Science.gov

Sample records for dropping mercury electrode

  1. Square wave voltammetry at the dropping mercury electrode: Theory

    USGS Publications Warehouse

    Christie, J.H.; Turner, J.A.; Osteryoung, R.A.

    1977-01-01

    The theoretical aspects of square wave voltammetry at the dropping mercury electrode are presented. The technique involves scanning the entire potential range of interest on a single drop of a DME. Asymmetries in the waveform as well as variations in current measurement parameters are discussed. Indications are that previous uses of the waveform may not have utilized all its capabilities.

  2. MODIFIED VALVE SEAT FOR THE STATIC MERCURY DROP ELECTRODE

    EPA Science Inventory

    A modification in the design of the valve seat of the static mercury drop electrode is presented. The creation of a 'four-point' seal within the modified valve seat prevents the capillary 'O' ring seal from becoming flattened and distorted. The design has eliminated air leakage i...

  3. Square wave voltammetry at the dropping mercury electrode: Experimental

    USGS Publications Warehouse

    Turner, J.A.; Christie, J.H.; Vukovic, M.; Osteryoung, R.A.

    1977-01-01

    Experimental verification of earlier theoretical work for square wave voltammetry at the dropping mercury electrode is given. Experiments using ferric oxalate and cadmium(II) in HCl confirm excellent agreement with theory. Experimental peak heights and peak widths are found to be within 2% of calculated results. An example of trace analysis using square wave voltammetry at the DME is presented. The technique is shown to have the same order of sensitivity as differential pulse polarography but is much faster to perform. A detection limit for cadmium in 0.1 M HCl for the system used here was 7 ?? 10-8 M.

  4. Development of a sequential injection-square wave voltammetry method for determination of paraquat in water samples employing the hanging mercury drop electrode.

    PubMed

    dos Santos, Luciana B O; Infante, Carlos M C; Masini, Jorge C

    2010-03-01

    This work describes the development and optimization of a sequential injection method to automate the determination of paraquat by square-wave voltammetry employing a hanging mercury drop electrode. Automation by sequential injection enhanced the sampling throughput, improving the sensitivity and precision of the measurements as a consequence of the highly reproducible and efficient conditions of mass transport of the analyte toward the electrode surface. For instance, 212 analyses can be made per hour if the sample/standard solution is prepared off-line and the sequential injection system is used just to inject the solution towards the flow cell. In-line sample conditioning reduces the sampling frequency to 44 h(-1). Experiments were performed in 0.10 M NaCl, which was the carrier solution, using a frequency of 200 Hz, a pulse height of 25 mV, a potential step of 2 mV, and a flow rate of 100 µL s(-1). For a concentration range between 0.010 and 0.25 mg L(-1), the current (i(p), µA) read at the potential corresponding to the peak maximum fitted the following linear equation with the paraquat concentration (mg L(-1)): i(p) = (-20.5 ± 0.3)C (paraquat) - (0.02 ± 0.03). The limits of detection and quantification were 2.0 and 7.0 µg L(-1), respectively. The accuracy of the method was evaluated by recovery studies using spiked water samples that were also analyzed by molecular absorption spectrophotometry after reduction of paraquat with sodium dithionite in an alkaline medium. No evidence of statistically significant differences between the two methods was observed at the 95% confidence level. PMID:20084371

  5. Drop short control of electrode gap

    DOEpatents

    Fisher, Robert W.; Maroone, James P.; Tipping, Donald W.; Zanner, Frank J.

    1986-01-01

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  6. Monolayers and multilayers of chlorophyll [correction of chlorophyl] a on a mercury electrode.

    PubMed

    Moncelli, M R; Becucci, L; Dolfi, A; Tadini Buoninsegni, F; Agostiano, A

    2002-05-15

    A novel experimental technique used to investigate chlorophyll films on a hanging mercury drop electrode is described. Two different procedures are employed to prepare self-assembled chlorophyll monolayers and multilayers on the mercury electrode. Upon illuminating the chlorophyll a (Chl)-coated mercury electrode with an appropriate light source, the photocurrents generated by the Chl aggregates are measured under short-circuit conditions in the absence of photoartefacts. The preliminary results obtained by this novel technique are presented. PMID:12009465

  7. Mercury switch with non-wettable electrodes

    SciTech Connect

    Karnowsky, M.M.; Yost, F.G.

    1987-03-24

    This patent describes a mercury switch having spaced conductive electrodes with contacts thereon which are bridged by a mercury pool when the switch is closed and free of the mercury pool when the switch is open. The improvement described here comprises: contacts on the conductive electrodes formed of a material selected from the group consisting of metallic borides, nitrides and silicides, with the proviso that the silicides do not include the silicides of Cr, Mo and W; whereby mercury wetting of the contacts is precluded, thereby avoiding undesired bridging of the contacts in the open position of the switch.

  8. Voltammetry at the Thin-Film Mercury Electrode (TFME).

    ERIC Educational Resources Information Center

    Pomeroy, R. S.; And Others

    1989-01-01

    Reviewed is the use of the Thin-Film Mercury Electrode for anodic stripping voltammetry, simple voltammetry of solution cations and cathodic stripping voltammetry for the determination of an environmentally important molecule, thiourea. The construction of a simple potentiostat and applications for student laboratory courses are included. (CW)

  9. Sensitive determination of mercury by a miniaturized spectrophotometer after in situ single-drop microextraction.

    PubMed

    Yang, Fangwen; Liu, Rui; Tan, Zhiqiang; Wen, Xiaodong; Zheng, Chengbin; Lv, Yi

    2010-11-15

    An in situ single-drop microextraction (SDME) method was developed for trace mercury determination by a miniaturized spectrophotometer, in which a simple and cheap light-emitting diode (LED) was employed as the light source, and a handheld charge coupled device (CCD) was served as the detector. A droplet of 0.006% dithizone-CCl(4) (m/v) was used as extraction phase and hanged on a rolled PTFE tube. LED light was adjusted carefully to pass through the centre of the droplet and the entrance slit of the CCD detector. The radiation intensities of 475 nm before and after SDME (I(0) and I(i)) were recorded for quantification. Under the optimum conditions, the system provided a linear range of 2-50 μg L(-1), with a correlation coefficient of 0.9983 and a limit of detection (3σ) of 0.2 μg L(-1). The enrichment factor was about 69. The present method showed the merits of high sensitivity, simplicity, rapidity, low reagent consumption and field analysis potential. Finally, this method was successfully applied for the determination of the total mercury in spiked tap water sample, spiked river water sample and certified reference material (GBW (E) 080393, simulated water). PMID:20696521

  10. Voltammetric trace determination of mercury using plant refuse modified carbon paste electrodes.

    PubMed

    Devnani, Harsha; Satsangee, Soami Piara

    2013-11-01

    Citrus limon peel (kitchen waste) and Leucaena leucocephala seeds (agricultural waste) were used as a modifier for fabrication of modified carbon paste electrode for determination of mercury in aqueous sample using differential pulse anodic stripping voltammetry. Mercury was adsorbed on electrode surface at open circuit and anodic stripping voltammetric scan was run from -0.5 to 0.5 V. Various electrochemical parameters including amount of modifier, supporting electrolyte, accumulating solvent, pH of the accumulating solvent, and accumulation time were investigated. The effect of presence of other metal ions and surfactants was also studied. In comparison C. limon peel proved to be a better modifier than L. leucocephala seed biomass. This was justified by electrode characterization using cyclic voltammetry that indicated decrease in resistance of electrode when C. limon peel was used as modifier and increase when modifier was L. leucocephala seeds. Maximum current response was obtained using 5% C. limon peel biomass, hydrochloric acid as supporting electrolyte, acetate buffer of pH 6 as an accumulating solvent, 10-min accumulation time, and scan rate of 50 mV/s. Linear calibration curves were obtained in the concentration range 100 to 1,000 μg L(-1) of mercury for accumulation time of 10 min with limit of detection of 57.75 μg L(-1) and limit of quantification of 192.48 μg L(-1). This technique does not use mercury as electrode material and, therefore, has a positive environmental benefit. PMID:23709264

  11. Voltammetric analysis of N-containing drugs using the hanging galinstan drop electrode (HGDE).

    PubMed

    Channaa, H; Surmann, P

    2009-03-01

    The electrochemical behaviour of several N-containing voltammetric active drugs such as 1,4-benzodiazepines (chlordiazepoxide, nitrazepam and diazepam) as well as one nitro-compound (nitrofurantoin) and one azo-compound (phenazopyridine) is described using a new kind of liquid electrode, the hanging galinstan drop electrode. Concentrations of 10(-5) - 10(-8) mol L(-1) are generally measurable. Differential pulse and adsorptive stripping voltammograms are recorded in different supporting electrolytes, like 0.1 M KNO3, acetate buffer solution pH = 4.6 and phosphate buffer solution pH = 7.0. The effects of varying the starting potentials, U(start) for DPV and accumulation times, t(acc) for AdSV are considered. Briefly, it is shown that the novel galinstan electrode is suitable for reducing several functional groups in organic substances, here presented for N-oxide-, azomethine-, nitro- and azo-groups. PMID:19348337

  12. Theoretical treatment of staircase voltammetric stripping from the thin film mercury electrode

    USGS Publications Warehouse

    Christie, J.H.; Osteryoung, R.A.

    1976-01-01

    Staircase voltammetric stripping is an attractive alternative to both differential pulse and linear scan voltammetric stripping. This paper presents a theoretical treatment of this new stripping mode applied to the thin-film mercury electrode. For equivalent scan rates the faradaic response is somewhat smaller than that obtained by linear scan stripping.

  13. Signal stability of Nafion-coated thin mercury film electrodes for stripping voltammetry.

    PubMed

    Hoyer, B; Jensen, N

    1994-03-01

    The signal stability of the Nafion-coated thin mercury film electrode (NCTMFE) was studied by using cadmium and lead as test analytes and differential pulse anodic stripping voltammetry as detection method. In particular, the effect of the casting solvent and the curing procedure employed in the preparation of the polymer film was examined. Best results were obtained with N,N-dimethylacetamide as casting solvent and a two-step curing procedure in which the polymer was evaporated to dryness at 55 degrees and cured at 105 degrees with a hot-air gun. Mercury plating was performed ex situ. An NCTMFE prepared in this manner has a better signal stability than ex situ-plated as well as in situ-plated conventional mercury film electrodes. PMID:18965949

  14. Determination of groundwater mercury (II) content using a disposable gold modified screen printed carbon electrode.

    PubMed

    Somé, Issa Touridomon; Sakira, Abdoul Karim; Mertens, Dominique; Ronkart, Sebastien N; Kauffmann, Jean-Michel

    2016-05-15

    Mercury (II) measurements were performed thanks to a newly developed electrochemical method using a disposable gold modified screen printed carbon electrode. The method has a wide dynamic range (1-100 µg/L), a good accuracy and a limit of detection in compliance with WHO standards. The application of the method to several groundwater samples made it possible to identify, for the first time, mercury content higher than the recommended WHO standard value in a gold mining activity area in the northern part of Burkina Faso. The accuracy of the assay was checked by ICP/MS. PMID:26992529

  15. Kinetics of Nanoscale Self-Assembly Measured on Liquid Drops by Macroscopic Optical Tensiometry: From Mercury to Water and Fluorocarbons.

    PubMed

    Haimov, Boris; Iakovlev, Anton; Glick-Carmi, Rotem; Bloch, Leonid; Rich, Benjamin B; Müller, Marcus; Pokroy, Boaz

    2016-03-01

    Various molecules are known to form self-assembled monolayers (SAMs) on the surface of liquids. We present a simple method of investigating the kinetics of such SAM formation on sessile drops of various liquids such as mercury, water and fluorocarbon. To measure the surface tension of the drops we used an optical tensiometer that calculates the surface tension from the axisymmetric drop shape and the Young-Laplace relation. In addition, we estimated the SAM surface coverage fraction from the surface tension measured by other techniques. With this methodology we were able to optically detect concentrations as low as tenths of ppb increments of SAM molecules in solution and to compare the kinetics of SAM formation measured as a function of molecule concentration or chain length. The analysis is performed in detail for the case of alkanethiols on mercury and then shown to be more general by investigating the case of SAM formation of stearic acid on a water droplet in hexadecane and of perfluorooctanol on a Fluorinert FC-40 droplet in ethanol. PMID:26790500

  16. Mercury(II) ion-selective electrodes based on p-tert-butyl calix[4]crowns with imine units.

    PubMed

    Mahajan, Rakesh Kumar; Kaur, Ravneet; Kaur, Inderpreet; Sharma, Vandana; Kumar, Manoj

    2004-05-01

    A PVC membrane incorporating p-tert-butyl calix[4]crown with imine units as an ionophore was prepared and used in an ion-selective electrode for the determination of mercury(II) ions. An electrode based on this ionophore showed a good potentiometric response for mercury(II) ions over a wide concentration range of 5.0 x 10(-5) - 1.0 x 10(-1) M with a near-Nernstian slope of 27.3 mV per decade. The detection limit of the electrode was 2.24 x 10(-5) M and the electrode worked well in the pH range of 1.3 - 4.0. The electrode showed a short response time of less than 20 s. The electrode also showed better selectivity for mercury(II) ions over many of the alkali (Na+, -1.69; K+, -1.54), alkaline-earth (Ca2+, -3.30; Ba2+, -3.32), and heavy metal ions (Co2+, -3.67; Ni2+, -3.43; Pb2+, -3.31; Fe3+, -1.82). Ag+ ion was found to be the strongest interfering ion. Also, sharp end points were obtained when the sensor was used as an indicator electrode for the potentiometric titration of mercury(II) ions with iodide and dichromate ions. PMID:15171285

  17. Working Electrodes

    NASA Astrophysics Data System (ADS)

    Komorsky-Lovrić, Šebojka

    In electrochemistry an electrode is an electronic conductor in contact with an ionic conductor. The electronic conductor can be a metal, or a semiconductor, or a mixed electronic and ionic conductor. The ionic conductor is usually an electrolyte solution; however, solid electrolytes and ionic melts can be used as well. The term "electrode" is also used in a technical sense, meaning the electronic conductor only. If not specified otherwise, this meaning of the term "electrode" is the subject of the present chapter. In the simplest case the electrode is a metallic conductor immersed in an electrolyte solution. At the surface of the electrode, dissolved electroactive ions change their charges by exchanging one or more electrons with the conductor. In this electrochemical reaction both the reduced and oxidized ions remain in solution, while the conductor is chemically inert and serves only as a source and sink of electrons. The technical term "electrode" usually also includes all mechanical parts supporting the conductor (e.g., a rotating disk electrode or a static mercury drop electrode). Furthermore, it includes all chemical and physical modifications of the conductor, or its surface (e.g., a mercury film electrode, an enzyme electrode, and a carbon paste electrode). However, this term does not cover the electrolyte solution and the ionic part of a double layer at the electrode/solution interface. Ion-selective electrodes, which are used in potentiometry, will not be considered in this chapter. Theoretical and practical aspects of electrodes are covered in various books and reviews [1-9].

  18. The intrinsic pKa values for phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine in monolayers deposited on mercury electrodes.

    PubMed Central

    Moncelli, M R; Becucci, L; Guidelli, R

    1994-01-01

    The intrinsic pKa values of the phosphate groups of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) and of the phosphate and carboxyl groups of phosphatidylserine (PS) in self-organized monolayers deposited on a hanging mercury drop electrode were determined by a novel procedure based on measurements of the differential capacity C of this lipid-coated electrode. In view of the Gouy-Chapman theory, plots of 1/C at constant bulk pH and variable KCl concentration against the reciprocal of the calculated diffuse-layer capacity Cd,0 at zero charge exhibit slopes that decrease from an almost unit value to vanishingly low values as the absolute value of the charge density on the lipid increases from zero to approximately 2 microC cm-2. The intrinsic pKa values so determined are 0.5 for PE and 0.8 for PC. The plots of 1/C against 1/Cd,0 for pure PS exhibit slopes that pass from zero to a maximum value and then back to zero as pH is varied from 7.5 to 3, indicating that the charge density of the lipid film passes from slight negative to slight positive values over this pH range. An explanation for this anomalous behavior, which is ascribed to the phosphate group of PS, is provided. Interdispersion of PS and PC molecules in the film decreases the "formal" pKa value of the latter group by about three orders of magnitude. PMID:8075331

  19. ANODIC STRIPPING VOLTAMMETRY AT A MERCURY FILM ELECTRODE: BASELINE CONCENTRATIONS OF CADMIUM, LEAD, AND COPPER IN SELECTED NATURAL WATERS

    EPA Science Inventory

    A simple, rapid, and inexpensive anodic stripping voltammetric method with a mercury thin film electrode is reported for the establishment of baseline concentrations of cadmium, lead, and copper in natural waters. The procedure for routine surface preparation of wax-impregnated g...

  20. Mercury

    MedlinePlus

    ... button batteries. Mercury salts may be used in skin creams and ointments. It's also used in many industries. Mercury in the air settles into water. It can pass through the food chain and build up in ...

  1. Mercury

    MedlinePlus

    Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, ... colorless, odorless gas. It also combines with other elements to form powders or crystals. Mercury is in ...

  2. Preconcentration of trivalent lanthanide elements on a mercury film from aqueous solution using rotating disk electrode voltammetry.

    PubMed

    Schumacher, Paul D; Woods, Nicholas A; Schenk, James O; Clark, Sue B

    2010-07-01

    An approach to concentrate trivalent lanthanide elements into or onto mercury film electrodes supported on rotating disk glassy carbon electrodes in small volumes (electrode from LiCl. After initial characterizations, Nd(3+), Eu(3+), Gd(3+), Ho(3+), and Lu(3+) were tested individually and in a mixture. ICPMS analyses demonstrated that these elements could be accumulated cathodically from LiCl solution and stripped anodically in 2% HNO(3), both individually and as a mixture. These cations can be electrochemically preconcentrated onto and stripped from the electrode in 5 min, a vast improvement over traditional approaches such as evaporation that require hours to days in some cases. PMID:20533834

  3. Preparation of novel mercury-doped silver nanoparticles film glassy carbon electrode and its application for electrochemical biosensor.

    PubMed

    Li, Mao-Guo; Shang, Yong-Jia; Gao, Ying-Chun; Wang, Guang-Feng; Fang, Bin

    2005-06-01

    A novel mercury-doped silver nanoparticles film glassy carbon (Ag/MFGC) electrode was prepared in this study. Electrochemical behaviors of cysteine on the Ag/MFGC electrode were investigated by electrochemical impedance spectroscopy and cyclic voltammetry (CV). The results indicated that cysteine could be strongly adsorbed on the surface of the Ag/MFGC electrode to form a thin layer. The doped electrode could catalyze the electrode reaction process of cysteine, and the cysteine displayed a pair of well-defined and nearly reversible CV peaks at the electrode in an acetate buffer solution (pH 5.0). The Ag/MFGC electrode was used for determination of cysteine by differential pulse voltammetry. The linear range was between 4.0x10(-7) and 1.3x10(-5) mol/L, with a detection limit of 1.0x10(-7) mol/L and a signal-to-noise ratio of 3. The relative standard deviation was 2.4% for seven successive determinations of 1.0x10(-5) mol/L cysteine. The determinations of cysteine in synthetic samples and urinal samples were carried out and satisfactory results were obtained. Amperometric application of the Ag/MFGC electrode as biosensors is proposed. PMID:15866527

  4. Determination of selenium(IV) by a photooxidized 3,3'-diaminobenzidine/perfluorinated polymer mercury film electrode

    PubMed

    Yang; Sun

    2000-08-01

    A new, and easily fabricated, chemically modified electrode for the determination of selenium(IV) was examined by cathodic square-wave stripping voltammetry. This new electrode consisted of an anion-exchange perfluorinated polymer (Tosflex) coated thin mercury film electrode containing photooxidized 3,3'-diaminobenzidine (ODAB). The coating solution of Tosflex and ODAB was spin-coated on a glassy carbon electrode followed by electroplating of a thin film of mercury. During the preconcentration, ODAB was reduced electrochemically and selenium was accumulated simultaneously onto the electrode by interacting with the reduced ODAB. After a 5-min preconcentration period, linear response was observed from 0.5 to 50 ppb selenium, and the detection limit was 0.1 ppb. The proposed method does not require a darkened room, which was required in many of the previous methods involving 3,3'-diaminobenzidine. In addition, the resistance to interference from surface-active compounds was improved by incorporating Tosflex in the film. PMID:10952530

  5. Creating gold nanoprisms directly on quartz crystal microbalance electrodes for mercury vapor sensing

    NASA Astrophysics Data System (ADS)

    Sabri, Y. M.; Ippolito, S. J.; O'Mullane, A. P.; Tardio, J.; Bansal, V.; Bhargava, S. K.

    2011-07-01

    A novel electrochemical route is used to form highly {111}-oriented and size-controlled Au nanoprisms directly onto the electrodes of quartz crystal microbalances (QCMs) which are subsequently used as mercury vapor sensors. The Au nanoprism loaded QCM sensors exhibited excellent response-concentration linearity with a response enhancement of up to ~ 800% over a non-modified sensor at an operating temperature of 28 °C. The increased surface area and atomic-scale features (step/defect sites) introduced during the growth of nanoprisms are thought to play a significant role in enhancing the sensing properties of the Au nanoprisms toward Hg vapor. The sensors are shown to have excellent Hg sensing capabilities in the concentration range of 0.123-1.27 ppmv (1.02-10.55 mg m - 3), with a detection limit of 2.4 ppbv (0.02 mg m - 3) toward Hg vapor when operating at 28 °C, and 17 ppbv (0.15 mg m - 3) at 89 °C, making them potentially useful for air monitoring applications or for monitoring the efficiency of Hg emission control systems in industries such as mining and waste incineration. The developed sensors exhibited excellent reversible behavior (sensor recovery) within 1 h periods, and crucially were also observed to have high selectivity toward Hg vapor in the presence of ethanol, ammonia and humidity, and excellent long-term stability over a 33 day operating period.

  6. Influence of anions on methylpyridinium ion adsorption on the mercury electrode in aqueous solutions

    SciTech Connect

    Gerovich, V.M.; Damaskin, B.B.; Ermolin, V.B.

    1987-02-01

    The adsorption behavior of aromatic and heterocyclic cations is known to be determined by image forces on one hand and by pi-electron interaction on the other. The first factor is effective at the negatively charged surface of the mercury electrode whereas the second factor is effective at the positively charged surface where the forces of pi-electron interaction are in opposition to the electrostatic repulsion forces of the cations. The authors of this paper study the adsorption of methylpyridinium as the aromatic cation in combination with persulfate, chlorine, bromine, and iodine as the anions. The potential range studied was limited on the anodic side by a potential of -0.1 eV, since the values of interfacial tension were poorly reproducible at more positive potentials, and on the cathodic side by a potential of -1.1 eV, since methylpyridinium is reduced at more negative potentials. It is found that the halide ions, owing to the possible formation of charge transfer complexes, have an even stronger effect on the adsorption behavior of organic cations than that observed previously for tetraalkylammonium ions.

  7. Mercury

    MedlinePlus

    ... be found in: Batteries Chemistry labs Some disinfectants Folk remedies Red cinnabar mineral Organic mercury can be ... heart tracing Fluids through a vein (by IV) Medicine to treat symptoms The type of exposure will ...

  8. A disposable glucose biosensor based on drop-coating of screen-printed carbon electrodes with magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lu, Bo-Wen; Chen, Wen-Chang

    2006-09-01

    Magnetic Fe 3O 4 nanoparticles (Nano-Fe 3O 4) were prepared by co-precipitation method and a disposable glucose biosensor was fabricated by drop coating of ferricyanide (Ferri)-Nano-Fe 3O 4 mixture onto the surface of screen-printed carbon electrodes (SPCEs), and then by layering-on glucose oxidase (GOD). The electrochemical characteristics of modified SPCEs were analyzed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA). The glucose biosensors exhibit a relatively fast response (<15 s) and high sensitivity (ca. 1.74 μA mM -1) with a wide linear range up to 33.3 mM (600 mg dL -1) of glucose.

  9. Mercury

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.; Scott, E. R. D.

    2003-12-01

    Mercury is an important part of the solar system puzzle, yet we know less about it than any other planet, except Pluto. Mercury is the smallest of the terrestrial planets (0.05 Earth masses) and the closest to the Sun. Its relatively high density (5.4 g cm -3) indicates that it has a large metallic core (˜3/4 of the planet's radius) compared to its silicate mantle and crust. The existence of a magnetic field implies that the metallic core is still partly molten. The surface is heavily cratered like the highlands of the Moon, but some areas are smooth and less cratered, possibly like the lunar maria (but not as dark). Its surface composition, as explained in the next section, appears to be low in FeO (only ˜3 wt.%), which implies that either its crust is anorthositic (Jeanloz et al., 1995) or its mantle is similarly low in FeO ( Robinson and Taylor, 2001).The proximity of Mercury to the Sun is particularly important. In one somewhat outmoded view of how the solar system formed, Mercury was assembled in the hottest region close to the Sun so that virtually all of the iron was in the metallic state, rather than oxidized to FeO (e.g., Lewis, 1972, 1974). If correct, Mercury ought to have relatively a low content of FeO. This hypothesis also predicts that Mercury should have high concentrations of refractory elements, such as calcium, aluminum, and thorium, and low concentrations of volatile elements, such as sodium and potassium, compared to the other terrestrial planets.Alternative hypotheses tell a much more nomadic and dramatic story of Mercury's birth. In one alternative view, wandering planetesimals that might have come from as far away as Mars or the inner asteroid belt accreted to form Mercury (Wetherill, 1994). This model predicts higher FeO and volatile elements than does the high-temperature model, and similar compositions among the terrestrial planets. The accretion process might have been accompanied by a monumental impact that stripped away much of the

  10. Flow Injection Analysis of Mercury Using 4-(Dimethylamino) Benzaldehyde-4-Ethylthiosemicarbazone as the Ionophore of a Coated Wire Electrode

    PubMed Central

    Tahir, Tara F.; Salhin, Abdussalam; Ghani, Sulaiman Ab

    2012-01-01

    A flow injection analysis (FIA) incorporating a thiosemicarbazone-based coated wire electrode (CWE) was developed method for the determination of mercury(II). A 0.1 M KNO3 carrier stream with pH between 1 and 5 and flow rate of 1 mL·min−1 were used as optimum parameters. A linear plot within the concentration range of 5 × 10−6–0.1 M Hg(II), slope of 27.8 ± 1 mV per decade and correlation coefficient (R2) of 0.984 were obtained. The system was successfully applied for the determination of mercury(II) in dental amalgam solutions and spiked environmental water samples. Highly reproducible measurements with relative standard deviation (RSD < 1% (n = 3)) were obtained, giving a typical throughput of 30 samples·h−1. PMID:23202196

  11. Mercury

    NASA Technical Reports Server (NTRS)

    Gault, D. E.; Burns, J. A.; Cassen, P.; Strom, R. G.

    1977-01-01

    Prior to the flight of the Mariner 10 spacecraft, Mercury was the least investigated and most poorly known terrestrial planet (Kuiper 1970, Devine 1972). Observational difficulties caused by its proximity to the Sun as viewed from Earth caused the planet to remain a small, vague disk exhibiting little surface contrast or details, an object for which only three major facts were known: 1. its bulk density is similar to that of Venus and Earth, much greater than that of Mars and the Moon; 2. its surface reflects electromagnetic radiation at all wavelengths in the same manner as the Moon (taking into account differences in their solar distances); and 3. its rotation period is in 2/3 resonance with its orbital period. Images obtained during the flyby by Mariner 10 on 29 March 1974 (and the two subsequent flybys on 21 September 1974 and 16 March 1975) revealed Mercury's surface in detail equivalent to that available for the Moon during the early 1960's from Earth-based telescopic views. Additionally, however, information was obtained on the planet's mass and size, atmospheric composition and density, charged-particle environment, and infrared thermal radiation from the surface, and most significantly of all, the existence of a planetary magnetic field that is probably intrinsic to Mercury was established. In the following, this new information is summarized together with results from theoretical studies and ground-based observations. In the quantum jumps of knowledge that have been characteristic of "space-age" exploration, the previously obscure body of Mercury has suddenly come into sharp focus. It is very likely a differentiated body, probably contains a large Earth-like iron-rich core, and displays a surface remarkably similar to that of the Moon, which suggests a similar evolutionary history.

  12. Optimization of method for zinc analysis in several bee products on renewable mercury film silver based electrode.

    PubMed

    Opoka, Włodzimierz; Szlósarczyk, Marek; Maślanka, Anna; Piech, Robert; Baś, Bogusław; Włodarczyk, Edyta; Krzek, Jan

    2013-01-01

    Zinc is an interesting target for detection as it is one of the elements necessary for the proper functioning of the human body, its excess and deficiency can cause several symptoms. Several techniques including electrochemistry have been developed but require laboratory equipment, preparative steps and mercury or complex working electrodes. We here described the development of a robust, simple and commercially available electrochemical system. Differential pulse (DP) voltammetry was used for this purpose with the cyclic renewable mercury film silver based electrode (Hg(Ag)FE) and 0.05 M KNO3 solution as a supporting electrolyte. The effect of various factors such as: preconcentration potential and time, pulse amplitude and width, step potential and supporting electrolyte composition are optimized. The limits of detection (LOD) and quantification (LOQ) were 1.62 ng/mL and 4.85 ng/mL, respectively. The repeatability of the method at a concentration level of the analyte as low as 3 ng/mL, expressed as RSD is 3.5% (n = 6). Recovery was determined using certified reference material: Virginia Tobacco Leaves (CTA-VTL-2). The recovery of zinc ranged from 96.6 to 106.5%. The proposed method was successfully applied for determination of zinc in bee products (honey, propolis and diet supplements) after digestion procedure. PMID:24383319

  13. sup 207 Pb NMR, mass spectrometric, and electrochemical studies on labile lead(II) dithiocarbamate complexes: Formation of mixed mercury-lead complexes at a mercury electrode in dichloromethane solution

    SciTech Connect

    Bond, A.M.; Hollenkamp, A.F. ); Colton, R. )

    1990-05-16

    {sup 207}Pb NMR spectra have been observed in dichloromethane for series of Pb(RR{prime}dtc){sub 2} compounds (RR{prime}dtc = dialkylthiocarbamate). The resonances are rather broad, and molecular weight determinations show that this is caused by polymerization reactions. Ligand exchange between different Pb(RR{prime}dtc){sub 2} compounds is fast on the NMR time scale, and the complexes are therefore labile. The labile nature of the Pb(RR{prime}dtc){sub 2} systems in the solid state is confirmed by mass spectrometric measurements on mixtures of different complexes. Electrochemical reduction of Pb(RR{prime}dtc){sub 2} in dichloromethane (0.1 M Bu{sub 4} NClO{sub 4}) at mercury electrodes takes place in a single reversible two-electron step to give lead amalgam and free (RR{prime}dtc){sup {minus}}, the reversibility of this process further confirming the lability of the complexes. At platinum electrodes, initially an irreversible reduction occurs to generate elemental lead and (RR{prime}dtc){sup {minus}}. However, long-term behavior at platinum electrodes is complicated by the gradual coating of the electrode with elemental lead, thereby generating a lead electrode at which reversible responses are observed. Electrochemical oxidation processes at mercury electrodes are best described in terms of oxidation of the electrode in the presence of Pb(RR{prime}dtc){sub 2}. The electrochemistry in solution and the nature of the isolated products in the solid state indicate that when mercury and lead are competing for dithiocarbamate in a ligand deficient situation, then mercury is the successful element. 13 refs., 5 figs., 4 tabs.

  14. Carbon Paste Electrode Modified with Carbamoylphosphonic Acid Functionalized Mesoporous Silica: A New Mercury-Free Sensor for Uranium Detection

    SciTech Connect

    Yantasee, Wassana; Lin, Yuehe; Fryxell, Glen E.; Wang, Zheming

    2004-05-20

    This study reports a new approach for developing a uranium (U(VI)) electrochemical sensor that is mercury-free, solid-state, and has less chance for ligand depletion than existing sensors. A carbon-paste electrode modified with carbamoylphosphonic acid self-assembled monolayer on mesoporous silica was developed for uranium detection based on an adsorptive square-wave stripping voltammetry technique. Voltammetric responses for U(VI) detection are reported as a function of pH, preconcentration time, and aqueous phase U(VI) concentration. The uranium detection limit is 25 ppb after 5 minutes preconcentration and improved to 1 ppb after 20 minutes preconcentration. The relative standard deviations are normally less than 5%.

  15. Voltammetric assay of the anthelmintic veterinary drug nitroxynil in bulk form and formulation at a mercury electrode.

    PubMed

    Ghoneim, M M; El-Ries, M; Hassanein, A M; Abd-Elaziz, A M

    2006-06-16

    The electrochemical behavior of the anthelmintic veterinary drug nitroxynil at the mercury electrode was studied in a series of Britton-Robinson universal buffer of pH 1.9-11 containing 20% (v/v) ethanol using dc-polarography cyclic voltammetry and controlled-potential coulometry. The voltammograms exhibited two irreversible cathodic steps over the pH range 1.9-10.2; the height of the first step is double that of the second one. Controlled-potential coulometry in the B-R universal buffer of pH 1.9-10 at a mercury pool working electrode revealed the consumption of four and two electrons via the first and second reduction steps, respectively, which attributed to reduction of the NO2 group to the hydroxylamine stage (first step), and then to the amine stage (second step). Three voltammetric analytical procedures including dc-polarography, differential-pulse adsorptive stripping voltammetry and square-wave adsorptive stripping voltammetry were optimized for the direct determination of bulk nitroxynil. The three proposed procedures were applied for analysis of bulk nitroxynil with limits of detection of 3 x 10(-5), 1.31 x 10(-8) and 8.4 x 10(-10)M and limits of quantification of 1 x 10(-5), 4.36 x 10(-8) and 2.80 x 10(-9)M, respectively. The three procedures were successfully applied to the determination of nitroxynil in formulation (Dovenix, 25% nitroxynil injection solution) without the necessity for sample pretreatment and/or time-consuming extraction steps prior to the analysis. PMID:16687232

  16. Part I. Carbon and mercury-carbon optically transparent electrodes. Part II. Investigation of redox properties of technetium by cyclic voltammetry and thin layer spectroelectrochemistry

    SciTech Connect

    Hurst, R.W.

    1980-01-01

    A carbon optically transparent electrode (C OTE) has been prepared by vapor-deposithing a thin carbon film (150 to 310 A thick) on glass and quartz. Optical transparency is good throughout the ultraviolet-visible region. Electrochemical and spectroelectrochemical measurements were made with ferricyanide and o-tolidine respectively. The C OTE serves as a good substrate for deposition of a thin mercury film to form a mercury film transparent electrode (Hg-C OTE). The Hg-C OTE exhibits electrochemical properties of conventional mercury film electrodes as evidenced by Pb/sup 2 +/ cyclic voltammograms. The Hg-C OTE exhibits electrochemical properties of conventional mercury film electrodes as evidenced by Pb/sup 2 -/ cyclic VOHammograms. The Hg-C OTE enabled the spectrochemical characterization of cysteine oxidation, which was shown to involve the oxidation of mercury to form mercurous cysteinate. An 8080 based microcomputer has been interfaced with a Harrick oscillating mirror rapid scanning uv-visible spectrophotometer. Two different approaches are compared for controlling the galvanometer. The first utilizes the digital hardware on the Harrick processing module to derive the mirror drive waveform, while the second creates the waveform under direct software control. A potentiostat is also interfaced and the system is demonstrated by the spectroelectrochemical determination of the redox potential of o-tolidine. Redox potentials are also determined for a series of technetium complexes by the spectropotentiostatic technique. These include hexahalogens, ditertiary arsine, and 1,2-bis(diphenylphosphino) ethane complexes of technetium. Transient hexavalent technetium is produced, detected, and characterized in aqueous alkaline media by pulse radiolysis and very fast scan cyclic voltammetry. The lifetime is of the order of milliseconds. This species is potentially useful in the preparation of technetium radiopharmaceuticals.

  17. Simultaneous Automatic Electrochemical Detection of Zinc, Cadmium, Copper and Lead Ions in Environmental Samples Using a Thin-Film Mercury Electrode and an Artificial Neural Network

    PubMed Central

    Kudr, Jiri; Nguyen, Hoai Viet; Gumulec, Jaromir; Nejdl, Lukas; Blazkova, Iva; Ruttkay-Nedecky, Branislav; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene

    2015-01-01

    In this study a device for automatic electrochemical analysis was designed. A three electrodes detection system was attached to a positioning device, which enabled us to move the electrode system from one well to another of a microtitre plate. Disposable carbon tip electrodes were used for Cd(II), Cu(II) and Pb(II) ion quantification, while Zn(II) did not give signal in this electrode configuration. In order to detect all mentioned heavy metals simultaneously, thin-film mercury electrodes (TFME) were fabricated by electrodeposition of mercury on the surface of carbon tips. In comparison with bare electrodes the TMFEs had lower detection limits and better sensitivity. In addition to pure aqueous heavy metal solutions, the assay was also performed on mineralized rock samples, artificial blood plasma samples and samples of chicken embryo organs treated with cadmium. An artificial neural network was created to evaluate the concentrations of the mentioned heavy metals correctly in mixture samples and an excellent fit was observed (R2 = 0.9933). PMID:25558996

  18. Discharge characteristics of mercury-free flat fluorescent lamps with various electrode configurations analysed through a two-dimensional fluid model simulation

    NASA Astrophysics Data System (ADS)

    Kwon, Ohyung; Oh, Byung Joo; Whang, Ki-Woong

    2012-07-01

    The discharge characteristics and factors related to the luminous efficacy of mercury-free flat fluorescent lamps (MFFLs) with three different types of coplanar, counter and combination electrode configurations were studied via a two-dimensional numerical simulation. The spatiotemporal distributions of the potential, electric field, electron density, Xe** density and current waveforms of the MFFLs were obtained and analysed. The MFFL with the combination electrode configuration shows the highest vacuum ultraviolet (VUV) efficacy value. The vertical electrode in the MFFL with the combination electrode configuration prevents the electric field at the gap space from decreasing rapidly, and extends the discharge path. The effects of the vertical electrode help one to increase the Xe excitation efficacy. In addition, a new auxiliary electrode was proposed in the original MFFL with the combination electrode configuration. The MFFL with the new auxiliary electrode has broader distributions of electrons and Xe** species, and a higher VUV efficacy value than the original MFFL with the combination electrode configuration at the same voltage.

  19. The role of pressure drop and flow redistribution on modeling mercury control using sorbent injection in baghouse filters

    SciTech Connect

    Joseph R.V. Flora; Richard A. Hargis; William J. O'Dowd; Andrew Karash; Henry W. Pennline; Radisav D. Vidic

    2006-03-15

    A mathematical model based on simple cake filtration theory was coupled to a previously developed two-stage mathematical model for mercury (Hg) removal from coal combustion using powdered activated carbon injection upstream of a baghouse filter. Values of the average permeability of the filter cake and the filter resistance extracted from the model were 4.4 x 10{sup -13}m{sup 2} and 2.5 x 10{sup -4}m{sup -1}, respectively. The flow is redistributed during partial cleaning of the filter, with flows higher across the newly cleaned filter section. The calculated average Hg removal efficiency from the baghouse is lower because of the high mass flux of Hg exiting the filter in the newly cleaned section. The model shows that calculated average Hg removal is affected by permeability, filter resistance, fraction of the baghouse cleaned, and cleaning interval. 17 refs., 8 figs., 2 tabs.

  20. Synthetic silver oxide and mercury-free zinc electrodes for silver-zinc reserve batteries

    NASA Astrophysics Data System (ADS)

    Smith, David F.; Gucinski, James A.

    Reserve activated silver oxide-zinc cells were constructed with synthetic silver oxide (Ag 2O) electrodes with Pb-treated zinc electrodes produced by a non-electrolytic process. The cells were tested before and after thermally accelerated aging. At discharge rates up to 80 mA cm -2, the discharge was limited by the Ag 2O electrode, with a coulombic efficiency between 89-99%. At higher rates, the cells are apparently zinc-limited. Test cells were artificially aged at 90°C for 19 h and discharged at 21°C at 80 mA cm -2. No capacity loss was measured, but a delayed activation rise time was noted (192 ms fresh vs. 567 ms aged). The delay is thought to be caused by zinc passivation due to the outgassing of cell materials.

  1. Extensive study of shape and surface structure formation in the mercury beating heart system.

    PubMed

    Ramírez-Álvarez, E; Ocampo-Espindola, J L; Montoya, Fernando; Yousif, F; Vázquez, F; Rivera, M

    2014-11-13

    A phenomenological study of the mercury beating heart system in a three electrode electrochemical cell configuration forced with a harmonic perturbation is presented. The system is controlled via a potentiostat, where the mercury drop is electrically connected to a platinum wire and acts as the working electrode. This configuration exhibits geometrical shapes and complex surface structures when a harmonic signal is superimposed to the working electrode potential. This study involves a wide range of frequencies and amplitudes of the forcing signal. Differents levels of structure complexity are observed as a function of the parameters of the applied perturbation. At certain amplitudes and frequencies, rotational behavior is also observed. PMID:25343208

  2. A highly selective voltammetric sensor for nanomolar detection of mercury ions using a carbon ionic liquid paste electrode impregnated with novel ion imprinted polymeric nanobeads.

    PubMed

    Bahrami, Azam; Besharati-Seidani, Abbas; Abbaspour, Abdolkarim; Shamsipur, Mojtaba

    2015-03-01

    This work reports the preparation of a voltammetric sensor for selective recognition and sensitive determination of mercury ions using a carbon ionic liquid paste electrode (CILE) impregnated with novel Hg(2+)-ion imprinted polymeric nanobeads (IIP) based on dithizone, as a suitable ligand for complex formation with Hg(2+) ions. The differential pulse anodic stripping voltammetric technique was employed to investigate the performance of the prepared IIP-CILE for determination of hazardous mercury ions. The designed modified electrode revealed linear responses in the ranges of 0.5nM-10nM and 0.08μM-2μM with a limit of detection of 0.1nM (S/N=3). It was found that the peak currents of the modified electrode for Hg(2+) ions were at a maximum value in phosphate buffer of pH4.5. The optimized preconcentration potential and accumulation time were to be -0.9V and 35s, respectively. The applicability of the proposed sensor to mercury determination in waste water samples is reported. PMID:25579915

  3. Single drop solution electrode glow discharge for plasma assisted-chemical vapor generation: sensitive detection of zinc and cadmium in limited amounts of samples.

    PubMed

    Li, Zhi-ang; Tan, Qing; Hou, Xiandeng; Xu, Kailai; Zheng, Chengbin

    2014-12-16

    A simple and sensitive approach is proposed and evaluated for determination of ultratrace Zn and Cd in limited amounts of samples or tens of cells based on a novel single drop (5-20 μL) solution electrode glow discharge assisted-chemical vapor generation technique. Volatile species of Zn and Cd were immediately generated and separated from the liquid phase for transporting to atomic fluorescence or atomic mass spectrometric detectors for their determination only using hydrogen when the glow discharge was ignited between the surface of a liquid drop and the tip of a tungsten electrode. Limits of detection are better than 0.01 μg L(-1) (0.2 pg) for Cd and 0.1 μg L(-1) (2 pg) for Zn, respectively, and comparable or better than the previously reported results due to only a 20 μL sampling volume required, which makes the proposed technique convenient for the determination of Zn and Cd in limited amounts of samples or even only tens of cells. The proposed method not only retains the advantages of conventional chemical vapor generation but also provides several unique advantages, including better sensitivity, lower sample and power consumption, higher chemical vapor generation efficiencies and simpler setup, as well as greener analytical chemistry. The utility of this technique was demonstrated by the determination of ultratrace Cd and Zn in several single human hair samples, Certified Reference Materials GBW07601a (human hair powder) and paramecium cells. PMID:25409265

  4. How voltage drops are manifested by lithium ion configurations at interfaces and in thin films on battery electrodes

    SciTech Connect

    Leung, Kevin; Leenheer, Andrew Jay

    2015-04-09

    Battery electrode surfaces are generally coated with electronically insulating solid films of thickness 1-50 nm. Both electrons and Li+ can move at the electrode–surface film interface in response to the voltage, which adds complexity to the “electric double layer” (EDL). We also apply Density Functional Theory (DFT) to investigate how the applied voltage is manifested as changes in the EDL at atomic length scales, including charge separation and interfacial dipole moments. Illustrating examples include Li3PO4, Li2CO3, and LixMn2O4 thin films on Au(111) surfaces under ultrahigh vacuum conditions. Adsorbed organic solvent molecules can strongly reduce voltages predicted in vacuum. We propose that manipulating surface dipoles, seldom discussed in battery studies, may be a viable strategy to improve electrode passivation. We also distinguish the computed potential governing electrons, which is the actual or instantaneous voltage, and the “lithium cohesive energy”-based voltage governing Li content widely reported in DFT calculations, which is a slower-responding self-consistency criterion at interfaces. Furthermore, this distinction is critical for a comprehensive description of electrochemical activities on electrode surfaces, including Li+ insertion dynamics, parasitic electrolyte decomposition, and electrodeposition at overpotentials.

  5. How voltage drops are manifested by lithium ion configurations at interfaces and in thin films on battery electrodes

    DOE PAGESBeta

    Leung, Kevin; Leenheer, Andrew Jay

    2015-04-09

    Battery electrode surfaces are generally coated with electronically insulating solid films of thickness 1-50 nm. Both electrons and Li+ can move at the electrode–surface film interface in response to the voltage, which adds complexity to the “electric double layer” (EDL). We also apply Density Functional Theory (DFT) to investigate how the applied voltage is manifested as changes in the EDL at atomic length scales, including charge separation and interfacial dipole moments. Illustrating examples include Li3PO4, Li2CO3, and LixMn2O4 thin films on Au(111) surfaces under ultrahigh vacuum conditions. Adsorbed organic solvent molecules can strongly reduce voltages predicted in vacuum. We proposemore » that manipulating surface dipoles, seldom discussed in battery studies, may be a viable strategy to improve electrode passivation. We also distinguish the computed potential governing electrons, which is the actual or instantaneous voltage, and the “lithium cohesive energy”-based voltage governing Li content widely reported in DFT calculations, which is a slower-responding self-consistency criterion at interfaces. Furthermore, this distinction is critical for a comprehensive description of electrochemical activities on electrode surfaces, including Li+ insertion dynamics, parasitic electrolyte decomposition, and electrodeposition at overpotentials.« less

  6. Highly sensitive determination of mercury using copper enhancer by diamond electrode coupled with sequential injection-anodic stripping voltammetry.

    PubMed

    Chaiyo, Sudkate; Chailapakul, Orawon; Siangproh, Weena

    2014-12-10

    A highly sensitive determination of mercury in the presence of Cu(II) using a boron-doped diamond (BDD) thin film electrode coupled with sequential injection-anodic stripping voltammetry (SI-ASV) was proposed. The Cu(II) was simultaneously deposited with Hg(II) in a 0.5 M HCl supporting electrolyte by electrodeposition. In presence of an excess of Cu(II), the sensitivity for the determination of Hg(II) was remarkably enhanced. Cu(II) and Hg(II) were on-line deposited onto the BDD electrode surface at -1.0 V (vs. Ag/AgCl, 3 M KCl) for 150 s with a flow rate of 14 μL s(-1). An anodic stripping voltammogram was recorded from -0.4 V to 0.25 V using a frequency of 60 Hz, an amplitude of 50 mV, and a step potential of 10 mV at a stopped flow. Under the optimal conditions, well-defined peaks of Cu(II) and Hg(II) were found at -0.25 V and +0.05 V (vs. Ag/AgCl, 3 M KCl), respectively. The detection of Hg(II) showed two linear dynamic ranges (0.1-30.0 ng mL(-1) and 5.0-60.0 ng mL(-1)). The limit of detection (S/N=3) obtained from the experiment was found to be 0.04 ng mL(-1). The precision values for 10 replicate determinations were 1.1, 2.1 and 2.9% RSD for 0.5, 10 and 20 ng mL(-1), respectively. The proposed method has been successfully applied for the determination of Hg(II) in seawater, salmon, squid, cockle and seaweed samples. A comparison between the proposed method and an inductively coupled plasma optical emission spectrometry (ICP-OES) standard method was performed on the samples, and the concentrations obtained via both methods were in agreement with the certified values of Hg(II), according to the paired t-test at a 95% confidence level. PMID:25441879

  7. Trace vanadium analysis by catalytic adsorptive stripping voltammetry using mercury-coated micro-wire and polystyrene-coated bismuth film electrodes

    PubMed Central

    Dansby-Sparks, Royce; Chambers, James Q.; Xue, Zi-Ling

    2009-01-01

    An electrochemical technique has been developed for ultra trace (ngL−1) vanadium (V) measurement. Catalytic adsorptive stripping voltammetry for V analysis was developed at mercury-coated gold micro-wire (MWE, 100 μm) electrodes in the presence of gallic acid (GA) and bromate ion. A potential of −0.275 V (vs Ag/AgCl) was used to accumulate the complex in acetate buffer (pH 5.0) at the electrode surface followed by a differential pulse voltammetric scan. Parameters affecting the electrochemical response, including pH, concentration of GA and bromate, deposition potential and time have been optimized. Linear response was obtained in the 0–1000 ngL−1 range (2 min deposition), with a detection limit of 0.88 ngL−1. The method was validated by comparison of results for an unknown solution of V by atomic absorption measurement. The protocol was evaluated in a real sample by measuring the amount of V in river water samples. Thick bismuth film electrodes with protective polystyrene films have also been made and evaluated as a mercury free alternative. However, ngL−1 level detection was only attainable with extended (10 min) deposition times. The proposed use of MWEs for the detection of V is sensitive enough for future use to test V concentration in biological fluids treated by the advanced oxidation process (AOP). PMID:19446059

  8. Mercury determination in urine samples by gold nanostructured screen-printed carbon electrodes after vortex-assisted ionic liquid dispersive liquid-liquid microextraction.

