz, David A.

    2014-01-01

    Droplet-based microfluidic techniques can form and process micrometer scale droplets at thousands per second. Each droplet can house an individual biochemical reaction, allowing millions of reactions to be performed in minutes with small amounts of total reagent. This versatile approach has been used for engineering enzymes, quantifying concentrations of DNA in solution, and screening protein crystallization conditions. Here, we use it to read the sequences of DNA molecules with a FRET-based assay. Using probes of different sequences, we interrogate a target DNA molecule for polymorphisms. With a larger probe set, additional polymorphisms can be interrogated as well as targets of arbitrary sequence. PMID:24185402

  6. Note: Development of ESS Bilbao's proton ion source: Ion Source Hydrogen Positive

    NASA Astrophysics Data System (ADS)

    Miracoli, R.; Feuchtwanger, J.; Arredondo, I.; Belver, D.; Gonzalez, P. J.; Corres, J.; Djekic, S.; Echevarria, P.; Eguiraun, M.; Garmendia, N.; Muguira, L.

    2014-02-01

    The Ion Source Hydrogen positive is a 2.7 GHz off-resonance microwave discharge ion source. It uses four coils to generate an axial magnetic field in the plasma chamber around 0.1 T that exceeds the ECR resonance field. A new magnetic system was designed as a combination of the four coils and soft iron in order to increase the reliability of the source. The description of the simulations of the magnetic field and the comparison with the magnetic measurements are presented. Moreover, results of the initial commissioning of the source for extraction voltage until 50 kV will be reported.

  7. rf-driven ion sources for industrial applications (invited) (abstract)

    SciTech Connect

    Leung, Ka-Ngo

    2008-02-15

    The Plasma and Ion Source Technology Group at the Lawrence Berkeley National Laboratory have been developing rf-driven ion sources for the last two decades. These sources are being used to generate both positive and negative ion beams. Some of these sources are operating in particle accelerators such as the Spallation Neutron Source (SNS) at Oak Ridge, while others are being employed in various industrial ion beam systems. There are four areas where the rf-driven ion sources are commonly used in industry. (1) In semiconductor manufacturing, rf-driven sources have found important applications in plasma etching, ion beam implantation, and ion beam lithography. (2) In material analysis and surface modification, miniature rf-ion sources can be found in focused ion beam systems. They can provide ion beams of essentially any element in the Periodic Table. The newly developed combined rf ion-electron beam unit improves greatly the performance of the secondary ion mass spectrometry tool. (3) For neutron production, rf ion source is a major component of compact, high flux D-D, D-T, or T-T neutron generators. These neutron sources are now being employed in boron neutron capture therapy (BNCT) as well as in neutron imaging and material interrogation. (4) Large area rf-driven ion source will be used in an industrial design neutral beam diagnostic system for probing fusion plasmas. Such sources can be easily scaled to provide large ion beam current for future fusion reactor applications.

  8. Compact microwave ion source for industrial applications.

    PubMed

    Cho, Yong-Sub; Kim, Dae-Il; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Hong, In-Seok

    2012-02-01

    A 2.45 GHz microwave ion source for ion implanters has many good properties for industrial application, such as easy maintenance and long lifetime, and it should be compact for budget and space. But, it has a dc current supply for the solenoid and a rf generator for plasma generation. Usually, they are located on high voltage platform because they are electrically connected with beam extraction power supply. Using permanent magnet solenoid and multi-layer dc break, high voltage deck and high voltage isolation transformer can be eliminated, and the dose rate on targets can be controlled by pulse duty control with semiconductor high voltage switch. Because the beam optics does not change, beam transfer components, such as focusing elements and beam shutter, can be eliminated. It has shown the good performances in budget and space for industrial applications of ion beams. PMID:22380346

  9. Compact microwave ion source for industrial applications

    SciTech Connect

    Cho, Yong-Sub; Kim, Dae-Il; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Hong, In-Seok

    2012-02-15

    A 2.45 GHz microwave ion source for ion implanters has many good properties for industrial application, such as easy maintenance and long lifetime, and it should be compact for budget and space. But, it has a dc current supply for the solenoid and a rf generator for plasma generation. Usually, they are located on high voltage platform because they are electrically connected with beam extraction power supply. Using permanent magnet solenoid and multi-layer dc break, high voltage deck and high voltage isolation transformer can be eliminated, and the dose rate on targets can be controlled by pulse duty control with semiconductor high voltage switch. Because the beam optics does not change, beam transfer components, such as focusing elements and beam shutter, can be eliminated. It has shown the good performances in budget and space for industrial applications of ion beams.

  10. Compact microwave ion source for industrial applicationsa)

    NASA Astrophysics Data System (ADS)

    Cho, Yong-Sub; Kim, Dae-Il; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Hong, In-Seok

    2012-02-01

    A 2.45 GHz microwave ion source for ion implanters has many good properties for industrial application, such as easy maintenance and long lifetime, and it should be compact for budget and space. But, it has a dc current supply for the solenoid and a rf generator for plasma generation. Usually, they are located on high voltage platform because they are electrically connected with beam extraction power supply. Using permanent magnet solenoid and multi-layer dc break, high voltage deck and high voltage isolation transformer can be eliminated, and the dose rate on targets can be controlled by pulse duty control with semiconductor high voltage switch. Because the beam optics does not change, beam transfer components, such as focusing elements and beam shutter, can be eliminated. It has shown the good performances in budget and space for industrial applications of ion beams.

  11. MULTIPLE ELECTRON BEAM ION PUMP AND SOURCE

    DOEpatents

    Ellis, R.E.

    1962-02-27

    A vacuum pump is designed which operates by ionizing incoming air and by withdrawing the ions from the system by means of electrical fields. The apparatus comprises a cylindrical housing communicable with the vessel to be evacuated and having a thin wall section in one end. Suitable coils provide a longitudinal magnetic field within the cylinder. A broad cathode and an anode structure is provided to establish a plurality of adjacent electron beams which are parallel to the cylinder axis. Electron reflector means are provided so that each of the beams constitutes a PIG or reflex discharge. Such structure provides a large region in which incoming gas molecules may be ionized by electron bombardment. A charged electrode assembly accelerates the ions through the thin window, thereby removing the gas from the system. The invention may also be utilized as a highly efficient ion source. (AEC)

  12. Experimental Evaluation of a Negative Ion Source for a Heavy Ion Fusion Negative Ion Driver

    SciTech Connect

    Grisham, L. R.; Hahto, S. K.; Hahto, S. T.; Kwan, J. W.; Leung, K. N.

