Science.gov

Sample records for drosophila dishevelled segment-polarity

  1. Topology and Robustness in the Drosophila Segment Polarity Network

    PubMed Central

    2004-01-01

    A complex hierarchy of genetic interactions converts a single-celled Drosophila melanogaster egg into a multicellular embryo with 14 segments. Previously, von Dassow et al. reported that a mathematical model of the genetic interactions that defined the polarity of segments (the segment polarity network) was robust (von Dassow et al. 2000). As quantitative information about the system was unavailable, parameters were sampled randomly. A surprisingly large fraction of these parameter sets allowed the model to maintain and elaborate on the segment polarity pattern. This robustness is due to the positive feedback of gene products on their own expression, which induces individual cells in a model segment to adopt different stable expression states (bistability) corresponding to different cell types in the segment polarity pattern. A positive feedback loop will only yield multiple stable states when the parameters that describe it satisfy a particular inequality. By testing which random parameter sets satisfy these inequalities, I show that bistability is necessary to form the segment polarity pattern and serves as a strong predictor of which parameter sets will succeed in forming the pattern. Although the original model was robust to parameter variation, it could not reproduce the observed effects of cell division on the pattern of gene expression. I present a modified version that incorporates recent experimental evidence and does successfully mimic the consequences of cell division. The behavior of this modified model can also be understood in terms of bistability in positive feedback of gene expression. I discuss how this topological property of networks provides robust pattern formation and how large changes in parameters can change the specific pattern produced by a network. PMID:15208707

  2. Molecular cloning and characterization of human WINS1 and mouse Wins2, homologous to Drosophila segment polarity gene Lines (Lin).

    PubMed

    Katoh, Masaru

    2002-08-01

    WNT signaling molecules play key roles in carcinogenesis and embryogenesis. Drosophila segment polarity gene Lines (Lin) is essential for Wnt/Wingless-dependent patterning in dorsal epidermis and also for hindgut development. With Wnt signaling, Lin accumulates in the nucleus to modulate transcription of Wnt target genes through association with beta-catenin/Armadillo and TCF/Pangolin. Here, human WINS1 and mouse Wins2, encoding proteins with Drosophila Lin homologous domain, were isolated using bioinformatics and cDNA-PCR. Human WINS1 encoded 757-amino-acid protein, and mouse Wins2 encoded 498-amino-acid protein. Human WINS1 and mouse Wins2 showed 60.0% total-amino-acid identity. Lin homologous domain of WINS1 and Wins2 showed 29.4% and 27.2% amino-acid identity with that of Drosphila Lin, respectively. In the human chromosome 15q26 region, WINS1 gene was clustered with ASB7 gene encoding ankyrin repeat and SOCS box-containing protein 7. Human WINS1 mRNA of 2.8-kb in size was expressed in adult testis, prostate, spleen, thymus, skeletal muscle, fetal kidney and brain. This is the first report on molecular cloning and initial characterization of human WINS1 and mouse Wins2 PMID:12119551

  3. Isolation of a human gene with protein sequence similarity to human and murine int-1 and the Drosophila segment polarity mutant wingless.

    PubMed Central

    Wainwright, B J; Scambler, P J; Stanier, P; Watson, E K; Bell, G; Wicking, C; Estivill, X; Courtney, M; Boue, A; Pedersen, P S

    1988-01-01

    An expressed gene sequence which was identified by the isolation of a methylation free CpG island from human chromosome 7 has been cloned from a human lung cDNA library. The deduced protein sequence contains 360 amino acids and has several features of a secreted protein; it is cysteine rich with a signal peptide sequence and two potential asn-linked glycosylation sites. The protein sequence shows marked similarity with human and murine int-1 and their Drosophila homolog wingless (Dint-1). This human int-1 related protein, int-1 and Dint-1 have diverse patterns of expression, but the inferred structural similarities suggest that some of the functional characteristics of these proteins may be shared. Images PMID:2971536

  4. The segment polarity network is a robust developmental module

    NASA Astrophysics Data System (ADS)

    von Dassow, George; Meir, Eli; Munro, Edwin M.; Odell, Garrett M.

    2000-07-01

    All insects possess homologous segments, but segment specification differs radically among insect orders. In Drosophila, maternal morphogens control the patterned activation of gap genes, which encode transcriptional regulators that shape the patterned expression of pair-rule genes. This patterning cascade takes place before cellularization. Pair-rule gene products subsequently `imprint' segment polarity genes with reiterated patterns, thus defining the primordial segments. This mechanism must be greatly modified in insect groups in which many segments emerge only after cellularization. In beetles and parasitic wasps, for instance, pair-rule homologues are expressed in patterns consistent with roles during segmentation, but these patterns emerge within cellular fields. In contrast, although in locusts pair-rule homologues may not control segmentation, some segment polarity genes and their interactions are conserved. Perhaps segmentation is modular, with each module autonomously expressing a characteristic intrinsic behaviour in response to transient stimuli. If so, evolution could rearrange inputs to modules without changing their intrinsic behaviours. Here we suggest, using computer simulations, that the Drosophila segment polarity genes constitute such a module, and that this module is resistant to variations in the kinetic constants that govern its behaviour.

  5. Diego and Prickle regulate Frizzled planar cell polarity signalling by competing for Dishevelled binding.

    PubMed

    Jenny, Andreas; Reynolds-Kenneally, Jessica; Das, Gishnu; Burnett, Micheal; Mlodzik, Marek

    2005-07-01

    Epithelial planar cell polarity (PCP) is evident in the cellular organization of many tissues in vertebrates and invertebrates. In mammals, PCP signalling governs convergent extension during gastrulation and the organization of a wide variety of structures, including the orientation of body hair and sensory hair cells of the inner ear. In Drosophila melanogaster, PCP is manifest in adult tissues, including ommatidial arrangement in the compound eye and hair orientation in wing cells. PCP establishment requires the conserved Frizzled/Dishevelled PCP pathway. Mutations in PCP-pathway-associated genes cause aberrant orientation of body hair or inner-ear sensory cells in mice, or misorientation of ommatidia and wing hair in D. melanogaster. Here we provide mechanistic insight into Frizzled/Dishevelled signalling regulation. We show that the ankyrin-repeat protein Diego binds directly to Dishevelled and promotes Frizzled signalling. Dishevelled can also be bound by the Frizzled PCP antagonist Prickle. Strikingly, Diego and Prickle compete with one another for Dishevelled binding, thereby modulating Frizzled/Dishevelled activity and ensuring tight control over Frizzled PCP signalling. PMID:15937478

  6. Disinhibition of the HECT E3 ubiquitin ligase WWP2 by polymerized Dishevelled

    PubMed Central

    Mund, Thomas; Graeb, Michael; Mieszczanek, Juliusz; Gammons, Melissa; Pelham, Hugh R. B.; Bienz, Mariann

    2015-01-01

    Dishevelled is a pivot in Wnt signal transduction, controlling both β-catenin-dependent transcription to specify proliferative cell fates, and cell polarity and other non-nuclear events in post-mitotic cells. In response to Wnt signals, or when present at high levels, Dishevelled forms signalosomes by dynamic polymerization. Its levels are controlled by ubiquitylation, mediated by various ubiquitin ligases, including NEDD4 family members that bind to a conserved PPxY motif in Dishevelled (mammalian Dvl1–3). Here, we show that Dvl2 binds to the ubiquitin ligase WWP2 and unlocks its ligase activity from autoinhibition. This disinhibition of WWP2 depends on several features of Dvl2 including its PPxY motif and to a lesser extent its DEP domain, but crucially on the ability of Dvl2 to polymerize, indicating that WWP2 is activated in Wnt signalosomes. We show that Notch intracellular domains are substrates for Dvl-activated WWP2 and their transcriptional activity is consequently reduced, providing a molecular mechanism for cross-talk between Wnt and Notch signalling. These regulatory interactions are conserved in Drosophila whose WWP2 orthologue, Suppressor-of-deltex, downregulates Notch signalling upon activation by Dishevelled in developing wing tissue. Attentuation of Notch signalling by Dishevelled signalosomes could be important during the transition of cells from the proliferative to the post-mitotic state. PMID:26701932

  7. PDZ domain from Dishevelled -- a specificity study.

    PubMed

    Śmietana, Katarzyna; Mateja, Agnieszka; Krężel, Artur; Otlewski, Jacek

    2011-01-01

    Intracellular signaling cascades induced by Wnt proteins play a key role in developmental processes and are implicated in cancerogenesis. It is still unclear how the cell determines which of the three possible Wnt response mechanisms should be activated, but the decision process is most likely dependent on Dishevelled proteins. Dishevelled family members interact with many diverse targets, however, molecular mechanisms underlying these binding events have not been comprehensively described so far. Here, we investigated the specificity of the PDZ domain from human Dishevelled-2 using C-terminal phage display, which led us to identification of a leucine-rich binding motif strongly resembling the consensus sequence of a nuclear export signal. PDZ interactions with several peptide and protein motifs (including the nuclear export signal sequence from Dishevelled-2 protein) were investigated in detail using fluorescence spectroscopy, mutational analysis and immunoenzymatic assays. The experiments showed that the PDZ domain can bind the nuclear export signal sequence of the Dishevelled-2 protein. Since the intracellular localization of Dishevelled is governed by nuclear localization and nuclear export signal sequences, it is possible that the intramolecular interaction between PDZ domain and the export signal could modulate the balance between nuclear and cytoplasmic pool of the Dishevelled protein. Such a regulatory mechanism would be of utmost importance for the differential activation of Wnt signaling cascades, leading to selective promotion of the nucleus-dependent Wnt β-catenin pathway at the expense of non-canonical Wnt signaling. PMID:21666888

  8. PTEN regulates cilia through Dishevelled

    PubMed Central

    Shnitsar, Iryna; Bashkurov, Mikhail; Masson, Glenn R.; Ogunjimi, Abiodun A.; Mosessian, Sherly; Cabeza, Eduardo Aguiar; Hirsch, Calley L.; Trcka, Daniel; Gish, Gerald; Jiao, Jing; Wu, Hong; Winklbauer, Rudolf; Williams, Roger L.; Pelletier, Laurence; Wrana, Jeffrey L.; Barrios-Rodiles, Miriam

    2015-01-01

    Cilia are hair-like cellular protrusions important in many aspects of eukaryotic biology. For instance, motile cilia enable fluid movement over epithelial surfaces, while primary (sensory) cilia play roles in cellular signalling. The molecular events underlying cilia dynamics, and particularly their disassembly, are not well understood. Phosphatase and tensin homologue (PTEN) is an extensively studied tumour suppressor, thought to primarily act by antagonizing PI3-kinase signalling. Here we demonstrate that PTEN plays an important role in multicilia formation and cilia disassembly by controlling the phosphorylation of Dishevelled (DVL), another ciliogenesis regulator. DVL is a central component of WNT signalling that plays a role during convergent extension movements, which we show here are also regulated by PTEN. Our studies identify a novel protein substrate for PTEN that couples PTEN to regulation of cilia dynamics and WNT signalling, thus advancing our understanding of potential underlying molecular etiologies of PTEN-related pathologies. PMID:26399523

  9. The Adenomatous polyposis coli tumour suppressor is essential for Axin complex assembly and function and opposes Axin's interaction with Dishevelled.

    PubMed

    Mendoza-Topaz, Carolina; Mieszczanek, Juliusz; Bienz, Mariann

    2011-11-01

    Most cases of colorectal cancer are linked to mutational inactivation of the Adenomatous polyposis coli (APC) tumour suppressor. APC downregulates Wnt signalling by enabling Axin to promote the degradation of the Wnt signalling effector β-catenin (Armadillo in flies). This depends on Axin's DIX domain whose polymerization allows it to form dynamic protein assemblies ('degradasomes'). Axin is inactivated upon Wnt signalling, by heteropolymerization with the DIX domain of Dishevelled, which recruits it into membrane-associated 'signalosomes'. How APC promotes Axin's function is unclear, especially as it has been reported that APC's function can be bypassed by overexpression of Axin. Examining apc null mutant Drosophila tissues, we discovered that APC is required for Axin degradasome assembly, itself essential for Armadillo downregulation. Degradasome assembly is also attenuated in APC mutant cancer cells. Notably, Axin becomes prone to Dishevelled-dependent plasma membrane recruitment in the absence of APC, indicating a crucial role of APC in opposing the interaction of Axin with Dishevelled. Indeed, co-expression experiments reveal that APC displaces Dishevelled from Axin assemblies, promoting degradasome over signalosome formation in the absence of Wnts. APC thus empowers Axin to function in two ways-by enabling its DIX-dependent self-assembly, and by opposing its DIX-dependent copolymerization with Dishevelled and consequent inactivation. PMID:22645652

  10. Establishment of segment polarity in the ectoderm of the leech Helobdella

    NASA Technical Reports Server (NTRS)

    Seaver, E. C.; Shankland, M.

    2001-01-01

    The segmented ectoderm and mesoderm of the leech arise via a stereotyped cell lineage from embryonic stem cells called teloblasts. Each teloblast gives rise to a column of primary blast cell daughters, and the blast cells generate descendant clones that serve as the segmental repeats of their particular teloblast lineage. We have examined the mechanism by which the leech primary blast cell clones acquire segment polarity - i.e. a fixed sequence of positional values ordered along the anteroposterior axis of the segmental repeat. In the O and P teloblast lineages, the earliest divisions of the primary blast cell segregate anterior and posterior cell fates along the anteroposterior axis. Using a laser microbeam, we ablated single cells from both o and p blast cell clones at stages when the clone was two to four cells in length. The developmental fate of the remaining cells was characterized with rhodamine-dextran lineage tracer. Twelve different progeny cells were ablated, and in every case the ablation eliminated the normal descendants of the ablated cell while having little or no detectable effect on the developmental fate of the remaining cells. This included experiments in which we specifically ablated those blast cell progeny that are known to express the engrailed gene, or their lineal precursors. These findings confirm and extend a previous study by showing that the establishment of segment polarity in the leech ectoderm is largely independent of cell interactions conveyed along the anteroposterior axis. Both intercellular signaling and engrailed expression play an important role in the segment polarity specification of the Drosophila embryo, and our findings suggest that there may be little or no conservation of this developmental mechanism between those two organisms.

  11. The distribution of Dishevelled in convergently extending mesoderm☆

    PubMed Central

    Panousopoulou, Eleni; Tyson, Richard A.; Bretschneider, Till; Green, Jeremy B.A.

    2013-01-01

    Convergent extension (CE) is a conserved morphogenetic movement that drives axial lengthening of the primary body axis and depends on the planar cell polarity (PCP) pathway. In Drosophila epithelia, a polarised subcellular accumulation of PCP core components, such as Dishevelled (Dvl) protein, is associated with PCP function. Dvl has long been thought to accumulate in the mediolateral protrusions in Xenopus chordamesoderm cells undergoing CE. Here we present a quantitative analysis of Dvl intracellular localisation in Xenopus chordamesoderm cells. We find that, surprisingly, accumulations previously observed at mediolateral protrusions of chordamesodermal cells are not protrusion-specific but reflect yolk-free cytoplasm and are quantitatively matched by the distribution of the cytoplasm-filling lineage marker dextran. However, separating cell cortex-associated from bulk Dvl signal reveals a statistical enrichment of Dvl in notochord–somite boundary-(NSB)-directed protrusions, which is dependent upon NSB proximity. Dvl puncta were also observed, but only upon elevated overexpression. These puncta showed no statistically significant spatial bias, in contrast to the strongly posteriorly-enriched GFP-Dvl puncta previously reported in zebrafish. We propose that Dvl distribution is more subtle and dynamic than previously appreciated and that in vertebrate mesoderm it reflects processes other than protrusion as such. PMID:23876427

  12. The distribution of Dishevelled in convergently extending mesoderm.

    PubMed

    Panousopoulou, Eleni; Tyson, Richard A; Bretschneider, Till; Green, Jeremy B A

    2013-10-15

    Convergent extension (CE) is a conserved morphogenetic movement that drives axial lengthening of the primary body axis and depends on the planar cell polarity (PCP) pathway. In Drosophila epithelia, a polarised subcellular accumulation of PCP core components, such as Dishevelled (Dvl) protein, is associated with PCP function. Dvl has long been thought to accumulate in the mediolateral protrusions in Xenopus chordamesoderm cells undergoing CE. Here we present a quantitative analysis of Dvl intracellular localisation in Xenopus chordamesoderm cells. We find that, surprisingly, accumulations previously observed at mediolateral protrusions of chordamesodermal cells are not protrusion-specific but reflect yolk-free cytoplasm and are quantitatively matched by the distribution of the cytoplasm-filling lineage marker dextran. However, separating cell cortex-associated from bulk Dvl signal reveals a statistical enrichment of Dvl in notochord-somite boundary-(NSB)-directed protrusions, which is dependent upon NSB proximity. Dvl puncta were also observed, but only upon elevated overexpression. These puncta showed no statistically significant spatial bias, in contrast to the strongly posteriorly-enriched GFP-Dvl puncta previously reported in zebrafish. We propose that Dvl distribution is more subtle and dynamic than previously appreciated and that in vertebrate mesoderm it reflects processes other than protrusion as such. PMID:23876427

  13. Genetic analysis of disheveled 2 and disheveled 3 in human neural tube defects.

    PubMed

    De Marco, Patrizia; Merello, Elisa; Consales, Alessandro; Piatelli, Gianluca; Cama, Armando; Kibar, Zoha; Capra, Valeria

    2013-03-01

    Neural tube defects are severe malformations affecting 1/1,000 live births. The planar cell polarity pathway controls the neural tube closure and has been implicated in the pathogenesis of neural tube defects both in animal models and human cohorts. In mouse disruption of Dvl2 alone (Dvl2 (-/-)) or Dvl2 and Dvl3 (Dvl2 (-/-); Dvl3 (+/-), Dvl2 (+/-); Dvl3 (-/-)) results in incomplete neurulation, suggesting a role for Disheveled in neural tube closure. Disheveled is a multifunctional protein that is involved in both the canonical Wnt signaling and the noncanonical planar cell polarity pathway. In this study, we analyzed the role of the human orthologs DVL2 and DVL3 in a cohort of 473 patients with neural tube defects. Rare variants were genotyped in 639 ethnically matched controls. We identified seven rare missense mutations that were absent in all controls analyzed. Two of these mutations, p.Tyr667Cys and p.Ala53Val, identified in DVL2 were predicted to be detrimental in silico. Significantly, a 1-bp insertion (c.1801_1802insG) in exon 15 of DVL2 predicted to lead to the truncation of the protein was identified in a patient with a complex form of caudal agenesis. In summary, we demonstrate a possible role for rare variants in DVL2 gene as risk factors for neural tube defects. PMID:22892949

  14. Requirements for Hedgehog, a Segmental Polarity Gene, in Patterning Larval and Adult Cuticle of Drosophila

    PubMed Central

    Mohler, J.

    1988-01-01

    Mutations of the hedgehog gene are generally embryonic lethal, resulting in a lawn of denticles on the ventral surface. In strong alleles, no segmentation is obvious and the anteroposterior polarity of ventral denticles is lost. Temperature shift analysis of a temperature-sensitive allele indicates an embryonic activity period for hedgehog between 2.5 and 6 hr of embryonic development (at 25°) and a larval/pupal period from 4 to 7 days of development (at 25°). Mosaic analysis of hedgehog mutations in the adult cuticle indicates a series of defined defects associated with the failure of appropriate hedgehog expression. In particular, defects in the distal portions of the legs and antenna occur in association with homozygous hedgehog clones in the posterior compartment of those structures. Because the defects are associated with homozygous clones, but are not co-extensive, a type of ``domineering'' nonautonomy is proposed for the activity of the hedgehog gene. PMID:3147217

  15. Formin-mediated actin polymerization cooperates with Mushroom body defect (Mud)–Dynein during Frizzled–Dishevelled spindle orientation

    PubMed Central

    Johnston, Christopher A.; Manning, Laurina; Lu, Michelle S.; Golub, Ognjen; Doe, Chris Q.; Prehoda, Kenneth E.

    2013-01-01

    Summary To position the mitotic spindle, cytoskeletal components must be coordinated to generate cortical forces on astral microtubules. Although the dynein motor is common to many spindle orientation systems, ‘accessory pathways’ are often also required. In this work, we identified an accessory spindle orientation pathway in Drosophila that functions with Dynein during planar cell polarity, downstream of the Frizzled (Fz) effector Dishevelled (Dsh). Dsh contains a PDZ ligand and a Dynein-recruiting DEP domain that are both required for spindle orientation. The Dsh PDZ ligand recruits Canoe/Afadin and ultimately leads to Rho GTPase signaling mediated through RhoGEF2. The formin Diaphanous (Dia) functions as the Rho effector in this pathway, inducing F-actin enrichment at sites of cortical Dsh. Chimeric protein experiments show that the Dia–actin accessory pathway can be replaced by an independent kinesin (Khc73) accessory pathway for Dsh-mediated spindle orientation. Our results define two ‘modular’ spindle orientation pathways and show an essential role for actin regulation in Dsh-mediated spindle orientation. PMID:23868974

  16. Expression of dishevelled gene in Hirschsprung’s disease

    PubMed Central

    Chen, Dong; Mi, Jie; Wu, Mei; Wang, Weilin; Gao, Hong

    2013-01-01

    Hirschsprung’s disease (HSCR) is a congenital disorder of the enteric nervous system and is characterized by an absence of enteric ganglion cells in terminal regions of the gut during development. Dishevelled (DVL) protein is a cytoplasmic protein which plays pivotal roles in the embryonic development. In this study, we explore the cause of HSCR by studying the expression of DVL-1 and DVL-3 genes and their proteins in the aganglionic segment and the ganglionic segment of colon in HSCR patients. Materials and Methods: Specimen of aganglionic segment and ganglionic segment of colon in 50 cases of HSCR patients. Expression levels of mRNA and proteins of DVL-1 and DVL-3 were confirmed by quantitative real-time PCR (qRT-PCR), western blot and immunohistochemistry staining between the aganglionic segment and the ganglionic segment of colon in HSCR patients. Results: The mRNA expression of DVL-1 and DVL-3 were 2.06 fold and 3.12 fold in the aganglionic segment colon tissues compared to the ganglionic segment, respectively. Similarly, the proteins expression of DVL-1 and DVL-3 were higher (39.71 ± 4.53 vs and 53.90 ± 6.79 vs) in the aganglionic segment colon tissues than in the ganglionic segment (15.01 ± 2.66 and 20.13 ± 3.63) by western blot. Besides, immunohistochemical staining showed that DVL-1 and DVL-3 have a significant increase in mucous and submucous layers from aganglionic colon segments compared with ganglionic segments. Conclusion: The study showed an association of DVL-1 and DVL-3 with HSCR, it may play an important role in the pathogenesis of HSCR. PMID:24040443

  17. The Dishevelled Protein Family: Still Rather a Mystery After Over 20 Years of Molecular Studies

    PubMed Central

    Mlodzik, Marek

    2016-01-01

    Dishevelled (Dsh) is a key component of Wnt-signaling pathways and possibly also has other functional requirements. Dsh appears to be a key factor to interpret Wnt signals coming via the Wnt-receptor family, the Frizzled proteins, from the plasma membrane and route them into the correct intracellular pathways. However, how Dsh is regulated to relay signal flow to specific and distinct cellular responses upon interaction with the same Wnt-receptor family remains very poorly understood. PMID:26969973

  18. The Drosophila neurogenin Tap functionally interacts with the Wnt-PCP pathway to regulate neuronal extension and guidance

    PubMed Central

    Yuan, Liqun; Hu, Shu; Okray, Zeynep; Ren, Xi; De Geest, Natalie; Claeys, Annelies; Yan, Jiekun; Bellefroid, Eric; Quan, Xiao-Jiang

    2016-01-01

    The neurogenin (Ngn) transcription factors control early neurogenesis and neurite outgrowth in mammalian cortex. In contrast to their proneural activity, their function in neurite growth is poorly understood. Drosophila has a single predicted Ngn homolog, Tap, of unknown function. Here we show that Tap is not a proneural protein in Drosophila but is required for proper axonal growth and guidance of neurons of the mushroom body, a neuropile required for associative learning and memory. Genetic and expression analyses suggest that Tap inhibits excessive axonal growth by fine regulation of the levels of the Wnt signaling adaptor protein Dishevelled. PMID:27385016

  19. The Drosophila neurogenin Tap functionally interacts with the Wnt-PCP pathway to regulate neuronal extension and guidance.

    PubMed

    Yuan, Liqun; Hu, Shu; Okray, Zeynep; Ren, Xi; De Geest, Natalie; Claeys, Annelies; Yan, Jiekun; Bellefroid, Eric; Hassan, Bassem A; Quan, Xiao-Jiang

    2016-08-01

    The neurogenin (Ngn) transcription factors control early neurogenesis and neurite outgrowth in mammalian cortex. In contrast to their proneural activity, their function in neurite growth is poorly understood. Drosophila has a single predicted Ngn homolog, Tap, of unknown function. Here we show that Tap is not a proneural protein in Drosophila but is required for proper axonal growth and guidance of neurons of the mushroom body, a neuropile required for associative learning and memory. Genetic and expression analyses suggest that Tap inhibits excessive axonal growth by fine regulation of the levels of the Wnt signaling adaptor protein Dishevelled. PMID:27385016

  20. Dishevelled attenuates the repelling activity of Wnt signaling during neurite outgrowth in Caenorhabditis elegans.

    PubMed

    Zheng, Chaogu; Diaz-Cuadros, Margarete; Chalfie, Martin

    2015-10-27

    Wnt proteins regulate axonal outgrowth along the anterior-posterior axis, but the intracellular mechanisms that modulate the strength of Wnt signaling in axon guidance are largely unknown. Using the Caenorhabditis elegans mechanosensory PLM neurons, we found that posteriorly enriched LIN-44/Wnt acts as a repellent to promote anteriorly directed neurite outgrowth through the LIN-17/Frizzled receptor, instead of controlling neuronal polarity as previously thought. Dishevelled (Dsh) proteins DSH-1 and MIG-5 redundantly mediate the repulsive activity of the Wnt signals to induce anterior outgrowth, whereas DSH-1 also provides feedback inhibition to attenuate the signaling to allow posterior outgrowth against the Wnt gradient. This inhibitory function of DSH-1, which requires its dishevelled, Egl-10, and pleckstrin (DEP) domain, acts by promoting LIN-17 phosphorylation and is antagonized by planar cell polarity signaling components Van Gogh (VANG-1) and Prickle (PRKL-1). Our results suggest that Dsh proteins both respond to Wnt signals to shape neuronal projections and moderate its activity to fine-tune neuronal morphology. PMID:26460008

  1. Dishevelled attenuates the repelling activity of Wnt signaling during neurite outgrowth in Caenorhabditis elegans

    PubMed Central

    Zheng, Chaogu; Diaz-Cuadros, Margarete; Chalfie, Martin

    2015-01-01

    Wnt proteins regulate axonal outgrowth along the anterior–posterior axis, but the intracellular mechanisms that modulate the strength of Wnt signaling in axon guidance are largely unknown. Using the Caenorhabditis elegans mechanosensory PLM neurons, we found that posteriorly enriched LIN-44/Wnt acts as a repellent to promote anteriorly directed neurite outgrowth through the LIN-17/Frizzled receptor, instead of controlling neuronal polarity as previously thought. Dishevelled (Dsh) proteins DSH-1 and MIG-5 redundantly mediate the repulsive activity of the Wnt signals to induce anterior outgrowth, whereas DSH-1 also provides feedback inhibition to attenuate the signaling to allow posterior outgrowth against the Wnt gradient. This inhibitory function of DSH-1, which requires its dishevelled, Egl-10, and pleckstrin (DEP) domain, acts by promoting LIN-17 phosphorylation and is antagonized by planar cell polarity signaling components Van Gogh (VANG-1) and Prickle (PRKL-1). Our results suggest that Dsh proteins both respond to Wnt signals to shape neuronal projections and moderate its activity to fine-tune neuronal morphology. PMID:26460008

  2. Dishevelled is a NEK2 kinase substrate controlling dynamics of centrosomal linker proteins.

    PubMed

    Cervenka, Igor; Valnohova, Jana; Bernatik, Ondrej; Harnos, Jakub; Radsetoulal, Matej; Sedova, Katerina; Hanakova, Katerina; Potesil, David; Sedlackova, Miroslava; Salasova, Alena; Steinhart, Zachary; Angers, Stephane; Schulte, Gunnar; Hampl, Ales; Zdrahal, Zbynek; Bryja, Vitezslav

    2016-08-16

    Dishevelled (DVL) is a key scaffolding protein and a branching point in Wnt signaling pathways. Here, we present conclusive evidence that DVL regulates the centrosomal cycle. We demonstrate that DVL dishevelled and axin (DIX) domain, but not DIX domain-mediated multimerization, is essential for DVL's centrosomal localization. DVL accumulates during the cell cycle and associates with NIMA-related kinase 2 (NEK2), which is able to phosphorylate DVL at a multitude of residues, as detected by a set of novel phospho-specific antibodies. This creates interfaces for efficient binding to CDK5 regulatory subunit-associated protein 2 (CDK5RAP2) and centrosomal Nek2-associated protein 1 (C-NAP1), two proteins of the centrosomal linker. Displacement of DVL from the centrosome and its release into the cytoplasm on NEK2 phosphorylation is coupled to the removal of linker proteins, an event necessary for centrosomal separation and proper formation of the mitotic spindle. Lack of DVL prevents NEK2-controlled dissolution of loose centrosomal linker and subsequent centrosomal separation. Increased DVL levels, in contrast, sequester centrosomal NEK2 and mimic monopolar spindle defects induced by a dominant negative version of this kinase. Our study thus uncovers molecular crosstalk between centrosome and Wnt signaling. PMID:27486244

  3. Overexpression of Dishevelled-2 contributes to proliferation and migration of human esophageal squamous cell carcinoma.

    PubMed

    Zhou, Guoren; Ye, Jinjun; Sun, Lei; Zhang, Zhi; Feng, Jifeng

    2016-06-01

    Dishevelled-2 (Dvl2) was associated with tumor cell proliferation and migration. We aimed to examine the mechanism of Dvl2 in esophageal squamous cell carcinoma (ESCC). Dvl2 was overexpressed in human ESCC tissues and cell lines ECA109 and TE1 cells. CCK-8 and colony formation assay was performed to evaluate the proliferation in ECA109 cells transfected with Dvl2-shRNA. Wound-healing assay and transwell assay were used to examine the activities of migration and invasion in Dvl2-silenced ESCC cells. Knockdown of Dvl2 significantly reduced ECA109 cell proliferation and migration. Moreover, we demonstrated that the proliferation and migration ability of Dvl2 might through the activation of Wnt pathway by targeting the Cyclin D1 and MMP-9. We came to the conclusion that the proliferation and migration effects of Dvl2 might contribute to malignant development of human ESCC. PMID:27083564

  4. Expression of segment polarity genes in brachiopods supports a non-segmental ancestral role of engrailed for bilaterians

    PubMed Central

    Vellutini, Bruno C.; Hejnol, Andreas

    2016-01-01

    The diverse and complex developmental mechanisms of segmentation have been more thoroughly studied in arthropods, vertebrates and annelids—distantly related animals considered to be segmented. Far less is known about the role of “segmentation genes” in organisms that lack a segmented body. Here we investigate the expression of the arthropod segment polarity genes engrailed, wnt1 and hedgehog in the development of brachiopods—marine invertebrates without a subdivided trunk but closely related to the segmented annelids. We found that a stripe of engrailed expression demarcates the ectodermal boundary that delimits the anterior region of Terebratalia transversa and Novocrania anomala embryos. In T. transversa, this engrailed domain is abutted by a stripe of wnt1 expression in a pattern similar to the parasegment boundaries of insects—except for the expression of hedgehog, which is restricted to endodermal tissues of the brachiopod embryos. We found that pax6 and pax2/5/8, putative regulators of engrailed, also demarcate the anterior boundary in the two species, indicating these genes might be involved in the anterior patterning of brachiopod larvae. In a comparative phylogenetic context, these findings suggest that bilaterians might share an ancestral, non-segmental domain of engrailed expression during early embryogenesis. PMID:27561213

  5. Expression of segment polarity genes in brachiopods supports a non-segmental ancestral role of engrailed for bilaterians.

    PubMed

    Vellutini, Bruno C; Hejnol, Andreas

    2016-01-01

    The diverse and complex developmental mechanisms of segmentation have been more thoroughly studied in arthropods, vertebrates and annelids-distantly related animals considered to be segmented. Far less is known about the role of "segmentation genes" in organisms that lack a segmented body. Here we investigate the expression of the arthropod segment polarity genes engrailed, wnt1 and hedgehog in the development of brachiopods-marine invertebrates without a subdivided trunk but closely related to the segmented annelids. We found that a stripe of engrailed expression demarcates the ectodermal boundary that delimits the anterior region of Terebratalia transversa and Novocrania anomala embryos. In T. transversa, this engrailed domain is abutted by a stripe of wnt1 expression in a pattern similar to the parasegment boundaries of insects-except for the expression of hedgehog, which is restricted to endodermal tissues of the brachiopod embryos. We found that pax6 and pax2/5/8, putative regulators of engrailed, also demarcate the anterior boundary in the two species, indicating these genes might be involved in the anterior patterning of brachiopod larvae. In a comparative phylogenetic context, these findings suggest that bilaterians might share an ancestral, non-segmental domain of engrailed expression during early embryogenesis. PMID:27561213

  6. CYLD regulates spindle orientation by stabilizing astral microtubules and promoting dishevelled-NuMA-dynein/dynactin complex formation.

    PubMed

    Yang, Yunfan; Liu, Min; Li, Dengwen; Ran, Jie; Gao, Jinmin; Suo, Shaojun; Sun, Shao-Cong; Zhou, Jun

    2014-02-11

    Oriented cell division is critical for cell fate specification, tissue organization, and tissue homeostasis, and relies on proper orientation of the mitotic spindle. The molecular mechanisms underlying the regulation of spindle orientation remain largely unknown. Herein, we identify a critical role for cylindromatosis (CYLD), a deubiquitinase and regulator of microtubule dynamics, in the control of spindle orientation. CYLD is highly expressed in mitosis and promotes spindle orientation by stabilizing astral microtubules and deubiquitinating the cortical polarity protein dishevelled. The deubiquitination of dishevelled enhances its interaction with nuclear mitotic apparatus, stimulating the cortical localization of nuclear mitotic apparatus and the dynein/dynactin motor complex, a requirement for generating pulling forces on astral microtubules. These findings uncover CYLD as an important player in the orientation of the mitotic spindle and cell division and have important implications in health and disease. PMID:24469800

  7. Modulation of Dishevelled and Vangl2 by all-trans-retinoic acid in the developing mouse central nervous system and its relationship to teratogenesis.