    PubMed

    Fernández, Elena; Vidal, Lorena; Costa-García, Agustín; Canals, Antonio

    2016-04-01

    A novel approach is presented to determine mercury in urine samples, employing vortex-assisted ionic liquid dispersive liquid-liquid microextraction and microvolume back-extraction to prepare samples, and screen-printed electrodes modified with gold nanoparticles for voltammetric analysis. Mercury was extracted directly from non-digested urine samples in a water-immiscible ionic liquid, being back-extracted into an acidic aqueous solution. Subsequently, it was determined using gold nanoparticle-modified screen-printed electrodes. Under optimized microextraction conditions, standard addition calibration was applied to urine samples containing 5, 10 and 15 μg L(-1) of mercury. Standard addition calibration curves using standards between 0 and 20 μg L(-1) gave a high level of linearity with correlation coefficients ranging from 0.990 to 0.999 (N = 5). The limit of detection was empirical and statistically evaluated, obtaining values that ranged from 0.5 to 1.5 μg L(-1), and from 1.1 to 1.3 μg L(-1), respectively, which are significantly lower than the threshold level established by the World Health Organization for normal mercury content in urine (i.e., 10-20 μg L(-1)). A certified reference material (REC-8848/Level II) was analyzed to assess method accuracy finding 87% and 3 μg L(-1) as the recovery (trueness) and standard deviation values, respectively. Finally, the method was used to analyze spiked urine samples, obtaining good agreement between spiked and found concentrations (recovery ranged from 97 to 100%). PMID:26995639

  9. "One-drop-of-blood" electroanalysis of lead levels in blood using a foam-like mesoporous polymer of melamine-formaldehyde and disposable screen-printed electrodes.

    PubMed

    Zhao, Yanfang; Xu, Lubin; Li, Shuying; Chen, Qi; Yang, Daoshan; Chen, Lingxin; Wang, Hua

    2015-03-21

    A foam-like mesoporous polymer of melamine-formaldehyde (mPMF) was synthesized and further deposited on disposable screen-printed electrodes (SPEs) for the electroanalysis of Pb(2+) ions in blood. Investigations indicate that the prepared mPMF is ultrastable in water, showing a mesoporous structure and an amine-rich composition, as characterized by electronic microscopy images and IR spectra. Importantly, it possesses a highly-selective chelating ability and a powerful absorbent capacity for Pb(2+) ions. By way of solid-state PbCl2 voltammetry, the mPMF-modified sensor could allow for the detection of Pb(2+) ions in one drop of blood with a high detection selectivity, sensitivity (down to about 0.10 μg L(-1) Pb(2+) ions) and reproducibility. Such a simple "one-drop-of-blood" electroanalysis method equipped with disposable SPEs and a portable electrochemical transducer can be tailored for the field-deployable or on-site monitoring of blood Pb(2+) levels in the clinical laboratory. PMID:25674711

  10. Highly Selective Mercury Detection at Partially Oxidized Graphene/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Nanocomposite Film Modified Electrode

    NASA Astrophysics Data System (ADS)

    Yasri, Nael; Sundramoorthy, Ashok; Chang, Woo-Jin; Gunasekaran, Sundaram

    2014-12-01

    Partially oxidized graphene flakes (po-Gr) were obtained from graphite electrode by an electrochemical exfoliation method. As-produced po-Gr flakes were dispersed in water with the assistance of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS). The po-Gr flakes and the po-Gr/PEDOT:PSS nanocomposite (po-Gr/PEDOT:PSS) were characterized by Raman spectroscopy, Fourier transform-infrared spectroscopy (FT-IR), UV-Vis spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). In addition, we demonstrated the potential use of po-Gr/PEDOT:PSS electrode in electrochemical detection of mercury ions (Hg2+) in water samples. The presence of po-Gr sheets in PEDOT:PSS film greatly enhanced the electrochemical response for Hg2+. Cyclic voltammetry measurements showed a well-defined Hg2+ redox peaks with a cathodic peak at 0.23 V, and an anodic peak at 0.42 V. Using differential pulse stripping voltammetry, detection of Hg2+ was achieved in the range of 0.2 to 14 µM (R2 = 0.991), with a limit of detection (LOD) of 0.19 µM for Hg2+. The electrode performed satisfactorily for sensitive and selective detection of Hg2+ in real samples, and the po-Gr/PEDOT:PSS film remains stable on the electrode surface for repeated use. Therefore, our method is potentially suitable for routine Hg2+ sensing in environmental water samples.

  11. Investigation of protein FTT1103 electroactivity using carbon and mercury electrodes. Surface-inhibition approach for disulfide oxidoreductases using silver amalgam powder.

    PubMed

    Večerková, Renata; Hernychová, Lenka; Dobeš, Petr; Vrba, Jiří; Josypčuk, Bohdan; Bartošík, Martin; Vacek, Jan

    2014-06-01

    Recently, it was shown that electrochemical methods can be used for analysis of poorly water-soluble proteins and for study of their structural changes and intermolecular (protein-ligand) interactions. In this study, we focused on complex electrochemical investigation of recombinant protein FTT1103, a disulfide oxidoreductase with structural similarity to well described DsbA proteins. This thioredoxin-like periplasmic lipoprotein plays an important role in virulence of bacteria Francisella tularensis. For electrochemical analyses, adsorptive transfer (ex situ) square-wave voltammetry with pyrolytic graphite electrode, and alternating-current voltammetry and constant-current chronopotentiometric stripping analysis with mercury electrodes, including silver solid amalgam electrode (AgSAE) were used. AgSAE was used in poorly water-soluble protein analysis for the first time. In addition to basic redox, electrocatalytic and adsorption/desorption characterization of FTT1103, electrochemical methods were also used for sensitive determination of the protein at nanomolar level and study of its interaction with surface of AgSA microparticles. Proposed electrochemical protocol and AgSA surface-inhibition approach presented here could be used in future for biochemical studies focused on proteins associated with membranes as well as on those with disulfide oxidoreductase activity. PMID:24856508

  12. Determination of ultra-trace Sb(III) in seawater by stripping chronopotentiometry (SCP) with a mercury film electrode in the presence of copper.

    PubMed

    Tanguy, V; Waeles, M; Vandenhecke, J; Riso, R D

    2010-04-15

    This work reports the determination of ultra-trace of Sb(III) in seawater by using a stripping chronopotentiometric (SCP) method with a mercury film electrode. A sensitivity and detection limit of 360 ms L microg(-1) and 8 ng L(-1) (70 pM), respectively, were accomplished for a 15-min electrolysis time. Compared to the only two chronopotentiometric methods reported for Sb(III) determination in seawater, our method is more sensitive and does not need to use a medium exchange procedure before the stripping step. Moreover, the use of a double electrolysis potential (-450 mV and -250 mV) allows the analysis of Sb(III) independently from the Cu level in the sample. The method was successfully used to study the behaviour of dissolved Sb(III) in the Penzé estuary, NW France. PMID:20188971

  13. Screen-printed electrode based electrochemical detector coupled with ionic liquid dispersive liquid-liquid microextraction and microvolume back-extraction for determination of mercury in water samples.

    PubMed

    Fernández, Elena; Vidal, Lorena; Martín-Yerga, Daniel; Blanco, María del Carmen; Canals, Antonio; Costa-García, Agustín

    2015-04-01

    A novel approach is presented, whereby gold nanostructured screen-printed carbon electrodes (SPCnAuEs) are combined with in-situ ionic liquid formation dispersive liquid-liquid microextraction (in-situ IL-DLLME) and microvolume back-extraction for the determination of mercury in water samples. In-situ IL-DLLME is based on a simple metathesis reaction between a water-miscible IL and a salt to form a water-immiscible IL into sample solution. Mercury complex with ammonium pyrrolidinedithiocarbamate is extracted from sample solution into the water-immiscible IL formed in-situ. Then, an ultrasound-assisted procedure is employed to back-extract the mercury into 10 µL of a 4 M HCl aqueous solution, which is finally analyzed using SPCnAuEs. Sample preparation methodology was optimized using a multivariate optimization strategy. Under optimized conditions, a linear range between 0.5 and 10 µg L(-1) was obtained with a correlation coefficient of 0.997 for six calibration points. The limit of detection obtained was 0.2 µg L(-1), which is lower than the threshold value established by the Environmental Protection Agency and European Union (i.e., 2 µg L(-1) and 1 µg L(-1), respectively). The repeatability of the proposed method was evaluated at two different spiking levels (3 and 10 µg L(-1)) and a coefficient of variation of 13% was obtained in both cases. The performance of the proposed methodology was evaluated in real-world water samples including tap water, bottled water, river water and industrial wastewater. Relative recoveries between 95% and 108% were obtained. PMID:25640123

  14. Ultramicroband array electrode. 1. Analysis of mercury in contaminated soils and flue gas exposed samples using a gold-plated iridium portable system by anodic stripping voltammetry

    SciTech Connect

    Xiao, L.; Dietze, W.; Nyasulu, F.; Mibeck, B.A.F.

    2006-07-15

    The applicability of a gold-plated iridium Nano-Band array ultramicroelectrode (6 {mu}m by 0.2 {mu}m, 64-{mu}m interspacing, 100 electrode bands) in the analysis of mercury using a portable system is demonstrated by anodic stripping voltammetry in real-life samples. Optimized measurement parameters, 0.1 M HCl electrolyte, plating potential of 0 mV, and staircase scan mode were identified. The dynamic linear range is 10-180 ppb at 5-s deposition time with 1.5 {mu}C of gold plated. The experimental detection limit for Hg{sup 2+} in 0.1 M HCl was 0.5 ppb at a deposition time of 4 min and a scan rate of 10 V/s. Real-life samples, such as flue gas exposed samples from flue gas simulators could be analyzed within 5 min using the method of standard additions. We identified a field-portable extraction procedure for soil samples using 1:1 concentrated HNO{sub 3}/30% H{sub 2}O{sub 2} mixture, compatible with ASV and the iridium electrode. The detection limit for soils is 1 ppm. The results obtained using ASV are in good agreement with reference values using cold vapor atomic absorption for the sample matrixes studied here. To our knowledge, this is the first mercury application using a reusable iridium array ultramicroelectrode. The portable potentiostat is less than 500 g, and together with the portable digestion method, makes the Nano-Band Explorer system field applicable.

  15. Foot Drop

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Foot Drop Information Page Table of Contents (click to ... research is being done? Clinical Trials What is Foot Drop? Foot drop describes the inability to raise ...

  16. Liquid electrode

    DOEpatents

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  17. Identification of elemental mercury in the subsurface

    DOEpatents

    Jackson, Dennis G

    2015-01-06

    An apparatus and process is provided for detecting elemental mercury in soil. A sacrificial electrode of aluminum is inserted below ground to a desired location using direct-push/cone-penetrometer based equipment. The insertion process removes any oxides or previously found mercury from the electrode surface. Any mercury present adjacent the electrode can be detected using a voltmeter which indicates the presence or absence of mercury. Upon repositioning the electrode within the soil, a fresh surface of the aluminum electrode is created allowing additional new measurements.

  18. A novel voltammetric sensor for sensitive detection of mercury(II) ions using glassy carbon electrode modified with graphene-based ion imprinted polymer.

    PubMed

    Ghanei-Motlagh, Masoud; Taher, Mohammad Ali; Heydari, Abolfazl; Ghanei-Motlagh, Reza; Gupta, Vinod K

    2016-06-01

    In this paper, a novel strategy was proposed to prepare ion-imprinted polymer (IIP) on the surface of reduced graphene oxide (RGO). Polymerization was performed using methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, 2,2'-((9E,10E)-1,4-dihydroxyanthracene-9,10-diylidene) bis(hydrazine-1-carbothioamide) (DDBHCT) as the chelating agent and ammonium persulfate (APS) as initiator, via surface imprinted technique. The RGO-IIP was characterized by means of Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The electrochemical procedure was based on the accumulation of Hg(II) ions at the surface of a modified glassy carbon electrode (GCE) with RGO-IIP. The prepared RGO-IIP sensor has higher voltammetric response compared to the non-imprinted polymer (NIP), traditional IIP and RGO. The RGO-IIP modified electrode exhibited a linear relationship toward Hg(II) concentrations ranging from 0.07 to 80 μg L(-1). The limit of detection (LOD) was found to be 0.02 μg L(-1) (S/N=3), below the guideline value from the World Health Organization (WHO). The applicability of the proposed electrochemical sensor to determination of mercury(II) ions in different water samples was reported. PMID:27040231

  19. Simultaneous electrochemical sensing of thallium, lead and mercury using a novel ionic liquid/graphene modified electrode.

    PubMed

    Bagheri, Hasan; Afkhami, Abbas; Khoshsafar, Hosein; Rezaei, Mosayeb; Sabounchei, Seyed Javad; Sarlakifar, Mehdi

    2015-04-22

    In the present manuscript, an electrochemical sensor for the sensitive detection of Tl(+), Pb(2+) and Hg(2+) is described. A new composite electrode has been fabricated using graphene, 1-n-octylpyridinum hexafluorophosphate (OPFP), and [2,4-Cl2C6H3C(O)CHPPh3] (L), as a new synthetic phosphorus ylide. The physicochemical and electrochemical characterizations of fabricated sensor were investigated in details. The advantages of the proposed composite electrode are its ability in simultaneous electrochemical detection of Tl(+), Pb(2+) and Hg(2+) with good selectivity, stability and no need for separating of the three species from complex mixtures prior to electrochemical measurements. The analytical performance of the proposed electrode was examined using square wave voltammetry. Tl(+), Pb(2+) and Hg(2+) can be determined in linear ranges from 1.25×10(-9) to 2.00×10(-7) mol L(-1). Low detection limits of 3.57×10(-10) mol L(-1) for Tl(+), 4.50×10(-10) mol L(-1) for Pb(2+) and 3.86×10(-10) mol L(-1) for Hg(2+) were achieved. Finally, the proposed electrochemical sensor was applied to detect trace analyte ions in various water and soil samples with satisfactory results. PMID:25819787

  20. Controlling charge on levitating drops.

    PubMed

    Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M

    2007-08-01

    Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation. PMID:17580951

  1. Liquid electrode

    DOEpatents

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  2. Drop dynamics

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.

    1981-01-01

    The drop dynamics module is a Spacelab-compatible acoustic positioning and control system for conducting drop dynamics experiments in space. It consists basically of a chamber, a drop injector system, an acoustic positioning system, and a data collection system. The principal means of collecting data is by a cinegraphic camera. The drop is positioned in the center of the chamber by forces created by standing acoustic waves generated in the nearly cubical chamber (about 12 cm on a side). The drop can be spun or oscillated up to fission by varying the phse and amplitude of the acoustic waves. The system is designed to perform its experiments unattended, except for start-up and shutdown events and other unique events that require the attention of the Spacelab payload specialist.

  3. Pressure Drop

    NASA Technical Reports Server (NTRS)

    Lawson, Mike

    2010-01-01

    Mike Lawson briefly discussed pressure drop for aerospace applications and presented short stories about adventures experienced while working at NASA and General Dynamics, including exposure to technologies like the Crew and Equipment Translation Aid (CETA) cart and the SWME.

  4. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  5. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  6. OPTIMIZATION OF VOLTAMMETRIC METHODS FOR AN IN SITU DETERMINATION OF TOTAL SULFIDE IN ANOXIC POREWATER USING A MERCURY PLATED GOLD ELECTRODE

    EPA Science Inventory

    Voltammetric methods for determination of total sulfide concentrations in anoxic sediments utilizing a previously described [1] gold-based mercury amalgam microelectrode were optimized. Systematic studies in NaCl (supporting electrolyte) and porewater indicate variations in ionic...

  7. THE EFFECT OF MERCURY CONTROLS ON WALLBOARD MANUFACTURE

    SciTech Connect

    Sandra Meischen

    2004-07-01

    Pending EPA regulations may mandate 70 to 90% mercury removal efficiency from utility flue gas. A mercury control option is the trapping of oxidized mercury in wet flue gas desulfurization systems (FGD). The potential doubling of mercury in the FGD material and its effect on mercury volatility at temperatures common to wallboard manufacture is a concern that could limit the growing byproduct use of FGD material. Prediction of mercury fate is limited by lack of information on the mercury form in the FGD material. The parts per billion mercury concentrations prevent the identification of mercury compounds by common analytical methods. A sensitive analytical method, cold vapor atomic fluorescence, coupled with leaching and thermodecomposition methods were evaluated for their potential to identify mercury compounds in FGD material. The results of the study suggest that the mercury form is dominated by the calcium sulfate matrix and is probably associated with the sulfate form in the FGD material. Additionally, to determine the effect of high mercury concentration FGD material on wallboard manufacture, a laboratory FGD unit was built to trap the oxidized mercury generated in a simulated flue gas. Although the laboratory prepared FGD material did not contain the mercury concentrations anticipated, further thermal tests determined that mercury begins to evolve from FGD material at 380 to 390 F, consequently dropping the drying temperature should mitigate mercury evolution if necessary. Mercury evolution is also diminished as the weight of the wallboard sample increased. Consequently, mercury evolution may not be a significant problem in wallboard manufacture.

  8. In situ control of local pH using a boron doped diamond ring disk electrode: optimizing heavy metal (mercury) detection.

    PubMed

    Read, Tania L; Bitziou, Eleni; Joseph, Maxim B; Macpherson, Julie V

    2014-01-01

    A novel electrochemical approach to modifying aqueous solution pH in the vicinity of a detector electrode in order to optimize the electrochemical measurement signal is described. A ring disk electrode was employed where electrochemical decomposition of water on the ring was used to generate a flux of protons which adjusts the local pH controllably and quantifiably at the disk. Boron doped diamond (BDD) functioned as the electrode material given the stability of this electrode surface especially when applying high potentials (to electrolyze water) for significant periods of time. A pH sensitive iridium oxide electrode electrodeposited on the disk electrode demonstrated that applied positive currents on the BDD ring, up to +50 μA, resulted in a local pH decrease of over 4 orders of magnitude, which remained stable over the measurement time of 600 s. pH generation experiments were found to be in close agreement with finite element simulations. The dual electrode arrangement was used to significantly improve the stripping peak signature for Hg in close to neutral conditions by the generation of pH = 2.0, locally. With the ability to create a localized pH change electrochemically in the vicinity of the detector electrode, this system could provide a simple method for optimized analysis at the source, e.g., river and sea waters. PMID:24321045

  9. Membrane Bioprobe Electrodes

    ERIC Educational Resources Information Center

    Rechnitz, Garry A.

    1975-01-01

    Describes the design of ion selective electrodes coupled with immobilized enzymes which operate either continuously or on drop-sized samples. Cites techniques for urea, L-phenylalanine and amygdalin. Micro size electrodes for use in single cells are discussed. (GH)

  10. Spark gap electrode erosion

    NASA Astrophysics Data System (ADS)

    Krompholz, H.; Kristiansen, M.

    1984-12-01

    The results of a one-year contract on electrode erosion phenomena are summarized. The arc voltage drop in a spark gap was measured for various electrode, gas, and pressure combinations. A previously developed model of self breakdown voltage distribution was extended. A jet model for electrode erosion was proposed and an experimental arrangement for testing the model was constructed. The effects of inhomogeneities and impurities in the electrodes were investigated. Some of the work described here is scheduled for completion in 1985 under a current grant (AFOSR 84-0032). The areas of investigation described here include: (1) Self breakdown voltage distributions; (2) Electrode erosion; (3) Spark gap voltage recovery.

  11. Mercury and Your Health

    MedlinePlus

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  12. Hg(2+) detection using a disposable and miniaturized screen-printed electrode modified with nanocomposite carbon black and gold nanoparticles.

    PubMed

    Cinti, Stefano; Santella, Francesco; Moscone, Danila; Arduini, Fabiana

    2016-05-01

    A miniaturized screen-printed electrode (SPE) modified with a carbon black-gold nanoparticle (CBNP-AuNP) nanocomposite has been developed as an electrochemical sensor for the detection of inorganic mercury ions (Hg(2+)). The working electrode surface has been modified with nanocomposite constituted of CBNPs and AuNPs by an easy drop casting procedure that makes this approach extendible to an automatable mass production of modified SPEs. Square wave anodic stripping voltammetry (SWASV) was adopted to perform Hg(2+) detection, revealing satisfactory sensitivity and detection limit, equal to 14 μA ppb(-1) cm(-2) and 3 ppb, respectively. The applicability of the CBNP-AuNP-SPE for the determination of inorganic mercury has been assessed in river water by a simple filtration and acidification of the sample as well as in soil by means of a facile acidic extraction procedure assisted by ultrasound. PMID:26803751

  13. Planet Mercury

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Mariner 10's first image of Mercury acquired on March 24, 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments.

    This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth.

    Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage.

  14. Planet Mercury

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Mariner 10's first image of Mercury acquired on March 24, 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments. This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth. Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage.

  15. Mercury Flow Through the Mercury-Containing Lamp Sector of the Economy of the United States

    USGS Publications Warehouse

    Goonan, Thomas G.

    2006-01-01

    Introduction: This Scientific Investigations Report examines the flow of mercury through the mercury-containing lamp sector of the U.S. economy in 2001 from lamp manufacture through disposal or recycling. Mercury-containing lamps illuminate commercial and industrial buildings, outdoor areas, and residences. Mercury is an essential component in fluorescent lamps and high-intensity discharge lamps (high-pressure sodium, mercury-vapor, and metal halide). A typical fluorescent lamp is composed of a phosphor-coated glass tube with electrodes located at either end. Only a very small amount of the mercury is in vapor form. The remainder of the mercury is in the form of either liquid mercury metal or solid mercury oxide (mercury oxidizes over the life of the lamp). When voltage is applied, the electrodes energize the mercury vapor and cause it to emit ultraviolet energy. The phosphor coating absorbs the ultraviolet energy, which causes the phosphor to fluoresce and emit visible light. Mercury-containing lamps provide more lumens per watt than incandescent lamps and, as a result, require from three to four times less energy to operate. Mercury is persistent and toxic within the environment. Mercury-containing lamps are of environmental concern because they are widely distributed throughout the environment and are easily broken in handling. The magnitude of lamp sector mercury emissions, estimated to be 2.9 metric tons per year (t/yr), is small compared with the estimated mercury losses of the U.S. coal-burning and chlor-alkali industries, which are about 70 t/yr and about 90 t/yr, respectively.

  16. Apparatus for isotopic alteration of mercury vapor

    DOEpatents

    Grossman, Mark W.; George, William A.; Marcucci, Rudolph V.

    1988-01-01

    An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

  17. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  18. Electrochemistry in an acoustically levitated drop.

    PubMed

    Chainani, Edward T; Ngo, Khanh T; Scheeline, Alexander

    2013-02-19

    Levitated drops show potential as microreactors, especially when radicals are present as reactants or products. Solid/liquid interfaces are absent or minimized, avoiding adsorption and interfacial reaction of conventional microfluidics. We report amperometric detection in an acoustically levitated drop with simultaneous ballistic addition of reactant. A gold microelectrode sensor was fabricated with a lithographic process; active electrode area was defined by a photosensitive polyimide mask. The microdisk gold working electrode of radius 19 μm was characterized using ferrocenemethanol in aqueous buffer. Using cyclic voltammetry, the electrochemically active surface area was estimated by combining a recessed microdisk electrode model with the Randles-Sevcik equation. Computer-controlled ballistic introduction of reactant droplets into the levitated drop was developed. Chronoamperometric measurements of ferrocyanide added ballistically demonstrate electrochemical monitoring using the microfabricated electrode in a levitated drop. Although concentration increases with time due to drop evaporation, the extent of concentration is predictable with a linear evaporation model. Comparison of diffusion-limited currents in pendant and levitated drops show that convection arising from acoustic levitation causes an enhancement of diffusion-limited current on the order of 16%. PMID:23351154

  19. Hydrodynamic voltammetry at tubular electrodes-III Determination of traces of bismuth by differential-pulse anodic-stripping voltammetry at a glassy-carbon tubular electrode with in situ mercury plating.

    PubMed

    Zhen, W; Qiang, C

    1987-07-01

    An equation for the current in differential-pulse anodic-stripping voltammetry at tubular electrodes is derived. Application of a glassy-carbon tubular electrode to determination of traces of bismuth in environmental water samples by differential-pulse anodic-stripping voltammetry is described. In hydrochloric acid medium, the stripping peak current is proportional to the concentration of bismuth in the range 2-100 ng/ml, with a deposition time of 3-10 min. The detection limit is 0.5 ng/ml. PMID:18964381

  20. Kuramoto transition in an ensemble of mercury beating heart systems.

    PubMed

    Verma, Dinesh Kumar; Singh, Harpartap; Parmananda, P; Contractor, A Q; Rivera, M

    2015-06-01

    We have studied, experimentally, the collective behavior of the electrically coupled autonomous Mercury Beating Heart (MBH) systems exhibiting the breathing mode, by varying both the coupling strength and the population size (from N = 3 to N = 16). For a fixed N, the electrical and the mechanical activities of the MBH systems achieve complete synchronization at different coupling strengths. The electrical activity of each MBH system is measured by the corresponding electrode potential (Ei = Vi). Additionally, the mechanical activity of each MBH oscillator is visually observed (snapshots and video clips). Subsequently, this activity is quantified by calculating the temporal variation in the area (Ai) of the Hg drop. As a result, the synchronization of the electrical (Ei = Vi) and the mechanical (Ai) activities can be measured. The extent of synchronization was quantified by employing the order parameter (r). Our experimental results are found to be in agreement with the Kuramoto theory. PMID:26117134

  1. Mercury(II) trace detection by a gold nanoparticle-modified glassy carbon electrode using square-wave anodic stripping voltammetry including a chloride desorption step.

    PubMed

    Laffont, Laure; Hezard, Teddy; Gros, Pierre; Heimbürger, Lars-Eric; Sonke, Jeroen E; Behra, Philippe; Evrard, David

    2015-08-15

    Gold nanoparticles (AuNPs) were deposited on a glassy carbon (GC) substrate by constant potential electrolysis and characterized by cyclic voltammetry in H2SO4 and field emission gun scanning electron microscopy (FEG-SEM). The modified AuNPs-GC electrode was used for low Hg(II) concentration detection using a Square Wave Anodic Stripping Voltammetry (SWASV) procedure which included a chloride desorption step. The comparison of the obtained results with our previous work in which no desorption step was used showed that this latter step significantly improved the analytical performances, providing a three time higher sensitivity and a limit of detection of 80pM for 300s preconcentration, as well as a lower average standard deviation. The influence of chloride concentration on the AuNPs-GC electrode response to Hg(II) trace amounts was also studied and its optimal value confirmed to be in the 10(-2)M range. Finally, the AuNPs-GC electrode was used for the determination of Hg(II) in a natural groundwater sample from south of France. By using a preconcentration time of 3000s, a Hg(II) concentration of 19±3pM was found, which compared well with the result obtained by cold vapor atomic fluorescence spectroscopy (22±2pM). PMID:25966376

  2. Dilating Eye Drops

    MedlinePlus

    ... Frequently Asked Questions Español Condiciones Chinese Conditions Dilating Eye Drops En Español Read in Chinese What are dilating eye drops? Dilating eye drops contain medication to enlarge ( ...

  3. COD measurement based on the integrated liquid drop sensor

    NASA Astrophysics Data System (ADS)

    Qiu, Zurong; Zhang, Guoxiong; Song, Qing; Xu, Jian

    2005-02-01

    A study on Chemical Oxygen Demand (COD) measuring method is reported, in which the COD value is measured by an integrated liquid drop monitor sensor without any reagent and chemical treatment. The integrated drop sensor consists of a liquid head, an integrated fiber sensor and a capacitor sensor. The capacitor sensor is composed of a drop head and a ring electrode. As the part of the drop head, the outline of the drop will be changed during the drop forming, which result in the variation of the capacitance. The fiber sensor is composed of two fibers that are positioned into the liquid drop. The light signal goes into the liquid drop from one fiber and out from the other one. A unique fingerprint of the liquid drop can be got by the data processing. The matching between the COD value of a liquid and the codes of the fingerprints in the database are presented and discussed.

  4. Alternate drop pulse polarography

    USGS Publications Warehouse

    Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.

    1976-01-01

    The new technique of alternate drop pulse polarography is presented. An experimental evaluation of alternate drop pulse polarography shows complete compensation of the capacitative background due to drop expansion. The capillary response phenomenon was studied in the absence of faradaic reaction and the capillary response current was found to depend on the pulse width to the -0.72 power. Increased signal-to-noise ratios were obtained using alternate drop pulse polarography at shorter drop times.

  5. Catalytic Reactor For Oxidizing Mercury Vapor

    DOEpatents

    Helfritch, Dennis J.

    1998-07-28

    A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

  6. Film boiling of mercury droplets

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. For these data, diffusion from the upper surface of the drop is a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  7. Film boiling of mercury droplets

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. Diffusion from the upper surface of the drop appears as a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  8. Micro coulometric titration in a liquid drop.

    PubMed

    Kanyanee, Tinakorn; Fuekhad, Pongwasin; Grudpan, Kate

    2013-10-15

    Miniaturized coulometric titration in a liquid drop has been investigated. Assays of ascorbic acid and thiosulfate with iodine titration were chosen as models. Constant volumes of falling liquid drops containing sample or reagent are manipulated via gravimetrical force to move along a slope hydrophobic path and directed to stop or to move out from an electrode. Such manipulation is useful for delivery of sample and reagents, in a way of flow without tubing. Electrochemical generation of titrant, in this case, iodine, is started at the electrode and micro coulometric titration can be performed in a drop by applying constant current. Timing in the titration can be made via naked eye with a stopwatch or via recording with a webcam camera connecting to a computer to detect the change due to the blue color complex of the excess iodine and starch. PMID:24054589

  9. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie; James, John T.; McCoy, Torin; Garcia, Hector

    2010-01-01

    Many lamps used in various spacecraft contain elemental mercury, which is efficiently absorbed through the lungs as a vapor. The liquid metal vaporizes slowly at room temperature, but may be completely vaporized when lamps are operating. Because current spacecraft environmental control systems are unable to remove mercury vapors, we considered short-term and long-term exposures. Using an existing study, we estimated mercury vapor releases from lamps that are not in operation during missions lasting less than or equal to 30 days; whereas we conservatively assumed complete vaporization from lamps that are operating or being used during missions lasing more than 30 days. Based on mercury toxicity, the Johnson Space Center's Toxicology Group recommends stringent safety controls and verifications for any hardware containing elemental mercury that could yield airborne mercury vapor concentrations greater than 0.1 mg/m3 in the total spacecraft atmosphere for exposures lasting less than or equal to 30 days, or concentrations greater than 0.01 mg/m3 for exposures lasting more than 30 days.

  10. Attracting Water Drops

    NASA Video Gallery

    Astronauts Cady Coleman and Ron Garan perform the Attracting Water Drops experiment from Chabad Hebrew Academy in San Diego, Calif. This research determines if a free-floating water drop can be att...

  11. Dilating Eye Drops

    MedlinePlus

    ... Conditions Most Common Searches Adult Strabismus Amblyopia Cataract Conjunctivitis Corneal Abrasions Dilating Eye Drops Lazy eye (defined) ... Loading... Most Common Searches Adult Strabismus Amblyopia Cataract Conjunctivitis Corneal Abrasions Dilating Eye Drops Lazy eye (defined) ...

  12. Ternary drop collisions

    NASA Astrophysics Data System (ADS)

    Hinterbichler, Hannes; Planchette, Carole; Brenn, Günter

    2015-10-01

    It has been recently proposed to use drop collisions for producing advanced particles or well-defined capsules, or to perform chemical reactions where the merged drops constitute a micro-reactor. For all these promising applications, it is essential to determine whether the merged drops remain stable after the collision, forming a single entity, or if they break up. This topic, widely investigated for binary drop collisions of miscible and immiscible liquid, is quite unexplored for ternary drop collisions. The current study aims to close this gap by experimentally investigating collisions between three equal-sized drops of the same liquid arranged centri-symmetrically. Three drop generators are simultaneously operated to obtain controlled ternary drop collisions. The collision outcomes are observed via photographs and compared to those of binary collisions. Similar to binary collisions, a regime map is built, showing coalescence and bouncing as well as reflexive and stretching separation. Significant differences are observed in the transitions between these regimes.

  13. Method and apparatus for controlling electrode gap during vacuum consumable arc remelting

    DOEpatents

    Fisher, R.W.; Maroone, J.P.; Tipping, D.W.; Zanner, F.J.

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  14. Mercury Contamination

    PubMed Central

    Thompson, Marcella R.

    2013-01-01

    IN BRIEF A residential elemental mercury contamination incident in Rhode Island resulted in the evacuation of an entire apartment complex. To develop recommendations for improved response, all response-related documents were examined; personnel involved in the response were interviewed; policies and procedures were reviewed; and environmental monitoring data were compiled from specific phases of the response for analysis of effect. A significant challenge of responding to residential elemental mercury contamination lies in communicating risk to residents affected py a HazMat spill. An ongoing, open and honest dialogue is emphasized where concerns of the public are heard and addressed, particularly when establishing and/or modifying policies and procedures for responding to residential elemental mercury contamination. PMID:23436951

  15. Pseudopolarography of copper complexes in seawater using a vibrating gold microwire electrode.

    PubMed

    Gibbon-Walsh, Kristoff; Salaün, Pascal; van den Berg, Constant M G

    2012-06-28

    Copper (Cu) in seawater can be determined by anodic stripping voltammetry using a vibrating gold microwire electrode (VGME) with a much lower limit of detection than using a mercury electrode, enabling detection of labile Cu at trace level. The possibility of pseudopolarography of Cu using the VGME is investigated here and is calibrated against known chelating agents. The sensitivity much (15-fold) improved by application of a desorption step to remove adsorbed organic substances and excess anions. The notorious tendency of solid electrodes to be affected by memory effects was overcome by a conditioning interval between measurements that stabilized the electrode response. Model ligands, including EDTA, humic substances (HS), and glutathione (examples of natural ligands) were analyzed to calibrate the half-wave shift to complex stability. The half-wave shift on the VGME is much greater (~2×) than that on the mercury drop electrode which is attributed to several parameters including a much (5-fold) thinner diffusion layer on the VGME. Experiments showed that the same procedure is suitable for pseudopolarography of zinc. Application of the new method to samples from the Irish Sea showed Cu occurring in several complexes, all strongly bound, and some occurring in the electrochemically reversible region of the pseudopolarogram. The humic substance complex of Cu was also found to occur in the reversible region of the pseudopolarogram. The pseudopolarograms of Cu in seawater were unaffected by sample filtration and did not require purging to remove dissolved oxygen, suggesting that this method can be readily used as part of an in situ measuring system. PMID:22468628

  16. Planar microfluidic drop splitting and merging.

    PubMed

    Collignon, Sean; Friend, James; Yeo, Leslie

    2015-04-21

    Open droplet microfluidic platforms offer attractive alternatives to closed microchannel devices, including lower fabrication cost and complexity, significantly smaller sample and reagent volumes, reduced surface contact and adsorption, as well as drop scalability, reconfigurability, and individual addressability. For these platforms to be effective, however, they require efficient schemes for planar drop transport and manipulation. While there are many methods that have been reported for drop transport, it is far more difficult to carry out other drop operations such as dispensing, merging and splitting. In this work, we introduce a novel alternative to merge and, more crucially, split drops using laterally-offset modulated surface acoustic waves (SAWs). The energy delivery into the drop is divided into two components: a small modulation amplitude excitation to initiate weak rotational flow within the drop followed by a short burst in energy to induce it to stretch. Upon removal of the SAW energy, capillary forces at the center of the elongated drop cause the liquid in this capillary bridge region to drain towards both ends of the drop, resulting in its collapse and therefore the splitting of the drop. This however occurs only below a critical Ohnesorge number, which is a balance between the viscous forces that retard the drainage and the sufficiently large capillary forces that cause the liquid bridge to pinch. We show the possibility of reliably splitting drops into two equal sized droplets with an average deviation in their volumes of only around 4% and no greater than 10%, which is comparable to the 7% and below splitting deviation obtained with electrowetting drop splitting techniques. In addition, we also show that it is possible to split the drop asymmetrically to controllably and reliably produce droplets of different volumes. Such potential as well as the flexibility in tuning the device to operate on drops of different sizes without requiring electrode

  17. Potential Drop Mapping for Corrosion Monitoring

    NASA Astrophysics Data System (ADS)

    Sposito, G.; Cawley, P.; Nagy, P. B.

    2009-03-01

    The present study evaluates the accuracy with which the depth of defects due to corrosion/erosion on the far surface can be estimated by means of low-frequency Potential Drop measurements, as a function of defect size and probe geometry. A novel array probe configuration, in which the injecting and measuring electrodes are adjacent to each other, is suggested and its performance compared with that of the electrode arrangement most commonly used in commercial systems. The results of the Finite Element model are validated experimentally.

  18. Drag on Sessile Drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Nobes, David; Sen, Debjyoti; Amirfazli, Alidad; University of Alberta Mechanical Engineering Collaboration

    2013-11-01

    We present the first ever direct measurements of the coefficient of drag on sessile drops at Reynolds numbers from the creeping flow regime up to the point of incipient motion, made using a newly developed floating element differential drag sensor. Surfaces of different wettabilities (PMMA, Teflon, and a superhydrophobic surface (SHS)), wet by water, hexadecane, and various silicone oils, are used to study the effects of drop shape, and fluid properties on drag. The relation between drag coefficient and Reynolds number (scaled by drop height) varies slightly with liquid-solid system and drop volume with results suggesting the drop experiences increased drag compared to similar shaped solid bodies due to drop oscillation influencing the otherwise laminar flow. Drops adopting more spherical shapes are seen to experience the greatest force at any given airspeed. This indicates that the relative exposed areas of drops is an important consideration in terms of force, with implications for the shedding of drops in applications such as airfoil icing and fuel cell flooding. The measurement technique used in this work can be adapted to measure drag force on other deformable, lightly adhered objects such as dust, sand, snow, vesicles, foams, and biofilms. The authours acknowledge NSERC, Alberta Innovates Technology Futures, and the Killam Trusts.

  19. Mercury, elemental

    Integrated Risk Information System (IRIS)

    Mercury , elemental ; CASRN 7439 - 97 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  20. Mercury's Messenger

    ERIC Educational Resources Information Center

    Chapman, Clark R.

    2004-01-01

    Forty years after Mariner 2, planetary exploration has still only just begun, and many more missions are on drawing boards, nearing the launch pad, or even en route across interplanetary space to their targets. One of the most challenging missions that will be conducted this decade is sending the MESSENGER spacecraft to orbit the planet Mercury.…

  1. Revealing Mercury

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.; Solomon, S. C.; Head, J. W.; Watters, T. R.; Murchie, S. L.; Robinson, M. S.; Chapman, C. R.; McNutt, R. L.

    2009-04-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, developed under NASA's Discovery Program, launched in August 2004. En route to insertion into orbit about Mercury in 2011, MESSENGER flies by Mercury three times. The first and second of these encounters were accomplished in January and October of 2008. These flybys viewed portions of Mercury's surface that were not observed by Mariner 10 during its reconnaissance of somewhat less than half of the planet in 1974-1975. All MESSENGER instruments operated during each flyby and returned a wealth of new data. Many of the new observations were focused on the planet's geology, including monochrome imaging at resolutions as high as 100 m/pixel, multispectral imaging in 11 filters at resolutions as high as 500 m/pixel, laser altimetry tracks extending over several thousands of kilometers, and high-resolution spectral measurements of several types of terrain. Here we present an overview of the first inferences on the global geology of Mercury from the MESSENGER observations. Whereas evidence for volcanism was equivocal from Mariner 10 data, the new MESSENGER images and altimetry provide compelling evidence that volcanism was widespread and protracted on Mercury. Color imaging reveals three common spectral units on the surface: a higher-reflectance, relatively red material occurring as a distinct class of smooth plains, typically with distinct embayment relationships interpreted to indicate volcanic emplacement; a lower-reflectance, relatively blue material typically excavated by impact craters and therefore inferred to be more common at depth; and a spectrally intermediate terrain that constitutes much of the uppermost crust. Three more minor spectral units are also seen: fresh crater ejecta, reddish material associated with rimless depressions interpreted to be volcanic centers, and high-reflectance deposits seen in some crater floors. Preliminary measurements of crater size

  2. Use of glassy carbon as a working electrode in controlled potential coulometry.

    PubMed

    Plock, C E; Vasquez, J

    1969-11-01

    Glassy carbon has been used as the working electrode in controlled potential coulometry. The results of coulometric investigations of chromium, copper, iron, uranium and neptunium are compared with results obtained with platinum or mercury working electrodes. The accuracy of results with the glassy carbon electrode compares favourably with the results obtainable with the other electrodes, but the precision is poorer. PMID:18960665

  3. Youth Crime Drop. Report.

    ERIC Educational Resources Information Center

    Butts, Jeffrey A.

    This report examines the recent drop in violent crime in the United States, discussing how much of the decrease seen between 1995-99 is attributable to juveniles (under age 18 years) and older youth (18-24 years). Analysis of current FBI arrest data indicates that not only did America's violent crime drop continue through 1999, but falling youth…

  4. Axisymmetric Liquid Hanging Drops

    ERIC Educational Resources Information Center

    Meister, Erich C.; Latychevskaia, Tatiana Yu

    2006-01-01

    The geometry of drops hanging on a circular capillary can be determined by numerically solving a dimensionless differential equation that is independent on any material properties, which enables one to follow the change of the height, surface area, and contact angle of drops hanging on a particular capillary. The results show that the application…

  5. Drop Tower Physics

    ERIC Educational Resources Information Center

    Dittrich, William A.

    2014-01-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in "The Physics Teacher" in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at…

  6. Mercury's South Polar Region

    NASA Video Gallery

    This animation shows 89 wide-angle camera (WAC) images of Mercury’s south polar region acquired by the Mercury Dual Imaging System (MDIS) over one complete Mercury solar day (176 Earth days). Thi...

  7. MERCURY IN TREE RINGS

    EPA Science Inventory

    Contamination caused by release of mercury into the environment is a growing concern. This release occurs due to a variety of anthropogenic activities and natural sources. After release, mercury undergoes complicated chemical transformations. The inorganic forms of mercury releas...

  8. Dual detection of nitrate and mercury in water using disposable electrochemical sensors.

    PubMed

    Bui, Minh-Phuong N; Brockgreitens, John; Ahmed, Snober; Abbas, Abdennour

    2016-11-15

    Here we report a disposable, cost effective electrochemical paper-based sensor for the detection of both nitrate and mercury ions in lake water and contaminated agricultural runoff. Disposable carbon paper electrodes were functionalized with selenium particles (SePs) and gold nanoparticles (AuNPs). The AuNPs served as a catalyst for the reduction of nitrate ions using differential pulse voltammetry techniques. The AuNPs also served as a nucleation sites for mercury ions. The SePs further reinforced this mercury ion nucleation due to their high binding affinity to mercury. Differential pulse stripping voltammetry techniques were used to further enhance mercury ion accumulation on the modified electrode. The fabricated electrode was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electrochemistry techniques. The obtained results show that the PEG-SH/SePs/AuNPs modified carbon paper electrode has a dual functionality in that it can detect both nitrate and mercury ions without any interference. The modified carbon paper electrode has improved the analytical sensitivity of nitrate and mercury ions with limits of detection of 8.6µM and 1.0ppb, respectively. Finally, the modified electrode was used to measure nitrate and mercury in lake water samples. PMID:27183277

  9. Drop Tower Physics

    NASA Astrophysics Data System (ADS)

    Dittrich, William A. Toby

    2014-10-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in The Physics Teacher1 in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at the drop tower in Bremen, Germany. Using these drop towers, one can briefly investigate various physical systems operating in this near zero-g environment. The resulting "Drop Tower Physics" is a new and exciting way to challenge students with a physical example that requires solid knowledge of many basic physics principles, and it forces them to practice the scientific method. The question is, "How would a simple toy, like a pendulum, behave when it is suddenly exposed to a zero-g environment?" The student must then postulate a particular behavior, test the hypothesis against physical principles, and if the hypothesis conforms to these chosen physical laws, the student can formulate a final conclusion. At that point having access to a drop tower is very convenient, in that the student can then experimentally test his or her conclusion. The purpose of this discussion is to explain the response of these physical systems ("toys") when the transition is made to a zero-g environment and to provide video demonstrations of this behavior to support in-class discussions of Drop Tower Physics.

  10. Drop impact of suspensions

    NASA Astrophysics Data System (ADS)

    Thoraval, M.-J.; Boyer, F.; Sandoval Nava, E.; Dijksman, J. F.; Lohse, D.; Snoeijer, J. H.

    2014-11-01

    Drop impact studies have a wide range of applications, many of which involve complex fluids. We study here the liquid drop impact of a silver nano-particles dispersion on a solid glass surface. This dispersion is used for inkjet printing of functional electronic materials. When the impact velocity increases, the drop classically splashes into smaller droplets. However, it surprisingly stops splashing above a critical impact velocity. We combine high-speed imaging experiments with different characterizations of the dispersion to understand this transition to non-splashing.

  11. Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.

    1999-01-01

    Among the major discoveries made by the Mariner 10 mission to the inner planets was the existence of an intrinsic magnetic field at Mercury with a dipole moment of approx. 300 nT R(sup 3, sub M). This magnetic field is sufficient to stand off the solar wind at an altitude of about 1 R(sub M) (i.e. approx. 2439 km). Hence, Mercury possesses a 'magnetosphere' from which the so]ar wind plasma is largely excluded and within which the motion of charged particles is controlled by the planetary magnetic field. Despite its small size relative to the magnetospheres of the other planets, a Mercury orbiter mission is a high priority for the space physics community. The primary reason for this great interest is that Mercury unlike all the other planets visited thus far, lacks a significant atmosphere; only a vestigial exosphere is present. This results in a unique situation where the magnetosphere interacts directly with the outer layer of the planetary crust (i.e. the regolith). At all of the other planets the topmost regions of their atmospheres become ionized by solar radiation to form ionospheres. These planetary ionospheres then couple to electrodynamically to their magnetospheres or, in the case of the weakly magnetized Venus and Mars, directly to the solar wind. This magnetosphere-ionosphere coupling is mediated largely through field-aligned currents (FACs) flowing along the magnetic field lines linking the magnetosphere and the high-latitude ionosphere. Mercury is unique in that it is expected that FACS will be very short lived due to the low electrical conductivity of the regolith. Furthermore, at the earth it has been shown that the outflow of neutral atmospheric species to great altitudes is an important source of magnetospheric plasma (following ionization) whose composition may influence subsequent magnetotail dynamics. However, the dominant source of plasma for most of the terrestrial magnetosphere is the 'leakage'of solar wind across the magnetopause and more

  12. Drop Tower Workshop

    NASA Technical Reports Server (NTRS)

    Urban, David

    2013-01-01

    Ground based microgravity facilities are an important proving ground for space experiments, ground-based research and space hardware risk mitigation. An overview of existing platforms will be discussed with an emphasis on drop tower capabilities. The potential for extension to partial gravity conditions will be discussed. Input will be solicited from attendees for their potential to use drop towers in the future and the need for enhanced capabilities (e.g. partial gravity)

  13. MERCURY RESEARCH STRATEGY.

    EPA Science Inventory

    The USEPA's ORD is pleased to announce the availability of its Mercury Research Strategy. This strategy guides ORD's mercury research program and covers the FY2001-2005 time frame. ORD will use it to prepare a multi-year mercury research implementation plan in 2001. The Mercury R...