    2004-06-16

    Negative halogen ions have recently been proposed as a possible alternative to positive ions for heavy ion fusion drivers because electron accumulation would not be a problem in the accelerator, and if desired, the beams could be photo-detached to neutrals. To test the ability to make suitable quality beams, an experiment was conducted at Lawrence Berkeley National Laboratory using chlorine in an RF-driven ion source. Without introducing any cesium (which is required to enhance negative ion production in hydrogen ion sources) a negative chlorine current density of 45 mA/cm{sup 2} was obtained under the same conditions that gave 57 45 mA/cm{sup 2} of positive chlorine, suggesting the presence of nearly as many negative ions as positive ions in the plasma near the extraction plane. The negative ion spectrum was 99.5% atomic chlorine ions, with only 0.5% molecular chlorine, and essentially no impurities. Although this experiment did not incorporate the type of electron suppression technology that i s used in negative hydrogen beam extraction, the ratio of co-extracted electrons to Cl{sup -} was as low as 7 to 1, many times lower than the ratio of their mobilities, suggesting that few electrons are present in the near-extractor plasma. This, along with the near-equivalence of the positive and negative ion currents, suggests that the plasma in this region was mostly an ion-ion plasma. The negative chlorine current density was relatively insensitive to pressure, and scaled linearly with RF power. If this linear scaling continues to hold at higher RF powers, it should permit current densities of 100 45 mA/cm{sup 2}, sufficient for present heavy ion fusion injector concepts. The effective ion temperatures of the positive and negative ions appeared to be similar and relatively low for a plasma source.

  13. ION SOURCE UNIT FOR A CALUTRON

    DOEpatents

    Brobeck, W.M.

    1958-08-19

    An improvement in the ion-producing mechanism for use in a calutron is described. In its broad aspects the improvement comprises the addition of shieid plates between the electron emitting filannent of the ion source and the ionization chamber. An aperture in one of the shields provides a path for electrons from the filament to enter the ionization chamber of the source block. As the shield members are electrically connected to the negative side of the filament power supply, the favorable action of the upper shield is to prevent the electron bombardment of all the elements of the calutron which overlie the filannent, and the lower shield member con fines the emission of electrons from the filannent to a relatively short segnnent, thereby increasing the life of the filannent.

  14. ECR ion sources: present status and prospects

    NASA Astrophysics Data System (ADS)

    Melin, G.

    1997-01-01

    Although now widely used for many applications, the electron cyclotron resonance ion sources (ECRIS), an outgrowth of the fusion plasma research, still suffer from some mystification, or at least from a lack of understanding. This article is an attempt to give a broad overview of the today ECRIS activity devoted to the production of highly charged ions: it therefore describes both physics and theory efforts, technology, performances, plans and prospects as well. An important chapter gives the status of understanding the ECRIS behavior, both the current thinking on how they operate and the experimental evidences whenever it is possible. The various existing sources, their design and main features, are then surveyed. At last the present trends of development, the potential directions for future improvement are examined.

  15. Droplet-based microfluidics and the dynamics of emulsions

    NASA Astrophysics Data System (ADS)

    Baret, Jean-Christophe; Brosseau, Quentin; Semin, Benoit; Qu, Xiaopeng

    2012-02-01

    Emulsions are complex fluids already involved for a long time in a wide-range of industrial processes, such as, for example, food, cosmetics or materials synthesis [1]. More recently, applications of emulsions have been extended to new fields like biotechnology or biochemistry where the compartmentalization of compounds in emulsion droplets is used to parallelise (bio-) chemical reactions [2]. Interestingly, these applications pinpoint to fundamental questions dealing with surfactant dynamics, dynamic surface tension, hydrodynamic interactions and electrohydrodynamics. Droplet-based microfluidics is a very powerful tool to quantitatively study the dynamics of emulsions at the single droplet level or even at the single interface level: well-controlled emulsions are produced and manipulated using hydrodynamics, electrical forces, optical actuation and combination of these effects. We will describe here how droplet-based microfluidics is used to extract quantitative informations on the physical-chemistry of emulsions for a better understanding and control of the dynamics of these systems [3].[4pt] [1] J. Bibette et al. Rep. Prog. Phys., 62, 969-1033 (1999)[0pt] [2] A. Theberge et al., Angewandte Chemie Int. Ed. 49, 5846 (2010)[0pt] [3] J.-C. Baret et al., Langmuir, 25, 6088 (2009)

  16. Improved Ambient Pressure Pyroelectric Ion Source

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Kim, Hugh I.; Kanik, Isik; Ryu, Ernest K.; Beckett, Brett

    2011-01-01

    The detection of volatile vapors of unknown species in a complex field environment is required in many different applications. Mass spectroscopic techniques require subsystems including an ionization unit and sample transport mechanism. All of these subsystems must have low mass, small volume, low power, and be rugged. A volatile molecular detector, an ambient pressure pyroelectric ion source (APPIS) that met these requirements, was recently reported by Caltech researchers to be used in in situ environments.

  17. Proton emission from a laser ion source

    SciTech Connect

    Torrisi, L.; Cavallaro, S.; Gammino, S.; Cutroneo, M.; Margarone, D.

    2012-02-15

    At intensities of the order of 10{sup 10} W/cm{sup 2}, ns pulsed lasers can be employed to ablate solid bulk targets in order to produce high emission of ions at different charge state and kinetic energy. A special interest is devoted to the production of protons with controllable energy and current from a roto-translating target irradiated in repetition rate at 1-10 Hz by a Nd:Yag pulsed laser beam. Different hydrogenated targets based on polymers and hydrates were irradiated in high vacuum. Special nanostrucutres can be embedded in the polymers in order to modify the laser absorption properties and the amount of protons to be accelerated in the plasma. For example, carbon nanotubes may increase the laser absorption and the hydrogen absorption to generate high proton yields from the plasma. Metallic nanostrucutres may increase the electron density of the plasma and the kinetic energy of the accelerated protons. Ion collectors, ion energy analyzer, and mass spectrometers, used in time-of-flight configuration, were employed to characterize the ion beam properties. A comparison with traditional proton ion source is presented and discussed.