    PubMed

    Zhang, Yanping; Liu, Kai; Gao, Yingmao; Li, Shaoling

    2007-09-01

    The response to exposure to all-trans-retinoic acid (RA) during embryogenesis varies from physiologic to severe teratogenic effects and is dependent upon the dose and the stage of development in all species. Vangl2 and Dishevelled genes play key roles in establishing planar cell polarity and regulating convergent extension movements during the neurula period. The effects of RA-mediated teratogenesis might be due to its misregulation of Vangl2 and Dishevelled genes. The aim of this study is to monitor the modulation of Vangl2 and Dishevelled in Kunming mouse embryos following maternal treatment with a single oral dose of 30 mg/(kg body weight) of RA during the neurula period. Exposure of 7.75 d embryos to RA induced characteristic morphological changes. The most obvious external effect was the failure of neural tube closure in the midbrain and forebrain regions in 10 d embryos, resulting in exencephaly in later embryos. RA treatment also led to a pronounced decrease of Vangl2 mRNA at 4 and 18 h and a pronounced increase at 66 h after maternal treatment, as detected by reverse transcription-polymerase chain reaction. Western blot analysis showed a marked decrease of Vangl2 protein at 18 and 42 h and a marked increase at 66 and 90 h after maternal treatment. Dishevelled1/2/3 mRNA was significantly down-regulated at 4 and 18 h and up-regulated at 42 h in the fetus after RA treatment, except for an up-regulation of Dishevelled3 at 66 h. The Dishevelled2 mRNA and its protein matched each other. These results hinted that Vangl2 and Dishevelled genes might take part in RA teratogenesis of mouse embryos. PMID:17805463

  8. Generating patterns from fields of cells. Examples from Drosophila segmentation.

    PubMed

    Sanson, B

    2001-12-01

    In Drosophila, a cascade of maternal, gap, pair-rule and segment polarity genes subdivides the antero/posterior axis of the embryo into repeating segmental stripes. This review summarizes what happens next, i.e. how an intrasegmental pattern is generated and controls the differentiation of specific cell types in the epidermis. Within each segment, cells secreting the signalling molecules Wingless (the homologue of vertebrate Wnt-1) and Hedgehog are found in narrow stripes on both sides of the parasegmental boundary. The Wingless and Hedgehog organizing activities help to establish two more stripes per segment that localize ligands for the Epidermal Growth Factor and the Notch signalling pathways, respectively. These four signals then act at short range and in concert to control epidermal differentiation at the single cell level across the segment. This example from Drosophila provides a paradigm for how organizers generate precise patterns, and ultimately different cell types, in a naïve field of cells. PMID:11743020

  9. Dishevelled is essential for neural connectivity and planar cell polarity in planarians.

    PubMed

    Almuedo-Castillo, Maria; Saló, Emili; Adell, Teresa

    2011-02-15

    The Wingless/Integrated (Wnt) signaling pathway controls multiple events during development and homeostasis. It comprises multiple branches, mainly classified according to their dependence on β-catenin activation. The Wnt/β-catenin branch is essential for the establishment of the embryonic anteroposterior (AP) body axis throughout the phylogenetic tree. It is also required for AP axis establishment during planarian regeneration. Wnt/β-catenin-independent signaling encompasses several different pathways, of which the most extensively studied is the planar cell polarity (PCP) pathway, which is responsible for planar polarization of cell structures within an epithelial sheet. Dishevelled (Dvl) is the hub of Wnt signaling because it regulates and channels the Wnt signal into every branch. Here, we analyze the role of Schmidtea mediterranea Dvl homologs (Smed-dvl-1 and Smed-dvl-2) using gene silencing. We demonstrate that in addition to a role in AP axis specification, planarian Dvls are involved in at least two different β-catenin-independent processes. First, they are essential for neural connectivity through Smed-wnt5 signaling. Second, Smed-dvl-2, together with the S. mediterranea homologs of Van-Gogh (Vang) and Diversin (Div), is required for apical positioning of the basal bodies of epithelial cells. These data represent evidence not only of the function of the PCP network in lophotrocozoans but of the involvement of the PCP core elements Vang and Div in apical positioning of the cilia. PMID:21282632

  10. The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing

    PubMed Central

    Lee, Soung-Hoon; Kim, Mi-Yeon; Kim, Hyun-Yi; Lee, Young-Mi; Kim, Heesu; Nam, Kyoung Ae; Roh, Mi Ryung; Min, Do Sik; Chung, Kee Yang

    2015-01-01

    Wnt/β-catenin signaling plays important roles in cutaneous wound healing and dermal fibrosis. However, its regulatory mechanism has not been fully elucidated, and a commercially available wound-healing agent targeting this pathway is desirable but currently unavailable. We found that CXXC-type zinc finger protein 5 (CXXC5) serves as a negative feedback regulator of the Wnt/β-catenin pathway by interacting with the Dishevelled (Dvl) protein. In humans, CXXC5 protein levels were reduced in epidermal keratinocytes and dermal fibroblasts of acute wounds. A differential regulation of β-catenin, α-smooth muscle actin (α-SMA), and collagen I by overexpression and silencing of CXXC5 in vitro indicated a critical role for this factor in myofibroblast differentiation and collagen production. In addition, CXXC5−/− mice exhibited accelerated cutaneous wound healing, as well as enhanced keratin 14 and collagen synthesis. Protein transduction domain (PTD)–Dvl-binding motif (DBM), a competitor peptide blocking CXXC5-Dvl interactions, disrupted this negative feedback loop and activated β-catenin and collagen production in vitro. Co-treatment of skin wounds with PTD-DBM and valproic acid (VPA), a glycogen synthase kinase 3β (GSK3β) inhibitor which activates the Wnt/β-catenin pathway, synergistically accelerated cutaneous wound healing in mice. Together, these data suggest that CXXC5 would represent a potential target for future therapies aimed at improving wound healing. PMID:26056233

  11. Ubiquitination of the Dishevelled DIX domain blocks its head-to-tail polymerization

    PubMed Central

    Madrzak, Julia; Fiedler, Marc; Johnson, Christopher M.; Ewan, Richard; Knebel, Axel; Bienz, Mariann; Chin, Jason W.

    2015-01-01

    Dishevelled relays Wnt signals from the plasma membrane to different cytoplasmic effectors. Its signalling activity depends on its DIX domain, which undergoes head-to-tail polymerization to assemble signalosomes. The DIX domain is ubiquitinated in vivo at multiple lysines, which can be antagonized by various deubiquitinases (DUBs) including the CYLD tumour suppressor that attenuates Wnt signalling. Here, we generate milligram quantities of pure human Dvl2 DIX domain mono-ubiquitinated at two lysines (K54 and K58) by genetically encoded orthogonal protection with activated ligation (GOPAL), to investigate their effect on DIX polymerization. We show that the ubiquitination of DIX at K54 blocks its polymerization in solution, whereas DIX58-Ub remains oligomerization-competent. DUB profiling identified 28 DUBs that cleave DIX-ubiquitin conjugates, half of which prefer, or are specific for, DIX54-Ub, including Cezanne and CYLD. These DUBs thus have the potential to promote Dvl polymerization and signalosome formation, rather than antagonize it as previously thought for CYLD. PMID:25907794

  12. Loss of Dishevelleds disrupts planar polarity in ependymal motile cilia and results in hydrocephalus

    PubMed Central

    Ohata, Shinya; Nakatani, Jin; Herranz-Pérez, Vicente; Cheng, JrGang; Belinson, Haim; Inubushi, Toshiro; Snider, William D.; García-Verdugo, Jose Manuel; Wynshaw-Boris, Anthony; Álvarez-Buylla, Arturo

    2014-01-01

    SUMMARY Defects in ependymal (E) cells, which line the ventricle and generate cerebrospinal fluid flow through ciliary beating, can cause hydrocephalus. Dishevelled genes (Dvls) are essential for Wnt signaling and Dvl2 has been shown to localize to the rootlet of motile cilia. Using the hGFAP-Cre;Dvl1−/−;2flox/flox;3+/− mouse, we show that compound genetic ablation of Dvls causes hydrocephalus. In hGFAP-Cre;Dvl1−/−;2flox/flox;3+/− mutants, E cells differentiated normally, but the intracellular and intercellular rotational alignments of ependymal motile cilia were disrupted. As a consequence, the fluid flow generated by the hGFAP-Cre;Dvl1−/−;2flox/flox;3+/− E cells was significantly slower than that observed in control mice. Dvls were also required for the proper positioning of motile cilia on the apical surface. Tamoxifen-induced conditional removal of Dvls in adult mice also resulted in defects in intracellular rotational alignment and positioning of ependymal motile cilia. These results suggest that Dvls are continuously required for E cell planar polarity and may prevent hydrocephalus. PMID:25043421

  13. Loss of Dishevelleds disrupts planar polarity in ependymal motile cilia and results in hydrocephalus.

    PubMed

    Ohata, Shinya; Nakatani, Jin; Herranz-Pérez, Vicente; Cheng, JrGang; Belinson, Haim; Inubushi, Toshiro; Snider, William D; García-Verdugo, Jose Manuel; Wynshaw-Boris, Anthony; Alvarez-Buylla, Arturo

    2014-08-01

    Defects in ependymal (E) cells, which line the ventricle and generate cerebrospinal fluid flow through ciliary beating, can cause hydrocephalus. Dishevelled genes (Dvls) are essential for Wnt signaling, and Dvl2 has been shown to localize to the rootlet of motile cilia. Using the hGFAP-Cre;Dvl1(-/-);2(flox/flox);3(+/-) mouse, we show that compound genetic ablation of Dvls causes hydrocephalus. In hGFAP-Cre;Dvl1(-/-);2(flox/flox);3(+/-) mutants, E cells differentiated normally, but the intracellular and intercellular rotational alignments of ependymal motile cilia were disrupted. As a consequence, the fluid flow generated by the hGFAP-Cre;Dvl1(-/-);2(flox/flox);3(+/-) E cells was significantly slower than that observed in control mice. Dvls were also required for the proper positioning of motile cilia on the apical surface. Tamoxifen-induced conditional removal of Dvls in adult mice also resulted in defects in intracellular rotational alignment and positioning of ependymal motile cilia. These results suggest that Dvls are continuously required for E cell planar polarity and may prevent hydrocephalus. PMID:25043421

  14. The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing.

    PubMed

    Lee, Soung-Hoon; Kim, Mi-Yeon; Kim, Hyun-Yi; Lee, Young-Mi; Kim, Heesu; Nam, Kyoung Ae; Roh, Mi Ryung; Min, Do Sik; Chung, Kee Yang; Choi, Kang-Yell

    2015-06-29

    Wnt/β-catenin signaling plays important roles in cutaneous wound healing and dermal fibrosis. However, its regulatory mechanism has not been fully elucidated, and a commercially available wound-healing agent targeting this pathway is desirable but currently unavailable. We found that CXXC-type zinc finger protein 5 (CXXC5) serves as a negative feedback regulator of the Wnt/β-catenin pathway by interacting with the Dishevelled (Dvl) protein. In humans, CXXC5 protein levels were reduced in epidermal keratinocytes and dermal fibroblasts of acute wounds. A differential regulation of β-catenin, α-smooth muscle actin (α-SMA), and collagen I by overexpression and silencing of CXXC5 in vitro indicated a critical role for this factor in myofibroblast differentiation and collagen production. In addition, CXXC5(-/-) mice exhibited accelerated cutaneous wound healing, as well as enhanced keratin 14 and collagen synthesis. Protein transduction domain (PTD)-Dvl-binding motif (DBM), a competitor peptide blocking CXXC5-Dvl interactions, disrupted this negative feedback loop and activated β-catenin and collagen production in vitro. Co-treatment of skin wounds with PTD-DBM and valproic acid (VPA), a glycogen synthase kinase 3β (GSK3β) inhibitor which activates the Wnt/β-catenin pathway, synergistically accelerated cutaneous wound healing in mice. Together, these data suggest that CXXC5 would represent a potential target for future therapies aimed at improving wound healing. PMID:26056233

  15. Distinct functionality of dishevelled isoforms on Ca2+/calmodulin-dependent protein kinase 2 (CamKII) in Xenopus gastrulation

    PubMed Central

    Gentzel, Marc; Schille, Carolin; Rauschenberger, Verena; Schambony, Alexandra

    2015-01-01

    Wnt ligands trigger the activation of a variety of β-catenin–dependent and β-catenin–independent intracellular signaling cascades. Despite the variations in intracellular signaling, Wnt pathways share the effector proteins frizzled, dishevelled, and β-arrestin. It is unclear how the specific activation of individual branches and the integration of multiple signals are achieved. We hypothesized that the composition of dishevelled–β-arrestin protein complexes contributes to signal specificity and identified CamKII as an interaction partner of the dishevelled–β-arrestin protein complex by quantitative functional proteomics. Specifically, we found that CamKII isoforms interact differentially with the three vertebrate dishevelled proteins. Dvl1 is required for the activation of CamKII and PKC in the Wnt/Ca2+ pathway. However, CamKII interacts with Dvl2 but not with Dvl1, and Dvl2 is necessary to mediate CamKII function downstream of Dvl1 in convergent extension movements in Xenopus gastrulation. Our findings indicate that the different Dvl proteins and the composition of dishevelled–β-arrestin protein complexes contribute to the specific activation of individual branches of Wnt signaling. PMID:25568338

  16. Controversies Surrounding Segments and Parasegments in Onychophora: Insights from the Expression Patterns of Four “Segment Polarity Genes” in the Peripatopsid Euperipatoides rowelli

    PubMed Central

    Franke, Franziska Anni; Mayer, Georg

    2014-01-01

    Arthropods typically show two types of segmentation: the embryonic parasegments and the adult segments that lie out of register with each other. Such a dual nature of body segmentation has not been described from Onychophora, one of the closest arthropod relatives. Hence, it is unclear whether onychophorans have segments, parasegments, or both, and which of these features was present in the last common ancestor of Onychophora and Arthropoda. To address this issue, we analysed the expression patterns of the “segment polarity genes” engrailed, cubitus interruptus, wingless and hedgehog in embryos of the onychophoran Euperipatoides rowelli. Our data revealed that these genes are expressed in repeated sets with a specific anterior-to-posterior order along the body in embryos of E. rowelli. In contrast to arthropods, the expression occurs after the segmental boundaries have formed. Moreover, the initial segmental furrow retains its position within the engrailed domain throughout development, whereas no new furrow is formed posterior to this domain. This suggests that no re-segmentation of the embryo occurs in E. rowelli. Irrespective of whether or not there is a morphological or genetic manifestation of parasegments in Onychophora, our data clearly show that parasegments, even if present, cannot be regarded as the initial metameric units of the onychophoran embryo, because the expression of key genes that define the parasegmental boundaries in arthropods occurs after the segmental boundaries have formed. This is in contrast to arthropods, in which parasegments rather than segments are the initial metameric units of the embryo. Our data further revealed that the expression patterns of “segment polarity genes” correspond to organogenesis rather than segment formation. This is in line with the concept of segmentation as a result of concerted evolution of individual periodic structures rather than with the interpretation of ‘segments’ as holistic units. PMID

  17. Controversies surrounding segments and parasegments in onychophora: insights from the expression patterns of four "segment polarity genes" in the peripatopsid Euperipatoides rowelli.

    PubMed

    Franke, Franziska Anni; Mayer, Georg

    2014-01-01

    Arthropods typically show two types of segmentation: the embryonic parasegments and the adult segments that lie out of register with each other. Such a dual nature of body segmentation has not been described from Onychophora, one of the closest arthropod relatives. Hence, it is unclear whether onychophorans have segments, parasegments, or both, and which of these features was present in the last common ancestor of Onychophora and Arthropoda. To address this issue, we analysed the expression patterns of the "segment polarity genes" engrailed, cubitus interruptus, wingless and hedgehog in embryos of the onychophoran Euperipatoides rowelli. Our data revealed that these genes are expressed in repeated sets with a specific anterior-to-posterior order along the body in embryos of E. rowelli. In contrast to arthropods, the expression occurs after the segmental boundaries have formed. Moreover, the initial segmental furrow retains its position within the engrailed domain throughout development, whereas no new furrow is formed posterior to this domain. This suggests that no re-segmentation of the embryo occurs in E. rowelli. Irrespective of whether or not there is a morphological or genetic manifestation of parasegments in Onychophora, our data clearly show that parasegments, even if present, cannot be regarded as the initial metameric units of the onychophoran embryo, because the expression of key genes that define the parasegmental boundaries in arthropods occurs after the segmental boundaries have formed. This is in contrast to arthropods, in which parasegments rather than segments are the initial metameric units of the embryo. Our data further revealed that the expression patterns of "segment polarity genes" correspond to organogenesis rather than segment formation. This is in line with the concept of segmentation as a result of concerted evolution of individual periodic structures rather than with the interpretation of 'segments' as holistic units. PMID:25470738

  18. Csrp1 regulates dynamic cell movements of the mesendoderm and cardiac mesoderm through interactions with Dishevelled and Diversin

    PubMed Central

    Miyasaka, Kota Y.; Kida, Yasuyuki S.; Sato, Takayuki; Minami, Mari; Ogura, Toshihiko

    2007-01-01

    Zebrafish Csrp1 is a member of the cysteine- and glycine-rich protein (CSRP) family and is expressed in the mesendoderm and its derivatives. Csrp1 interacts with Dishevelled 2 (Dvl2) and Diversin (Div), which control cell morphology and other dynamic cell behaviors via the noncanonical Wnt and JNK pathways. When csrp1 message is knocked down, abnormal convergent extension cell movement is induced, resulting in severe deformities in midline structures. In addition, cardiac bifida is induced as a consequence of defects in cardiac mesoderm cell migration. Our data highlight Csrp1 as a key molecule of the noncanonical Wnt pathway, which orchestrates cell behaviors during dynamic morphogenetic movements of tissues and organs. PMID:17592114

  19. Quantitative analysis of gene function in the Drosophila embryo.

    PubMed Central

    Tracey, W D; Ning, X; Klingler, M; Kramer, S G; Gergen, J P

    2000-01-01

    The specific functions of gene products frequently depend on the developmental context in which they are expressed. Thus, studies on gene function will benefit from systems that allow for manipulation of gene expression within model systems where the developmental context is well defined. Here we describe a system that allows for genetically controlled overexpression of any gene of interest under normal physiological conditions in the early Drosophila embryo. This regulated expression is achieved through the use of Drosophila lines that express a maternal mRNA for the yeast transcription factor GAL4. Embryos derived from females that express GAL4 maternally activate GAL4-dependent UAS transgenes at uniform levels throughout the embryo during the blastoderm stage of embryogenesis. The expression levels can be quantitatively manipulated through the use of lines that have different levels of maternal GAL4 activity. Specific phenotypes are produced by expression of a number of different developmental regulators with this system, including genes that normally do not function during Drosophila embryogenesis. Analysis of the response to overexpression of runt provides evidence that this pair-rule segmentation gene has a direct role in repressing transcription of the segment-polarity gene engrailed. The maternal GAL4 system will have applications both for the measurement of gene activity in reverse genetic experiments as well as for the identification of genetic factors that have quantitative effects on gene function in vivo. PMID:10628987

  20. Frizzled-4 C-terminus Distal to KTXXXW Motif is Essential for Normal Dishevelled Recruitment and Norrin-stimulated Activation of Lef/Tcf-dependent Transcriptional Activation.

    PubMed

    Bertalovitz, Alexander C; Pau, Milly S; Gao, Shujuan; Malbon, Craig C; Wang, Hsien-Yu

    2016-01-01

    The carboxy (C)-termini of G protein coupled receptors (GPCR) dictate essential functions. The KTXXXW motif C-terminus of Frizzleds (FZD) has been implicated in recruitment of Dishevelled (DVL). Through study of FZD4 and its associated ligand Norrin, we report that a minimum of three residues distal to the KTXXXW motif in the C-terminal tail of Frizzled-4 are essential for DVL recruitment and robust Lef/Tcf-dependent transcriptional activation in response to Norrin. PMID:27096005

  1. Frizzled-4 C-terminus Distal to KTXXXW Motif is Essential for Normal Dishevelled Recruitment and Norrin-stimulated Activation of Lef/Tcf-dependent Transcriptional Activation

    PubMed Central

    Pau, Milly S.; Gao, Shujuan; Malbon, Craig C.; Wang, Hsien-yu

    2016-01-01

    The carboxy (C)-termini of G protein coupled receptors (GPCR) dictate essential functions. The KTXXXW motif C-terminus of Frizzleds (FZD) has been implicated in recruitment of Dishevelled (DVL). Through study of FZD4 and its associated ligand Norrin, we report that a minimum of three residues distal to the KTXXXW motif in the C-terminal tail of Frizzled-4 are essential for DVL recruitment and robust Lef/Tcf-dependent transcriptional activation in response to Norrin. PMID:27096005

  2. Drosophila spermiogenesis

    PubMed Central

    Fabian, Lacramioara; Brill, Julie A.

    2012-01-01

    Drosophila melanogaster spermatids undergo dramatic morphological changes as they differentiate from small round cells approximately 12 μm in diameter into highly polarized, 1.8 mm long, motile sperm capable of participating in fertilization. During spermiogenesis, syncytial cysts of 64 haploid spermatids undergo synchronous differentiation. Numerous changes occur at a subcellular level, including remodeling of existing organelles (mitochondria, nuclei), formation of new organelles (flagellar axonemes, acrosomes), polarization of elongating cysts and plasma membrane addition. At the end of spermatid morphogenesis, organelles, mitochondrial DNA and cytoplasmic components not needed in mature sperm are stripped away in a caspase-dependent process called individualization that results in formation of individual sperm. Here, we review the stages of Drosophila spermiogenesis and examine our current understanding of the cellular and molecular mechanisms involved in shaping male germ cell-specific organelles and forming mature, fertile sperm. PMID:23087837

  3. Drosophila myogenesis.

    PubMed

    Bothe, Ingo; Baylies, Mary K

    2016-09-12

    The skeletal muscle system is the largest organ in motile animals, constituting between 35 and 55% of the human body mass, and up to 75% of the body mass in flying organisms like Drosophila. The flight muscles alone in flying insects comprise up to 65% of total body mass. Not only is the musculature the largest organ system, it is also exquisitely complex, with single muscles existing in different shapes and sizes. These different morphologies allow for such different functions as the high-frequency beating of a wing in a hummingbird, the dilation of the pupil in a human eye, or the maintenance of posture in a giraffe's neck. PMID:27623256

  4. Identification of small-molecule compounds targeting the dishevelled PDZ domain by virtual screening and binding studies.

    PubMed

    Choi, Jiwon; Ma, SongLing; Kim, Hyun-Yi; Yun, Ji-Hye; Heo, Jung-Nyoung; Lee, Weontae; Choi, Kang-Yell; No, Kyoung Tai

    2016-08-01

    The Dishevelled (Dvl) protein, which conveys signals from receptors to the downstream effectors, is a critical constituent of the Wnt/β-catenin signaling pathway. Because the PDZ domain of Dvl protein functions through associations with a wide range of protein partners, Dvl protein involved in the Wnt signaling pathway has been considered to be therapeutic targets in cancers. In this study, we performed structure-based pharmacophore model of the Dvl PDZ domain to discover novel small-molecule binders and identified eight compounds with micromolar affinity. The most potent compound identified, BMD4702, efficiently bound to the Dvl PDZ domain with 11.2μM affinity and had a 0.186μM KD value according to surface plasmon resonance and fluorescence spectroscopy, respectively. Combining both structural-kinetic relationship analyses and docking studies, we fourmulated that the ligand-binding site is composed of three H-bonds and three hydrophobic features. Thus, our approach led to the identification of potent binders of the Dvl PDZ domain and the findings provide novel insights into structure-based approaches to design high-affinity binders for the Dvl PDZ domain. PMID:27112452

  5. Structural Analysis of the Interaction between Dishevelled2 and Clathrin AP-2 Adaptor, A Critical Step in Noncanonical Wnt Signaling

    SciTech Connect

    Yu, Anan; Xing, Yi; Harrison, Stephen C.; Kirchhausen, Tomas

    2010-10-14

    Wnt association with its receptor, Frizzled (Fz), and recruitment by the latter of an adaptor, Dishevelled (Dvl), initiates signaling through at least two distinct pathways (canonical and noncanonical). Endocytosis and compartmentalization help determine the signaling outcome. Our previous work has shown that Dvl2 links at least one Frizzled family member (Fz4) to clathrin-mediated endocytosis by interacting with the {mu}2 subunit of the AP-2 clathrin adaptor, through both a classical endocytic tyrosine motif and a so-called DEP domain. We report here the crystal structure of a chimeric protein that mimics the Dvl2-{mu}2 complex. The DEP domain binds at one end of the elongated, C-terminal domain of {mu}2. This domain:domain interface shows that parts of the {mu}2 surface distinct from the tyrosine-motif site can help recruit specific receptors or adaptors into a clathrin coated pit. Mutation of residues at the DEP-{mu}2 contact or in the tyrosine motif reduce affinity of Dvl2 for {mu}2 and block efficient internalization of Fz4 in response to ligation by Wnt5a. The crystal structure has thus allowed us to identify the specific interaction that leads to Frizzled uptake and to downstream, noncanonical signaling events.

  6. Small molecule inhibitors of the Dishevelled-CXXC5 interaction are new drug candidates for bone anabolic osteoporosis therapy.

    PubMed

    Kim, Hyun-Yi; Choi, Sehee; Yoon, Ji-Hye; Lim, Hwan Jung; Lee, Hyuk; Choi, Jiwon; Ro, Eun Ji; Heo, Jung-Nyoung; Lee, Weontae; No, Kyoung Tai; Choi, Kang-Yell

    2016-01-01

    Bone anabolic agents promoting bone formation and rebuilding damaged bones would ideally overcome the limitations of anti-resorptive therapy, the current standard prescription for osteoporosis. However, the currently prescribed parathyroid hormone (PTH)-based anabolic drugs present limitations and adverse effects including osteosarcoma during long-term use. Also, the antibody-based anabolic drugs that are currently being developed present the potential limits in clinical application typical of macromolecule drugs. We previously identified that CXXC5 is a negative feedback regulator of the Wnt/β-catenin pathway via its interaction with Dishevelled (Dvl) and suggested the Dvl-CXXC5 interaction as a potential target for anabolic therapy of osteoporosis. Here, we screened small-molecule inhibitors of the Dvl-CXXC5 interaction via a newly established in vitro assay system. The screened compounds were found to activate the Wnt/β-catenin pathway and enhance osteoblast differentiation in primary osteoblasts. The bone anabolic effects of the compounds were shown using ex vivo-cultured calvaria. Nuclear magnetic resonance (NMR) titration analysis confirmed interaction between Dvl PDZ domain and KY-02061, a representative of the screened compounds. Oral administration of KY-02327, one of 55 newly synthesized KY-02061 analogs, successfully rescued bone loss in the ovariectomized (OVX) mouse model. In conclusion, small-molecule inhibitors of the Dvl-CXXC5 interaction that block negative feedback regulation of Wnt/β-catenin signaling are potential candidates for the development of bone anabolic anti-osteoporosis drugs. PMID:26941261

  7. Kif26b controls endothelial cell polarity through the Dishevelled/Daam1-dependent planar cell polarity-signaling pathway.

    PubMed

    Guillabert-Gourgues, Aude; Jaspard-Vinassa, Beatrice; Bats, Marie-Lise; Sewduth, Raj N; Franzl, Nathalie; Peghaire, Claire; Jeanningros, Sylvie; Moreau, Catherine; Roux, Etienne; Larrieu-Lahargue, Frederic; Dufourcq, Pascale; Couffinhal, Thierry; Duplàa, Cecile

    2016-03-15

    Angiogenesis involves the coordinated growth and migration of endothelial cells (ECs) toward a proangiogenic signal. The Wnt planar cell polarity (PCP) pathway, through the recruitment of Dishevelled (Dvl) and Dvl-associated activator of morphogenesis (Daam1), has been proposed to regulate cell actin cytoskeleton and microtubule (MT) reorganization for oriented cell migration. Here we report that Kif26b-a kinesin-and Daam1 cooperatively regulate initiation of EC sprouting and directional migration via MT reorganization. First, we find that Kif26b is recruited within the Dvl3/Daam1 complex. Using a three-dimensional in vitro angiogenesis assay, we show that Kif26b and Daam1 depletion impairs tip cell polarization and destabilizes extended vascular processes. Kif26b depletion specifically alters EC directional migration and mislocalized MT organizing center (MTOC)/Golgi and myosin IIB cell rear enrichment. Therefore the cell fails to establish a proper front-rear polarity. Of interest, Kif26b ectopic expression rescues the siDaam1 polarization defect phenotype. Finally, we show that Kif26b functions in MT stabilization, which is indispensable for asymmetrical cell structure reorganization. These data demonstrate that Kif26b, together with Dvl3/Daam1, initiates cell polarity through the control of PCP signaling pathway-dependent activation. PMID:26792835

  8. Kif26b controls endothelial cell polarity through the Dishevelled/Daam1-dependent planar cell polarity–signaling pathway

    PubMed Central

    Guillabert-Gourgues, Aude; Jaspard-Vinassa, Beatrice; Bats, Marie-Lise; Sewduth, Raj N.; Franzl, Nathalie; Peghaire, Claire; Jeanningros, Sylvie; Moreau, Catherine; Roux, Etienne; Larrieu-Lahargue, Frederic; Dufourcq, Pascale; Couffinhal, Thierry; Duplàa, Cecile

    2016-01-01

    Angiogenesis involves the coordinated growth and migration of endothelial cells (ECs) toward a proangiogenic signal. The Wnt planar cell polarity (PCP) pathway, through the recruitment of Dishevelled (Dvl) and Dvl-associated activator of morphogenesis (Daam1), has been proposed to regulate cell actin cytoskeleton and microtubule (MT) reorganization for oriented cell migration. Here we report that Kif26b—a kinesin—and Daam1 cooperatively regulate initiation of EC sprouting and directional migration via MT reorganization. First, we find that Kif26b is recruited within the Dvl3/Daam1 complex. Using a three-dimensional in vitro angiogenesis assay, we show that Kif26b and Daam1 depletion impairs tip cell polarization and destabilizes extended vascular processes. Kif26b depletion specifically alters EC directional migration and mislocalized MT organizing center (MTOC)/Golgi and myosin IIB cell rear enrichment. Therefore the cell fails to establish a proper front–rear polarity. Of interest, Kif26b ectopic expression rescues the siDaam1 polarization defect phenotype. Finally, we show that Kif26b functions in MT stabilization, which is indispensable for asymmetrical cell structure reorganization. These data demonstrate that Kif26b, together with Dvl3/Daam1, initiates cell polarity through the control of PCP signaling pathway–dependent activation. PMID:26792835

  9. Deciphering the onychophoran 'segmentation gene cascade': Gene expression reveals limited involvement of pair rule gene orthologs in segmentation, but a highly conserved segment polarity gene network.