  14. Mercury contamination extraction

    DOEpatents

    Fuhrmann, Mark; Heiser, John; Kalb, Paul

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  15. Rain Drop Charge Sensor

    NASA Astrophysics Data System (ADS)

    S, Sreekanth T.

    begin{center} Large Large Rain Drop Charge Sensor Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , S. Murali Das (2) *Atmospheric Sciences Division, Centre for Earth Science Studies, Thiruvananthapuram 695011 (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) Kavyam, Manacaud, Thiruvananthapuram 695009 begin{center} ABSTRACT To study the inter-relations with precipitation electricity and precipitation microphysical parameters a rain drop charge sensor was designed and developed at CESS Electronics & Instrumentation Laboratory. Simultaneous measurement of electric charge and fall speed of rain drops could be done using this charge sensor. A cylindrical metal tube (sensor tube) of 30 cm length is placed inside another thick metal cover opened at top and bottom for electromagnetic shielding. Mouth of the sensor tube is exposed and bottom part is covered with metal net in the shielding cover. The instrument is designed in such a way that rain drops can pass only through unhindered inside the sensor tube. When electrically charged rain drops pass through the sensor tube, it is charged to the same magnitude of drop charge but with opposite polarity. The sensor tube is electrically connected the inverted input of a current to voltage converter operational amplifier using op-amp AD549. Since the sensor is electrically connected to the virtual ground of the op-amp, the charge flows to the ground and the generated current is converted to amplified voltage. This output voltage is recorded using a high frequency (1kHz) voltage recorder. From the recorded pulse, charge magnitude, polarity and fall speed of rain drop are calculated. From the fall speed drop diameter also can be calculated. The prototype is now under test running at CESS campus. As the magnitude of charge in rain drops is an indication of accumulated charge in clouds in lightning, this instrument has potential application in the field of risk and disaster management. By knowing the charge

  16. Mercury exposure aboard an ore boat.

    PubMed

    Roach, Richard R; Busch, Stephanie

    2004-06-01

    Two maritime academy interns (X and Y) were exposed to mercury vapor after spilling a bottle of mercury on the floor in an enclosed storeroom while doing inventory aboard an ore boat. During a 3-day period, intern Y suffered transient clinical intoxication that resolved after he was removed from the environment and he showered and discarded all clothing. His initial serum mercury level dropped from 4 ng/mL to < 0.05 ng/mL. Intern X had an initial level of 11 ng/mL, which continued to rise to a maximum of 188.8 ng/mL. He complained of tremulousness, insomnia, and mild agitation and was hospitalized. He had showered and discarded all clothing except his footwear earlier than intern Y. Intern X's continued exposure due to mercury in the contaminated boots during the 2 weeks before hospitalization was presumed to be the cause. Removing his footwear led to resolution of his toxic symptoms and correlated with subsequent lowered serum mercury levels. Chelation was initiated as recommended, despite its uncertain benefit for neurologic intoxication. Mercury is used in the merchant marine industry in ballast monitors called king gauges. New engineering is recommended for ballast monitoring to eliminate this hazard. PMID:15175181

  17. Segmented electrode hall thruster with reduced plume

    DOEpatents

    Fisch, Nathaniel J.; Raitses, Yevgeny

    2004-08-17

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with segmented electrodes along the channel, which make the acceleration region as localized as possible. Also disclosed are methods of arranging the electrodes so as to minimize erosion and arcing. Also disclosed are methods of arranging the electrodes so as to produce a substantial reduction in plume divergence. The use of electrodes made of emissive material will reduce the radial potential drop within the channel, further decreasing the plume divergence. Also disclosed is a method of arranging and powering these electrodes so as to provide variable mode operation.

  18. Liquid metal drop ejection

    NASA Technical Reports Server (NTRS)

    Khuri-Yakub, B. T.

    1993-01-01

    The aim of this project was to demonstrate the possibility of ejecting liquid metals using drop on demand printing technology. The plan was to make transducers for operation in the 100 MHz frequency range and to use these transducers to demonstrate the ability to eject drops of liquid metals such as gallium. Two transducers were made by indium bonding piezoelectric lithium niobate to quartz buffer rods. The lithium niobate plates were thinned by mechanical polishing to a thickness of 37 microns for operation at 100 MHz. Hemispherical lenses were polished in the opposite ends of the buffer rods. The lenses, which focus the sound waves in the liquid metal, had an F-number equals 1. A mechanical housing was made to hold the transducers and to allow precise control over the liquid level above the lens. We started by demonstrating the ability to eject drops of water on demand. The drops of water had a diameter of 15 microns which corresponds to the wavelength of the sound wave in the water. A videotape of this ejection was made. We then used a mixture of Gallium and Indium (used to lower the melting temperature of the Gallium) to demonstrate the ejection of liquid metal drops. This proved to be difficult because of the oxide skin which forms on the surface of the liquid. In some instances, we were able to eject metal drops, however, this was not consistent and reproducible. An experiment was set up at NASA-Lewis to stabilize the process of drop on demand liquid metal ejection. The object was to place the transducer and liquid metal in a vacuum station so that no oxide would form on the surface. We were successful in demonstrating that liquid metals could be ejected on demand and that this technology could be used for making sheet metal in space.

  19. Drying drops of blood

    NASA Astrophysics Data System (ADS)

    Brutin, David; Sobac, Benjamin; Loquet, Boris; Sampol, José.

    2010-11-01

    The drying of a drop of human blood is fascinating by the complexity of the physical mechanisms that occur as well as the beauty of the phenomenon which has never been previously evidenced in the literature. The final stage of full blood evaporation reveals for a healthy person the same regular pattern with a good reproducibility. Other tests on anemia and hyperlipidemic persons were performed and presented different patterns. By means of digital camera, the influence of the motion of red blood cells (RBCs) which represent about 50% of the blood volume, is revealed as well as its consequences on the final stages of drying. The mechanisms which lead to the final pattern of dried blood drops are presented and explained on the basis of fluid and solid mechanics in conjunction with the principles of hematology. Our group is the first to evidence that the specific regular patterns characteristic of a healthy individual do not appear in a dried drop of blood from a person with blood disease. Blood is a complex colloidal suspension for which the flow motion is clearly non-Newtonian. When drops of blood evaporate, all the colloids are carried by the flow motion inside the drop and interact.

  20. Mercury Quick Facts: Health Effects of Mercury Exposure

    MedlinePlus

    Mercury Quick Facts Health Effects of Mercury Exposure What is Elemental Mercury? Elemental (metallic) mercury is the shiny, silver-gray metal found in thermometers, barometers, and thermostats and other ...

  1. Electrode compositions

    DOEpatents

    Block, J.; Fan, X.

    1998-10-27

    An electrode composition is described for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C{sub 8}-C{sub 15} alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5--4.5 volts.

  2. Electrode compositions

    DOEpatents

    Block, Jacob; Fan, Xiyun

    1998-01-01

    An electrode composition for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C.sub.8 -C.sub.15 alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5-4.5 volts.

  3. FUNDAMENTALS OF MERCURY OXIDATION IN FLUE GAS

    SciTech Connect

    JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Constance Senior; Joseph Helble

    2004-08-01

    The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves two experimental scales and a modeling effort. The team is comprised of University of Utah, Reaction Engineering International, and University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studies include HCl, NOx, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 1 results for the experimental and modeling tasks. Experiments in the drop tube are just beginning and a new, speciated mercury analyzer is up and running. A preliminary assessment has been made for the drop tube experiments using the existing model of gas-phase kinetics.

  4. The temporal nature of forces acting on metal drops in gas metal arc welding

    SciTech Connect

    Jones, L.A.; Eagar, T.W.; Lang, J.H.

    1996-12-31

    At moderate and high welding currents, the most important forces in gas metal arc welding acting on the molten electrode are magnetic forces arising from the interaction between the welding current and its own magnetic field. These forces drive the dynamic evolution of the drop and also depend on the instantaneous shape of the drop. In this paper, experimentally observed manifestations of magnetic forces are shown, and a technique for approximating the temporal evolution of these forces from experimentally measured drop shapes is reported. The technique provides quantitative data illustrating the large increase in the magnetic forces as a drop detaches from the electrode.

  5. Magnetohydrodynamic electrode

    DOEpatents

    Boquist, Carl W.; Marchant, David D.

    1978-01-01

    A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.

  6. Capacitive measurement of mercury column heights in capillaries.

    PubMed

    Frey, Sarah; Richert, Ranko

    2010-03-01

    The detection of changes in volume, e.g., in expansivity or aging measurements, are often translated into mercury column height within a glass capillary. We propose a capacitive technique for measuring the meniscus position using a cylindrical capacitor with mercury as the inner electrode, the capillary material as the dielectric, and a metal coat covering the outside surface of the capillary as the second electrode. The measured capacitance changes linearly with meniscus height, as long as the top mercury level remains within the range of the outer electrode. With the demonstrated noise level of 48 nm for our preliminary setup, meniscus height changes beyond 100 nm can be observed via the capacitance. PMID:20370203

  7. Mercury ion thruster technology

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Matossian, J. N.

    1989-01-01

    The Mercury Ion Thruster Technology program was an investigation for improving the understanding of state-of-the-art mercury ion thrusters. Emphasis was placed on optimizing the performance and simplifying the design of the 30 cm diameter ring-cusp discharge chamber. Thruster performance was improved considerably; the baseline beam-ion production cost of the optimized configuration was reduced to Epsilon (sub i) perspective to 130 eV/ion. At a discharge propellant-utilization efficiency of 95 percent, the beam-ion production cost was reduced to about 155 eV/ion, representing a reduction of about 40 eV/ion over the corresponding value for the 30 cm diameter J-series thruster. Comprehensive Langmuir-probe surveys were obtained and compared with similar measurements for a J-series thruster. A successful volume-averaging scheme was developed to correlate thruster performance with the dominant plasma processes that prevail in the two thruster designs. The average Maxwellian electron temperature in the optimized ring-cusp design is as much as 1 eV higher than it is in the J-series thruster. Advances in ion-extraction electrode fabrication technology were made by improving materials selection criteria, hydroforming and stress-relieving tooling, and fabrications procedures. An ion-extraction performance study was conducted to assess the effect of screen aperture size on ion-optics performance and to verify the effectiveness of a beam-vectoring model for three-grid ion optics. An assessment of the technology readiness of the J-series thruster was completed, and operation of an 8 cm IAPS thruster using a simplified power processor was demonstrated.

  8. Global Trends in Mercury Management

    PubMed Central

    Choi, Kyunghee

    2012-01-01

    The United Nations Environmental Program Governing Council has regulated mercury as a global pollutant since 2001 and has been preparing the mercury convention, which will have a strongly binding force through Global Mercury Assessment, Global Mercury Partnership Activities, and establishment of the Open-Ended Working Group on Mercury. The European Union maintains an inclusive strategy on risks and contamination of mercury, and has executed the Mercury Export Ban Act since December in 2010. The US Environmental Protection Agency established the Mercury Action Plan (1998) and the Mercury Roadmap (2006) and has proposed systematic mercury management methods to reduce the health risks posed by mercury exposure. Japan, which experienced Minamata disease, aims vigorously at perfection in mercury management in several ways. In Korea, the Ministry of Environment established the Comprehensive Plan and Countermeasures for Mercury Management to prepare for the mercury convention and to reduce risks of mercury to protect public health. PMID:23230466

  9. Detecting Airborne Mercury by Use of Palladium Chloride

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret; Shevade, Abhijit; Kisor, Adam; Homer, Margie; Jewell, April; Manatt, Kenneth; Torres, Julia; Soler, Jessica; Taylor, Charles

    2009-01-01

    Palladium chloride films have been found to be useful as alternatives to the gold films heretofore used to detect airborne elemental mercury at concentrations of the order of parts per billion (ppb). Somewhat more specifically, when suitably prepared palladium chloride films are exposed to parts-per-billion or larger concentrations of airborne mercury, their electrical resistances change by amounts large enough to be easily measurable. Because airborne mercury adversely affects health, it is desirable to be able to detect it with high sensitivity, especially in enclosed environments in which there is a risk of leakage of mercury from lamps or other equipment. The detection of mercury by use of gold films involves the formation of gold/mercury amalgam. Gold films offer adequate sensitivity for detection of airborne mercury and could easily be integrated into an electronic-nose system designed to operate in the temperature range of 23 to 28 C. Unfortunately, in order to regenerate a gold-film mercury sensor, one must heat it to a temperature of 200 C for several minutes in clean flowing air. In preparation for an experiment to demonstrate the present sensor concept, palladium chloride was deposited from an aqueous solution onto sets of gold electrodes and sintered in air to form a film. Then while using the gold electrodes to measure the electrical resistance of the films, the films were exposed, at a temperature of 25 C, to humidified air containing mercury at various concentrations from 0 to 35 ppb (see figure). The results of this and other experiments have been interpreted as signifying that sensors of this type can detect mercury in room-temperature air at concentrations of at least 2.5 ppb and can readily be regenerated at temperatures <40 C.

  10. New Jersey mercury regulations

    SciTech Connect

    Elias, D.F.; Corbin, W.E.

    1996-12-31

    Mercury, or quicksilver, and its major ore cinnabar (HgS) have been known for thousands of years. Health effects from mercury such as dementia were known as early as the late 19th century ({open_quotes}mad as a hatter{close_quotes}). In the 1960`s and 1970`s, reported levels of mercury in tuna reawakened public awareness of mercury pollution. In the 1970`s, major epidemics of acute mercury poisoning were reported in Japan and Iraq. These incidents highlighted the extreme health risks, such as kidney damage, birth defects, and death, associated with severe mercury poisoning. Fetuses and young children are particularly vulnerable since mercury poisoning can damage growing neural tissues. Recently, the perception of mercury as a dangerous pollutant has been on the rise. Advisories warning the public to avoid or reduce the consumption of freshwater fish caught in specific waterbodies due to mercury contamination have been issued in numerous states. The discovery of mercury in {open_quotes}pristine{close_quotes} lakes in the United States, Canada, and Scandinavia, remote from industry and any known mercury sources, has focused attention on atmospheric emissions of mercury as potential significant sources of mercury.

  11. Digitizing of drop table output

    SciTech Connect

    Muncy, K.

    1984-01-01

    The method for monitoring and analyzing the drop pulses from the MTS1212 drop table system has been upgraded from a labor intensive manual system to an automatic digital system. The pulse from each drop is recorded, analyzed and printed out. The data printed out includes all product information, the drop parameters calculated and a plot of the drop pulse. Some of the advantages of this system, besides the replacement of old and obsolete equipment, include the dropping of the repeatability check requirement, ease of operation, complete automatic documentation of each drop, no need to take Polaroid pictures of a drop nor is it necessary to have a drop film read by the film analysis group. Data comparisons between the old method and the new digital method have been very favorable.

  12. Drop tube technical tasks

    NASA Technical Reports Server (NTRS)

    Workman, G. L.

    1986-01-01

    Criteria, using fundamental thermochemical dynamics, were developed to assist a scientist using the Drop Tube Facility in designing a good experiment. The types of parameters involved in designing the experiments include the type of furnace, the type of atmosphere, and in general which materials are better behaved than others as determined by past experience in the facility. One of the major advantages of the facility lies in its ability to provide large undercoolings in the cooling curve during the drops. A beginning was to consider the effect of oxygen and other gases upon the amount of undercooling observed. The starting point of the thermochemistry was given by Ellingham and later transformed into what is known as the Richardson Chart. The effect of surface oxidations upon the nucleation phenomena can be observed in each specimen.

  13. Exploding Water Drops

    NASA Astrophysics Data System (ADS)

    Reich, Gary

    2016-01-01

    Water has the unusual property that it expands on freezing, so that ice has a specific gravity of 0.92 compared to 1.0 for liquid water. The most familiar demonstration of this property is ice cubes floating in a glass of water. A more dramatic demonstration is the ice bomb shown in Fig. 1. Here a cast iron flask is filled with water and tightly stoppered. The flask is then cooled, either by leaving it outdoors in winter or by immersing it in a cryogenic fluid, until the water freezes. As the water freezes and expands, the pressure inside the flask increases dramatically, eventually becoming sufficient to fracture the metal walls of the enclosure. A related, but much less familiar, phenomenon is the explosive fracturing of small water drops upon freezing. That water drops can fracture in this way has been known for many years, and the phenomenon has been described in detail in the atmospheric sciences literature, where it is seen as relevant to the freezing of raindrops as they fall through cold air. Carefully controlled experiments have been done documenting how the character and frequency of fracture is affected by such variables as drop size, rate of cooling, chemistry of dissolved gases, etc. Here I describe instead a simple demonstration of fracture suitable for video analysis and appropriate for study at the introductory physics level. Readers may also be interested in other characteristics of freezing and fragmenting water drops, for example, charge separation upon fracture and the appearance of spikes and bulges on the surface.

  14. Mercury Surveillance Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background on mercury exposure is presented including forms, sources, permissible exposure limits, and physiological effects. The purpose of the Mercury Surveillance Program at LeRC is outlined, and the specifics of the Medical Surveillance Program for Mercury Exposure at LeRC are discussed.

  15. MERCURY IN THE ENVIRONMENT

    EPA Science Inventory

    Mercury is released from a variety of sources and exhibits a complicated chemistry. According to the Mercury Study Report to Congress, mercury fluxes and budgets in water, soil, and other media have increased by a factor of two to five over pre-industrial levels. The primary expo...

  16. Mercury in the environment

    NASA Technical Reports Server (NTRS)

    Fulkerson, W.; Lyon, W. S.; Shults, W. D.; Wallace, R. A.

    1972-01-01

    Problems in assessing mercury concentrations in environmental materials are discussed. Data for situations involving air, water, rocks, soils, sediments, sludges, fossil fuels, plants, animals, foods, and man are drawn together and briefly evaluated. Details are provided regarding the toxicity of mercury along with tentative standards and guidelines for mercury in air, drinking water, and food.

  17. Finite element analysis of axisymmetric oscillations of sessile liquid drops

    NASA Astrophysics Data System (ADS)

    Bixler, N. E.; Benner, R. E.

    Inviscid oscillations of sessile liquid drops are simulated by the Galerkin finite element method in conjunction with the time integrator proposed by Gresho, et al. Simulations are of drops in spherical containers which are subjected to imposed oscillations of specified frequency and amplitude. Five equations govern drop response: (1) Laplace's equation for velocity potential within the drop; (2) a kinematic condition at the free surface; (3) a Bernoulli equation augmented to include gravity and capillary pressure at the free surface; (4) a kinematic condition at the solid surface; and (5) either a condition for fixed contact line or fixed contact angle. Each of these equations is modified to account for an accelerating frame of reference which moves the container. Normalized drop volume, contact angle, and gravitational Bond number are dimensionless parameters which control drop response to an imposed oscillation. Given a set of fluid properties, such as those for mercury, gravitational Bond number is uniquely defined by the container radius. Resonant frequencies and mode interaction are detected by Fourier analysis of a transient signal, such as free surface position at the pole of a spherical coordinate system. Results, especially resonant frequencies, are found to depend strongly on contact line condition. Calculation of resonant frequencies by eigenanalysis with Stewart's method is also discussed.

  18. (abstract) Production and Levitation of Free Drops of Liquid Helium

    NASA Technical Reports Server (NTRS)

    Paine, C. G.; Petrac, D.; Rhim, W. K.

    1995-01-01

    We are interested in the nucleation and behavior of quantized vorticies and surface excitations in free drops of superfluid helium. We have constructed an apparatus to maintain liquid helium drops isolated from any material container in the Earth's gravitational field, and have investigated two techniques for generating and introducing liquid drops into the region of confinement. The levitation apparatus utilizes the electrostatic force acting upon a charged liquid drop to counteract the gravitational force, with drop position stability provided by a static magnetic field acting upon the helium diamagnetic moment. Electrically neutral superfluid drops have been produced with a miniature thermomechanical pump; for a given configuration the liquid initial velocity has been varied up to several centimeters per second. Liquid drops carrying either net positive or negative charge are produced by an electrode which generates a flow of ionized liquid from the bulk liquid surface. Potentials of less than one thousand volts to several thousand volts are required. The mass flow is controlled by varying duration of the ionizing voltage pulse; drops as small as 30 micrometers diameter, charged to near the Rayleigh limit, have been observed.

  19. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    PubMed Central

    Foster, Christopher W.; Pillay, Jeseelan; Metters, Jonathan P.; Banks, Craig E.

    2014-01-01

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes l-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards l-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate. PMID:25414969

  20. Leidenfrost Drop on a Step

    NASA Astrophysics Data System (ADS)

    Lagubeau, Guillaume; Le Merrer, Marie; Clanet, Christophe; Quere, David

    2008-11-01

    When deposited on a hot plate, a water droplet evaporates quickly. However, a vapor film appears under the drop above a critical temperature, called Leidenfrost temperature, which insulates the drop from its substrate. Linke & al (2006) reported a spontaneous movement of such a drop, when deposited on a ratchet. We study here the case of a flat substrate decorated with a single micrometric step. The drop is deposited on the lower part of the plate and pushed towards the step at small constant velocity. If the kinetic energy of the drop is sufficient, it can climb up the step. In that case, depending on the substrate temperature, the drop can either be decelerated or accelerated by the step. We try to understand the dynamics of these drops, especially the regime where they accelerate. Taking advantage of this phenomenon, we could then build a multiple-step setup, making it possible for a Leidenfrost drop to climb stairs.

  1. Drop foot corrective device

    NASA Technical Reports Server (NTRS)

    Deis, B. C. (Inventor)

    1986-01-01

    A light weight, economical device to alleviate a plurality of difficulties encountered in walking by a victim suffering from a drop foot condition is discussed. A legband girdles the leg below the knee and above the calf providing an anchor point for the upper end of a ligament having its lower end attached to a toe of a shoe or a toe on the foot. The ligament is of such length that the foot is supported thereby and retained in a normal position during walking.

  2. How to Use Ear Drops

    MedlinePlus

    How to Use Ear Drops(Having someone else give you the ear drops may make this procedure easier.) Wash your hands thoroughly with soap and ... facecloth and then dry your ear. Warm the drops to near body temperature by holding the container ...

  3. Liquid drops impacting superamphiphobic coatings.

    PubMed

    Deng, Xu; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2013-06-25

    The dynamics of liquid drops impacting superamphiphobic coatings is studied by high-speed video microscopy. Superamphiphobic coatings repel water and oils. The coating consists of a fractal-like hydrophobized silica network. Mixtures of ethanol-water and glycerin-water are chosen to investigate the influence of interfacial tension and viscosity on spreading and retraction dynamics. Drop spreading is dominated by inertia. At low impact velocity, the drops completely rebound. However, the contact time increases with impact velocity, whereas the restitution coefficient decreases. We suggest that the drop temporarily impales the superamphiphobic coating, although the drop completely rebounds. From an estimate of the pressure, it can be concluded that impalement is dominated by depinning rather than sagging. With increasing velocity, the drops partially pin, and an increasing amount of liquid remains on the coating. A time-resolved study of the retraction dynamics reveals two well-separated phases: a fast inertia-dominated phase followed by a slow decrease of the contact diameter of the drop. The crossover occurs when the diameter of the retracting drop matches the diameter of the drop before impact. We suggest that the depth of impalement increases with impact velocity, where impalement is confined to the initial impact zone of the drop. If the drop partially pins on the coating, the depth of impalement exceeds a depth, preventing the whole drop from being removed during the retraction phase. PMID:23697383

  4. Characterization and basic research investigations at PEFC electrodes and MEA

    SciTech Connect

    Schulze, M.; Wagner, N.; Steinhilber, G.

    1996-12-31

    For the study of electrochemical and transport mechanisms in polymere electrolyte fuel cells (PEFC) electrodes and for a further development of PEFC electrodes it is important to characterize these electrodes. The characterization of the electrodes was performed by electrochemical analytical as well as physical methods on both single electrodes and electrode-membrane assemblies (NEA). In addition to voltage-current characteristics the electrodes were electrochemically measured by cyclic voltammetry, electrochemical impedance spectroscopy and chronopotentiometry. To determine the pore systems nitrogen adsorption and mercury porosimetry were used. Chemical composition and microstructure of the electrodes were studied by surface science methods like scanning electron microscopy or X-ray induced photoelectron spectroscopy. The results of characterization are the base for theoretical simulation of fuel cells and fuel cell stacks.

  5. Evaluations of solid electrodes for use in voltammetric monitoring of heavy metals in samples from metallurgical nickel industry.

    PubMed

    Mikkelsen, Øyvind; Skogvold, Silje Marie; Schrøder, Knut H; Gjerde, Magne Ivar; Aarhaug, Thor Anders

    2003-09-01

    Evaluation of different solid electrode systems for detection of zinc, lead, cobalt, and nickel in process water from metallurgical nickel industry with use of differential pulse stripping voltammetry has been performed. Zinc was detected by differential pulse anodic stripping voltammetry (DPASV) on a dental amalgam electrode as intermetallic Ni-Zn compound after dilution in ammonium buffer solution. The intermetallic compound was observed at -375 mV, and a linear response was found in the range 0.2-1.2 mg L(-1) (r(2)=0.98) for 60 s deposition time. Simultaneous detection of nickel and cobalt in the low microg L(-1) range was successfully performed by use of adsorptive cathodic stripping voltammetry (AdCSV) of dimethylglyoxime complexes on a silver-bismuth alloy electrode, and a good correlation was found with corresponding AAS results (r(2)=0.999 for nickel and 0.965 for cobalt). Analyses of lead in the microg L(-1) range in nickel-plating solution were performed with good sensitivity and stability by DPASV, using a working electrode of silver together with a glassy carbon counter electrode in samples diluted 1:3 with distilled water and acidified with H(2)SO(4) to pH 2. A new commercial automatic at-line system was tested, and the results were found to be in agreement with an older mercury drop system. The stability of the solid electrode systems was found to be from one to several days without any maintenance needed. PMID:12898113

  6. DIRECT DETERMINATION OF CHELONS AT TRACE LEVELS BY ONE-DROP SQUARE-WAVE POLAROGRAPHY

    EPA Science Inventory

    The direct anodic oxidation of mercury in the presence of chelons can be used for determination of the chelons at trace levels. One-drop square-wave polarography proved superior to differential pulse polarography for this purpose and gave detection limits of 7, 7, 5, and 20 x 10 ...

  7. Mercury Report-Children's exposure to elemental mercury

    MedlinePlus

    ... PDF - 781KB] En Español [PDF - 6.6MB] What did ATSDR find? For children, most elemental mercury exposures ... that exposed children to elemental mercury. The report did not include a review of mercury exposures from ...

  8. Mercury Calibration System

    SciTech Connect

    John Schabron; Eric Kalberer; Joseph Rovani; Mark Sanderson; Ryan Boysen; William Schuster

    2009-03-11

    U.S. Environmental Protection Agency (EPA) Performance Specification 12 in the Clean Air Mercury Rule (CAMR) states that a mercury CEM must be calibrated with National Institute for Standards and Technology (NIST)-traceable standards. In early 2009, a NIST traceable standard for elemental mercury CEM calibration still does not exist. Despite the vacature of CAMR by a Federal appeals court in early 2008, a NIST traceable standard is still needed for whatever regulation is implemented in the future. Thermo Fisher is a major vendor providing complete integrated mercury continuous emissions monitoring (CEM) systems to the industry. WRI is participating with EPA, EPRI, NIST, and Thermo Fisher towards the development of the criteria that will be used in the traceability protocols to be issued by EPA. An initial draft of an elemental mercury calibration traceability protocol was distributed for comment to the participating research groups and vendors on a limited basis in early May 2007. In August 2007, EPA issued an interim traceability protocol for elemental mercury calibrators. Various working drafts of the new interim traceability protocols were distributed in late 2008 and early 2009 to participants in the Mercury Standards Working Committee project. The protocols include sections on qualification and certification. The qualification section describes in general terms tests that must be conducted by the calibrator vendors to demonstrate that their calibration equipment meets the minimum requirements to be established by EPA for use in CAMR monitoring. Variables to be examined include linearity, ambient temperature, back pressure, ambient pressure, line voltage, and effects of shipping. None of the procedures were described in detail in the draft interim documents; however they describe what EPA would like to eventually develop. WRI is providing the data and results to EPA for use in developing revised experimental procedures and realistic acceptance criteria based on

  9. Drop tube research

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1992-01-01

    This report covers the activities performed in the Drop Tube Study which The University of Alabama in Huntsville designed, fabricated and performed various low gravity experiments in materials processing from November 1, 1991 through October 30, 1992. During the performance of this contract the utilization of these ground-based containerless processing facilities has been instrumental in providing the opportunity to determine the feasibility of performing a number of solidification experiments in a simulated space environment, without the expense of a space-based experiment. A number of periodic reports have been given to the TCOR during the course of this contract hence this final report is meant only to summarize the many activities performed and not redundantly cover materials already submitted.

  10. Mercury: The World Closest to the Sun.

    ERIC Educational Resources Information Center

    Cordell, Bruce M.

    1984-01-01

    Discusses various topics related to the geology of Mercury including the origin of Mercury's magnetism, Mercury's motions, volcanism, scarps, and Mercury's violent birth and early life. Includes a table comparing Mercury's orbital and physical data to that of earth's. (JN)

  11. Process for low mercury coal

    DOEpatents

    Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

    1995-04-04

    A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

  12. Process for low mercury coal

    DOEpatents

    Merriam, Norman W.; Grimes, R. William; Tweed, Robert E.

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  13. Capacitance enhancement via electrode patterning

    NASA Astrophysics Data System (ADS)

    Ho, Tuan A.; Striolo, Alberto

    2013-11-01

    The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties.

  14. Capacitance enhancement via electrode patterning.

    PubMed

    Ho, Tuan A; Striolo, Alberto

    2013-11-28

    The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties. PMID:24289370

  15. Capacitance enhancement via electrode patterning

    SciTech Connect

    Ho, Tuan A.; Striolo, Alberto

    2013-11-28

    The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties.

  16. First drop dissimilarity in drop-on-demand inkjet devices

    SciTech Connect

    Famili, Amin; Palkar, Saurabh A.; Baldy, William J. Jr.

    2011-01-15

    As inkjet printing technology is increasingly applied in a broader array of applications, careful characterization of its method of use is critical due to its inherent sensitivity. A common operational mode in inkjet technology known as drop-on-demand ejection is used as a way to deliver a controlled quantity of material to a precise location on a target. This method of operation allows ejection of individual or a sequence (burst) of drops based on a timed trigger event. This work presents an examination of sequences of drops as they are ejected, indicating a number of phenomena that must be considered when designing a drop-on-demand inkjet system. These phenomena appear to be driven by differences between the first ejected drop in a burst and those that follow it and result in a break-down of the linear relationship expected between driving amplitude and drop mass. This first drop, as quantified by high-speed videography and subsequent image analysis, can be different in morphology, trajectory, velocity, and volume from subsequent drops within a burst. These findings were confirmed orthogonally by both volume and mass measurement techniques which allowed quantitation down to single drops.

  17. Substorms on Mercury?

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Ness, N. F.; Yeates, C. M.

    1974-01-01

    Qualitative similarities between some of the variations in the Mercury encounter data and variations in the corresponding regions of the earth's magnetosphere during substorms are pointed out. The Mariner 10 data on Mercury show a strong interaction between the solar wind and the plant similar to a scaled down version of that for the earth's magnetosphere. Some of the features observed in the night side Mercury magnetosphere suggest time dependent processes occurring there.

  18. Peru Mercury Inventory 2006

    USGS Publications Warehouse

    Brooks, William E.; Sandoval, Esteban; Yepez, Miguel A.; Howard, Howell

    2007-01-01

    In 2004, a specific need for data on mercury use in South America was indicated by the United Nations Environmental Programme-Chemicals (UNEP-Chemicals) at a workshop on regional mercury pollution that took place in Buenos Aires, Argentina. Mercury has long been mined and used in South America for artisanal gold mining and imported for chlor-alkali production, dental amalgam, and other uses. The U.S. Geological Survey (USGS) provides information on domestic and international mercury production, trade, prices, sources, and recycling in its annual Minerals Yearbook mercury chapter. Therefore, in response to UNEP-Chemicals, the USGS, in collaboration with the Economic Section of the U.S. Embassy, Lima, has herein compiled data on Peru's exports, imports, and byproduct production of mercury. Peru was selected for this inventory because it has a 2000-year history of mercury production and use, and continues today as an important source of mercury for the global market, as a byproduct from its gold mines. Peru is a regional distributor of imported mercury and user of mercury for artisanal gold mining and chlor-alkali production. Peruvian customs data showed that 22 metric tons (t) of byproduct mercury was exported to the United States in 2006. Transshipped mercury was exported to Brazil (1 t), Colombia (1 t), and Guyana (1 t). Mercury was imported from the United States (54 t), Spain (19 t), and Kyrgyzstan (8 t) in 2006 and was used for artisanal gold mining, chlor-alkali production, dental amalgam, or transshipment to other countries in the region. Site visits and interviews provided information on the use and disposition of mercury for artisanal gold mining and other uses. Peru also imports mercury-containing batteries, electronics and computers, fluorescent lamps, and thermometers. In 2006, Peru imported approximately 1,900 t of a wide variety of fluorescent lamps; however, the mercury contained in these lamps, a minimum of approximately 76 kilograms (kg), and in

  19. Large amplitude drop shape oscillations

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Wang, T. G.

    1982-01-01

    An experimental study of large amplitude drop shape oscillation was conducted in immiscible liquids systems and with levitated free liquid drops in air. In liquid-liquid systems the results indicate the existence of familiar characteristics of nonlinear phenomena. The resonance frequency of the fundamental quadrupole mode of stationary, low viscosity Silicone oil drops acoustically levitated in water falls to noticeably low values as the amplitude of oscillation is increased. A typical, experimentally determined relative frequency decrease of a 0.5 cubic centimeters drop would be about 10% when the maximum deformed shape is characterized by a major to minor axial ratio of 1.9. On the other hand, no change in the fundamental mode frequency could be detected for 1 mm drops levitated in air. The experimental data for the decay constant of the quadrupole mode of drops immersed in a liquid host indicate a slight increase for larger oscillation amplitudes. A qualitative investigation of the internal fluid flows for such drops revealed the existence of steady internal circulation within drops oscillating in the fundamental and higher modes. The flow field configuration in the outer host liquid is also significantly altered when the drop oscillation amplitude becomes large.

  20. The dropped big toe.

    PubMed

    Satku, K; Wee, J T; Kumar, V P; Ong, B; Pho, R W

    1992-03-01

    Surgical procedures for exposure of the upper third of the fibula have been known to cause weakness of the long extensor of the big toe post-operatively. The authors present three representative cases of surgically induced dropped big toe. From cadaveric dissection, an anatomic basis was found for this phenomenon. The tibialis anterior and extensor digitorum longus muscles have their origin at the proximal end of the leg and receive their first motor innervation from a branch that arises from the common peroneal or deep peroneal nerve at about the level of the neck of the fibula. However, the extensor hallucis longus muscle originates in the middle one-third of the leg and the nerves innervating this muscle run a long course in close proximity to the fibula for up to ten centimeters from a level below the neck of the fibula before entering the muscle. Surgical intervention in the proximal one-third of the fibula just distal to the origin of the first motor branch to the tibialis anterior and extensor digitorum longus muscles carries a risk of injury to the nerves innervating the extensor hallucis longus. PMID:1519891

  1. Elemental mercury releases attributed to antiques--New York, 2000-2006.

    PubMed

    2007-06-15

    Metallic (i.e., elemental) mercury, a heavy, silvery odorless liquid, is in common household products such as thermostats and thermometers. Lesser-known household sources of elemental mercury include certain antique or vintage items such as clocks, barometers, mirrors, and lamps. Over time, the mercury in these items can leak, particularly as seals age or when the items are damaged, dropped, or moved improperly. Vacuuming a mercury spill or vaporization from spill-contaminated surfaces such as carpets, floors, furniture, mops, or brooms can increase levels of mercury in the air, especially in enclosed spaces. Environmental sampling conducted after releases of elemental mercury have indicated substantial air concentrations that were associated with increases in blood and urine mercury levels among exposed persons. In 1990, the Agency for Toxic Substances and Disease Registry (ATSDR) created the Hazardous Substances Emergency Events Surveillance (HSEES) system, a multistate health department surveillance system designed to help reduce morbidity and mortality associated with hazardous substance events. This report describes antique-related mercury releases reported to HSEES, all of which occurred in New York state during 2000-2006. Although none of these spills resulted in symptoms or acute health effects, they required remediation to prevent future mercury exposure. The findings underscore the need for caution when handling antiques containing elemental mercury and the need for proper remediation of spills. PMID:17568369

  2. Integrity Monitoring of Mercury Discharge Lamps

    NASA Technical Reports Server (NTRS)

    Tjoelker, Robert L.

    2010-01-01

    Mercury discharge lamps are critical in many trapped ion frequency standard applications. An integrity monitoring system can be implemented using end-of-life signatures observed in operational mercury discharge lamps, making it possible to forecast imminent failure and to take action to mitigate the consequences (such as switching to a redundant system). Mercury lamps are used as a source of 194-nm ultraviolet radiation for optical pumping and state selection of mercury trapped ion frequency standards. Lamps are typically fabricated using 202Hg distilled into high-purity quartz, or other 194-nm transmitting material (e.g., sapphire). A buffer gas is also placed into the bulb, typically a noble gas such as argon, neon, or krypton. The bulbs are driven by strong RF fields oscillating at .200 MHz. The lamp output may age over time by two internal mechanisms: (1) the darkening of the bulb that attenuates light transmission and (2) the loss of mercury due to migration or chemical interactions with the bulb surface. During fabrication, excess mercury is placed into a bulb, so that the loss rate is compensated with new mercury emanating from a cool tip or adjacent reservoir. The light output is nearly constant or varies slightly at a constant rate for many months/years until the mercury source is depleted. At this point, the vapor pressure abruptly falls and the total light output and atomic clock SNR (signal-to-noise ratio) decrease. After several days to weeks, the light levels decrease to a point where the atomic clock SNR is no longer sufficient to stay in lock, or the lamp self-extinguishes. This signature has been observed in four separate end-of-life lamp failures while operating in the Deep Space Network (DSN). A simple integrator circuit can observe and document steady-state lamp behavior. When the light levels drop over a predetermined time interval by a specified amount (e.g., 20 percent), an alarm is set. For critical operational applications, such as the DSN

  3. Cermet electrode

    DOEpatents

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  4. Magnetohydrodynamic electrode

    DOEpatents

    Marchant, David D.; Killpatrick, Don H.

    1978-01-01

    An electrode capable of withstanding high temperatures and suitable for use as a current collector in the channel of a magnetohydrodynamic (MHD) generator consists of a sintered powdered metal base portion, the upper surface of the base being coated with a first layer of nickel aluminide, an intermediate layer of a mixture of nickel aluminide - refractory ceramic on the first layer and a third or outer layer of a refractory ceramic material on the intermediate layer. The sintered powdered metal base resists spalling by the ceramic coatings and permits greater electrode compliance to thermal shock. The density of the powdered metal base can be varied to allow optimization of the thermal conductivity of the electrode and prevent excess heat loss from the channel.

  5. Modeling Mercury in Proteins.

    PubMed

    Parks, J M; Smith, J C

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively nontoxic, other forms such as Hg(2+) and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg(2+) can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg(2+) to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed molecular picture and circumvent issues associated with toxicity. Here, we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intraprotein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand-binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confer mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multiscale model of environmental mercury cycling. PMID:27497164

  6. Photoelectrochemical electrodes

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Rembaum, A. (Inventor)

    1983-01-01

    The surface of a moderate band gap semiconductor such as p-type molybdenum sulfide is modified to contain an adherent film of charge mediating ionene polymer containing an electroactive unit such as bipyridimium. Electron transport between the electrode and the mediator film is favorable and photocorrosion and recombination processes are suppressed. Incorporation of particles of catalyst such as platinum within the film provides a reduction in overvoltage. The polymer film is readily deposited on the electrode surface and can be rendered stable by ionic or addition crosslinking. Catalyst can be predispersed in the polymer film or a salt can be impregnated into the film and reduced therein.

  7. Computer simulation of heating of nickel and mercury on graphene

    NASA Astrophysics Data System (ADS)

    Galashev, A. E.; Polukhin, V. A.

    2016-02-01

    The structural, kinetic, and adhesion properties of nickel and mercury films on two- and one-layer graphene are studied by molecular dynamics simulation upon heating to 3300 and 1100 K, respectively. Two-sided coating of graphene with nickel retards the flow of metal atoms over the surface at T > 1800 K. In the presence of mercury on graphene, Stone-Wales defects and the hydrated edges of the graphene sheet withstand an increase in the temperature up to 800 K. As the temperature increases, the Hg film coagulates into a drop.

  8. Hanging drop crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  9. Gas Pressure-Drop Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal

    2010-01-01

    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  10. Microwave dielectric heating of drops in microfluidic devices.

    PubMed

    Issadore, David; Humphry, Katherine J; Brown, Keith A; Sandberg, Lori; Weitz, David A; Westervelt, Robert M

    2009-06-21

    We present a technique to locally and rapidly heat water drops in microfluidic devices with microwave dielectric heating. Water absorbs microwave power more efficiently than polymers, glass, and oils due to its permanent molecular dipole moment that has large dielectric loss at GHz frequencies. The relevant heat capacity of the system is a single thermally isolated picolitre-scale drop of water, enabling very fast thermal cycling. We demonstrate microwave dielectric heating in a microfluidic device that integrates a flow-focusing drop maker, drop splitters, and metal electrodes to locally deliver microwave power from an inexpensive, commercially available 3.0 GHz source and amplifier. The temperature change of the drops is measured by observing the temperature dependent fluorescence intensity of cadmium selenide nanocrystals suspended in the water drops. We demonstrate characteristic heating times as short as 15 ms to steady-state temperature changes as large as 30 degrees C above the base temperature of the microfluidic device. Many common biological and chemical applications require rapid and local control of temperature and can benefit from this new technique. PMID:19495453

  11. Mercury in the environment

    SciTech Connect

    Idaho National Laboratory - Mike Abbott

    2008-08-06

    Abbott works for Idaho National Laboratory as an environmental scientist. Using state-of-thescienceequipment, he continuously samples the air, looking for mercury. In turn, he'll analyzethis long-term data and try to figure out the mercury's point of or

  12. Mercury and Pregnancy

    MedlinePlus

    ... made when mercury in the air gets into water. The mercury in the air comes from natural sources (such as volcanoes) and man-made sources (such as burning coal and other pollution). You can get methylmercury in your body by ...

  13. Mercury in the environment

    ScienceCinema

    Idaho National Laboratory - Mike Abbott

    2010-01-08

    Abbott works for Idaho National Laboratory as an environmental scientist. Using state-of-thescienceequipment, he continuously samples the air, looking for mercury. In turn, he'll analyzethis long-term data and try to figure out the mercury's point of or

  14. MESSENGER: Exploring Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.

    2008-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. Mercury's magnetosphere is unique in many respects. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed dri-fi paths for energetic particles and, hence, no radiation belts; the characteristic time scales for wave propagation and convective transport are short possibly coupling kinetic and fluid modes; magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to directly impact the dayside regolith; inductive currents in Mercury's interior should act to modify the solar In addition, Mercury's magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionosphere. This lack of an ionosphere is thought to be the underlying reason for the brevity of the very intense, but short lived, approx. 1-2 min, substorm-like energetic particle events observed by Mariner 10 in Mercury's magnetic tail. In this seminar, we review what we think we know about Mercury's magnetosphere and describe the MESSENGER science team's strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic magnetosphere.

  15. Blood Mercury Level

    EPA Science Inventory

    This indicator describes the presence of mercury in the blood of segments of the U.S. population from 1999 to 2008. Mercury can cause developmental and neurological problems, especially in children. This indicator shows how exposure to this environmental contaminant has change...

  16. MERCURY RESEARCH STRATEGY

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA's) Office of Research and Development (ORD) is pleased to announce the availability of its Mercury Research Strategy. This strategy guides ORD's mercury research program and covers the FY2001 2005 time frame. ORD will use it to ...

  17. Mercury On Deck

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The crew of the U.S.S. Kearsarge spell out the words 'Mercury 9' on the ship's flight deck while on the way to the recovery area where astronaut Gordon Cooper is expected to splash down in his 'Faith 7' Mercury space capsule.

  18. Atmospheric Deposition of Mercury

    EPA Science Inventory

    With the advent of the industrial era, the amount of mercury entering the global environment increased dramatically. Releases of mercury in its elemental form from gold mines and chlor-alkali plants, as sulfides such as mercaptans and agricultural chemicals, and as volatile emiss...

  19. Binary drop coalescence in liquids

    NASA Astrophysics Data System (ADS)

    Kim, Jungyong

    Experiments on binary drop collisions within an index-matched liquid were conducted for Weber numbers (We) of 1-50 and collision angles of 15-80° below the horizontal. Drop pairs of water/glycerin mixture were injected into silicone oil and, due to gravitational effects, traveled on downward trajectories before colliding. A dual-field high-speed PIV measurement system was employed to quantify drop trajectories and overall collision conditions while simultaneously examining detailed velocity fields near the collision interface. In the We range examined, for equal size drops, both rebounding and coalescing behavior occurred. The drops coalesced for We > 10 and rebounded for We < 10, and this boundary was found to be insensitive to collision angle. Coalescence was found to result from a combination of vortical flow within drops and strong drop deformation characteristic of higher We. Flow through the centers of opposing ring vortices, strengthened by drop deformation, enhanced drainage of the thin film in the impact region, leading to film rupture and coalescence. The collision angle affected the eventual location of film rupture, with the rupture location moving higher in the thin film region as the collision angle increased. The film rupture location correlated closely with the location of maximum downward velocity in the thin film. The time between collision and rupture increases with We until We = 30. For We > 30, the time decreases as We increases. Unequal size drop collisions with drop size ratios (Ds/D L) of 0.7 and 0.5 were also examined. Coalescence occurs above We* = 11 similar to equal size drops. As drop size ratio decreases, the intervening film deforms more. If the velocity ratio uL/u s < 1, the deformed interface becomes flat before coalescence. The rupture location varies due to the asymmetry of the drops. As collision offset increases (B > 0), the film rupture time is shortened and mixing of the fluid from both drops is enhanced after coalescence

  20. Magnetic control of Leidenfrost drops.

    PubMed

    Piroird, Keyvan; Clanet, Christophe; Quéré, David

    2012-05-01

    We show how a magnetic field can influence the motion of a paramagnetic drop made of liquid oxygen in a Leidenfrost state on solids at room temperature. It is demonstrated that the trajectory can be modified in both direction and velocity and that the results can be interpreted in terms of classical mechanics as long as the drop does not get too close to the magnet. We study the deviation and report that it can easily overcome 180∘ and even diverge under certain conditions, leading to situations where a drop gets captured. In the vicinity of the magnet, another type of trapping is observed, due to the deformation of the drop in this region, which leads to a strong energy dissipation. Conversely, drops can be accelerated by moving magnets (slingshot effect). PMID:23004866

  1. Getting rid of mercury

    SciTech Connect

    Reisch, M.S.

    2008-11-24

    Anticipating a US rule on mercury removal from coal flue gas, technology providers jockey for position. By 2013, if the federal rule imposing regulation of mercury emissions which have begun or are about to begin in 20 eastern states goes nationwide, mercury control will be big business. For the near term, utilities are adopting activated carbon to control mercury emissions. McIlvaine Co. projects the US market for activated carbon will jump from 10 million lb in 2010 to 350 million by 2013. Norit and Calgon Carbon are already increasing production of activated carbon (mainly from coal) and ADA Environmental Solutions (ADA-ES) is building a new plant. Albermarle is developing a process to treat activated carbon with bromine; Corning has developed a sulfur impregnated activated carbon filtration brick. New catalysts are being developed to improve the oxidation of mercury for removal from flue gas. 2 photos.

  2. Quick don-doff electrode pastes

    NASA Technical Reports Server (NTRS)

    Mosier, B.

    1969-01-01

    Evaluation of electrode pastes for use in electrocardiographs and electroencephalographs found that the one having the desired don-doff properties had to be water soluble or a water dispersible base. Poly /methyl vinyl ether/maleic anhydride/ or starch gels of the gum drop variety are two such bases.