  18. Ion trajectories in an electrostatic ion guide for external ion source fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Marto, J A; Marshall, A G; May, M A; Limbach, P A

    1995-10-01

    An electrostatic ion guide (EIG) that consists of concentric cylinder and central wire electrodes can transport ions efficiently from an external ion source to an ion cyclotron resonance (ICR) ion trap for mass analysis, with several advantages over current injection methods. Because the electrostatic force of the EIG captures ions in a stable orbit about the wire electrode, ions with initially divergent trajectories may be redirected toward the ICR ion trap for improved ion transmission efficiency. SIMION trajectory calculations (ion kinetic energy, 1-200 eV; elevation angle, 0.30 °; azimuthal angle, 0.360°) predict that ions of m/z 1000 may be transmitted through a strong (0.01 → 3.0-T) magnetic field gradient. Judicious choice of ion source position and EIG potential minimizes the spread in ion axial kinetic energy at the ICR ion trap. Advantages of the EIG include large acceptance angle, even for ions that have large initial kinetic energy and large radial displacement with respect to the central z-axis, low ion extraction voltage (5-20 V), and efficient trapping because ions need not be accelerated to high velocity to pass through the magnetic field gradient. PMID:24214038

  19. HIGH-INTENSITY, HIGH CHARGE-STATE HEAVY ION SOURCES

    SciTech Connect

    ALESSI,J.G.

    2004-08-16

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions is reviewed. These sources include ECR, EBIS, and Laser ion sources. Benefits and limitations for these type sources are described. Possible future improvements in these sources are also mentioned.

  20. A commercial plasma source ion implantation facility

    SciTech Connect

    Scheuer, J.T.; Adler, R.A.; Horne, W.G.

    1996-10-01

    Empire Hard Chrome has recently installed commercial plasma source ion implantation (PSU) equipment built by North Star Research Corporation. Los Alamos National Laboratory has assisted in this commercialization effort via two Cooperative Research and Development Agreements to develop the plasma source for the equipment and to identify low-risk commercial PSII applications. The PSII system consists of a 1 m x 1 m cylindrical vacuum chamber with a rf plasma source. The pulse modulator is capable of delivering pulses kV and peak currents of 300 A at maximum repetition rate of 400 Hz. thyratron tube to switch a pulse forming network which is tailored to match the dynamic PSII load. In this paper we discuss the PSII system, process facility, and early commercial applications to production tooling.

  1. Electron beam ion sources and traps (invited)

    NASA Astrophysics Data System (ADS)

    Becker, Reinard

    2000-02-01

    The electron beam method of stepwise ionization to highest charge states has found applications in electron beam ion sources (EBISs) for accelerators and atomic physics collision experiments as well as in electron beam ion traps (EBITs) for x-ray and mass spectroscopy. A dense and almost monoenergetic electron beam provides a unique tool for ionization, because radiative recombination by slow electrons is negligible and charge exchange is almost avoided in ultrahigh vacua. These are essential differences to electron cyclotron resonance ion sources with inevitable low energy electrons and comparatively high gas pressure. The distinction between EBIS and EBIT as genuine devices has become meaningless, because EBISs may work as traps and almost all EBITs are feeding beamlines for external experiments. More interesting is to note the diversification of these devices, which demonstrates that a matured technology is finding dedicated answers for different applications. At present we may distinguish six major lines of development and application: high current EBISs for upcoming hadron colliders, super EBITs in the energy range above 300 keV for quantum electrondynamics tests, inexpensive and small EBISTs for atomic physics studies, a highly efficient EBIS with oscillating electrons, MEDEBIS for tumor therapy with C6+, and charge breeding in facilities for exotic radioactive beams.

  2. Development of negative ion source at the IPP Nagoya University

    SciTech Connect

    Kuroda, T; Okamura, H; Kaneko, O; Oka, Y

    1980-01-01

    Preliminary experiments have been made to develop a high current H/sup -/ ion surface for a neutral beam injector. Initially, an H/sup -/ ion source of the magnetron type has been investigated in order to determine its physical and technical problems. A second plasma source for negative ion production is under construction, which is based on controlled plasma production. This paper describes preliminary experimental results of the magnetron ion source and some features in the new type of plasma source.

  3. Ion source with improved primary arc collimation

    DOEpatents

    Dagenhart, W.K.

    1983-12-16

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  4. Ion source with improved primary arc collimation

    DOEpatents

    Dagenhart, William K.

    1985-01-01

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power, thereby preventing the exposure of the anode to the full arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  5. Development of a high current H(-) ion source for cyclotrons.

    PubMed

    Etoh, H; Aoki, Y; Mitsubori, H; Arakawa, Y; Mitsumoto, T; Yajima, S; Sakuraba, J; Kato, T; Okumura, Y

    2014-02-01

    A multi-cusp DC H(-) ion source has been designed and fabricated for medical applications of cyclotrons. Optimization of the ion source is in progress, such as the improvement of the filament configuration, magnetic filter strength, extraction electrode's shape, configuration of electron suppression magnets, and plasma electrode material. A small quantity of Cs has been introduced into the ion source to enhance the negative ion beam current. The ion source produced 16 mA of DC H(-) ion beam with the Cs-seeded operation at a low arc discharge power of 2.8 kW. PMID:24593547

  6. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source

    NASA Astrophysics Data System (ADS)

    Alessi, James; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John

    2014-02-01

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  7. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source

    SciTech Connect

    Alessi, James Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John

    2014-02-15

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  8. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source.

    PubMed

    Alessi, James; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John

    2014-02-01

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented. PMID:24593637

  9. Characteristics of the Berkeley multicusp ion source.

    PubMed

    Ehlers, K W; Leung, K N

    1979-11-01

    The performance of a cubical permanent magnet generated line-cusp ion source has been investigated for use with neutral beam injectors. This source has been operated with discharge currents greater than 500 A and ion current densities higher than 400 mA/cm2 at the extraction grid. The uniformity of the density profile across the extraction area is found to be dependent on the gas pressure. By using a fast Langmuir probe sweeping circuit, the electron temperature and the plasma density and potential have been analyzed for different discharge powers and gas pressures. The heat load on the plasma grid when it is electrically floating or connected to the negative cathode has been compared calorimetrically. The use of lanthanum hexaboride and impregnated oxide cathodes have been investigated for the purpose of long pulse operation. The phenomenon of mode flipping is found to occur quite frequently during a discharge with these magnetic-field-free cathodes. Species composition as a function of discharge power and chamber length is measured by a mass spectrometer. PMID:18699390

  10. Development of hollow anode penning ion source for laboratory application

    NASA Astrophysics Data System (ADS)

    Das, B. K.; Shyam, A.; Das, R.; Rao, A. D. P.