    PubMed

    Janssen, Ralf; Budd, Graham E

    2013-10-01

    The hallmark of the arthropods is their segmented body, although origin of segmentation, however, is unresolved. In order to shed light on the origin of segmentation we investigated orthologs of pair rule genes (PRGs) and segment polarity genes (SPGs) in a member of the closest related sister-group to the arthropods, the onychophorans. Our gene expression data analysis suggests that most of the onychophoran PRGs do not play a role in segmentation. One possible exception is the even-skipped (eve) gene that is expressed in the posterior end of the onychophoran where new segments are likely patterned, and is also expressed in segmentation-gene typical transverse stripes in at least a number of newly formed segments. Other onychophoran PRGs such as runt (run), hairy/Hes (h/Hes) and odd-skipped (odd) do not appear to have a function in segmentation at all. Onychophoran PRGs that act low in the segmentation gene cascade in insects, however, are potentially involved in segment-patterning. Most obvious is that from the expression of the pairberry (pby) gene ortholog that is expressed in a typical SPG-pattern. Since this result suggested possible conservation of the SPG-network we further investigated SPGs (and associated factors) such as Notum in the onychophoran. We find that the expression patterns of SPGs in arthropods and the onychophoran are highly conserved, suggesting a conserved SPG-network in these two clades, and indeed also in an annelid. This may suggest that the common ancestor of lophotrochozoans and ecdysozoans was already segmented utilising the same SPG-network, or that the SPG-network was recruited independently in annelids and onychophorans/arthropods. PMID:23880430

  10. Functional Analysis of Dishevelled-3 Phosphorylation Identifies Distinct Mechanisms Driven by Casein Kinase 1ϵ and Frizzled5*

    PubMed Central

    Bernatík, Ondřej; Šedová, Kateřina; Schille, Carolin; Ganji, Ranjani Sri; Červenka, Igor; Trantírek, Lukáš; Schambony, Alexandra; Zdráhal, Zbyněk; Bryja, Vítězslav

    2014-01-01

    Dishevelled-3 (Dvl3), a key component of the Wnt signaling pathways, acts downstream of Frizzled (Fzd) receptors and gets heavily phosphorylated in response to pathway activation by Wnt ligands. Casein kinase 1ϵ (CK1ϵ) was identified as the major kinase responsible for Wnt-induced Dvl3 phosphorylation. Currently it is not clear which Dvl residues are phosphorylated and what is the consequence of individual phosphorylation events. In the present study we employed mass spectrometry to analyze in a comprehensive way the phosphorylation of human Dvl3 induced by CK1ϵ. Our analysis revealed >50 phosphorylation sites on Dvl3; only a minority of these sites was found dynamically induced after co-expression of CK1ϵ, and surprisingly, phosphorylation of one cluster of modified residues was down-regulated. Dynamically phosphorylated sites were analyzed functionally. Mutations within PDZ domain (S280A and S311A) reduced the ability of Dvl3 to activate TCF/LEF (T-cell factor/lymphoid enhancer factor)-driven transcription and induce secondary axis in Xenopus embryos. In contrast, mutations of clustered Ser/Thr in the Dvl3 C terminus prevented ability of CK1ϵ to induce electrophoretic mobility shift of Dvl3 and its even subcellular localization. Surprisingly, mobility shift and subcellular localization changes induced by Fzd5, a Wnt receptor, were in all these mutants indistinguishable from wild type Dvl3. In summary, our data on the molecular level (i) support previous the assumption that CK1ϵ acts via phosphorylation of distinct residues as the activator as well as the shut-off signal of Wnt/β-catenin signaling and (ii) suggest that CK1ϵ acts on Dvl via different mechanism than Fzd5. PMID:24993822

  11. The Drosophila visual system

    PubMed Central

    Zhu, Yan

    2013-01-01

    A compact genome and a tiny brain make Drosophila the prime model to understand the neural substrate of behavior. The neurogenetic efforts to reveal neural circuits underlying Drosophila vision started about half a century ago, and now the field is booming with sophisticated genetic tools, rich behavioral assays, and importantly, a greater number of scientists joining from different backgrounds. This review will briefly cover the structural anatomy of the Drosophila visual system, the animal’s visual behaviors, the genes involved in assembling these circuits, the new and powerful techniques, and the challenges ahead for ultimately identifying the general principles of biological computation in the brain.   A typical brain utilizes a great many compact neural circuits to collect and process information from the internal biological and external environmental worlds and generates motor commands for observable behaviors. The fruit fly Drosophila melanogaster, despite of its miniature body and tiny brain, can survive in almost any corner of the world.1 It can find food, court mate, fight rival conspecific, avoid predators, and amazingly fly without crashing into trees. Drosophila vision and its underlying neuronal machinery has been a key research model for at least half century for neurogeneticists.2 Given the efforts invested on the visual system, this animal model is likely to offer the first full understanding of how visual information is computed by a multi-cellular organism. Furthermore, research in Drosophila has revealed many genes that play crucial roles in the formation of functional brains across species. The architectural similarities between the visual systems of Drosophila and vertebrate at the molecular, cellular, and network levels suggest new principles discovered at the circuit level on the relationship between neurons and behavior in Drosophila shall also contribute greatly to our understanding of the general principles for how bigger brains work.3

  12. Drosophila Blastorderm Analysis Software

    SciTech Connect

    2006-10-25

    PointCloudMake analyzes 3D fluorescent images of whole Drosophila embryo and produces a table-style "PointCloud" file which contains the coordinates and volumes of all the nuclei, cells, their associated relative gene expression levels along with morphological features of the embryo. See: Luengo Hendrix et at 2006 3D Morphology and Gene Expression in the Drosophila Blastoderm at Cellular Resolution manuscript submitted LBNL # LBNL-60178 Knowles DW, Keranen SVE, Biggin M. Sudar S (2002) Mapping organism expression levels at cellular resolution in developing Drosophila. In: Conchello JA, Cogswell CJ, Wilson T, editors. Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing IX. pp. 57-64

  13. Meiosis in male Drosophila

    PubMed Central

    McKee, Bruce D.; Yan, Rihui; Tsai, Jui-He

    2012-01-01

    Meiosis entails sorting and separating both homologous and sister chromatids. The mechanisms for connecting sister chromatids and homologs during meiosis are highly conserved and include specialized forms of the cohesin complex and a tightly regulated homolog synapsis/recombination pathway designed to yield regular crossovers between homologous chromatids. Drosophila male meiosis is of special interest because it dispenses with large segments of the standard meiotic script, particularly recombination, synapsis and the associated structures. Instead, Drosophila relies on a unique protein complex composed of at least two novel proteins, SNM and MNM, to provide stable connections between homologs during meiosis I. Sister chromatid cohesion in Drosophila is mediated by cohesins, ring-shaped complexes that entrap sister chromatids. However, unlike other eukaryotes Drosophila does not rely on the highly conserved Rec8 cohesin in meiosis, but instead utilizes two novel cohesion proteins, ORD and SOLO, which interact with the SMC1/3 cohesin components in providing meiotic cohesion. PMID:23087836

  14. In focus: spotted wing drosophila, Drosophila suzukii, across perspectives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An effective response to the invasion of spotted wing Drosophila (SWD), Drosophila suzukii, requires proper taxonomic identification at the initial phase, understanding its basic biology and phenology, developing management tools, transferring information and technology quickly to user groups, and e...

  15. Different Wnt signals act through the Frizzled and RYK receptors during Drosophila salivary gland migration.

    PubMed

    Harris, Katherine E; Beckendorf, Steven K

    2007-06-01

    Guided cell migration is necessary for the proper function and development of many tissues, one of which is the Drosophila embryonic salivary gland. Here we show that two distinct Wnt signaling pathways regulate salivary gland migration. Early in migration, the salivary gland responds to a WNT4-Frizzled signal for proper positioning within the embryo. Disruption of this signal, through mutations in Wnt4, frizzled or frizzled 2, results in misguided salivary glands that curve ventrally. Furthermore, disruption of downstream components of the canonical Wnt pathway, such as dishevelled or Tcf, also results in ventrally curved salivary glands. Analysis of a second Wnt signal, which acts through the atypical Wnt receptor Derailed, indicates a requirement for Wnt5 signaling late in salivary gland migration. WNT5 is expressed in the central nervous system and acts as a repulsive signal, needed to keep the migrating salivary gland on course. The receptor for WNT5, Derailed, is expressed in the actively migrating tip of the salivary glands. In embryos mutant for derailed or Wnt5, salivary gland migration is disrupted; the tip of the gland migrates abnormally toward the central nervous system. Our results suggest that both the Wnt4-frizzled pathway and a separate Wnt5-derailed pathway are needed for proper salivary gland migration. PMID:17507403

  16. Drosophila Blastorderm Analysis Software

    Energy Science and Technology Software Center (ESTSC)

    2006-10-25

    PointCloudMake analyzes 3D fluorescent images of whole Drosophila embryo and produces a table-style "PointCloud" file which contains the coordinates and volumes of all the nuclei, cells, their associated relative gene expression levels along with morphological features of the embryo. See: Luengo Hendrix et at 2006 3D Morphology and Gene Expression in the Drosophila Blastoderm at Cellular Resolution manuscript submitted LBNL # LBNL-60178 Knowles DW, Keranen SVE, Biggin M. Sudar S (2002) Mapping organism expression levelsmore » at cellular resolution in developing Drosophila. In: Conchello JA, Cogswell CJ, Wilson T, editors. Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing IX. pp. 57-64« less

  17. Temporal pattern of the posterior expression of Wingless in Drosophila blastoderm

    PubMed Central

    Vorwald-Denholtz, Peggy P.; De Robertis, Edward M.

    2011-01-01

    In most animals, the Antero-Posterior (A-P) axis requires a gradient of Wnt signaling. Wnts are expressed posteriorly in many vertebrate and invertebrate embryos, forming a gradient of canonical Wnt/β-Catenin activity that is highest in the posterior and lowest in the anterior. One notable exception to this evolutionary conservation is in the Drosophila embryo, in which the A-P axis is established by early transcription factors of maternal origin. Despite this initial axial establishment, Drosophila still expresses Wingless (Wg), the main Drosophila Wnt homologue, in a strong posterior band early in embryogenesis. Since its discovery 30 years ago this posterior band of Wg has been largely ignored. In this study, we re-examined the onset of expression of the Wg posterior band in relation to the expression of Wg in other segments, and compared the timing of its expression to that of axial regulators such as gap and pair-rule genes. It was found that the posterior band of Wg is first detected in blastoderm at mid nuclear cycle 14, before the segment-polarity stripes of Wg are formed in other segments. The onset of the posterior band of Wg expression was preceded by that of the gap gene products Hunchback (hb) and Krüppel (Kr), and the pair-rule protein Even-skipped (Eve). Although the function of the posterior band of Wg was not analyzed in this study, we note that in temperature-sensitive Wg mutants, in which Wg is not properly secreted, the posterior band of Wg expression is diminished in strength, indicating a positive feedback loop required for Wg robust expression at the cellular blastoderm stage. We propose that this early posterior expression could play a role in the refinement of A-P patterning. PMID:21821151

  18. Heritable Endosymbionts of Drosophila

    PubMed Central

    Mateos, Mariana; Castrezana, Sergio J.; Nankivell, Becky J.; Estes, Anne M.; Markow, Therese A.; Moran, Nancy A.

    2006-01-01

    Although heritable microorganisms are increasingly recognized as widespread in insects, no systematic screens for such symbionts have been conducted in Drosophila species (the primary insect genetic models for studies of evolution, development, and innate immunity). Previous efforts screened relatively few Drosophila lineages, mainly for Wolbachia. We conducted an extensive survey of potentially heritable endosymbionts from any bacterial lineage via PCR screens of mature ovaries in 181 recently collected fly strains representing 35 species from 11 species groups. Due to our fly sampling methods, however, we are likely to have missed fly strains infected with sex ratio-distorting endosymbionts. Only Wolbachia and Spiroplasma, both widespread in insects, were confirmed as symbionts. These findings indicate that in contrast to some other insect groups, other heritable symbionts are uncommon in Drosophila species, possibly reflecting a robust innate immune response that eliminates many bacteria. A more extensive survey targeted these two symbiont types through diagnostic PCR in 1225 strains representing 225 species from 32 species groups. Of these, 19 species were infected by Wolbachia while only 3 species had Spiroplasma. Several new strains of Wolbachia and Spiroplasma were discovered, including ones divergent from any reported to date. The phylogenetic distribution of Wolbachia and Spiroplasma in Drosophila is discussed. PMID:16783009

  19. Differential Regulation of Disheveled in a Novel Vegetal Cortical Domain in Sea Urchin Eggs and Embryos: Implications for the Localized Activation of Canonical Wnt Signaling

    PubMed Central

    Peng, ChiehFu Jeff; Wikramanayake, Athula H.

    2013-01-01

    Pattern formation along the animal-vegetal (AV) axis in sea urchin embryos is initiated when canonical Wnt (cWnt) signaling is activated in vegetal blastomeres. The mechanisms that restrict cWnt signaling to vegetal blastomeres are not well understood, but there is increasing evidence that the egg’s vegetal cortex plays a critical role in this process by mediating localized “activation” of Disheveled (Dsh). To investigate how Dsh activity is regulated along the AV axis, sea urchin-specific Dsh antibodies were used to examine expression, subcellular localization, and post-translational modification of Dsh during development. Dsh is broadly expressed during early sea urchin development, but immunolocalization studies revealed that this protein is enriched in a punctate pattern in a novel vegetal cortical domain (VCD) in the egg. Vegetal blastomeres inherit this VCD during embryogenesis, and at the 60-cell stage Dsh puncta are seen in all cells that display nuclear β-catenin. Analysis of Dsh post-translational modification using two-dimensional Western blot analysis revealed that compared to Dsh pools in the bulk cytoplasm, this protein is differentially modified in the VCD and in the 16-cell stage micromeres that partially inherit this domain. Dsh localization to the VCD is not directly affected by disruption of microfilaments and microtubules, but unexpectedly, microfilament disruption led to degradation of all the Dsh pools in unfertilized eggs over a period of incubation suggesting that microfilament integrity is required for maintaining Dsh stability. These results demonstrate that a pool of differentially modified Dsh in the VCD is selectively inherited by the vegetal blastomeres that activate cWnt signaling in early embryos, and suggests that this domain functions as a scaffold for localized Dsh activation. Localized cWnt activation regulates AV axis patterning in many metazoan embryos. Hence, it is possible that the VCD is an evolutionarily conserved

  20. Aging Studies in Drosophila melanogaster

    PubMed Central

    Sun, Yaning; Yolitz, Jason; Wang, Cecilia; Spangler, Edward; Zhan, Ming; Zou, Sige

    2015-01-01

    Summary Drosophila is a genetically tractable system ideal for investigating the mechanisms of aging and developing interventions for promoting healthy aging. Here we describe methods commonly used in Drosophila aging research. These include basic approaches for preparation of diets and measurements of lifespan, food intake and reproductive output. We also describe some commonly used assays to measure changes in physiological and behavioral functions of Drosophila in aging, such as stress resistance and locomotor activity. PMID:23929099

  1. Drosophila by the dozen

    SciTech Connect

    Celniker, Susan E.; Hoskins, Roger A.

    2007-07-13

    This year's conference on Drosophila research illustratedwell the current focus of Drosophila genomics on the comprehensiveidentification of functional elements in the genome sequence, includingmRNA transcripts arising from multiple alternative start sites and splicesites, a multiplicity of noncoding transcripts and small RNAs,identification of binding sites for transcription factors, sequenceconservation in related species and sequence variation within species.Resources and technologies for genetics and functional genomics aresteadily being improved, including the building of collections oftransposon insertion mutants and hairpin constructs for RNA interference(RNAi). The conference also highlighted progress in the use of genomicinformation by many laboratories to study diverse aspects of biology andmodels of human disease. Here we will review a few highlights of especialinterest to readers of Genome Biology.

  2. The Drosophila Auditory System

    PubMed Central

    Boekhoff-Falk, Grace; Eberl, Daniel F.

    2013-01-01

    Development of a functional auditory system in Drosophila requires specification and differentiation of the chordotonal sensilla of Johnston’s organ (JO) in the antenna, correct axonal targeting to the antennal mechanosensory and motor center (AMMC) in the brain, and synaptic connections to neurons in the downstream circuit. Chordotonal development in JO is functionally complicated by structural, molecular and functional diversity that is not yet fully understood, and construction of the auditory neural circuitry is only beginning to unfold. Here we describe our current understanding of developmental and molecular mechanisms that generate the exquisite functions of the Drosophila auditory system, emphasizing recent progress and highlighting important new questions arising from research on this remarkable sensory system. PMID:24719289

  3. Van Gogh and Frizzled Act Redundantly in the Drosophila Sensory Organ Precursor Cell to Orient Its Asymmetric Division

    PubMed Central

    Schweisguth, François

    2009-01-01

    Drosophila sensory organ precursor cells (SOPs) divide asymmetrically along the anterior-posterior (a-p) body axis to generate two different daughter cells. Planar Cell Polarity (PCP) regulates the a-p orientation of the SOP division. The localization of the PCP proteins Van Gogh (Vang) and Frizzled (Fz) define anterior and posterior apical membrane domains prior to SOP division. Here, we investigate the relative contributions of Vang, Fz and Dishevelled (Dsh), a membrane-associated protein acting downstream of Fz, in orienting SOP polarity. Genetic and live imaging analyses suggest that Dsh restricts the localization of a centrosome-attracting activity to the anterior cortex and that Vang is a target of Dsh in this process. Using a clone border assay, we provide evidence that the Vang and fz genes act redundantly in SOPs to orient its polarity axis in response to extrinsic local PCP cues. Additionally, we find that the activity of Vang is dispensable for the non-autonomous polarizing activity of fz. These observations indicate that both Vang and Fz act as cues for downstream effectors orienting the planar polarity axis of dividing SOPs. PMID:19214234

  4. An unconventional nuclear localization motif is crucial for function of the Drosophila Wnt/wingless antagonist Naked cuticle.

    PubMed

    Waldrop, Sharon; Chan, Chih-Chiang; Cagatay, Tolga; Zhang, Shu; Rousset, Raphaël; Mack, Judy; Zeng, Wenlin; Fish, Matt; Zhang, Mei; Amanai, Manami; Wharton, Keith A

    2006-09-01

    Wnt/beta-catenin signals orchestrate cell fate and behavior throughout the animal kingdom. Aberrant Wnt signaling impacts nearly the entire spectrum of human disease, including birth defects, cancer, and osteoporosis. If Wnt signaling is to be effectively manipulated for therapeutic advantage, we first must understand how Wnt signals are normally controlled. Naked cuticle (Nkd) is a novel and evolutionarily conserved inducible antagonist of Wnt/beta-catenin signaling that is crucial for segmentation in the model genetic organism, the fruit fly Drosophila melanogaster. Nkd can bind and inhibit the Wnt signal transducer Dishevelled (Dsh), but the mechanism by which Nkd limits Wnt signaling in the fly embryo is not understood. Here we show that nkd mutants exhibit elevated levels of the beta-catenin homolog Armadillo but no alteration in Dsh abundance or distribution. In the fly embryo, Nkd and Dsh are predominantly cytoplasmic, although a recent report suggests that vertebrate Dsh requires nuclear localization for activity in gain-of-function assays. While Dsh-binding regions of Nkd contribute to its activity, we identify a conserved 30-amino-acid motif, separable from Dsh-binding regions, that is essential for Nkd function and nuclear localization. Replacement of the 30-aa motif with a conventional nuclear localization sequence rescued a small fraction of nkd mutant animals to adulthood. Our studies suggest that Nkd targets Dsh-dependent signal transduction steps in both cytoplasmic and nuclear compartments of cells receiving the Wnt signal. PMID:16849595

  5. Protease-activated receptor-1 (PAR1) acts via a novel Galpha13-dishevelled axis to stabilize beta-catenin levels.

    PubMed

    Turm, Hagit; Maoz, Myriam; Katz, Vered; Yin, Yong-Jun; Offermanns, Steffan; Bar-Shavit, Rachel

    2010-05-14

    We have previously shown a novel link between hPar-1 (human protease-activated receptor-1) and beta-catenin stabilization. Although it is well recognized that Wnt signaling leads to beta-catenin accumulation, the role of PAR1 in the process is unknown. We provide here evidence that PAR1 induces beta-catenin stabilization independent of Wnt, Fz (Frizzled), and the co-receptor LRP5/6 (low density lipoprotein-related protein 5/6) and identify selective mediators of the PAR1-beta-catenin axis. Immunohistological analyses of hPar1-transgenic (TG) mouse mammary tissues show the expression of both Galpha(12) and Galpha(13) compared with age-matched control counterparts. However, only Galpha(13) was found to be actively involved in PAR1-induced beta-catenin stabilization. Indeed, a dominant negative form of Galpha(13) inhibited both PAR1-induced Matrigel invasion and Lef/Tcf (lymphoid enhancer factor/T cell factor) transcription activity. PAR1-Galpha(13) association is followed by the recruitment of DVL (Dishevelled), an upstream Wnt signaling protein via the DIX domain. Small interfering RNA-Dvl silencing leads to a reduction in PAR1-induced Matrigel invasion, inhibition of Lef/Tcf transcription activity, and decreased beta-catenin accumulation. It is of note that PAR1 also promotes the binding of beta-arrestin-2 to DVL, suggesting a role for beta-arrestin-2 in PAR1-induced DVL phosphorylation dynamics. Although infection of small interfering RNA-LRP5/6 or the use of the Wnt antagonists, SFRP2 (soluble Frizzled-related protein 2) or SFRP5 potently reduced Wnt3A-mediated beta-catenin accumulation, no effect was observed on PAR1-induced beta-catenin stabilization. Collectively, our data show that PAR1 mediates beta-catenin stabilization independent of Wnt. We propose here a novel cascade of PAR1-induced Galpha(13)-DVL axis in cancer and beta-catenin stabilization. PMID:20223821

  6. Coexpression of IQ-Domain GTPase-Activating Protein 1 (IQGAP1) and Dishevelled (Dvl) Is Correlated with Poor Prognosis in Non-Small Cell Lung Cancer

    PubMed Central

    Zhao, Huanyu; Xie, Chengyao; Lin, Xuyong; Zhao, Yue; Han, Yang; Fan, Chuifeng; Zhang, Xiupeng; Du, Jiang; Han, Yong; Han, Qiang; Wu, Guangping; Wang, Enhua

    2014-01-01

    Background IQ-domain GTPase-activating protein 1 (IQGAP1) binds to Dishevelled (Dvl) and functions as a modulator of Dvl nuclear localization in Xenopus embryos. However, the relationship between IQGAP1 and Dvl in tumor tissues is unclear. Materials and Methods We used immunohistochemistry to assess the expressions of IQGAP1 and Dvl in a cohort of 111 non-small cell lung cancer (NSCLC) patients. Association of their localization expressions with clinicopathological factors was also analyzed. Results The positive rate of IQGAP1 in primary tumors was 48.6% (54/111) for its cytoplamic expression, 9.0% (10/111) for nuclear expression and 31.5% (35/111) for membranous expression; the positive rate of Dvl was 65.8% (73/111) for cytoplamic expression, 9.9% (11/111) for nuclear expression and 10.8% (12/111) for membranous expression. Coexpression rate of IQGAP1 and Dvl was 77.8% (42/54) in the cytoplasm, 80.0% (8/10) in the nucleus and 8.6% (3/35) in the membrane. Coexpression of IQGAP1 and Dvl in the cytoplasm and nucleus were significantly correlated (P<0.05), but not in the membrane (P>0.05). The positive expression rates of cyclin D1 and c-myc were significantly higher in the group of IQGAP1 and Dvl coexpression in the nucleus than that in the cytoplasm. Coexpression rate of IQGAP1 and Dvl in the cytoplasm and nucleus was significantly higher in lymph nodal metastases (63.3%, 19/30) than in primary growths (38.3%, 31/81), correlating with poor prognosis. Five-year survival time after resection in the group with their coexpression in the cytoplasm and nucleus was significantly lower than that with no coexpression (44.705±3.355 vs 58.403±2.543 months, p<0.05). Conclusions Coexpression of IQGAP1 and Dvl in the cytoplasm and nucleus was correlated with the lymph nodal metastase and poor prognosis of NSCLC, and coexpression in nucleus might play a critical role in the activation of canonical Wnt pathway. PMID:25436461

  7. Tenm, a Drosophila gene related to tenascin, is a new pair-rule gene.

    PubMed Central

    Baumgartner, S; Martin, D; Hagios, C; Chiquet-Ehrismann, R

    1994-01-01

    We describe the molecular characterization of the Drosophila gene tenm, a large transcription unit spanning > 110 kb of DNA. tenm encodes a large extracellular protein of 2515 amino acids related to the extracellular matrix molecule tenascin. The Tenm protein is found in seven stripes during the blastoderm stage, and each stripe overlaps with the even-skipped stripes. tenm mutants show a phenotype resembling that of odd-paired (opa), a member of the pair-rule class of segmentation genes. Thus, Tenm is the first example of a pair-rule gene product acting from outside the cell. While the Tenm protein is under the control of fushi tarazu and even-skipped, but not of opa, at least two pair-rule genes, paired (prd) and sloppy paired (slp), and all segment-polarity genes analysed to date are under the control of tenm. Our data suggest that Tenm initiates a signal transduction cascade which acts, via or in concert with opa, on downstream targets such as prd, slp, gooseberry, engrailed and wingless, leading to an opa-like phenotype. Images PMID:8070401

  8. The Drosophila anatomy ontology

    PubMed Central

    2013-01-01

    Background Anatomy ontologies are query-able classifications of anatomical structures. They provide a widely-used means for standardising the annotation of phenotypes and expression in both human-readable and programmatically accessible forms. They are also frequently used to group annotations in biologically meaningful ways. Accurate annotation requires clear textual definitions for terms, ideally accompanied by images. Accurate grouping and fruitful programmatic usage requires high-quality formal definitions that can be used to automate classification and check for errors. The Drosophila anatomy ontology (DAO) consists of over 8000 classes with broad coverage of Drosophila anatomy. It has been used extensively for annotation by a range of resources, but until recently it was poorly formalised and had few textual definitions. Results We have transformed the DAO into an ontology rich in formal and textual definitions in which the majority of classifications are automated and extensive error checking ensures quality. Here we present an overview of the content of the DAO, the patterns used in its formalisation, and the various uses it has been put to. Conclusions As a result of the work described here, the DAO provides a high-quality, queryable reference for the wild-type anatomy of Drosophila melanogaster and a set of terms to annotate data related to that anatomy. Extensive, well referenced textual definitions make it both a reliable and useful reference and ensure accurate use in annotation. Wide use of formal axioms allows a large proportion of classification to be automated and the use of consistency checking to eliminate errors. This increased formalisation has resulted in significant improvements to the completeness and accuracy of classification. The broad use of both formal and informal definitions make further development of the ontology sustainable and scalable. The patterns of formalisation used in the DAO are likely to be useful to developers of other

  9. Sexual circuitry in Drosophila.

    PubMed

    Auer, Thomas O; Benton, Richard

    2016-06-01

    The sexual behavior of Drosophila melanogaster is an outstanding paradigm to understand the molecular and neuronal basis of sophisticated animal actions. We discuss recent advances in our knowledge of the genetic hardwiring of the underlying neuronal circuitry, and how pertinent sensory cues are differentially detected and integrated in the male and female brain. We also consider how experience influences these circuits over short timescales, and the evolution of these pathways over longer timescales to endow species-specific sexual displays and responses. PMID:26851712

  10. Myoblast fusion in Drosophila

    SciTech Connect

    Haralalka, Shruti; Abmayr, Susan M.

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  11. Initial neurogenesis in Drosophila

    PubMed Central

    Hartenstein, Volker; Wodarz, Andreas

    2014-01-01

    Early neurogenesis comprises the phase of nervous system development during which neural progenitor cells are born. In early development, the embryonic ectoderm is subdivided by a conserved signaling mechanism into two main domains, the epidermal ectoderm and the neurectoderm. Subsequently, cells of the neurectoderm are internalized and form a cell layer of proliferating neural progenitors. In vertebrates, the entire neurectoderm folds into the embryo to give rise to the neural tube. In Drosophila and many other invertebrates, a subset of neurectodermal cells, called neuroblasts (NBs), delaminates and forms the neural primordium inside the embryo where they divide in an asymmetric, stem cell-like mode. The remainder of the neuroectodermal cells that stay behind at the surface loose their neurogenic potential and later give rise to the ventral part of the epidermis. The genetic and molecular analysis of the mechanisms controlling specification and proliferation of NBs in the Drosophila embryo, which played a significant part in pioneering the field of modern developmental neurobiology, represents the topic of this review. PMID:24014455

  12. Initial neurogenesis in Drosophila.

    PubMed

    Hartenstein, Volker; Wodarz, Andreas

    2013-01-01

    Early neurogenesis comprises the phase of nervous system development during which neural progenitor cells are born. In early development, the embryonic ectoderm is subdivided by a conserved signaling mechanism into two main domains, the epidermal ectoderm and the neurectoderm. Subsequently, cells of the neurectoderm are internalized and form a cell layer of proliferating neural progenitors. In vertebrates, the entire neurectoderm folds into the embryo to give rise to the neural tube. In Drosophila and many other invertebrates, a subset of neurectodermal cells, called neuroblasts (NBs), delaminates and forms the neural primordium inside the embryo where they divide in an asymmetric, stem cell-like mode. The remainder of the neurectodermal cells that stay behind at the surface loose their neurogenic potential and later give rise to the ventral part of the epidermis. The genetic and molecular analysis of the mechanisms controlling specification and proliferation of NBs in the Drosophila embryo, which played a significant part in pioneering the field of modern developmental neurobiology, represents the topic of this review. PMID:24014455

  13. Review: Thermal preference in Drosophila

    PubMed Central

    Dillon, Michael E.; Wang, George; Garrity, Paul A.; Huey, Raymond B.

    2009-01-01

    Environmental temperature strongly affects physiology of ectotherms. Small ectotherms, like Drosophila, cannot endogenously regulate body temperature so must rely on behavior to maintain body temperature within a physiologically permissive range. Here we review what is known about Drosophila thermal preference. Work on thermal behavior in this group is particularly exciting because it provides the opportunity to connect genes to neuromolecular mechanisms to behavior to fitness in the wild. PMID:20161211

  14. Optogenetics in Drosophila Neuroscience.

    PubMed

    Riemensperger, Thomas; Kittel, Robert J; Fiala, André

    2016-01-01

    Optogenetic techniques enable one to target specific neurons with light-sensitive proteins, e.g., ion channels, ion pumps, or enzymes, and to manipulate their physiological state through illumination. Such artificial interference with selected elements of complex neuronal circuits can help to determine causal relationships between neuronal activity and the effect on the functioning of neuronal circuits controlling animal behavior. The advantages of optogenetics can best be exploited in genetically tractable animals whose nervous systems are, on the one hand, small enough in terms of cell numbers and to a certain degree stereotypically organized, such that distinct and identifiable neurons can be targeted reproducibly. On the other hand, the neuronal circuitry and the behavioral repertoire should be complex enough to enable one to address interesting questions. The fruit fly Drosophila melanogaster is a favorable model organism in this regard. However, the application of optogenetic tools to depolarize or hyperpolarize neurons through light-induced ionic currents has been difficult in adult flies. Only recently, several variants of Channelrhodopsin-2 (ChR2) have been introduced that provide sufficient light sensitivity, expression, and stability to depolarize central brain neurons efficiently in adult Drosophila. Here, we focus on the version currently providing highest photostimulation efficiency, ChR2-XXL. We exemplify the use of this optogenetic tool by applying it to a widely used aversive olfactory learning paradigm. Optogenetic activation of a population of dopamine-releasing neurons mimics the reinforcing properties of a punitive electric shock typically used as an unconditioned stimulus. In temporal coincidence with an odor stimulus this artificially induced neuronal activity causes learning of the odor signal, thereby creating a light-induced memory. PMID:26965122

  15. Why Drosophila to Study Phototransduction?

    PubMed Central

    Pak, William L.

    2010-01-01

    This review recounts the early history of Drosophila phototransduction genetics, covering the period between approximately 1966 to 1979. Early in this period, the author felt that there was an urgent need for a new approach in phototransduction research. Through inputs from a number of colleagues, he was led to consider isolating Drosophila mutants that are defective in the electroretinogram. Thanks to the efforts of dedicated associates and technical staff, by the end of this period, he was able to accumulate a large number of such mutants. Particularly important in this effort was the use of the mutant assay protocol based on the “prolonged depolarizing afterpotential.” This collection of mutants formed the basis of the subsequent intensive investigations of the Drosophila phototransduction cascade by many investigators. PMID:20536286

  16. Micromechanics of Drosophila Audition

    NASA Astrophysics Data System (ADS)

    Göpfert, M. C.; Robert, D.

    2003-02-01

    An analysis is presented of the auditory micromechanics of the fruit fly Drosophila melanogaster. In this animal, the distal part of the antenna constitutes a resonantly tuned sound receiver, the vibrations of which are transduced by a chordotonal sense organ in the antenna's base. Analyzing the mechanical behavior of the antennal receiver by means of microscanning laser Doppler vibrometry, we show that the auditory system of wild-type flies exhibits a hardening stiffness nonlinearity and spontaneously generates oscillations in the absence of external stimuli. According to the deprivation of these mechanical properties in mechanosensory mutants, the receiver's nonlinearity and oscillation activity are introduced by chordotonal auditory neurons. Requiring the mechanoreceptor-specific extracellular linker protein No-mechanoreceptor-potential-A (NompA), NompC mechanosensory transduction channels, Beethoven (Btv), and Touch-insensitive-larva-B (TilB), nonlinearity and oscillation activity of the fly's antennal receiver depend on prominent components of the auditory transduction machinery and seem to originate from motility of auditory receptor cilia.

  17. Retinal differentiation in Drosophila.

    PubMed

    Treisman, Jessica E

    2013-07-01

    Drosophila eye development has been extensively studied, due to the ease of genetic screens for mutations disrupting this process. The eye imaginal disc is specified during embryonic and larval development by the Pax6 homolog Eyeless and a network of downstream transcription factors. Expression of these factors is regulated by signaling molecules and also indirectly by growth of the eye disc. Differentiation of photoreceptor clusters initiates in the third larval instar at the posterior of the eye disc and progresses anteriorly, driven by the secreted protein Hedgehog. Within each cluster, the combined activities of Hedgehog signaling and Notch-mediated lateral inhibition induce and refine the expression of the transcription factor Atonal, which specifies the founding R8 photoreceptor of each ommatidium. Seven additional photoreceptors, followed by cone and pigment cells, are successively recruited by the signaling molecules Spitz, Delta, and Bride of sevenless. Combinations of these signals and of intrinsic transcription factors give each ommatidial cell its specific identity. During the pupal stages, rhodopsins are expressed, and the photoreceptors and accessory cells take on their final positions and morphologies to form the adult retina. Over the past few decades, the genetic analysis of this small number of cell types arranged in a repetitive structure has allowed a remarkably detailed understanding of the basic mechanisms controlling cell differentiation and morphological rearrangement. PMID:24014422

  18. MUTAGENESIS SCREENING OF PESTICIDES 'DROSOPHILA'

    EPA Science Inventory

    Drosophila melanogaster males were exposed by feeding (plus contact and possibly inhalation). The genetic test found most sensitive and appropriate was the sex-linked recessive lethal test. For this, males of the Canton-S wild type stock were exposed. They were mated individually...

  19. A DNA Virus of Drosophila

    PubMed Central

    Unckless, Robert L.

    2011-01-01

    Little is known about the viruses infecting most species. Even in groups as well-studied as Drosophila, only a handful of viruses have been well-characterized. A viral metagenomic approach was used to explore viral diversity in 83 wild-caught Drosophila innubila, a mushroom feeding member of the quinaria group. A single fly that was injected with, and died from, Drosophila C Virus (DCV) was added to the sample as a control. Two-thirds of reads in the infected sample had DCV as the best BLAST hit, suggesting that the protocol developed is highly sensitive. In addition to the DCV hits, several sequences had Oryctes rhinoceros Nudivirus, a double-stranded DNA virus, as a best BLAST hit. The virus associated with these sequences was termed Drosophila innubila Nudivirus (DiNV). PCR screens of natural populations showed that DiNV was both common and widespread taxonomically and geographically. Electron microscopy confirms the presence of virions in fly fecal material similar in structure to other described Nudiviruses. In 2 species, D. innubila and D. falleni, the virus is associated with a severe (∼80–90%) loss of fecundity and significantly decreased lifespan. PMID:22053195

  20. Antibody Staining in Drosophila Germaria.

    PubMed

    Lie-Jensen, Anette; Haglund, Kaisa

    2016-01-01

    Drosophila oogenesis is a powerful model for studying a wide spectrum of cellular and developmental processes in vivo. Oogenesis starts in a specialized structure called the germarium, which harbors the stem cells for both germ and somatic cells. The germarium produces egg chambers, each of which will develop into an egg. Active areas of research in Drosophila germaria include stem cell self-renewal, division, and maintenance, cell cycle control and differentiation, oocyte specification, intercellular communication, and signaling, among others. The solid knowledge base, the genetic tractability of the Drosophila model, as well as the availability and fast development of tools and imaging techniques for oogenesis research ensure that studies in this model will keep being instrumental for novel discoveries within cell and developmental biology also in the future. This chapter focuses on antibody staining in Drosophila germaria and provides a protocol for immunostaining as well as an overview of commonly used antibodies for visualization of different cell types and cellular structures. The protocol is well-suited for subsequent confocal microscopy analyses, and in addition we present key adaptations of the protocol that are useful when performing structured illumination microscopy (SIM) super-resolution imaging. PMID:27557571

  1. Iron Absorption in Drosophila melanogaster

    PubMed Central

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-01-01

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  2. Iron absorption in Drosophila melanogaster.