  3. The observation of valence band change on resistive switching of epitaxial Pr0.7Ca0.3MnO3 film using removable liquid electrode

    NASA Astrophysics Data System (ADS)

    Lee, Hong-Sub; Park, Hyung-Ho

    2015-12-01

    The resistive switching (RS) phenomenon in transition metal oxides (TMOs) has received a great deal of attention for non-volatile memory applications. Various RS mechanisms have been suggested as to explain the observed RS characteristics. Many reports suggest that changes of interface and the role of oxygen vacancies originate in RS phenomena; therefore, in this study, we use a liquid drop of mercury as the top electrode (TE), epitaxial Pr0.7Ca0.3MnO3 (PCMO) (110) film of the perovskite manganite family for RS material, and an Nb-doped (0.7 at. %) SrTiO3 (100) single crystal as the substrate to observe changes in the interface between the TE and TMOs. The use of removable liquid electrode Hg drop as TE not only enables observation of the RS characteristic as a bipolar RS curve (counterclockwise) but also facilitates analysis of the valence band of the PCMO surface after resistive switching via photoelectron spectroscopy. The observed I-V behaviors of the low and high resistance states (HRS) are explained with an electrochemical migration model in PCMO film where accumulated oxygen vacancies at the interface between the Hg TE and PCMO (110) surface induce the HRS. The interpreted RS mechanism is directly confirmed via valence band spectrum analysis.

  4. Getting Mercury out of Schools.

    ERIC Educational Resources Information Center

    1999

    This guide was prepared while working with many Massachusetts schools to remove items that contain mercury and to find suitable alternatives. It contains fact sheets on: mercury in science laboratories and classrooms, mercury in school buildings and maintenance areas, mercury in the medical office and in medical technology classrooms in vocational…

  5. MERCURY MULTI-YEAR PLAN

    EPA Science Inventory

    A 1997 EPA Mercury Study Report to Congress discussed the magnitude of mercury emissions in the United States, and concluded that a plausible link exists between human activities that release mercury from industrial and combustion sources in the United States and methyl mercury c...

  6. Electrically induced drop detachment and ejection

    NASA Astrophysics Data System (ADS)

    Cavalli, Andrea; Preston, Daniel J.; Tio, Evelyn; Martin, David W.; Miljkovic, Nenad; Wang, Evelyn N.; Blanchette, Francois; Bush, John W. M.

    2016-02-01

    A deformed droplet may leap from a solid substrate, impelled to detach through the conversion of surface energy into kinetic energy that arises as it relaxes to a sphere. Electrowetting provides a means of preparing a droplet on a substrate for lift-off. When a voltage is applied between a water droplet and a dielectric-coated electrode, the wettability of the substrate increases in a controlled way, leading to the spreading of the droplet. Once the voltage is released, the droplet recoils, due to a sudden excess in surface energy, and droplet detachment may follow. The process of drop detachment and lift-off, prevalent in both biology and micro-engineering, has to date been considered primarily in terms of qualitative scaling arguments for idealized superhydrophobic substrates. We here consider the eletrically-induced ejection of droplets from substrates of finite wettability and analyze the process quantitatively. We compare experiments to numerical simulations and analyze how the energy conversion efficiency is affected by the applied voltage and the intrinsic contact angle of the droplet on the substrate. Our results indicate that the finite wettability of the substrate significantly affects the detachment dynamics, and so provide new rationale for the previously reported large critical radius for drop ejection from micro-textured substrates.

  7. Instant freezing of impacting wax drops

    NASA Astrophysics Data System (ADS)

    Ponomarenko, Alexandre; Virot, Emmanuel; Rubinstein, Shmuel

    2015-11-01

    We present the impact of hot liquid drops of wax on surfaces whose temperature is below the solidifying temperature of the drops. During the fall the drops remain mostly liquid, but upon impact, their temperature quickly decreases resulting in the solidification of the drop. Depending on the impact energy, drops size and the temperature difference between the drop and the surface this results in plethora of solid shapes: simple lenses, triangular drops, spherical caps and popped popcorn shapes.

  8. Electrokinetics of isolated electrified drops.

    PubMed

    Pillai, Rohit; Berry, Joseph D; Harvie, Dalton J E; Davidson, Malcolm R

    2016-04-14

    Using a recently developed multiphase electrokinetic model, we simulate the transient electrohydrodynamic response of a liquid drop containing ions, to both small and large values of electric field. The temporal evolution is found to be governed primarily by two dimensionless groups: (i) Ohnesorge number (Oh), a ratio of viscous to inertio-capillary effects, and (ii) inverse dimensionless Debye length (κ), a measure of the diffuse regions of charge that develop in the drop. The effects of dielectric polarization dominate at low Oh, while effects of separated charge gain importance with increase in Oh. For small values of electric field, the deformation behaviour of a drop is shown to be accurately described by a simple analytical expression. At large electric fields, the drops are unstable and eject progeny drops. Depending on Oh and κ this occurs via dripping or jetting; the regime transitions are shown by a Oh-κ phase map. In contrast to previous studies, we find universal scaling relations to predict size and charge of progeny drops. Our simulations suggest charge transport plays a significant role in drop dynamics for 0.1 ≤ Oh ≤ 10, a parameter range of interest in microscale flows. PMID:26954299

  9. Pool impacts of Leidenfrost drop

    NASA Astrophysics Data System (ADS)

    Darbois Texier, Baptiste; Maquet, Laurent; Dorbolo, Stephane; Dehandschoewercker, Eline; Pan, Zhao; Truscott, Tadd

    2015-11-01

    This work concerns the impact of a droplet made of a volatile liquid (typically HFE) on a pool of an other liquid (typically silicone oil) which temperature is above the boiling point of the drop. Depending on the properties of the two liquids and the impacting conditions, four different regimes are observed. For low impacting speeds, the droplet bounces on the surface of the bath and finally levitates above it in a Leidenfrost state. Such a regime occurs as soon as the pool temperature exceeds the boiling point of the drop. This observation means that there is no threshold in temperature for a Leidenfrost effect on a liquid surface contrary to the case of a solid substrate. For intermediate impacting velocities, the pinch-off of the surface of the pool entraps the drop in the liquid bulk. The entrapped drop is separated from the pool by a layer of its own vapour in a similar way of antibulles. For increasing impacting speeds, the vapour layer between the drop and the pool does not hold during the pinch-off event. The contact of the drop with the hot liquid provokes a sudden and intense evaporation. At very large impacting speeds, the drop rapidely contacts the pool, spreads and finally induces a hemi-spherical cavity. In the end, these four different regimes are summarized in a Froud-Weber diagram which boundaries are discussed.

  10. High voltage pulse ignition of mercury discharge hollow cathodes

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1973-01-01

    A high voltage pulse generated by a capacitor discharge into a step-up transformer has been demonstrated capable of consistently igniting hollow cathode mercury discharges at propellant flows and heater power levels much below those required by conventional cathode starting. Results are presented for 3.2-mm diameter enclosed and open keeper cathodes. Starting characteristics are shown to depend on keeper voltage, mercury flow rate, heater power, keeper orifice size, emissive materials, and electrode to which the pulse is applied. This starting technique has been used to start a cathode over 10,000 times without any degradation of starting capability.

  11. Electrostatic coalescence system with independent AC and DC hydrophilic electrodes

    DOEpatents

    Hovarongkura, A. David; Henry, Jr., Joseph D.

    1981-01-01

    An improved electrostatic coalescence system is provided in which independent AC and DC hydrophilic electrodes are employed to provide more complete dehydration of an oil emulsion. The AC field is produced between an AC electrode array and the water-oil interface wherein the AC electrode array is positioned parallel to the interface which acts as a grounded electrode. The emulsion is introduced into the AC field in an evenly distributed manner at the interface. The AC field promotes drop-drop and drop-interface coalescence of the water phase in the entering emulsion. The continuous oil phase passes upward through the perforated AC electrode array and enters a strong DC field produced between closely spaced DC electrodes in which small dispersed droplets of water entrained in the continuous phase are removed primarily by collection at hydrophilic DC electrodes. Large droplets of water collected by the electrodes migrate downward through the AC electrode array to the interface. All phase separation mechanisms are utilized to accomplish more complete phase separation.

  12. Mercury's Dynamic Magnetic Tail

    NASA Technical Reports Server (NTRS)

    Slavin, James A.

    2010-01-01

    The Mariner 10 and MESSENGER flybys of Mercury have revealed a magnetosphere that is likely the most responsive to upstream interplanetary conditions of any in the solar system. The source of the great dynamic variability observed during these brief passages is due to Mercury's proximity to the Sun and the inverse proportionality between reconnection rate and solar wind Alfven Mach number. However, this planet's lack of an ionosphere and its small physical dimensions also contribute to Mercury's very brief Dungey cycle, approx. 2 min, which governs the time scale for internal plasma circulation. Current observations and understanding of the structure and dynamics of Mercury's magnetotail are summarized and discussed. Special emphasis will be placed upon such questions as: 1) How much access does the solar wind have to this small magnetosphere as a function of upstream conditions? 2) What roles do heavy planetary ions play? 3) Do Earth-like substorms take place at Mercury? 4) How does Mercury's tail respond to extreme solar wind events such coronal mass ejections? Prospects for progress due to advances in the global magnetohydrodynamic and hybrid simulation modeling and the measurements to be taken by MESSENGER after it enters Mercury orbit on March 18, 2011 will be discussed.

  13. Mercury in the ecosystem

    SciTech Connect

    Mitra, S.

    1986-01-01

    This treatise on the environmental dispersion of mercury emphasizes the importance of ''mercury-consciousness'' in the present-day world, where rapidly expanding metallurgical, chemical, and other industrial developments are causing widespread contamination of the atmosphere, soil, and water by this metal and its toxic organic derivatives. Concepts concerning the mechanism of mercury dispersion and methyl-mercury formation in the physico-biological ecosystem are discussed in detail and a substantial body of data on the degree and nature of the mercury contamination of various plants, fish, and land animals by industrial and urban effluents is presented. Various analytical methods for the estimation of mercury in inorganic and organic samples are presented. These serve as a ready guide to the selection of the correct method for analyzing environmental samples. This book is reference work in mercury-related studies. It is written to influence industrial policies of governments in their formulation of control measures to avoid the recurrence of human tragedies such as the well-known Minamata case in Japan, and the lesser known cases in Iraq, Pakistan, and Guatamala.

  14. Mercury Metadata Toolset

    Energy Science and Technology Software Center (ESTSC)

    2009-09-08

    Mercury is a federated metadata harvesting, search and retrieval tool based on both open source software and software developed at Oak Ridge National Laboratory. It was originally developed for NASA, and the Mercury development consortium now includes funding from NASA, USGS, and DOE. A major new version of Mercury (version 3.0) was developed during 2007 and released in early 2008. This Mercury 3.0 version provides orders of magnitude improvements in search speed, support for additionalmore » metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS delivery of search results, and ready customization to meet the needs of the multiple projects which use Mercury. For the end users, Mercury provides a single portal to very quickly search for data and information contained in disparate data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfaces then allow the users to perform simple, fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data.« less

  15. Mercury Metadata Toolset

    SciTech Connect

    2009-09-08

    Mercury is a federated metadata harvesting, search and retrieval tool based on both open source software and software developed at Oak Ridge National Laboratory. It was originally developed for NASA, and the Mercury development consortium now includes funding from NASA, USGS, and DOE. A major new version of Mercury (version 3.0) was developed during 2007 and released in early 2008. This Mercury 3.0 version provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS delivery of search results, and ready customization to meet the needs of the multiple projects which use Mercury. For the end users, Mercury provides a single portal to very quickly search for data and information contained in disparate data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfaces then allow the users to perform simple, fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data.

  16. MODELING OF CHANGING ELECTRODE PROFILES

    SciTech Connect

    Prentice, Geoffrey Allen

    1980-12-01

    A model for simulating the transient behavior of solid electrodes undergoing deposition or dissolution has been developed. The model accounts for ohmic drop, charge transfer overpotential, and mass transport limitations. The finite difference method, coupled with successive overrelaxation, was used as the basis of the solution technique. An algorithm was devised to overcome the computational instabilities associated with the calculations of the secondary and tertiary current distributions. Simulations were performed on several model electrode profiles: the sinusoid, the rounded corner, and the notch. Quantitative copper deposition data were obtained in a contoured rotating cylinder system, Sinusoidal cross-sections, machined on stainless steel cylinders, were used as model geometries, Kinetic parameters for use in the simulation were determined from polarization curves obtained on copper rotating cylinders, These parameters, along with other physical property and geometric data, were incorporated in simulations of growing sinusoidal profiles. The copper distributions on the sinusoidal cross-sections were measured and found to compare favorably with the simulated results. At low Wagner numbers the formation of a slight depression at the profile peak was predicted by the simulation and observed on the profile. At higher Wagner numbers, the simulated and experimental results showed that the formation of a depression was suppressed. This phenomenon was shown to result from the competition between ohmic drop and electrode curvature.

  17. Inorganic: the other mercury.

    PubMed

    Risher, John F; De Rosa, Christopher T

    2007-11-01

    There is a broad array of mercury species to which humans may be exposed. While exposure to methylmercury through fish consumption is widely recognized, the public is less aware of the sources and potential toxicity of inorganic forms of mercury. Some oral and laboratory thermometers, barometers, small batteries, thermostats, gas pressure regulators, light switches, dental amalgam fillings, cosmetic products, medications, cultural/religious practices, and gold mining all represent potential sources of exposure to inorganic forms of mercury. The route of exposure, the extent of absorption, the pharmacokinetics, and the effects all vary with the specific form of mercury and the magnitude and duration of exposure. If exposure is suspected, a number of tissue analyses can be conducted to confirm exposure or to determine whether an exposure might reasonably be expected to be biologically significant. By contrast with determination of exposure to methylmercury, for which hair and blood are credible indicators, urine is the preferred biological medium for the determination of exposure to inorganic mercury, including elemental mercury, with blood normally being of value only if exposure is ongoing. Although treatments are available to help rid the body of mercury in cases of extreme exposure, prevention of exposure will make such treatments unnecessary. Knowing the sources of mercury and avoiding unnecessary exposure are the prudent ways of preventing mercury intoxication. When exposure occurs, it should be kept in mind that not all unwanted exposures will result in adverse health consequences. In all cases, elimination of the source of exposure should be the first priority of public health officials. PMID:18044248

  18. Global change and mercury

    USGS Publications Warehouse

    Krabbenhoft, David P.; Sunderland, Elsie M.

    2013-01-01

    More than 140 nations recently agreed to a legally binding treaty on reductions in human uses and releases of mercury that will be signed in October of this year. This follows the 2011 rule in the United States that for the first time regulates mercury emissions from electricity-generating utilities. Several decades of scientific research preceded these important regulations. However, the impacts of global change on environmental mercury concentrations and human exposures remain a major uncertainty affecting the potential effectiveness of regulatory activities.

  19. Missions to Mercury

    NASA Astrophysics Data System (ADS)

    Grard, Réjean; Laakso, Harry; Svedhem, Håkan

    2002-10-01

    Mercury is a poorly known planet. It is difficult to observe from Earth and to explore with spacecraft, due to its proximity to the Sun. Only the NASA probe Mariner 10 caught a few glimpses of Mercury during three flybys, more than 27 years ago. Still, this planet is an interesting and important object because it belongs, like our own Earth, to the family of the terrestrial planets. After reviewing what we know about Mercury and recapitulating the major findings of Mariner 10, we present the two missions, Messenger and BepiColombo, which will perform the first systematic exploration of this forgotten planet in 2009 and 2014, respectively.

  20. Leidenfrost drops: Effect of gravity

    NASA Astrophysics Data System (ADS)

    Maquet, L.; Brandenbourger, M.; Sobac, B.; Biance, A.-L.; Colinet, P.; Dorbolo, S.

    2015-04-01

    A specific experimental set-up has been installed in a large centrifuge facility in order to study different aspects of Leidenfrost drops under high-gravity conditions (5, 10, 15 and 20 times the Earth gravity). In particular, the drop lifetime and more precisely the variations of drop diameter vs. time have shown to be in good agreement with previous experiments and scaling analysis (Biance A.-L. et al., Phys. Fluids, 15 (2003) 1632). Moreover, so-called chimneys are expectedly observed in the large puddles, the distance between two chimneys depending linearly on the capillary length. Finally, the Leidenfrost point, i.e. the temperature above which the Leidenfrost effect takes place, was unexpectedly found to increase slightly with gravity. A qualitative explanation based on a refined model (Sobac B. et al., Phys. Rev. E, 90 (2014) 053011) recognizing the non-trivial shape of the vapor film under the drop is proposed to explain this observation.

  1. Orion Capsule Mockup is Dropped

    NASA Video Gallery

    An Orion capsule mockup is dropped from a plane 25,000 feet above the Arizona desert to test its parachute design. Orion will return to Earth at speeds faster than previous human spacecraft, and wi...

  2. Manipulating the voltage drop in graphene nanojunctions using a gate potential.

    PubMed

    Papior, Nick; Gunst, Tue; Stradi, Daniele; Brandbyge, Mads

    2016-01-14

    Graphene is an attractive electrode material to contact nanostructures down to the molecular scale since it can be gated electrostatically. Gating can be used to control the doping and the energy level alignment in the nanojunction, thereby influencing its conductance. Here we investigate the impact of electrostatic gating in nanojunctions between graphene electrodes operating at finite bias. Using quantum transport simulations based on density functional theory, we show that the voltage drop across symmetric junctions changes dramatically and controllably in gated systems compared to non-gated junctions. In particular, for p-type(n-type) carriers the voltage drop is located close to the electrode with positive(negative) polarity, the potential of the junction is pinned to the negative(positive) electrode. We trace this behaviour back to the vanishing density of states of graphene in the proximity of the Dirac point. Due to the electrostatic gating, each electrode exposes different density of states in the bias window between the two different electrode Fermi energies, thereby leading to a non-symmetry in the voltage drop across the device. This selective pinning is found to be independent of device length when carriers are induced either by the gate or dopant atoms, indicating a general effect for electronic circuitry based on graphene electrodes. We envision this could be used to control the spatial distribution of Joule heating in graphene nanostructures, and possibly the chemical reaction rate around high potential gradients. PMID:26661116

  3. Novel Process for Removal and Recovery of Vapor Phase Mercury

    SciTech Connect

    Greenwell, Collin; Roberts, Daryl L; Albiston, Jason; Stewart, Robin; Broderick, Tom

    1998-03-09

    We demonstrated in the Phase I program all key attributes of a new technology for removing mercury from flue gases, namely, a) removal of greater than 95% of both elemental and oxidized forms of mercury, both in the laboratory and in the field b) regenerability of the sorbent c) ability to scale up, and d) favorable economics. The Phase I program consisted of four tasks other than project reporting: Task I-1 Screen Sorbent Configurations in the Laboratory Task I-2 Design and Fabricate Bench-Scale Equipment Task I-3 Test Bench-Scale Equipment on Pilot Combustor Task I-4 Evaluate Economics Based on Bench-Scale Results In Task I-1, we demonstrated that the sorbents are thermally durable and are regenerable through at least 55 cycles of mercury uptake and desorption. We also demonstrated two low-pressure- drop configurations of the sorbent, namely, a particulate form and a monolithic form. We showed that the particulate form of the sorbent would take up 100% of the mercury so long as the residence time in a bed of the sorbent exceeded 0.1 seconds. In principle, the particulate form of the sorbent could be imbedded in the back side of a higher temperature bag filter in a full-scale application. With typical bag face velocities of four feet per minute, the thickness of the particulate layer would need to be about 2000 microns to accomplish the uptake of the mercury. For heat transfer efficiency, however, we believed the monolithic form of the sorbent would be the more practical in a full scale application. Therefore, we purchased commercially-available metallic monoliths and applied the sorbent to the inside of the flow channels of the monoliths. At face velocities we tested (up to 1.5 ft/sec), these monoliths had less than 0.05 inches of water pressure drop. We tested the monolithic form of the sorbent through 21 cycles of mercury sorption and desorption in the laboratory and included a test of simultaneous uptake of both mercury and mercuric chloride. Overall, in Task

  4. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1989-11-07

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

  5. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1989-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  6. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1991-06-18

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

  7. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1991-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  8. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  9. Mercury cycling in terrestrial watersheds

    USGS Publications Warehouse

    Shanley, James B.; Bishop, Kevin

    2012-01-01

    This chapter discusses mercury cycling in the terrestrial landscape, including inputs from the atmosphere, accumulation in soils and vegetation, outputs in streamflow and volatilization, and effects of land disturbance. Mercury mobility in the terrestrial landscape is strongly controlled by organic matter. About 90% of the atmospheric mercury input is retained in vegetation and organic matter in soils, causing a buildup of legacy mercury. Some mercury is volatilized back to the atmosphere, but most export of mercury from watersheds occurs by streamflow. Stream mercury export is episodic, in association with dissolved and particulate organic carbon, as stormflow and snowmelt flush organic-rich shallow soil horizons. The terrestrial landscape is thus a major source of mercury to downstream aquatic environments, where mercury is methylated and enters the aquatic food web. With ample organic matter and sulfur, methylmercury forms in uplands as well—in wetlands, riparian zones, and other anoxic sites. Watershed features (topography, land cover type, and soil drainage class) are often more important than atmospheric mercury deposition in controlling the amount of stream mercury and methylmercury export. While reductions in atmospheric mercury deposition may rapidly benefit lakes, the terrestrial landscape will respond only over decades, because of the large stock and slow turnover of legacy mercury. We conclude with a discussion of future scenarios and the challenge of managing terrestrial mercury.

  10. Direct Measurement of Mercury Reactions In Coal Power Plant Plumes

    SciTech Connect

    Leonard Levin

    2005-12-31

    west of Kenosha. Aircraft and ground measurements support the occurrence of a reduction in the fraction of reactive gaseous mercury (RGM) (with a corresponding increase in elemental mercury) as part of the Total Gaseous Mercury (TGM) emitted from the Pleasant Prairie stack. This occurrence is based on comparison of the RGM concentrations in the plume (at standard conditions) compared to the RGM in the stack. There was found to be a 44% drop in the fraction of RGM between the stack exit and the first sampling arc and a 66% reduction from the stack to the 5-mile sampling arc, with no additional drop between the 5- and 10-mile arcs. Smaller-scale experiments in both test chambers and pilot-scale coal combustor exhaust streams have indicated the presence of rapid and relatively complete reduction reactions converting divalent into elemental mercury within power plant plumes prior to full dispersion in the atmosphere. These measurements, however, have been unable to identify whether the reactions occur during plume rise from physical to virtual stack height (during positive thermal buoyancy). The presence, rate, completeness, ubiquity, and dependence on source characteristics of these reactions, however, must be demonstrated in plume environments associated with fully operational power plants. That requirement, to capture either the reactions or the reaction products of chemistry that may be occurring very close to stack exits in highly turbulent environments, constrains the precision and reproducibility with which such full-scale experiments can be carried out. The work described here is one of several initial steps required to test whether, and in what direction, such rapid mercury redox reactions might be occurring in such plumes.

  11. ULF Waves at Mercury

    NASA Astrophysics Data System (ADS)

    Kim, E.-H.; Boardsen, S. A.; Johnson, J. R.; Slavin, J. A.

    2016-02-01

    This chapter provides a brief overview of the observed characteristics of ultra-low-frequency (ULF) waves at Mercury. It shows how field-aligned propagating ULF waves at Mercury can be generated by externally driven fast compressional waves (FWs) via mode conversion at the ion-ion hybrid resonance. Then, the chapter reviews the interpretation that the strong magnetic compressional waves near and its harmonics observed with 20 of Mercury's magnetic equator could be the ion Bernstein wave (IBW) mode. A recent statistical study of ULF waves at Mercury based on MESSENGER data reported the occurrence and polarization of the detected waves. The chapter further introduces the field line resonance and the electromagnetic ion Bernstein waves to explain such waves, and shows that both theories can partially explain the observations.

  12. Mercury's Caloris Basin

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Mercury: Computer Photomosaic of the Caloris Basin

    The largest basin on Mercury (1300 km or 800 miles across) was named Caloris (Greek for 'hot') because it is one of the two areas on the planet that face the Sun at perihelion.

    The Image Processing Lab at NASA's Jet Propulsion Laboratory produced this photomosaic using computer software and techniques developed for use in processing planetary data. The Mariner 10 spacecraft imaged the region during its initial flyby of the planet.

    The Mariner 10 spacecraft was launched in 1974. The spacecraft took images of Venus in February 1974 on the way to three encounters with Mercury in March and September 1974 and March 1975. The spacecraft took more than 7,000 images of Mercury, Venus, the Earth and the Moon during its mission.

    The Mariner 10 Mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science in Washington, D.C.

  13. Environmental costs of mercury pollution.

    PubMed

    Hylander, Lars D; Goodsite, Michael E

    2006-09-01

    Mercury (Hg) has been used for millennia in many applications, primarily in artisanal mining and as an electrode in the chlor-alkali industry. It is anthropogenically emitted as a pollutant from coal fired power plants and naturally emitted, primarily from volcanoes. Its unique chemical characteristics enable global atmospheric transport and it is deposited after various processes, ultimately ending up in one of its final sinks, such as incorporated into deep sediment or bioaccumulated, primarily in the marine environment. All forms of Hg have been established as toxic, and there have been no noted biological benefits from the metal. Throughout time, there have been notable incidents of Hg intoxication documented, and the negative health effects have been documented to those chronically or acutely exposed. Today, exposure to Hg is largely diet or occupationally dependent, however, many are exposed to Hg from their amalgam fillings. This paper puts a tentative monetary value on Hg polluted food sources in the Arctic, where local, significant pollution sources are limited, and relates this to costs for strategies avoiding Hg pollution and to remediation costs of contaminated sites in Sweden and Japan. The case studies are compiled to help policy makers and the public to evaluate whether the benefits to the global environment from banning Hg and limiting its initial emission outweigh the benefits from its continued use or lack of control of Hg emissions. The cases we studied are relevant for point pollution sources globally and their remediation costs ranged between 2,500 and 1.1 million US dollars kg(-1) Hg isolated from the biosphere. Therefore, regulations discontinuing mercury uses combined with extensive flue gas cleaning for all power plants and waste incinerators is cost effective. PMID:16442592

  14. Electrostatic Liquid-Drop-Levitation System

    NASA Technical Reports Server (NTRS)

    Rhim, Won Kyu; Chung, San Kun; Hyson, Michael T.; Elleman, Daniel D.

    1988-01-01

    Electrostatic levitator has levitated drops of liquid up to 4 mm in diameter while maintaining spherical drop shapes. Stable levitation of spherical drops valuable in experiments involving super-cooling, solidification, and crystal growth.

  15. Mercury CEM Calibration

    SciTech Connect

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  16. Mercury iodide crystal growth

    NASA Technical Reports Server (NTRS)

    Cadoret, R.

    1982-01-01

    The purpose of the Mercury Iodide Crystal Growth (MICG) experiment is the growth of near-perfect single crystals of mercury Iodide (HgI2) in a microgravity environment which will decrease the convection effects on crystal growth. Evaporation and condensation are the only transformations involved in this experiment. To accomplish these objectives, a two-zone furnace will be used in which two sensors collect the temperature data (one in each zone).

  17. To Mercury dynamics

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.; Ferrandiz, J. M.

    Present significance of the study of rotation of Mercury considered as a core-mantle system arises from planned Mercury missions. New high accurate data on Mercury's structure and its physical fields are expected from BepiColombo mission (Anselmi et al., 2001). Investigation of resonant rotation of Mercury, begun by Colombo G. (1966), will play here main part. New approaches to the study of Mercury dynamics and the construction of analytical theory of its resonant rotation are suggested. Within these approaches Mercury is considered as a system of two non-spherical interacting bodies: a core and a mantle. The mantle of Mercury is considered as non-spherical, rigid (or elastic) layer. Inner shell is a liquid core, which occupies a large ellipsoidal cavity of Mercury. This Mercury system moves in the gravitational field of the Sun in resonant traslatory-rotary regime of the resonance 3:2. We take into account only the second harmonic of the force function of the Sun and Mercury. For the study of Mercury rotation we have been used specially designed canonical equations of motion in Andoyer and Poincare variables (Barkin, Ferrandiz, 2001), more convenient for the application of mentioned methods. Approximate observational and some theoretical evaluations of the two main coefficients of Mercury gravitational field J_2 and C22 are known. From observational data of Mariner-10 mission were obtained some first evaluations of these coefficients: J_2 =(8± 6)\\cdot 10-5(Esposito et al., 1977); J_2 =(6± 2)\\cdot 10-5and C22 =(1.0± 0.5)\\cdot 10-5(Anderson et al., 1987). Some theoretical evaluation of ratio of these coefficients has been obtained on the base of study of periodic motions of the system of two non-spherical gravitating bodies (Barkin, 1976). Corresponding values of coefficients consist: J_2 =8\\cdot 10-5and C22 =0.33\\cdot 10-5. We have no data about non-sphericity of inner core of Mercury. Planned missions to Mercury (BepiColombo and Messenger) promise to

  18. Forced Oscillations of Supported Drops

    NASA Technical Reports Server (NTRS)

    Wilkes, Edward D.; Basaran, Osman A.

    1996-01-01

    Oscillations of supported liquid drops are the subject of wide scientific interest, with applications in areas as diverse as liquid-liquid extraction, synthesis of ceramic powders, growing of pure crystals in low gravity, and measurement of dynamic surface tension. In this research, axisymmetric forced oscillations of arbitrary amplitude of viscous liquid drops of fixed volume which are pendant from or sessile on a rod with a fixed or moving contact line and surrounded by an inviscid ambient gas are induced by moving the rod in the vertical direction sinusiodally in time. In this paper, a preliminary report is made on the computational analysis of the oscillations of supported drops that have 'clean' interfaces and whose contact lines remain fixed throughout their motions. The relative importance of forcing to damping can be increased by either increasing the amplitude of rod motion A or Reynolds number Re. It is shown that as the ratio of forcing to damping rises, for drops starting from an initial rest state a sharp increase in deformation can occur when they are forced to oscillate in the vicinity of their resonance frequencies, indicating the incipience of hysteresis. However, it is also shown that the existence of a second stable limit cycle and the occurrence of hysteresis can be observed if the drop is subjected to a so-called frequency sweep, where the forcing frequency is first increased and then decreased over a suitable range. Because the change in drop deformation response is abrupt in the vicinity of the forcing frequencies where hysteresis occurs, it should be possible to exploit the phenomenon to accurately measure the viscosity and surface tension of the drop liquid.

  19. Production of ultra-small ink jet drops using drop-on-demand (DOD) drop formation

    NASA Astrophysics Data System (ADS)

    Gao, Haijing; Xu, Qi; Harris, Michael; Basaran, Osman

    2009-11-01

    The formation of drops having radii that are smaller than the radii of the nozzle from which they are ejected is an active area of research in drop-on-demand (DOD) ink jet printing. In the last decade, Chen and Basaran (Phys Fluids, 2002; US patent, 2003) showed experimentally and computationally that several fold reduction in drop radius R (an order of magnitude reduction in drop volume V) is possible by judicious use of waveform modulation in which one or more intrinsic time scales such as capillary time, time for vorticity diffusion, and time for piezo actuation are varied. In this paper, we report the results of a computational study through which we have uncovered a novel method for achieving a factor of 5-10 reduction in R (about two to three orders of magnitude reduction in V). Scaling arguments are also developed which yield a simple expression for the size of the ultra-small drops formed as a function of the governing dimensionless groups. Formation of such small drops using DOD technology may prove especially attractive in applications involving direct printing of flexible electronics and solar cells.

  20. Method and apparatus for monitoring mercury emissions

    DOEpatents

    Durham, Michael D.; Schlager, Richard J.; Sappey, Andrew D.; Sagan, Francis J.; Marmaro, Roger W.; Wilson, Kevin G.

    1997-01-01

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

  1. Method and apparatus for monitoring mercury emissions

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Sappey, A.D.; Sagan, F.J.; Marmaro, R.W.; Wilson, K.G.

    1997-10-21

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber. 15 figs.

  2. Review on drop towers and long drop tubes

    NASA Technical Reports Server (NTRS)

    Bayuzick, R. J.; Hofmeister, W. H.; Robinson, M. B.

    1987-01-01

    A drop tube is an enclosure in which a molten sample can be solidified while falling; three such large tubes are currently in existence, all at NASA research facilities, and are engaged in combustion and fluid physics-related experiments rather than in materials research. JPL possesses smaller tubes, one of which can be cryogenically cooled to produce glass and metal microshells. A new small drop tube will soon begin operating at NASA Lewis that is equipped with four high-speed two-color pyrometers spaced equidistantly along the column.

  3. GEOCHEMICAL FACTORS GOVERNING METHYL MERCURY PRODUCTION IN MERCURY CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Bench scale experiments were conducted to improve our understanding of aquatic mercury transformation processes (biotic and abiotic), specifically those factors which govern the production of methyl mercury (MeHg) in sedimentary environments. The greatest cause for concern regar...

  4. Static Magnetowetting of Ferrofluid Drops.

    PubMed

    Rigoni, Carlo; Pierno, Matteo; Mistura, Giampaolo; Talbot, Delphine; Massart, René; Bacri, Jean-Claude; Abou-Hassan, Ali

    2016-08-01

    We report results of a comprehensive study of the wetting properties of sessile drops of ferrofluid water solutions at various concentrations deposited on flat substrates and subjected to the action of permanent magnets of different sizes and strengths. The amplitude and the gradient of the magnetic field experienced by the ferrofluid are changed by varying the magnets and their distance to the surface. Magnetic forces up to 100 times the gravitational one and magnetic gradients up to 1 T/cm are achieved. A rich phenomenology is observed, ranging from flattened drops caused by the magnetic attraction to drops extended normally to the substrate because of the normal traction of the magnetic field. We find that the former effect can be conveniently described in terms of an effective Bond number that compares the effective drop attraction with the capillary force, whereas the drop's vertical elongation is effectively expressed by a dimensionless number S, which compares the pressure jump at the ferrofluid interface because of the magnetization with the capillary pressure. PMID:27385506

  5. Air induced breakup of drops.

    NASA Astrophysics Data System (ADS)

    Han, Jaehoon; Tryggvason, Gretar

    1997-11-01

    The deformation and breakup of drops subject to both sudden and gradual acceleration is examined by axisymmetric inviscid and full numerical simulations. In the full simulations, the Navier Stokes equations are solved for the fluid inside and outside of the drop by a Front Tracking/Finite Difference Method. In the limit of small density stratification, inviscid simulations show the formation of a toroidal drop for small surface tension and the formation of skirts as the surface tension is increased. The viscous computations show a similar transition plus a RbagS break up for a relatively high surface tension, but not high enough so that the drop reaches a steady state deformation. The RbagS break up mode appears when the drop slows down due to viscous dissipation after most of its fluid has accumulated in the rim, forming a torous connected by a thin film. A RbagS is formed when the rim starts to fall faster than the film. The various break up modes, as a function of the Ohnesorge and Weber (or Eotvos) numbers as well as property ratios is discussed. Supported by AFOSR.

  6. Mercury pollution in Malaysia.

    PubMed

    Hajeb, Parvaneh; Jinap, S; Ismail, Ahmad; Mahyudin, Nor Ainy

    2012-01-01

    Although several studies have been published on levels of mercury contamination of the environment, and of food and human tissues in Peninsular Malaysia, there is a serious dearth of research that has been performed in East Malaysia (Sabah and Sarawak). Industry is rapidly developing in East Malaysia, and, hence, there is a need for establishing baseline levels of mercury contamination in environmental media in that part of the country by performing monitoring studies. Residues of total mercury and inorganic in food samples have been determined in nearly all previous studies that have been conducted; however, few researchers have analyzed samples for the presence of methlymercury residues. Because methylmercury is the most toxic form of mercury, and because there is a growing public awareness of the risk posed by methylmercury exposure that is associated with fish and seafood consumption, further monitoring studies on methylmercury in food are also essential. From the results of previous studies, it is obvious that the economic development in Malaysia, in recent years, has affected the aquatic environment of the country. Primary areas of environmental concern are centered on the rivers of the west Peninsular Malaysian coast, and the coastal waters of the Straits of Malacca, wherein industrial activities are rapidly expanding. The sources of existing mercury input to both of these areas of Malaysia should be studied and identified. Considering the high levels of mercury that now exists in human tissues, efforts should be continued, and accelerated in the future, if possible, to monitor mercury contamination levels in the coastal states, and particularly along the west Peninsular Malaysian coast. Most studies that have been carried out on mercury residues in environmental samples are dated, having been conducted 20-30 years ago; therefore, the need to collect much more and more current data is urgent. Furthermore, establishing baseline levels of mercury exposure to

  7. Isoelectric Focusing in a Drop

    PubMed Central

    Weiss, Noah G.; Hayes, Mark A.; Garcia, Antonio A.; Ansari, Rafat R.

    2010-01-01

    A novel approach to molecular separations is investigated using a technique termed droplet-based isoelectric focusing. Drops are manipulated discretely on a superhydrophobic surface, subjected to low voltages for isoelectric focusing, and split—resulting in a preparative separation. A universal indicator dye demonstrates the generation of stable, reversible pH gradients (3–10) in ampholyte buffers and these gradients lead to protein focusing within the drop length. Focusing was visually characterized, spectroscopically verified, and assessed quantitatively by non-invasive light scattering measurements. It was found to correlate with a quantitative model based on 1D steady state theory. This work illustrates that molecular separations can be deployed within a single open drop and the differential fractions can be separated into new discrete liquid elements. PMID:21117663

  8. MESSENGER: Exploring Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Krimigis, Stamatios M.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Koehn, Patrick L.; Korth, Haje; Levi, Stefano; Mauk, Barry H.; Solomon, Sean C.; Zurbuchen, Thomas H.

    2005-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet s miniature magnetosphere since the brief flybys of Mariner 10. Mercury s magnetosphere is unique in many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic particles and, hence, no radiation belts. The characteristic time scales for wave propagation and convective transport are short and kinetic and fluid modes may be coupled. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury s interior may act to modify the solar wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects may be an important source of information on the state of Mercury s interior. In addition, Mercury s magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived, - 1-2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury s magnetic tail. Because of Mercury s proximity to the sun, 0.3 - 0.5 AU, this magnetosphere experiences the most extreme driving forces in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and re-cycling of neutrals and ions between the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury s magnetosphere are expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection at the magnetopause and in the tail, and the pick-up of planetary ions all

  9. Determination of mercurous chloride and total mercury in mercury ores

    USGS Publications Warehouse

    Fahey, J.J.

    1937-01-01

    A method for the determination of mercurous chloride and total mercury on the same sample is described. The mercury minerals are volatilized in a glass tube and brought into intimate contact with granulated sodium carbonate. The chlorine is fixed as sodium chloride, determined with silver nitrate, and computed to mercurous chloride. The mercury is collected on a previously weighed gold coil and weighed.

  10. Biogeochemistry: Better living through mercury

    NASA Astrophysics Data System (ADS)

    Schaefer, Jeffra K.

    2016-02-01

    Mercury is a toxic element with no known biological function. Laboratory studies demonstrate that mercury can be beneficial to microbial growth by acting as an electron acceptor during photosynthesis.

  11. Electrical stimulation causes rapid changes in electrode impedance of cell-covered electrodes

    PubMed Central

    Newbold, Carrie; Richardson, Rachael; Millard, Rodney; Seligman, Peter; Cowan, Robert; Shepherd, Robert

    2011-01-01

    Animal and clinical observations of a reduction in electrode impedance following electrical stimulation encouraged the development of an in vitro model of the electrode-tissue interface. This model was used previously to show an increase in impedance with cell and protein cover over electrodes. In this paper, the model was used to assess the changes in electrode impedance and cell cover following application of a charge-balanced biphasic current pulse train. Following stimulation, a large and rapid drop in total impedance (Zt) and access resistance (Ra) occurred. The magnitude of this impedance change was dependent on the current amplitude used, with a linear relationship determined between Ra and the resulting cell cover over the electrodes. The changes in impedance due to stimulation were shown to be transitory, with impedance returning to pre-stimulation levels several hours after cessation of stimulation. A loss of cells over the electrode surface was observed immediately after stimulation suggesting that the level of stimulation applied was creating localised changes to cell adhesion. Similar changes in electrode impedance were observed for in vivo and in vitro work, thus helping to verify the in vitro model, although the underlying mechanisms may differ. A change in the porosity of the cellular layer was proposed to explain the alterations in electrode impedance in vitro. These in vitro studies provide insight into the possible mechanisms occurring at the electrode-tissue interface in association with electrical stimulation. PMID:21572219

  12. sensor electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiqiang; Ma, Congcong; He, Lian; Zhu, Shijin; Hao, Xiaodong; Xie, Wanyi; Zhang, Wei; Zhang, Yuxin

    2014-11-01

    In this work, an ultrafast and facile method is developed to synthesize Au(I)-dodecanethiolate nanotubes (Au(I)NTs) with the assistance of glycyl-glycyl-glycine (G-G-G). Transmission electron microscopy (TEM) images reveal that the as-prepared Au(I)NTs can be obtained in a 2-h reaction instead of a previous 24-h reaction and are uniform with a hollow structure and smooth surface by virtue of the G-G-G peptide tubular template. According to structural analysis, a possible preparative mechanism is proposed that the G-G-G peptide could help to curl into tube-like morphology in alkaline situation spontaneously to accelerate the formation of Au(I)NTs. Meanwhile, PVDF-stabilized Au(I)NT-modified glassy carbon electrodes present their promising potential for Hg2+ detection.

  13. Carbon nanosheets as the electrode material in supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Tian, Hui; Zhu, Mingyao; Tian, Kai; Wang, J. J.; Kang, Feiyu; Outlaw, R. A.

    Carbon nanosheets are comprised of 1-7 graphene layers that are predominantly vertically oriented with respect to a substrate. The thickness and morphology of the nanosheets can vary depending on the growth precursor and the substrate temperature. They have an ultra-low in-plane resistivity. The capacitance of carbon nanosheets was measured by cyclic voltammetry in a standard electrochemical three-electrode cell, which contains a platinum counter electrode and a standard mercury/mercurous sulfate reference electrode in 6 M H 2SO 4 electrolyte. As a working electrode, the capacitance of carbon nanosheets per area was found to be 0.076 F cm -2. A mathematical model was used to simulate the total possible capacitance of a virtual supercapacitor cell that contains carbon nanosheets as the electrode material and found to be 1.49 × 10 4 F.

  14. 49 CFR 178.965 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.965 Section 178.965 Transportation... Packagings § 178.965 Drop test. (a) General. The drop test must be conducted for the qualification of all...) Special preparation for the drop test. Large Packagings must be filled in accordance with § 178.960....

  15. 49 CFR 178.1045 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.1045 Section 178.1045... Containers § 178.1045 Drop test. (a) General. The drop test must be conducted for the qualification of all... subpart. (b) Special preparation for the drop test. Flexible Bulk Containers must be filled to...

  16. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.810 Section 178.810 Transportation... Drop test. (a) General. The drop test must be conducted for the qualification of all IBC design types... the drop test. (1) Metal, rigid plastic, and composite IBCs intended to contain solids must be...

  17. 49 CFR 178.603 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.603 Section 178.603 Transportation... Packagings and Packages § 178.603 Drop test. (a) General. The drop test must be conducted for the... than flat drops, the center of gravity of the test packaging must be vertically over the point...

  18. Student Exposure to Mercury Vapors.

    ERIC Educational Resources Information Center

    Weber, Joyce

    1986-01-01

    Discusses the problem of mercury vapors caused by spills in high school and college laboratories. Describes a study which compared the mercury vapor levels of laboratories in both an older and a newer building. Concludes that the mercurial contamination of chemistry laboratories presents minimal risks to the students. (TW)

  19. ATMOSPHERIC MERCURY TRANSPORT AND DEPOSITION

    EPA Science Inventory

    The current state of our scientific understanding the mercury cycle tells us that most of the mercury getting into fish comes from atmospheric deposition, but methylation of that mercury in aquatic systems is required for the concentrations in fish to reach harmful levels. We st...

  20. MERCURY IN MARINE LIFE DATABASE

    EPA Science Inventory

    The purpose of the Mercury in Marine Life Project is to organize information on estuarine and marine species so that EPA can better understand both the extent of monitoring for mercury and level of mercury contamination in the biota of coastal environments. This report follows a ...

  1. Reference Atmosphere for Mercury

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.

    2002-01-01

    We propose that Ar-40 measured in the lunar atmosphere and that in Mercury's atmosphere is due to current diffusion into connected pore space within the crust. Higher temperatures at Mercury, along with more rapid loss from the atmosphere will lead to a smaller column abundance of argon at Mercury than at the Moon, given the same crustal abundance of potassium. Because the noble gas abundance in the Hermean atmosphere represents current effusion, it is a direct measure of the crustal potassium abundance. Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors, since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the Earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in the atmospheres of Mercury and the Moon is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon and Mercury is representative of current effusion rather than accumulation over the lifetime of the planet.

  2. The observation of valence band change on resistive switching of epitaxial Pr{sub 0.7}Ca{sub 0.3}MnO{sub 3} film using removable liquid electrode

    SciTech Connect

    Lee, Hong-Sub; Park, Hyung-Ho

    2015-12-07

    The resistive switching (RS) phenomenon in transition metal oxides (TMOs) has received a great deal of attention for non-volatile memory applications. Various RS mechanisms have been suggested as to explain the observed RS characteristics. Many reports suggest that changes of interface and the role of oxygen vacancies originate in RS phenomena; therefore, in this study, we use a liquid drop of mercury as the top electrode (TE), epitaxial Pr{sub 0.7}Ca{sub 0.3}MnO{sub 3} (PCMO) (110) film of the perovskite manganite family for RS material, and an Nb-doped (0.7 at. %) SrTiO{sub 3} (100) single crystal as the substrate to observe changes in the interface between the TE and TMOs. The use of removable liquid electrode Hg drop as TE not only enables observation of the RS characteristic as a bipolar RS curve (counterclockwise) but also facilitates analysis of the valence band of the PCMO surface after resistive switching via photoelectron spectroscopy. The observed I-V behaviors of the low and high resistance states (HRS) are explained with an electrochemical migration model in PCMO film where accumulated oxygen vacancies at the interface between the Hg TE and PCMO (110) surface induce the HRS. The interpreted RS mechanism is directly confirmed via valence band spectrum analysis.

  3. Sensing Mercury for Biomedical and Environmental Monitoring

    PubMed Central

    Selid, Paul D.; Xu, Hanying; Collins, E. Michael; Face-Collins, Marla Striped; Zhao, Julia Xiaojun

    2009-01-01

    Mercury is a very toxic element that is widely spread in the atmosphere, lithosphere, and surface water. Concentrated mercury poses serious problems to human health, as bioaccumulation of mercury within the brain and kidneys ultimately leads to neurological diseases. To control mercury pollution and reduce mercury damage to human health, sensitive determination of mercury is important. This article summarizes some current sensors for the determination of both abiotic and biotic mercury. A wide array of sensors for monitoring mercury is described, including biosensors and chemical sensors, while piezoelectric and microcantilever sensors are also described. Additionally, newly developed nanomaterials offer great potential for fabricating novel mercury sensors. Some of the functional fluorescent nanosensors for the determination of mercury are covered. Afterwards, the in vivo determination of mercury and the characterization of different forms of mercury are discussed. Finally, the future direction for mercury detection is outlined, suggesting that nanomaterials may provide revolutionary tools in biomedical and environmental monitoring of mercury. PMID:22346707

  4. Getting the Drop on Sediment

    ERIC Educational Resources Information Center

    Galindez, Peter

    1977-01-01

    In this exercise, students examine Aristotle's weight hypothesis by testing variously shaped marble chips. These chips are weighed and dropped down a water tube. Average fall times and weights are recorded and graphed. Students are asked to apply this information to rock and soil deposition by streams. (MA)

  5. Size distribution of detached drops

    NASA Astrophysics Data System (ADS)

    Baluev, V. V.; Stepanov, V. M.

    1989-10-01

    The law governing the size distribution of detached gas-liquid streams of drops has been determined analytically, and a comparison is carried out against experimental data existing in the literature. The derived theoretical relationships offer an excellent description of existing experimental results.

  6. Viscous effects in drop impact

    NASA Astrophysics Data System (ADS)

    Zamora, Roberto; Schroll, Robert; Blanchette, Francois; Zhang, Wendy

    2006-11-01

    We investigate the onset of splash for a viscous drop impacting a solid surface. The simulation is based on the volume-of-fluid methods of Popinet and Zaleski [Int. J. Numer. Meth. Fluids 30, 775-793 (1999)] and tracks the interface evolution explicitly. The qualitative shape evolution and the quantitative spreading dynamics are examined and compared against available experimental results.