    2012-03-01

    The research work presented here focuses for the development of miniature penning type ion source. One hollow anode penning type ion source was developed in our laboratory. The size of the ion source is 38 mm diameter and 55 mm length. The ion source consists of two cathodes, a hollow anode and one piece of rare earth permanent magnet. The plasma was created in the plasma region between cathodes and the hollow anode. The J × B force in the region helps for efficient ionization of the gas even in the high vacuum region˜1×10 -5 Torr. The ions were extracted in the axial direction with help of the potential difference between the electrodes and the geometry of the extraction angle. The effect of the extraction electrode geometry for efficient extraction of the ions from the plasma region was examined. This ion source is a self extracted ion source. The self extracted phenomena reduce the cost and the size of the ion source. The extracted ion current was measured by a graphite probe. An ion current of more than 200 μA was observed at the probe placed 70 mm apart from the extraction electrode. In this paper, the structure of the ion source, effect of operating pressure, potential difference and the magnetic field on the extracted ion current is reported.

  11. Ion Source Development for Ultratrace Detection of Uranium and Thorium

    SciTech Connect

    Liu, Yuan; Batchelder, Jon Charles; Galindo-Uribarri, Alfredo {nmn}; Stracener, Daniel W

    2015-01-01

    A hot-cavity surface ionization source and a hot-cavity laser ion source are evaluated in terms of ionization efficiencies for generating ion beams of U and Th. The work is motivated by the need for more efficient ion sources for detecting ultratrace U and Th impurities in a copper matrix by mass spectrometry techniques such as accelerator mass spectrometry (AMS). The performances of the ion sources are characterized using uranyl nitrate and thorium nitrate sample materials and sample sizes of 20 - 40 g of U or Th. For the surface source, the dominant ion beams observed are UO+ or ThO+ and ionization efficiencies of 2-4% have been obtained with W and Re cavities. Three-step resonant photoionization of U atoms is studied and an ionization efficiency of 8.7% has been obtained with the laser ion source. The positive ion sources promise more than an order of magnitude more efficient than conventional Cs-sputter negative ion sources used for AMS. In addition, the laser ion source is highly selective and effective in suppressing interfering and ions. Work is in progress to improve the efficiencies of both positive ion sources.

  12. How the Martian Magnetic Anomalies Reduce the Planetary Ion Source

    NASA Astrophysics Data System (ADS)

    Fedorov, A.; Sauvaud, J.; Barabash, S.

    2012-12-01

    The present paper uses the Mars Express Ion spectrometer IMA data to check the spatial distribution of the planetary origin ions populating the induced magnetosphere of Mars. It was shown that there are two main planetary ions sources located: 1) in the region of the magnetosphere current sheet, 2) in the ring-shape region contouring the planet ionosphere. The planetary ions in the current sheet (source 1) are quickly accelerated up to several keV energy by JxB force, while ring shape (source 2) distributed ions reach just several tens eV. A statistical study of the planetary ion distribution taking into account location of Martian magnetic anomalies shows that planetary ions fill the magnetosphere in the regions free of the magnetic anomalies only. We can see that magnetic anomalies create small magnetospheres that protect ionospheric ions from the escape. This mechanism works well for both ion sources.

  13. Progress of resonant ionization laser ion source development at GANIL

    SciTech Connect

    Henares, J. L. Huguet, Y.; Lecesne, N.; Leroy, R.; Osmond, B.; Sjödin, A. M.; Kron, T.; Schneider, F.; Wendt, K.

    2014-02-15

    SPIRAL2 (Système de Production d’Ions Radioactifs Accélérés en Ligne) is a research facility under construction at GANIL (Grand Accélérateur National d’Ions Lourds) for the production of radioactive ion beams by isotope separation on-line methods and low-energy in-flight techniques. A resonant ionization laser ion source will be one of the main techniques to produce the radioactive ion beams. GISELE (GANIL Ion Source using Electron Laser Excitation) is a test bench developed to study a fully operational laser ion source available for Day 1 operations at SPIRAL2 Phase 2. The aim of this project is to find the best technical solution which combines high selectivity and ionization efficiency with small ion beam emittance and stable long term operation. Latest results about the new ion source geometry will be presented.

  14. Study of Compact Penning Ion Source for Material Studies

    SciTech Connect

    Das, B. K.; Das, R.; Shyam, A.

    2011-07-15

    Development of ion sources of various sizes has been carried out since a long back. Gaseous ions of different nature are being used in different field of research as well as industrial applications like surface modification, doping, surface etching, sputtering, production of nano size particles and focused ion beam etc. Out of various geometry and operation regime, due to compactness, ruggedness and long life, penning type ion sources are widely used in different field of research and applications. One such type of ion source was developed in our laboratory. Though this source was meant for neutron generation, using deuterium ions, the effectiveness for other purposes was investigated. The discharge characteristic was studied for different gases like, Deuterium, Helium, Nitrogen, Oxygen and Argon. The source being a self extracted type; the extracted ion current from the extraction aperture was measured using one faraday cup. In this paper we have discussed, the discharge characteristic and the extraction ion current for different type of gases.

  15. Electrochemical Ionization and Analyte Charging in the Array of Micromachined UltraSonic Electrospray (AMUSE) Ion Source

    PubMed Central

    Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.

    2010-01-01

    Electrochemistry and ion transport in a planar array of mechanically-driven, droplet-based ion sources are investigated using an approximate time scale analysis and in-depth computational simulations. The ion source is modeled as a controlled-current electrolytic cell, in which the piezoelectric transducer electrode, which mechanically drives the charged droplet generation using ultrasonic atomization, also acts as the oxidizing/corroding anode (positive mode). The interplay between advective and diffusive ion transport of electrochemically generated ions is analyzed as a function of the transducer duty cycle and electrode location. A time scale analysis of the relative importance of advective vs. diffusive ion transport provides valuable insight into optimality, from the ionization prospective, of alternative design and operation modes of the ion source operation. A computational model based on the solution of time-averaged, quasi-steady advection-diffusion equations for electroactive species transport is used to substantiate the conclusions of the time scale analysis. The results show that electrochemical ion generation at the piezoelectric transducer electrodes located at the back-side of the ion source reservoir results in poor ionization efficiency due to insufficient time for the charged analyte to diffuse away from the electrode surface to the ejection location, especially at near 100% duty cycle operation. Reducing the duty cycle of droplet/analyte ejection increases the analyte residence time and, in turn, improves ionization efficiency, but at an expense of the reduced device throughput. For applications where this is undesirable, i.e., multiplexed and disposable device configurations, an alternative electrode location is incorporated. By moving the charging electrode to the nozzle surface, the diffusion length scale is greatly reduced, drastically improving ionization efficiency. The ionization efficiency of all operating conditions considered is

  16. Linear ion source with magnetron hollow cathode discharge

    SciTech Connect

    Tang, D.L.; Pu, S.H.; Wang, L.S.; Qiu, X.M.; Chu, Paul K.