    PubMed

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-05-01

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  3. Drosophila Photoreceptors and Signaling Mechanisms

    PubMed Central

    Katz, Ben; Minke, Baruch

    2009-01-01

    Fly eyes have been a useful biological system in which fundamental principles of sensory signaling have been elucidated. The physiological optics of the fly compound eye, which was discovered in the Musca, Calliphora and Drosophila flies, has been widely exploited in pioneering genetic and developmental studies. The detailed photochemical cycle of bistable photopigments has been elucidated in Drosophila using the genetic approach. Studies of Drosophila phototransduction using the genetic approach have led to the discovery of novel proteins crucial to many biological processes. A notable example is the discovery of the inactivation no afterpotential D scaffold protein, which binds the light-activated channel, its activator the phospholipase C and it regulator protein kinase C. An additional protein discovered in the Drosophila eye is the light-activated channel transient receptor potential (TRP), the founding member of the diverse and widely spread TRP channel superfamily. The fly eye has thus played a major role in the molecular identification of processes and proteins with prime importance. PMID:19623243

  4. Gene expression patterns in primary neuronal clusters of the Drosophila embryonic brain

    PubMed Central

    Sprecher, Simon G.; Reichert, Heinrich; Hartenstein, Volker

    2014-01-01

    The brain of Drosophila is formed by approximately 100 lineages, each lineage being derived from a stem cell-like neuroblast that segregates from the procephalic neurectoderm of the early embryo. A neuroblast map has been established in great detail for the early embryo, and a suite of molecular markers has been defined for all neuroblasts included in this map (Urbach and Technau, 2003a). However, the expression of these markers was not followed into later embryonic or larval stages, mainly due to the fact that anatomical landmarks to which expression patterns could be related had not been defined. Such markers, in the form of stereotyped clusters of neurons whose axons project along cohesive bundles (“primary axon bundles” or “PABs”) are now available (Younossi-Hartenstein et al., 2006). In the present study we have mapped the expression of molecular markers in relationship to primary neuronal clusters and their PABs. The markers we analyzed include many of the genes involved in patterning of the brain along the anteroposterior axis (cephalic gap genes, segment polarity genes) and dorso-ventral axis (columnar patterning genes), as well as genes expressed in the dorsal protocerebrum and visual system (early eye genes). Our analysis represents an important step along the way to identify neuronal lineages of the mature brain with genes expressed in the early embryo in discrete neuroblasts. Furthermore, the analysis helped us to reconstruct the morphogenetic movements that transform the two-dimensional neuroblast layer of the early embryo into the three-dimensional larval brain and provides the basis for deeper understanding of how the embryonic brain develops. PMID:17300994

  5. Methods to assay Drosophila behavior.

    PubMed

    Nichols, Charles D; Becnel, Jaime; Pandey, Udai B

    2012-01-01

    Drosophila melanogaster, the fruit fly, has been used to study molecular mechanisms of a wide range of human diseases such as cancer, cardiovascular disease and various neurological diseases(1). We have optimized simple and robust behavioral assays for determining larval locomotion, adult climbing ability (RING assay), and courtship behaviors of Drosophila. These behavioral assays are widely applicable for studying the role of genetic and environmental factors on fly behavior. Larval crawling ability can be reliably used for determining early stage changes in the crawling abilities of Drosophila larvae and also for examining effect of drugs or human disease genes (in transgenic flies) on their locomotion. The larval crawling assay becomes more applicable if expression or abolition of a gene causes lethality in pupal or adult stages, as these flies do not survive to adulthood where they otherwise could be assessed. This basic assay can also be used in conjunction with bright light or stress to examine additional behavioral responses in Drosophila larvae. Courtship behavior has been widely used to investigate genetic basis of sexual behavior, and can also be used to examine activity and coordination, as well as learning and memory. Drosophila courtship behavior involves the exchange of various sensory stimuli including visual, auditory, and chemosensory signals between males and females that lead to a complex series of well characterized motor behaviors culminating in successful copulation. Traditional adult climbing assays (negative geotaxis) are tedious, labor intensive, and time consuming, with significant variation between different trials(2-4). The rapid iterative negative geotaxis (RING) assay(5) has many advantages over more widely employed protocols, providing a reproducible, sensitive, and high throughput approach to quantify adult locomotor and negative geotaxis behaviors. In the RING assay, several genotypes or drug treatments can be tested simultaneously

  6. Circular DNA Molecules in the Genus Drosophila

    PubMed Central

    Travaglini, E. C.; Schultz, J.

    1972-01-01

    The satellite DNA's from the embryos of five species of Drosophila (D. melanogaster, D. simulans, D. nasuta, D. virilis and D. hydei) have been analyzed for the presence of closed circular duplex DNA molecules, as determined by CsCl-EBr gradients. Circular DNA molecules were found in every species but D. melanogaster. Analyses of cell fractions from adult Drosophila and organ fractions from Drosophila larvae show that fractions containing mitochondria are highly enriched in these molecules. PMID:4643820

  7. kuzbanian-mediated cleavage of Drosophila Notch

    PubMed Central

    Lieber, Toby; Kidd, Simon; Young, Michael W.

    2002-01-01

    Loss of Kuzbanian, a member of the ADAM family of metalloproteases, produces neurogenic phenotypes in Drosophila. It has been suggested that this results from a requirement for kuzbanian-mediated cleavage of the Notch ligand Delta. Using transgenic Drosophila expressing transmembrane Notch proteins, we show that kuzbanian, independent of any role in Delta processing, is required for the cleavage of Notch. We show that Kuzbanian can physically associate with Notch and that removal of kuzbanian activity by RNA-mediated interference in Drosophila tissue culture cells eliminates processing of ligand-independent transmembrane Notch molecules. Our data suggest that in Drosophila, kuzbanian can mediate S2 cleavage of Notch. PMID:11799064

  8. A Drosophila complementary DNA resource

    SciTech Connect

    Rubin, Gerald M.; Hong, Ling; Brokstein, Peter; Evans-Holm, Martha; Frise, Erwin; Stapleton, Mark; Harvey, Damon A.

    2000-03-24

    Collections of nonredundant, full-length complementary DNA (cDNA) clones for each of the model organisms and humans will be important resources for studies of gene structure and function. We describe a general strategy for producing such collections and its implementation, which so far has generated a set of cDNAs corresponding to over 40% of the genes in the fruit fly Drosophila melanogaster.

  9. Optogenetic pacing in Drosophila melanogaster

    PubMed Central

    Alex, Aneesh; Li, Airong; Tanzi, Rudolph E.; Zhou, Chao

    2015-01-01

    Electrical stimulation is currently the gold standard for cardiac pacing. However, it is invasive and nonspecific for cardiac tissues. We recently developed a noninvasive cardiac pacing technique using optogenetic tools, which are widely used in neuroscience. Optogenetic pacing of the heart provides high spatial and temporal precisions, is specific for cardiac tissues, avoids artifacts associated with electrical stimulation, and therefore promises to be a powerful tool in basic cardiac research. We demonstrated optogenetic control of heart rhythm in a well-established model organism, Drosophila melanogaster. We developed transgenic flies expressing a light-gated cation channel, channelrhodopsin-2 (ChR2), specifically in their hearts and demonstrated successful optogenetic pacing of ChR2-expressing Drosophila at different developmental stages, including the larva, pupa, and adult stages. A high-speed and ultrahigh-resolution optical coherence microscopy imaging system that is capable of providing images at a rate of 130 frames/s with axial and transverse resolutions of 1.5 and 3.9 μm, respectively, was used to noninvasively monitor Drosophila cardiac function and its response to pacing stimulation. The development of a noninvasive integrated optical pacing and imaging system provides a novel platform for performing research studies in developmental cardiology. PMID:26601299

  10. Leigh Syndrome in Drosophila melanogaster

    PubMed Central

    Da-Rè, Caterina; von Stockum, Sophia; Biscontin, Alberto; Millino, Caterina; Cisotto, Paola; Zordan, Mauro A.; Zeviani, Massimo; Bernardi, Paolo; De Pittà, Cristiano; Costa, Rodolfo

    2014-01-01

    Leigh Syndrome (LS) is the most common early-onset, progressive mitochondrial encephalopathy usually leading to early death. The single most prevalent cause of LS is occurrence of mutations in the SURF1 gene, and LSSurf1 patients show a ubiquitous and specific decrease in the activity of mitochondrial respiratory chain complex IV (cytochrome c oxidase, COX). SURF1 encodes an inner membrane mitochondrial protein involved in COX assembly. We established a Drosophila melanogaster model of LS based on the post-transcriptional silencing of CG9943, the Drosophila homolog of SURF1. Knockdown of Surf1 was induced ubiquitously in larvae and adults, which led to lethality; in the mesodermal derivatives, which led to pupal lethality; or in the central nervous system, which allowed survival. A biochemical characterization was carried out in knockdown individuals, which revealed that larvae unexpectedly displayed defects in all complexes of the mitochondrial respiratory chain and in the F-ATP synthase, while adults had a COX-selective impairment. Silencing of Surf1 expression in Drosophila S2R+ cells led to selective loss of COX activity associated with decreased oxygen consumption and respiratory reserve. We conclude that Surf1 is essential for COX activity and mitochondrial function in D. melanogaster, thus providing a new tool that may help clarify the pathogenic mechanisms of LS. PMID:25164807

  11. Insulin receptor in Drosophila melanogaster

    SciTech Connect

    Petruzzelli, L.; Herrera, R.; Rosen, O.

    1986-05-01

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound /sup 125/I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to /sup 125/I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to /sup 125/I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development.

  12. 'Peer pressure' in larval Drosophila?

    PubMed

    Niewalda, Thomas; Jeske, Ines; Michels, Birgit; Gerber, Bertram

    2014-01-01

    Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on 'peer pressure', that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila. PMID:24907371

  13. Biology and physiology of Drosophila suzukii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spotted wing drosophila, Drosophila suzukii, quickly emerged as a devastating invasive pest of small and stone fruits in the Americas and Europe. To better understand the population dynamics of D. suzukii, we reviewed recent work on juvenile development, adult reproduction, and seasonal variation in...

  14. Drosophila and Beer: An Experimental Laboratory Exercise

    ERIC Educational Resources Information Center

    Kurvink, Karen

    2004-01-01

    Drosophila melanogaster is a popular organism for studying genetics and development. Maintaining Drosophila on medium prepared with varying concentrations of beer and evaluating the effects on reproduction, life cycle stages and other factors is one of the exercises that is versatile and applicable to many student levels.

  15. Cryobiological preservation of Drosophila embryos

    SciTech Connect

    Mazur, P.; Schreuders, P.D.; Cole, K.W.; Hall, J.W. ); Mahowald, A.P. )

    1992-12-18

    The inability to cryobiologically preserve the fruit fly Drosophila melanogaster has required that fly stocks be maintained by frequent transfer of adults. This method is costly in terms of time and can lead to loss of stocks. Traditional slow freezing methods do not succeed because the embryos are highly sensitive to chilling. With the procedures described here, 68 percent of precisely staged 15-hour Oregon R (wild-type) embryos hatch after vitrification at -205[degree]C, and 40 percent of the resulting larvae develop into normal adult flies. These embryos are among the most complex organisms successfully preserved by cryobiology.

  16. Taste processing in Drosophila larvae

    PubMed Central

    Apostolopoulou, Anthi A.; Rist, Anna; Thum, Andreas S.

    2015-01-01

    The sense of taste allows animals to detect chemical substances in their environment to initiate appropriate behaviors: to find food or a mate, to avoid hostile environments and predators. Drosophila larvae are a promising model organism to study gustation. Their simple nervous system triggers stereotypic behavioral responses, and the coding of taste can be studied by genetic tools at the single cell level. This review briefly summarizes recent progress on how taste information is sensed and processed by larval cephalic and pharyngeal sense organs. The focus lies on several studies, which revealed cellular and molecular mechanisms required to process sugar, salt, and bitter substances. PMID:26528147

  17. Geotaxis baseline data for Drosophila

    NASA Technical Reports Server (NTRS)

    Schnebel, E. M.; Bhargava, R.; Grossfield, J.

    1987-01-01

    Geotaxis profiles for 20 Drosophila species and semispecies at different ages have been examined using a calibrated, adjustable slant board device. Measurements were taken at 5 deg intervals ranging from 0 deg to 85 deg. Clear strain and species differences are observed, with some groups tending to move upward (- geotaxis) with increasing angles, while others move downward (+ geotaxis). Geotactic responses change with age in some, but not all experimental groups. Sample geotaxis profiles are presented and their application to ecological and aging studies are discussed. Data provide a baseline for future evaluations of the biological effects of microgravity.

  18. Macrophages and cellular immunity in Drosophila melanogaster.

    PubMed

    Gold, Katrina S; Brückner, Katja

    2015-12-01

    The invertebrate Drosophila melanogaster has been a powerful model for understanding blood cell development and immunity. Drosophila is a holometabolous insect, which transitions through a series of life stages from embryo, larva and pupa to adulthood. In spite of this, remarkable parallels exist between Drosophila and vertebrate macrophages, both in terms of development and function. More than 90% of Drosophila blood cells (hemocytes) are macrophages (plasmatocytes), making this highly tractable genetic system attractive for studying a variety of questions in macrophage biology. In vertebrates, recent findings revealed that macrophages have two independent origins: self-renewing macrophages, which reside and proliferate in local microenvironments in a variety of tissues, and macrophages of the monocyte lineage, which derive from hematopoietic stem or progenitor cells. Like vertebrates, Drosophila possesses two macrophage lineages with a conserved dual ontogeny. These parallels allow us to take advantage of the Drosophila model when investigating macrophage lineage specification, maintenance and amplification, and the induction of macrophages and their progenitors by local microenvironments and systemic cues. Beyond macrophage development, Drosophila further serves as a paradigm for understanding the mechanisms underlying macrophage function and cellular immunity in infection, tissue homeostasis and cancer, throughout development and adult life. PMID:27117654

  19. Complete mitochondrial genome of Drosophila albomicans.

    PubMed

    Kang, Xiongbin; Luo, Xiao; Zhang, Zhi; Zhang, Zhen; Yang, Junqing; Bi, Guiqi

    2016-09-01

    Drosophila albomicans has been widely used as an important animal model for chromosome evolution. In this study, the mitochondrial genome sequence of this species is determined and described for the first time. The mitochondrial genome (15 849 bp) encompasses two rRNA, 22 tRNA, and 13 protein-coding genes. Genome content and structure are similar to those reported from other Drosophila mitochondrial genomes. Phylogeny analysis indicates that D. albomicans have a closer genetic relationship with Drosophil aincompta and Drosophil alittoralis. This mitochondrial genome is potentially important for studying molecular evolution and conservation genetics in Drosophila genus. PMID:26358579

  20. Cellular immune defenses of Drosophila melanogaster.

    PubMed

    Parsons, Brendon; Foley, Edan

    2016-05-01

    Drosophila melanogaster is a widely used model for the characterization of blood cell development and function, with an array of protocols for the manipulation and visualization of fixed or live cells in vitro or in vivo. Researchers have deployed these techniques to reveal Drosophila hemocytes as a remarkably versatile cell type that engulfs apoptotic corpses; neutralizes invading parasites; seals epithelial wounds; and deposits extracellular matrix proteins. In this review, we will discuss the key features of Drosophila hemocyte development and function, and identify similarities with vertebrate counterparts. PMID:26748247

  1. Drosophila Modeling of Heritable Neurodevelopmental Disorders

    PubMed Central

    Gatto, Cheryl L.; Broadie, Kendal

    2011-01-01

    Heritable neurodevelopmental disorders are multifaceted disease conditions encompassing a wide range of symptoms including intellectual disability, cognitive dysfunction, autism and myriad other behavioral impairments. In cases where single, causative genetic defects have been identified, such as Angelman syndrome, Rett syndrome, Neurofibromatosis Type 1 and Fragile X syndrome, the classical Drosophila genetic system has provided fruitful disease models. Recent Drosophila studies have advanced our understanding of UBE3A, MECP2, NF1 and FMR1 function, respectively, in genetic, biochemical, anatomical, physiological and behavioral contexts. Investigations in Drosophila continue to provide the essential mechanistic understanding required to facilitate the conception of rational therapeutic treatments. PMID:21596554

  2. Automated Tracking of Drosophila Specimens

    PubMed Central

    Chao, Rubén; Macía-Vázquez, Germán; Zalama, Eduardo; Gómez-García-Bermejo, Jaime; Perán, José-Ramón

    2015-01-01

    The fruit fly Drosophila Melanogaster has become a model organism in the study of neurobiology and behavior patterns. The analysis of the way the fly moves and its behavior is of great scientific interest for research on aspects such as drug tolerance, aggression or ageing in humans. In this article, a procedure for detecting, identifying and tracking numerous specimens of Drosophila by means of computer vision-based sensing systems is presented. This procedure allows dynamic information about each specimen to be collected at each moment, and then for its behavior to be quantitatively characterized. The proposed algorithm operates in three main steps: a pre-processing step, a detection and segmentation step, and tracking shape. The pre-processing and segmentation steps allow some limits of the image acquisition system and some visual artifacts (such as shadows and reflections) to be dealt with. The improvements introduced in the tracking step allow the problems corresponding to identity loss and swaps, caused by the interaction between individual flies, to be solved efficiently. Thus, a robust method that compares favorably to other existing methods is obtained. PMID:26258779

  3. Automated Tracking of Drosophila Specimens.

    PubMed

    Chao, Rubén; Macía-Vázquez, Germán; Zalama, Eduardo; Gómez-García-Bermejo, Jaime; Perán, José-Ramón

    2015-01-01

    The fruit fly Drosophila Melanogaster has become a model organism in the study of neurobiology and behavior patterns. The analysis of the way the fly moves and its behavior is of great scientific interest for research on aspects such as drug tolerance, aggression or ageing in humans. In this article, a procedure for detecting, identifying and tracking numerous specimens of Drosophila by means of computer vision-based sensing systems is presented. This procedure allows dynamic information about each specimen to be collected at each moment, and then for its behavior to be quantitatively characterized. The proposed algorithm operates in three main steps: a pre-processing step, a detection and segmentation step, and tracking shape. The pre-processing and segmentation steps allow some limits of the image acquisition system and some visual artifacts (such as shadows and reflections) to be dealt with. The improvements introduced in the tracking step allow the problems corresponding to identity loss and swaps, caused by the interaction between individual flies, to be solved efficiently. Thus, a robust method that compares favorably to other existing methods is obtained. PMID:26258779

  4. Drosophila Models of Cardiac Disease

    PubMed Central

    Piazza, Nicole; Wessells, R.J.

    2013-01-01

    The fruit fly Drosophila melanogaster has emerged as a useful model for cardiac diseases, both developmental abnormalities and adult functional impairment. Using the tools of both classical and molecular genetics, the study of the developing fly heart has been instrumental in identifying the major signaling events of cardiac field formation, cardiomyocyte specification, and the formation of the functioning heart tube. The larval stage of fly cardiac development has become an important model system for testing isolated preparations of living hearts for the effects of biological and pharmacological compounds on cardiac activity. Meanwhile, the recent development of effective techniques to study adult cardiac performance in the fly has opened new uses for the Drosophila model system. The fly system is now being used to study long-term alterations in adult performance caused by factors such as diet, exercise, and normal aging. The fly is a unique and valuable system for the study of such complex, long-term interactions, as it is the only invertebrate genetic model system with a working heart developmentally homologous to the vertebrate heart. Thus, the fly model combines the advantages of invertebrate genetics (such as large populations, facile molecular genetic techniques, and short lifespan) with physiological measurement techniques that allow meaningful comparisons with data from vertebrate model systems. As such, the fly model is well situated to make important contributions to the understanding of complicated interactions between environmental factors and genetics in the long-term regulation of cardiac performance. PMID:21377627

  5. Monoamines and sleep in Drosophila.

    PubMed

    Nall, Aleksandra; Sehgal, Amita

    2014-06-01

    Sleep is an important physiological state, but its function and regulation remain elusive. Drosophila melanogaster is a useful model organism for studying sleep because it has a well-established diurnal activity pattern, including consolidated periods of quiescence that share many characteristics with human sleep. Sleep behavior is regulated by circadian and homeostatic processes and is modulated by environmental and physiological context cues. These cues are communicated to sleep circuits by neurohormones and neuromodulators. A major class of neuromodulators, monoamines, has been found to be essential in various aspects of sleep regulation. Dopamine promotes arousal and sleep-dependent memory formation as well as daily activity. Octopamine, the insect homolog of norepinephrine, promotes wake and may play a role in circadian clock-dependent sleep and arousal. Serotonin promotes sleep and modulates circadian entrainment to light. The different monoamines each signal through multiple receptors in various brain regions in response to different conditions. How these separate circuits integrate their inputs into a single program of behavior is an open field of study for which Drosophila will continue to be a useful model. Monoamine biosynthetic pathways and receptors are conserved between flies and humans, and, thus far, their roles in modulating sleep also appear to be conserved. PMID:24886188

  6. Gene Regulation Networks for Modeling Drosophila Development

    NASA Technical Reports Server (NTRS)

    Mjolsness, E.

    1999-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila Melanogaster.

  7. Drosophila RNAi screening in a postgenomic world

    PubMed Central

    2011-01-01

    Drosophila melanogaster has a long history as a model organism with several unique features that make it an ideal research tool for the study of the relationship between genotype and phenotype. Importantly fundamental genetic principles as well as key human disease genes have been uncovered through the use of Drosophila. The contribution of the fruit fly to science and medicine continues in the postgenomic era as cell-based Drosophila RNAi screens are a cost-effective and scalable enabling technology that can be used to quantify the contribution of different genes to diverse cellular processes. Drosophila high-throughput screens can also be used as integral part of systems-level approaches to describe the architecture and dynamics of cellular networks. PMID:21752787

  8. Drosophila Cajal bodies: accessories not included

    PubMed Central

    Matera, A. Gregory

    2006-01-01

    Cajal bodies are nuclear sites of small ribonucleoprotein (RNP) remodeling and maturation. A recent study describes the discovery of the Drosophila Cajal body, revealing some interesting insights into the subnuclear organization of RNA processing machineries among different species. PMID:16533940

  9. Targeted genome engineering techniques in Drosophila

    PubMed Central

    Beumer, Kelly J.; Carroll, Dana

    2014-01-01

    For a century, Drosophila has been a favored organism for genetic research. However, the array of materials and methods available to the Drosophila worker has expanded dramatically in the last decade. The most common gene targeting tools, zinc finger nucleases, TALENs, and RNA-guided CRISPR/Cas9, have all been adapted for use in Drosophila, both for simple mutagenesis and for gene editing via homologous recombination. For each tool, there exist a number of web sites, design applications, and delivery methods. The successful application of any of these tools also requires an understanding of methods for detecting successful genome modifications. This article provides an overview of the available gene targeting tools and their application in Drosophila. In lieu of simply providing a protocol for gene targeting, we direct the researcher to resources that will allow access to the latest research in this rapidly evolving field. PMID:24412316

  10. Circadian light-input pathways in Drosophila.

    PubMed

    Yoshii, Taishi; Hermann-Luibl, Christiane; Helfrich-Förster, Charlotte

    2016-01-01

    Light is the most important environmental cue to entrain the circadian clock in most animals. In the fruit fly Drosophila melanogaster, the light entrainment mechanisms of the clock have been well-studied. The Drosophila brain contains approximately 150 neurons that rhythmically express circadian clock genes. These neurons are called "clock neurons" and control behavioral activity rhythms. Many clock neurons express the Cryptochrome (CRY) protein, which is sensitive to UV and blue light, and thus enables clock neurons deep in the brain to directly perceive light. In addition to the CRY protein, external photoreceptors in the Drosophila eyes play an important role in circadian light-input pathways. Recent studies have provided new insights into the mechanisms that integrate these light inputs into the circadian network of the brain. In this review, we will summarize the current knowledge on the light entrainment pathways in the Drosophila circadian clock. PMID:27066180

  11. Ecdysteroid receptors in Drosophila melanogaster adult females

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecdysteroid receptors were identified and partially characterized from total cell extracts of whole animals and dissected tissues from Drosophila melanogaster adult females. Binding studies indicated the presence of two ecdysteroid binding components having high affinity and specificity consistent w...

  12. Colour vision: parallel pathways intersect in Drosophila.

    PubMed

    Kelber, Almut; Henze, Miriam J

    2013-12-01

    In the last one hundred years, colour vision has been demonstrated in bees and many other insects. But the underlying neural wiring remained elusive. A new study on Drosophila melanogaster combining behavioural and genetic tools yields surprising insights. PMID:24309280

  13. Two retrotransposons maintain telomeres in Drosophila

    PubMed Central

    Pardue, M.-L.; Rashkova, S.; Casacuberta, E.; DeBaryshe, P.G.; George, J. A.; Traverse, K.L.

    2005-01-01

    Telomeres across the genus Drosophila are maintained, not by telomerase, but by two non-LTR retrotransposons, HeT-A and TART, that transpose specifically to chromosome ends. Successive transpositions result in long head-to-tail arrays of these elements. Thus Drosophila telomeres, like those produced by telomerase, consist of repeated sequences reverse transcribed from RNA templates. The Drosophila repeats, complete and 5′-truncated copies of HeT-A and TART, are more complex than telomerase repeats; nevertheless these evolutionary variants have functional similarities to the more common telomeres. Like other telomeres, the Drosophila arrays are dynamic, fluctuating around an average length that can be changed by changes in the genetic background. Several proteins that interact with telomeres in other species have been found to have homologues that interact with Drosophila telomeres. Although they have hallmarks of non-LTR retrotransposons, HeT-A and TART appear to have a special relationship to Drosophila. Their Gag proteins are efficiently transported into diploid nuclei where HeT-A Gag recruits TART Gag to chromosome ends. Gags of other non-LTR elements remain predominantly in the cytoplasm. These studies provide intriguing evolutionary links between telomeres and retrotransposable elements. PMID:16132810

  14. A Drosophila Model for Screening Antiobesity Agents

    PubMed Central

    Men, Tran Thanh; Thanh, Duong Ngoc Van; Yamaguchi, Masamitsu; Suzuki, Takayoshi; Hattori, Gen; Arii, Masayuki; Huy, Nguyen Tien; Kamei, Kaeko

    2016-01-01

    Although triacylglycerol, the major component for lipid storage, is essential for normal physiology, its excessive accumulation causes obesity in adipose tissue and is associated with organ dysfunction in nonadipose tissue. Here, we focused on the Drosophila model to develop therapeutics for preventing obesity. The brummer (bmm) gene in Drosophila melanogaster is known to be homologous with human adipocyte triglyceride lipase, which is related to the regulation of lipid storage. We established a Drosophila model for monitoring bmm expression by introducing the green fluorescent protein (GFP) gene as a downstream reporter of the bmm promoter. The third-instar larvae of Drosophila showed the GFP signal in all tissues observed and specifically in the salivary gland nucleus. To confirm the relationship between bmm expression and obesity, the effect of oral administration of glucose diets on bmm promoter activity was analyzed. The Drosophila flies given high-glucose diets showed higher lipid contents, indicating the obesity phenotype; this was suggested by a weaker intensity of the GFP signal as well as reduced bmm mRNA expression. These results demonstrated that the transgenic Drosophila model established in this study is useful for screening antiobesity agents. We also report the effects of oral administration of histone deacetylase inhibitors and some vegetables on the bmm promoter activity. PMID:27247940

  15. Postharvest treatment of strawberries with methyl bromide to control spotted wing drosophila, Drosophila suzukii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spotted wing drosophila (SWD), Drosophila suzukii, is a pest of concern to countries that import strawberries from California USA. The purpose of this investigation was to verify elimination of SWD in California-grown fresh strawberries under conditions consistent with export to Australia; a 3-h fum...

  16. Current Recommendations for Managing Spotted Wing Drosophila (SWD), Drosophila suzukii, in PNW Strawberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spotted wing Drosophila (SWD), Drosophila suzukii, was reported in the Pacific Northwest (Oregon, Washington, British Columbia) in 2009. The fly is able to oviposit directly into intact ripe and ripening fruit, so it is of great economic concern to the small fruit industries in region. Fruit i...

  17. Current Recommendations for Managing Spotted Wing Drosophila (SWD), Drosophila suzukii, in PNW Blueberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spotted wing Drosophila (SWD), Drosophila suzukii, was reported in the Pacific Northwest (Oregon, Washington, British Columbia) in 2009. The fly is able to oviposit directly into intact ripe and ripening fruit, so it is of great economic concern to the small fruit industries in region. Fruit i...

  18. Current Recommendations for Managing Spotted Wing Drosophila (SWD), Drosophila suzukii, in PNW Caneberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spotted wing Drosophila (SWD), Drosophila suzukii, was reported in the Pacific Northwest (Oregon, Washington, British Columbia) in 2009. The fly is able to oviposit directly into intact ripe and ripening fruit, so it is of great economic concern to the small fruit industries in region. Fruit i...

  19. The susceptibility of small fruits and cherries to Spotted Wing Drosophila, Drosophila suzukii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: The Spotted Wing Drosophila (SWD), Drosophila suzukii Matsumura, is native to Asia and has been detected in the North American mainland and Europe in 2008-10. SWD is a serious economic pest because it lays eggs within ripening fruit before harvest which can lead to crop loss. The aim ...

  20. Behavioral and antennal responses of spotted wing drosophila, drosophila suzukii, to volatiles from fruit extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Native to Southeast Asia, the spotted wing drosophila, Drosophila suzukii, has become a serious pest of soft-skinned fruit crops since its introduction into North America and Europe in 2008. Current monitoring strategies use baits based on fermentation products; however, to date, no fruit-based vola...

  1. Invasion biology of Spotted Wing Drosophila (Drosophila suzukii): a global perspective and future priorities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Asian vinegar fly species Drosophila suzukii (spotted-wing Drosophila or SWD) has emerged as an important invasive insect pest of small and stone fruits in both the Americas and Europe since the late 2000’s. While research efforts have rapidly progressed in Asia, North America, and Europe over ...

  2. Spotted wing drosophila, Drosophila suzukii (Matsumura)(Diptera: drosophilidae), trapped with combinations of wines and vinegars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field trapping experiments evaluated wine and vinegar baits for spotted wing drosophila flies, Drosophila suzukii (Matsumura), and assessed variance in biat attractiveness with wit type, vinegar type, and bait age. A mixture of apple cider vinegar and a Merlot wine attracted more flies than a mixtur...

  3. Homotypic Regulatory Clusters in Drosophila

    PubMed Central

    Lifanov, Alexander P.; Makeev, Vsevolod J.; Nazina, Anna G.; Papatsenko, Dmitri A.

    2003-01-01

    Cis-regulatory modules (CRMs) are transcription regulatory DNA segments (∼1 Kb range) that control the expression of developmental genes in higher eukaryotes. We analyzed clustering of known binding motifs for transcription factors (TFs) in over 60 known CRMs from 20 Drosophila developmental genes, and we present evidence that each type of recognition motif forms significant clusters within the regulatory regions regulated by the corresponding TF. We demonstrate how a search with a single binding motif can be applied to explore gene regulatory networks and to discover coregulated genes in the genome. We also discuss the potential of the clustering method in interpreting the differential response of genes to various levels of transcriptional regulators. PMID:12670999

  4. Investigating Spermatogenesis in Drosophila melanogaster

    PubMed Central

    Demarco, Rafael S.; Eikenes, Åsmund H.; Haglund, Kaisa; Jones, D. Leanne

    2014-01-01

    The process of spermatogenesis in Drosophila melanogaster provides a powerful model system to probe a variety of developmental and cell biological questions, such as the characterization of mechanisms that regulate stem cell behavior, cytokinesis, meiosis, and mitochondrial dynamics. Classical genetic approaches, together with binary expression systems, FRT-mediated recombination, and novel imaging systems to capture single cell behavior, are rapidly expanding our knowledge of the molecular mechanisms regulating all aspects of spermatogenesis. This methods chapter provides a detailed description of the system, a review of key questions chapter that have been addressed or remain unanswered thus far, and an introduction to tools and techniques available to probe each stage of spermatogenesis. PMID:24798812

  5. Resources for Biological Annotation of the Drosophila Genome

    SciTech Connect

    Gerald M. Rubin

    2005-08-08

    This project supported seed money for the development of cDNA and genetic resources to support studies of the Drosophila melanogaster genome. Key publications supported by this work that provide additional detail: (1) ''The Drosophila gene collection: identification of putative full-length cDNAs for 70% of D. melanogaster genes''; and (2) ''The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes''.

  6. Enhancing Undergraduate Teaching and Research with a "Drosophila" Virginizing System

    ERIC Educational Resources Information Center

    Venema, Dennis R.

    2006-01-01

    Laboratory exercises using "Drosophila" crosses are an effective pedagogical method to complement traditional lecture and textbook presentations of genetics. Undergraduate thesis research is another common setting for using "Drosophila." A significant barrier to using "Drosophila" for undergraduate teaching or research is the time and skill…

  7. Environmental ethanol as an ecological constraint on dietary breadth of Spotted-Wing Drosophila, Drosophila suzukii Mat. (Diptera: Drosophilidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spotted-wing Drosophila (SWD), Drosophila suzukii, is a recent fruit pest of the Americas whose destructiveness stems from its subcutaneous insertion of eggs into cultivated berries via a female’s prominent double bladed and serrated ovipositor. Atypical of most other Drosophila, D. suzukii adults a...

  8. 31 Flavors of Drosophila Rab proteins

    SciTech Connect

    Zhang, Jun; Schulze, Karen L.; Hiesinger, P. Robin; Suyama, Kaye; Wang, Stream; Fish, Matthew; Acar, Melih; Hoskins, Roger A.; Bellen, HugoJ.; Scott, Matthew P.