  7. Atmospheric speciation of mercury in two contrasting Southeastern US airsheds

    NASA Astrophysics Data System (ADS)

    Gabriel, Mark C.; Williamson, Derek G.; Brooks, Steve; Lindberg, Steve

    Simultaneous measurement of gaseous elemental, reactive gaseous, and fine particulate mercury took place in Tuscaloosa AL, (urban airshed) and Cove Mountain, TN (non-urban airshed) during the summers of 2002 and 2003. The objective of this research was to (1) summarize the temporal distribution of each mercury specie at each site and compare to other speciation data sets developed by other researchers and (2) provide insight into urban and non-urban mercury speciation effects using various statistical methods. Average specie concentrations were as follows: 4.05 ng m -3 (GEM), 13.6 pg m -3 (RGM), 16.4 pg m -3 (Hg-p) for Tuscaloosa; 3.20 ng m -3 (GEM), 13.6 pg m -3 (RGM), 9.73 pg m -3 (Hg-p) for Cove Mountain. As a result of urban airshed impacts, short periods of high concentration for all mercury species was common in Tuscaloosa. At Cove Mountain a consistent mid-day rise and evening drop for mercury species was found. This pattern was primarily the result of un-impacted physical boundary layer movement, although, other potential impacts were ambient photochemistry and air-surface exchange of mercury. Meteorological parameters that are known to heavily impact mercury speciation were similar for the study period for Tuscaloosa and Cove Mountain except for wind speed (m s -1), which was higher at Cove Mountain. For both sites statistically significant ( p<0.0001), inverse relationships existed between wind speed and Hg 0 concentration. A weaker windspeed-Hg 0 correlation existed for Tuscaloosa. By analyzing Hg concentration—wind speed magnitude change at both sites it was found that wind speed at Cove Mountain had a greater influence on Hg 0 concentration variability than Tuscaloosa by a factor of 3. Using various statistical tests, we concluded that the nature of Tuscaloosa's atmospheric mercury speciation was the result of typical urban airshed impacts. Cove Mountain showed atmospheric mercury speciation characteristics indicative of a non-urban area along with

  8. Catalyst Additives to Enhance Mercury Oxidation and Capture

    SciTech Connect

    Thomas K. Gale

    2006-06-30

    Catalysis is the key fundamental ingredient to convert elemental mercury in coal-fired power stations into its oxidized forms that are more easily captured by sorbents, ESPs, baghouses, and wet scrubbers, whether the catalyst be unburned carbon (UBC) in the ash or vanadium pentoxide in SCR catalysts. This project has investigated several different types of catalysts that enhance mercury oxidation in several different ways. The stated objective of this project in the Statement of Objectives included testing duct-injection catalysts, catalyst-sorbent hybrids, and coated low-pressure-drop screens. Several different types of catalysts were considered for duct injection, including different forms of iron and carbon. Duct-injection catalysts would have to be inexpensive catalysts, as they would not be recycled. Iron and calcium had been shown to catalyze mercury oxidation in published bench-scale tests. However, as determined from results of an on-going EPRI/EPA project at Southern Research, while iron and calcium did catalyze mercury oxidation, the activity of these catalysts was orders of magnitude below that of carbon and had little impact in the short residence times available for duct-injected catalysts or catalyst-sorbent hybrids. In fact, the only catalyst found to be effective enough for duct injection was carbon, which is also used to capture mercury and remove it from the flue gas. It was discovered that carbon itself is an effective catalyst-sorbent hybrid. Bench-scale carbon-catalyst tests were conducted, to obtain kinetic rates of mercury adsorption (a key step in the catalytic oxidation of mercury by carbon) for different forms of carbon. All carbon types investigated behaved in a similar manner with respect to mercury sorption, including the effect of temperature and chlorine concentration. Activated carbon was more effective at adsorbing mercury than carbon black and unburned carbon (UBC), because their internal surface area of activated carbon was

  9. Follow that mercury!

    SciTech Connect

    Linero, A.A.

    2008-07-01

    The article discusses one technology option for avoiding release of mercury captured by power plant pollution control equipment in order to render it usable in concrete. This is the use of selective catalytic reduction for NOx control and lime spray dryer absorbers (SDA) for SO{sub 2} control prior to particulate collection by fabric filters. In this scenario all mercury removed is trapped in the fabric filter baghouse. The US EPA did not establish mercury emission limits for existing cement plants in the latest regulation 40 CFR 63, Subpart LLL (December 2006) and was sued by the Portland Cement Association because of the Hg limits established for new kilns and by several states and environmental groups for the lack of limits on existing ones. A full version of this article is available on www.acaa-usa.org/AshatWork.htm. 2 figs.

  10. Water displacement mercury pump

    DOEpatents

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  11. Mercury radar speckle dynamics

    NASA Astrophysics Data System (ADS)

    Holin, Igor V.

    2010-06-01

    Current data reveal that Mercury is a dynamic system with a core which has not yet solidified completely and is at least partially decoupled from the mantle. Radar speckle displacement experiments have demonstrated that the accuracy in spin-dynamics determination for Earth-like planets can approach 10 -5. The extended analysis of space-time correlation properties of radar echoes shows that the behavior of speckles does not prevent estimation of Mercury's instantaneous spin-vector components to accuracy of a few parts in 10 7. This limit can be reached with more powerful radar facilities and leads to constraining the interior in more detail from effects of spin dynamics, e.g., from observation of the core-mantle interplay through high precision monitoring of the 88-day spin-variation of Mercury's crust.

  12. Water displacement mercury pump

    DOEpatents

    Nielsen, Marshall G.

    1985-01-01

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  13. The magnetosphere of Mercury

    NASA Technical Reports Server (NTRS)

    Ness, N. F.

    1976-01-01

    Data on Mercury's magnetosphere and on the plasma, planetomagnetic, and energetic particle environment of the planet obtained in three encounters (Mariner 10 flybys) are compared, and tasks for future research are outlined. The Mercury bow shock and magnetopause are much closer to the planet than the earth counterparts are to the earth. The magnetotail with embedded plasma sheet-field reversal region, global deflection of the solar wind by an intrinsic dipolar magnetic field, variations in solar wind momentum flux, and absence of such features as ionosphere, plasmasphere, and radiation belts, are described. Energetic electrons are accelerated in the magnetotail, however, and the interplanetary magnetic field variations distort Mercury's magnetosphere to produce a southward field associated with substorm-like disturbances.

  14. Nano-crater Formation on Electrodes during the Electrical Charging of Aqueous Droplets

    NASA Astrophysics Data System (ADS)

    Elton, Eric; Rosenberg, Ethan; Ristenpart, William

    2015-11-01

    A water drop in an insulating fluid acquires charge when it contacts an electrode, but the exact mechanism of charge transfer has remained obscure. Previous work, dating back to Maxwell, has implicitly assumed that the electrode remains unaltered by the charging process. Here we demonstrate that, contrary to this assumption, water drops and other conducting objects create ``nano-craters'' on the electrode surface during the charging process. We used optical microscopy, SEM, and atomic force microscopy to characterize the electrode surfaces before and after water drops were electrically bounced on them. We show that each drop contact creates an approximately micron wide and 30-nm deep crater to form on the electrode surface. Given enough time, the drop will form enough nano-craters to effectively `eat through' a sufficiently thin electrode. We discuss possible physical mechanisms for the nano-crater formation, including localized melting caused by Joule heating during the charge transfer event. The observations reported here are of particular interest in the development of microfluidic devices that use thin film electrodes to control the motion of aqueous drops.

  15. resterilizable electrode for electrosurgery

    NASA Technical Reports Server (NTRS)

    Engstrom, E. R.; Houge, J. C.

    1979-01-01

    Required properties of flexibility, electrical conductivity, tensile strength, and tear resistance of electrosurgical electrodes is retained through utilization of flexible-polymer/conductive particle composites for electrodes.

  16. Control of mercury pollution.

    PubMed

    Noyes, O R; Hamdy, M K; Muse, L A

    1976-01-01

    When a 203Ng(NO3)2 solution was kept at 25 degrees C in glass or polypropylene containers, 50 and 80% of original radioactivity was adsorbed to the containers' walls after 1 and 4 days, respectively. However, no loss in radioactivity was observed if the solution was supplemented with HgCl as carrier (100 mug Hg2+/ml) and stored in either container for 13 days. When 203Hg2+ was dissolved in glucose basal salt broth with added carrier, levels of 203Hg2+ in solution (kept in glass) decreased to 80 and 70% of original after 1 and 5 days and decreased even more if stored in polypropylene (60 and 40% of original activity after 1 and 4 days, respectively). In the absence of carrier, decreases of 203Hg2+ activities in media stored in either container were more pronounced due to chemisorption (but) not diffusion. The following factors affecting the removal of mercurials from aqueous solution stored in glass were examined: type and concentration of adsorbent (fiber glass and rubber powder); pH; pretreatment of the rubber; and the form of mercury used. Rubber was equally effective in the adsorption of organic and inorganic mercury. The pH of the aqueous 203Hg2+ solution was not a critical factor in the rate of adsorption of mercury by the rubber. In addition, the effect of soaking the rubber in water for 18 hr did not show any statistical difference when compared with nontreated rubber. It can be concluded that rubber is a very effective adsorbent of mercury and, thus, can be used as a simple method for control of mercury pollution. PMID:1549

  17. Mosaic Postcards from Mercury

    NASA Astrophysics Data System (ADS)

    Hallau, K. G.; Chapman, C. R.; Edmonds, J.; Goldstein, J.; Hirshon, B.; Solomon, S. C.; Vanhala, H.; Weir, H. M.; Messenger Education; Public Outreach Team

    2010-12-01

    On its journey to become the first spacecraft to orbit Mercury, NASA’s MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has followed a trajectory that included three flybys of the innermost planet. During the flybys, images captured by the Mercury Dual Imaging System revealed parts of the planet’s surface never before seen at close range, as well as high-resolution views of craters, crater rays, scarps, faults, and volcanic vents and flows. To help students and teachers better understand this revealing new look at Mercury, the MESSENGER Education and Public Outreach team will share these high-resolution images of Mercury's surface throughout the upcoming Year of the Solar System. By means of an intriguing format that mimics methods used by the MESSENGER team, a series of images printed at large postcard size will each highlight a small "slice" of Mercury, such as a crater or fault. The individual cards can then be pieced together, puzzle-style, on a poster-sized grid to reveal a larger mosaic view of the planet. Each card contains engaging text, the URL for an accompanying website, and coordinates for that region of the planet, helping students understand scientific concepts related to and revealed by MESSENGER's journey. The first set of cards will feature scarps, volcanic plains, the topography of a crater and the composition of its interior units, rayed craters, nested craters, and a deposit produced by explosive volcanic eruptions. Cards will be available for free on the accompanying website, distributed by MESSENGER Educator Fellows, or handed out at meetings, conferences, and workshops.

  18. Mercury binding on activated carbon

    SciTech Connect

    Bihter Padak; Michael Brunetti; Amanda Lewis; Jennifer Wilcox

    2006-11-15

    Density functional theory has been employed for the modeling of activated carbon (AC) using a fused-benzene ring cluster approach. Oxygen functional groups have been investigated for their promotion of effective elemental mercury binding on AC surface sites. Lactone and carbonyl functional groups yield the highest mercury binding energies. Further, the addition of halogen atoms has been considered to the modeled surface, and has been found to increase the AC's mercury adsorption capacity. The mercury binding energies increase with the addition of the following halogen atoms, F {gt} Cl {gt} Br {gt} I, with the fluorine addition being the most promising halogen for increasing mercury adsorption.

  19. Mercury CEM Calibration

    SciTech Connect

    John Schabron; Joseph Rovani; Mark Sanderson

    2008-02-29

    Mercury continuous emissions monitoring systems (CEMS) are being implemented in over 800 coal-fired power plant stacks. The power industry desires to conduct at least a full year of monitoring before the formal monitoring and reporting requirement begins on January 1, 2009. It is important for the industry to have available reliable, turnkey equipment from CEM vendors. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The generators are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 requires that calibration be performed with NIST-traceable standards (Federal Register 2007). Traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued an interim traceability protocol for elemental mercury generators (EPA 2007). The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The document is divided into two separate sections. The first deals with the qualification of generators by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the generator models that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry performed by NIST in Gaithersburg, MD. The

  20. Mercury and organochlorines in eggs from a Norwegian gannet colony

    SciTech Connect

    Fimreite, N.; Brevik, E.M.; Torp, R.

    1982-01-01

    The materials for this study consisted of addled eggs that were collected shortly after the laying season and stored frozen until analysis took place. The collection site is located near Nordmjele at 69/sup 0/ 08' N in northern Norway. Eggs were analyzed for DDE, PCBs and HCB by a gas chromatographic method described by BJERK and SUNDBY (1970). The PCBs were determined via pattern recognition using the commercial PCB standard Aroclor 1254, and the sum of peaks numbers 7, 8, and 10 was used (JENSEN 1972). Analysis for total mercury by flameless atomic absorbtion spectrophotometry followed the procedure of HATCH and OTT (1968). Results show a significant decrease in DDE as well as PCBs levels had taken place between the years 1972 and 1978. The 1979 data support the hypothesis that this indicates a trend as the average DDE and PCBs concentrations dropped further by 33 and 43 per cent, respectively. Only the eggs collected in 1979 were analyzed for HCB. The concentrations were very low (0.033 +/- 0.0018 ppm). The average mercury levels increased from 0.58 ppm in 1972 to 0.80 ppm in 1978 and then dropped to 0.36 ppm the following year. The present levels of DDE, PCBs, and HCB are well below those that by experience have caused problems as, for example, eggshell thinning. The mercury concentrations come closer to such levels as 0.5 ppm of mercury in eggs have been associated with reproductive impairment in pheasants. However, since fish and seafood in general, which constitute the diet of gannets, are rich in selenium, a strong antagonist to mercury such concentrations are probably well within safe limits too.

  1. Use of epoxy-embedded electrodes to integrate electrochemical detection with microchip-based analysis systems

    PubMed Central

    Selimovic, Asmira; Johnson, Alicia S.; Kiss, István Z.; Martin, R. Scott

    2011-01-01

    A new method of fabricating electrodes for microchip devices that involves the use of Teflon molds and a commercially available epoxy to embed electrodes of various size and composition is described. The resulting epoxy base can be polished to generate a fresh electrode and sealed against PDMS-based fluidic structures. Microchip-based flow injection analysis was used to characterize the epoxy-embedded electrodes. It was shown that gold electrodes can be amalgamated with liquid mercury and the resulting mercury/gold electrode used to selectively detect glutathione from lysed red blood cells. The ability to encapsulate multiple electrode materials of differing composition enabled the integration of microchip electrophoresis with electrochemical detection. Finally, a unique feature of this approach is that the electrode connection is made from the bottom of the epoxy base. This enables the creation of three-dimensional gold pillar electrodes (65 µm in diameter and 27 µm in height) that can be integrated within a fluidic network. As compared to the use of a flat electrode of a similar diameter, the use of the pillar electrode led to improvements in both the sensitivity (72.1 pA/µM for the pillar vs. 4.2 pA/µM for the flat electrode) and limit of detection (20 nM for the pillar vs. 600 nM for the flat electrode), with catechol being the test analyte. These epoxy-embedded electrodes hold promise for the creation of inexpensive microfluidic devices that can be used to electrochemically detect biologically important analytes in a manner where the electrodes can be polished and a fresh electrode surface generated as desired. PMID:21413031

  2. Phytochelatin Modified Electrode Surface as a Sensitive Heavy-Metal Ion Biosensor

    PubMed Central

    Adam, Vojtech; Zehnalek, Josef; Petrlova, Jitka; Potesil, David; Sures, Bernd; Trnkova, Libuse; Jelen, Frantisek; Vitecek, Jan; Kizek, Rene

    2005-01-01

    Electrochemical biosensors have superior properties over other existing measurement systems because they can provide rapid, simple and low-cost on-field determination of many biological active species and a number of dangerous pollutants. In our work, we suggested a new heavy metal biosensor based on interaction of heavy metal ions (Cd2+ and Zn2+) with phytochelatin, which was adsorbed on the surface of the hanging mercury drop electrode, using adsorptive transfer stripping differential pulse voltammetry. In addition, we applied the suggested technique for the determination of heavy metals in a biological sample – human urine and platinum in a pharmaceutical drug. The detection limits (3 S/N) of Cd(II), Zn(II) and cis-platin were about 1.0, 13.3 and 1.9 pmole in 5 μl, respectively. On the basis of the obtained results, we propose that the suggested technique offers simple, rapid, and low-cost detection of heavy metals in environmental, biological and medical samples.

  3. Compressibility of Mercury's dayside magnetosphere

    NASA Astrophysics Data System (ADS)

    Zhong, J.; Wan, W. X.; Wei, Y.; Slavin, J. A.; Raines, J. M.; Rong, Z. J.; Chai, L. H.; Han, X. H.

    2015-12-01

    The Mercury is experiencing significant variations of solar wind forcing along its large eccentric orbit. With 12 Mercury years of data from Mercury Surface, Space ENvironment, GEochemistry, and Ranging, we demonstrate that Mercury's distance from the Sun has a great effect on the size of the dayside magnetosphere that is much larger than the temporal variations. The mean solar wind standoff distance was found to be about 0.27 Mercury radii (RM) closer to the Mercury at perihelion than at aphelion. At perihelion the subsolar magnetopause can be compressed below 1.2 RM of ~2.5% of the time. The relationship between the average magnetopause standoff distance and heliocentric distance suggests that on average the effects of the erosion process appears to counter balance those of induction in Mercury's interior at perihelion. However, at aphelion, where solar wind pressure is lower and Alfvénic Mach number is higher, the effects of induction appear dominant.

  4. Mercury and mercury compounds toxicology. (Latest citations from the Life Sciences Collection data base). Published Search

    SciTech Connect

    Not Available

    1992-10-01

    The bibliography contains citations concerning the toxic effects of mercury and mercury compounds on biological systems. Mercury metal, mercury vapors, organic mercury compounds, mercury halides, and other inorganic mercury compounds are discussed. Citations include acute, chronic, environmental, metabolic, and pathological effects; and clinical biochemistry of mercury exposure. Heavy metal pollution and bioaccumulation are referenced in related bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  5. Mercury and mercury compounds toxicology. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning the toxic effects of mercury and mercury compounds on biological systems. Mercury metal, mercury vapors, organic mercury compounds, mercury halides, and other inorganic mercury compounds are discussed. Citations include acute, chronic, environmental, metabolic, and pathological effects; and clinical biochemistry of mercury exposure. Heavy metal pollution and bioaccumulation are referenced in related bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  6. Plane Mercury librations

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.; Ferrandiz, J. M.

    2009-04-01

    Introduction. In 1988 I. Kholin [1] has developed a precision method of determination of parameters of rotation of planets on complex radar-tracking observations on two radio telescopes making base and definitely carried on surface of the Earth. His American colleagues for the period approximately in 4 with small year have executed a series of radar-tracking measurements on a method and I. Kholin's program [2] and have obtained for the specified period 21 values of angular velocity of rotation of this planet [3]. With the help of numerical integration of the equations of rotary motion on the found values they managed to determine with high accuracy the basic dynamic parameter in the theory of Mercury librations (B - A)•Cm = (2.03± 0.12) × 10-4 and the corresponding to it the value of amplitude of the basic librations35"8 ± 2"1. These results have served as convincing arguments for the benefit of the Peale's assumption, that a core of Mercury is liquid, or in partially molten [4]. Authors also managed to obtain for the first time parameters of resonant librations in a longitude which opening from radar observations was predicted earlier [5]. Its amplitude makes about 300", the period is equal approximately to 12 years. In the paper [6] parameters of the perturbed rotational motion have been determined with the help of the analytical theory and with formal using of results of mentioned work [3] on determination of 21 values of angular velocity of Mercury. In result the estimations of amplitudes of forced librations of first five harmonics with the periods: 87.97 d, 43.99 d, 29.33 d, 21.99 d and 17.59 d have been obtained. The appropriate amplitudes make values:34"05 ± 1"27, 3"59 ± 0"13, 0"354 ± 0"013, 0"072 ± 0"003 and 0"016 ± 0"001. The amplitude and the period of free librations of Mercury in a longitude are determined: 290"9 ± 67"0 and 12.37 ± 0.23 yr, consequently. The phase of this variation has made28401 ± 1402. In the paper we construct the similar

  7. Pollutant particle scavenging by rain drops

    NASA Astrophysics Data System (ADS)

    Castro, J. J.; Cârsteanu, A. A.; García, C. A.

    2003-04-01

    Scavenging of air pollutants by rain drops has been studied from various angles of the phenomenon: spatial distribution of drops, size distribution of the larger drops, and scavenging properties of individual drops have been taken into account. The latter makes the object of the present work. In order to study the movement of pollutant particles in the neighborhood of a falling rain drop, a fixed drop is subjected in situ to a vertical air current containing pollutant particles of several microns in size, originating from a Diesel engine exhaust, which are essentially composed of soot. While the speed of the air current reproduces the terminal velocity of the respective rain drop, the trajectories of the particles around the drops are being followed by digital imagery, through an optical microscope. We present the adhesion statistics of boundary layer particles to the water drops, and the incorporation of these results into a multifractal rainfall field model.

  8. The Stability of Two Connected Pendant Drops

    NASA Technical Reports Server (NTRS)

    Slobozhanin, Lev A.; Alexander, J. Iwan

    2004-01-01

    The stability of an equilibrium system of two drops suspended from circular holes is examined. The drop surfaces are disconnected surfaces of a connected liquid body. For holes of equal radii and identical pendant drops axisymmetric perturbations are always the most dangerous. The stability region for two identical drops differs considerably from that for a single drop. Loss of stability leads to a transition from a critical system of identical drops to a stable system of axisymmetric non-identical. This system of non-identical drops reaches its own stability limit (to isochoric or non-isochoric paturbations). For non-identical drops, loss of stability results in dripping or streaming from the holes. Critical volumes for non-identical drops have been calculated as functions of the Bond number, B. For unequal hole radii, stability regions have been constructed for a set of hole radius, K. The dependence of critical volumes on K and B is analyzed.

  9. Method and apparatus for sampling atmospheric mercury

    DOEpatents

    Trujillo, Patricio E.; Campbell, Evan E.; Eutsler, Bernard C.

    1976-01-20

    A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

  10. Drop impact on a fiber

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Gil; Kim, Wonjung

    2016-04-01

    We present the results of a combined experimental and theoretical investigation of drop impact on a thin fiber. Using high-speed videography, we analyze the dynamics of droplet collision with a fiber. Based on the systematic experiments, we identify three outcomes of collision: capturing, single drop falling, and splitting. The outcomes are presented in a regime map, where the regime boundaries are explained through a scale analysis of forces. We also measure the liquid retention on the fiber after the droplet impact. By considering a liquid film on the fiber, we develop a mechanical model that predicts the residual water mass. Our model reveals that the residual mass depends critically on the fiber thickness and less on the impact speed. Our study can be extended to predicting the remaining droplet, critical problems in air filtration, water collection, and fiber coating.

  11. Mercury emissions from coal combustion: modeling and comparison of Hg capture in a fabric filter versus an electrostatic precipitator.

    PubMed

    Scala, Fabrizio; Clack, Herek L

    2008-04-01

    Mercury emissions from coal combustion must be reduced, in response to new air quality regulations in the U.S. Although the most mature control technology is adsorption across a dust cake of powdered sorbent in a fabric filter (FF), most particulate control in the U.S. associated with coal combustion takes the form of electrostatic precipitation (ESP). Using recently developed models of mercury adsorption within an ESP and within a growing sorbent bed in a FF, parallel analyses of elemental mercury (Hg(0)) uptake have been conducted. The results show little difference between an ESP and a FF in absolute mercury removal for a low-capacity sorbent, with a high-capacity sorbent achieving better performance in the FF. Comparisons of fractional mercury uptake per-unit-pressure-drop provide a means for incorporating and comparing the impact of the much greater pressure drop of a FF as compared to an ESP. On a per-unit-pressure-drop basis, mercury uptake within an ESP exhibited better performance, particularly for the low-capacity sorbent and high mass loadings of both sorbents. PMID:17703878

  12. Predicting mercury in mallard ducklings from mercury in chorioallantoic membranes

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.

    2003-01-01

    Methylmercury has been suspected as a cause of impaired reproduction in wild birds, but the confounding effects of other environmental stressors has made it difficult to determine how much mercury in the eggs of these wild species is harmful. Even when a sample egg can be collected from the nest of a wild bird and the mercury concentration in that egg compared to the laboratory-derived thresholds for reproductive impairment, additional information on the mercury levels in other eggs from that nest would be helpful in determining whether harmful levels of mercury were present in the clutch. The measurement of mercury levels in chorioallantoic membranes offers a possible way to estimate how much mercury was in a chick that hatched from an egg, and also in the whole fresh egg itself. While an embryo is developing, wastes are collected in a sac called the chorioallantoic membranes, which often remain inside the eggshell and can be collected for contaminant analysis. We fed methylmercury to captive mallards to generate a broad range of mercury levels in eggs, allowed the eggs to hatch normally, and then compared mercury concentrations in the hatchling versus the chorioallantoic membranes left behind in the eggshell. When the data from eggs laid by mercury- treated females were expressed as common logarithms, a linear equation was created by which the concentration of mercury in a duckling could be predicted from the concentration of mercury in the chorioallantoic membranes from the same egg. Therefore, if it were not possible to collect a sample egg from a clutch of wild bird eggs, the collection of the chorioallantoic membranes could be substituted, and the mercury predicted to be in the chick or whole egg could be compared to the thresholds of mercury that have been shown to cause harm in controlled feeding studies with pheasants, chickens, and mallards.

  13. Piezoelectric Water Drop Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Al Ahmad, Mahmoud

    2014-02-01

    Piezoelectric materials convert mechanical deformation directly into electrical charges, which can be harvested and used to drive micropower electronic devices. The low power consumption of such systems on the scale of microwatts leads to the possibility of using harvested vibrational energy due to its almost universal nature. Vibrational energy harvested using piezoelectric cantilevers provides sufficient output for small-scale power applications. This work reports on vibrational energy harvesting from free-falling droplets at the tip of lead zirconate titanate piezoelectric-based cantilevers. The harvester incorporates a multimorph clamped-free cantilever made of lead zirconate titanate piezoelectric thick films. During the impact, the droplet's kinetic energy is transferred to the form of mechanical stress, forcing the piezoelectric structure to vibrate and thereby producing charges. Experimental results show an instantaneous drop-power of 2.15 mW cm-3 g-1. The scenario of a medium intensity of falling water drops, i.e., 200 drops per second, yielded a power of 0.48 W cm-3 g-1 per second.

  14. Fragmentation of hot classical drops

    SciTech Connect

    Vicentini, A.; Jacucci, G.; Pandharipande, V.R.

    1985-05-01

    Time evolution of hot drops of matter containing approx.230 or approx.130 particles is studied by classical molecular dynamics. Initially, the drops have uniform density and a sharp surface. The chosen initial conditions include three values of density and a range of temperatures wide enough to study the phenomena of evaporation, fragmentation, and total vaporization in a unified fashion. The average density and temperature of central matter is measured periodically to obtain trajectories of the evolution in the rho,T plane. These trajectories indicate that the matter expands almost adiabatically until it reaches the region of adiabatic instabilities. Density inhomogeneities develop in this region, but the matter fragments only if the expansion continues to average densities of less than one-fourth the liquid density, otherwise it recondenses into a single blob. The recondensed matter and fragments have very crooked surfaces. If the temperature is high enough, the expanding matter does not enter the region of adiabatic instabilities and totally vaporizes. For initial densities of the order of equilibrium density, matter does not fragment or develop large inhomogeneities in the region enclosed by the isothermal and adiabatic spinodals. Thus it appears unlikely that fragmentation of small drops (nuclei) can be used to study the isothermal critical region of gas-liquid phase transition. A detailed tabulation of the energies and number of monomers, dimers, light, and heavy fragments emitted in each event is presented.

  15. Thermocapillary motion of deformable drops

    NASA Technical Reports Server (NTRS)

    Haj-Hariri, Hossein; Shi, Qingping; Borhan, Ali

    1994-01-01

    The thermocapillary motion of initially spherical drops/bubbles driven by a constant temperature gradient in an unbounded liquid medium is simulated numerically. Effects of convection of momentum and energy, as well as shape deformations, are addressed. The method used is based on interface tracking on a base cartesian grid, and uses a smeared color or indicator function for the determination of the surface topology. Quad-tree adaptive refinement of the cartesian grid is implemented to enhance the fidelity of the surface tracking. It is shown that convection of energy results in a slowing of the drop, as the isotherms get wrapped around the front of the drop. Shape deformation resulting from inertial effects affect the migration velocity. The physical results obtained are in agreement with the existing literature. Furthermore, remarks are made on the sensitivity of the calculated solutions to the smearing of the fluid properties. Analysis and simulations show that the migration velocity depends very strongly on the smearing of the interfacial force whereas it is rather insensitive to the smearing of other properties, hence the adaptive grid.

  16. 18650 Li-ion cells with reference electrode and in situ characterization of electrodes

    NASA Astrophysics Data System (ADS)

    Nagasubramanian, G.; Doughty, D. H.

    At Sandia National Laboratories, we have built 18650 Li-ion cells with Li reference electrode for in situ characterization of electrodes including impedance and other electrochemical properties. At a 200 mA (˜C/5 rate) discharge, the cell gave ˜900 mAh. Impedance measurements indicate that the anode dominates the cell impedance. For example, at 0 °C, the anode and cathode impedances at 10 mHz were around 149 and 53 mΩ, respectively, and the total cell impedance at 10 mHz was ˜203 mΩ. The three-electrode configuration also permits measurement of individual electrode voltages during charge and discharge. During discharge, while the cell voltage drops from 4.1 to 3 V, the cathode and the anode voltages change from 4.1 to 3.7 and from ˜0 to 0.7 V, respectively. During charge, the cathode and anode voltages trace back to their initial values before discharging. The voltage swing for the anode is higher than that for the cathode. This also indicates that the impedance for the anode is higher than for the cathode. Pulse measurements on the cells indicate the voltage drop of the full-cell is equal to the sum of the anode and cathode voltage drops for a 2 A discharge pulse.

  17. 18650 Li-ion cells with reference electrode and in-situ characterization of electrodes.

    SciTech Connect

    Doughty, Daniel Harvey; Nagasubramanian, Ganesan

    2005-03-01

    At Sandia National Laboratories, we have built 18650 Li-ion cells with Li reference electrode for in situ characterization of electrodes including impedance and other electrochemical properties. At a 200 mA ({approx}C/5 rate) discharge, the cell gave {approx}900 mAh. Impedance measurements indicate that the anode dominates the cell impedance. For example, at 0 C, the anode and cathode impedances at 10 mHz were around 149 and 53 m{Omega}, respectively, and the total cell impedance at 10 mHz was {approx}203 m{Omega}. The three-electrode configuration also permits measurement of individual electrode voltages during charge and discharge. During discharge, while the cell voltage drops from 4.1 to 3 V, the cathode and the anode voltages change from 4.1 to 3.7 and from {approx}0 to 0.7 V, respectively. During charge, the cathode and anode voltages trace back to their initial values before discharging. The voltage swing for the anode is higher than that for the cathode. This also indicates that the impedance for the anode is higher than for the cathode. Pulse measurements on the cells indicate the voltage drop of the full-cell is equal to the sum of the anode and cathode voltage drops for a 2 A discharge pulse.

  18. In-Situ Measurement of Metal Drop Temperature in GMA Short-Circuiting Welding

    NASA Astrophysics Data System (ADS)

    Hirata, Yoshinori; Onda, Masahiko; Nagaki, Hayato; Ohji, Takayoshi

    Temperatures of metal drop in GMA short-circuiting welding process were in-situ measured using newly developed instrument designed on the basis of two-color pyrometry, which consisted of optical lenses, interference filters for two colors and two sets of high sensitive CCD cameras with fast shutter. In order to avoid radiation from arc plasma, temperature measurement was carried out immediately after molten drop at electrode wire tip was contacted with weld pool and arc was extinguished. Welding current in arcing period was adjusted from 50 A to 250 A using experimental power source in Ar + 20%CO2 mixture gas shielded GMA welding with mild steel wire of 1.2 mm in diameter. It is shown through in-situ measurement that average temperature of metal drop ranges from 2200 K to 2700 K, depending on level and period of arc current governing electrode wire melting.

  19. MERCURY CYCLING AND BIOMAGNIFICATION

    EPA Science Inventory

    Mercury cycling and biomagnification was studied in man-made ponds designed for watering livestock on the Cheyenne River Sioux Reservation in South Dakota. Multiple Hg species were quantified through multiple seasons for 2 years in total atmospheric deposition samples, surface wa...

  20. Magnetosphere of Mercury

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.

    1975-01-01

    A model magnetosphere of Mercury using Mariner 10 data is presented. Diagrams of the bow shock wave and magnetopause are shown. The analysis of Mariner 10 data indicates that the magnetic field of the planet is intrinsic. The magnetic tail and secondary magnetic fields, and the influence of the solar wind are also discussed.

  1. MERCURY CEMS: TECHNOLOGY UPDATE

    EPA Science Inventory

    The paper reviews the technologies involved with continuous emission monitors (CEMs) for mercury (Hg) which are receiving incresed attention and focus. Their potential use as a compliance assurance tool is of particular interest. While Hg CEMs are currently used in Europe for com...

  2. Hazards of Mercury.

    ERIC Educational Resources Information Center

    Environmental Research, 1971

    1971-01-01

    Common concern for the protection and improvement of the environment and the enhancement of human health and welfare underscore the purpose of this special report on the hazards of mercury directed to the Secretary's Pesticide Advisory Committee, Department of Health, Education, and Welfare. The report summarizes the findings of a ten-member study…

  3. ATMOSPHERIC MERCURY RESEARCH

    EPA Science Inventory

    Environmental contamination from mercury has been recognized for decades as a growing problem to humans and wildlife. It is released from a variety of sources, exhibits a complicated chemistry, and proceeds via several different pathways to humans and wildlife. According to the...

  4. Tidal Dissipation in Mercury

    NASA Technical Reports Server (NTRS)

    Bills, B. G.

    2002-01-01

    The spatial pattern and total inventory of tidal dissipation within Mercury depends sensitively on internal structure and on orbital eccentricity. Surface heat flow from this source may exceed 3 mW/sq m, and will vary with time as the orbital eccentricity fluctuates. Additional information is contained in the original extended abstract.

  5. MERCURY SPECIATION AND CAPTURE

    EPA Science Inventory

    In December 2000, the U.S. Environmental Protection Agency (USEPA) announced its intent to regulate mercury emissions from coal-fired electric utility steam generating plants. Maximum achievable control technology (MACT) requirements are to be proposed by December 2003 and finali...

  6. Mercury Shopping Cart Interface

    NASA Technical Reports Server (NTRS)

    Pfister, Robin; McMahon, Joe

    2006-01-01

    Mercury Shopping Cart Interface (MSCI) is a reusable component of the Power User Interface 5.0 (PUI) program described in another article. MSCI is a means of encapsulating the logic and information needed to describe an orderable item consistent with Mercury Shopping Cart service protocol. Designed to be used with Web-browser software, MSCI generates Hypertext Markup Language (HTML) pages on which ordering information can be entered. MSCI comprises two types of Practical Extraction and Report Language (PERL) modules: template modules and shopping-cart logic modules. Template modules generate HTML pages for entering the required ordering details and enable submission of the order via a Hypertext Transfer Protocol (HTTP) post. Shopping cart modules encapsulate the logic and data needed to describe an individual orderable item to the Mercury Shopping Cart service. These modules evaluate information entered by the user to determine whether it is sufficient for the Shopping Cart service to process the order. Once an order has been passed from MSCI to a deployed Mercury Shopping Cart server, there is no further interaction with the user.

  7. Bioanalysis with Potentiometric Membrane Electrodes.

    ERIC Educational Resources Information Center

    Rechnitz, G. A.

    1982-01-01

    Discusses major themes and interrelationships common to bioselective potentiometric membrane electrodes including the nature of bioselective electrodes, applications, and future prospects. Includes tables on traditional ion-selective membrane electrodes, nontraditional electrodes, and typical biocatalytic potentiometric electrodes. (Author/JN)

  8. How to freeze drop oscillations with powders

    NASA Astrophysics Data System (ADS)

    Marston, Jeremy; Zhu, Ying; Vakarelski, Ivan; Thoroddsen, Sigurdur

    2012-11-01

    We present experiments that show when a water drop impacts onto a bed of fine, hydrophobic powder, the final form of the drop can be very different from the spherical form with which it impacts. For all drop impact speeds, the drop rebounds due to the hydrophobic nature of the powder. However, we observe that above a critical impact speed, the drop undergoes a permanent deformation to a highly non-spherical shape with a complete coverage of powder, thus creating a deformed liquid marble. This powder coating acts to freeze the drop oscillations during rebound.

  9. Mercury Information Clearinghouse

    SciTech Connect

    Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal; Debra F. Pflughoeft-Hassett; Greg F. Weber; Nicholas V. C. Ralston; Stanley J. Miller; Grant E. Dunham; Edwin S. Olson; Laura J. Raymond; John H. Pavlish; Everett A. Sondreal; Steven A. Benson

    2006-03-31

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEA quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through

  10. [Mercury in vaccines].

    PubMed

    Hessel, Luc

    2003-01-01

    Thiomersal, also called thimerosal, is an ethyl mercury derivative used as a preservative to prevent bacterial contamination of multidose vaccine vials after they have been opened. Exposure to low doses of thiomersal has essentially been associated with hypersensitivity reactions. Nevertheless there is no evidence that allergy to thiomersal could be induced by thiomersal-containing vaccines. Allergy to thiomersal is usually of delayed-hypersensitivity type, but its detection through cutaneous tests is not very reliable. Hypersensitivity to thiomersal is not considered as a contraindication to the use of thiomersal-containing vaccines. In 1999 in the USA, thiomersal was present in approximately 30 different childhood vaccines, whereas there were only 2 in France. Although there were no evidence of neurological toxicity in infants related to the use of thiomersal-containing vaccines, the FDA considered that the cumulative dose of mercury received by young infants following vaccination was high enough (although lower than the FDA threshold for methyl mercury) to request vaccine manufacturers to remove thiomersal from vaccine formulations. Since 2002, all childhood vaccines used in Europe and the USA are thiomersal-free or contain only minute amounts of thiomersal. Recently published studies have shown that the mercury levels in the blood, faeces and urine of children who had received thiomersal-containing vaccines were much lower than those accepted by the American Environmental Protection Agency. It has also been demonstrated that the elimination of mercury in children was much faster than what was expected on the basis of studies conducted with methyl mercury originating from food. Recently, the hypothesis that mercury contained in vaccines could be the cause of autism and other neurological developmental disorders created a new debate in the medical community and the general public. To date, none of the epidemiological studies conducted in Europe and elsewhere

  11. Ion-Selective Electrodes.

    ERIC Educational Resources Information Center

    Arnold, Mark A.; Meyerhoff, Mark E.

    1984-01-01

    Literature on ion-selective electrodes (ISEs) is reviewed in seven sections: books, conferences, reviews; potentiometric membrane electrodes; glass and solid-state membrane electrodes; liquid and polymer membrane ISEs; coated wire electrodes, ion-selective field effect transistors, and microelectrodes; gas sensors and selective bioelectrode…

  12. Fundamental electrode kinetics

    NASA Technical Reports Server (NTRS)

    Elder, J. P.

    1968-01-01

    Report presents the fundamentals of electrode kinetics and the methods used in evaluating the characteristic parameters of rapid-charge transfer processes at electrode-electrolyte interfaces. The concept of electrode kinetics is outlined, followed by the principles underlying the experimental techniques for the investigation of electrode kinetics.

  13. Is Mercury's Magnetosphere Driven By Flux Transfer Events?

    NASA Astrophysics Data System (ADS)

    Slavin, J. A.

    2014-12-01

    Mercury's magnetosphere closely resembles that of Earth in terms of its topology and structure, but major differences are found when their dynamics are compared. The strong interplanetary magnetic fields at 0.3 to 0.5 AU result in low Alfven Mach numbers, weak bow shocks and low plasma β magnetosheaths at Mercury. These conditions support the development of strong plasma depletion layers adjacent to the magnetopause and intense magnetopause reconnection. MESSENGER observations indicate that reconnection occurs for all non-zero shear angles across the magnetopause with magnetosheat β being the primary factor controlling its rate. Flux transfer events (FTEs) with ~ 1-2 s durations and flux rope topology are observed during nearlly all magnetopause crossings. In contrast with the Earth where FTEs are typically observed every ~ 8 min, FTE ecounters at Mercury are separated on average by only ~ 10 s. At lower altitudes near the cusp MESSENGER observes ~1-2-s-long strong decreases in mgnetic field intensity that are termed cusp plasma filaments. These filaments are beleived to be formed by the inflow of magnetosheath plasma associated with flux transfer events. Mercury's magnetotail exhibits magnetic flux loading/unloading events similar to those observed at Earth during substorms. The Dungey cycle durations and lobe flux loading amplitudes are ~ 2 - 3 min and ~ 30 to 50% at Mercury as compared to ~ 1 - 2 hr and ~ 10 to 25% at Earth. However, FTEs at Earth account for only a few per cent of the magnetic flux carried by the Dungey cycle, while the contribution of FTEs at Mercury is estimated to be ~ 30 to 50%. Mercury also differs from Earth in that it lacks an ionosphere, but possesses a large, highly conducting iron core. The strong IMF and lack of an ionosphere results in a relatively large dawn-to-dusk cross-magnetosphere potential drop of ~ 30 kV at Mercury. Inductive coupling between Mercury's magnetosphere and its large iron core stiffens the dayside

  14. Uptake of mercury by the hair of methylmercury-treated newborn mice

    SciTech Connect

    Shi, Chenyang; Lane, A.T.; Clarkson, T.W. )

    1990-04-01

    Human hair has unique advantages in monitoring environmental exposures to methyl-mercury. Using newborn Balb/c mice as a model system, the incorporation of methylmercury into the hair was studied and compared with methylmercury distributions in other tissues. Newborn mice were given intraperitoneal injections of {sup 203}Hg-labeled methylmercury at designated times according to hair growth stages of the mouse. Animals were sacrificed 2 days after dosing. Distribution of mercury in pelt and other tissues was measured. The level of mercury in pelt was found to correlate with hair growth. The amount of mercury in pelt peaked when hair growth was most rapid and the total amount of mercury in pelt was significantly higher than that in other tissues, constituting 40% of the whole body burden. However, when the hair ceased growing, the amount of mercury in pelt dramatically dropped to 4% of whole body burden and mercury concentrations in other tissues except brain were elevated. Autoradiographic studies with tritium-labeled methylmercury demonstrated that methylmercury concentrated in hair follicles in the skin. Within hair follicles and hairs, methylmercury accumulated in regions that are rich in high-sulfur proteins. The uptake of inorganic mercury (administered as HgCl{sub 2}) by pelt was also compared with that of methylmercury. The amount of inorganic mercury found in pelt was less than one-half that of methylmercury in animals with growing hair. Cessation of hair growth did not decrease the inorganic mercury level in pelt to the same extent as in the case of methylmercury.

  15. Exposure to mercury in the mine of Almadén

    PubMed Central

    Gómez, Montserrat García; Klink, José Diego Caballero; Boffetta, Paolo; Español, Santiago; Sällsten, Gerd; Quintana, Javier Gómez

    2007-01-01

    Objectives To describe the process for obtaining mercury and the historical exposure of Almadén miners to mercury. Methods Information on every workplace and historical data on production, technological changes in the productive process and biological and environmental values of mercury was collected. A job‐exposure matrix was built with these values and the exposure to inorganic mercury was estimated quantitatively as μg/l of urine mercury. A cumulative exposure index was calculated for every worker by adding the estimates for every year in the different workplaces. Results In the mine, the highest exposures occurred during drilling, with values up to 2.26 mg/m3 in air, 2194 μg/l in urine and 374 μg/l in blood. Furnace operation and cleaning were the tasks with the highest values in metallurgy, peaking up to 3.37 mg/m3. The filling of bottles with mercury by free fall gave values within a range of 1.13–2.43 mg/m3 in air; these values dropped to 0.32–0.83 mg/m3 after introducing a new ventilation system. The toxicity effects of high doses of inorganic mercury on the central nervous and urinary systems have been known for decades. Conclusions The exposure of the workers in Almadén mines to mercury has been very high. The extremely high content cinnabar ore of the mine explains the increased concentrations of mercury in air at the work places. This, together with inadequate working conditions, explains the high mercury levels found in blood and urine during the study period. PMID:17227836

  16. Dynamic Electrode Forces in Gas Metal Arc Welding.

    NASA Astrophysics Data System (ADS)

    Jones, Lawrence Anthony

    In gas metal arc welding, a low-voltage electric -arc plasma is maintained between a work-piece and a wire electrode, both of which are melted by the arc. This thesis examines the dynamic forces that affect the detachment of molten metal drops from the consumable wire electrode. Unlike drops falling from a water faucet, the drops in gas metal arc welding experience strong magnetic forces generated by the interaction of the welding current with its own magnetic field. An extensive set of clear high-speed motion images of metal drops detaching from a welding electrode was collected under a wide variety of conditions. The images are used to measure the surface tension of steel as it is found in a gas metal arc welding plasma. Impulse-response oscillations of pendent molten steel drops are also measured. A derivation of the magnetic forces acting on necking drops is performed. Numerical computations of these forces are performed by using shapes fitted to high -speed images of molten steel drops as they are ejected from the electrode by magnetic forces during short-duty -cycle current pulsing. A dynamic model of drop detachment is developed and used to study the competition between the retaining surface tension force and other forces (magnetic, gravitational, and inertial). Simulations performed with this model are compared with extensive measurements of constant-current welding images and with limited measurements of pulsed -current welding images. The comparisons indicate that the experimental magnetic forces are much less potent than the calculated magnetic forces when welding-current transients are not present. A hypothesis is advanced that internal flows are able to develop under the relatively quiescent conditions that exist during drop development in constant -current welding. An apparatus was constructed to axially vibrate the electrode as it is consumed. Experiments using inertial forces to induce drop detachment are shown. Comparisons of experimental

  17. Mercury control in 2009

    SciTech Connect

    Sjostrom, S.; Durham, M.; Bustard, J.; Martin, C.

    2009-07-15

    Although activated carbon injection (ACI) has been proven to be effective for many configurations and is a preferred option at many plants sufficient quantities of powdered activated coking (PAC) must be available to meet future needs. The authors estimate that upcoming federal and state regulations will result in tripling the annual US demand for activated carbon to nearly 1.5 billion lb from approximately 450 million lb. Rapid expansion of US production capacity is required. Many PAC manufacturers are discussing expansion of their existing production capabilities. One company, ADA Carbon Solutions, is in the process of constructing the largest activated carbon facility in North America to meet the future demand for PAC as a sorbent for mercury control. Emission control technology development and commercialization is driven by regulation and legislation. Although ACI will not achieve > 90% mercury control at every plant, the expected required MACT legislation level, it offers promise as a low-cost primary mercury control technology option for many configurations and an important trim technology for others. ACI has emerged as the clear mercury-specific control option of choice, representing over 98% of the commercial mercury control system orders to date. As state regulations are implemented and the potential for a federal rule becomes more imminent, suppliers are continuing to develop technologies to improve the cost effectiveness and limit the balance of plant impacts associated with ACI and are developing additional PAC production capabilities to ensure that the industry's needs are met. The commercialisation of ACI is a clear example of industry, through the dedication of many individuals and companies with support from the DOE and EPRI, meeting the challenge of developing cost-effectively reducing emissions from coal-fired power plants. 7 refs., 1 fig.

  18. Mercury's sodium exosphere

    NASA Astrophysics Data System (ADS)

    Schmidt, Carl A.

    In this dissertation I examine the properties and origins of the most energetic component of Mercury's atmosphere and how it couples to the planet's magnetosphere and space environment. Mercury' s atmosphere consists of particles liberated from its surface that follow ballistic, collisionless trajectories under the influence of gravity and solar radiation pressure. This tenuous atmosphere can be classified as an exosphere where the exobase boundary is the planet's surface. To explain how this exosphere is sustained, a number of theories have been presented: (1) thermal evaporation from the hot surface; (2) photo-desorption of surface materials by UV solar radiation; (3) sputtering by plasma surface interactions; and (4) vaporization of the surface by micro-meteorite impacts. Using a 3-dimensional numerical model, I determine the role each source has in populating the exosphere. New observations of Mercury's escaping atmosphere are presented using novel imaging techniques in which sodium acts as a tracer to identify atmospheric sources. I discuss the implications of these measurements for our understanding of the physical processes at work in the exosphere, and provide a foundation for modeling such processes. For the first time, this work quantifies the variability in the loss of Mercury's sodium as a seasonal effect. My observations show that atmospheric escape can, at times, exceed 1024 Na atoms/s, nearly twice the highest rate previously reported. By forward modeling Mercury' s atmospheric escape, I place new constraints on the source properties and eliminate the prevailing theory that the escaping tail is sputtered from the surface by solar wind ions. The MESSENGER spacecraft has recently discovered that sodium is distributed unevenly over the surface and that the magnetosphere is offset from the planet's center. Using the first model to include these effects, I demonstrate the magnetosphere's influence upon exospheric sources by simulating asymmetries observed

  19. Small Mercury Relativity Orbiter

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.; Vincent, Mark A.