    2005-11-15

    A linear ion source with magnetron hollow cathode discharge is described in this paper. The linear ion source is based on an anode layer thruster with closed-drift electrons that move in a closed path in the ExB fields. An open slit configuration is designed at the end of the ion source for the extraction of the linear ion beam produced by the magnetron hollow cathode discharge. The special configurations enable uninterrupted and expanded operation with oxygen as well as other reactive gases because of the absence of an electron source in the ion source. The ion current density and uniformity were experimentally evaluated. Using the ion source, surface modification was conducted on polyethylene terephthalate polymer films to improve the adhesion strength with ZnS coatings.

  17. Development of a lithium liquid metal ion source for MeV ion beam analysis

    SciTech Connect

    Read, P.M.; Maskrey, J.T.; Alton, G.D.

    1988-01-01

    Lithium liquid metal ion sources are an attractive complement to the existing gaseous ion sources that are extensively used for ion beam analysis. This is due in part to the high brightness of the liquid metal ion source and in part to the availability of a lithium ion beam. High brightness is of particular importance to MeV ion microprobes which are now approaching current density limitations on targets determined by the ion source. The availability of a lithium beam provides increased capabilities for hydrogen profiling and high resolution Rutherford backscattering spectrometry. This paper describes the design and performance of a lithium liquid metal ion source suitable for use on a 5MV Laddertron accelerator. Operational experience with the source and some of its uses for ion beam analysis are discussed. 8 refs., 2 figs.

  18. A singly charged ion source for radioactive 11C ion acceleration

    NASA Astrophysics Data System (ADS)

    Katagiri, K.; Noda, A.; Nagatsu, K.; Nakao, M.; Hojo, S.; Muramatsu, M.; Suzuki, K.; Wakui, T.; Noda, K.

    2016-02-01

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.

  19. A singly charged ion source for radioactive ¹¹C ion acceleration.

    PubMed

    Katagiri, K; Noda, A; Nagatsu, K; Nakao, M; Hojo, S; Muramatsu, M; Suzuki, K; Wakui, T; Noda, K

    2016-02-01

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive (11)C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source. PMID:26932062

  20. Magnetic plasma confinement for laser ion source.

    PubMed

    Okamura, M; Adeyemi, A; Kanesue, T; Tamura, J; Kondo, K; Dabrowski, R

    2010-02-01

    A laser ion source (LIS) can easily provide a high current beam. However, it has been difficult to obtain a longer beam pulse while keeping a high current. On occasion, longer beam pulses are required by certain applications. For example, more than 10 micros of beam pulse is required for injecting highly charged beams to a large sized synchrotron. To extend beam pulse width, a solenoid field was applied at the drift space of the LIS at Brookhaven National Laboratory. The solenoid field suppressed the diverging angle of the expanding plasma and the beam pulse was widened. Also, it was observed that the plasma state was conserved after passing through a few hundred gauss of the 480 mm length solenoid field. PMID:20192365

  1. RF Ion Source-Driven IEC Design and Operation

    SciTech Connect

    Miley, G.H.; Yang, Y.; Webber, J.; Shaban, Y.; Momota, H.

    2005-05-15

    The next step needed to achieve higher neutron yields and improved neutron production efficiency with Inertial Electrostatic Confinement (IEC) sources requires operation with an external ion source so that the reaction chamber pressure is controlled separately for the source pressure. This paper presents recent progress in IEC research at the UIUC using a unique external ion source ILLIBS (Illinois Ion Beam Source). When filled with deuterium, the IEC provides {approx}10{sup 8} 2.5-MeV D-D fusion neutrons/sec at steady-state. The design and operation of a radiofrequency (RF) ion gun designed for this purpose is also discussed.

  2. Mini RF-driven ion source for focused ion beam system

    SciTech Connect

    Jiang, X.; Ji, Q.; Chang, A.; Leung, K.N.

    2002-08-02

    Mini RF-driven ion sources with 1.2 cm and 1.5 cm inner chamber diameter have been developed at Lawrence Berkeley National Laboratory. Several gas species have been tested including argon, krypton and hydrogen. These mini ion sources operate in inductively coupled mode and are capable of generating high current density ion beams at tens of watts. Since the plasma potential is relatively low in the plasma chamber, these mini ion sources can function reliably without any perceptible sputtering damage. The mini RF-driven ion sources will be combined with electrostatic focusing columns, and are capable of producing nano focused ion beams for micro machining and semiconductor fabrications.

  3. Time profile of ion pulses produced in a hot-cavity laser ion source

    SciTech Connect

    Liu, Y.; Beene, J. R.; Havener, C. C.; Vane, C. R.; Geppert, Ch.; Gottwald, T.; Kessler, T.; Wies, K.; Wendt, K.

    2010-02-15

    The time spreads of Mn ions produced by three-photon resonant ionization in a hot-cavity laser ion source are measured. A one-dimensional ion-transport model is developed to simulate the observed ion time structures. Assuming ions are generated with a Maxwellian velocity distribution and are guided by an axial electric field, the predictions of the model agree reasonably well with the experimental data and suggest that the ions are radially confined in the ion source and a substantial fraction of the ions in the transport tube are extracted.

  4. Time Profile of Ion Pulses Produced in a Hot-Cavity Laser Ion Source

    SciTech Connect

    Liu, Yuan; Beene, James R; Havener, Charles C; Vane, C Randy; Geppert, C.; Gottwald, T.; Kessler, T.; Wies, K.; Wendt, K.

    2010-01-01

    The time spreads of Mn ions produced by three-photon resonant ionization in a hot-cavity laser ion source are measured. A one-dimensional ion-transport model is developed to simulate the observed ion time structures. Assuming ions are generated with a Maxwellian velocity distribution and are guided by an axial electric field, the predictions of the model agree reasonably well with the experimental data and suggest that the ions are radially confined in the ion source and a substantial fraction of the ions in the transport tube are extracted.

  5. Side extraction duoPIGatron-type ion source.

    SciTech Connect

    GUSHENETS,V.I.; OKS, E.M.; HERSCHOVITCH, A.; JOHNSON, B.M.