    2007-04-03

    Rab proteins are small GTPases that play important roles intransport of vesicle cargo and recruitment, association of motor andother proteins with vesicles, and docking and fusion of vesicles atdefined locations. In vertebrates, more than 75 Rab genes have beenidentified, some of which have been intensively studied for their rolesin endosome and synaptic vesicle trafficking. Recent studies of thefunctions of certain Rab proteins have revealed specific roles inmediating developmental signal transduction. We have begun a systematicgenetic study of the 33 Rab genes in Drosophila. Most of the fly proteinsare clearly related to specific vertebrate proteins. We report here thecreation of a set of transgenic fly lines that allow spatially andtemporally regulated expression of Drosophila Rab proteins. We generatedfluorescent protein-tagged wild-type, dominant-negative, andconstitutively active forms of 31 Drosophila Rab proteins. We describeDrosophila Rab expression patterns during embryogenesis, the subcellularlocalization of some Rab proteins, and comparisons of the localization ofwild-type, dominant-negative, and constitutively active forms of selectedRab proteins. The high evolutionary conservation and low redundancy ofDrosophila Rab proteins make these transgenic lines a useful toolkit forinvestigating Rab functions in vivo.

  9. Development of dendrite polarity in Drosophila neurons

    PubMed Central

    2012-01-01

    Background Drosophila neurons have dendrites that contain minus-end-out microtubules. This microtubule arrangement is different from that of cultured mammalian neurons, which have mixed polarity microtubules in dendrites. Results To determine whether Drosophila and mammalian dendrites have a common microtubule organization during development, we analyzed microtubule polarity in Drosophila dendritic arborization neuron dendrites at different stages of outgrowth from the cell body in vivo. As dendrites initially extended, they contained mixed polarity microtubules, like mammalian neurons developing in culture. Over a period of several days this mixed microtubule array gradually matured to a minus-end-out array. To determine whether features characteristic of dendrites were localized before uniform polarity was attained, we analyzed dendritic markers as dendrites developed. In all cases the markers took on their characteristic distribution while dendrites had mixed polarity. An axonal marker was also quite well excluded from dendrites throughout development, although this was perhaps more efficient in mature neurons. To confirm that dendrite character could be acquired in Drosophila while microtubules were mixed, we genetically disrupted uniform dendritic microtubule organization. Dendritic markers also localized correctly in this case. Conclusions We conclude that developing Drosophila dendrites initially have mixed microtubule polarity. Over time they mature to uniform microtubule polarity. Dendrite identity is established before the mature microtubule arrangement is attained, during the period of mixed microtubule polarity. PMID:23111238

  10. Gut-associated microbes of Drosophila melanogaster

    PubMed Central

    Broderick, Nichole; Lemaitre, Bruno

    2012-01-01

    There is growing interest in using Drosophila melanogaster to elucidate mechanisms that underlie the complex relationships between a host and its microbiota. In addition to the many genetic resources and tools Drosophila provides, its associated microbiota is relatively simple (1–30 taxa), in contrast to the complex diversity associated with vertebrates (> 500 taxa). These attributes highlight the potential of this system to dissect the complex cellular and molecular interactions that occur between a host and its microbiota. In this review, we summarize what is known regarding the composition of gut-associated microbes of Drosophila and their impact on host physiology. We also discuss these interactions in the context of their natural history and ecology and describe some recent insights into mechanisms by which Drosophila and its gut microbiota interact. “Workers with Drosophila have been considered fortunate in that they deal with the first multicellular invertebrate to be cultured monoxenically (Delcourt and Guyenot, 1910); the first to be handled axenically on a semisynthetic diet (Guyenot, 1917); and the first to be grown on a defined diet (Schultz et al., 1946). This list of advantages is somewhat embarrassing, since it implies an interest in nutrition that, in reality, was only secondary. The very first studies were concerned with the reduction of variability in genetic experiments (Delcourt and Guyenot, 1910) and standardization of the nutritional environment.” -James Sang, 1959 Ann NY Acad 1 PMID:22572876

  11. Apoptosis in Drosophila: which role for mitochondria?

    PubMed

    Clavier, Amandine; Rincheval-Arnold, Aurore; Colin, Jessie; Mignotte, Bernard; Guénal, Isabelle

    2016-03-01

    It is now well established that the mitochondrion is a central regulator of mammalian cell apoptosis. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, mainly because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and cell death in Drosophila occurs at the mitochondrial level. Numerous proteins, including RHG proteins and proteins of the Bcl-2 family that are key regulators of Drosophila apoptosis, constitutively or transiently localize in mitochondria. These proteins participate in the cell death process at different levels such as degradation of Diap1, a Drosophila IAP, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. Here, we review these mitochondrial events that might have their counterpart in human. PMID:26679112

  12. The digestive tract of Drosophila melanogaster.

    PubMed

    Lemaitre, Bruno; Miguel-Aliaga, Irene

    2013-01-01

    The digestive tract plays a central role in the digestion and absorption of nutrients. Far from being a passive tube, it provides the first line of defense against pathogens and maintains energy homeostasis by exchanging neuronal and endocrine signals with other organs. Historically neglected, the gut of the fruit fly Drosophila melanogaster has recently come to the forefront of Drosophila research. Areas as diverse as stem cell biology, neurobiology, metabolism, and immunity are benefitting from the ability to study the genetics of development, growth regulation, and physiology in the same organ. In this review, we summarize our knowledge of the Drosophila digestive tract, with an emphasis on the adult midgut and its functional underpinnings. PMID:24016187

  13. Viruses and Antiviral Immunity in Drosophila

    PubMed Central

    Xu, Jie; Cherry, Sara

    2013-01-01

    Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools available in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue. PMID:23680639

  14. Receptor Tyrosine Kinases in Drosophila Development

    PubMed Central

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  15. Developmental Toxicity Assays Using the Drosophila Model

    PubMed Central

    Rand, Matthew D.; Montgomery, Sara L.; Prince, Lisa; Vorojeikina, Daria

    2014-01-01

    The fruit fly (Drosophila melanogaster) has long been a premier model for developmental biologists and geneticists. The utility of Drosophila for toxicology studies has only recently gained broader recognition as a tool to elaborate molecular genetic mechanisms of toxic substances. In this article two practical applications of Drosophila for developmental toxicity assays are described. The first assay takes advantage of newly developed methods to render the fly embryo accessible to small molecules, toxicants and drugs. The second assay engages straightforward exposures to developing larvae and easy to score outcomes of adult development. With the extensive collections of flies that are publicly available and the ease with which to create transgenic flies, these two assays have a unique power for identifying and characterizing molecular mechanisms and cellular pathways specific to the mode of action of a number of toxicants and drugs. PMID:24789363

  16. Xotch, the Xenopus homolog of Drosophila notch.

    PubMed

    Coffman, C; Harris, W; Kintner, C

    1990-09-21

    During the development of a vertebrate embryo, cell fate is determined by inductive signals passing between neighboring tissues. Such determinative interactions have been difficult to characterize fully without knowledge of the molecular mechanisms involved. Mutations of Drosophila and the nematode Caenorhabditis elegans have been isolated that define a family of related gene products involved in similar types of cellular inductions. One of these genes, the Notch gene from Drosophila, is involved with cell fate choices in the neurogenic region of the blastoderm, in the developing nervous system, and in the eye-antennal imaginal disc. Complementary DNA clones were isolated from Xenopus embryos with Notch DNA in order to investigate whether cell-cell interactions in vertebrate embryos also depend on Notch-like molecules. This approach identified a Xenopus molecule, Xotch, which is remarkably similar to Drosophila Notch in both structure and developmental expression. PMID:2402639

  17. Live cell imaging in Drosophila melanogaster.

    PubMed

    Parton, Richard M; Vallés, Ana Maria; Dobbie, Ian M; Davis, Ilan

    2010-04-01

    Although many of the techniques of live cell imaging in Drosophila melanogaster are also used by the greater community of cell biologists working on other model systems, studying living fly tissues presents unique difficulties with regard to keeping the cells alive, introducing fluorescent probes, and imaging through thick, hazy cytoplasm. This article outlines the major tissue types amenable to study by time-lapse cinematography and different methods for keeping the cells alive. It describes various imaging and associated techniques best suited to following changes in the distribution of fluorescently labeled molecules in real time in these tissues. Imaging, in general, is a rapidly developing discipline, and recent advances in imaging technology are able to greatly extend what can be achieved with live cell imaging of Drosophila tissues. As far as possible, this article includes the latest technical developments and discusses likely future developments in imaging methods that could have an impact on research using Drosophila. PMID:20360379

  18. Volatile pheromone signalling in Drosophila.

    PubMed

    Smith, Dean P

    2012-03-01

    Once captured by the antenna, 11-cis vaccenyl acetate (cVA) binds to an extracellular binding protein called LUSH that undergoes a conformational shift upon cVA binding. The stable LUSH-cVA complex is the activating ligand for pheromone receptors present on the dendrites of the aT1 neurones, comprising the only neurones that detect cVA pheromone. This mechanism explains the single molecule sensitivity of insect pheromone detection systems. The receptor that recognizes activated LUSH consists of a complex of several proteins, including Or67d, a member of the tuning odourant receptor family, Orco, a co-receptor ion channel, and SNMP, a CD36 homologue that may be an inhibitory subunit. In addition, genetic screens and reconstitution experiments reveal additional factors that are important for pheromone detection. Identification and functional dissection of these factors in Drosophila melanogaster Meigen should permit the identification of homologous factors in pathogenic insects and agricultural pests, which, in turn, may be viable candidates for novel classes of compounds to control populations of target insect species without impacting beneficial species. PMID:24347807

  19. Evaluation of Traditional Medicines for Neurodegenerative Diseases Using Drosophila Models

    PubMed Central

    Lee, Soojin; Bang, Se Min; Lee, Joon Woo; Cho, Kyoung Sang

    2014-01-01

    Drosophila is one of the oldest and most powerful genetic models and has led to novel insights into a variety of biological processes. Recently, Drosophila has emerged as a model system to study human diseases, including several important neurodegenerative diseases. Because of the genomic similarity between Drosophila and humans, Drosophila neurodegenerative disease models exhibit a variety of human-disease-like phenotypes, facilitating fast and cost-effective in vivo genetic modifier screening and drug evaluation. Using these models, many disease-associated genetic factors have been identified, leading to the identification of compelling drug candidates. Recently, the safety and efficacy of traditional medicines for human diseases have been evaluated in various animal disease models. Despite the advantages of the Drosophila model, its usage in the evaluation of traditional medicines is only nascent. Here, we introduce the Drosophila model for neurodegenerative diseases and some examples demonstrating the successful application of Drosophila models in the evaluation of traditional medicines. PMID:24790636

  20. Rosa damascena decreased mortality in adult Drosophila.

    PubMed

    Jafari, Mahtab; Zarban, Asghar; Pham, Steven; Wang, Thomas

    2008-03-01

    The effects of a rose-flower extract, Rosa damascena, on the mortality rate of Drosophila melanogaster was evaluated in this study. R. damascena is a potent antioxidant that has many therapeutic uses in addition to its perfuming effects. Supplementing Drosophila with this rose extract resulted in a statistically significant decrease in mortality rate in male and female flies. Moreover, the observed anti-aging effects were not associated with common confounds of anti-aging properties, such as a decrease in fecundity or metabolic rate. PMID:18361732

  1. Neural control of aggression in Drosophila.

    PubMed

    Hoopfer, Eric D

    2016-06-01

    Like most animal species, fruit flies fight to obtain and defend resources essential to survival and reproduction. Aggressive behavior in Drosophila is genetically specified and also strongly influenced by the fly's social context, past experiences and internal states, making it an excellent framework for investigating the neural mechanisms that regulate complex social behaviors. Here, I summarize our current knowledge of the neural control of aggression in Drosophila and discuss recent advances in understanding the sensory pathways that influence the decision to fight or court, the neuromodulatory control of aggression, the neural basis by which internal states can influence both fighting and courtship, and how social experience modifies aggressive behavior. PMID:27179788

  2. The secret lives of Drosophila flies.

    PubMed

    Markow, Therese Ann

    2015-01-01

    Flies of the genus Drosophila, and particularly those of the species Drosophila melanogaster, are best known as laboratory organisms. As with all model organisms, they were domesticated for empirical studies, but they also continue to exist as wild populations. Decades of research on these flies in the laboratory have produced astounding and important insights into basic biological processes, but we have only scratched the surface of what they have to offer as research organisms. An outstanding challenge now is to build on this knowledge and explore how natural history has shaped D. melanogaster in order to advance our understanding of biology more generally. PMID:26041333

  3. Drosophila Bitter Taste(s)

    PubMed Central

    French, Alice; Ali Agha, Moutaz; Mitra, Aniruddha; Yanagawa, Aya; Sellier, Marie-Jeanne; Marion-Poll, Frédéric

    2015-01-01

    Most animals possess taste receptors neurons detecting potentially noxious compounds. In humans, the ligands which activate these neurons define a sensory space called “bitter”. By extension, this term has been used in animals and insects to define molecules which induce aversive responses. In this review, based on our observations carried out in Drosophila, we examine how bitter compounds are detected and if bitter-sensitive neurons respond only to molecules bitter to humans. Like most animals, flies detect bitter chemicals through a specific population of taste neurons, distinct from those responding to sugars or to other modalities. Activating bitter-sensitive taste neurons induces aversive reactions and inhibits feeding. Bitter molecules also contribute to the suppression of sugar-neuron responses and can lead to a complete inhibition of the responses to sugar at the periphery. Since some bitter molecules activate bitter-sensitive neurons and some inhibit sugar detection, bitter molecules are represented by two sensory spaces which are only partially congruent. In addition to molecules which impact feeding, we recently discovered that the activation of bitter-sensitive neurons also induces grooming. Bitter-sensitive neurons of the wings and of the legs can sense chemicals from the gram negative bacteria, Escherichia coli, thus adding another biological function to these receptors. Bitter-sensitive neurons of the proboscis also respond to the inhibitory pheromone, 7-tricosene. Activating these neurons by bitter molecules in the context of sexual encounter inhibits courting and sexual reproduction, while activating these neurons with 7-tricosene in a feeding context will inhibit feeding. The picture that emerges from these observations is that the taste system is composed of detectors which monitor different “categories” of ligands, which facilitate or inhibit behaviors depending on the context (feeding, sexual reproduction, hygienic behavior), thus

  4. Drosophila Melanogaster as an Experimental Organism.

    ERIC Educational Resources Information Center

    Rubin, Gerald M.

    1988-01-01

    Discusses the role of the fruit fly in genetics research requiring a multidisciplinary approach. Describes embryological and genetic methods used in the experimental analysis of this organism. Outlines the use of Drosophila in the study of the development and function of the nervous system. (RT)

  5. Functional Neuroanatomy of "Drosophila" Olfactory Memory Formation

    ERIC Educational Resources Information Center

    Guven-Ozkan, Tugba; Davis, Ronald L.

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying "Drosophila" learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive…

  6. Second-Order Conditioning in "Drosophila"

    ERIC Educational Resources Information Center

    Tabone, Christopher J.; de Belle, J. Steven

    2011-01-01

    Associative conditioning in "Drosophila melanogaster" has been well documented for several decades. However, most studies report only simple associations of conditioned stimuli (CS, e.g., odor) with unconditioned stimuli (US, e.g., electric shock) to measure learning or establish memory. Here we describe a straightforward second-order conditioning…

  7. Organization of descending neurons in Drosophila melanogaster.

    PubMed

    Hsu, Cynthia T; Bhandawat, Vikas

    2016-01-01

    Neural processing in the brain controls behavior through descending neurons (DNs) - neurons which carry signals from the brain to the spinal cord (or thoracic ganglia in insects). Because DNs arise from multiple circuits in the brain, the numerical simplicity and availability of genetic tools make Drosophila a tractable model for understanding descending motor control. As a first step towards a comprehensive study of descending motor control, here we estimate the number and distribution of DNs in the Drosophila brain. We labeled DNs by backfilling them with dextran dye applied to the neck connective and estimated that there are ~1100 DNs distributed in 6 clusters in Drosophila. To assess the distribution of DNs by neurotransmitters, we labeled DNs in flies in which neurons expressing the major neurotransmitters were also labeled. We found DNs belonging to every neurotransmitter class we tested: acetylcholine, GABA, glutamate, serotonin, dopamine and octopamine. Both the major excitatory neurotransmitter (acetylcholine) and the major inhibitory neurotransmitter (GABA) are employed equally; this stands in contrast to vertebrate DNs which are predominantly excitatory. By comparing the distribution of DNs in Drosophila to those reported previously in other insects, we conclude that the organization of DNs in insects is highly conserved. PMID:26837716

  8. Organization of descending neurons in Drosophila melanogaster

    PubMed Central

    Hsu, Cynthia T.; Bhandawat, Vikas

    2016-01-01

    Neural processing in the brain controls behavior through descending neurons (DNs) - neurons which carry signals from the brain to the spinal cord (or thoracic ganglia in insects). Because DNs arise from multiple circuits in the brain, the numerical simplicity and availability of genetic tools make Drosophila a tractable model for understanding descending motor control. As a first step towards a comprehensive study of descending motor control, here we estimate the number and distribution of DNs in the Drosophila brain. We labeled DNs by backfilling them with dextran dye applied to the neck connective and estimated that there are ~1100 DNs distributed in 6 clusters in Drosophila. To assess the distribution of DNs by neurotransmitters, we labeled DNs in flies in which neurons expressing the major neurotransmitters were also labeled. We found DNs belonging to every neurotransmitter class we tested: acetylcholine, GABA, glutamate, serotonin, dopamine and octopamine. Both the major excitatory neurotransmitter (acetylcholine) and the major inhibitory neurotransmitter (GABA) are employed equally; this stands in contrast to vertebrate DNs which are predominantly excitatory. By comparing the distribution of DNs in Drosophila to those reported previously in other insects, we conclude that the organization of DNs in insects is highly conserved. PMID:26837716

  9. A Drosophila Model of Epidermolysis Bullosa Simplex.

    PubMed

    Bohnekamp, Jens; Cryderman, Diane E; Paululat, Achim; Baccam, Gabriel C; Wallrath, Lori L; Magin, Thomas M

    2015-08-01

    The blistering skin disorder epidermolysis bullosa simplex (EBS) results from dominant mutations in keratin 5 (K5) or keratin 14 (K14) genes, encoding the intermediate filament (IF) network of basal epidermal keratinocytes. The mechanisms governing keratin network formation and collapse due to EBS mutations remain incompletely understood. Drosophila lacks cytoplasmic IFs, providing a 'null' environment to examine the formation of keratin networks and determine mechanisms by which mutant keratins cause pathology. Here, we report that ubiquitous co-expression of transgenes encoding wild-type human K14 and K5 resulted in the formation of extensive keratin networks in Drosophila epithelial and non-epithelial tissues, causing no overt phenotype. Similar to mammalian cells, treatment of transgenic fly tissues with phosphatase inhibitors caused keratin network collapse, validating Drosophila as a genetic model system to investigate keratin dynamics. Co-expression of K5 and a K14(R125C) mutant that causes the most severe form of EBS resulted in widespread formation of EBS-like cytoplasmic keratin aggregates in epithelial and non-epithelial fly tissues. Expression of K14(R125C)/K5 caused semi-lethality; adult survivors developed wing blisters and were flightless due to a lack of intercellular adhesion during wing heart development. This Drosophila model of EBS is valuable for the identification of pathways altered by mutant keratins and for the development of EBS therapies. PMID:25830653

  10. The 5S genes of Drosophila melanogaster.

    PubMed

    Artavanis-Tsakonas, S; Schedl, P; Tschudi, C; Pirrotta, V; Steward, R; Gehring, W J

    1977-12-01

    We have cloned embryonic Drosophila DNA using the poly (dA-DT) connector method (Lobban and Kaiser, 1973) and the ampicillin-resistant plasmid pSF2124 (So, Gill and Falkow, 1975) as a cloning vehicle. Two clones, containing hybrid plasmids with sequences complementary to a 5S RNA probe isolated from Drosophila tissue culture cells, were identified by the Grunstein and Hogness (1975) colony hybridization procedure. One hybrid plasmid has a Drosophila insert which is comprised solely of tandem repeats of the 5S gene plus spacer sequences. The other plasmid contains an insert which has about 20 tandem 5S repeat units plus an additional 4 kilobases of adjacent sequences. The size of the 5S repeat unit was determined by gel electrophoresis and was found to be approximately 375 base pairs. We present a restriction map of both plasmids, and a detailed map of of the5S repeat unit. The 5S repat unit shows slight length and sequence heterogeneity. We present evidence suggesting that the 5S genes in Drosophila melanogaster may be arranged in a single continuous cluster. PMID:413625

  11. [Recombination in Drosophila in space flight].

    PubMed

    Filatova, L P; Vaulina, E N; Lapteva, N Sh; Grozdova, T Ia

    1988-04-01

    An experiment with Drosophila melanogaster males was performed aboard the Artificial Satellite "Kosmos-1667". Mutagenic effects of a 7-day space flight on intergene recombination in chromosome 2 were studied. The space flight factors decreased the frequency of recombination. A model experiment on a laboratory centrifuge demonstrated insignificant increase in recombination frequency caused by acceleration. PMID:3135244

  12. Open-Ended Laboratory Investigations with Drosophila.

    ERIC Educational Resources Information Center

    Mertens, Thomas R.

    1983-01-01

    Background information, laboratory procedures (including matings performed), and results are presented for an open-ended investigation using the fruitfly Drosophila melanogaster. Once data are collected, students develop hypotheses to explain results as well as devise additional experiments to test their hypotheses. Calculation of chi-square for…

  13. Measurement of Cytoplasmic Streaming in Drosophila Melanogaster

    NASA Astrophysics Data System (ADS)

    Ganguly, Sujoy; Williams, Lucy; Palacios, Isabel; Goldstein, Raymond

    2010-11-01

    During stage 9 of Drosophila melanogastor oogenesis flow of the oocyte cytoplasm, driven by kinesin 1 motor protein is observed. This cytoplasmic streaming is analyzed by PIV in both wild type and kinesin light chain mutants, revealing striking statistical differences. Further measurements of the rheology of the oocyte allow for estimations of the mechanical energy needed to generate the observed flows.

  14. Analysis of Phagocytosis in the Drosophila Ovary.

    PubMed

    Meehan, Tracy L; Serizier, Sandy B; Kleinsorge, Sarah E; McCall, Kimberly

    2016-01-01

    Programmed cell death (PCD) is essential for health and development. Generally, the last step of PCD is clearance, or engulfment, by phagocytes. Engulfment can be broken down into five basic steps: attraction of the phagocyte, recognition of the dying cell, internalization, phagosome maturation, and acidification of the engulfed material. The Drosophila melanogaster ovary serves as an excellent model to study diverse types of PCD and engulfment by epithelial cells. Here, we describe several methods to detect and analyze multiple steps of engulfment in the Drosophila ovary: recognition, vesicle uptake, phagosome maturation, and acidification. Annexin V detects phosphatidylserine, which is flipped to the outer leaflet of the plasma membrane of apoptotic cells, serving as an "eat me" signal. Several germline markers including tral-GFP, Orb, and cleaved Dcp-1 can all be used to label the germline and visualize its uptake into engulfing follicle cells. Drosophila strains expressing GFP and mCherry protein fusions can enable a detailed analysis of phagosome maturation. LysoTracker labels highly acidified compartments, marking phagolysosomes. Together these labels can be used to mark the progression of engulfment in Drosophila follicle cells. PMID:27557574

  15. Characterization of novel microsatellites from Drosophila transversa.

    PubMed

    Räisänen, L; Roininen, E; Liimatainen, J O

    2009-03-01

    We investigated a partial genomic library of Drosophila transversa for microsatellites and developed 12 markers for genetic analyses. This is the first time that microsatellite primers from the quinaria species group have been described. Four loci were cross-amplified in D. phalerata. Nine out of the 12 microsatellite markers developed are likely to be on the X chromosome. PMID:21564716

  16. Genomics of Ecological Adaptation in Cactophilic Drosophila

    PubMed Central

    Guillén, Yolanda; Rius, Núria; Delprat, Alejandra; Williford, Anna; Muyas, Francesc; Puig, Marta; Casillas, Sònia; Ràmia, Miquel; Egea, Raquel; Negre, Barbara; Mir, Gisela; Camps, Jordi; Moncunill, Valentí; Ruiz-Ruano, Francisco J.; Cabrero, Josefa; de Lima, Leonardo G.; Dias, Guilherme B.; Ruiz, Jeronimo C.; Kapusta, Aurélie; Garcia-Mas, Jordi; Gut, Marta; Gut, Ivo G.; Torrents, David; Camacho, Juan P.; Kuhn, Gustavo C.S.; Feschotte, Cédric; Clark, Andrew G.; Betrán, Esther; Barbadilla, Antonio; Ruiz, Alfredo

    2015-01-01

    Cactophilic Drosophila species provide a valuable model to study gene–environment interactions and ecological adaptation. Drosophila buzzatii and Drosophila mojavensis are two cactophilic species that belong to the repleta group, but have very different geographical distributions and primary host plants. To investigate the genomic basis of ecological adaptation, we sequenced the genome and developmental transcriptome of D. buzzatii and compared its gene content with that of D. mojavensis and two other noncactophilic Drosophila species in the same subgenus. The newly sequenced D. buzzatii genome (161.5 Mb) comprises 826 scaffolds (>3 kb) and contains 13,657 annotated protein-coding genes. Using RNA sequencing data of five life-stages we found expression of 15,026 genes, 80% protein-coding genes, and 20% noncoding RNA genes. In total, we detected 1,294 genes putatively under positive selection. Interestingly, among genes under positive selection in the D. mojavensis lineage, there is an excess of genes involved in metabolism of heterocyclic compounds that are abundant in Stenocereus cacti and toxic to nonresident Drosophila species. We found 117 orphan genes in the shared D. buzzatii–D. mojavensis lineage. In addition, gene duplication analysis identified lineage-specific expanded families with functional annotations associated with proteolysis, zinc ion binding, chitin binding, sensory perception, ethanol tolerance, immunity, physiology, and reproduction. In summary, we identified genetic signatures of adaptation in the shared D. buzzatii–D. mojavensis lineage, and in the two separate D. buzzatii and D. mojavensis lineages. Many of the novel lineage-specific genomic features are promising candidates for explaining the adaptation of these species to their distinct ecological niches. PMID:25552534

  17. Optogenetic pacing in Drosophila melanogaster (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2016-03-01

    A non-invasive, contact-less cardiac pacing technology can be a powerful tool in basic cardiac research and in clinics. Currently, electrical pacing is the gold standard for cardiac pacing. Although highly effective in controlling the cardiac function, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its capabilities. Optical pacing of heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids shortcomings in electrical stimulation. Optical coherence tomography has been proved to be an effective technique in non-invasive imaging in vivo with ultrahigh resolution and imaging speed. In the last several years, non-invasive specific optical pacing in animal hearts has been reported in quail, zebrafish, and rabbit models. However, Drosophila Melanogaster, which is a significant model with orthologs of 75% of human disease genes, has rarely been studied concerning their optical pacing in heart. Here, we combined optogenetic control of Drosophila heartbeat with optical coherence microscopy (OCM) technique for the first time. The light-gated cation channel, channelrhodopsin-2 (ChR2) was specifically expressed by transgene as a pacemaker in drosophila heart. By stimulating the pacemaker with 472 nm pulsed laser light at different frequencies, we achieved non-invasive and more specific optical control of the Drosophila heart rhythm, which demonstrates the wide potential of optical pacing for studying cardiac dynamics and development. Imaging capability of our customized OCM system was also involved to observe the pacing effect visually. No tissue damage was found after long exposure to laser pulses, which proved the safety of optogenetic control of Drosophila heart.

  18. Organization and Evolution of Drosophila Terminin: Similarities and Differences between Drosophila and Human Telomeres.

    PubMed

    Raffa, Grazia D; Cenci, Giovanni; Ciapponi, Laura; Gatti, Maurizio

    2013-01-01

    Drosophila lacks telomerase and fly telomeres are elongated by occasional transposition of three specialized retroelements. Drosophila telomeres do not terminate with GC-rich repeats and are assembled independently of the sequence of chromosome ends. Recent work has shown that Drosophila telomeres are capped by the terminin complex, which includes the fast-evolving proteins HOAP, HipHop, Moi, and Ver. These proteins, which are not conserved outside Drosophilidae and closely related Diptera, localize and function exclusively at telomeres, protecting them from fusion events. Other proteins required to prevent end-to-end fusion in flies include HP1, Eff/UbcD1, ATM, the components of the Mre11-Rad50-Nbs (MRN) complex, and the Woc transcription factor. These proteins do not share the terminin properties; they are evolutionarily conserved non-fast-evolving proteins that do not accumulate only at telomeres and do not serve telomere-specific functions. We propose that following telomerase loss, Drosophila rapidly evolved terminin to bind chromosome ends in a sequence-independent manner. This hypothesis suggests that terminin is the functional analog of the shelterin complex that protects human telomeres. The non-terminin proteins are instead likely to correspond to ancestral telomere-associated proteins that did not evolve as rapidly as terminin because of the functional constraints imposed by their involvement in diverse cellular processes. Thus, it appears that the main difference between Drosophila and human telomeres is in the protective complexes that specifically associate with the DNA termini. We believe that Drosophila telomeres offer excellent opportunities for investigations on human telomere biology. The identification of additional Drosophila genes encoding non-terminin proteins involved in telomere protection might lead to the discovery of novel components of human telomeres. PMID:23675571

  19. Organization and Evolution of Drosophila Terminin: Similarities and Differences between Drosophila and Human Telomeres

    PubMed Central

    Raffa, Grazia D.; Cenci, Giovanni; Ciapponi, Laura; Gatti, Maurizio

    2013-01-01

    Drosophila lacks telomerase and fly telomeres are elongated by occasional transposition of three specialized retroelements. Drosophila telomeres do not terminate with GC-rich repeats and are assembled independently of the sequence of chromosome ends. Recent work has shown that Drosophila telomeres are capped by the terminin complex, which includes the fast-evolving proteins HOAP, HipHop, Moi, and Ver. These proteins, which are not conserved outside Drosophilidae and closely related Diptera, localize and function exclusively at telomeres, protecting them from fusion events. Other proteins required to prevent end-to-end fusion in flies include HP1, Eff/UbcD1, ATM, the components of the Mre11-Rad50-Nbs (MRN) complex, and the Woc transcription factor. These proteins do not share the terminin properties; they are evolutionarily conserved non-fast-evolving proteins that do not accumulate only at telomeres and do not serve telomere-specific functions. We propose that following telomerase loss, Drosophila rapidly evolved terminin to bind chromosome ends in a sequence-independent manner. This hypothesis suggests that terminin is the functional analog of the shelterin complex that protects human telomeres. The non-terminin proteins are instead likely to correspond to ancestral telomere-associated proteins that did not evolve as rapidly as terminin because of the functional constraints imposed by their involvement in diverse cellular processes. Thus, it appears that the main difference between Drosophila and human telomeres is in the protective complexes that specifically associate with the DNA termini. We believe that Drosophila telomeres offer excellent opportunities for investigations on human telomere biology. The identification of additional Drosophila genes encoding non-terminin proteins involved in telomere protection might lead to the discovery of novel components of human telomeres. PMID:23675571

  20. The first complete Mag family retrotransposons discovered in Drosophila.

    PubMed

    Glukhov, I A; Kotnova, A P; Stefanov, Y E; Ilyin, Y V

    2016-01-01

    A retrotransposon of the Mag family was found in the Drosophila simulans genome for the first time. We also identified novel transposable elements representing the Mag family in seven Drosophila species. The high similarity between the 3' and 5' long terminal repeats in the found copies of transposable elements indicates that their retrotransposition has occurred relatively recently. Thus, the Mag family of retrotransposons is quite common for the genus Drosophila. PMID:27025475

  1. Counting calories in Drosophila diet restriction.

    PubMed

    Min, Kyung-Jin; Flatt, Thomas; Kulaots, Indrek; Tatar, Marc

    2007-03-01

    The extension of life span by diet restriction in Drosophila has been argued to occur without limiting calories. Here we directly measure the calories assimilated by flies when maintained on full- and restricted-diets. We find that caloric intake is reduced on all diets that extend life span. Flies on low-yeast diet are long-lived and consume about half the calories of flies on high-yeast diets, regardless of the energetic content of the diet itself. Since caloric intake correlates with yeast concentration and thus with the intake of every metabolite in this dietary component, it is premature to conclude for Drosophila that calories do not explain extension of life span. PMID:17125951

  2. The genome sequence of Drosophila melanogaster.

    SciTech Connect

    2000-03-24

    The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the {approximately}120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes {approximately}13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.

  3. Quantifying and predicting Drosophila larvae crawling phenotypes.

    PubMed

    Günther, Maximilian N; Nettesheim, Guilherme; Shubeita, George T

    2016-01-01

    The fruit fly Drosophila melanogaster is a widely used model for cell biology, development, disease, and neuroscience. The fly's power as a genetic model for disease and neuroscience can be augmented by a quantitative description of its behavior. Here we show that we can accurately account for the complex and unique crawling patterns exhibited by individual Drosophila larvae using a small set of four parameters obtained from the trajectories of a few crawling larvae. The values of these parameters change for larvae from different genetic mutants, as we demonstrate for fly models of Alzheimer's disease and the Fragile X syndrome, allowing applications such as genetic or drug screens. Using the quantitative model of larval crawling developed here we use the mutant-specific parameters to robustly simulate larval crawling, which allows estimating the feasibility of laborious experimental assays and aids in their design. PMID:27323901

  4. [The comeback of mitochondria in Drosophila apoptosis].