    1989-01-01

    The accuracy of solar system tests of gravitational theory could be very much improved by range and Doppler measurements to a Small Mercury Relativity Orbiter. A nearly circular orbit at roughly 2400 km altitude is assumed in order to minimize problems with orbit determination and thermal radiation from the surface. The spacecraft is spin-stabilized and has a 30 cm diameter de-spun antenna. With K-band and X-band ranging systems using a 50 MHz offset sidetone at K-band, a range accuracy of 3 cm appears to be realistically achievable. The estimated spacecraft mass is 50 kg. A consider-covariance analysis was performed to determine how well the Earth-Mercury distance as a function of time could be determined with such a Relativity Orbiter. The minimum data set is assumed to be 40 independent 8-hour arcs of tracking data at selected times during a two year period. The gravity field of Mercury up through degree and order 10 is solved for, along with the initial conditions for each arc and the Earth-Mercury distance at the center of each arc. The considered parameters include the gravity field parameters of degree 11 and 12 plus the tracking station coordinates, the tropospheric delay, and two parameters in a crude radiation pressure model. The conclusion is that the Earth-Mercury distance can be determined to 6 cm accuracy or better. From a modified worst-case analysis, this would lead to roughly 2 orders of magnitude improvement in the knowledge of the precession of perihelion, the relativistic time delay, and the possible change in the gravitational constant with time.

  20. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    EPA Science Inventory

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  1. MESSENGER Observations of Magnetic Reconnection in Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin. James A.

    2009-01-01

    During MESSENGER'S second flyby of Mercury on October 6,2008, very intense reconnection was observed between the planet's magnetic field and a steady southward interplanetary magnetic field (IMF). The dawn magnetopause was threaded by a strong magnetic field normal to its surface, approx.14 nT, that implies a rate of reconnection approx.10 times the typical rate at Earth and a cross-magnetospheric electric potential drop of approx.30 kV. The highest magnetic field observed during this second flyby, approx.160 nT, was found at the core of a large dayside flux transfer event (FTE). This FTE is estimated to contain magnetic flux equal to approx.5% that of Mercury's magnetic tail or approximately one order of magnitude higher fraction of the tail flux than is typically found for FTEs at Earth. Plasmoid and traveling compression region (TCR) signatures were observed throughout MESSENGER'S traversal of Mercury's magnetotail with a repetition rate comparable to the Dungey cycle time of approx.2 min. The TCR signatures changed from south-north, indicating tailward motion, to north-south, indicating sunward motion, at a distance approx.2.6 RM (where RM is Mercury's radius) behind the terminator indicating that the near-Mercury magnetotail neutral line was crossed at that point. Overall, these new MESSENGER observations suggest that magnetic reconnection at the dayside magnetopause is very intense relative to what is found at Earth and other planets, while reconnection in Mercury's tail is similar to that in other planetary magnetospheres, but with a very short Dungey cycle time.

  2. Gastrointestinal absorption of metallic mercury.

    PubMed

    Sandborgh-Englund, Gunilla; Einarsson, Curt; Sandström, Magnus; Ekstrand, Jan

    2004-09-01

    The absorption of mercury from the gastrointestinal systems of 7 subjects, of whom none had any amalgam fillings, was examined in this study. The authors obtained quantitative information about mercury concentration in plasma and duodenal fluid after the gastrointestinal systems of the subjects were exposed to liquid elemental mercury enclosed in rubber balloons (i.e., approximately 20 g of mercury), using a standard procedure followed for the sampling of bile. Plasma samples were collected prior to exposure, as well as up to 10 d following exposure, and duodenal fluid was collected 1 h, 2 h, 4 h, and 6 h during the intubation process. The authors studied the kinetics of dissolution in vitro by leaching elemental liquid mercury and mercuric chloride. The results of this study supported the hypothesis that metallic mercury is oxidized in the gastrointestinal tract. In addition, the authors determined that duodenal intubation, while using liquid metallic mercury in rubber bags, resulted in the diffusion of minor amounts of atomic elemental mercury through the rubber walls. The absorbed amount of mercury that reached the central circulation was comparable to a daily dose of mercury from dental amalgam in the amalgam-bearing population. PMID:16381485

  3. Variability of electrode positions using electrode caps.

    PubMed

    Atcherson, Samuel R; Gould, Herbert Jay; Pousson, Monique A; Prout, Tina M

    2007-01-01

    We investigated the variability of electrode positions for a multi-channel, custom electrode cap placed onto participants' heads without taking scalp measurements. The electrode positions were digitized in a three-dimensional space for 10 young adult participants on three separate occasions. Positional variability was determined for 15 selected electrodes within the three-dimensional preauricular-nasion (PAN) coordinate system and from this system, angular coordinate variability was also determined. The standard deviations of the 15 selected electrodes ranged from 3.0 to 12.7 mm in the PAN system. These data resulted in a variability of 2.0 degrees to 10.4 degrees among the angular coordinates. The measurements indicated slightly greater variability of electrode positions compared to studies when electrodes were placed using scalp measurements. The implication of this study is that the use of electrode caps may not be appropriate when electroencephalographic (EEG) or evoked potential (EP) techniques depend on accurate electrode placement. Additionally, if a longitudinal study is performed, electrode locations should be checked to ensure that they conform with previous sessions. PMID:17929157

  4. HSPES membrane electrode assembly

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Yen, Shiao-Ping (Inventor)

    2000-01-01

    An improved fuel cell electrode, as well as fuel cells and membrane electrode assemblies that include such an electrode, in which the electrode includes a backing layer having a sintered layer thereon, and a non-sintered free-catalyst layer. The invention also features a method of forming the electrode by sintering a backing material with a catalyst material and then applying a free-catalyst layer.

  5. Bismuth electrodes, an alternative in stripping voltammetry

    NASA Astrophysics Data System (ADS)

    Barón-Jaimez, J.; Joya, M. R.; Barba-Ortega, J.

    2013-11-01

    The heavy metals are known as highly toxic contaminants, the processes carried out in industry contribute that finally they remain dispersed in effluents and sewage, doing part of the food chain. The importance of controlling the levels of these heavy metals has become an international policy, so it has generated interest in developing new analytical methodologies for its determination [1, 2, 3, 4]. The stripping voltammetry has been considered as a family of electro-sensitive analytical techniques useful for the determination of trace levels of many metals in environmental, clinical and industrial samples [3, 4]. This work presents an overview of these bismuth-based electrodes which were introduced around 2000, which have interesting characteristics for detection of heavy metals and which represent an alternative to mercury electrodes.

  6. MERCURY USAGE AND ALTERNATIVES IN THE ELECTRICAL AND ELECTRONICS INDUSTRIES

    EPA Science Inventory

    Many industries have already found alternatives for mercury or have greatly decreased mercury use. However, the unique electromechanical and photoelectric properties of mercury and mercury compounds have made replacement of mercury difficult in some applications. This study was i...

  7. MERCURY USAGE AND ALTERNATING IN THE ELECTRICAL AND ELECTRONICS INDUSTRIES

    EPA Science Inventory

    Many industries have already found alternatives for mercury or have greatly decreased mercury use. owever, the unique electromechanical and photoelectric properties of mercury and mercury compounds have made replacement of mercury difficult in some applications. his study was ini...

  8. Mercury's exosphere: observations during MESSENGER's First Mercury flyby.

    PubMed

    McClintock, William E; Bradley, E Todd; Vervack, Ronald J; Killen, Rosemary M; Sprague, Ann L; Izenberg, Noam R; Solomon, Sean C

    2008-07-01

    During MESSENGER's first Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer measured Mercury's exospheric emissions, including those from the antisunward sodium tail, calcium and sodium close to the planet, and hydrogen at high altitudes on the dayside. Spatial variations indicate that multiple source and loss processes generate and maintain the exosphere. Energetic processes connected to the solar wind and magnetospheric interaction with the planet likely played an important role in determining the distributions of exospheric species during the flyby. PMID:18599778

  9. Critical point wetting drop tower experiment

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F.; Tcherneshoff, L. M.; Straits, S. R.

    1984-01-01

    Preliminary results for the Critical Point Wetting CPW Drop Tower Experiment are produced with immiscible systems. Much of the observed phenomena conformed to the anticipated behavior. More drops will be needed to test the CPW theory with these immiscible systems.

  10. How to Use Eye Drops Properly

    MedlinePlus

    ... Tablets, Suppositories, and Creams How to Use Eye Drops Properly (Using a mirror or having someone else ... gently squeeze the dropper so that a single drop falls into the pocket made by the lower ...

  11. MERCURY DEPOSITION AND LAKE QUALITY TRENDS

    EPA Science Inventory

    Watershed factors influence the differing trends in mercury residue levels. Fish mercury concentrations show positive correlations with water color, methylmercury concentrations, and plankton mercury, and negative correlations with pH and alkalinity.

  12. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, W.O.

    1987-02-27

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

  13. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, Wilbur O.

    1989-01-01

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  14. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, Wilbur O.

    1989-12-05

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  15. Micropreparative isoelectric focusing protein separation in a suspended drop.

    PubMed

    Egatz-Gomez, Ana; Thormann, Wolfgang

    2011-06-01

    IEF protein binary separations were performed in a 12-μL drop suspended between two palladium electrodes, using pH gradients created by electrolysis of simple buffers at low voltages (1.5-5 V). The dynamics of pH gradient formation and protein separation were investigated by computer simulation and experimentally via digital video microscope imaging in the presence and absence of pH indicator solution. Albumin, ferritin, myoglobin, and cytochrome c were used as model proteins. A drop containing 2.4 μg of each protein was applied, electrophoresed, and allowed to evaporate until it splits to produce two fractions that were recovered by rinsing the electrodes with a few microliters of buffer. Analysis by gel electrophoresis revealed that anode and cathode fractions were depleted from high pI and low pI proteins, respectively, whereas proteins with intermediate pI values were recovered in both fractions. Comparable data were obtained with diluted bovine serum that was fortified with myoglobin and cytochrome c. PMID:21626519

  16. Crater chains on Mercury

    NASA Astrophysics Data System (ADS)

    Shevchenko, V.; Skobeleva, T.

    After discovery of disruption comet Shoemaker-Levy 9 into fragment train before it's collision with Jupiter there was proposed that linear crater chains on the large satellites of Jupiter and on the Moon are impact scars of past tidally disrupted comets.It's known that radar images have revealed the possible presence of water ice deposits in polar regions of Mercury. Impacts by a few large comets seem to provide the best explanation for both the amount and cleanliness of the ice deposits on Mercury because they have a larger volatile content that others external sources, for example, asteroid. A number of crater chains on the surface of Mercury are most likely the impact tracks of "fragment trains" of comets tidally disrupted by Sun or by Mercury and are not secondary craters. Mariner 10 image set (the three Mariner 10 flybys in 1974-1975) was used to recognize the crater chains these did not associate with secondary crater ejecta from observed impact structures. As example, it can be shown such crater chain located near crater Imhotep and crater Ibsen (The Kuiper Quadrangle of Mercury). Resolution of the Mariner 10 image is about 0.54 km/pixel. The crater chain is about 50 km long. It was found a similar crater chain inside large crater Sophocles (The Tolstoj Quadrangle of Mercury). The image resolution is about 1.46 km/pixel. The chain about 50 km long is located in northen part of the crater. Image resolution limits possibility to examine the form of craters strongly. It seems the craters in chains have roughly flat floor and smooth form. Most chain craters are approximately circular. It was examined many images from the Mariner 10 set and there were identified a total 15 crater chains and were unable to link any of these directly to any specific large crater associated with ejecta deposits. Chain craters are remarkably aligned. All distinguished crater chains are superposed on preexisting formations. A total of 127 craters were identified in the 15 recognized

  17. Volatilization of Mercury By Bacteria

    PubMed Central

    Magos, L.; Tuffery, A. A.; Clarkson, T. W.

    1964-01-01

    Volatilization of mercury has been observed from various biological media (tissue homogenates, infusion broth, plasma, urine) containing mercuric chloride. That micro-organisms were responsible was indicated by the finding that the rates of volatilization were highly variable, that a latent period often preceded volatilization, that toluene inhibited the process, and that the capacity to volatilize mercury could be transferred from one biological medium to another. Two species of bacteria when isolated and cultured from these homogenates were able to volatilize mercury. Two other bacteria, one of which was isolated from the local water supply, were also highly active. The volatile mercury was identified as mercury vapour. The importance of these findings in relation to the storage of urine samples prior to mercury analysis is discussed. PMID:14249899

  18. Drag and drop display & builder

    SciTech Connect

    Bolshakov, Timofei B.; Petrov, Andrey D.; /Fermilab

    2007-12-01

    The Drag and Drop (DnD) Display & Builder is a component-oriented system that allows users to create visual representations of data received from data acquisition systems. It is an upgrade of a Synoptic Display mechanism used at Fermilab since 2002. Components can be graphically arranged and logically interconnected in the web-startable Project Builder. Projects can be either lightweight AJAX- and SVG-based web pages, or they can be started as Java applications. The new version was initiated as a response to discussions between the LHC Controls Group and Fermilab.

  19. Drop Tower and Aircraft Capabilities

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    2015-01-01

    This presentation is a brief introduction to existing capabilities in drop towers and low-gravity aircraft that will be presented as part of a Symposium: Microgravity Platforms Other Than the ISS, From Users to Suppliers which will be a half day program to bring together the international community of gravity-dependent scientists, program officials and technologists with the suppliers of low gravity platforms (current and future) to focus on the future requirements and use of platforms other than the International Space Station (ISS).

  20. 14 CFR 91.15 - Dropping objects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Dropping objects. 91.15 Section 91.15... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES General § 91.15 Dropping objects. No pilot in command of a civil aircraft may allow any object to be dropped from that aircraft in...

  1. 49 CFR 572.102 - Drop test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Drop test. 572.102 Section 572.102 Transportation..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Free Motion Headform § 572.102 Drop test. (a) When the headform is dropped from a height of 14.8 inches in accordance with paragraph (b)...

  2. 49 CFR 572.102 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Drop test. 572.102 Section 572.102 Transportation..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Free Motion Headform § 572.102 Drop test. (a) When the headform is dropped from a height of 14.8 inches in accordance with paragraph (b)...

  3. 49 CFR 572.102 - Drop test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Drop test. 572.102 Section 572.102 Transportation..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Free Motion Headform § 572.102 Drop test. (a) When the headform is dropped from a height of 14.8 inches in accordance with paragraph (b)...

  4. Electrohydrodynamics of a particle-covered drop

    NASA Astrophysics Data System (ADS)

    Ouriemi, Malika; Vlahovska, Petia

    2014-11-01

    We study the dynamics of a drop nearly-completely covered with a particle monolayer in a uniform DC electric field. The weakly conducting fluid system consists of a silicon oil drop suspended in castor oil. A broad range of particle sizes, conductivities, and shapes is explored. In weak electric fields, the presence of particles increases drop deformation compared to a particle-free drop and suppresses the electrohydrodynamic flow. Very good agreement is observed between the measured drop deformation and the small deformation theory derived for surfactant-laden drops (Nganguia et al., 2013). In stronger electric fields, where drops are expected to undergo Quincke rotation (Salipante and Vlahovska, 2010), the presence of the particles greatly decreases the threshold for rotation and the stationary tilted drop configuration observed for clean drop is replaced by a spinning drop with either a wobbling inclination or a very low inclination. These behaviors resemble the predicted response of rigid ellipsoids in uniform electric fields. At even stronger electric fields, the particles can form dynamic wings or the drop implodes. The similar behavior of particle-covered and surfactant-laden drops provides new insights into understanding stability of Pickering emulsions. Supported by NSF-CBET 1437545.

  5. Indirect Determination of Mercury Ion by Inhibition of a Glucose Biosensor Based on ZnO Nanorods

    PubMed Central

    Chey, Chan Oeurn; Ibupoto, Zafar Hussain; Khun, Kimleang; Nur, Omer; Willander, Magnus

    2012-01-01

    A potentiometric glucose biosensor based on immobilization of glucose oxidase (GOD) on ZnO nanorods (ZnO-NRs) has been developed for the indirect determination of environmental mercury ions. The ZnO-NRs were grown on a gold coated glass substrate by using the low temperature aqueous chemical growth (ACG) approach. Glucose oxidase in conjunction with a chitosan membrane and a glutaraldehyde (GA) were immobilized on the surface of the ZnO-NRs using a simple physical adsorption method and then used as a potentiometric working electrode. The potential response of the biosensor between the working electrode and an Ag/AgCl reference electrode was measured in a 1mM phosphate buffer solution (PBS). The detection limit of the mercury ion sensor was found to be 0.5 nM. The experimental results provide two linear ranges of the inhibition from 0.5 × 10−6 mM to 0.5 × 10−4 mM, and from 0.5 × 10−4 mM to 20 mM of mercury ion for fixed 1 mM of glucose concentration in the solution. The linear range of the inhibition from 10−3 mM to 6 mM of mercury ion was also acquired for a fixed 10 mM of glucose concentration. The working electrode can be reactivated by more than 70% after inhibition by simply dipping the used electrode in a 10 mM PBS solution for 7 min. The electrodes retained their original enzyme activity by about 90% for more than three weeks. The response to mercury ions was highly sensitive, selective, stable, reproducible, and interference resistant, and exhibits a fast response time. The developed glucose biosensor has a great potential for detection of mercury with several advantages such as being inexpensive, requiring minimum hardware and being suitable for unskilled users. PMID:23202200

  6. Indirect determination of mercury ion by inhibition of a glucose biosensor based on ZnO nanorods.

    PubMed

    Chey, Chan Oeurn; Ibupoto, Zafar Hussain; Khun, Kimleang; Nur, Omer; Willander, Magnus

    2012-01-01

    A potentiometric glucose biosensor based on immobilization of glucose oxidase (GOD) on ZnO nanorods (ZnO-NRs) has been developed for the indirect determination of environmental mercury ions. The ZnO-NRs were grown on a gold coated glass substrate by using the low temperature aqueous chemical growth (ACG) approach. Glucose oxidase in conjunction with a chitosan membrane and a glutaraldehyde (GA) were immobilized on the surface of the ZnO-NRs using a simple physical adsorption method and then used as a potentiometric working electrode. The potential response of the biosensor between the working electrode and an Ag/AgCl reference electrode was measured in a 1mM phosphate buffer solution (PBS). The detection limit of the mercury ion sensor was found to be 0.5 nM. The experimental results provide two linear ranges of the inhibition from 0.5 × 10(-6) mM to 0.5 × 10(-4) mM, and from 0.5 × 10(-4) mM to 20 mM of mercury ion for fixed 1 mM of glucose concentration in the solution. The linear range of the inhibition from 10(-3) mM to 6 mM of mercury ion was also acquired for a fixed 10 mM of glucose concentration. The working electrode can be reactivated by more than 70% after inhibition by simply dipping the used electrode in a 10 mM PBS solution for 7 min. The electrodes retained their original enzyme activity by about 90% for more than three weeks. The response to mercury ions was highly sensitive, selective, stable, reproducible, and interference resistant, and exhibits a fast response time. The developed glucose biosensor has a great potential for detection of mercury with several advantages such as being inexpensive, requiring minimum hardware and being suitable for unskilled users. PMID:23202200

  7. Flexible retinal electrode array

    DOEpatents

    Okandan, Murat; Wessendorf, Kurt O.; Christenson, Todd R.

    2006-10-24

    An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.

  8. Micromachined electrode array

    DOEpatents

    Okandan, Murat; Wessendorf, Kurt O.

    2007-12-11

    An electrode array is disclosed which has applications for neural stimulation and sensing. The electrode array, in certain embodiments, can include a plurality of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. In other embodiments of the electrode array, the electrodes can be fixed to the substrate. The electrode array can be formed from a combination of bulk and surface micromachining, and can include electrode tips having an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis.

  9. Controlled porosity in electrodes

    SciTech Connect

    Chiang, Yet-Ming; Bae, Chang-Jun; Halloran, John William; Fu, Qiang; Tomsia, Antoni P.; Erdonmez, Can K.

    2015-06-23

    Porous electrodes in which the porosity has a low tortuosity are generally provided. In some embodiments, the porous electrodes can be designed to be filled with electrolyte and used in batteries, and can include low tortuosity in the primary direction of ion transport during charge and discharge of the battery. In some embodiments, the electrodes can have a high volume fraction of electrode active material (i.e., low porosity). The attributes outlined above can allow the electrodes to be fabricated with a higher energy density, higher capacity per unit area of electrode (mAh/cm.sup.2), and greater thickness than comparable electrodes while still providing high utilization of the active material in the battery during use. Accordingly, the electrodes can be used to produce batteries with high energy densities, high power, or both compared to batteries using electrodes of conventional design with relatively highly tortuous pores.

  10. [Mercury (and...) through the centuries].

    PubMed

    Kłys, Małgorzata

    2010-01-01

    Mercury has a long history, fascinating in its many aspects. Through the centuries--from ancient times to the present day--the metal in its various forms, also known under the name "quicksilver", accompanied the man and was used for diversified purposes. Today, mercury is employed in manufacturing thermometers, barometers, vacuum pumps and explosives. It is also used in silver and gold mining processes. Mercury compounds play a significant role in dentistry, pharmaceutical industry and crop protection. The contemporary use of mercury markedly decreases, but historically speaking, the archives abound in materials that document facts and events occurring over generations and the immense intellectual effort aiming at discovering the true properties and mechanisms of mercury activity. Mercury toxicity, manifested in destruction of biological membranes and binding of the element with proteins, what disturbs biochemical processes occurring in the body, was discovered only after many centuries of the metal exerting its effect on the lives of individuals and communities. For centuries, mercury was present in the work of alchemists, who searched for the universal essence or quintessence and the so-called philosopher's stone. In the early modern era, between the 16th and 19th centuries, mercury was used to manufacture mirrors. Mercury compounds were employed as a medication against syphilis, which plagued mankind for more than four hundred years--from the Middle Ages till mid 20th century, when the discovery of penicillin became the turning point. This extremely toxic therapy resulted in much suffering, individual tragedies, chronic poisonings leading to fatalities and dramatic sudden deaths. In the last fifty years, there even occurred attempts of mentally imbalanced individuals at injecting themselves with metallic mercury, also as a performance-enhancing drug. Instances of mass mercury poisoning occurred many times in the past in consequence of eating food products

  11. Remediation of mercury contaminated sites - A review.

    PubMed

    Wang, Jianxu; Feng, Xinbin; Anderson, Christopher W N; Xing, Ying; Shang, Lihai

    2012-06-30

    Environmental contamination caused by mercury is a serious problem worldwide. Coal combustion, mercury and gold mining activities and industrial activities have led to an increase in the mercury concentration in soil. The objective of this paper is to present an up-to-date understanding of the available techniques for the remediation of soil contaminated with mercury through considering: mercury contamination in soil, mercury speciation in soil; mercury toxicity to humans, plants and microorganisms, and remediation options. This paper describes the commonly employed and emerging techniques for mercury remediation, namely: stabilization/solidification (S/S), immobilization, vitrification, thermal desorption, nanotechnology, soil washing, electro-remediation, phytostabilization, phytoextraction and phytovolatilization. PMID:22579459

  12. Electrostatic potential wells for on-demand drop manipulation in microchannels.

    PubMed

    de Ruiter, Riëlle; Pit, Arjen M; de Oliveira, Vitor Martins; Duits, Michèl H G; van den Ende, Dirk; Mugele, Frieder

    2014-03-01

    Precise control and manipulation of individual drops are crucial in many lab-on-a-chip applications. We present a novel hybrid concept for channel-based discrete microfluidics with integrated electrowetting functionality by incorporating co-planar electrodes (separated by a narrow gap) in one of the microchannel walls. By combining the high throughput of channel-based microfluidics with the individual drop control achieved using electrical actuation, we acquire the strengths of both worlds. The tunable strength of the electrostatic forces enables a wide range of drop manipulations, such as on-demand trapping and release, guiding, and sorting of drops in the microchannel. In each of these scenarios, the retaining electrostatic force competes with the hydrodynamic drag force. The conditions for trapping can be predicted using a simple model that balances these forces. PMID:24394887

  13. Electrohydrodynamics of a viscous drop with inertia.

    PubMed

    Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F

    2016-05-01

    Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations. PMID:27300985

  14. Electrohydrodynamics of a viscous drop with inertia

    NASA Astrophysics Data System (ADS)

    Nganguia, H.; Young, Y.-N.; Layton, A. T.; Lai, M.-C.; Hu, W.-F.

    2016-05-01

    Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number CaE. Below the critical CaE, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed CaE, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical CaE, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.

  15. Mercury, Vaccines, and Autism

    PubMed Central

    Baker, Jeffrey P.

    2008-01-01

    The controversy regarding the once widely used mercury-containing preservative thimerosal in childhood vaccines has raised many historical questions that have not been adequately explored. Why was this preservative incorporated in the first place? Was there any real evidence that it caused harm? And how did thimerosal become linked in the public mind to the “autism epidemic”? I examine the origins of the thimerosal controversy and their legacy for the debate that has followed. More specifically, I explore the parallel histories of three factors that converged to create the crisis: vaccine preservatives, mercury poisoning, and autism. An understanding of this history provides important lessons for physicians and policymakers seeking to preserve the public’s trust in the nation’s vaccine system. PMID:18172138

  16. Transpressional Structures on Mercury

    NASA Astrophysics Data System (ADS)

    Massironi, M.; Di Achille, G.; Ferrari, S.; Giacomini, L.; Popa, C.; Pozzobon, R.; Zusi, M.; Cremonese, G.; Palumbo, P.

    2012-04-01

    Mercury is classically dominated by contractional features at a global scale (e.g. Watters et al.2009, EPSL]). Nonetheless, numerous evidences of strike-slip kinematics have been found on Mercury Dual Imaging System (MDIS) camera images mainly derived from the three MESSENGER flybys and acquired near the terminator. This proves that several lobate scarps and high-relief ridges may be interpreted as transpressional structures more than thrust and back-thrusts systems. This finding may support either tidal despinning or residual mantle convection on ruling the nucleation and development of lobate scarps, although within the general framework of planetary contraction and cooling. In addition, the presence of faults with a clear strike-slip kinematic component may possibly affect future estimates of the hermean radius shortening.

  17. Small drops from large nozzles

    NASA Astrophysics Data System (ADS)

    Castrejon-Pita, Alfonso Arturo; Said Mohamed, Ahmed; Castrejon-Pita, Jose Rafael; Herrada, Miguel Angel

    2015-11-01

    We report experimental and numerical results of the generation of drops which are significantly smaller than the nozzle from which they are generated. The system consists of a cylindrical reservoir and two endplates. One plate is a thin metal sheet with a small orifice in its centre which acts as the nozzle. The other end consists of a piston which moves by the action of an elecromechanical actuator which in turn is driven by sine-shape pull-mode pulses. The meniscus (formed at the nozzle) is thus first overturned, forming a cavity. This cavity collapses and a thin and fast jet emerges from its centre. Under appropriate conditions the tip of this jet breaks up and produces a single diminutive drop. A good agreement between the experimental and numerical results was found. Also, a series of experiments were performed in order to study the effects that the pulse amplitude and width, together with variations in the liquid properties, have over the final size of the droplet. Based on these experiments, a predictive law for the droplet size has been derived. This work was funded by the Royal Society (University Research Fellowship and Research Grant), the John Fell Fund (Oxford University Press), the Ministry of Science and Education (DPI2013-46485 Spain), and the Junta de Andalucia (P08-TEP-31704128 Spain).

  18. The fate of electrospray drops

    NASA Astrophysics Data System (ADS)

    Basaran, Osman; Collins, Robert; Sambath, Krishnaraj; Harris, Michael

    2015-11-01

    Drops subjected to strong electric fields emit thin fluid jets from conical structures (Taylor cones) that form at their surfaces. Such behavior has practical, e.g. electrospray mass spectrometry, and fundamental, e.g. raindrops in thunderclouds, implications. Theoretical analysis of the temporal development of such EHD tip-streaming phenomena is challenging given the large disparity in length scales between the macroscopic drops and the microscopic jets. Furthermore, there exist conflicting theories and measurements on the size and charge of these small electrospray droplets. We use theory and simulation to show that conductivity can be tuned to yield three scaling regimes for droplet radius and charge, a finding missed by previous studies. The amount of charge Q that electrospray droplets carry determines whether they are coulombically stable and charged below the Rayleigh limit of stability R or are unstable and hence prone to further explosions once formed. Previous experiments reported droplet charge values ranging from 1/10th to in excess of R. Simulations unequivocally show that electrospray droplets are coulombically stable at the instant they are created and that there exists a universal scaling law for droplet charge, Q=0.44 R.

  19. Toxicity of mercury and mercury compounds. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    Not Available

    1993-02-01

    The bibliography contains citations concerning the toxic effects of mercury and mercury compounds on biological systems. The citations examine mercury halides, organic mercury compounds, mercury metal, and mercury vapor. Metabolism, toxicology, occupational exposure, symptoms of exposure, mechanisms of interaction with biological systems, demographics of mercury accumulation and poisoning, and case reports are considered. Heavy metal pollution and bioaccumulation are referenced in related bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  20. High performance cermet electrodes

    DOEpatents

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  1. Modified electrodes used for electrochemical detection of metal ions in environmental analysis.

    PubMed

    March, Gregory; Nguyen, Tuan Dung; Piro, Benoit

    2015-06-01

    Heavy metal pollution is one of the most serious environmental problems, and regulations are becoming stricter. Many efforts have been made to develop sensors for monitoring heavy metals in the environment. This review aims at presenting the different label-free strategies used to develop electrochemical sensors for the detection of heavy metals such as lead, cadmium, mercury, arsenic etc. The first part of this review will be dedicated to stripping voltammetry techniques, on unmodified electrodes (mercury, bismuth or noble metals in the bulk form), or electrodes modified at their surface by nanoparticles, nanostructures (CNT, graphene) or other innovative materials such as boron-doped diamond. The second part will be dedicated to chemically modified electrodes especially those with conducting polymers. The last part of this review will focus on bio-modified electrodes. Special attention will be paid to strategies using biomolecules (DNA, peptide or proteins), enzymes or whole cells. PMID:25938789

  2. Modified Electrodes Used for Electrochemical Detection of Metal Ions in Environmental Analysis

    PubMed Central

    March, Gregory; Nguyen, Tuan Dung; Piro, Benoit

    2015-01-01

    Heavy metal pollution is one of the most serious environmental problems, and regulations are becoming stricter. Many efforts have been made to develop sensors for monitoring heavy metals in the environment. This review aims at presenting the different label-free strategies used to develop electrochemical sensors for the detection of heavy metals such as lead, cadmium, mercury, arsenic etc. The first part of this review will be dedicated to stripping voltammetry techniques, on unmodified electrodes (mercury, bismuth or noble metals in the bulk form), or electrodes modified at their surface by nanoparticles, nanostructures (CNT, graphene) or other innovative materials such as boron-doped diamond. The second part will be dedicated to chemically modified electrodes especially those with conducting polymers. The last part of this review will focus on bio-modified electrodes. Special attention will be paid to strategies using biomolecules (DNA, peptide or proteins), enzymes or whole cells. PMID:25938789

  3. Method for mercury refinement

    DOEpatents

    Grossman, Mark W.; Speer, Richard; George, William A.

    1991-01-01

    The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

  4. Method for mercury refinement

    DOEpatents

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-04-09

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  5. Apparatus for mercury refinement

    DOEpatents

    Grossman, Mark W.; Speer, Richard; George, William A.

    1991-01-01

    The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

  6. Apparatus for mercury refinement

    DOEpatents

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-07-16

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  7. The planet Mercury (1971)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The physical properties of the planet Mercury, its surface, and atmosphere are presented for space vehicle design criteria. The mass, dimensions, mean density, and orbital and rotational motions are described. The gravity field, magnetic field, electromagnetic radiation, and charged particles in the planet's orbit are discussed. Atmospheric pressure, temperature, and composition data are given along with the surface composition, soil mechanical properties, and topography, and the surface electromagnetic and temperature properties.

  8. Method for scavenging mercury

    SciTech Connect

    Chang, Shih-ger; Liu, Shou-heng; Liu, Zhao-rong; Yan, Naiqiang

    2009-01-20

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  9. Method for scavenging mercury

    SciTech Connect

    Chang, Shih-ger; Liu, Shou-heng; Liu, Zhao-rong; Yan, Naiqiang

    2010-07-13

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  10. Method for scavenging mercury

    DOEpatents

    Chang, Shih-Ger; Liu, Shou-Heng; Liu, Zhao-Rong; Yan, Naiqiang

    2011-08-30

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  11. Detecting potassium on Mercury

    NASA Technical Reports Server (NTRS)

    Killen, R. M.; Potter, A. E.; Morgan, T. H.

    1991-01-01

    A critical comment on the work of A.L. Sprague et al. (1990) is presented. It is argued that, in attributing an enhanced emission in the potassium D lines on Oct. 14, 1987 in the equatorial region of Mercury to a diffusion source centered on Caloris Basin, Sprague et al. misinterpreted the data. Sprague et al. present a reply, taking issue with the commenters.

  12. Capillary Thinning of Particle-laden Drops

    NASA Astrophysics Data System (ADS)

    Wagoner, Brayden; Thete, Sumeet; Jahns, Matt; Doshi, Pankaj; Basaran, Osman

    2015-11-01

    Drop formation is central in many applications such as ink-jet printing, microfluidic devices, and atomization. During drop formation, a thinning filament is created between the about-to-form drop and the fluid hanging from the nozzle. Therefore, the physics of capillary thinning of filaments is key to understanding drop formation and has been thoroughly studied for pure Newtonian fluids. The thinning dynamics is, however, altered completely when the fluid contains particles, the physics of which is not well understood. In this work, we explore the impact of solid particles on filament thinning and drop formation by using a combination of experiments and numerical simulations.

  13. Mercury removal sorbents

    DOEpatents

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  14. Three-dimensional computational fluid dynamics for the Spallation Neutron Source liquid mercury target

    SciTech Connect

    Wendel, M.W.; Siman-Tov, M.

    1998-11-01

    The Spallation Neutron Source (SNS) is a high-power accelerator-based pulsed spallation source being designed by a multilaboratory team led by Oak Ridge National Laboratory (ORNL) to achieve high fluxes of neutrons for scientific experiments. Computational fluid dynamics (CFD) is being used to analyze the SNS design. The liquid-mercury target is subjected to the neutronic (internal) heat generation that results from the proton collisions with the mercury nuclei. The liquid mercury simultaneously serves as the neutronic target medium, transports away the heat generated within itself, and cools the metallic target structure. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots. These zones exist because the most feasible target designs include a complete U-turn flow redirection. Although the primary concern is that the target is adequately cooled, the pressure drop from inlet to outlet must also be considered because pressure drop directly affects structural loading and required pumping power. Based on the current design, a three-dimensional CFD model has been developed that includes the stainless steel target structure, the liquid-mercury target flow, and the liquid-mercury cooling jacket that wraps around the nose of the target.

  15. Deformation and secondary breakup of drops

    NASA Astrophysics Data System (ADS)

    Hsiang, L.-P.; Faeth, G. M.

    1993-01-01

    Drop properties during and after secondary breakup in the bag, multimode and shear breakup regimes were observed for shock wave initiated disturbances in air at normal temperature and pressure. Test liquids included water, n-heptane, ethyl alcohol and glycerol mixtures to yield Weber numbers of 15-600. Ohnesorge numbers of 0.0025-0.039, liquid/gas density ratios of 579-985 and Reynolds numbers of 1060-15080. Measurements included pulsed shadowgraphy and double-pulsed holography to find drop sizes and velocities after breakup. Drop size distributions after breakup satisfied Simmons' universal root normal distribution in all three breakup regimes, after removing the core (or drop-forming) drop from the drop population for shear breakup. The size and velocity of the core drop after shear breakup then was correlated successfully based on the observation that the end of drop stripping corresponded to a constant Eotvos number. The relative velocities of the drop liquid were significantly reduced during secondary breakup, due both to large drag coefficients during the drop deformation stage and reduced relaxation times of smaller drops. These effects were correlated successfully based on a simplified phenomenological theory.

  16. Spatial Distribution of Large Cloud Drops

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Larsen, Michael; Wiscombe, Warren

    2004-01-01

    The analysis of aircraft measurements of individual drop sizes in clouds suggests that for sufficiently small volumes the mean number of cloud drops with a given radius is proportional to volume powered by a drop-size dependent exponent. For abundant small drops present, the exponent is 1 as assumed in conventional approach. However, for rarer large drops, the exponents fall below unity. We show striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and therefore a Poisson distribution of cloud drops, these models show strong drop clustering, the more so the larger the drops. The degree of clustering is determined by the observed exponents. The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics explaining how rain can form so fast and also helps explain why remotely sensed cloud drop size is generally biased.

  17. Comparative Examination of Reconnection-Driven Magnetotail Dynamics at Mercury and Earth

    NASA Astrophysics Data System (ADS)

    Slavin, J. A.

    2014-12-01

    MESSENGER plasma and magnetic field observations of Mercury's magnetotail are reviewed and compared to that of Earth. Mercury's magnetosphere is created by the solar wind interaction with its highly dipolar, spin-axis aligned magnetic field. However, its equatorial magnetic field is ~ 150 times weaker than at Earth. As a result the altitude of its subsolar magnetopause is typically only ~ 1000 km and there is no possibility for trapped radiation belts. Magnetopause reconnection at Mercury does not exhibit the "half-wave rectifier" response to interplanetary magnetic field (IMF) direction observed at Earth. Rather magnetopause reconnection occurs for all non-zero shear angles with plasma β as the primary parameter controlling its rate. The cross-magnetosphere electric potential drop derived from magnetopause and plasma mantle structure is ~ 30 kV in contrast to ~ 100 kV at Earth. This large potential drop at Mercury relative to its small size appears due to the lack of an electrically conducting ionosphere and the strong IMF found in the inner heliosphere. Structurally these magnetotails are very similar in most respects, but the magnetic field intensities and plasma densities and temperatures are all higher at Mercury. Plasma sheet composition indicates solar wind origin, but with 10% Na+ derived from it tenuous exosphere. Given Mercury's very slow rotation rate, once every 59 Earth days, most sunward plasma sheet convection will impact the nightside of the planet. Magnetic flux loading/unloading in Mercury's tail is similar to that seen at Earth during substorms. However, the duration and amplitude of these cycles are ~ 2 - 3 min and ~ 30 to 50 %, respectively, as compared to ~ 1 - 2 hr and 10 - 25 % at Earth. These episodic, substorm-like events are accompanied by plasmoid ejection and near-tail dipolarization similar what is seen at Earth. Mercury can also exhibit Earth-like steady magnetospheric convection during which plasmoid ejection and dipolarization

  18. Measurements of Plasma Potential Distribution in Segmented Electrode Hall Thruster

    SciTech Connect

    Y. Raitses; D. Staack; N.J. Fisch

    2001-10-16

    Use of a segmented electrode placed at the Hall thruster exit can substantially reduce the voltage potential drop in the fringing magnetic field outside the thruster channel. In this paper, we investigate the dependence of this effect on thruster operating conditions and segmented electrode configuration. A fast movable emissive probe is used to measure plasma potential in a 1 kW laboratory Hall thruster with semented electrodes made of a graphite material. Relatively small probe-induced perturbations of the thruster discharge in the vicinity of the thruster exit allow a reasonable comparison of the measured results for different thruster configurations. It is shown that the plasma potential distribution is almost not sensitive to changes of the electrode potential, but depends on the magnetic field distribution and the electrode placement.

  19. 3D sensitivity of 6-electrode Focused Impedance Method (FIM)

    NASA Astrophysics Data System (ADS)

    Masum Iquebal, A. H.; Siddique-e Rabbani, K.

    2010-04-01

    The present work was taken up to have an understanding of the depth sensitivity of the 6 electrode FIM developed by our laboratory earlier, so that it may be applied judiciously for the measurement of organs in 3D, with electrodes on the skin surface. For a fixed electrode geometry sensitivity is expected to depend on the depth, size and conductivity of the target object. With current electrodes 18 cm apart and potential electrodes 5 cm apart, depth sensitivity of spherical conductors, insulators and of pieces of potato of different diameters were measured. The sensitivity dropped sharply with depth gradually leveling off to background, and objects could be sensed down to a depth of about twice their diameters. The sensitivity at a certain depth increases almost linearly with volume for objects with the same conductivity. Thus these results increase confidence in the use of FIM for studying organs at depths of the body.

  20. Corneal-shaping electrode

    DOEpatents

    Doss, James D.; Hutson, Richard L.

    1982-01-01

    The disclosure relates to a circulating saline electrode for changing corneal shape in eyes. The electrode comprises a tubular nonconductive electrode housing having an annular expanded base which has a surface substantially matched to a subject corneal surface. A tubular conductive electrode connected to a radiofrequency generating source is disposed within the electrode housing and longitudinally aligned therewith. The electrode has a generally hemispherical head having at least one orifice. Saline solution is circulated through the apparatus and over the cornea to cool the corneal surface while radiofrequency electric current emitted from the electrode flows therefrom through the cornea to a second electrode, on the rear of the head. This current heats the deep corneal stroma and thereby effects corneal reshaping as a biological response to the heat.

  1. Improved biomedical electrode

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.

    1972-01-01

    Newly designed electrode is prefilled, disposable, electrolyte-saturated spong. New design permits longe periods of storage without deterioration, and readiness in matter of seconds. Electrodes supply signals for electroencephalogram, electro-oculogram, and electrocardiogram.

  2. Electrowetting films on parallel line electrodes.

    PubMed

    Yeo, Leslie Y; Chang, Hsueh-Chia

    2006-01-01

    A lubrication analysis is presented for the spreading dynamics of a high permittivity polar dielectric liquid drop due to an electric field sustained by parallel line electrode pairs separated by a distance R(e). The normal Maxwell stress, concentrated at the tip region near the apparent three-phase contact line, produces a negative capillary pressure that is responsible for pulling out a thin finger of liquid film ahead of the macroscopic drop, analogous to that obtained in self-similar gravity spreading. This front-running electrowetting film maintains a constant contact angle and volume as its front position advances in time t by the universal law 0.43R(e)(t/T(cap))1/3, independent of the drop dimension, surface tension, and wettability. T(cap)=pi(2)mu(l)R(e)/8(epsilon0epsilonl)V2 is the electrocapillary time scale where mu(l) is the liquid viscosity, epsilon0epsilonl the liquid permittivity, and V the applied voltage. This spreading dynamics for the electrowetting film is much faster than the rest of the drop; after a short transient, the latter spreads over the electrowetting film by draining into it. By employing matched asymptotics, we are able to elucidate this unique mechanism, justified by the reasonable agreement with numerical and experimental results. Unlike the usual electrowetting-on-dielectric configuration where the field singularity at the contact line produces a static change in the contact angle consistent with the Lippmann equation, we show that the parallel electrode configuration produces a bulk negative Maxwell pressure within the drop. This Maxwell pressure increases in magnitude toward the contact line due to field confinement and is responsible for a bulk pressure gradient that gives rise to a front-running spontaneous electrowetting film. PMID:16486159

  3. Talus Lex: Regulatory Approaches to Reducing Mercury Concentrations in San Francisco Bay Fish.

    NASA Astrophysics Data System (ADS)

    Abu-Saba, D. E.; Flegal, D. R.; Ganguli, P. M.; Whyte, D. C.; Mumley, D. E.; Mason, D. P.

    2001-12-01

    The history of mercury in California is recorded in the sediments of San Francisco Bay. The Bay is downstream of 40 percent of the land area of California. Its watershed receives 80 percent of the rainfall in the State, because it rains more in the north. Three billion kilograms of sediments are annually flushed from the Central Valley watershed and deposited in San Francisco Bay. Because mercury preferentially binds to sediments, we calculate mercury loads to the Bay by considering how various sources affect mercury concentrations in Bay sediments. During and after the Gold Rush, over seventy thousand tons of mercury was produced in Coast Range cinnabar mines. Much of this mercury was used as quicksilver to extract gold from placer formations in the Sierra foothills, and later in the production of munitions, electronics, health care and commercial products. Today, we can see the legacy of mining sources, from both remote and local watersheds, superimposed on air deposition, the climate and geography of California, heavily managed water supply and flood control projects, wetland restoration and rehabilitation, urbanization, wastewaster discharge and water reclamation. We already regulate wastewater and urban runoff through issuance of permits and waste discharge requirements. We can regulate mercury inputs from inoperative mines by demonstrating the link between mercury-polluted sediments and violation of existing numeric water quality objectives. We can use the same approach to regulate the disposal of mercury-containing electronic devices. But to reduce mercury levels in fish, we will also have to consider controllable water quality factors that promote mercury methylation in the aquatic ecosystem. Some of these water quality factors are already subject to regulation. For example, we can show that mercury methylation in the northern reach of the Bay increases when dissolved oxygen drops below 6 mg/L; current regulations require dissolved oxygen concentrations of

  4. Magnetically focused liquid drop radiator

    DOEpatents

    Botts, T.E.; Powell, J.R.; Lenard, R.

    1984-12-10

    A magnetically focused liquid drop radiator for application in rejecting energy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  5. Magnetically focused liquid drop radiator

    DOEpatents

    Botts, Thomas E.; Powell, James R.; Lenard, Roger

    1986-01-01

    A magnetically focused liquid drop radiator for application in rejecting rgy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  6. Dynamics of Aqueous Foam Drops

    NASA Technical Reports Server (NTRS)

    Akhatov, Iskander; McDaniel, J. Gregory; Holt, R. Glynn

    2001-01-01

    We develop a model for the nonlinear oscillations of spherical drops composed of aqueous foam. Beginning with a simple mixture law, and utilizing a mass-conserving bubble-in-cell scheme, we obtain a Rayleigh-Plesset-like equation for the dynamics of bubbles in a foam mixture. The dispersion relation for sound waves in a bubbly liquid is then coupled with a normal modes expansion to derive expressions for the frequencies of eigenmodal oscillations. These eigenmodal (breathing plus higher-order shape modes) frequencies are elicited as a function of the void fraction of the foam. A Mathieu-like equation is obtained for the dynamics of the higher-order shape modes and their parametric coupling to the breathing mode. The proposed model is used to explain recently obtained experimental data.

  7. Compartmented electrode structure

    DOEpatents

    Vissers, Donald R.; Shimotake, Hiroshi; Gay, Eddie C.; Martino, Fredric J.

    1977-06-14

    Electrodes for secondary electrochemical cells are provided with compartments for containing particles of the electrode reactant. The compartments are defined by partitions that are generally impenetrable to the particles of reactant and, in some instances, to the liquid electrolyte used in the cell. During cycling of the cell, reactant material initially loaded into a particular compartment is prevented from migrating and concentrating within the lower portion of the electrode or those portions of the electrode that exhibit reduced electrical resistance.

  8. Micro-explosion of compound drops

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuei; Lin, Ta-Hui

    2014-08-01

    Introducing water into spray combustion systems, by either water-in-oil emulsification or supplementary water injection, is one of the major techniques for combustion improvement and NOx reduction. Plentiful researches are available on combustion of water-in-oil emulsion fuel drops. The emulsified liquid is a heterogeneous mixture of immiscible liquids. One component forms the continuous phase and the other component forms the discrete phase. The discrete phase consists of globules of the one fluid that are suspended in the continuous phase fluid. Water-in-oil emulsions are commonly considered for combustion applications because emulsions can result in micro-explosion, thereby reducing the average drop diameter to enhance liquid vaporization, and suppressing the formation of soot and NOx. However, the water addition generally does not exceed about 20% for smooth engine operations[!, 21. The combustion characteristics and micro-explosion of emulsion drop were studied by many researchers. The micro-explosion of water in fuel emulsion drops was caused by very fast growth of superheated water vapor bubbles, its superheat limits must be lower than the boiling point temperature of the fuel. These bubbles were primarily governed by the pressure difference between the superheated vapor and the liquid, and by the inertia imparted to the liquid by the motion of the bubble surface[3 6 In this study, we used a coaxial nozzle to generation the multi-component drop. The different type of water-in-oil fuel drops called the compound drops. Unlike an emulsion drop, a compound drop consists of a water core and a fuel shell, which can originate from the phase separation of emulsion[7, 81 or a water drop colliding with a fuel drop[9, 101 Burning and micro-explosion of compound drops have been found to be distinct from those of emulsion drops[9-111 Wang et al.[9 , 101 studied the combustion characteristics of collision merged alkane-water drops. The merged drops appeared in adhesive

  9. Insulated ECG electrodes

    NASA Technical Reports Server (NTRS)

    Portnoy, W. M.; David, R. M.