    2007-08-26

    We have designed and constructed a compact duoPIGatron-type ion source, for possible use in ion implanters, in such the ion can be extracted from side aperture in contrast to conventional duoPIGatron sources with axial ion extraction. The size of the side extraction aperture is 1x40 mm. The ion source was developed to study physical and technological aspects relevant to an industrial ion source. The side extraction duoPIGatron has stable arc, uniformly bright illumination, and dense plasma. The present work describes some of preliminary operating parameters of the ion source using Argon, BF3. The total unanalyzed beam currents are 23 mA using Ar at an arc current 5 A and 13 mA using BF3 gas at an arc current 6 A.

  6. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, Ady; Prelec, Krsto

    1983-01-01

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  7. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, Peter J.; McKown, Henry S.; Smith, David H.

    1984-01-01

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit.

  8. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, A.; Prelec, K.

    1980-12-12

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  9. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, P.J.; McKown, H.S.; Smith, D.H.

    1982-04-26

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.

  10. A field evaporation deuterium ion source for neutron generators

    SciTech Connect

    Reichenbach, Birk; Solano, I.; Schwoebel, P. R.

    2008-05-01

    Proof-of-principle experiments have demonstrated an electrostatic field evaporation based deuterium ion source for use in compact, high-output deuterium-tritium neutron generators. The ion source produces principally atomic deuterium and titanium ions. More than 100 ML of deuterated titanium thin film can be removed and ionized from a single tip in less than 20 ns. The measurements indicate that with the use of microfabricated tip arrays the deuterium ion source could provide sufficient ion current to produce 10{sup 9}-10{sup 10} n/cm{sup 2} of tip array area.

  11. A field evaporation deuterium ion source for neutron generators

    NASA Astrophysics Data System (ADS)

    Reichenbach, Birk; Solano, I.; Schwoebel, P. R.

    2008-05-01

    Proof-of-principle experiments have demonstrated an electrostatic field evaporation based deuterium ion source for use in compact, high-output deuterium-tritium neutron generators. The ion source produces principally atomic deuterium and titanium ions. More than 100 ML of deuterated titanium thin film can be removed and ionized from a single tip in less than 20 ns. The measurements indicate that with the use of microfabricated tip arrays the deuterium ion source could provide sufficient ion current to produce 109-1010 n/cm2 of tip array area.

  12. Ion source development for ultratrace detection of uranium and thorium

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Batchelder, J. C.; Galindo-Uribarri, A.; Chu, R.; Fan, S.; Romero-Romero, E.; Stracener, D. W.

    2015-10-01

    Efficient ion sources are needed for detecting ultratrace U and Th impurities in a copper matrix by mass spectrometry techniques such as accelerator mass spectrometry (AMS). Two positive ion sources, a hot-cavity surface ionization source and a resonant ionization laser ion source, are evaluated in terms of ionization efficiencies for generating ion beams of U and Th. The performances of the ion sources are characterized using uranyl nitrate and thorium nitrate sample materials with sample sizes between 20 and 40 μg of U or Th. For the surface ion source, the dominant ion beams observed are UO+ or ThO+ and ionization efficiencies of 2-4% have been obtained with W and Re cavities. With the laser ion source, three-step resonant photoionization of U atoms has been studied and only atomic U ions are observed. An ionization efficiency of about 9% has been demonstrated. The performances of both ion sources are expected to be further improved.

  13. Development of broad beam ion sources at CSSAR

    NASA Astrophysics Data System (ADS)

    Feng, Y. C.; You, D. W.; Kuang, Y. Z.

    1994-04-01

    High-energy and intense beam current broad beam ion sources have been developed for ion implantation and dynamic recoil mixing at CSSAR. The sources can be operated over beam energy and current ranges of 3-120 keV and 5-70 mA, respectively. For sputter coating of thin films, a series of focusing beam ion sources with different structures has also been developed. The energy and current range from 1-10 keV and 100-350 mA for different applications. For some applications, low-energy (below 100 eV) ion beams are required. CSSAR has developed a 6-cm-diam broad beam ion source. The source can be operated at beam energy 10-70 eV, and the beam current 15-80 mA has been extracted. Typical structures and operational data are given for the sources mentioned above. Recently a new type of broad beam metal ion source (Electron Beam Evaporation Metal Ion Source EBE) is being studied. Ion beams of several kinds of materials such as C, W, Ta, Mo, Cr, Ti, B, Cu, etc. have been extracted from the source. Typical operation conditions and ion yields are given in this paper.

  14. Double-layer ion acceleration triggered by ion magnetization in expanding radiofrequency plasma sources

    SciTech Connect

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod W.; Fujiwara, Tamiya

    2010-10-04

    Ion energy distribution functions downstream of the source exit in magnetically expanding low-pressure plasmas are experimentally investigated for four source tube diameters ranging from about 5 to 15 cm. The magnetic-field threshold corresponding to a transition from a simple expanding plasma to a double layer-containing plasma is observed to increase with a decrease in the source tube diameter. The results demonstrate that for the four geometries, the double layer and the accelerated ion beam form when the ion Larmour radius in the source becomes smaller than the source tube radius, i.e., when the ions become magnetized in the source tube.

  15. A new Cs sputter ion source with polyatomic ion beams for SIMS applications.

    SciTech Connect

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.; Materials Science Division; Univ. Warwick; Ioffe Phys.-Tech. Inst.; Ghent Univ.; Univ. Antwerp

    2007-08-02

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Si{sub n}{sup -} and Cu{sub n}{sup -}. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  16. Droplet-based micro oscillating-flow PCR chip

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Zhi-Xin; Luo, Rong; Lü, Shu-Hai; Xu, Ai-Dong; Yang, Yong-Jun

    2005-08-01

    Polymerase chain reactions (PCR), thermally activated chemical reactions which are widely used for nucleic acid amplification, have recently received much attention in microelectromechanical systems and micro total analysis systems because a wide variety of DNA/RNA molecules can be enriched by PCR for further analyses. In the present work, a droplet-based micro oscillating-flow PCR chip was designed and fabricated by the silicon microfabrication technique. Three different temperature zones, which were stable at denaturation, extension and annealing temperatures and isolated from each other by a thin-wall linkage, were integrated with a single, simple and straight microchannel to form the chip's basic functional structure. The PCR mixture was injected into the chip as a single droplet and flowed through the three temperature zones in the main microchannel in an oscillating manner to achieve the temperature maintenance and transitions. The chip's thermal performance was theoretically analyzed and numerically simulated. The results indicated that the time needed for the temperature of the droplet to change to the target value is less than 1 s, and the root mean square error of temperature is less than 0.2 °C. A droplet of 1 µl PCR mixture with standard HPV (Human Papilloma Virus)-DNA sample inside was amplified by the present chip and the results were analyzed by slab gel electrophoresis with separation of DNA markers in parallel. The electrophoresis results demonstrated that the micro oscillating-flow PCR chip successfully amplified the HPV-DNA, with a processing time of about 15 min which is significantly reduced compared to that for the conventional PCR instrument.