    PubMed

    Clavier, Amandine; Rincheval-Arnold, Aurore; Mignotte, Bernard; Guénal, Isabelle

    2016-05-01

    The role of the mitochondrion in mammalian cell apoptosis has been established since the mid-1990s. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, notably because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and apoptosis in Drosophila cell death occurs at the mitochondrial level. Numerous proteins that appear key for Drosophila apoptosis regulation constitutively or transiently bind to mitochondria. They participate in the cell death process at different levels such as degradation of an IAP caspase inhibitor, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. The aim of this review is to take stock of these events that might have their counterpart in humans. PMID:27225920

  5. Vertebrate eye development as modeled in Drosophila.

    PubMed

    Wawersik, S; Maas, R L

    2000-04-12

    Pax6, a member of the paired-box family of transcription factors, is critical for oculogenesis in both vertebrates and insects. Identification of potential vertebrate Pax6 targets has been guided by studies in Drosophila, where the Pax6 homologs eyeless ( ey ) and twin of eyeless ( toy ) function within a network of genes that synergistically pattern the developing fly eye. These targets, which share homology with the fly genes sine oculis, eyes absent and dachshund, exist in mice and humans as the Six, Eya and Dach gene families. Members of these gene families are present in the developing vertebrate eye, and preliminary studies suggest that they may function in a network analogous to that in the fly. Thus, despite radically different architecture, a similar molecular scaffold underlies both vertebrate and fly eye patterning, suggesting that the considerable power of Drosophila genetics can be harnessed to study mammalian ocular development. PMID:10767315

  6. Remembering Components of Food in Drosophila

    PubMed Central

    Das, Gaurav; Lin, Suewei; Waddell, Scott

    2016-01-01

    Remembering features of past feeding experience can refine foraging and food choice. Insects can learn to associate sensory cues with components of food, such as sugars, amino acids, water, salt, alcohol, toxins and pathogens. In the fruit fly Drosophila some food components activate unique subsets of dopaminergic neurons (DANs) that innervate distinct functional zones on the mushroom bodies (MBs). This architecture suggests that the overall dopaminergic neuron population could provide a potential cellular substrate through which the fly might learn to value a variety of food components. In addition, such an arrangement predicts that individual component memories reside in unique locations. DANs are also critical for food memory consolidation and deprivation-state dependent motivational control of the expression of food-relevant memories. Here, we review our current knowledge of how nutrient-specific memories are formed, consolidated and specifically retrieved in insects, with a particular emphasis on Drosophila. PMID:26924969

  7. Rapamycin preserves gut homeostasis during Drosophila aging.

    PubMed

    Fan, Xiaolan; Liang, Qing; Lian, Ting; Wu, Qi; Gaur, Uma; Li, Diyan; Yang, Deying; Mao, Xueping; Jin, Zhihua; Li, Ying; Yang, Mingyao

    2015-11-01

    Gut homeostasis plays an important role in maintaining the overall body health during aging. Rapamycin, a specific inhibitor of mTOR, exerts prolongevity effects in evolutionarily diverse species. However, its impact on the intestinal homeostasis remains poorly understood. Here, we demonstrate that rapamycin can slow down the proliferation rate of intestinal stem cells (ISCs) in the aging guts and induce autophagy in the intestinal epithelium in Drosophila. Rapamycin can also significantly affect the FOXO associated genes in intestine and up-regulate the negative regulators of IMD/Rel pathway, consequently delaying the microbial expansion in the aging guts. Collectively, these findings reveal that rapamycin can delay the intestinal aging by inhibiting mTOR and thus keeping stem cell proliferation in check. These results will further explain the mechanism of healthspan and lifespan extension by rapamycin in Drosophila. PMID:26431326

  8. Quantifying and predicting Drosophila larvae crawling phenotypes

    PubMed Central

    Günther, Maximilian N.; Nettesheim, Guilherme; Shubeita, George T.

    2016-01-01

    The fruit fly Drosophila melanogaster is a widely used model for cell biology, development, disease, and neuroscience. The fly’s power as a genetic model for disease and neuroscience can be augmented by a quantitative description of its behavior. Here we show that we can accurately account for the complex and unique crawling patterns exhibited by individual Drosophila larvae using a small set of four parameters obtained from the trajectories of a few crawling larvae. The values of these parameters change for larvae from different genetic mutants, as we demonstrate for fly models of Alzheimer’s disease and the Fragile X syndrome, allowing applications such as genetic or drug screens. Using the quantitative model of larval crawling developed here we use the mutant-specific parameters to robustly simulate larval crawling, which allows estimating the feasibility of laborious experimental assays and aids in their design. PMID:27323901

  9. Rapamycin preserves gut homeostasis during Drosophila aging

    PubMed Central

    Lian, Ting; Wu, Qi; Gaur, Uma; Li, Diyan; Yang, Deying; Mao, Xueping; Jin, Zhihua; Li, Ying; Yang, Mingyao

    2015-01-01

    Gut homeostasis plays an important role in maintaining the overall body health during aging. Rapamycin, a specific inhibitor of mTOR, exerts prolongevity effects in evolutionarily diverse species. However, its impact on the intestinal homeostasis remains poorly understood. Here, we demonstrate that rapamycin can slow down the proliferation rate of intestinal stem cells (ISCs) in the aging guts and induce autophagy in the intestinal epithelium in Drosophila. Rapamycin can also significantly affect the FOXO associated genes in intestine and up-regulate the negative regulators of IMD/Rel pathway, consequently delaying the microbial expansion in the aging guts. Collectively, these findings reveal that rapamycin can delay the intestinal aging by inhibiting mTOR and thus keeping stem cell proliferation in check. These results will further explain the mechanism of healthspan and lifespan extension by rapamycin in Drosophila. PMID:26431326

  10. Imaging Calcium in Drosophila at Egg Activation.

    PubMed

    Derrick, Christopher J; York-Andersen, Anna H; Weil, Timothy T

    2016-01-01

    Egg activation is a universal process that includes a series of events to allow the fertilized egg to complete meiosis and initiate embryonic development. One aspect of egg activation, conserved across all organisms examined, is a change in the intracellular concentration of calcium (Ca(2+)) often termed a 'Ca(2+) wave'. While the speed and number of oscillations of the Ca(2+) wave varies between species, the change in intracellular Ca(2+) is key in bringing about essential events for embryonic development. These changes include resumption of the cell cycle, mRNA regulation, cortical granule exocytosis, and rearrangement of the cytoskeleton. In the mature Drosophila egg, activation occurs in the female oviduct prior to fertilization, initiating a series of Ca(2+)-dependent events. Here we present a protocol for imaging the Ca(2+) wave in Drosophila. This approach provides a manipulable model system to interrogate the mechanism of the Ca(2+) wave and the downstream changes associated with it. PMID:27584955

  11. Maintenance of a Drosophila melanogaster Population Cage

    PubMed Central

    Caravaca, Juan Manuel; Lei, Elissa P.

    2016-01-01

    Large quantities of DNA, RNA, proteins and other cellular components are often required for biochemistry and molecular biology experiments. The short life cycle of Drosophila enables collection of large quantities of material from embryos, larvae, pupae and adult flies, in a synchronized way, at a low economic cost. A major strategy for propagating large numbers of flies is the use of a fly population cage. This useful and common tool in the Drososphila community is an efficient way to regularly produce milligrams to tens of grams of embryos, depending on uniformity of developmental stage desired. While a population cage can be time consuming to set up, maintaining a cage over months takes much less time and enables rapid collection of biological material in a short period. This paper describes a detailed and flexible protocol for the maintenance of a Drosophila melanogaster population cage, starting with 1.5 g of harvested material from the previous cycle. PMID:27023790

  12. Towards a Molecular Understanding of Drosophila Hearing

    PubMed Central

    Caldwell, Jason C.; Eberl, Daniel F.

    2007-01-01

    The Drosophila auditory system is presented as a powerful new genetic model system for understanding the molecular aspects of development and physiology of hearing organs. The fly’s ear resides in the antenna, with Johnston’s organ serving as the mechanoreceptor. New approaches using electrophysiology and laser vibrometry have provided useful tools to apply to the study of mutations that disrupt hearing. The fundamental developmental processes that generate the peripheral nervous system are fairly well understood, although specific variations of these processes for chordotonal organs (CHO) and especially for Johnston’s organ require more scrutiny. In contrast, even the fundamental physiologic workings of mechanosensitive systems are still poorly understood, but rapid recent progress is beginning to shed light. The identification and analysis of mutations that affect auditory function are summarized here, and prospects for the role of the Drosophila auditory system in understanding both insect and vertebrate hearing are discussed. PMID:12382274

  13. Flightless Flies: Drosophila models of neuromuscular disease

    PubMed Central

    Lloyd, Thomas E.; Taylor, J. Paul

    2010-01-01

    The fruit fly, Drosophila melanogaster, has a long and rich history as an important model organism for biologists. In particular, study of the fruit fly has been essential to much of our fundamental understanding of the development and function of the nervous system. In recent years, studies using fruit flies have provided important insights into the pathogenesis of neurodegenerative and neuromuscular diseases. Fly models of spinal muscular atrophy, spinobulbar muscular atrophy, myotonic dystrophy, dystrophinopathies and other inherited neuromuscular diseases recapitulate many of the key pathologic features of the human disease. The ability to perform genetic screens holds promise for uncovering the molecular mechanisms of disease, and indeed, for identifying novel therapeutic targets. This review will summarize recent progress in developing fly models of neuromuscular diseases and will emphasize the contribution that Drosophila has made to our understanding of these diseases. PMID:20329357

  14. The secret lives of Drosophila flies

    PubMed Central

    Markow, Therese Ann

    2015-01-01

    Abstract Flies of the genus Drosophila, and particularly those of the species Drosophila melanogaster, are best known as laboratory organisms. As with all model organisms, they were domesticated for empirical studies, but they also continue to exist as wild populations. Decades of research on these flies in the laboratory have produced astounding and important insights into basic biological processes, but we have only scratched the surface of what they have to offer as research organisms. An outstanding challenge now is to build on this knowledge and explore how natural history has shaped D. melanogaster in order to advance our understanding of biology more generally. DOI: http://dx.doi.org/10.7554/eLife.06793.001 PMID:26041333

  15. Psychomotor Behavior: A Practical Approach in Drosophila

    PubMed Central

    Iliadi, Konstantin G.; Gluscencova, Oxana B.; Boulianne, Gabrielle L.

    2016-01-01

    Psychomotor behaviors are governed by fine relationships between physical activity and cognitive functions. Disturbances in psychomotor development and performance are a hallmark of many mental illnesses and often appear as observable and measurable behaviors. Here, we describe a new method called an “equilibrist test,” which can be used to quantify psychomotor learning and performance in Drosophila. We also show how this test can be used to quantify motor disturbances at relatively early stages in the development of neurodegenerative diseases.

  16. Detection of Cell Death in Drosophila Tissues

    PubMed Central

    Vasudevan, Deepika; Ryoo, Hyung Don

    2016-01-01

    Drosophila has served as a particularly attractive model to study cell death due to the vast array of tools for genetic manipulation under defined spatial and temporal conditions in vivo as well as in cultured cells. These genetic methods have been well supplemented by enzymatic assays and a panel of antibodies recognizing cell death markers. This chapter discusses reporters, mutants and assays used by various laboratories to study cell death in the context of development and in response to external insults. PMID:27108437

  17. Three-Dimensional Imaging of Drosophila melanogaster

    PubMed Central

    McGurk, Leeanne; Morrison, Harris; Keegan, Liam P.; Sharpe, James; O'Connell, Mary A.

    2007-01-01

    Background The major hindrance to imaging the intact adult Drosophila is that the dark exoskeleton makes it impossible to image through the cuticle. We have overcome this obstacle and describe a method whereby the internal organs of adult Drosophila can be imaged in 3D by bleaching and clearing the adult and then imaging using a technique called optical projection tomography (OPT). The data is displayed as 2D optical sections and also in 3D to provide detail on the shape and structure of the adult anatomy. Methodology We have used OPT to visualize in 2D and 3D the detailed internal anatomy of the intact adult Drosophila. In addition this clearing method used for OPT was tested for imaging with confocal microscopy. Using OPT we have visualized the size and shape of neurodegenerative vacuoles from within the head capsule of flies that suffer from age-related neurodegeneration due to a lack of ADAR mediated RNA-editing. In addition we have visualized tau-lacZ expression in 2D and 3D. This shows that the wholemount adult can be stained without any manipulation and that this stain penetrates well as we have mapped the localization pattern with respect to the internal anatomy. Conclusion We show for the first time that the intact adult Drosophila can be imaged in 3D using OPT, also we show that this method of clearing is also suitable for confocal microscopy to image the brain from within the intact head. The major advantage of this is that organs can be represented in 3D in their natural surroundings. Furthermore optical sections are generated in each of the three planes and are not prone to the technical limitations that are associated with manual sectioning. OPT can be used to dissect mutant phenotypes and to globally map gene expression in both 2D and 3D. PMID:17786206

  18. A Drosophila model to image phagosome maturation.

    PubMed

    Shandala, Tetyana; Lim, Chiaoxin; Sorvina, Alexandra; Brooks, Douglas A

    2013-01-01

    Phagocytosis involves the internalization of extracellular material by invagination of the plasma membrane to form intracellular vesicles called phagosomes, which have functions that include pathogen degradation. The degradative properties of phagosomes are thought to be conferred by sequential fusion with endosomes and lysosomes; however, this maturation process has not been studied in vivo. We employed Drosophila hemocytes, which are similar to mammalian professional macrophages, to establish a model of phagosome maturation. Adult Drosophila females, carrying transgenic Rab7-GFP endosome and Lamp1-GFP lysosome markers, were injected with E. coli DH5α and the hemocytes were collected at 15, 30, 45 and 60 minutes after infection. In wild-type females, E. coli were detected within enlarged Rab7-GFP positive phagosomes at 15 to 45 minutes after infection; and were also observed in enlarged Lamp1-GFP positive phagolysosomes at 45 minutes. Two-photon imaging of hemocytes in vivo confirmed this vesicle morphology, including enlargement of Rab7-GFP and Lamp1-GFP structures that often appeared to protrude from hemocytes. The interaction of endosomes and lysosomes with E. coli phagosomes observed in Drosophila hemocytes was consistent with that previously described for phagosome maturation in human ex vivo macrophages. We also tested our model as a tool for genetic analysis using 14-3-3e mutants, and demonstrated altered phagosome maturation with delayed E. coli internalization, trafficking and/or degradation. These findings demonstrate that Drosophila hemocytes provide an appropriate, genetically amenable, model for analyzing phagosome maturation ex vivo and in vivo. PMID:24709696

  19. Queuine metabolism and cadmium toxicity in Drosophila

    SciTech Connect

    Farkas, W.R.; Siard, T. ); Jacobson, K.B. )

    1991-03-11

    Queuine is a derivative of guanine found in the first position of the anticodon of the transfer RNAs for Asp, Asn, His and Tyr. The transcripts of these tRNAs contain a guanine in this position. This guanine is enzymatically excised and replaced by queuine. The ratio of queuine-containing or (q+) tRNA to its precursor or (q{minus}) tRNA changes throughout the Drosophila life cycle. in the egg 10% of the tRNA is (q+). During the three larval stages this ratio drops to zero. In the one day old adult it is about 10%. It has previously been shown that when flies are selected for the ability to grow in the presence of cadmium, the tolerant flies had 100% (q+) tRNA at the first day after pupation instead of 10%. However, it was not known whether the elevated level of (q+) tRNA was a coincidence or if the elevated levels of (q+) tRNA was protective. The authors explored this problem using germfree Drosophila. The first thing was to determine if Drosophila can synthesize queuine. Sterilized eggs were seeded onto sterile chemically defined medium. The flies were grown to the adult stage. This study showed that Drosophila like mammals cannot synthesize queuine. A second result of this research was the demonstration that the authors could alter the ratio of (q+) to (q{minus}) tRNA by adding exogenous queuine to the medium e.g. at 0.008 mM queuine the (q+) tRNA was 95% instead of {lt} 5% in the last instar stage. Finally, the authors investigated whether or not queuine gave protection against cadmium. The results were that when the flies were grown in the presence of 0.2 mM cadmium queuine at 0.008 mM gave a statistically significant increase in the number of survivors.

  20. Dimethylnitrosamine demethylase activity in Drosophila melanogaster

    SciTech Connect

    Waters, L.C.; Nix, C.E.; Epler, J.L.

    1982-06-15

    A dimethylnitrosamine (DMN) demethylase with levels of activity comparable to that in uninduced rat liver was demonstrated in both larval and adult forms of the Hikone-R strain of Drosophila. A microsomal enzyme, it has many properties of a cytochrome P-450-containing mixed-function oxidase. Kinetic analysis indicates only a single enzyme with an apparent K/sub m/ of 10.5 mM DMN.

  1. The development of the Drosophila larval brain.

    PubMed

    Hartenstein, Volker; Spindler, Shana; Pereanu, Wayne; Fung, Siaumin

    2008-01-01

    In this chapter we will start out by describing in more detail the progenitors of the nervous system, the neuroblasts and ganglion mother cells. Subsequently we will survey the generic cell types that make up the developing Drosophila brain, namely neurons, glial cells and tracheal cells. Finally, we will attempt a synopsis of the neuronal connectivity of the larval brain that can be deduced from the analysis of neural lineages and their relationship to neuropile compartments. PMID:18683635

  2. Calcium and egg activation in Drosophila.

    PubMed

    Sartain, Caroline V; Wolfner, Mariana F

    2013-01-01

    In many animals, a rise in intracellular calcium levels is the trigger for egg activation, the process by which an arrested mature oocyte transitions to prepare for embryogenesis. In nearly all animals studied to date, this calcium rise, and thus egg activation, is triggered by the fertilizing sperm. However in the insects that have been examined, fertilization is not necessary to activate their oocytes. Rather, these insects' eggs activate as they transit through the female's reproductive tract, regardless of male contribution. Recent studies in Drosophila have shown that egg activation nevertheless requires calcium and that the downstream events and molecules of egg activation are also conserved, despite the difference in initial trigger. Genetic studies have uncovered essential roles for the calcium-dependent enzyme calcineurin and its regulator calcipressin, and have hinted at roles for calmodulin, in Drosophila egg activation. Physiological and in vitro studies have led to a model in which mechanical forces that impact the Drosophila oocyte as it moves through the reproductive tract triggers the influx of calcium from the external environment, thereby initiating egg activation. Future research will aim to test this model, as well as to determine the spatiotemporal dynamics of cytoplasmic calcium flux and mode of signal propagation in this unique system. PMID:23218670

  3. ``sex Ratio'' Meiotic Drive in Drosophila Testacea

    PubMed Central

    James, A. C.; Jaenike, J.

    1990-01-01

    We document the occurrence of ``sex ratio'' meiotic drive in natural populations of Drosophila testacea. ``Sex ratio'' males sire >95% female offspring. Genetic analysis reveals that this effect is due to a meiotically driven X chromosome, as in other species of Drosophila in which ``sex ratio'' has been found. In contrast to other drosophilids, the ``sex ratio'' and standard chromosomes of D. testacea do not differ in gene arrangement, implying that the effect may be due to a single genetic factor in this species. In all likelihood, the ``sex ratio'' condition has evolved independently in D. testacea and in the Drosophila obscura species group, as the loci responsible for the effect occur on different chromosomal elements. An important ecological consequence of ``sex ratio'' is that natural populations of D. testacea exhibit a strong female bias. Because D. testacea mates, oviposits, and feeds as adults and larvae on mushrooms, this species provides an excellent opportunity to study the selective factors in nature that prevent ``sex ratio'' chromosomes from increasing to fixation and causing the extinction of the species. PMID:2249763

  4. Imprinted control of gene activity in Drosophila.

    PubMed

    Golic, K G; Golic, M M; Pimpinelli, S

    1998-11-19

    Genetic imprinting is defined as a reversible, differential marking of genes or chromosomes that is determined by the sex of the parent from whom the genetic material is inherited [1]. Imprinting was first observed in insects where, in some species, most notably among the coccoids (scale insects and allies), the differential marking of paternally and maternally transmitted chromosome sets leads to inactivation or elimination of paternal chromosomes [2]. Imprinting is also widespread in plants and mammals [3,4], in which paternally and maternally inherited alleles may be differentially expressed. Despite imprinting having been discovered in insects, clear examples of parental imprinting are scarce in the model insect species Drosophila melanogaster. We describe a case of imprint-mediated control of gene expression in Drosophila. The imprinted gene - the white+ eye-color gene - is expressed at a low level when transmitted by males, and at a high level when transmitted by females. Thus, in common with coccoids, Drosophila is capable of generating an imprint, and can respond to that imprint by silencing the paternal allele. PMID:9822579

  5. Visualizing the spindle checkpoint in Drosophila spermatocytes

    PubMed Central

    Rebollo, Elena; González, Cayetano

    2000-01-01

    The spindle assembly checkpoint detects defects in spindle structure or in the alignment of the chromosomes on the metaphase plate and delays the onset of anaphase until defects are corrected. Thus far, the evidence regarding the presence of a spindle checkpoint during meiosis in male Drosophila has been indirect and contradictory. On the one hand, chromosomes without pairing partners do not prevent meiosis progression. On the other hand, some conserved components of the spindle checkpoint machinery are expressed in these cells and behave as their homologue proteins do in systems with an active spindle checkpoint. To establish whether the spindle checkpoint is active in Drosophila spermatocytes we have followed meiosis progression by time-lapse microscopy under conditions where the checkpoint is likely to be activated. We have found that the presence of a relatively high number of misaligned chromosomes or a severe disruption of the meiotic spindle results in a significant delay in the time of entry into anaphase. These observations provide the first direct evidence substantiating the activity of a meiotic spindle checkpoint in male Drosophila. PMID:11256627

  6. ‘Peer pressure’ in larval Drosophila?

    PubMed Central

    Niewalda, Thomas; Jeske, Ines; Michels, Birgit; Gerber, Bertram

    2014-01-01

    ABSTRACT Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on ‘peer pressure’, that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila. PMID:24907371

  7. SPARC–Dependent Cardiomyopathy in Drosophila

    PubMed Central

    Motamedchaboki, Khatereh; Bodmer, Rolf

    2016-01-01

    Background— The Drosophila heart is an important model for studying the genetics underpinning mammalian cardiac function. The system comprises contractile cardiomyocytes, adjacent to which are pairs of highly endocytic pericardial nephrocytes that modulate cardiac function by uncharacterized mechanisms. Identifying these mechanisms and the molecules involved is important because they may be relevant to human cardiac physiology. Methods and Results— This work aimed to identify circulating cardiomodulatory factors of potential relevance to humans using the Drosophila nephrocyte–cardiomyocyte system. A Kruppel-like factor 15 (dKlf15) loss-of-function strategy was used to ablate nephrocytes and then heart function and the hemolymph proteome were analyzed. Ablation of nephrocytes led to a severe cardiomyopathy characterized by a lengthening of diastolic interval. Rendering adult nephrocytes dysfunctional by disrupting their endocytic function or temporally conditional knockdown of dKlf15 led to a similar cardiomyopathy. Proteomics revealed that nephrocytes regulate the circulating levels of many secreted proteins, the most notable of which was the evolutionarily conserved matricellular protein Secreted Protein Acidic and Rich in Cysteine (SPARC), a protein involved in mammalian cardiac function. Finally, reducing SPARC gene dosage ameliorated the cardiomyopathy that developed in the absence of nephrocytes. Conclusions— The data implicate SPARC in the noncell autonomous control of cardiac function in Drosophila and suggest that modulation of SPARC gene expression may ameliorate cardiac dysfunction in humans. PMID:26839388

  8. Flying Drosophila orient to sky polarization.

    PubMed

    Weir, Peter T; Dickinson, Michael H

    2012-01-10

    Insects maintain a constant bearing across a wide range of spatial scales. Monarch butterflies and locusts traverse continents [1, 2], and foraging bees and ants travel hundreds of meters to return to their nests [1, 3, 4], whereas many other insects fly straight for only a few centimeters before changing direction. Despite this variation in spatial scale, the brain region thought to underlie long-distance navigation is remarkably conserved [5, 6], suggesting that the use of a celestial compass is a general and perhaps ancient capability of insects. Laboratory studies of Drosophila have identified a local search mode in which short, straight segments are interspersed with rapid turns [7, 8]. However, this flight mode is inconsistent with measured gene flow between geographically separated populations [9-11], and individual Drosophila can travel 10 km across desert terrain in a single night [9, 12, 13]-a feat that would be impossible without prolonged periods of straight flight. To directly examine orientation behavior under outdoor conditions, we built a portable flight arena in which a fly viewed the natural sky through a liquid crystal device that could experimentally rotate the polarization angle. Our findings indicate that Drosophila actively orient using the sky's natural polarization pattern. PMID:22177905

  9. Mechanisms of systemic wound response in Drosophila.

    PubMed

    Lee, Won-Jae; Miura, Masayuki

    2014-01-01

    In response to cellular and tissue losses caused by physical or chemical injuries, organisms must activate multiple wound repair systems at the cellular, tissue, and organismal levels. The systemic wound response (SWR) that occurs via interorgan communication between local wound sites and remote organs ensures that the host is protected efficiently in response to a local wound. The local wound response around the wound site is fairly well documented, but the molecular mechanisms that allow the host to launch SWR are poorly understood. Recent studies on the Drosophila adult model system have shown that the local wound response is not restricted to the wound site because it plays an essential role in generating signals transmitted to remote organs that subsequently achieve SWR. By exploiting the genetic methods available for investigating Drosophila, we are just beginning to understand the complex interorgan networks that operate during SWRs. This review discusses the basic processes involved with classical integumental wound responses and tissue regeneration, such as epithelial cell movement, hemocyte recruitment, apoptosis, melanization, and generation of reactive oxygen species, as well as the recently described intestinal epithelial cell renewal program that occurs in response to gut cell damages. Furthermore, we discuss how these local wound responses integrate with organ-to-organ communication to launch SWR. Genetic analysis of SWRs using the Drosophila model system will provide a unique opportunity to dissect the molecular mechanisms that control wound-induced organ-to-organ communication. PMID:24512709

  10. dachshund Potentiates Hedgehog Signaling during Drosophila Retinogenesis

    PubMed Central

    Aerts, Stein; Casares, Fernando; Janody, Florence

    2016-01-01

    Proper organ patterning depends on a tight coordination between cell proliferation and differentiation. The patterning of Drosophila retina occurs both very fast and with high precision. This process is driven by the dynamic changes in signaling activity of the conserved Hedgehog (Hh) pathway, which coordinates cell fate determination, cell cycle and tissue morphogenesis. Here we show that during Drosophila retinogenesis, the retinal determination gene dachshund (dac) is not only a target of the Hh signaling pathway, but is also a modulator of its activity. Using developmental genetics techniques, we demonstrate that dac enhances Hh signaling by promoting the accumulation of the Gli transcription factor Cubitus interruptus (Ci) parallel to or downstream of fused. In the absence of dac, all Hh-mediated events associated to the morphogenetic furrow are delayed. One of the consequences is that, posterior to the furrow, dac- cells cannot activate a Roadkill-Cullin3 negative feedback loop that attenuates Hh signaling and which is necessary for retinal cells to continue normal differentiation. Therefore, dac is part of an essential positive feedback loop in the Hh pathway, guaranteeing the speed and the accuracy of Drosophila retinogenesis. PMID:27442438

  11. The Ran Pathway in Drosophila melanogaster Mitosis

    PubMed Central

    Chen, Jack W. C.; Barker, Amy R.; Wakefield, James G.

    2015-01-01

    Over the last two decades, the small GTPase Ran has emerged as a central regulator of both mitosis and meiosis, particularly in the generation, maintenance, and regulation of the microtubule (MT)-based bipolar spindle. Ran-regulated pathways in mitosis bear many similarities to the well-characterized functions of Ran in nuclear transport and, as with transport, the majority of these mitotic effects are mediated through affecting the physical interaction between karyopherins and Spindle Assembly Factors (SAFs)—a loose term describing proteins or protein complexes involved in spindle assembly through promoting nucleation, stabilization, and/or depolymerization of MTs, through anchoring MTs to specific structures such as centrosomes, chromatin or kinetochores, or through sliding MTs along each other to generate the force required to achieve bipolarity. As such, the Ran-mediated pathway represents a crucial functional module within the wider spindle assembly landscape. Research into mitosis using the model organism Drosophila melanogaster has contributed substantially to our understanding of centrosome and spindle function. However, in comparison to mammalian systems, very little is known about the contribution of Ran-mediated pathways in Drosophila mitosis. This article sets out to summarize our understanding of the roles of the Ran pathway components in Drosophila mitosis, focusing on the syncytial blastoderm embryo, arguing that it can provide important insights into the conserved functions on Ran during spindle formation. PMID:26636083

  12. Characterization and distribution of NKD, a receptor for Drosophila tachykinin-related peptide 6

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptides related to vertebrate tachykinins have been identified in Drosophila and are referred to as drosotachykinins, or DTKs. Two Drosophila G protein-coupled receptors, designated NKD (neurokinin receptor from Drosophila; CG6515) and DTKR (Drosophila tachykinin receptor; CG7887), display seq...

  13. Spotted wing drosophila: a new invasive pest of Mississippi berries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spotted Wing Drosophila (SWD) Drosophila suzukii, a native fly of Southeast Asia, is a widely reported and highly invasive pest of fruit crops in North America and Mediterranean Europe. Between 2010 and 2011, SWD was confirmed in most States in eastern North America. During this same period, SWD was...

  14. Cranberries and Spotted Wing Drosophila (SWD) in Wisconsin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drosophila suzukii, commonly known as spotted wing drosophila (SWD), does not appear to like cranberries very much. Following multiple replicated trials using ripe, under-ripe, and over-ripe organic Wisconsin cranberries, SWD females would not (or could not) insert eggs into under-ripe or ripe cranb...

  15. Porphyromonas gingivalis-host interactions in a Drosophila melanogaster model.

    PubMed

    Igboin, Christina O; Tordoff, Kevin P; Moeschberger, Melvin L; Griffen, Ann L; Leys, Eugene J

    2011-01-01

    Porphyromonas gingivalis is a Gram-negative obligate anaerobe that has been implicated in the etiology of adult periodontitis. We recently introduced a Drosophila melanogaster killing model for examination of P. gingivalis-host interactions. In the current study, the Drosophila killing model was used to characterize the host response to P. gingivalis infection by identifying host components that play a role during infection. Drosophila immune response gene mutants were screened for altered susceptibility to killing by P. gingivalis. The Imd signaling pathway was shown to be important for the survival of Drosophila infected by nonencapsulated P. gingivalis strains but was dispensable for the survival of Drosophila infected by encapsulated P. gingivalis strains. The P. gingivalis capsule was shown to mediate resistance to killing by Drosophila antimicrobial peptides (Imd pathway-regulated cecropinA and drosocin) and human beta-defensin 3. Drosophila thiol-ester protein II (Tep II) and Tep IV and the tumor necrosis factor (TNF) homolog Eiger were also involved in the immune response against P. gingivalis infection, while the scavenger receptors Eater and Croquemort played no roles in the response to P. gingivalis infection. This study demonstrates that the Drosophila killing model is a useful high-throughput model for characterizing the host response to P. gingivalis infection and uncovering novel interactions between the bacterium and the host. PMID:21041486

  16. First foreign exploration for asian parasitoids of Drosophila suzukii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The invasive spotted wing drosophila, Drosophila suzukii Matsumura (Dipt.: Drosophilidae), is a native of East Asia and is now widely established in North America and Europe, where it is a serious pest of small and stone fruit crops. The lack of effective indigenous parasitoids of D. suzukii in the ...

  17. Drosophila suzukii population response to environment and management strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spotted wing drosophila, Drosophila suzukii, quickly emerged as a devastating invasive pest of small and stone fruits in the Americas and Europe. To better understand the population dynamics of D. suzukii, we reviewed recent work on juvenile development, adult reproduction, and seasonal variation in...

  18. Drosophila lacks C20 and C22 polyunsaturated fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drosophila melanogaster has been considered an ideal model organism to investigate human diseases and genetic pathways. Whether Drosophila is an ideal model for nutrigenomics, especially for fatty acid metabolism, however, remains to be illustrated. This study was to examine the metabolism of C20 an...

  19. Susceptibility of cranberries to Drosophila suzukii (Diptera: Drosophilidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drosophila suzukii Mastsumura (Diptera: Drosophilidae), commonly referred to as the spotted-wing drosophila, is an exotic species that has proven a troublesome pest of fruit production in the U.S. The fly targets small fruit and thus represents a concern for the U.S. cranberry industry. Two studies ...

  20. The developmental transcriptome of Drosophila melanogaster

    SciTech Connect

    University of Connecticut; Graveley, Brenton R.; Brooks, Angela N.; Carlson, Joseph W.; Duff, Michael O.; Landolin, Jane M.; Yang, Li; Artieri, Carlo G.; van Baren, Marijke J.; Boley, Nathan; Booth, Benjamin W.; Brown, James B.; Cherbas, Lucy; Davis, Carrie A.; Dobin, Alex; Li, Renhua; Lin, Wei; Malone, John H.; Mattiuzzo, Nicolas R.; Miller, David; Sturgill, David; Tuch, Brian B.; Zaleski, Chris; Zhang, Dayu; Blanchette, Marco; Dudoit, Sandrine; Eads, Brian; Green, Richard E.; Hammonds, Ann; Jiang, Lichun; Kapranov, Phil; Langton, Laura; Perrimon, Norbert; Sandler, Jeremy E.; Wan, Kenneth H.; Willingham, Aarron; Zhang, Yu; Zou, Yi; Andrews, Justen; Bicke, Peter J.; Brenner, Steven E.; Brent, Michael R.; Cherbas, Peter; Gingeras, Thomas R.; Hoskins, Roger A.; Kaufman, Thomas C.; Oliver, Brian; Celniker, Susan E.

    2010-12-02

    Drosophila melanogaster is one of the most well studied genetic model organisms; nonetheless, its genome still contains unannotated coding and non-coding genes, transcripts, exons and RNA editing sites. Full discovery and annotation are pre-requisites for understanding how the regulation of transcription, splicing and RNA editing directs the development of this complex organism. Here we used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events, and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. These data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development. Drosophila melanogaster is an important non-mammalian model system that has had a critical role in basic biological discoveries, such as identifying chromosomes as the carriers of genetic information and uncovering the role of genes in development. Because it shares a substantial genic content with humans, Drosophila is increasingly used as a translational model for human development, homeostasis and disease. High-quality maps are needed for all functional genomic elements. Previous studies demonstrated that a rich collection of genes is deployed during the life cycle of the fly. Although expression profiling using microarrays has revealed the expression of, 13,000 annotated genes, it is difficult to map splice junctions and individual base modifications generated by RNA editing using such approaches. Single-base resolution is essential to define precisely the elements that comprise the Drosophila transcriptome. Estimates of the number of transcript isoforms are less accurate than estimates of the number of genes

  1. Discovery of Trypanosomatid Parasites in Globally Distributed Drosophila Species

    PubMed Central

    Chandler, James Angus; James, Pamela M.

    2013-01-01

    Microbial parasites of animals include bacteria, viruses, and various unicellular eukaryotes. Because of the difficulty in studying these microorganisms in both humans and disease vectors, laboratory models are commonly used for experimental analysis of host-parasite interactions. Drosophila is one such model that has made significant contributions to our knowledge of bacterial, fungal, and viral infections. Despite this, less is known about other potential parasites associated with natural Drosophila populations. Here, we surveyed sixteen Drosophila populations comprising thirteen species from four continents and Hawaii and found that they are associated with an extensive diversity of trypanosomatids (Euglenozoa, Kinetoplastea). Phylogenetic analysis finds that Drosophila-associated trypanosomatids are closely related to taxa that are responsible for various types of leishmaniases and more distantly related to the taxa responsible for human African trypanosomiasis and Chagas disease. We suggest that Drosophila may provide a powerful system for studying the interactions between trypanosomatids and their hosts. PMID:23658617

  2. An inventory of peroxisomal proteins and pathways in Drosophila melanogaster

    PubMed Central

    Faust, Joseph E.; Verma, Avani; Peng, Chengwei; McNew, James A.