    1973-01-01

    Insulated, capacitively coupled electrode does not require electrolyte paste for attachment. Other features of electrode include wide range of nontoxic material that may be employed for dielectric because of sputtering technique used. Also, electrode size is reduced because there is no need for external compensating networks with FET operational amplifier.

  10. Longitudinal discharge laser electrodes

    DOEpatents

    Warner, B.E.; Miller, J.L.; Ault, E.R.

    1994-08-23

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window. 2 figs.

  11. Longitudinal discharge laser electrodes

    DOEpatents

    Warner, Bruce E.; Miller, John L.; Ault, Earl R.

    1994-01-01

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window.

  12. A Simple Hydrogen Electrode

    ERIC Educational Resources Information Center

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  13. Near-electrode imager

    DOEpatents

    Rathke, Jerome W.; Klingler, Robert J.; Woelk, Klaus; Gerald, II, Rex E.

    2000-01-01

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager uses the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  14. Fuel cell electrodes

    DOEpatents

    Strmcnik, Dusan; Cuesta, Angel; Stamenkovic, Vojislav; Markovic, Nenad

    2015-06-23

    A process includes patterning a surface of a platinum group metal-based electrode by contacting the electrode with an adsorbate to form a patterned platinum group metal-based electrode including platinum group metal sites blocked with adsorbate molecules and platinum group metal sites which are not blocked.

  15. Electrically conductive diamond electrodes

    DOEpatents

    Swain, Greg; Fischer, Anne ,; Bennett, Jason; Lowe, Michael

    2009-05-19

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  16. Microresonator electrode design

    DOEpatents

    Olsson, III, Roy H.; Wojciechowski, Kenneth; Branch, Darren W.

    2016-05-10

    A microresonator with an input electrode and an output electrode patterned thereon is described. The input electrode includes a series of stubs that are configured to isolate acoustic waves, such that the waves are not reflected into the microresonator. Such design results in reduction of spurious modes corresponding to the microresonator.

  17. Near-Electrode Imager

    SciTech Connect

    Rathke, Jerome W.; Klingler, Robert J.; Woelk, Klaus; Gerald, Rex E.,II

    1999-05-01

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager use the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  18. Aerospace electrode line

    NASA Technical Reports Server (NTRS)

    Miller, L.

    1980-01-01

    A facility which produces electrodes for spacecraft power supplies is described. The electrode assembly procedures are discussed. A number of design features in the production process are reported including a batch operation mode and an independent equipment module design approach for transfering the electrode materials from process tank to process tank.

  19. The Clean Air Mercury Rule

    SciTech Connect

    Michael Rossler

    2005-07-01

    Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

  20. Mercury: Exploration of a Planet

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The flight of the Mariner 10 spacecraft to Venus and Mercury is detailed in animation and photography. Views of Mercury are featured. Also included is animation on the origin of the solar system. Dr. Bruce C. Murray, director of the Jet Propulsion Laboratory, comments on the mission.

  1. Internal Flows in Free Drops (IFFD)

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Sadhal, Satwindar S.; Thomas, D. A.; Crouch, R. K.

    1998-01-01

    Within the framework of an Earth-based research task investigating the internal flows within freely levitated drops, a low-gravity technology development experiment has been designed and carried out within the NASA Glovebox facility during the STS-83 and STS-94 Shuttle flights (MSL-1 mission). The goal was narrowly defined as the assessment of the capabilities of a resonant single-axis ultrasonic levitator to stably position free drops in the Shuttle environment with a precision required for the detailed measurement of internal flows. The results of this entirely crew-operated investigation indicate that the approach is fundamentally sound, but also that the ultimate stability of the positioning is highly dependent on the residual acceleration characteristic of the Spacecraft, and to a certain extent, on the initial drop deployment of the drop. The principal results are: the measured dependence of the residual drop rotation and equilibrium drop shape on the ultrasonic power level, the experimental evaluation of the typical drop translational stability in a realistic low-gravity environment, and the semi-quantitative evaluation of background internal flows within quasi-isothermal drops. Based on these results, we conclude that the successful design of a full-scale Microgravity experiment is possible, and would allow accurate the measurement of thermocapillary flows within transparent drops. The need has been demonstrated, however, for the capability for accurately deploying the drop, for a quiescent environment, and for precise mechanical adjustments of the levitator.

  2. Inkjet printed multiwall carbon nanotube electrodes for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Baechler, Curdin; Gardin, Samuele; Abuhimd, Hatem; Kovacs, Gabor

    2016-05-01

    Dielectric elastomers (DE’s) offer promising applications as soft and light-weight electromechanical actuators. It is known that beside the dielectric material, the electrode properties are of particular importance regarding the DE performance. Therefore, in recent years various studies have focused on the optimization of the electrode in terms of conductivity, stretchability and reliability. However, less attention was given to efficient electrode processing and deposition methods. In the present study, digital inkjet printing was used to deposit highly conductive and stretchable electrodes on silicone. Inkjet printing is a versatile and cost effective deposition method, which allows depositing complex-shaped electrode patterns with high precision. The electrodes were printed using an ink based on industrial low-cost MWCNT. Experiments have shown that the strain-conductivity properties of the printed electrode are strongly depended on the deposition parameters like drop-spacing and substrate temperature. After the optimization of the printing parameters, thin film electrodes could be deposited showing conductivities of up to 30 S cm-1 without the need of any post-treatment. In addition, electromechanical tests with fabricated DE actuators have revealed that the inkjet printed MWCNT electrodes are capable to self-clear in case of a dielectric breakdown.

  3. Determination of trace mercury in water based on N-octylpyridinium ionic liquids preconcentration and stripping voltammetry.

    PubMed

    Li, Zhenhan; Xia, Shanhong; Wang, Jinfen; Bian, Chao; Tong, Jianhua

    2016-01-15

    A novel method for determination of trace mercury in water is developed. The method is performed by extracting mercury firstly with ionic liquids (ILs) and then detecting the concentration of mercury in organic media with anodic stripping voltammetry. Liquid-liquid extraction of mercury(II) ions by four ionic liquids with N-octylpyridinium cations ([OPy](+)) was studied. N-octylpyridinium tetrafluoroborate and N-octylpyridinium trifluoromethylsulfonate were found to be efficient and selective extractant for mercury. Temperature controlled dispersive liquid phase microextraction (TC-DLPME) technique was utilized to improve the performance of preconcentration. After extraction, precipitated IL was diluted by acetonitrile buffer and mercury was detected by differential pulse stripping voltammetry (DPSV) with gold disc electrode. Mercury was enriched by 17 times while interfering ions were reduced by two orders of magnitude in the organic media under optimum condition. Sensitivity and selectivity for electrochemical determination of mercury were improved by using the proposed method. Tap, pond and waste water samples were analyzed with recoveries ranging from 81% to 107% and detection limit of 0.05 μg/L. PMID:26364269

  4. Four-point potential drop measurements for materials characterization

    NASA Astrophysics Data System (ADS)

    Bowler, Nicola

    2011-01-01

    The technique of measuring the voltage difference (potential drop) between two of the four electrodes of a four-point probe, in order to determine conductivity or surface resistivity of a test piece, is well established in the direct-current (dc) or quasi-dc regime. The technique finds wide usage in the semiconductor industry for the purpose of measuring surface resistivity of semiconductors, and also in the measurement of conductivity of metals, particularly of ferromagnetic metals for which conductivity cannot be easily measured using eddy-current nondestructive evaluation (NDE). In these applications, the conductivity of the test piece is deduced from an analytic formula that depends on the geometry of the probe and test piece. Such a formula requires, as an input, the measured value of the potential drop. Several analytical expressions exist for a variety of test-piece geometries and probe arrangements. Recently, it has been shown that broadband measurements of the potential drop, known as 'alternating current potential drop' (ac PD) measurements, can be used not only to obtain the conductivity of a test piece, but also its linear permeability μ. The beauty of this measurement is that the two parameters are completely decoupled in the quasi-static regime. In fact, μ does not appear in the quasi-static expression for σ. Hence, σ may be obtained from low-frequency ac PD measurements and then μ may be deduced as the frequency increases beyond the quasi-static regime, once σ is known. In this review, both dc and ac solutions that are useful in determining the conductivity of metals and semiconductors, and the permeability of ferromagnetic conductors, are summarized. In particular, flat test pieces with arbitrary thickness are considered. At the next level of complexity, a solution for a half-space coated with a surface layer is given, along with a discussion of the use of the four-point potential drop method for determining thickness of a surface layer, such

  5. Methods for dispensing mercury into devices

    DOEpatents

    Grossman, M.W.; George, W.A.

    1987-04-28

    A process is described for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg[sub 2]Cl[sub 2] and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury. 2 figs.

  6. 21 CFR 872.3700 - Dental mercury.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental mercury. 872.3700 Section 872.3700 Food and... DENTAL DEVICES Prosthetic Devices § 872.3700 Dental mercury. (a) Identification. Dental mercury is a device composed of mercury intended for use as a component of amalgam alloy in the restoration of...

  7. Methods for dispensing mercury into devices

    DOEpatents

    Grossman, Mark W.; George, William A.

    1987-04-28

    A process for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg.sub.2 Cl.sub.2 and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury.

  8. In situ stabilization of entrapped elemental mercury.

    PubMed

    Devasena, M; Nambi, Indumathi M

    2013-11-30

    Elemental mercury is a dense immiscible fluid which gets entrapped as residual mercury in the pore spaces of the subsurface during improper disposals and accidental spills. This paper investigates in situ stabilization of entrapped elemental mercury to mercury sulphide using aqueous sodium polysulphide solution. Batch experiments showed 100% conversion efficiency of elemental mercury to mercury sulphide in a period of 96 h with sodium polysulphide/elemental mercury molar ratio of 1. XRD analysis identified the precipitate formed as mercury sulphide. Micromodel experiments, with glass beads as porous media, further demonstrated in situ stabilization of entrapped mercury under different residual mercury saturations. It was found that in a period of 10 days, 10% of entrapped mercury was stabilized as mercury sulphide, 0.088% was removed as dissolved mercury and the remaining elemental mercury was retained in porous media encapsulated by the newly formed mercury sulphide precipitate. However, there was no leaching of mercury from the micromodel effluent once stabilization was achieved. PMID:24080327

  9. Coalescence dynamics of viscous conical drops

    NASA Astrophysics Data System (ADS)

    Lu, Jiakai; Fang, Shengyang; Corvalan, Carlos M.

    2016-02-01

    When two oppositely charged drops come into light contact, a liquid meniscus bridge with double-cone geometry forms between the drops. Recent experiments have demonstrated the existence of a critical cone angle above which the meniscus bridge pinches off and the drops do not coalesce. This striking behavior—which has implications for processes ranging from the coarsening of emulsions to electrospray ionization in mass spectrometry—has been studied theoretically and experimentally for inertial liquid drops. Little is known, however, about the influence of the liquid viscosity on the critical cone angle. Here, we use high-fidelity numerical simulations to gain insight into the coalescence dynamics of conical drops at intermediate Reynolds numbers. The simulations, which account for viscous, inertial, and surface tension effects, predict that the critical cone angle increases as the viscosity of the drops decreases. When approaching the inertial regime, however, the predicted critical angle quickly stabilizes at approximately 27∘, as observed in experiments.

  10. Microfluidics with compound ``bubble-drops''

    NASA Astrophysics Data System (ADS)

    Khan, Saif A.; Duraiswamy, Suhanya

    2008-11-01

    ``Bubble-drops'' are compound fluid particles comprising a gas bubble and liquid drop that flow as a single fluid object through another immiscible liquid in a microchannel network. These fluid particles represent discrete multiphase `quanta', and expand the sphere of application of droplet microfluidics to inter-phase phenomena. We present here a simple method to generate monodisperse bubble-drop trains in microfabricated channel networks. The difference in drag force exerted on flowing bubbles and drops by the immiscible carrier liquid implies different translational speeds, thus providing the driving force for bubble-drop formation. We outline the criteria for stable generation and analyze factors influencing bubble-drop dynamics. We will also highlight several applications in chemical and biological synthesis and screening.

  11. Generation of inkjet drop of particulate gel

    NASA Astrophysics Data System (ADS)

    Yoo, Hansol; Kim, Chongyoup

    2015-08-01

    The generation of inkjet drops of colloidal gels is studied experimentally. Particle suspensions are prepared by dispersing spherical polystyrene particles of 620 nm in the 1:1 mixture of deionized water and ethylene glycol. The gels are prepared by adding polyethylene oxide to the suspensions by inducing the depletion interaction between particles. It is demonstrated that inkjet drops can be generated by using the colloidal gels. It is found that the ligament extended from the inkjet nozzle is stabilized so that the drop can be generated without satellite droplets behind the main drop and the velocity of the gel drop is faster than that of the polymer solution at the same concentration. The gel drop generation characteristics are found to be sensitive to input voltage.

  12. A Different Cone: Bursting Drops in Solids

    NASA Astrophysics Data System (ADS)

    Zhao, Xuanhe

    2013-03-01

    Drops in fluids tend to be spheres--a shape that minimizes surface energy. In thunderstorm clouds, drops can become unstable and emit thin jets when charged beyond certain limits. The instability of electrified drops in gases and liquids has been widely studied and used in applications including ink-jet printing, electrospinning nano-fibers, microfluidics and electrospray ionization. Here we report a different scenario: drops in solids become unstable and burst under sufficiently high electric fields. We find the instability of drops in solids morphologically resembles that in liquids, but the critical electric field for the instability follows a different scaling due to elasticity of solids. Our observations and theoretical models not only advance the fundamental understanding of electrified drops but also suggest a new failure mechanism of high-energy-density dielectric polymers, which have diverse applications ranging from capacitors for power grids and electric vehicles to muscle-like transducers for soft robots and energy harvesting.

  13. Computations of Drop Collision and Coalescence

    NASA Technical Reports Server (NTRS)

    Tryggvason, Gretar; Juric, Damir; Nas, Selman; Mortazavi, Saeed

    1996-01-01

    Computations of drops collisions, coalescence, and other problems involving drops are presented. The computations are made possible by a finite difference/front tracking technique that allows direct solutions of the Navier-Stokes equations for a multi-fluid system with complex, unsteady internal boundaries. This method has been used to examine the various collision modes for binary collisions of drops of equal size, mixing of two drops of unequal size, behavior of a suspension of drops in linear and parabolic shear flows, and the thermal migration of several drops. The key results from these simulations are reviewed. Extensions of the method to phase change problems and preliminary results for boiling are also shown.

  14. Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy.

    PubMed

    Fantozzi, L; Ferrara, R; Dini, F; Tamburello, L; Pirrone, N; Sprovieri, F

    2013-08-01

    Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters that we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000ngm(-2)h(-1)) were observed on bare soils during the hours of maximum insulation, while lower values (250ngm(-2)h(-1)) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500ngm(-2)h(-1), which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28°C and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils. PMID:23477569

  15. Fluorescent sensor for mercury

    DOEpatents

    Wang, Zidong; Lee, Jung Heon; Lu, Yi

    2011-11-22

    The present invention provides a sensor for detecting mercury, comprising: a first polynucleotide, comprising a first region, and a second region, a second polynucleotide, a third polynucleotide, a fluorophore, and a quencher, wherein the third polynucleotide is optionally linked to the second region; the fluorophore is linked to the first polynucleotide and the quencher is linked to the second polynucleotide, or the fluorophore is linked to the second polynucleotide and the quencher is linked to the first polynucleotide; the first region and the second region hybridize to the second polynucleotide; and the second region binds to the third polynucleotide in the presence of Hg.sup.2+ ions.

  16. Reference Atmosphere for Mercury

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.

    2002-01-01

    The objectives of this three year proposal are: (1) to calculate the likely diffusive flux of Ar and He from the interior of Mercury for representative crustal compositions; (2) compute a reasonable estimate of the fractional escape flux of photoions for the likely range of field conditions; and (3) to calculate the capture rate of solar wind ions into the atmosphere. The morphology of the magnetosphere in response to the solar wind and the IMF is the crucial boundary condition for the flux of ions to the surface. We have tackled problem (1) using a multipath diffusion code, and problems (2) and (3) using a combination of MHD and kinetic plasma dynamics.

  17. Mariner 10 mercury encounter.

    PubMed

    Dunne, J A

    1974-07-12

    Mariner 10's closet approach to Mercury on 29 March 1974 occurred on the dark side of the planet at a range of approximately 700 kilometers. The spacecraft trajectory passed through the shadows of both the sun and Earth. Experiments conducted included magnetic fields, plasma and charged particle studies of the solar wind interaction region, television photography, extreme ultraviolet spectroscopy of the atmosphere, the detection of infrared thermal radiation from the surface, and a dual-frequency radio occultation in search of an ionosphere. PMID:17810505

  18. Geothermal hazards - Mercury emission

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.; Siegel, B. Z.

    1975-01-01

    Enthusiasm for intensified geothermal exploration may induce many participants to overlook a long-term potential toxicity hazard possibly associated with the tapping of magmatic steam. The association of high atmospheric Hg levels with geothermal activity has been established both in Hawaii and Iceland, and it has been shown that mercury can be introduced into the atmosphere from fumaroles, hot springs, and magmatic sources. These arguments, extended to thallium, selenium, and other hazardous elements, underscore the need for environmental monitoring in conjunction with the delivery of magmatic steam to the surface.

  19. Equilibrium shapes of acoustically levitated drops

    NASA Astrophysics Data System (ADS)

    Trinh, E. H.; Hsu, C.-J.

    1986-05-01

    The quantitative determination of the shape of liquid drops levitated in an ultrasonic standing wave has provided experimental data on the radiation pressure-induced deformations of freely suspended liquids. Within the limits of small deviations from the spherical shape and small drop diameter relative to the acoustic wavelength, an existing approximate theory yields a good agreement with experimental evidence. The data were obtained for millimeter and submillimeter drops levitated in air under 1 g, where g is the sea level gravitational acceleration.

  20. Chaos in a Water Drop.

    NASA Astrophysics Data System (ADS)

    Schneider, Scott Dudley

    Nature is chaotic. It appears to be more disorderly and random than orderly and regular. The path of a leaf in a rocky stream can appear as complex as the smoke from a cigarette or the outline of a cloud. In trying to model the path of a leaf in a rocky stream, the dynamical equations become rapidly complicated. A branch of scientific analysis know as Chaos has sprung up in the last few decades with techniques that can be applied to most of the physical sciences in an attempt to describe or categorize the various non-linear phenomena found in Nature. The aim of this paper is to provide an introduction to the study of chaotic behavior, with an emphasis on the potential teaching possibilities contained in some of the analysis. An appropriate beginning would be motion that is regular and "easy" to understand--stable motion. Along the way, various graphical representations will be developed that enable a clear viewing of the motion of the system under study. Next, the Logistic model will be used to gain an understanding of the nature of chaos; it is very comprehensive in representing the characteristics of chaos that will be studied in other systems. Another system studied is the three-dimensional Rossler model. In the study of the "dripping faucet", a time series of the periods between drips of water is recorded. Various techniques (collected from the introductory systems) are applied in an attempt to model the mechanism behind the water drops, or at least to characterize the graphical "animals" that we find. The water drop "attractor" is found to be chaotic, exhibiting many of the chaotic characteristics seen in other models. It is hoped that this work can be used as a primer for those students beginning a journey into Chaos, or as a reference tool for those already familiar with the topics enclosed. Many areas in this work were touched lightly; there is a rich un-tapped complexity still waiting future study. The waters here have only begun to be charted.

  1. Negative electrode composition

    DOEpatents

    Kaun, Thomas D.; Chilenskas, Albert A.

    1982-01-01

    A secondary electrochemical cell and a negative electrode composition for use therewith comprising a positive electrode containing an active material of a chalcogen or a transiton metal chalcogenide, a negative electrode containing a lithium-aluminum alloy and an amount of a ternary alloy sufficient to provide at least about 5 percent overcharge capacity relative to a negative electrode solely of the lithium-aluminum alloy, the ternary alloy comprising lithium, aluminum, and iron or cobalt, and an electrolyte containing lithium ions in contact with both of the positive and the negative electrodes. The ternary alloy is present in the electrode in the range of from about 5 percent to about 50 percent by weight of the electrode composition and may include lithium-aluminum-nickel alloy in combination with either the ternary iron or cobalt alloys. A plurality of series connected cells having overcharge capacity can be equalized on the discharge side without expensive electrical equipment.

  2. Application of thin-shielded mercury microelectrodes in anodic stripping voltammetry.

    PubMed

    Daniele, Salvatore; Bragato, Carlo; Baldo, M Antonietta; Ciani, Ilenia

    2008-10-19

    The performance in anodic stripping voltammetry (ASV) of hemispherical mercury microelectrodes, fabricated by electrodeposition of liquid mercury on the surface of Pt microdisks which were surrounded by a rather thick or thin insulating shield, was compared. The Pt microdisks were produced by sealing a wire of 25 microm diameter into a glass capillary, and by coating the cylindrical length of the Pt wire with a cathodic electrophoretic paint. The ratio of the overall tip radius b, to the basal radius of the electrode a, so-called RG=b/a, was equal to 110+/-10 and 1.52+/-0.01 for the thick- and thin-shielded microdisk, respectively. The mercury microelectrodes were characterized by cyclic voltammetry at 1 mVs(-1), in 1mM Ru(NH(3))(6)(3+) aqueous solution. The steady-state voltammogram recorded with the thin-shielded mercury microelectrode displayed less hysteresis, while the steady-state current was about 30% higher than that of the thicker one. This was a consequence of the additional flux due to diffusion from behind the plane of the electrode. The flux enhancement, which was operative at the thin-shielded mercury microelectrode during the deposition step in the ASV experiments, allowed recording stripping peaks for Cd and Pb, which resulted about 32% larger than those recorded at the thicker shielded mercury microelectrode, under same experimental conditions. The usefulness of the thin-shielded mercury microelectrode for ASV measurements in real samples was verified by determining the content of heavy metal ions released in the pore water (pH 4.5) of a soil slurry. PMID:18804626

  3. Nonlinear oscillations of inviscid free drops

    NASA Technical Reports Server (NTRS)

    Patzek, T. W.; Benner, R. E., Jr.; Basaran, O. A.; Scriven, L. E.

    1991-01-01

    The present analysis of free liquid drops' inviscid oscillations proceeds through solution of Bernoulli's equation to obtain the free surface shape and of Laplace's equation for the velocity potential field. Results thus obtained encompass drop-shape sequences, pressure distributions, particle paths, and the temporal evolution of kinetic and surface energies; accuracy is verified by the near-constant drop volume and total energy, as well as the diminutiveness of mass and momentum fluxes across drop surfaces. Further insight into the nature of oscillations is provided by Fourier power spectrum analyses of mode interactions and frequency shifts.

  4. Videographic Assessment of Glaucoma Drop Instillation

    PubMed Central

    Castillejos, Armando; Kahook, Malik; Jimenez-Roman, Jesus; Gonzalez-Salinas, Roberto

    2015-01-01

    ABSTRACT Purpose: To assess the effect of patient education on videotaped topical instillation of artificial tear drops on subsequent topical instillation. Materials and methods: Forty-five patients, who had been using glaucoma drops for at least 6 months and with a best-corrected visual acuity of 20/100 or better, were studied. The patients were asked to instill an artificial tear drop using their accustomed technique while being video recorded. The patients viewed the recordings, and the errors in their drop instillation method were pointed out. This was followed by an educational session on proper drop instillation technique. After 30 minutes, patients were videotaped instilling drops to ascertain the effect of the educational session. The variables compared were: number of drops instilled, number of drops reaching the ocular surface, and the number of times the tip of the medication bottle touched the eye or ocular adnexa. Results: Before the instruction session, patients squeezed an average of 1.5 ± 0.9 drops from the bottle, and the average number of drops reaching the conjunctival fornix was 0.9 ± 0.7. The tip of the bottle touched the ocular adnexa in 29/45 (64.4%) patients. After the education session, the patients squeezed an average of 1.2 ± 0.5 drops and an average of 1.2 ± 0.4 drops reached the conjunctival fornix. The tip of the bottle touched the ocular adnexa in 13/45 (28.9%) patients. With proper instructions, the percentage of patients that instilled just one drop on the eye increased from 66 to 82%. Conclusion: A single educational session on the proper use of topical drops improves the successful instillation of eye drops. However, it was not determined whether the patients will retain the improved instillation technique for long-term or if the intervention results in only a short-term improvement. How to cite this article: Lazcano-Gomez G, Castillejos A, Kahook M, Jimenez-Roman J, Gonzalez-Salinas R. Video-graphic Assessment of Glaucoma

  5. Motility of active fluid drops on surfaces

    NASA Astrophysics Data System (ADS)

    Khoromskaia, Diana; Alexander, Gareth P.

    2015-12-01

    Drops of active liquid crystal have recently shown the ability to self-propel, which was associated with topological defects in the orientation of active filaments [Sanchez et al., Nature 491, 431 (2013), 10.1038/nature11591]. Here, we study the onset and different aspects of motility of a three-dimensional drop of active fluid on a planar surface. We analyze theoretically how motility is affected by orientation profiles with defects of various types and locations, by the shape of the drop, and by surface friction at the substrate. In the scope of a thin drop approximation, we derive exact expressions for the flow in the drop that is generated by a given orientation profile. The flow has a natural decomposition into terms that depend entirely on the geometrical properties of the orientation profile, i.e., its bend and splay, and a term coupling the orientation to the shape of the drop. We find that asymmetric splay or bend generates a directed bulk flow and enables the drop to move, with maximal speeds achieved when the splay or bend is induced by a topological defect in the interior of the drop. In motile drops the direction and speed of self-propulsion is controlled by friction at the substrate.

  6. Drop motion induced by vertical vibrations

    NASA Astrophysics Data System (ADS)

    Sartori, Paolo; Quagliati, Damiano; Varagnolo, Silvia; Pierno, Matteo; Mistura, Giampaolo; Magaletti, Francesco; Massimo Casciola, Carlo

    2015-11-01

    We have studied the motion of liquid drops on an inclined plate subject to vertical vibrations. The liquids comprised distilled water and different aqueous solutions of glycerol, ethanol and isopropanol spanning the range 1-39 mm2 s-1 in kinematic viscosities and 40-72 mN m-1 in surface tension. At sufficiently low oscillating amplitudes, the drops are always pinned to the surface. Vibrating the plate above a certain amplitude yields sliding of the drop. Further increasing the oscillating amplitude drives the drop upward against gravity. In the case of the most hydrophilic aqueous solutions, this motion is not observed and the drop only slides downward. Images taken with a fast camera show that the drop profile evolves in a different way during sliding and climbing. In particular, the climbing drop experiences a much bigger variation in its profile during an oscillating period. Complementary numerical simulations of 2D drops based on a diffuse interface approach confirm the experimental findings. The overall qualitative behavior is reproduced suggesting that the contact line pinning due to contact angle hysteresis is not necessary to explain the drop climbing.

  7. Drop and Flight Tests on NY-2 Landing Gears Including Measurements of Vertical Velocities at Landing

    NASA Technical Reports Server (NTRS)

    Peck, W D; Beard, A P

    1933-01-01

    This investigation was conducted to obtain quantitative information on the effectiveness of three landing gears for the NY-2 (consolidated training) airplane. The investigation consisted of static, drop, and flight tests on landing gears of the oleo-rubber-disk and the mercury rubber-chord types, and flight tests only on a landing gear of the conventional split-axle rubber-cord type. The results show that the oleo gear is the most effective of the three landing gears in minimizing impact forces and in dissipating the energy taken.

  8. Elemental mercury exposure in early pregnancy

    SciTech Connect

    Thorp, J.M. Jr.; Boyette, D.D.; Watson, W.J.; Cefalo, R.C. )

    1992-05-01

    We present a case of first-trimester elemental mercury exposure and review the literature to demonstrate that the reproductive toxicity of mercury varies depending on the form of mercury to which one is exposed. It appears that elemental mercury exposure poses less of a reproductive threat than the well-known hazards of exposure to organic mercurials. It is critical to determine the form of exposure when counseling patients at risk.15 references.

  9. A Mercury Transport and Fate Model for Mass Budget Assessment of Mercury Cycling in Lake Michigan

    EPA Science Inventory

    A mercury mass balance model was developed to describe and evaluate the fate, transport, and biogeochemical transformations of mercury in Lake Michigan. Coupling with total suspendable solids (TSS) and dissolved organic carbon (DOC), the mercury transport and fate model simulates...

  10. Saving every drop of water

    NASA Astrophysics Data System (ADS)

    Jinyu, J.

    2012-04-01

    Since the beginning of 2011 there has been extremely low rainfall, which has resulted in drought conditions that have affected several provinces in China. The situation of the acute water shortage requires people to make many changes in the little things they do in their daily life. Saving every drop of water and forming good habits of using water is of the utmost importance. Based on this need, our students, organized by our teachers, reached out into to the communities. By visiting, observing and issuing questionnaires, the students identified unreasonable water usage in the communities. The results of the research showed that the ratio of secondary treatment of domestic waste is very low, especially the ratio of collecting wastewater from washing, greywater, to flush the toilet. In order to solve this problem, students themselves designed a set of water saving facilities by collecting greywater to flush the toilet. They successfully installed these facilities in residential houses in the XiYinLi community, which achieved satisfactory results regarding saving water.

  11. Mercury toxicity and neurodegenerative effects.

    PubMed

    Carocci, Alessia; Rovito, Nicola; Sinicropi, Maria Stefania; Genchi, Giuseppe

    2014-01-01

    Mercury is among the most toxic heavy metals and has no known physiological role in humans. Three forms of mercury exist: elemental, inorganic and organic. Mercury has been used by man since ancient times. Among the earliest were the Chinese and Romans, who employed cinnabar (mercury sulfide) as a red dye in ink (Clarkson et al. 2007). Mercury has also been used to purify gold and silver minerals by forming amalgams. This is a hazardous practice, but is still widespread in Brazil's Amazon basin, in Laos and in Venezuela, where tens of thousands of miners are engaged in local mining activities to find and purify gold or silver. Mercury compounds were long used to treat syphilis and the element is still used as an antiseptic,as a medicinal preservative and as a fungicide. Dental amalgams, which contain about 50% mercury, have been used to repair dental caries in the U.S. since 1856.Mercury still exists in many common household products around the world.Examples are: thermometers, barometers, batteries, and light bulbs (Swain et al.2007). In small amounts, some organo mercury-compounds (e.g., ethylmercury tiosalicylate(thimerosal) and phenylmercury nitrate) are used as preservatives in some medicines and vaccines (Ballet al. 2001).Each mercury form has its own toxicity profile. Exposure to Hg0 vapor and MeHg produce symptoms in CNS, whereas, the kidney is the target organ when exposures to the mono- and di-valent salts of mercury (Hg+ and Hg++, respectively)occur. Chronic exposure to inorganic mercury produces stomatitis, erethism and tremors. Chronic MeHg exposure induced symptoms similar to those observed in ALS, such as the early onset of hind limb weakness (Johnson and Atchison 2009).Among the organic mercury compounds, MeHg is the most biologically available and toxic (Scheuhammer et a!. 2007). MeHg is neurotoxic, reaching high levels of accumulation in the CNS; it can impair physiological function by disrupting endocrine glands (Tan et a!. 2009).The most

  12. Volcanic mercury in Pinus canariensis.

    PubMed

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis

    2013-08-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg(-1)) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg(-1)). Thus, mercury emissions originating from the eruption remained only as a mark-in pyroclastic wounds-and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg(-1)) and bark (6.0 μg kg(-1)) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species. PMID:23760570

  13. Volcanic mercury in Pinus canariensis

    NASA Astrophysics Data System (ADS)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis

    2013-08-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg-1) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg-1). Thus, mercury emissions originating from the eruption remained only as a mark—in pyroclastic wounds—and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg-1) and bark (6.0 μg kg-1) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  14. Mercury content of Illinois soils

    USGS Publications Warehouse

    Dreher, G.B.; Follmer, L.R.

    2004-01-01

    For a survey of Illinois soils, 101 cores had been collected and analyzed to determine the current and background elemental compositions of Illinois soils. Mercury and other elements were determined in six samples per core, including a surface sample from each core. The mean mercury content in the surface samples was 33 ?? 20 ??g/kg soil, and the background content was 20 ?? 9 ??g/kg. The most probable sources of mercury in these soils were the parent material, and wet and dry deposition of Hg0 and Hg2+ derived from coal-burning power plants, other industrial plants, and medical and municipal waste incinerators. Mercury-bearing sewage sludge or other fertilizers applied to agricultural fields could have been the local sources of mercury. Although the mercury content correlated with organic carbon content or clay content in individual cores, when all the data were considered, there was no strong correlation between mercury and either the organic carbon or the clay-size content.

  15. Method for removal and stabilization of mercury in mercury-containing gas streams

    DOEpatents

    Broderick, Thomas E.

    2005-09-13

    The present invention is directed to a process and apparatus for removing and stabilizing mercury from mercury-containing gas streams. A gas stream containing vapor phase elemental and/or speciated mercury is contacted with reagent, such as an oxygen-containing oxidant, in a liquid environment to form a mercury-containing precipitate. The mercury-containing precipitate is kept or placed in solution and reacts with one or more additional reagents to form a solid, stable mercury-containing compound.

  16. Electroretinographic wet electrode.

    PubMed

    Carpi, Federico; Benini, Gabriella; Tomei, Franca; Figliuzzi, Rosa Maria; De Napoli, Alberto

    2009-10-01

    This paper presents the first systematic characterisation of a new electroretinographic (ERG) electrode, recently described. The new 'wet' electrode uses a conducting liquid as a distributed electrical interface between the eye and a solid electronic conductor; the latter detects the ERG potential without any direct contact with the ocular surface. This technique avoids the contact-induced discomfort of both corneal and conjunctival standard electrodes. The wet electrode was tested on 10 volunteers, in comparison with a conjunctival electrode (HK loop), as the most comfortable standard. It was also compared with a cutaneous (cup) electrode, which is even more comfortable, although not standard. Results showed the efficacy of the wet electrode for detecting morphologically accurate ERG responses, with amplitudes respectively analogous and higher of those measured by the conjunctival and cutaneous electrodes. Properties of wet electrodes include: no solid interface with the eye, no need for anaesthesia, intrinsic safety, mechanical and electrical stability against ocular movements, tolerance to misplacements and immunity to lacrimation. As a drawback, the liquid can still be a source of discomfort for some patients and it requires care against possible leakage. All these features suggest a possible use of wet electrodes as an additional tool for ERG procedures, although limited to tests of short duration. PMID:19501539

  17. Glenn Enters his Mercury Capsule

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Astronaut John H. Glenn Jr. enters his Mercury capsule, 'Friendship 7' as he prepares for launch of the Mercury-Atlas rocket. On February 20, 1962 Glenn lifted off into space aboard his Mercury Atlas 6 (MA-6) rocket and became the first American to orbit the Earth. After orbiting the Earth 3 times, Friendship 7 landed in the Atlantic Ocean 4 hours, 55 minutes and 23 seconds later, just East of Grand Turk Island in the Bahamas. Glenn and his capsule were recovered by the Navy Destroyer Noa, 21 minutes after splashdown.

  18. Distribution of total mercury and methyl mercury in water, sediment, and fish from South Florida estuaries

    USGS Publications Warehouse

    Kannan, K.; Smith, R.G., Jr.; Lee, R.F.; Windom, H.L.; Heitmuller, P.T.; Macauley, J.M.; Summers, J.K.

    1998-01-01

    Concentrations of total mercury and methyl mercury were determined in sediment and fish collected from estuarine waters of Florida to understand their distribution and partitioning. Total mercury concentrations in sediments ranged from 1 to 219 ng/g dry wt. Methyl mercury accounted for, on average, 0.77% of total mercury in sediment. Methyl mercury concentrations were not correlated with total mercury or organic carbon content in sediments. The concentrations of total mercury in fish muscle were between 0.03 and 2.22 (mean: 0.31) ??g/g, wet wt, with methyl mercury contributing 83% of total mercury. Methyl mercury concentrations in fish muscle were directly proportional to total mercury concentrations. The relationship of total and methyl mercury concentrations in fish to those of sediments from corresponding locations was fish-species dependent, in addition to several abiotic factors. Among fish species analyzed, hardhead catfish, gafftopsail catfish, and sand seatrout contained the highest concentrations of mercury. Filtered water samples from canals and creeks that discharge into the Florida Bay showed mercury concentrations of 3-7.4 ng/L, with methyl mercury accounting for <0.03-52% of the total mercury. Consumption of fish containing 0.31 ??g mercury/g wet wt, the mean concentration found in this study, at rates greater than 70 g/day, was estimated to be hazardous to human health.

  19. Clearance of short circuited ion optics electrodes by capacitive discharge. [in ion thrusters

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.

    1976-01-01

    The ion optics electrodes of low specific impulse (3000 sec) mercury electron bombardment ion thrusters are vulnerable to short circuits by virtue of their relatively small interelectrode spacing (0.5 mm). Metallic flakes from backsputtered deposits are the most probable cause of such 'shorts' and 'typical' flakes have been simulated here using refractory wire that has a representative, but controllable, cross section. Shorting wires can be removed by capacitive discharge without significant damage to the electrodes. This paper describes an evaluation of 'short' removal versus electrode damage for several combinations of capacitor voltage, stored energy, and short circuit conditions.

  20. MERCURY STABILITY IN THE ENVIRONMENT

    SciTech Connect

    John H. Pavlish

    1999-07-01

    The 1990 Clean Air Act Amendments (CAAAs) require the U.S. Environmental Protection Agency (EPA) to determine whether the presence of mercury and 188 other trace substances, referred to as air toxics or hazardous air pollutants (HAPs), in the stack emissions from fossil fuel-fired electric utility power plants poses an unacceptable public health risk (1). The EPA's conclusions and recommendations were presented in two reports: Mercury Study Report to Congress and Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units-Final Report to Congress. The first congressional report addressed both human health and the environmental effects of anthropogenic mercury emissions, while the second report addressed the risk to public health posed by emissions of HAPs from steam electricity-generating units. The National Institute of Environmental Health Sciences is also required by the CAAAs to investigate mercury and determine a safe threshold level of exposure. Recently the National Academy of Sciences has also been commissioned by Congress to complete a report, based the available scientific evidence, regarding safe threshold levels of mercury exposure. Although the EPA reports did not state that mercury controls on coal-fired electric power stations should be required given the current state of the art, they did indicate that EPA views mercury as a potential threat to human health. It is likely that major sources of mercury emissions, including fossil-fired combustion systems, will be controlled at some point. In fact, municipal waste combustion units are already regulated. In anticipation of additional control measures, much research has been done (and continues) regarding the development of control technologies for mercury emitted from stationary sources to the atmosphere. Most approaches taken to date involve sorbent injection technologies or improve upon removal of mercury using existing technologies such as flue gas desulfurization

  1. 49 CFR 178.603 - Drop test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... qualification of all packaging design types and performed periodically as specified in § 178.601(e). For other than flat drops, the center of gravity of the test packaging must be vertically over the point of... result in failure of the packaging must be used. The number of drops required and the...

  2. Drops and Bubble in Materials Science

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1982-01-01

    The formation of extended p-n junctions in semiconductors by drop migration, mechanisms and morphologies of migrating drops and bubbles in solids and nucleation and corrections to the Volmer-Weber equations are discussed. Bubble shrinkage in the processing of glass, the formation of glass microshells as laser-fusion targets, and radiation-induced voids in nuclear reactors were examined.

  3. [Nasal drops addiction--the case report].

    PubMed

    Korzeniowska, Katarzyna; Simon, Karolina; Jabłecka, Anna

    2012-01-01

    The article describes the case of 34-years old man, who has used nasal drops with xylomethazoline for three years. Health consequence of uncontrolled use of the drops and treatment were prescribed. Described problem confirms the need of physicians and pharmacists cooperation to limit the problem of drug-addiction. PMID:23421118

  4. Aging, Terminal Decline, and Terminal Drop

    ERIC Educational Resources Information Center

    Palmore, Erdman; Cleveland, William

    1976-01-01

    Data from a 20-year longitudinal study of persons over 60 were analyzed by step-wise multiple regression to test for declines in function with age, for terminal decline (linear relationship to time before death), and for terminal drop (curvilinear relationship to time before death). There were no substantial terminal drop effects. (Author)

  5. Drop Ejection From an Oscillating Rod

    NASA Technical Reports Server (NTRS)

    Wilkes, E. D.; Basaran, O. A.

    1999-01-01

    The dynamics of a drop of a Newtonian liquid that is pendant from or sessile on a solid rod that is forced to undergo time-periodic oscillations along its axis is studied theoretically. The free boundary problem governing the time evolution of the shape of the drop and the flow field inside it is solved by a method of lines using a finite element algorithm incorporating an adaptive mesh. When the forcing amplitude is small, the drop approaches a limit cycle at large times and undergoes steady oscillations thereafter. However, drop breakup is the consequence if the forcing amplitude exceeds a critical value. Over a wide range of amplitudes above this critical value, drop ejection from the rod occurs during the second oscillation period from the commencement of rod motion. Remarkably, the shape of the interface at breakup and the volume of the primary drop formed are insensitive to changes in forcing amplitude. The interface shape at times close to and at breakup is a multi-valued function of distance measured along the rod axis and hence cannot be described by recently popularized one-dimensional approximations. The computations show that drop ejection occurs without the formation of a long neck. Therefore, this method of drop formation holds promise of preventing formation of undesirable satellite droplets.

  6. Drop tower with no aerodynamic drag

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Jr.

    1981-01-01

    Cooling air accelerated to match velocity of falling object eliminates drag. 3 meter drop tower with suction fan and specific geometry causes air to accelerate downward at 1 g. Although cooling of molten material released from top is slow because surrounding air moves with it, drop remains nearly spherical.

  7. Spatial Distribution of Large Cloud Drops

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Larsen, M.; Wiscombe, W.

    2004-01-01

    By analyzing aircraft measurements of individual drop sizes in clouds, we have shown in a companion paper (Knyazikhin et al., 2004) that the probability of finding a drop of radius r at a linear scale l decreases as l(sup D(r)) where 0 less than or equal to D(r) less than or equal to 1. This paper shows striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and therefore a Poisson distribution of cloud drops, these models show strong drop clustering, the more so the larger the drops. The degree of clustering is determined by the observed exponents D(r). The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics explaining how rain can form so fast. It also helps explain why remotely sensed cloud drop size is generally biased and why clouds absorb more sunlight than conventional radiative transfer models predict.

  8. Why Do Students Drop Advanced Mathematics?

    ERIC Educational Resources Information Center

    Horn, Ilana

    2004-01-01

    Students, especially black, Latino and Native American youth and students of low socio-economic status drop out of advanced mathematics. Teachers must coordinate their expectations, their knowledge of students and their teaching practices in order to stop struggling students from dropping out of advanced math classes.

  9. University Drop-Out: An Italian Experience

    ERIC Educational Resources Information Center

    Belloc, Filippo; Maruotti, Antonello; Petrella, Lea

    2010-01-01

    University students' drop-out is a crucial issue for the universities' efficiency evaluation and funding. In this paper, we analyze the drop-out rate of the Economics and Business faculty of Sapienza University of Rome. We use administrative data on 9,725 undergraduates students enrolled in three-years bachelor programs from 2001 to 2007 and…

  10. 14 CFR 91.15 - Dropping objects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Dropping objects. 91.15 Section 91.15 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES General § 91.15 Dropping objects. No pilot in command of a civil aircraft may...

  11. Mixing in colliding, ultrasonically levitated drops.

    PubMed

    Chainani, Edward T; Choi, Woo-Hyuck; Ngo, Khanh T; Scheeline, Alexander

    2014-02-18

    Lab-in-a-drop, using ultrasonic levitation, has been actively investigated for the last two decades. Benefits include lack of contact between solutions and an apparatus and a lack of sample cross-contamination. Understanding and controlling mixing in the levitated drop is necessary for using an acoustically levitated drop as a microreactor, particularly for studying kinetics. A pulsed electrostatic delivery system enables addition and mixing of a desired-volume droplet with the levitated drop. Measurement of mixing kinetics is obtained by high-speed video monitoring of a titration reaction. Drop heterogeneity is visualized as 370 nl of 0.25 M KOH (pH: 13.4) was added to 3.7 μL of 0.058 M HCl (pH: 1.24). Spontaneous mixing time is about 2 s. Following droplet impact, the mixed drop orbits the levitator axis at about 5 Hz during homogenization. The video's green channel (maximum response near 540 nm) shows the color change due to phenolphthalein absorption. While mixing is at least an order of magnitude faster in the levitated drop compared with three-dimensional diffusion, modulation of the acoustic waveform near the surface acoustic wave resonance frequency of the levitated drop does not substantially reduce mixing time. PMID:24460103

  12. CPAS Preflight Drop Test Analysis Process

    NASA Technical Reports Server (NTRS)

    Englert, Megan E.; Bledsoe, Kristin J.; Romero, Leah M.

    2015-01-01

    Throughout the Capsule Parachute Assembly System (CPAS) drop test program, the CPAS Analysis Team has developed a simulation and analysis process to support drop test planning and execution. This process includes multiple phases focused on developing test simulations and communicating results to all groups involved in the drop test. CPAS Engineering Development Unit (EDU) series drop test planning begins with the development of a basic operational concept for each test. Trajectory simulation tools include the Flight Analysis and Simulation Tool (FAST) for single bodies, and the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulation for the mated vehicle. Results are communicated to the team at the Test Configuration Review (TCR) and Test Readiness Review (TRR), as well as at Analysis Integrated Product Team (IPT) meetings in earlier and intermediate phases of the pre-test planning. The ability to plan and communicate efficiently with rapidly changing objectives and tight schedule constraints is a necessity for safe and successful drop tests.

  13. DIETARY METHYL MERCURY EXPOSURE IN AMERICAN KESTRELS; PILOT STUDY

    EPA Science Inventory

    Anthropogenic mercury emissions have increased atmospheric mercury levels about threefold since the advent of industrial activity. Atmospheric deposition is the primary source of mercury in the environment hence mercury contamination has increased in similar fashion. Methyl mercu...

  14. The Use of Bacteria for Remediation of Mercury Contaminated Groundwater

    EPA Science Inventory

    Many processes of mercury transformation in the environment are bacteria mediated. Mercury properties cause some difficulties of remediation of mercury contaminated environment. Despite the significance of the problem of mercury pollution, methods of large scale bioremediation ...

  15. Uncharged positive electrode composition

    DOEpatents

    Kaun, Thomas D.; Vissers, Donald R.; Shimotake, Hiroshi

    1977-03-08

    An uncharged positive-electrode composition contains particulate lithium sulfide, another alkali metal or alkaline earth metal compound other than sulfide, e.g., lithium carbide, and a transition metal powder. The composition along with a binder, such as electrolytic salt or a thermosetting resin is applied onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within an electrochemical cell opposite to a negative electrode containing a material such as aluminum or silicon for alloying with lithium. During charging, lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode. Excess negative electrode capacity over that from the transition metal sulfide is provided due to the electrochemical reaction of the other than sulfide alkali metal or alkaline earth metal compound.

  16. Bifunctional alkaline oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  17. Electrolytic drops in an electric field: A numerical study of drop deformation and breakup.

    PubMed

    Pillai, R; Berry, J D; Harvie, D J E; Davidson, M R

    2015-07-01

    The deformation and breakup of an axisymmetric, conducting drop suspended in a nonconducting medium and subjected to an external electric field is numerically investigated here using an electrokinetic model. This model uses a combined level set-volume of fluid formulation of the deformable surfaces, along with a multiphase implementation of the Nernst-Planck equation for transport of ions, that allows for varying conductivity inside the drop. A phase diagram, based on a parametric study, is used to characterize the stability conditions. Stable drops with lower ion concentration are characterized by longer drop shapes than those achieved at higher ion concentrations. For higher drop ion concentration, greater charge accumulation is observed at drop tips. Consequently, such drops break up by pinching off rather than tip streaming. The charge contained in droplets released from unstable drops is shown to increase with drop ion concentration. These dynamic drop behaviors depend on the strength of the electric field and the concentration of ions in the drop and result from the interplay between the electric forces arising from the permittivity jump at the drop interface and the ions in the bulk. PMID:26274270

  18. Bioselective Membrane Electrode Probes

    NASA Astrophysics Data System (ADS)

    Rechnitz, Garry A.

    1981-10-01

    The use of intact bacterial cells or tissue slices of plant and animal origin as immobilized biocatalysts has extended the possible range of potentiometric bioselective membrane electrodes beyond that of conventional enzyme electrodes. The use of such materials as biocatalysts offers advantages in situations where isolated enzymes are not available or where multistep reaction paths are required. The resulting bioselective electrodes also offer exceptional ease of preparation, time stability, and low cost.