  17. Ion source for tests of ion behavior in the Karlsruhe tritium neutrino experiment beam line

    SciTech Connect

    Lukic, S.; Bornschein, B.; Drexlin, G.; Glueck, F.; Kazachenko, O.; Zoll, M. C. R.; Schoeppner, M.; Weinheimer, Ch.

    2011-01-15

    An electron-impact ion source based on photoelectron emission was developed for ionization of gases at pressures below 10{sup -4} mbar in an axial magnetic field in the order of 5 T. The ion source applies only dc fields, which makes it suitable for use in the presence of equipment sensitive to radio-frequency (RF) fields. The ion source was successfully tested under varying conditions regarding pressure, magnetic field, and magnetic-field gradient, and the results were studied with the help of simulations. The processes in the ion source are well understood, and possibilities for further optimization of generated ion currents are clarified.

  18. Laser Ion Source Operation at the TRIUMF Radioactive Ion Beam Facility

    NASA Astrophysics Data System (ADS)

    Lassen, J.; Bricault, P.; Dombsky, M.; Lavoie, J. P.; Gillner, M.; Gottwald, T.; Hellbusch, F.; Teigelhöfer, A.; Voss, A.; Wendt, K. D. A.

    2009-03-01

    The TRIUMF Resonant Ionization Laser Ion Source (RILIS) for radioactive ion beam production is presented, with target ion source, laser beam transport, laser system and operation. In this context aspects of titanium sapphire (TiSa) laser based RILIS and facility requirements are discussed and results from the first years of TRILIS RIB delivery are given.

  19. Recent developments and upgrades in ion source technology and ion beam systems at HVE

    NASA Astrophysics Data System (ADS)

    Podaru, Nicolae C.; Mous, Dirk J. W.

    2016-03-01

    In this paper we discuss various ion sources used in particle accelerator systems dedicated to ion beam analysis techniques. Key performance and characteristics of some ion sources are discussed: emittance, brightness, gas consumption, sample consumption efficiency, lifetime, etc. For negative ion sources, we focus on the performance of volume H- ion sources (e.g. HVE model 358), the duoplasmatron negative ion source and the magnetically filtered multicusp volume sources (e.g. HVE model SO-120). The duoplasmatron ion source has been recently upgraded with a Ta filament to deliver up to 150 μA H- ion beams and in conjunction with the Na charge exchange canal up to 20 μA of He-. The available brightness from the duoplasmatron increased from 2 to 6 A m-2 rad-2 eV-1. The ion source has been incorporated in a stand-alone light ion injector, well suited to deliver 20-30 keV negative ion beams of H-, He-, C-, NHx- and O- to accelerate for most ion beam analysis techniques.

  20. New versions of sources for nuclear polarized negative ion production

    SciTech Connect

    Dudnikov, V.G.; Shabalin, A.L. ); Wojtsekhowski, B.B. ); Belov, A.S.; Kuzik, V.E.; Plohinsky, Y.V.; Yakushev, V.P. )

    1992-10-05

    Several variants of sources for nuclear polarized negative ion production have been proposed and tested. The simple adaptation of a high intensity polarized proton source for nuclear polarized H[sup [minus

  1. Negative ion source development for fusion application (invited).

    PubMed

    Takeiri, Yasuhiko

    2010-02-01

    Giant negative ion sources, producing high-current of several tens amps with high energy of several hundreds keV to 1 MeV, are required for a neutral beam injector (NBI) in a fusion device. The giant negative ion sources are cesium-seeded plasma sources, in which the negative ions are produced on the cesium-covered surface. Their characteristic features are discussed with the views of large-volume plasma production, large-area beam acceleration, and high-voltage dc holding. The international thermonuclear experimental reactor NBI employs a 1 MeV-40 A of deuterium negative ion source, and intensive development programs for the rf-driven source plasma production and the multistage electrostatic acceleration are in progress, including the long pulse operation for 3600 s. Present status of the development, as well as the achievements of the giant negative ion sources in the working injectors, is also summarized. PMID:20192420

  2. Negative ion source development for fusion application (invited)

    SciTech Connect

    Takeiri, Yasuhiko

    2010-02-15

    Giant negative ion sources, producing high-current of several tens amps with high energy of several hundreds keV to 1 MeV, are required for a neutral beam injector (NBI) in a fusion device. The giant negative ion sources are cesium-seeded plasma sources, in which the negative ions are produced on the cesium-covered surface. Their characteristic features are discussed with the views of large-volume plasma production, large-area beam acceleration, and high-voltage dc holding. The international thermonuclear experimental reactor NBI employs a 1 MeV-40 A of deuterium negative ion source, and intensive development programs for the rf-driven source plasma production and the multistage electrostatic acceleration are in progress, including the long pulse operation for 3600 s. Present status of the development, as well as the achievements of the giant negative ion sources in the working injectors, is also summarized.

  3. High-efficiency target-ion sources for RIB generation

    SciTech Connect

    Alton, G.D.

    1993-12-31

    A brief review is given of high-efficiency ion sources which have been developed or are under development at ISOL facilities which show particular promise for use at existing, future, or radioactive ion beam (RIB) facilities now under construction. Emphasis will be placed on those sources which have demonstrated high ionization efficiency, species versatility, and operational reliability and which have been carefully designed for safe handling in the high level radioactivity radiation fields incumbent at such facilities. Brief discussions will also be made of the fundamental processes which affect the realizable beam intensities in target-ion sources. Among the sources which will be reviewed will be selected examples of state-of-the-art electron-beam plasma-type ion sources, thermal-ionization, surface-ionization, ECR, and selectively chosen ion source concepts which show promise for radioactive ion beam generation. A few advanced, chemically selective target-ion sources will be described, such as sources based on the use of laser-resonance ionization, which, in principle, offer a more satisfactory solution to isobaric contamination problems than conventional electromagnetic techniques. Particular attention will be given to the sources which have been selected for initial or future use at the Holifield Radioactive Ion Beam Facility now under construction at the Oak Ridge National Laboratory.