    2012-01-01

    Peroxisomes are ubiquitous organelles housing a variety of essential biochemical pathways. Peroxisome dysfunction causes a spectrum of human diseases known as peroxisome biogenesis disorders (PBD). While much is known regarding the mechanism of peroxisome biogenesis, it is still unclear how peroxisome dysfunction leads to the disease state. Several recent studies have shown that mutations in Drosophila peroxin genes cause phenotypes similar to those seen in humans with PBDs suggesting that Drosophila might be a useful system to model PBDs. We have analyzed the proteome of Drosophila to identify the proteins involved in peroxisomal biogenesis and homeostasis as well as metabolic enzymes that function within the organelle. The subcellular localization of five of these predicted peroxisomal proteins was confirmed. Similar to C. elegans, Drosophila appears to only utilize the peroxisome targeting signal (PTS) type 1 system for matrix protein import. This work will further our understanding of peroxisomes in Drosophila and add to the usefulness of this emerging model system. PMID:22758915

  3. The influence of temperature and photoperiod on the reproductive diapause and cold tolerance of spotted-wing drosophila, Drosophila suzukii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge regarding the reproductive status of spotted-wing drosophila, Drosophila suzukii (Matsumura)(Diptera: Drosophilidae) is of critical importance in predicting potential infestations of this invasive pest, as eggs are laid in ripe or ripening fruit of several commercially important small frui...

  4. Optimizing postharvest methyl bromide treatments to control spotted wing drosophila, Drosophila suzukii, in sweet cherries from Western USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl bromide (MB) chamber fumigations were evaluated for postharvest control of spotted wing drosophila (SWD), Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), in fresh sweet cherry exports from Western USA. Sweet cherries were infested with SWD, incubated to maximize numbers of the most M...

  5. Evolutionary relationships of Drosophila mojavensis geographic host races and their sister species Drosophila arizonae.

    PubMed

    Reed, L K; Nyboer, M; Markow, T A

    2007-03-01

    The cactophilic Drosophila mojavensis species group living in the deserts and dry tropical forests of the southwestern United States and Mexico provides a valuable system for studies in diversification and speciation. Rigorous studies of the relationships between host races of D. mojavensis and the relationships among the members of the species group (D. mojavensis, Drosophila arizona, and Drosophila navojoa) are lacking. We used mitochondrial CO1 sequence data to address the phylogenetics and population genetics of this species group. In this study we have found that the sister species D. mojavensis and D. arizonae share no mitochondrial haplotypes and thus show no evidence for recent introgression. We estimate the divergence time between D. mojavensis and D. arizonae to be between 1.91 and 2.97 million years ago. D. arizonae shows little structure in our population genetic analyses but there is phylogenetic differentiation between southeastern and northern populations of D. arizonae. Drosophila mojavensis shows significant population and phylogenetic structure across the four geographic regions of its distribution. The mitochondrial data support an origin of D. mojavensis on the mainland with early differentiation into the populations now found in the Mojave Desert and the Mainland Sonoran Desert and later colonization of the Baja Peninsula, in contrast to previous models. Also, the sister clade to D. mojavensis/D. arizonae includes D. navojoa and Drosophila huaylasi. By defining the genetic relationships among these populations, we provide a foundation for more sophisticated hypothesis testing regarding the timing of early speciation events and host switches in this species group. PMID:17305857

  6. Pheromones mediating copulation and attraction in Drosophila.

    PubMed

    Dweck, Hany K M; Ebrahim, Shimaa A M; Thoma, Michael; Mohamed, Ahmed A M; Keesey, Ian W; Trona, Federica; Lavista-Llanos, Sofia; Svatoš, Aleš; Sachse, Silke; Knaden, Markus; Hansson, Bill S

    2015-05-26

    Intraspecific olfactory signals known as pheromones play important roles in insect mating systems. In the model Drosophila melanogaster, a key part of the pheromone-detecting system has remained enigmatic through many years of research in terms of both its behavioral significance and its activating ligands. Here we show that Or47b-and Or88a-expressing olfactory sensory neurons (OSNs) detect the fly-produced odorants methyl laurate (ML), methyl myristate, and methyl palmitate. Fruitless (fru(M))-positive Or47b-expressing OSNs detect ML exclusively, and Or47b- and Or47b-expressing OSNs are required for optimal male copulation behavior. In addition, activation of Or47b-expressing OSNs in the male is sufficient to provide a competitive mating advantage. We further find that the vigorous male courtship displayed toward oenocyte-less flies is attributed to an oenocyte-independent sustained production of the Or47b ligand, ML. In addition, we reveal that Or88a-expressing OSNs respond to all three compounds, and that these neurons are necessary and sufficient for attraction behavior in both males and females. Beyond the OSN level, information regarding the three fly odorants is transferred from the antennal lobe to higher brain centers in two dedicated neural lines. Finally, we find that both Or47b- and Or88a-based systems and their ligands are remarkably conserved over a number of drosophilid species. Taken together, our results close a significant gap in the understanding of the olfactory background to Drosophila mating and attraction behavior; while reproductive isolation barriers between species are created mainly by species-specific signals, the mating enhancing signal in several Drosophila species is conserved. PMID:25964351

  7. Pheromones mediating copulation and attraction in Drosophila

    PubMed Central

    Dweck, Hany K. M.; Ebrahim, Shimaa A. M.; Thoma, Michael; Mohamed, Ahmed A. M.; Keesey, Ian W.; Trona, Federica; Lavista-Llanos, Sofia; Svatoš, Aleš; Sachse, Silke; Knaden, Markus; Hansson, Bill S.

    2015-01-01

    Intraspecific olfactory signals known as pheromones play important roles in insect mating systems. In the model Drosophila melanogaster, a key part of the pheromone-detecting system has remained enigmatic through many years of research in terms of both its behavioral significance and its activating ligands. Here we show that Or47b-and Or88a-expressing olfactory sensory neurons (OSNs) detect the fly-produced odorants methyl laurate (ML), methyl myristate, and methyl palmitate. Fruitless (fruM)-positive Or47b-expressing OSNs detect ML exclusively, and Or47b- and Or47b-expressing OSNs are required for optimal male copulation behavior. In addition, activation of Or47b-expressing OSNs in the male is sufficient to provide a competitive mating advantage. We further find that the vigorous male courtship displayed toward oenocyte-less flies is attributed to an oenocyte-independent sustained production of the Or47b ligand, ML. In addition, we reveal that Or88a-expressing OSNs respond to all three compounds, and that these neurons are necessary and sufficient for attraction behavior in both males and females. Beyond the OSN level, information regarding the three fly odorants is transferred from the antennal lobe to higher brain centers in two dedicated neural lines. Finally, we find that both Or47b- and Or88a-based systems and their ligands are remarkably conserved over a number of drosophilid species. Taken together, our results close a significant gap in the understanding of the olfactory background to Drosophila mating and attraction behavior; while reproductive isolation barriers between species are created mainly by species-specific signals, the mating enhancing signal in several Drosophila species is conserved. PMID:25964351

  8. The Drosophila EKC/KEOPS complex

    PubMed Central

    Rojas-Benítez, Diego; Ibar, Consuelo; Glavic, Álvaro

    2013-01-01

    The TOR signaling pathway is crucial in the translation of nutritional inputs into the protein synthesis machinery regulation, allowing animal growth. We recently identified the Bud32 (yeast)/PRPK (human) ortholog in Drosophila, Prpk (p53-related protein kinase), and found that it is required for TOR kinase activity. Bud32/PRPK is an ancient and atypical kinase conserved in evolution from Archeae to humans, being essential for Archeae. It has been linked with p53 stabilization in human cell culture and its absence in yeast causes a slow-growth phenotype. This protein has been associated to KEOPS (kinase, putative endopeptidase and other proteins of small size) complex together with Kae1p (ATPase), Cgi-121 and Pcc1p. This complex has been implicated in telomere maintenance, transcriptional regulation, bud site selection and chemical modification of tRNAs (tRNAs). Bud32p and Kae1p have been related with N6-threonylcarbamoyladenosine (t6A) synthesis, a particular chemical modification that occurs at position 37 of tRNAs that pair A-starting codons, required for proper translation in most species. Lack of this modification causes mistranslations and open reading frame shifts in yeast. The core constituents of the KEOPS complex are present in Drosophila, but their physical interaction has not been reported yet. Here, we present a review of the findings regarding the function of this complex in different organisms and new evidence that extends our recent observations of Prpk function in animal growth showing that depletion of Kae1 or Prpk, in accordance with their role in translation in yeast, is able to induce the unfolded protein response (UPR) in Drosophila. We suggest that EKC/KEOPS complex could be integrating t6A-modified tRNA availability with translational rates, which are ultimately reflected in animal growth. PMID:23823807

  9. Spatiotemporal rescue of memory dysfunction in Drosophila.

    PubMed

    McGuire, Sean E; Le, Phuong T; Osborn, Alexander J; Matsumoto, Kunihiro; Davis, Ronald L

    2003-12-01

    We have developed a method for temporal and regional gene expression targeting (TARGET) in Drosophila and show the simultaneous spatial and temporal rescue of a memory defect. The transient expression of the rutabaga-encoded adenylyl cyclase in the mushroom bodies of the adult brain was necessary and sufficient to rescue the rutabaga memory deficit, which rules out a developmental brain defect in the etiology of this deficit and demonstrates an acute role for rutabaga in memory formation in these neurons. The TARGET system offers general utility in simultaneously addressing issues of when and where gene products are required. PMID:14657498

  10. Organ size control: lessons from Drosophila

    PubMed Central

    Hariharan, Iswar K.

    2015-01-01

    Of fundamental interest to biologists is how organs achieve a reproducible size during development. Studies of the developing Drosophila wing have provided many key insights that will help give a conceptual understanding of the process beyond the fly. In the wing, there is evidence for both “top-down” mechanisms, where signals emanating from small subsets of cells direct global proliferation, and “”bottom-up” mechanisms, where the final size is an emergent property of local cell-cell interactions. Mechanical forces also appear to have an important role along with the Hippo pathway, which may integrate multiple types of inputs to regulate the extent of growth. PMID:26267393

  11. Studying tauopathies in Drosophila: A fruitful model.

    PubMed

    Sun, Mingkuan; Chen, Liam

    2015-12-01

    Tauopathies are a group of neurodegenerative disorders that include hereditary frontotemporal dementias (FTDs) such as FTD with parkinsonism linked to chromosome 17 (FTDP-17), as well as sporadic variants of FTDs like progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease. These diverse diseases all have in common the presence of abnormally phosphorylated tau aggregates. In this review, we will summarize key features of transgenic Drosophila models of tauopathies and a number of insights into disease mechanisms as well as therapeutic implications gained from the fruit fly models. PMID:25862286

  12. A connectionist model of the Drosophila blastoderm

    SciTech Connect

    Reinitz, J. . Dept. of Biological Sciences); Mjolsness, E. . Dept. of Computer Science); Sharp, D.H. . Theoretical Div.)

    1990-11-01

    The authors present a phenomenological modeling framework for development, and apply it to the network of segmentation genes operating in the blastoderm of Drosophila. Their purpose is to provide a systematic method for discovering and expressing correlations in experimental data on gene expression and other developmental processes. The modeling framework is based on a connectionist or neural net dynamics for biochemical regulators, coupled to grammatical rules which describe certain features of the birth, growth, and death of cells, synapses and other biological entities. They present preliminary numerical results regarding regulatory interactions between the genes Kruppel and knirps that demonstrate the potential utility of the model. 14 refs., 5 figs.

  13. The intimate genetics of Drosophila fertilization

    PubMed Central

    Loppin, Benjamin; Dubruille, Raphaëlle; Horard, Béatrice

    2015-01-01

    The union of haploid gametes at fertilization initiates the formation of the diploid zygote in sexually reproducing animals. This founding event of embryogenesis includes several fascinating cellular and nuclear processes, such as sperm–egg cellular interactions, sperm chromatin remodelling, centrosome formation or pronuclear migration. In comparison with other aspects of development, the exploration of animal fertilization at the functional level has remained so far relatively limited, even in classical model organisms. Here, we have reviewed our current knowledge of fertilization in Drosophila melanogaster, with a special emphasis on the genes involved in the complex transformation of the fertilizing sperm nucleus into a replicated set of paternal chromosomes. PMID:26246493

  14. Hypergravity-induced altered behavior in Drosophila

    NASA Astrophysics Data System (ADS)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  15. Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine

    SciTech Connect

    Knecht, Wolfgang; Mikkelsen, Nils Egil; Clausen, Anders Ranegaard; Willer, Mette; Gojkovic, Zoran

    2009-05-01

    Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2 A resolution structure of Dm-dNK in complex with gemcitabine shows that the residues Tyr70 and Arg105 play a crucial role in the firm positioning of gemcitabine by extra interactions made by the fluoride atoms. This explains why gemcitabine is a good substrate for Dm-dNK.

  16. Evolution of a Distinct Genomic Domain in Drosophila: Comparative Analysis of the Dot Chromosome in Drosophila melanogaster and Drosophila virilis

    PubMed Central

    Leung, Wilson; Shaffer, Christopher D.; Cordonnier, Taylor; Wong, Jeannette; Itano, Michelle S.; Slawson Tempel, Elizabeth E.; Kellmann, Elmer; Desruisseau, David Michael; Cain, Carolyn; Carrasquillo, Robert; Chusak, Tien M.; Falkowska, Katazyna; Grim, Kelli D.; Guan, Rui; Honeybourne, Jacquelyn; Khan, Sana; Lo, Louis; McGaha, Rebecca; Plunkett, Jevon; Richner, Justin M.; Richt, Ryan; Sabin, Leah; Shah, Anita; Sharma, Anushree; Singhal, Sonal; Song, Fine; Swope, Christopher; Wilen, Craig B.; Buhler, Jeremy; Mardis, Elaine R.; Elgin, Sarah C. R.

    2010-01-01

    The distal arm of the fourth (“dot”) chromosome of Drosophila melanogaster is unusual in that it exhibits an amalgamation of heterochromatic properties (e.g., dense packaging, late replication) and euchromatic properties (e.g., gene density similar to euchromatic domains, replication during polytenization). To examine the evolution of this unusual domain, we undertook a comparative study by generating high-quality sequence data and manually curating gene models for the dot chromosome of D. virilis (Tucson strain 15010–1051.88). Our analysis shows that the dot chromosomes of D. melanogaster and D. virilis have higher repeat density, larger gene size, lower codon bias, and a higher rate of gene rearrangement compared to a reference euchromatic domain. Analysis of eight “wanderer” genes (present in a euchromatic chromosome arm in one species and on the dot chromosome in the other) shows that their characteristics are similar to other genes in the same domain, which suggests that these characteristics are features of the domain and are not required for these genes to function. Comparison of this strain of D. virilis with the strain sequenced by the Drosophila 12 Genomes Consortium (Tucson strain 15010–1051.87) indicates that most genes on the dot are under weak purifying selection. Collectively, despite the heterochromatin-like properties of this domain, genes on the dot evolve to maintain function while being responsive to changes in their local environment. PMID:20479145

  17. Drosophila-associated yeast species in vineyard ecosystems.

    PubMed

    Lam, Samuel S T H; Howell, Kate S

    2015-10-01

    Yeast activity during wine fermentation directly contributes to wine quality, but the source and movement of yeasts in vineyards and winery environments have not been resolved. Here, we investigate the yeast species associated with the Drosophila insect vector to help understand yeast dispersal and persistence. Drosophila are commonly found in vineyards and are known to have a mutualistic relationship with yeasts in other ecosystems. Drosophilids were collected from vineyards, grape waste (marc) piles and wineries during grape harvest. Captured flies were identified morphologically, and their associated yeasts were identified. Drosophila melanogaster/D. simulans, D. hydei and Scaptodrosophila lativittata were identified in 296 captured Drosophila flies. These flies were associated with Metschnikowia pulcherrima, Hanseniaspora uvarum, Torulaspora delbrueckii and H. valbyensis yeasts. Yeast and Drosophila species diversity differed between collection locations (vineyard and marc: R = 0.588 for Drosophila and R = 0.644 for yeasts). Surprisingly, the primary wine fermentation yeast, Saccharomyces cerevisiae, was not isolated. Drosophila flies are preferentially associated with different yeast species in the vineyard and winery environments, and this association may help the movement and dispersal of yeast species in the vineyard and winery ecosystem. PMID:26391524

  18. Evidence for horizontal transfer of Wolbachia by a Drosophila mite.

    PubMed

    Brown, Amy N; Lloyd, Vett K

    2015-07-01

    Mites are common ectoparasites of Drosophila and have been implicated in bacterial and mobile element invasion of Drosophila stocks. The obligate endobacterium, Wolbachia, has widespread effects on gene expression in their arthropod hosts and alters host reproduction to enhance its survival and propagation, often with deleterious effects in Drosophila hosts. To determine whether Wolbachia could be transferred between Drosophila melanogaster laboratory stocks by the mite Tyrophagus putrescentiae, mites were introduced to Wolbachia-infected Drosophila vials. These vials were kept adjacent to mite-free and Wolbachia-uninfected Drosophila stock vials. The Wolbachia infection statuses of the infected and uninfected flies were checked from generation 1 to 5. Results indicate that Wolbachia DNA could be amplified from mites infesting Wolbachia-infected fly stocks and infection in the previously uninfected stocks arose within generation 1 or 2, concomitant with invasion of mites from the Wolbachia-infected stock. A possible mechanism for the transfer of Wolbachia from flies to mites and vice versa, can be inferred from time-lapse photography of fly and mite interactions. We demonstrated that mites ingest Drosophila corpses, including Wolbachia-infected corpses, and Drosophila larva ingest mites, providing possible sources of Wolbachia infection and transfer. This research demonstrated that T. putrescentiae white mites can facilitate Wolbachia transfer between Drosophila stocks and that this may occur by ingestion of infected corpses. Mite-vectored Wolbachia transfer allows for rapid establishment of Wolbachia infection within a new population. This mode of Wolbachia introduction may be relevant in nature as well as in the laboratory, and could have a variety of biological consequences. PMID:25921489

  19. Genetic effects of plutonium in Drosophila. Final technical report

    SciTech Connect

    1995-07-01

    This three year project, initiated in 1987, involved the genetic effects of alpha radiations on Drosophila. This document represents the final technical report. Plutonium residue was used as the alpha source of radon gas. Spontaneous mutation frequency in the Drosophila stock was very low. In the experiments using alpha radiation from radon gas, radiation doses as low as 20R induced significant numbers of mutations, with higher numbers of mutations at higher doses. If X-ray induced mutation frequencies reported in the literature are used for comparison, it can be concluded that alpha radiation from radon gas induces at least 2 to 3 time more mutations in Drosophila.

  20. A novel, tissue-specific, Drosophila homeobox gene.

    PubMed Central

    Barad, M; Jack, T; Chadwick, R; McGinnis, W

    1988-01-01

    The homeobox gene family of Drosophila appears to control a variety of position-specific patterning decisions during embryonic and imaginal development. Most of these patterning decisions determine groups of cells on the anterior-posterior axis of the Drosophila germ band. We have isolated a novel homeobox gene from Drosophila, designated H2.0. H2.0 has the most diverged homeobox so far characterized in metazoa, and, in contrast to all previously isolated homeobox genes, H2.0 exhibits a tissue-specific pattern of expression. The cells that accumulate transcripts for this novel gene correspond to the visceral musculature and its anlagen. Images PMID:2901348

  1. Drosophila melanogaster as a Model System to Study Mitochondrial Biology

    PubMed Central

    Fernández-Moreno, Miguel Angel; Farr, Carol L.; Kaguni, Laurie S.; Garesse, Rafael

    2016-01-01

    Summary Mitochondria play an essential role in cellular homeostasis. Although in the last few decades our knowledge of mitochondria has increased substantially, the mechanisms involved in the control of mitochondrial biogenesis remain largely unknown. The powerful genetics of Drosophila combined with a wealth of available cell and molecular biology techniques, make this organism an excellent system to study mitochondria. In this chapter we will review briefly the opportunities that Drosophila offers as a model system and describe in detail how to purify mitochondria from Drosophila and to perform the analysis of developmental gene expression using in situ hybridization. PMID:18314716

  2. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes.

    PubMed Central

    Spradling, A C; Stern, D; Beaton, A; Rhem, E J; Laverty, T; Mozden, N; Misra, S; Rubin, G M

    1999-01-01

    A fundamental goal of genetics and functional genomics is to identify and mutate every gene in model organisms such as Drosophila melanogaster. The Berkeley Drosophila Genome Project (BDGP) gene disruption project generates single P-element insertion strains that each mutate unique genomic open reading frames. Such strains strongly facilitate further genetic and molecular studies of the disrupted loci, but it has remained unclear if P elements can be used to mutate all Drosophila genes. We now report that the primary collection has grown to contain 1045 strains that disrupt more than 25% of the estimated 3600 Drosophila genes that are essential for adult viability. Of these P insertions, 67% have been verified by genetic tests to cause the associated recessive mutant phenotypes, and the validity of most of the remaining lines is predicted on statistical grounds. Sequences flanking >920 insertions have been determined to exactly position them in the genome and to identify 376 potentially affected transcripts from collections of EST sequences. Strains in the BDGP collection are available from the Bloomington Stock Center and have already assisted the research community in characterizing >250 Drosophila genes. The likely identity of 131 additional genes in the collection is reported here. Our results show that Drosophila genes have a wide range of sensitivity to inactivation by P elements, and provide a rationale for greatly expanding the BDGP primary collection based entirely on insertion site sequencing. We predict that this approach can bring >85% of all Drosophila open reading frames under experimental control. PMID:10471706

  3. Contribution of Drosophila TRPA1 to Metabolism.

    PubMed

    Lee, Jung-Eun; Kim, Yunjung; Kim, Kyoung Heon; Lee, Do Yup; Lee, Youngseok

    2016-01-01

    Transient receptor potential (TRP) cation channels are highly conserved in humans and insects. Some of these channels are expressed in internal organs and their functions remain incompletely understood. By direct knock-in of the GAL4 gene into the trpA1 locus in Drosophila, we identified the expression of this gene in the subesophageal ganglion (SOGs) region. In addition, the neurites present in the dorsal posterior region as well as the drosophila insulin-like peptide 2 (dILP2)-positive neurons send signals to the SOGs. The signal is sent to the crop, which is an enlarged organ of the esophagus and functions as a storage place for food in the digestive system. To systematically investigate the role of TRPA1 in metabolism, we applied non-targeted metabolite profiling analysis together with gas-chromatography/time-of-flight mass spectrometry, with an aim to identify a wide range of primary metabolites. We effectively captured distinctive metabolomic phenotypes and identified specific metabolic dysregulation triggered by TRPA1 mutation based on reconstructed metabolic network analysis. Primarily, the network analysis pinpointed the simultaneous down-regulation of intermediates in the methionine salvation pathway, in contrast to the synchronized up-regulation of a range of free fatty acids. The gene dosage-dependent dynamics of metabolite levels among wild-type, hetero- and homozygous mutants, and their coordinated metabolic modulation under multiple gene settings across five different genotypes confirmed the direct linkages of TRPA1 to metabolism. PMID:27055172

  4. Genetic analysis of glutamatergic function in Drosophila

    SciTech Connect

    Chase, B.A.; Kankel, D.R.

    1987-01-01

    Neurotransmitters are essential for communication between neurons and hence are vital in the overall integrative functioning of the nervous system. Previous work on acetylcholine metabolism in the fruit fly, Drosophila melanogaster, has also raised the possibility that transmitter metabolism may play a prominent role in either the achievement or maintenance of the normal structure of the central nervous system in this species. Unfortunately, acetylcholine is rather poorly characterized as a neurotransmitter in Drosophila; consequently, we have begun an analysis of the role of glutamate (probably the best characterized transmitter in this organism) in the formation and/or maintenance of nervous system structure. We present here the results of a series of preliminary analyses. To suggest where glutamatergic function may be localized, an examination of the spatial distribution of high affinity (/sup 3/H)-glutamate binding sites are presented. We present the results of an analysis of the spatial and temporal distribution of enzymatic activities thought to be important in the regulation of transmitter-glutamate pools (i.e., glutamate oxaloacetic transaminase, glutaminase, and glutamate dehydrogenase). To begin to examine whether mutations in any of these functions are capable of affecting glutamatergic activity, we present the results of an initial genetic analysis of one enzymatic function, glutamate oxaloacetic transaminase (GOT), chosen because of its differential distribution within the adult central nervous system and musculature.

  5. Loading Drosophila nerve terminals with calcium indicators.

    PubMed

    Rossano, Adam J; Macleod, Gregory T

    2007-01-01

    Calcium plays many roles in the nervous system but none more impressive than as the trigger for neurotransmitter release, and none more profound than as the messenger essential for the synaptic plasticity that supports learning and memory. To further elucidate the molecular underpinnings of Ca(2+)-dependent synaptic mechanisms, a model system is required that is both genetically malleable and physiologically accessible. Drosophila melanogaster provides such a model. In this system, genetically-encoded fluorescent indicators are available to detect Ca(2+) changes in nerve terminals. However, these indicators have limited sensitivity to Ca(2+) and often show a non-linear response. Synthetic fluorescent indicators are better suited for measuring the rapid Ca(2+) changes associated with nerve activity. Here we demonstrate a technique for loading dextran-conjugated synthetic Ca(2+) indicators into live nerve terminals in Drosophila larvae. Particular emphasis is placed on those aspects of the protocol most critical to the technique's success, such as how to avoid static electricity discharges along the isolated nerves, maintaining the health of the preparation during extended loading periods, and ensuring axon survival by providing Ca(2+) to promote sealing of severed axon endings. Low affinity dextran-conjugated Ca(2+)-indicators, such as fluo-4 and rhod, are available which show a high signal-to-noise ratio while minimally disrupting presynaptic Ca(2+) dynamics. Dextran-conjugation helps prevent Ca(2+) indicators being sequestered into organelles such as mitochondria. The loading technique can be applied equally to larvae, embryos and adults. PMID:18997898

  6. Localization and possible functions of Drosophila septins.

    PubMed Central

    Fares, H; Peifer, M; Pringle, J R

    1995-01-01

    The septins are a family of homologous proteins that were originally identified in Saccharomyces cerevisiae, where they are associated with the "neck filaments" and are involved in cytokinesis and other aspects of the organization of the cell surface. We report here the identification of Sep1, a Drosophila melanogaster septin, based on its homology to the yeast septins. The predicted Sep1 amino acid sequence is 35-42% identical to the known S. cerevisiae septins; 52% identical to Pnut, a second D. melanogaster septin; and 53-73% identical to the known mammalian septins. Sep1-specific antibodies have been used to characterize its expression and localization. The protein is concentrated at the leading edge of the cleavage furrows of dividing cells and cellularizing embryos, suggesting a role in furrow formation. Other aspects of Sep1 localization suggest roles not directly related to cytokinesis. For example, Sep1 exhibits orderly, cell-cycle-coordinated rearrangements within the cortex of syncytial blastoderm embryos and in the cells of post-gastrulation embryos; Sep1 is also concentrated at the leading edge of the epithelium during dorsal closure in the embryo, in the neurons of the embryonic nervous system, and at the baso-lateral surfaces of ovarian follicle cells. The distribution of Sep1 typically overlaps, but is distinct from, that of actin. Both immunolocalization and biochemical experiments show that Sep1 is intimately associated with Pnut, suggesting that the Drosophila septins, like those in yeast, function as part of a complex. Images PMID:8590810

  7. Recombineering homologous recombination constructs in Drosophila.

    PubMed

    Carreira-Rosario, Arnaldo; Scoggin, Shane; Shalaby, Nevine A; Williams, Nathan David; Hiesinger, P Robin; Buszczak, Michael

    2013-01-01

    The continued development of techniques for fast, large-scale manipulation of endogenous gene loci will broaden the use of Drosophila melanogaster as a genetic model organism for human-disease related research. Recent years have seen technical advancements like homologous recombination and recombineering. However, generating unequivocal null mutations or tagging endogenous proteins remains a substantial effort for most genes. Here, we describe and demonstrate techniques for using recombineering-based cloning methods to generate vectors that can be used to target and manipulate endogenous loci in vivo. Specifically, we have established a combination of three technologies: (1) BAC transgenesis/recombineering, (2) ends-out homologous recombination and (3) Gateway technology to provide a robust, efficient and flexible method for manipulating endogenous genomic loci. In this protocol, we provide step-by-step details about how to (1) design individual vectors, (2) how to clone large fragments of genomic DNA into the homologous recombination vector using gap repair, and (3) how to replace or tag genes of interest within these vectors using a second round of recombineering. Finally, we will also provide a protocol for how to mobilize these cassettes in vivo to generate a knockout, or a tagged gene via knock-in. These methods can easily be adopted for multiple targets in parallel and provide a means for manipulating the Drosophila genome in a timely and efficient manner. PMID:23893070

  8. Cellular Mechanisms of Drosophila Heart Morphogenesis

    PubMed Central

    Vogler, Georg; Bodmer, Rolf

    2015-01-01

    Many of the major discoveries in the fields of genetics and developmental biology have been made using the fruit fly, Drosophila melanogaster. With regard to heart development, the conserved network of core cardiac transcription factors that underlies cardiogenesis has been studied in great detail in the fly, and the importance of several signaling pathways that regulate heart morphogenesis, such as Slit/Robo, was first shown in the fly model. Recent technological advances have led to a large increase in the genomic data available from patients with congenital heart disease (CHD). This has highlighted a number of candidate genes and gene networks that are potentially involved in CHD. To validate genes and genetic interactions among candidate CHD-causing alleles and to better understand heart formation in general are major tasks. The specific limitations of the various cardiac model systems currently employed (mammalian and fish models) provide a niche for the fly model, despite its evolutionary distance to vertebrates and humans. Here, we review recent advances made using the Drosophila embryo that identify factors relevant for heart formation. These underline how this model organism still is invaluable for a better understanding of CHD. PMID:26236710

  9. Microarray analysis of immune challenged Drosophila hemocytes.

    PubMed

    Johansson, Karin C; Metzendorf, Christoph; Söderhäll, Kenneth

    2005-04-15

    Insect hemocytes play multiple roles in immunity and carry out cellular responses like phagocytosis, encapsulation and melanization as well as producing humoral effector proteins in the first line of defense after injury and invasion of microorganisms. In this work, we used the Drosophila melanogaster hemocyte-like cell line mbn-2 and Affymetrix Drosophila GeneChips to investigate the transcriptome of a single type of immune competent tissue exposed to Gram-negative cell wall components (crude LPS) or high dose infection with live Escherichia coli. We found that gene expression profiles of both treatments overlap but show important differences in expression levels of several genes involved in immunity. In addition, cell morphology during infection was monitored and revealed distinct alterations in cell shape and adhesion. Presence of large numbers of bacteria also increased the number of cells taking on crystal cell fate. Taken together, our results indicate that hemocytes sense and respond differently to purified bacterial surface molecules and infection with live and actively growing bacteria both at the level of gene expression and in cell behavior. PMID:15777795

  10. The Eye Specification Network in Drosophila

    PubMed Central

    WEASNER, BRANDON P.; ANDERSON, JASON; KUMAR, JUSTIN P.