  19. Nanoscopic electrode molecular probes

    DOEpatents

    Krstic, Predrag S.; Meunier, Vincent

    2012-05-22

    The present invention relates to a method and apparatus for enhancing the electron transport property measurements of a molecule when the molecule is placed between chemically functionalized carbon-based nanoscopic electrodes to which a suitable voltage bias is applied. The invention includes selecting a dopant atom for the nanoscopic electrodes, the dopant atoms being chemically similar to atoms present in the molecule, and functionalizing the outer surface and terminations of the electrodes with the dopant atoms.

  20. Determination of the cathode and anode voltage drops in high power low-pressure amalgam lamps

    SciTech Connect

    Vasilyak, L. M.; Vasiliev, A. I. Kostyuchenko, S. V.; Sokolov, D. V.; Startsev, A. Yu.; Kudryavtsev, N. N.

    2011-12-15

    For the first time, cathode and anode drops of powerful low-pressure amalgam lamps were measured. The lamp discharge current is 3.2 A, discharge current frequency is 43 kHz, linear electric power is 2.4 W/cm. The method of determination of a cathode drop is based on the change of a lamp operating voltage at variation of the electrode filament current at constant discharge current. The total (cathode plus anode) drop of voltage was measured by other, independent ways. The maximum cathode fall is 10.8 V; the anode fall corresponding to the maximal cathode fall is 2.4 V. It is shown that in powerful low pressure amalgam lamps the anode fall makes a considerable contribution (in certain cases, the basic one) to heating of electrodes. Therefore, the anode fall cannot be neglected, at design an electrode and ballast of amalgam lamps with operating discharge current frequency of tens of kHz.

  1. Mercury Exposure and Children’s Health

    PubMed Central

    Bose-O’Reilly, Stephan; McCarty, Kathleen M.; Steckling, Nadine; Lettmeier, Beate

    2011-01-01

    Acute or chronic mercury exposure can cause adverse effects during any period of development. Mercury is a highly toxic element; there is no known safe level of exposure. Ideally, neither children nor adults should have any mercury in their bodies because it provides no physiological benefit. Prenatal and postnatal mercury exposures occur frequently in many different ways. Pediatricians, nurses, and other health care providers should understand the scope of mercury exposures and health problems among children and be prepared to handle mercury exposures in medical practice. Prevention is the key to reducing mercury poisoning. Mercury exists in different chemical forms: elemental (or metallic), inorganic, and organic (methylmercury and ethyl mercury). Mercury exposure can cause acute and chronic intoxication at low levels of exposure. Mercury is neuro-, nephro-, and immunotoxic. The development of the child in utero and early in life is at particular risk. Mercury is ubiquitous and persistent. Mercury is a global pollutant, bio-accumulating, mainly through the aquatic food chain, resulting in a serious health hazard for children. This article provides an extensive review of mercury exposure and children’s health. PMID:20816346

  2. The Mercury-Redstone Program

    NASA Technical Reports Server (NTRS)

    Hammack, Jerome B.; Heberlig, Jack C.

    1961-01-01

    The Mercury-Redstone program is reviewed as to its intended mission and its main results. The progressive results of unmanned, animal, and manned flights of this over-all Project Mercury ballistic training program are presented. A technical description of the major spacecraft systems is presented with some analysis of flight performance. Performance of the spacecraft with and without pilot input is discussed. The influence of the astronaut as an operating link in the over-all system is presented, and relative difficulties of manned versus unmanned flight are briefly commented upon. The program provided information on man as an integral part of a space flight system, demonstrating that man can assume a primary role in space as he does in other realms of flight. The Mercury-Redstone program demonstrated that the Mercury spacecraft was capable of manned space flight, and succeeded in partially qualifying the spacecraft for orbital flight.

  3. The Mercury Dual Orbiter mission

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Slavin, J. A.

    1990-01-01

    The Mercury Orbiter (MeO) will carry out a full range of particles, fields, and planetary imaging science at Mercury. Present mission plans call for a launch in 1999 with a flight time of about 4.5 years. By means of multiple Venus and Mercury gravitational assists, the mission can be accomplished with present U.S. launch vehicles and a very large payload can be placed in orbit around Mercury. The dual-spacecraft concept will permit outstanding scientific study of solar cosmic rays and the solar wind throughout the inner heliosphere from 0.3 AU to 1.0 AU. Modest enhancements to the planned magnetospheric instruments and utilization of onboard solar instruments will permit unique investigation of solar particle acceleration and transport with the MeO spacecraft.

  4. Unlocking the Secrets of Mercury

    NASA Video Gallery

    Of all the rocky planets, Mercury is the smallest and densest, the one with the oldest surface, and the one with the largest daily surface temperature variations. It is also the least explored! Joi...

  5. Cavitation in a Mercury Target

    SciTech Connect

    West, C.D.

    2000-09-01

    Recent theoretical work on the formation of bubble nucleation centers by energetic particles leads to some reasonably credible calculations of the maximum negative pressure that might be sustained without bubble formation in the mercury target of the Spallation Neutron Source.

  6. Mercurial Risks from Acid's Reign.

    ERIC Educational Resources Information Center

    Raloff, Janet

    1991-01-01

    Discussed are the sources, and harmful effects of methylmercury. Research on this problem is reviewed. Suggestions to help anglers reduce their mercury consumption from fish they catch are provided. (CW)

  7. CAPSULE REPORT: AQUEOUS MERCURY TREATMENT

    EPA Science Inventory

    This report describes established technologies and identifies evolving methods for treating aqueous mercury. The information provided encompasses full-, pilot- and bench-scale treatment results as presented in the technical literature. The report describes alternative technologi...

  8. "Cavitation in a Mercury Target"

    SciTech Connect

    West, C.D.

    2000-09-06

    Recent theoretical work on the formation of bubble nucleation centers by energetic particles leads to some reasonably credible calculations of the maximum negative pressure that might be sustained without bubble formation in the mercury target of the Spallation Neutron Source.

  9. Mercury Telluride and Cadmium Telluride

    NASA Technical Reports Server (NTRS)

    2004-01-01

    A semiconductor's usefulness is determined by how atoms are ordered within the crystal's underlying three-dimensional structure. While this mercury telluride and cadmium telluride alloy sample mixes completely in Earth -based laboratories, convective flows prevent them from mixing uniformly.

  10. Origin and composition of Mercury

    NASA Technical Reports Server (NTRS)

    Lewis, John S.

    1988-01-01

    The predictions of the expected range of composition of Mercury at the time of its formation made on the basis of a suite of condensation-accretion models of Mercury spanning a range of condensation temperature and accretion sampling functions appropriate to Mercury are examined. It is concluded that these compositonal models can, if modified to take into account the nonselective loss of most of the silicate component of the planet during accretion, provide compositional predictions for the Weidenschilling (1978, 1980) mechanism for the accretion of a metal-rich Mercury. The silicate portion would, in this case, contain 3.6 to 4.5 percent alumina, roughly 1 percent of alkali oxides, and between 0.5 and 6 percent FeO.

  11. Pocket ECG electrode

    NASA Technical Reports Server (NTRS)

    Lund, Gordon F. (Inventor)

    1982-01-01

    A low-noise electrode suited for sensing electrocardiograms when chronically and subcutaneously implanted in a free-ranging subject. The electrode comprises a pocket-shaped electrically conductive member with a single entrance adapted to receive body fluids. The exterior of the member and the entrance region is coated with electrical insulation so that the only electrolyte/electrode interface is within the member remote from artifact-generating tissue. Cloth straps are bonded to the member to permit the electrode to be sutured to tissue and to provide electrical lead flexure relief.

  12. Pocket ECG electrode

    NASA Technical Reports Server (NTRS)

    Lund, G. F. (Inventor)

    1980-01-01

    A low noise electrode suited for sensing electrocardiograms when chronically and subcutaneously implanted in a free ranging subject is described. The electrode comprises a pocket shaped electrically conductive member with a single entrance adapted to receive body fluids. The exterior of the member and the entrance region is coated with electrical insulation so that the only electrolyte/electrode interface is within the member, remote from artifact-generating tissue. Cloth straps are bonded to the member to permit the electrode to be sutured to tissue and to provide electrical lead flexure relief.

  13. Highly compliant transparent electrodes

    NASA Astrophysics Data System (ADS)

    Shian, Samuel; Diebold, Roger M.; McNamara, Alena; Clarke, David R.

    2012-08-01

    Adaptive optical devices based on electric field induced deformation of dielectric elastomers require transparent and highly compliant electrodes to conform to large shape changes. Electrical, optical, and actuation properties of acrylic elastomer electrodes fabricated with single-walled carbon nanotubes (SWCNTs) and silver nanowires (AgNWs) have been evaluated. Based on these properties, a figure of merit is introduced for evaluating the overall performance of deformable transparent electrodes. This clearly indicates that SWCNTs outperform AgNWs. Under optimal conditions, optical transparency as high as 91% at 190% maximum actuation strain is readily achievable using SWCNT electrodes.

  14. Preparation and characterization of electrodes for the NASA Redox storage system

    NASA Technical Reports Server (NTRS)

    Reid, M. A.; Gahn, R. F.; Ling, J. S.; Charleston, J.

    1980-01-01

    Electrodes for the Redox energy storage system based on iron and chromium chloride reactants is discussed. The physical properties of several lots of felt were determined. Procedures were developed for evaluating electrode performance in lab scale cells. Experimental procedures for evaluating electrodes by cyclic voltammetry are described which minimize the IR losses due to the high internal resistance in the felt (distributed resistance). Methods to prepare electrodes which reduced the coevolution of hydrogen at the chromium electrode and eleminate the drop in voltage on discharge occasionally seen with previous electrodes were discussed. Single cells of 0.3329 ft area with improved membranes and electrodes are operating at over 80% voltage efficiency and coulombic efficiencies of over 98% at current densities of 16 to 20 amp % ft.

  15. Localized surface plasmon resonance mercury detection system and methods

    DOEpatents

    James, Jay; Lucas, Donald; Crosby, Jeffrey Scott; Koshland, Catherine P.

    2016-03-22

    A mercury detection system that includes a flow cell having a mercury sensor, a light source and a light detector is provided. The mercury sensor includes a transparent substrate and a submonolayer of mercury absorbing nanoparticles, e.g., gold nanoparticles, on a surface of the substrate. Methods of determining whether mercury is present in a sample using the mercury sensors are also provided. The subject mercury detection systems and methods find use in a variety of different applications, including mercury detecting applications.

  16. Webcam images of Mercury

    NASA Astrophysics Data System (ADS)

    Hooker, C.

    2006-12-01

    The accompanying images of Mercury were obtained on the morning of 2006 August 19, during a short interval of good seeing. The telescope used was a 10-inch (250mm) Orion Optics (UK) Newtonian on a Vixen GP-DX mount, coupled with a Tele Vue ?5 Powermate to give a sufficiently large image scale. The camera was an ATIK 1 HS II black & white webcam, with a Baader IR-pass filter transmitting wavelengths longer than 685nm. Five movie files in .avi format were recorded over a half-hour period, after which the seeing deteriorated. The observations were made in full daylight: the dark background results from clipping the histogram during processing of the stacked images.

  17. Mercury orbiter transport study

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Feingold, H.

    1977-01-01

    A data base and comparative performance analyses of alternative flight mode options for delivering a range of payload masses to Mercury orbit are provided. Launch opportunities over the period 1980-2000 are considered. Extensive data trades are developed for the ballistic flight mode option utilizing one or more swingbys of Venus. Advanced transport options studied include solar electric propulsion and solar sailing. Results show the significant performance tradeoffs among such key parameters as trip time, payload mass, propulsion system mass, orbit size, launch year sensitivity and relative cost-effectiveness. Handbook-type presentation formats, particularly in the case of ballistic mode data, provide planetary program planners with an easily used source of reference information essential in the preliminary steps of mission selection and planning.

  18. Rapid mercury assays

    SciTech Connect

    Szurdoki, S.; Kido, H.; Hammock, B.D.

    1996-10-01

    We have developed rapid assays with the potential of detecting mercury in environmental samples. our methods combine the simple ELISA-format with the selective, high affinity complexation of mercuric ions by sulfur-containing ligands. The first assay is based on a sandwich chelate formed by a protein-bound ligand immobilized on the wells of a microliter plate, mercuric ion of the analyzed sample, and another ligand conjugated to a reporter enzyme. The second assay involves competition between mercuric ions and an organomercury-conjugate to bind to a chelating conjugate. Several sulfur containing chelators (e.g., dithiocarbamates) and organomercurials linked to macromolecular carriers have been investigated in these assay formats. The assays detect mercuric ions in ppb/high ppt concentrations with high selectivity.

  19. Mercury Toolset for Spatiotemporal Metadata

    NASA Technical Reports Server (NTRS)

    Wilson, Bruce E.; Palanisamy, Giri; Devarakonda, Ranjeet; Rhyne, B. Timothy; Lindsley, Chris; Green, James

    2010-01-01

    Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily) harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.

  20. Mercury Toolset for Spatiotemporal Metadata

    NASA Astrophysics Data System (ADS)

    Devarakonda, Ranjeet; Palanisamy, Giri; Green, James; Wilson, Bruce; Rhyne, B. Timothy; Lindsley, Chris

    2010-06-01

    Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily)harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.

  1. Rotation of the planet mercury.

    PubMed

    Jefferys, W H

    1966-04-01

    The equations of motion for the rotation of Mercury are solved for the general case by an asymptotic expansion. The findings of Liu and O'Keefe, obtained by numerical integration of a special case, that it is possible for Mercury's rotation to be locked into a 2:3 resonance with its revolution, are confirmed in detail. The general solution has further applications. PMID:17741632

  2. In situ mercury stabilization

    SciTech Connect

    Fuhrmann, M.; Kalb, P.; Adams, J.

    2004-09-01

    BNL Royalty Project Internal Status Report. The funds from the allotment of royalty income were used to experimentally explore feasibility of related, potential new techniques based on the Environmental Sciences Department successful technology licensed for the ex situ treatment of mercury. Specifically, this work is exploring the concept of using Sulfur Polymer Cement (SPC) in an in situ application to stabilize and/or remove mercury (Hg) from surficial soil. Patent disclosure forms have been filed for this process. Soil was artificially spiked with 500 ppm Hg and a series of experiments were set up in which SPC rods were placed in the center of a mass of this soil. Some experiments were conducted at 20 C and others at 50 C. After times ranging from 11 to 24 days, these experiments were opened, photographed and the soil was sampled from discrete locations in the containers. The soil and SPC samples were analyzed for Fe and Hg by x-ray fluorescence. The Hg profile in the soil was significantly altered, with concentrations along the outer edge of the soil reduced by as much as 80% from the starting concentration. Conversely, closer to the treatment rod containing SPC, concentrations of Hg were significantly increased over the original concentration. Preliminary results for elevated temperature sample are shown graphically in Figure 2. Apparently the Hg had migrated toward the SPC and reacted with sulfur to form Hg S. This appears to be a reaction between gaseous phases of both S and Hg, with Hg having a greater vapor pressure. The concentration of low solubility HgS (i.e., low leaching properties) developed within 11 days at 50 C and 21 days at 20 C, confirming the potential of this concept.

  3. Determination of inorganic ionic mercury down to 5x10(-14) mol l(-1) by differential-pulse anodic stripping voltammetry.

    PubMed

    Meyer, S; Scholz, F; Trittler, R

    1996-09-01

    A new method is described for the reliable and ultrasensitive determination of inorganic ionic mercury, using differential-pulse anodic stripping voltammetry on a glassy carbon electrode. It has been possible to determine mercury down to a concentration of 5x10(-14) mol l(-1) (the lowest detection limit ever reported for a voltammetric method). This success was achieved by using a thiocyanate electrolyte and relatively long deposition times. The mercury ions are stabilized in the solution by the formation of strong thiocyanate complexes. This leads to a highly reproducible cathodic plating and anodic dissolution of mercury. A speciation analysis allowing to distinguish between dissolved atomic and ionic mercury in water is possible. PMID:15048362

  4. Influence of Mercury

    NASA Astrophysics Data System (ADS)

    Tackley, P. J.; Aurnou, J. M.; Aubert, J.

    2009-04-01

    Due to the absence of an atmosphere and proximity to the Sun, Mercury's surface temperature varies laterally by several 100s K, even when averaged over long time periods. The dominant variation in time-averaged surface T occurs from pole to equator (~225 K) [1]. The resonant relationship between Mercury's orbit and rotation results in a smaller longitudinal variation (~100 K) [1]. Here we demonstrate, using models of mantle convection in a 3-D spherical shell, that this stationary lateral variation in surface temperature has a small but significant influence on mantle convection and on the lateral variation of heat flux across the core-mantle boundary (CMB). We evaluate the possible observational signature of this laterally-varying convection in terms of boundary topography, stress distribution, gravity and moment of inertia tensor. We furthermore test whether the lateral variation in CMB flux is capable of driving a thermal wind dynamo, i.e., weak dynamo action with no internally-driven core convective motions. For Mercury's mantle we assume a dry olivine rheology including both diffusion creep and disclocation creep with rheological parameters such as activation energy and volume taken from the synthesis of [2]. We assume decaying radiogenic heat sources with the same concentration as in the bulk silicate Earth, and a parameterised model of core cooling. The models are run for 4.5 Ga from a relatively hot initial state with random initial perturbations. We use the code StagYY, which uses a finite-volume discretization on a spherical yin-yang grid and a multigrid solver [3]. Results in spherical axisymmetric geometry, compare a case with constant surface temperature to one with a latitude-dependent surface temperature. The system forms about 3 convection cells from pole to equator. Although the results look similar to first order, in the latitude-dependent case the convection is noticably more sluggish and colder towards the pole. In CMB flux, both cases display

  5. Recent geologic activity on Mercury

    NASA Astrophysics Data System (ADS)

    Xiao, Z.; Strom, R. G.; Blewett, D. T.; Solomon, S. C.; Head, J. W.; Watters, T. R.; Chabot, N. L.; Banks, M. E.; Chapman, C. R.

    2011-12-01

    Since the MESSENGER spacecraft was inserted into orbit about Mercury in March 2011, global and targeted high-resolution image data sets have been acquired. These images support the conclusion that internal geological activity on Mercury did not end early in planetary history, as had generally been previously thought, but continued to geologically recent times. Three lines of evidence point to recent geological activity on Mercury. (1) There are smooth plains with surface areas up to 1.5×105 km2 that postdate young (morphological class 1) craters, indicating probable Kuiperian-aged volcanism. No volcanic vents, fissures, or flow fronts have been identified on these plains, suggesting that they are products of low-viscosity lavas, consistent with komatiite-like compositions of large areas on Mercury indicated by MESSENGER X-Ray Spectrometer observations. (2) Young lobate scarps transect class 1 craters as large as 30 km in diameter, indicating comparably recent crustal contraction. (3) A number of fresh-appearing, high-reflectance, irregularly shaped and rimless shallow depressions interpreted as pyroclastic vents have few superposed craters, suggesting that they have been recently active. Growing evidence from geological and geochemical observations indicates that Mercury's interior contains a higher abundance of volatile materials than was previously appreciated. Together these findings support the inference that Mercury experienced relatively recent volcanism and tectonic deformation, and the possibility that the planet is geologically active today cannot be discounted.

  6. Forms of mercury in Everglades agricultural soils

    SciTech Connect

    Patrick, W.H.; Parkpian, P.; Gambrell, R.P.

    1995-12-31

    Seventeen surface soils from the Florida Everglades Agricultural Area were subjected to selective extraction for water soluble, amorphous iron oxide bound, organic, and residual mercury. Organic bound mercury was the major fraction and represented 51% of the total mercury for the 17 soils studied. Iron oxide bound mercury and water soluble mercury accounted for only 5 percent each of the total mercury. Eight weeks incubation of the soils under aerobic and anaerobic conditions showed little effect of aeration status on the transformations among the various chemical forms.

  7. The Drop Tower Bremen -An Overview

    NASA Astrophysics Data System (ADS)

    von Kampen, Peter; Könemann, Thorben; Rath, Hans J.

    The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University of Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of ZARM`s drop tower began. Since its inau-guration in September 1990, the eye-catching Drop Tower Bremen with a height of 146m and its characteristic glass roof has become twice a landmark on the campus of the University of Bremen and the emblem of the technology park Bremen. As such an outstanding symbol of space science in Bremen the drop tower provides an european unique facility for experiments under conditions of high-quality weightlessness with residual gravitational accelerations in the microgravity regime. The period of maximum 4.74s of each freely falling experiment at the Drop Tower Bremen is only limited by the height of the drop tower vacuum tube, which was fully manufactured of steal and enclosed by an outer concrete shell. Thus, the pure free fall height of each microgravity drop experiment is approximately 110m. By using the later in-stalled catapult system established in 2004 ZARM`s short-term microgravity laboratory is able to nearly double the time of free fall. This world-wide inimitable capsule catapult system meets scientists` demand of extending the period of weightlessness. During the catapult operation the experiment capsule performs a vertical parabolic flight within the drop tower vacuum tube. In this way the time of microgravity can be extended to slightly over 9s. Either in the drop or in the catapult operation routine the repetition rates of microgravity experiments at ZARM`s drop tower facility are the same, generally up to 3 times per day. In comparison to orbital platforms the ground-based laboratory Drop Tower Bremen represents an economic alternative with a permanent access to weightlessness on earth. Moreover, the exceptional high quality of weightlessness in order of 1e-6 g (in the frequency range below 100

  8. Pattern formation in drying drops of blood

    NASA Astrophysics Data System (ADS)

    Brutin, D.; Sobac, B.; Loquet, B.; Sampol, J.

    2011-01-01

    The drying of a drop of human blood exhibits coupled physical mechanisms, such as Marangoni flow, evaporation and wettability. The final stage of a whole blood drop evaporation reveals regular patterns with a good reproducibility for a healthy person. Other experiments on anaemic and hyperlipidemic people were performed, and different patterns were revealed. The flow motion inside the blood drop is observed and analyzed with the use of a digital camera: the influence of the red blood cells (RBCs) motion is revealed at the drop periphery as well as its consequences on the final stage of drying. The mechanisms which lead to the final pattern of the dried blood drops are presented and explained on the basis of fluid mechanics in conjunction with the principles of haematology. The blood drop evaporation process is evidenced to be driven only by Marangoni flow. The same axisymetric pattern formation is observed, and can be forecast for different blood drop diameters. The evaporation mass flux can be predicted with a good agreement, assuming only the knowledge of the colloids mass concentration.

  9. Nonmonotonic Response of Drop Impacting Liquid Film

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoyu; Saha, Abhishek; Zhu, Delin; Sun, Chao; Law, Chung K.

    2015-11-01

    Drop impact on liquid film is ubiquitous in both natural phenomena and industrial applications. The dynamics of the gas layer trapped between the drop and the deformed liquid surface play a crucial role in determining the impact outcomes. However, a quantitative measurement of this gas layer dynamics is extremely challenging because it is hidden behind the deformed liquid film. In this study, high-speed white light interferometry enables the measurement of the gas layer dynamics during the drop impact with high resolutions and is complemented by side view shadowgraphy to observe the penetration process below the liquid surface. Drop impacting with different inertia onto liquid film with various thicknesses is systematically studied to obtain a phase diagram of different outcomes in the h/R-We space, where h/R is the liquid thickness normalized by drop radius, and We is the drop Weber number. It is observed that there exists a critical WeC beyond which the drop always merges with the liquid film. However, for `subcritical' conditions, there exists a merging peninsula in otherwise globally bouncing region. Across this peninsula, as the liquid film thickness increases, the impact outcome transits from bouncing to merging and to bouncing again. The merging time within this peninsula is longer compared to its `supercritical' counterpart, indicating different merging mechanisms. Based on scaling analysis, the boundaries between different zones are identified and compared with experiments.

  10. Drop rebound in clouds and precipitation

    NASA Technical Reports Server (NTRS)

    Ochs, H. T., III; Beard, K. V.

    1982-01-01

    The possibility of rebound for colliding cloud drops was measured by determining the collection efficiency. The collection efficiency for 17 size pairs of relatively uncharged drops in over 500 experimental runs was measured using two techniques. The collection efficiencies fall in a narrow range of 0.60 to 0.70 even though the collection drop was varied between 63 and 326 microns and the size ratio from 0.05 to 0.33. In addition the measured values of collection efficiencies (Epsilon) were below the computed values of collision efficiencies (E) for rigid spheres. Therefore it was concluded that rebound was occurring for these sizes since inferred coalescence (epsilon = Epsilon/E) efficiencies are about 0.6 yo 0.8. At a very small size ratio (r/R = p = 0.05, R = 326 microns) the coalescence efficiency inferred is in good agreement with the experimental findings for a supported collector drop. At somewhat large size ratios the inferred values of epsilon are well above results of supported drop experiments, but show a slight correspondence in collected drop size dependency to two models of drop rebound. At a large size ratio (p = 0.73, R = 275) the inferred coalescence efficiency is significantly different from all previous results.

  11. Investigation of drop motion through circular orifices

    NASA Astrophysics Data System (ADS)

    Bordoloi, Ankur; Longmire, Ellen; Kong, Xiangzhao; Saar, Martin

    2011-11-01

    The motion of drops though porous media occurs in numerous science and engineering fields including multiphase fluid flow in the subsurface during groundwater flow, geothermal energy recovery, and geologic carbon dioxide sequestration. Here, we simplify the porous medium to a thin plate with an orifice to study the interactions between the drop and the solid medium. Drops of water/glycerin with diameter, D, are released in a tank of silicone oil with matched refractive index and allowed to fall downward by gravity. After reaching terminal speed, the drops encounter a thin plate with orifice diameter, d, placed horizontally within the surrounding tank. Drop deformation, contact with the orifice, and breakage are investigated using high-speed imaging, and velocity fields are determined by particle image velocimetry (PIV). Effects of diameter ratio d/D, drop Reynolds number, and drop offset with respect to the orifice center are examined. The experimental results are compared to results from numerical simulations using an immiscible, two-color BGK lattice-Boltzmann method performed under similar test conditions. Supported by DOE (DOE EERE-PMC-10EE0002764).

  12. A dynamic study of the warm-up phase of a high-pressure mercury lamp

    SciTech Connect

    Araoud, Z.; Ben Ahmed, R.; Bouaoun, M.; Ben El Hadj Rhouma, M.; Charrada, K.; Zissis, G.

    2008-09-15

    A time-dependent two-dimensional computational fluid model has been adopted to investigate the dynamic behavior of the high-pressure mercury lamp during the last phase of the warm-up period. The model solves the combined momentum, continuity, energy, and electric field equations for the plasma and the energy equation for the wall. Two models have been compared. The first takes convection into account and is called ''convection model.'' The second, which neglects this term, is termed ''convectionless model.'' Good agreement between the predictions and experimental data from literature has been obtained. It is found that the convection affects the lamp performance by increasing the mercury losses behind the electrodes and the mercury-evaporation time.

  13. Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy

    SciTech Connect

    Fantozzi, L.; Dini, F.; Tamburello, L.; Pirrone, N.; Sprovieri, F.

    2013-08-15

    Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters that we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000 ng m{sup −2} h{sup −1}) were observed on bare soils during the hours of maximum insulation, while lower values (250 ng m{sup −2} h{sup −1}) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500 ng m{sup −2} h{sup −1}, which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28 °C and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20 h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils. -- Highlights: ► Mercury air/surface exchange

  14. Coplanar electrowetting-induced stirring as a tool to manipulate biological samples in lubricated digital microfluidics. Impact of ambient phase on drop internal flow patterna)

    PubMed Central

    Davoust, Laurent; Fouillet, Yves; Malk, Rachid; Theisen, Johannes

    2013-01-01

    Oscillating electrowetting on dielectrics (EWOD) with coplanar electrodes is investigated in this paper as a way to provide efficient stirring within a drop with biological content. A supporting model inspired from Ko et al. [Appl. Phys. Lett. 94, 194102 (2009)] is proposed allowing to interpret oscillating EWOD-induced drop internal flow as the result of a current streaming along the drop surface deformed by capillary waves. Current streaming behaves essentially as a surface flow generator and the momentum it sustains within the (viscous) drop is even more significant as the surface to volume ratio is small. With the circular electrode pair considered in this paper, oscillating EWOD sustains toroidal vortical flows when the experiments are conducted with aqueous drops in air as ambient phase. But when oil is used as ambient phase, it is demonstrated that the presence of an electrode gap is responsible for a change in drop shape: a pinch-off at the electrode gap yields a peanut-shaped drop and a symmetry break-up of the EWOD-induced flow pattern. Viscosity of oil is also responsible for promoting an efficient damping of the capillary waves which populate the surface of the actuated drop. As a result, the capillary network switches from one standing wave to two superimposed traveling waves of different mechanical energy, provided that actuation frequency is large enough, for instance, as large as the one commonly used in electrowetting applications (f ∼ 500 Hz and beyond). Special emphasis is put on stirring of biological samples. As a typical application, it is demonstrated how beads or cell clusters can be focused under flow either at mid-height of the drop or near the wetting plane, depending on how the nature of the capillary waves is (standing or traveling), and therefore, depending on the actuation frequency (150 Hz–1 KHz). PMID:24404038

  15. Condensation-induced jumping water drops

    NASA Astrophysics Data System (ADS)

    Narhe, R. D.; Khandkar, M. D.; Shelke, P. B.; Limaye, A. V.; Beysens, D. A.

    2009-09-01

    Water droplets can jump during vapor condensation on solid benzene near its melting point. This phenomenon, which can be viewed as a kind of micro scale steam engine, is studied experimentally and numerically. The latent heat of condensation transferred at the drop three phase contact line melts the substrate during a time proportional to R (the drop radius). The wetting conditions change and a spontaneous jump of the drop results in random direction over length ˜1.5R , a phenomenon that increases the coalescence events and accelerates the growth. Once properly rescaled by the jump length scale, the growth dynamics is, however, similar to that on a solid surface.

  16. Condensation-induced jumping water drops.

    PubMed

    Narhe, R D; Khandkar, M D; Shelke, P B; Limaye, A V; Beysens, D A

    2009-09-01

    Water droplets can jump during vapor condensation on solid benzene near its melting point. This phenomenon, which can be viewed as a kind of micro scale steam engine, is studied experimentally and numerically. The latent heat of condensation transferred at the drop three phase contact line melts the substrate during a time proportional to R (the drop radius). The wetting conditions change and a spontaneous jump of the drop results in random direction over length approximately 1.5R , a phenomenon that increases the coalescence events and accelerates the growth. Once properly rescaled by the jump length scale, the growth dynamics is, however, similar to that on a solid surface. PMID:19905120

  17. Electrically assisted drop sliding on inclined planes

    NASA Astrophysics Data System (ADS)

    't Mannetje, D. J. C. M.; Murade, C. U.; van den Ende, D.; Mugele, F.

    2011-01-01

    We demonstrate that electrowetting using alternating current (ac) voltage can be used to overcome pinning of small drops due to omnipresent heterogeneities on solid surfaces. By balancing contact angle hysteresis with gravity on inclined planes, we find that the critical electrowetting number for mobilizing drops is consistent with the voltage-dependent reduction in contact angle hysteresis in ac electrowetting. Moreover, the terminal velocity of sliding drops under ac electrowetting is found to increase linearly with the electrowetting number. Based on this effect, we present a prototype of a wiper-free windscreen.

  18. Nanofluid Drop Evaporation: Experiment, Theory, and Modeling

    NASA Astrophysics Data System (ADS)

    Gerken, William James

    Nanofluids, stable colloidal suspensions of nanoparticles in a base fluid, have potential applications in the heat transfer, combustion and propulsion, manufacturing, and medical fields. Experiments were conducted to determine the evaporation rate of room temperature, millimeter-sized pendant drops of ethanol laden with varying amounts (0-3% by weight) of 40-60 nm aluminum nanoparticles (nAl). Time-resolved high-resolution drop images were collected for the determination of early-time evaporation rate (D2/D 02 > 0.75), shown to exhibit D-square law behavior, and surface tension. Results show an asymptotic decrease in pendant drop evaporation rate with increasing nAl loading. The evaporation rate decreases by approximately 15% at around 1% to 3% nAl loading relative to the evaporation rate of pure ethanol. Surface tension was observed to be unaffected by nAl loading up to 3% by weight. A model was developed to describe the evaporation of the nanofluid pendant drops based on D-square law analysis for the gas domain and a description of the reduction in liquid fraction available for evaporation due to nanoparticle agglomerate packing near the evaporating drop surface. Model predictions are in relatively good agreement with experiment, within a few percent of measured nanofluid pendant drop evaporation rate. The evaporation of pinned nanofluid sessile drops was also considered via modeling. It was found that the same mechanism for nanofluid evaporation rate reduction used to explain pendant drops could be used for sessile drops. That mechanism is a reduction in evaporation rate due to a reduction in available ethanol for evaporation at the drop surface caused by the packing of nanoparticle agglomerates near the drop surface. Comparisons of the present modeling predictions with sessile drop evaporation rate measurements reported for nAl/ethanol nanofluids by Sefiane and Bennacer [11] are in fairly good agreement. Portions of this abstract previously appeared as: W. J

  19. Rotation of ultrasonically levitated glycerol drops

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Leung, E. W.; Trinh, E. H.

    1991-01-01

    Ultrasonic levitation is used to suspend single millimeter-size glycerol drops in a rectangular chamber. Audio-frequency laterally standing waves set up in the chamber are used to torque the suspended drops. The shape evolution of the drop under the combined effect of centrifugal forces and the acoustic radiation stress, along with its angular velocity are monitored, using video imaging and light scattering techniques. The results show good qualitative agreement with the theoretically predicted shape evolution as a function of angular velocity.

  20. Electrohydrodynamic manipulation of particles on drop surfaces

    NASA Astrophysics Data System (ADS)

    Amah, Edison; Shah, Kinnari; Fischer, Ian; Singh, Pushpendra

    2014-11-01

    We have recently shown that particles adsorbed on the surface of a drop can be self-assembled at the poles or the equator of the drop by applying a uniform ac electric field, and that this method can be used to separate on the surface of a drop those particles experiencing positive dielectrophoresis from those experiencing negative dielectrophoresis. In this talk we show that the frequency of the electric field is an important parameter which can be used to modify the intensities of the dielectrophoretic and the hydrodynamic-flow induced forces, and thus control the distribution of self-assembled monolayers. The work was supported by National Science Foundation.

  1. Drop size control in electro-coflow

    NASA Astrophysics Data System (ADS)

    Vilanova, N.; Gundabala, V. R.; Fernandez-Nieves, A.

    2011-07-01

    We introduce electro-coflow as a way to generate emulsion drops with an average size that can be larger, comparable, and smaller than the smallest geometric feature of the device. The method relies on using three immiscible liquids, two of them having a finite electrical conductivity. There are three regimes of operation that allow the steady generation of drops: dripping, electro-dripping, and an electrically dominated regime. We transit from one to the other by increasing the applied voltage and describe the changes in drop size by balancing the relevant forces in each regime.

  2. High-power supercapacitor electrodes from single-walled carbon nanohorn/nanotube composite.

    PubMed

    Izadi-Najafabadi, Ali; Yamada, Takeo; Futaba, Don N; Yudasaka, Masako; Takagi, Hideyuki; Hatori, Hiroaki; Iijima, Sumio; Hata, Kenji

    2011-02-22

    A novel composite is presented as a supercapacitor electrode with a high maximum power rating (990 kW/kg; 396 kW/l) exceeding power performances of other electrodes. The high-power capability of the electrode stemmed from its unique meso-macro pore structure engineered through the utilization of single-walled carbon nanotubes (20 wt %) as scaffolding for single-walled carbon nanohorns (80 wt %). The novel composite electrode also exhibited durable operation (6.5% decline in capacitance over 100 000 cycles) as a result of its monolithic chemical composition and mechanical stability. The novel composite electrode was benchmarked against another high-power electrode made from single-walled carbon nanotubes (Bucky paper electrode). While the composite electrode had a lower surface area compared to the Bucky paper electrode (280 vs 470 m(2)/g from nitrogen adsorption), it had a higher meso-macro pore volume (2.6 vs 1.6 mL/g from mercury porosimetry) which enabled the composite electrode to retain more electrolyte, ensuring facile ion transport, hence achieving a higher maximum power rating (970 vs 400 kW/kg). PMID:21210712

  3. Phytoremediation of Ionic and Methyl Mercury Pollution

    SciTech Connect

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to

  4. Long term flight electrodes

    NASA Technical Reports Server (NTRS)

    Mosier, B.

    1975-01-01

    The reproducibility, stability, and methods of preparation for the various types and forms of biomedical electrodes are discussed. A critical and selective compilation of information on biological and/or physiological electrodes is presented. A discussion of plant hydrocolloids, clays, hydrophyllic colloids, synthetic waxes, and acrylic polymers is included.

  5. Disposable biomedical electrode

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.; Hillman, C. E., Jr.

    1977-01-01

    Reusable recording cap equipped with compressible snap-on bioelectronic electrodes is worn by patient to allow remote monitoring of electroencephalogram and electro-oculogram waveforms. Electrodes can be attached to inside surface of stretch-textile cap at twelve monitoring positions and at one or two ground positions.

  6. Mercury Methylation and Environmental Effects of Inactive Mercury Mines in the Circum-Pacific Region

    NASA Astrophysics Data System (ADS)

    Gray, J. E.

    2001-05-01

    Mercury mines worldwide contain of some the highest concentrations of mercury on earth, and as a result of local mercury contamination, these mines represent areas of environmental concern when mine-drainage enters downstream aquatic systems. The most problematic aspect of mine site mercury contamination is the conversion of inorganic mercury to highly toxic organic mercury compounds, such as methylmercury, and their subsequent uptake by aquatic organisms in surrounding ecosystems. Mercury and methylmercury concentrations were measured in sediment and water samples collected from several inactive mercury mines in Nevada, Alaska, and the Philippines, which are part of the circum-Pacific mineral belt. The mines studied represent different mercury deposit types and sizes, and climatic settings. Geochemical data collected from these mines indicate that areas surrounding hot-springs type mercury deposits generally have lower methylmercury concentrations than silica-carbonate mercury deposits. In hot-springs mercury deposits in Nevada and Alaska, ore is dominantly cinnabar with few acid-water generating minerals such as pyrite, and as a result, mine-water drainage has near neutral pH in which there is low solubility of mercury. Conversely, silica-carbonate deposits, such as Palawan, Philippines, contain abundant cinnabar and pyrite, and the resultant acidic-mine drainage generally has higher concentrations of mercury and methylmercury. Additional factors such as the proximity of mercury mines to wetlands, climatic effects, or mine wastes containing highly soluble mercury compounds potentially enhance mercury methylation. The Palawan mercury mine may be a unique example where several adverse environmental factors produced local mercury contamination, high mercury methylation, fish contamination, and mercury poisoning of humans that consumed these contaminated fish.

  7. Electrodes for microfluidic applications

    DOEpatents

    Crocker, Robert W.; Harnett, Cindy K.; Rognlien, Judith L.

    2006-08-22

    An electrode device for high pressure applications. These electrodes, designed to withstand pressure of greater than 10,000 psi, are adapted for use in microfluidic devices that employ electrokinetic or electrophoretic flow. The electrode is composed, generally, of an outer electrically insulating tubular body having a porous ceramic frit material disposed in one end of the outer body. The pores of the porous ceramic material are filled with an ion conductive polymer resin. A conductive material situated on the upper surface of the porous ceramic frit material and, thus isolated from direct contact with the electrolyte, forms a gas diffusion electrode. A metal current collector, in contact with the gas diffusion electrode, provides connection to a voltage source.

  8. HIGH VOLTAGE ELECTRODES

    DOEpatents

    Murray, J.J.

    1963-04-23

    S>This patent relates to electrode structure for creating an intense direct current electric field which may have a field strength of the order of two to three times that heretofore obtained, with automatic suppression of arcing. The positive electrode is a conventional conductive material such as copper while the negative electrode is made from a special material having a resistivity greater than that of good conductors and less than that of good insulators. When an incipient arc occurs, the moderate resistivity of the negative electrode causes a momentary, localized decrease in the electric field intensity, thus suppressing the flow of electrons and avoiding arcing. Heated glass may be utilized for the negative electrode, since it provides the desired combination of resistivity, capacity, dielectric strength, mechani-cal strength, and thermal stability. (AEC)

  9. Bifunctional catalytic electrode

    NASA Technical Reports Server (NTRS)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  10. Mercury: Aspects of its ecology and environmental toxicity. [physiological effects of mercury compound contamination of environment

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.

    1973-01-01

    A study was conducted to determine the effects of mercury pollution on the environment. The possible sources of mercury contamination in sea water are identified. The effects of mercury on food sources, as represented by swordfish, are analyzed. The physiological effects of varying concentrations of mercury are reported. Emphasis is placed on the situation existing in the Hawaiian Islands.

  11. Groundwater Modeling Of Mercury Pollution At A Former Mercury Cell Chlor Alkali Facility In Pavoldar, Kazakhstan

    EPA Science Inventory

    In Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severly contaminated with mercury and mercury compounds as a result of the industrial activity of this chemical pla...

  12. Cochlear Implant Rate Pitch and Melody Perception as a Function of Place and Number of Electrodes.

    PubMed

    Marimuthu, Vijay; Swanson, Brett A; Mannell, Robert

    2016-01-01

    Six Nucleus cochlear implant recipients participated in a study investigating the effect of place of stimulation on melody perception using rate-pitch cues. Each stimulus was a pulse train delivered on either a single electrode or multiple electrodes sequentially. Four spatial stimulation patterns were used: a single apical electrode, a single mid electrode, a pair of electrodes (apical and mid), and 11 electrodes (from apical to mid). Within one block of trials, all stimuli had the same spatial stimulation pattern, with pulse rate varying from 131 to 262 pps. An additional pulse rate range of 262 to 523 pps was tested with the single-electrode stimuli. Two experimental procedures were used: note ranking; and a modified melodies test with backwards and warp modification. In each trial of the modified melodies test, a familiar melody and a version with modified pitch were presented (in random order), and the subject's task was to select the unmodified melody. There were no significant differences in performance for stimulation on 1, 2, or 11 electrodes, implying that recipients were unable to combine temporal information from different places in the cochlea to give a stronger pitch cue. No advantage of apical electrodes was found: at the lower pulse rates, there were no significant differences between electrodes; and at the higher pulse rates, scores on the apical electrode dropped more than those on the mid electrode. PMID:27094028

  13. Cochlear Implant Rate Pitch and Melody Perception as a Function of Place and Number of Electrodes

    PubMed Central

    Marimuthu, Vijay; Mannell, Robert

    2016-01-01

    Six Nucleus cochlear implant recipients participated in a study investigating the effect of place of stimulation on melody perception using rate-pitch cues. Each stimulus was a pulse train delivered on either a single electrode or multiple electrodes sequentially. Four spatial stimulation patterns were used: a single apical electrode, a single mid electrode, a pair of electrodes (apical and mid), and 11 electrodes (from apical to mid). Within one block of trials, all stimuli had the same spatial stimulation pattern, with pulse rate varying from 131 to 262 pps. An additional pulse rate range of 262 to 523 pps was tested with the single-electrode stimuli. Two experimental procedures were used: note ranking; and a modified melodies test with backwards and warp modification. In each trial of the modified melodies test, a familiar melody and a version with modified pitch were presented (in random order), and the subject’s task was to select the unmodified melody. There were no significant differences in performance for stimulation on 1, 2, or 11 electrodes, implying that recipients were unable to combine temporal information from different places in the cochlea to give a stronger pitch cue. No advantage of apical electrodes was found: at the lower pulse rates, there were no significant differences between electrodes; and at the higher pulse rates, scores on the apical electrode dropped more than those on the mid electrode. PMID:27094028

  14. Proceedings of the Second International Colloquium on Drops and Bubbles

    NASA Technical Reports Server (NTRS)

    Lecroissette, D. H. (Editor)

    1982-01-01

    Applications of bubble and drop technologies are discussed and include: low gravity manufacturing, containerless melts, microballoon fabrication, ink printers, laser fusion targets, generation of organic glass and metal shells, and space processing. The fluid dynamics of bubbles and drops were examined. Thermomigration, capillary flow, and interfacial tension are discussed. Techniques for drop control are presented and include drop size control and drop shape control.

  15. Drop spreading and resorbtion on gel surfaces

    NASA Astrophysics Data System (ADS)

    Banaha, Mehdi; Daerr, Adrian; Limat, Laurent

    2008-03-01

    We have studied the dynamics of liquid drops on agar gels, using a visualisation method which captures the evolution of the free surface. A first remarquable observation is that drops of water deposited on the surface do not spread, although the gel consists of up to 99.7% water and as low as 0.3% agarose. Instead, the drop slowly de-wets and resorbs into the gel which swells locally. If the deposited drop contains surfactants, the dynamics is very different. A sharp circular swelling front develops and progressively invades the whole surface. We study the propagation of this front as a function of surfactant and agarose concentration, and compare its typical properties to similar fronts appearing during mass swarming events of bacterial colonies under the same conditions. The observations reveal the complex nature of gel surface physico-chemistry and its aging, and may be related to recent friction measurements at gel interfaces.

  16. Drop size measurement of liquid aerosols

    NASA Astrophysics Data System (ADS)

    Liu, B. Y. H.; Pui, D. Y. H.; Xian-Qing, Wang

    The factor B = D/ D' relating the diameter D of a spherical liquid drop to the diameter, D˜, of the same drop collected on a microscope slide has been measured for DOP (di-octyl phthalate) and oleic acid aerosols. The microscope slide was coated with a fluorocarbon, oleophobic surfactant (L-1428, 3M Co., St. Paul, MN). The ratio was found to be independent of drop diameter in the 2-50 μm range and the mean value of B was found to be 0.700 for oleic acid and 0.690 for DOP. Similar measurements for oleic acid and DOP drops collected on a clean, uncoated slide resulted in the values of 0.419 and 0.303, respectively. The experimental values of B were compared with the theoretical values based on contact angle measurements. Good agreement was obtained.

  17. Water drop dynamics on a granular layer

    NASA Astrophysics Data System (ADS)

    Llorens, Coraline; Biance, Anne-Laure; Ybert, Christophe; Pirat, Christophe; Liquids; Interfaces Team

    2015-11-01

    Liquid drop impacts, either on a solid surface or a liquid bath, have been studied for a while and are still subject of intense research. Less is known concerning impacts on granular layers that are shown to exhibit an intermediate situation between solid and liquid. In this study, we focus on water drop impacts on granular matter made of micrometer-sized spherical glass beads. In particular, we investigate the overall dynamics arising from the interplay between liquid and grains throughout the impact. Depending on the relevant parameters (impact velocity, drop and grain sizes, as well as their wetting properties), various behaviors are evidenced. In particular, the behavior of the beads at the liquid-gas interface (ball-bearing vs imbibition) is shown to greatly affect the spreading dynamics of the drop, as well as satellite droplets formation, beads ejection, and the final crater morphology.

  18. Physical Causes of Drop Size Distribution Variability

    NASA Astrophysics Data System (ADS)

    Zawadzki, I.

    Drop size distributions are measured at ground by instruments (disdrometers) that mostly sample one drop at a time or at best, a small number of drops simultaneously. To obtain a representative sample a time window of the observations is required. This introduces a spurious variability due to the differential fall speed of drops coupled with a highly variable field of precipitation in rapid displacement respect to the dis- drometer. A filter has been studied to minimize this spurious variability as well as instrumental uncertainty. The use of filtered data allows to see case to case differences in DSDs that are hidden in the large scatter in the raw data. These differences can be associated to physical processes revealed by a vertically pointing radar such as the de- gree of aggregation, riming, etc. Numerical modeling of particle size evolution using the quasi-stochastic growth equation serves as guide for the understanding of these processes.

  19. Aligner for Elastic Collisions of Dropped Balls.

    ERIC Educational Resources Information Center

    Mellen, Walter Roy

    1995-01-01

    Discusses an aligner that permits dropping a stack of any number of balls of different sizes, elasticities, hardnesses, or types to observe the rebound of the top ball. Experimental results allow a reasonable comparison with theory. (MVL)

  20. Drop impact of shear thickening liquids

    NASA Astrophysics Data System (ADS)

    Boyer, François; Sandoval-Nava, Enrique; Snoeijer, Jacco H.; Dijksman, J. Frits; Lohse, Detlef

    2016-05-01

    The impact of drops of concentrated non-Brownian suspensions (cornstarch and polystyrene spheres) onto a solid surface is investigated experimentally. The spreading dynamics and maximal deformation of the droplet of such shear thickening liquids are found to be markedly different from the impact of Newtonian drops. A particularly striking observation is that the maximal deformation is independent of the drop velocity and that the deformation suddenly stops during the impact phase. Both observations are due to the shear thickening rheology of the suspensions, as is explained theoretically from a balance between the kinetic energy and the viscously dissipated energy, from which we establish a scaling relation between the maximal deformation of the drop and rheological parameters of concentrated suspensions.