  4. A double-plasma source of continuous bipolar ion-ion beam

    SciTech Connect

    Dudin, S. V.; Rafalskyi, D. V.

    2013-01-21

    A double-plasma source capable of the generation of a continuous bipolar ion-ion beam is described. The quasi-neutral ion-ion flow to an extraction electrode is formed in the system containing primary inductively coupled plasma separated from a secondary plasma by an electrostatic grid-type filter. The total current of each ion species to the 250 mm diameter extraction electrode is about 80 mA; the electron current does not exceed 30% of the ion current. Method of positive/negative ion current ratio control is proposed, allowing the ion currents ratio variation in wide range.

  5. Characterization of an 8-cm Diameter Ion Source System

    NASA Technical Reports Server (NTRS)

    Li, Zhongmin; Hawk, C. W.; Hawk, Clark W.; Buttweiler, Mark S.; Williams, John D.; Buchholtz, Brett

    2005-01-01

    Results of tests characterizing an 8-cm diameter ion source are presented. The tests were conducted in three separate vacuum test facilities at the University of Alabama-Huntsville, Colorado State University, and L3 Communications' ETI division. Standard ion optics tests describing electron backstreaming and total-voltage-limited impingement current behavior as a function of beam current were used as guidelines for selecting operating conditions where more detailed ion beam measurements were performed. The ion beam was profiled using an in-vacuum actuating probe system to determine the total ion current density and the ion charge state distribution variation across the face of the ion source. Both current density and ExB probes were utilized. The ion current density data were used to obtain integrated beam current, beam flatness parameters, and general beam profile shapes. The ExB probe data were used to determine the ratio of doubly to singly charged ion current. The ion beam profile tests were performed at over six different operating points that spanned the expected operating range of the DAWN thrusters being developed at L3. The characterization tests described herein reveal that the 8-cm ion source is suitable for use in (a) validating plasma diagnostic equipment, (b) xenon ion sputtering and etching studies of spacecraft materials, (c) plasma physics research, and (d) the study of ion thruster optics at varying conditions.

  6. New tandem type ion source based on electron cyclotron resonance for universal source of synthesized ion beams

    SciTech Connect

    Kato, Yushi Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Nishiokada, Takuya; Sato, Fuminobu; Iida, Toshiyuki

    2014-02-15

    A new tandem type source has been constructed on the basis of electron cyclotron resonance (ECR) plasma for producing synthesized ion beams. We investigate feasibility and hope to realize the device which has wide range operation window in a single device to produce many kinds of ion beams based on ECR ion source (ECRIS). It is considered that ECR plasmas are necessary to be available to individual operations with different plasma parameters. Both of analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas. We describe construction of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source.

  7. Low energy spread ion source with a coaxial magnetic filter

    DOEpatents

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette

    2000-01-01

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as ion projection lithography (IPL) and radioactive ion beam production. The addition of a radially extending magnetic filter consisting of a pair of permanent magnets to the multicusp source reduces the energy spread considerably due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. A coaxial multicusp ion source designed to further reduce the energy spread utilizes a cylindrical magnetic filter to achieve a more uniform axial plasma potential distribution. The coaxial magnetic filter divides the source chamber into an outer annular discharge region in which the plasma is produced and a coaxial inner ion extraction region into which the ions radially diffuse but from which ionizing electrons are excluded. The energy spread in the coaxial source has been measured to be 0.6 eV. Unlike other ion sources, the coaxial source has the capability of adjusting the radial plasma potential distribution and therefore the transverse ion temperature (or beam emittance).

  8. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.

  9. Time Profiles of Ions Produced in a Hot-Cavity Resonant Ionization Laser Ion Source

    SciTech Connect

    Liu, Yuan; Baktash, Cyrus; Beene, James R; Havener, Charles C; Krause, Herbert F; Schultz, David Robert; Stracener, Daniel W; Vane, C Randy; Geppert, C.; Kessler, T.; Wies, K.; Wendt, K.

    2011-01-01

    The time profiles of Cu, Sn and Ni ions extracted from a hot-cavity resonant ionization laser ion source are investigated. The ions are produced in the ion source by three-photon resonant ionization with pulsed Ti:Sapphire lasers. Measurements show that the time spread of these ions generated within laser pulses of about 30 ns could be larger than 100 s when the ions are extracted from the ion source. A one-dimensional ion-transport model using the Monte Carlo method is developed to simulate the time dependence of the ion pulses. The observed ion temporal profiles agree reasonably well with the predictions of the model, which indicates that a substantial fraction of the extracted ions are generated in the vapor-transfer tube rather than the hot cavity and that ion-wall collisions are suppressed inside the ion source by an undetermined ion confinement mechanism. Three-dimensional modeling will be necessary to understand the strong reduction in losses expected from ion-wall collisions which we interpret as evidence for confinement.

  10. Mo layer thickness requirement on the ion source back plate for the HNB and DNB ion sources in ITER

    NASA Astrophysics Data System (ADS)

    Singh, M. J.; De Esch, H. P. L.; Hemsworth, R.; Boilson, D.

    2015-04-01

    All the inner surfaces of the ion sources and the upstream surface of the plasma grid of the ITER neutral beam ion sources are proposed to be coated with molybdenum. This is done to avoid sputtering of the base material (Cu or CuCrZr) by the ions in the source plasma (D+, D2+, D3+ or H+, H2+, H3+). The sputtering of Mo by the ions in the source plasma is low compared to that from Cu, and the threshold energy for sputtering ˜80 eV) is high compared to the energy of the ions in the source. However the D2+, H2+ and D+, H+ ions backstreaming from the accelerators will have energies that substantially exceed that threshold and it is important that the Mo layer is not eroded such that the base material is exposed to the source plasma. In the case of the HNB, the backstreaming ion power is calculated to be in the order of ˜1 MW, and the average energy of the backstreaming ions is calculated to be ˜300 keV. The ion sources in the HNB beam lines, 40 A 1 MeV D and 46 A 870 keV H beams, are supposed to operate for a period of 2 x 107 s. For the DNB, 60 A 100 keV H beams, the corresponding number is 1.4 × 106 s considering a beam duty cycle of 3s ON/20s OFF with 5 Hz modulation. The Mo layer on the ion source back plate should be thick enough to survive this operational time. Thickness estimation has been carried out taking into account the sputtering yields (atoms/ion), the energy spectrum of the backstreaming ions and the estimated profiles on the ion source back plate.