    2010-01-01

    One of the most exciting revelations in retinal biology is the realization that the molecules and mechanisms that regulate eye development have been conserved in all seeing animals including such diverse organisms as the fruit fly, mouse and man. The emerging commonality among mechanisms used in eye development allows for the use of model systems such as the fruit fly, Drosophila melanogaster, to provide key insights into the development and diseases of the mammalian eye. Eye specification in Drosophila is controlled, in part, by the concerted activities of eight nuclear proteins and several signal transduction cascades that together form a tightly woven regulatory network. Loss of function mutations in several components lead to the complete derailment of eye development while ectopic expression of threse genes in non-retinal tissues can direct the fates of these tissues towards eye formation. Here we will describe what is currently known about this remarkable regulatory cassettee highlight some of the outstanding questions that still need to be answered. PMID:25580038

  11. A dynamic deep sleep stage in Drosophila.

    PubMed

    van Alphen, Bart; Yap, Melvyn H W; Kirszenblat, Leonie; Kottler, Benjamin; van Swinderen, Bruno

    2013-04-17

    How might one determine whether simple animals such as flies sleep in stages? Sleep in mammals is a dynamic process involving different stages of sleep intensity, and these are typically associated with measurable changes in brain activity (Blake and Gerard, 1937; Rechtschaffen and Kales, 1968; Webb and Agnew, 1971). Evidence for different sleep stages in invertebrates remains elusive, even though it has been well established that many invertebrate species require sleep (Campbell and Tobler, 1984; Hendricks et al., 2000; Shaw et al., 2000; Sauer et al., 2003). Here we used electrophysiology and arousal-testing paradigms to show that the fruit fly, Drosophila melanogaster, transitions between deeper and lighter sleep within extended bouts of inactivity, with deeper sleep intensities after ∼15 and ∼30 min of inactivity. As in mammals, the timing and intensity of these dynamic sleep processes in flies is homeostatically regulated and modulated by behavioral experience. Two molecules linked to synaptic plasticity regulate the intensity of the first deep sleep stage. Optogenetic upregulation of cyclic adenosine monophosphate during the day increases sleep intensity at night, whereas loss of function of a molecule involved in synaptic pruning, the fragile-X mental retardation protein, increases sleep intensity during the day. Our results show that sleep is not homogenous in insects, and suggest that waking behavior and the associated synaptic plasticity mechanisms determine the timing and intensity of deep sleep stages in Drosophila. PMID:23595750

  12. Selective anticancer agents suppress aging in Drosophila.

    PubMed

    Danilov, Anton; Shaposhnikov, Mikhail; Plyusnina, Ekaterina; Kogan, Valeria; Fedichev, Peter; Moskalev, Alexey

    2013-09-01

    Mutations of the PI3K, TOR, iNOS, and NF-κB genes increase lifespan of model organisms and reduce the risk of some aging-associated diseases. We studied the effects of inhibitors of PI3K (wortmannin), TOR (rapamycin), iNOS (1400W), NF-κB (pyrrolidin dithiocarbamate and QNZ), and the combined effects of inhibitors: PI3K (wortmannin) and TOR (rapamycin), NF-κB (pyrrolidin dithiocarbamates) and PI3K (wortmannin), NF-κB (pyrrolidine dithiocarbamates) and TOR (rapamycin) on Drosophila melanogaster lifespan and quality of life (locomotor activity and fertility). Our data demonstrate that pharmacological inhibition of PI3K, TOR, NF-κB, and iNOS increases lifespan of Drosophila without decreasing quality of life. The greatest lifespan expanding effect was achieved by a combination of rapamycin (5 μM) and wortmannin (5 μM) (by 23.4%). The bioinformatic analysis (KEGG, REACTOME.PATH, DOLite, and GO.BP) showed the greatest aging-suppressor activity of rapamycin, consistent with experimental data. PMID:24096697

  13. Imaging fictive locomotor patterns in larval Drosophila

    PubMed Central

    Bayley, Timothy G.; Taylor, Adam L.; Berni, Jimena; Bate, Michael; Hedwig, Berthold

    2015-01-01

    We have established a preparation in larval Drosophila to monitor fictive locomotion simultaneously across abdominal and thoracic segments of the isolated CNS with genetically encoded Ca2+ indicators. The Ca2+ signals closely followed spiking activity measured electrophysiologically in nerve roots. Three motor patterns are analyzed. Two comprise waves of Ca2+ signals that progress along the longitudinal body axis in a posterior-to-anterior or anterior-to-posterior direction. These waves had statistically indistinguishable intersegmental phase delays compared with segmental contractions during forward and backward crawling behavior, despite being ∼10 times slower. During these waves, motor neurons of the dorsal longitudinal and transverse muscles were active in the same order as the muscle groups are recruited during crawling behavior. A third fictive motor pattern exhibits a left-right asymmetry across segments and bears similarities with turning behavior in intact larvae, occurring equally frequently and involving asymmetry in the same segments. Ablation of the segments in which forward and backward waves of Ca2+ signals were normally initiated did not eliminate production of Ca2+ waves. When the brain and subesophageal ganglion (SOG) were removed, the remaining ganglia retained the ability to produce both forward and backward waves of motor activity, although the speed and frequency of waves changed. Bilateral asymmetry of activity was reduced when the brain was removed and abolished when the SOG was removed. This work paves the way to studying the neural and genetic underpinnings of segmentally coordinated motor pattern generation in Drosophila with imaging techniques. PMID:26311188

  14. Selective anticancer agents suppress aging in Drosophila

    PubMed Central

    Danilov, Anton; Shaposhnikov, Mikhail; Plyusnina, Ekaterina; Kogan, Valeria; Fedichev, Peter; Moskalev, Alexey

    2013-01-01

    Mutations of the PI3K, TOR, iNOS, and NF-κB genes increase lifespan of model organisms and reduce the risk of some aging-associated diseases. We studied the effects of inhibitors of PI3K (wortmannin), TOR (rapamycin), iNOS (1400W), NF-κB (pyrrolidin dithiocarbamate and QNZ), and the combined effects of inhibitors: PI3K (wortmannin) and TOR (rapamycin), NF-κB (pyrrolidin dithiocarbamates) and PI3K (wortmannin), NF-κB (pyrrolidine dithiocarbamates) and TOR (rapamycin) on Drosophila melanogaster lifespan and quality of life (locomotor activity and fertility). Our data demonstrate that pharmacological inhibition of PI3K, TOR, NF-κB, and iNOS increases lifespan of Drosophila without decreasing quality of life. The greatest lifespan expanding effect was achieved by a combination of rapamycin (5 μM) and wortmannin (5 μM) (by 23.4%). The bioinformatic analysis (KEGG, REACTOME.PATH, DOLite, and GO.BP) showed the greatest aging-suppressor activity of rapamycin, consistent with experimental data. PMID:24096697

  15. Contribution of Drosophila TRPA1 to Metabolism

    PubMed Central

    Lee, Jung-Eun; Kim, Yunjung; Kim, Kyoung Heon

    2016-01-01

    Transient receptor potential (TRP) cation channels are highly conserved in humans and insects. Some of these channels are expressed in internal organs and their functions remain incompletely understood. By direct knock-in of the GAL4 gene into the trpA1 locus in Drosophila, we identified the expression of this gene in the subesophageal ganglion (SOGs) region. In addition, the neurites present in the dorsal posterior region as well as the drosophila insulin-like peptide 2 (dILP2)-positive neurons send signals to the SOGs. The signal is sent to the crop, which is an enlarged organ of the esophagus and functions as a storage place for food in the digestive system. To systematically investigate the role of TRPA1 in metabolism, we applied non-targeted metabolite profiling analysis together with gas-chromatography/time-of-flight mass spectrometry, with an aim to identify a wide range of primary metabolites. We effectively captured distinctive metabolomic phenotypes and identified specific metabolic dysregulation triggered by TRPA1 mutation based on reconstructed metabolic network analysis. Primarily, the network analysis pinpointed the simultaneous down-regulation of intermediates in the methionine salvation pathway, in contrast to the synchronized up-regulation of a range of free fatty acids. The gene dosage-dependent dynamics of metabolite levels among wild-type, hetero- and homozygous mutants, and their coordinated metabolic modulation under multiple gene settings across five different genotypes confirmed the direct linkages of TRPA1 to metabolism. PMID:27055172

  16. Peptidoglycan recognition by the Drosophila Imd pathway.

    PubMed

    Kaneko, Takashi; Golenbock, Douglas; Silverman, Neal

    2005-01-01

    The structural requirements for recognition of peptidoglycan (PGN) by PGRP-LC and activation of the Drosophila IMD pathway are not yet clear. In order to examine this question more carefully, the activity of peptidoglycan from different types of bacteria was compared in cell-based and whole animal assays. Drosophila S2* cells, but not adult flies, responded to Lys-type Micrococcus luteus PGN, but with significantly less potency compared to Dap-type Escherichia coli PGN, while intact Lys-type PGN from Staphylococcus aureus was inactive. After treatment with lysostaphin, which digests the cross-bridging peptides, S. aureus PGN weakly stimulated the IMD pathway, similar to M. luteus PGN. Further digestion with mutanolysin, which creates monomeric PGN fragments, abolished the activity of S. aureus PGN. On the other hand, monomeric E. coli PGN, generated by mutanolysin digestion, was still active but required different isoforms of PGRP-LC for recognition. Polymeric PGN required only PGRP-LCx, while monomeric E. coli PGN required both the PGRP-LCa and PGRP-LCx isoforms. These results suggest that the recognition by PGRP-LCx alone requires polymeric PGN, and that polymeric Dap-type PGN is a more potent PGRP-LCx agonist, compared to Lys-type PGN. These results also suggest that the heteromeric PGRP-LCa/LCx receptor complex recognizes monomeric Dap-type, but not Lys-type, PGN. PMID:16303095

  17. Functional Expression of Drosophila para Sodium Channels

    PubMed Central

    Warmke, Jeffrey W.; Reenan, Robert A.G.; Wang, Peiyi; Qian, Su; Arena, Joseph P.; Wang, Jixin; Wunderler, Denise; Liu, Ken; Kaczorowski, Gregory J.; Ploeg, Lex H.T. Van der; Ganetzky, Barry; Cohen, Charles J.

    1997-01-01

    The Drosophila para sodium channel α subunit was expressed in Xenopus oocytes alone and in combination with tipE, a putative Drosophila sodium channel accessory subunit. Coexpression of tipE with para results in elevated levels of sodium currents and accelerated current decay. Para/TipE sodium channels have biophysical and pharmacological properties similar to those of native channels. However, the pharmacology of these channels differs from that of vertebrate sodium channels: (a) toxin II from Anemonia sulcata, which slows inactivation, binds to Para and some mammalian sodium channels with similar affinity (Kd ≅ 10 nM), but this toxin causes a 100-fold greater decrease in the rate of inactivation of Para/TipE than of mammalian channels; (b) Para sodium channels are >10-fold more sensitive to block by tetrodotoxin; and (c) modification by the pyrethroid insecticide permethrin is >100-fold more potent for Para than for rat brain type IIA sodium channels. Our results suggest that the selective toxicity of pyrethroid insecticides is due at least in part to the greater affinity of pyrethroids for insect sodium channels than for mammalian sodium channels. PMID:9236205

  18. Protein interaction mapping: A Drosophila case study

    PubMed Central

    Formstecher, Etienne; Aresta, Sandra; Collura, Vincent; Hamburger, Alexandre; Meil, Alain; Trehin, Alexandra; Reverdy, Céline; Betin, Virginie; Maire, Sophie; Brun, Christine; Jacq, Bernard; Arpin, Monique; Bellaiche, Yohanns; Bellusci, Saverio; Benaroch, Philippe; Bornens, Michel; Chanet, Roland; Chavrier, Philippe; Delattre, Olivier; Doye, Valérie; Fehon, Richard; Faye, Gérard; Galli, Thierry; Girault, Jean-Antoine; Goud, Bruno; de Gunzburg, Jean; Johannes, Ludger; Junier, Marie-Pierre; Mirouse, Vincent; Mukherjee, Ashim; Papadopoulo, Dora; Perez, Franck; Plessis, Anne; Rossé, Carine; Saule, Simon; Stoppa-Lyonnet, Dominique; Vincent, Alain; White, Michael; Legrain, Pierre; Wojcik, Jérôme; Camonis, Jacques; Daviet, Laurent

    2005-01-01

    The Drosophila (fruit fly) model system has been instrumental in our current understanding of human biology, development, and diseases. Here, we used a high-throughput yeast two-hybrid (Y2H)-based technology to screen 102 bait proteins from Drosophila melanogaster, most of them orthologous to human cancer-related and/or signaling proteins, against high-complexity fly cDNA libraries. More than 2300 protein-protein interactions (PPI) were identified, of which 710 are of high confidence. The computation of a reliability score for each protein-protein interaction and the systematic identification of the interacting domain combined with a prediction of structural/functional motifs allow the elaboration of known complexes and the identification of new ones. The full data set can be visualized using a graphical Web interface, the PIMRider (http://pim.hybrigenics.com), and is also accessible in the PSI standard Molecular Interaction data format. Our fly Protein Interaction Map (PIM) is surprisingly different from the one recently proposed by Giot et al. with little overlap between the two data sets. Analysis of the differences in data sets and methods suggests alternative strategies to enhance the accuracy and comprehensiveness of the post-genomic generation of broad-scale protein interaction maps. PMID:15710747

  19. Imaging fictive locomotor patterns in larval Drosophila.

    PubMed

    Pulver, Stefan R; Bayley, Timothy G; Taylor, Adam L; Berni, Jimena; Bate, Michael; Hedwig, Berthold

    2015-11-01

    We have established a preparation in larval Drosophila to monitor fictive locomotion simultaneously across abdominal and thoracic segments of the isolated CNS with genetically encoded Ca(2+) indicators. The Ca(2+) signals closely followed spiking activity measured electrophysiologically in nerve roots. Three motor patterns are analyzed. Two comprise waves of Ca(2+) signals that progress along the longitudinal body axis in a posterior-to-anterior or anterior-to-posterior direction. These waves had statistically indistinguishable intersegmental phase delays compared with segmental contractions during forward and backward crawling behavior, despite being ∼10 times slower. During these waves, motor neurons of the dorsal longitudinal and transverse muscles were active in the same order as the muscle groups are recruited during crawling behavior. A third fictive motor pattern exhibits a left-right asymmetry across segments and bears similarities with turning behavior in intact larvae, occurring equally frequently and involving asymmetry in the same segments. Ablation of the segments in which forward and backward waves of Ca(2+) signals were normally initiated did not eliminate production of Ca(2+) waves. When the brain and subesophageal ganglion (SOG) were removed, the remaining ganglia retained the ability to produce both forward and backward waves of motor activity, although the speed and frequency of waves changed. Bilateral asymmetry of activity was reduced when the brain was removed and abolished when the SOG was removed. This work paves the way to studying the neural and genetic underpinnings of segmentally coordinated motor pattern generation in Drosophila with imaging techniques. PMID:26311188

  20. Thermosensory processing in the Drosophila brain.

    PubMed

    Liu, Wendy W; Mazor, Ofer; Wilson, Rachel I

    2015-03-19

    In Drosophila, just as in vertebrates, changes in external temperature are encoded by bidirectional opponent thermoreceptor cells: some cells are excited by warming and inhibited by cooling, whereas others are excited by cooling and inhibited by warming. The central circuits that process these signals are not understood. In Drosophila, a specific brain region receives input from thermoreceptor cells. Here we show that distinct genetically identified projection neurons (PNs) in this brain region are excited by cooling, warming, or both. The PNs excited by cooling receive mainly feed-forward excitation from cool thermoreceptors. In contrast, the PNs excited by warming ('warm-PNs') receive both excitation from warm thermoreceptors and crossover inhibition from cool thermoreceptors through inhibitory interneurons. Notably, this crossover inhibition elicits warming-evoked excitation, because warming suppresses tonic activity in cool thermoreceptors. This in turn disinhibits warm-PNs and sums with feed-forward excitation evoked by warming. Crossover inhibition could cancel non-thermal activity (noise) that is positively correlated among warm and cool thermoreceptor cells, while reinforcing thermal activity which is anti-correlated. Our results show how central circuits can combine signals from bidirectional opponent neurons to construct sensitive and robust neural codes. PMID:25739502

  1. Magnetoreception Regulates Male Courtship Activity in Drosophila

    PubMed Central

    Wu, Chia-Lin; Fu, Tsai-Feng; Chiang, Meng-Hsuan; Chang, Yu-Wei; Her, Jim-Long; Wu, Tony

    2016-01-01

    The possible neurological and biophysical effects of magnetic fields on animals is an area of active study. Here, we report that courtship activity of male Drosophila increases in a magnetic field and that this effect is regulated by the blue light-dependent photoreceptor cryptochrome (CRY). Naïve male flies exhibited significantly increased courtship activities when they were exposed to a ≥ 20-Gauss static magnetic field, compared with their behavior in the natural environment (0 Gauss). CRY-deficient flies, cryb and crym, did not show an increased courtship index in a magnetic field. RNAi-mediated knockdown of cry in cry-GAL4-positive neurons disrupted the increased male courtship activity in a magnetic field. Genetically expressing cry under the control of cry-GAL4 in the CRY-deficient flies restored the increase in male courtship index that occurred in a magnetic field. Interestingly, artificially activating cry-GAL4-expressing neurons, which include large ventral lateral neurons and small ventral lateral neurons, via expression of thermosensitive cation channel dTrpA1, also increased the male courtship index. This enhancement was abolished by the addition of the cry-GAL80 transgene. Our results highlight the phenomenon of increased male courtship activity caused by a magnetic field through CRY-dependent magnetic sensation in CRY expression neurons in Drosophila. PMID:27195955

  2. Dissection of larval CNS in Drosophila melanogaster.

    PubMed

    Hafer, Nathaniel; Schedl, Paul

    2006-12-01

    The central nervous system (CNS) of Drosophila larvae is complex and poorly understood. One way to investigate the CNS is to use immunohistochemistry to examine the expression of various novel and marker proteins. Staining of whole larvae is impractical because the tough cuticle prevents antibodies from penetrating inside the body cavity. In order to stain these tissues it is necessary to dissect the animal prior to fixing and staining. In this article we demonstrate how to dissect Drosophila larvae without damaging the CNS. Begin by tearing the larva in half with a pair of fine forceps, and then turn the cuticle "inside-out" to expose the CNS. If the dissection is performed carefully the CNS will remain attached to the cuticle. We usually keep the CNS attached to the cuticle throughout the fixation and staining steps, and only completely remove the CNS from the cuticle just prior to mounting the samples on glass slides. We also show some representative images of a larval CNS stained with Eve, a transcription factor expressed in a subset of neurons in the CNS. The article concludes with a discussion of some of the practical uses of this technique and the potential difficulties that may arise. PMID:18704179

  3. A tripartite synapse model in Drosophila.

    PubMed

    Danjo, Rie; Kawasaki, Fumiko; Ordway, Richard W

    2011-01-01

    Tripartite (three-part) synapses are defined by physical and functional interactions of glia with pre- and post-synaptic elements. Although tripartite synapses are thought to be of widespread importance in neurological health and disease, we are only beginning to develop an understanding of glial contributions to synaptic function. In contrast to studies of neuronal mechanisms, a significant limitation has been the lack of an invertebrate genetic model system in which conserved mechanisms of tripartite synapse function may be examined through large-scale application of forward genetics and genome-wide genetic tools. Here we report a Drosophila tripartite synapse model which exhibits morphological and functional properties similar to those of mammalian synapses, including glial regulation of extracellular glutamate, synaptically-induced glial calcium transients and glial coupling of synapses with tracheal structures mediating gas exchange. In combination with classical and cell-type specific genetic approaches in Drosophila, this model is expected to provide new insights into the molecular and cellular mechanisms of tripartite synapse function. PMID:21359186

  4. Molecular evolution of Drosophila metallothionein genes.

    PubMed

    Lange, B W; Langley, C H; Stephan, W

    1990-12-01

    The metallothionein genes of Drosophila melanogaster, Mtn and Mto, may play an important role in heavy metal detoxification. Several different tandem duplications of Mtn have been shown to increase cadmium and copper tolerance, as well as Mtn expression. In order to investigate the possibility of increased selection for duplications of these genes in natural populations exposed to high levels of heavy metals, we compared the frequencies of such duplications among flies collected from metal-contaminated and non-contaminated orchards in Pennsylvania, Tennessee and Georgia. Restriction enzyme analysis was used to screen 1666 wild third chromosomes for Mtn duplications and a subset (327) of these lines for Mto duplications. The frequency of pooled Mtn duplications found ranged from 0% to 20%, and was not significantly higher at the contaminated sites. No Mto duplications were identified. Estimates of sequence diversity at the Mtn locus among a subsample (92) of the duplication survey were obtained using four-cutter analysis. This analysis revealed a low level of polymorphism, consistent with both selection at the Mtn locus, and a fairly recent origin for the duplications. To further examine this hypothesis, we sequenced an Mtn allele of Drosophila simulans and measured the amount of nucleotide sequence divergence between D. simulans and its sibling species D. melanogaster. The levels of silent nucleotide polymorphism and divergence in the Mtn region were compared with those in the Adh region, using the neutrality test of R.R. Hudson, M. Kreitman and M. Aguadé. PMID:1981765

  5. A Drosophila metallophosphoesterase mediates deglycosylation of rhodopsin

    PubMed Central

    Cao, Jinguo; Li, Yi; Xia, Wenjing; Reddig, Keith; Hu, Wen; Xie, Wei; Li, Hong-Sheng; Han, Junhai

    2011-01-01

    Oligosaccharide chains of newly synthesized membrane receptors are trimmed and modified to optimize their trafficking and/or signalling before delivery to the cell surface. For most membrane receptors, the functional significance of oligosaccharide chain modification is unknown. During the maturation of Rh1 rhodopsin, a Drosophila light receptor, the oligosaccharide chain is trimmed extensively. Neither the functional significance of this modification nor the enzymes mediating this process are known. Here, we identify a dmppe (Drosophila metallophosphoesterase) mutant with incomplete deglycosylation of Rh1, and show that the retained oligosaccharide chain does not affect Rh1 localization or signalling. The incomplete deglycosylation, however, renders Rh1 more sensitive to endocytic degradation, and causes morphological and functional defects in photoreceptors of aged dmppe flies. We further demonstrate that the dMPPE protein functions as an Mn2+/Zn2+-dependent phosphoesterase and mediates in vivo dephosphorylation of α-Man-II. Most importantly, the dephosphorylated α-Man-II is required for the removal of the Rh1 oligosaccharide chain. These observations suggest that the glycosylation status of membrane proteins is controlled through phosphorylation/dephosphorylation, and that MPPE acts as the phosphoesterase in this regulation. PMID:21804530

  6. A Drosophila ABC transporter regulates lifespan.

    PubMed

    Huang, He; Lu-Bo, Ying; Haddad, Gabriel G

    2014-12-01

    MRP4 (multidrug resistance-associated protein 4) is a member of the MRP/ABCC subfamily of ATP-binding cassette (ABC) transporters that are essential for many cellular processes requiring the transport of substrates across cell membranes. Although MRP4 has been implicated as a detoxification protein by transport of structurally diverse endogenous and xenobiotic compounds, including antivirus and anticancer drugs, that usually induce oxidative stress in cells, its in vivo biological function remains unknown. In this study, we investigate the biological functions of a Drosophila homolog of human MRP4, dMRP4. We show that dMRP4 expression is elevated in response to oxidative stress (paraquat, hydrogen peroxide and hyperoxia) in Drosophila. Flies lacking dMRP4 have a shortened lifespan under both oxidative and normal conditions. Overexpression of dMRP4, on the other hand, is sufficient to increase oxidative stress resistance and extend lifespan. By genetic manipulations, we demonstrate that dMRP4 is required for JNK (c-Jun NH2-terminal kinase) activation during paraquat challenge and for basal transcription of some JNK target genes under normal condition. We show that impaired JNK signaling is an important cause for major defects associated with dMRP4 mutations, suggesting that dMRP4 regulates lifespan by modulating the expression of a set of genes related to both oxidative resistance and aging, at least in part, through JNK signaling. PMID:25474322

  7. Associations of Yeasts with Spotted-Wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in Cherries and Raspberries

    PubMed Central

    Hernández, Alejandro; Zalom, Frank G.

    2012-01-01

    A rich history of investigation documents various Drosophila-yeast mutualisms, suggesting that Drosophila suzukii similarly has an association with a specific yeast species or community. To discover candidate yeast species, yeasts were isolated from larval frass, adult midguts, and fruit hosts of D. suzukii. Terminal restriction fragment length polymorphism (TRFLP) technology and decimal dilution plating were used to identify and determine the relative abundance of yeast species present in fruit juice samples that were either infested with D. suzukii or not infested. Yeasts were less abundant in uninfested than infested samples. A total of 126 independent yeast isolates were cultivated from frass, midguts, and fruit hosts of D. suzukii, representing 28 species of yeasts, with Hanseniaspora uvarum predominating. This suggests an association between D. suzukii and H. uvarum that could be utilized for pest management of the highly pestiferous D. suzukii. PMID:22582060

  8. Associations of yeasts with spotted-wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries.

    PubMed

    Hamby, Kelly A; Hernández, Alejandro; Boundy-Mills, Kyria; Zalom, Frank G

    2012-07-01

    A rich history of investigation documents various Drosophila-yeast mutualisms, suggesting that Drosophila suzukii similarly has an association with a specific yeast species or community. To discover candidate yeast species, yeasts were isolated from larval frass, adult midguts, and fruit hosts of D. suzukii. Terminal restriction fragment length polymorphism (TRFLP) technology and decimal dilution plating were used to identify and determine the relative abundance of yeast species present in fruit juice samples that were either infested with D. suzukii or not infested. Yeasts were less abundant in uninfested than infested samples. A total of 126 independent yeast isolates were cultivated from frass, midguts, and fruit hosts of D. suzukii, representing 28 species of yeasts, with Hanseniaspora uvarum predominating. This suggests an association between D. suzukii and H. uvarum that could be utilized for pest management of the highly pestiferous D. suzukii. PMID:22582060

  9. Drosophila blood as a model system for stress sensing mechanisms.

    PubMed

    Shim, Jiwon

    2015-04-01

    The Drosophila lymph gland is the hematopoietic organ in which stem-like progenitors proliferate and give rise to myeloid-type blood cells. Mechanisms involved in Drosophila hematopoiesis are well established and known to be conserved in the vertebrate system. Recent studies in Drosophila lymph gland have provided novel insights into how external and internal stresses integrate into blood progenitor maintenance mechanisms and the control of blood cell fate decision. In this review, I will introduce a developmental overview of the Drosophila hematopoietic system, and recent understandings of how the system uses developmental signals not only for hematopoiesis but also as sensors for stress and environmental changes to elicit necessary blood responses. PMID:25560697

  10. FlyRNAi: the Drosophila RNAi screening center database

    PubMed Central

    Flockhart, Ian; Booker, Matthew; Kiger, Amy; Boutros, Michael; Armknecht, Susan; Ramadan, Nadire; Richardson, Kris; Xu, Andrew; Perrimon, Norbert; Mathey-Prevot, Bernard

    2006-01-01

    RNA interference (RNAi) has become a powerful tool for genetic screening in Drosophila. At the Drosophila RNAi Screening Center (DRSC), we are using a library of over 21 000 double-stranded RNAs targeting known and predicted genes in Drosophila. This library is available for the use of visiting scientists wishing to perform full-genome RNAi screens. The data generated from these screens are collected in the DRSC database () in a flexible format for the convenience of the scientist and for archiving data. The long-term goal of this database is to provide annotations for as many of the uncharacterized genes in Drosophila as possible. Data from published screens are available to the public through a highly configurable interface that allows detailed examination of the data and provides access to a number of other databases and bioinformatics tools. PMID:16381918

  11. Functional genomic analysis of the Drosophila immune response.

    PubMed

    Valanne, Susanna

    2014-01-01

    Drosophila melanogaster has been widely used as a model organism for over a century now, and also as an immunological research model for over 20 years. With the emergence of RNA interference (RNAi) in Drosophila as a robust tool to silence genes of interest, large-scale or genome-wide functional analysis has become a popular way of studying the Drosophila immune response in cell culture. Drosophila immunity is composed of cellular and humoral immunity mechanisms, and especially the systemic, humoral response pathways have been extensively dissected using the functional genomic approach. Although most components of the main immune pathways had already been found using traditional genetic screening techniques, important findings including pathway components, positive and negative regulators and modifiers have been made with RNAi screening. Additionally, RNAi screening has produced new information on host-pathogen interactions related to the pathogenesis of many microbial species. PMID:23707784

  12. Insights From Natural Host-Parasite Interactions: The Drosophila Model

    PubMed Central

    Keebaugh, Erin S.; Schlenke, Todd A.

    2013-01-01

    Immune responses against opportunistic pathogens have been extensively studied in Drosophila, leading to a detailed map of the genetics behind innate immunity networks including the Toll, Imd, Jak-Stat, and JNK pathways. However, immune mechanisms of other organisms, particularly plants, have primarily been investigated using natural pathogens. It was the use of natural pathogens in plant research that revealed the plant R/Avr system, a specialized immune response derived from antagonistic coevolution between plant immune proteins and their natural pathogens’ virulence proteins. Thus, we recommend that researchers begin to use natural Drosophila pathogens to identify novel immune mechanisms that may have arisen through antagonistic coevolution with common natural pathogens. In this review, we address the benefits of using natural pathogens in research, describe the known natural pathogens of Drosophila, and discuss exciting prospects for future research on select natural pathogens of Drosophila. PMID:23764256

  13. Drosophila as a Potential Model for Ocular Tumors.

    PubMed

    Bennett, Daimark; Lyulcheva, Ekaterina; Cobbe, Neville

    2015-04-01

    Drosophila has made many contributions to our understanding of cancer genes and mechanisms that have subsequently been validated in mammals. Despite anatomical differences between fly and human eyes, flies offer a tractable genetic model in which to dissect the functional importance of genetic lesions found to be affected in human ocular tumors. Here, we discuss different approaches for using Drosophila as a model for ocular cancer and how studies on ocular cancer genes in flies have begun to reveal potential strategies for therapeutic intervention. We also discuss recent developments in the use of Drosophila for drug discovery, which is coming to the fore as Drosophila models are becoming tailored to study tumor types found in the clinic. PMID:27172095

  14. Functional Gustatory Role of Chemoreceptors in Drosophila Wings.

    PubMed

    Raad, Hussein; Ferveur, Jean-François; Ledger, Neil; Capovilla, Maria; Robichon, Alain

    2016-05-17

    Neuroanatomical evidence argues for the presence of taste sensilla in Drosophila wings; however, the taste physiology of insect wings remains hypothetical, and a comprehensive link to mechanical functions, such as flight, wing flapping, and grooming, is lacking. Our data show that the sensilla of the Drosophila anterior wing margin respond to both sweet and bitter molecules through an increase in cytosolic Ca(2+) levels. Conversely, genetically modified flies presenting a wing-specific reduction in chemosensory cells show severe defects in both wing taste signaling and the exploratory guidance associated with chemodetection. In Drosophila, the chemodetection machinery includes mechanical grooming, which facilitates the contact between tastants and wing chemoreceptors, and the vibrations of flapping wings that nebulize volatile molecules as carboxylic acids. Together, these data demonstrate that the Drosophila wing chemosensory sensilla are a functional taste organ and that they may have a role in the exploration of ecological niches. PMID:27160896

  15. Genotoxic effects of cisplatin in somatic tissue of Drosophila melanogaster

    SciTech Connect

    Katz, A.J.

    1987-01-01

    Third instar larvae of Drosophila melanogaster transdihybrid for mwh and flr were exposed to varying concentrations of cisplatin by feeding on dry media wetted with aqueous solutions of the test compound. Larval feeding continued until pupation, and surviving transdihybrid adults were collected seven days following commencement of feeding. Wings of adults were removed and scored under 400X magnification for the presence of twin spots and single spots comprised of clones of cells possessing malformed wing hairs. Cisplatin was found to induce both twin spots and single spots, and significant linear concentration-response relationships were obtained with respect to the induction of all endpoints. This capacity to induce mitotic exchange in the somatic tissue of Drosophila compares well with the compound's reported ability to induce chromosome breaks in Drosophila germ cells. However, not all compounds possess similar genotoxic profiles in the somatic an germ tissue of Drosophila.

  16. Recombination and the frequency spectrum in Drosophila melanogaster and Drosophila simulans.

    PubMed

    Przeworski, M; Wall, J D; Andolfatto, P

    2001-03-01

    Most "tests of neutrality" assess whether particular data sets depart from the predictions of a standard neutral model with no recombination. For Drosophila, where nuclear polymorphism data routinely show evidence of genetic exchange, the assumption of no recombination is often unrealistic. In addition, while conservative, this assumption is made at the cost of a great loss in power. Perhaps as a result, tests of the frequency spectrum based on zero recombination suggest an adequate fit of Drosophila polymorphism data to the predictions of the standard neutral model. Here, we analyze the frequency spectrum of a large number of loci in Drosophila melanogaster and D. simulans using two summary statistics. We use an estimate of the population recombination rate based on a laboratory estimate of the rate of crossing over per physical length and an estimate of the species' effective population size. In contrast to previous studies, we find that roughly half of the loci depart from the predictions of the standard neutral model. The extent of the departure depends on the exact recombination rate, but the global pattern that emerges is robust. Interestingly, these departures from neutral expectations are not unidirectional. The large variance in outcomes may be due to a complex demographic history and inconsistent sampling, or to the pervasive action of natural selection. PMID:11230530

  17. Wolbachia from Drosophila incompta: just a hitchhiker shared by Drosophila in the New and Old World?

    PubMed

    Wallau, G L; da Rosa, M T; De Ré, F C; Loreto, E L S

    2016-08-01

    Wolbachia are intracellular endosymbionts that infect arthropods and filarial nematodes, occasionally causing a wide variety of modifications in host biology, such as male-killing and cytoplasmic incompatibility (CI), amongst others. This study assembled draft genomes for Wolbachia infecting Drosophila incompta, a species that uses flowers as exclusive breeding and feeding sites, in two distinct Brazilian populations. The absence of four genes involved in CI from this genome, together with literature reports of low frequencies of infected flies in wild populations that contain high mitogenome polymorphism, suggests that this bacterium does not induce CI in D. incompta. Phylogenomic analysis placed Wolbachia infecting D. incompta as closely related to the wMel strain which received such name since it was originally detected in Drosophila melanogaster. In addition, phylogenetic analysis using the Wolbachia surface protein gene and five genes used for multilocus sequence typing of Wolbachia found infecting Drosophila and other arthropod species of Old and New World displayed a complex evolutionary scenario involving recent horizontal transfer bursts in all major clades of Wolbachia pipens belonging to the supergroup A in both geographical regions. PMID:27122079

  18. Loss of Drosophila pheromone reverses its role in sexual communication in Drosophila suzukii

    PubMed Central

    Dekker, Teun; Revadi, Santosh; Mansourian, Suzan; Ramasamy, Sukanya; Lebreton, Sebastien; Becher, Paul G.; Angeli, Sergio; Rota-Stabelli, Omar; Anfora, Gianfranco

    2015-01-01

    The Drosophila pheromone cis-11-octadecenyl acetate (cVA) is used as pheromone throughout the melanogaster group and fulfils a primary role in sexual and social behaviours. Here, we found that Drosophila suzukii, an invasive pest that oviposits in undamaged ripe fruit, does not produce cVA. In fact, its production site, the ejaculatory bulb, is atrophied. Despite loss of cVA production, its receptor, Or67d, and cognate sensillum, T1, which are essential in cVA-mediated behaviours, were fully functional. However, T1 expression was dramatically reduced in D. suzukii, and the corresponding antennal lobe glomerulus, DA1, minute. Behavioural responses to cVA depend on the input balance of Or67d neurons (driving cVA-mediated behaviours) and Or65a neurons (inhibiting cVA-mediated behaviours). Accordingly, the shifted input balance in D. suzukii has reversed cVA's role in sexual behaviour: perfuming D. suzukii males with Drosophila melanogaster equivalents of cVA strongly reduced mating rates. cVA has thus evolved from a generic sex pheromone to a heterospecific signal that disrupts mating in D. suzukii, a saltational shift, mediated through offsetting the input balance that is highly conserved in congeneric species. This study underlines that dramatic changes in a species' sensory preference can result from rather ‘simple’ numerical shifts in underlying neural circuits. PMID:25716789

  19. Anomalies in the expression profile of interspecific hybrids of Drosophila melanogaster and Drosophila simulans.

    PubMed

    Ranz, José M; Namgyal, Kalsang; Gibson, Greg; Hartl, Daniel L

    2004-03-01

    When females of Drosophila melanogaster and males of Drosophila simulans are mated, the male progeny are inviable, whereas the female progeny display manifold malformations and are sterile. These abnormalities result from genetic incompatibilities accumulated since the time the lineages of the species diverged, and may have their origin in aberrant gene transcription. Because compensatory changes within species may obscure differences at the regulatory level in conventional comparisons of the expression profile between species, we have compared the gene-expression profile of hybrid females with those of females of the parental species in order to identify regulatory incompatibilities. In the hybrid females, we find abnormal levels of messenger RNA for a large fraction of the Drosophila transcriptome. These include a gross underexpression of genes preferentially expressed in females, accompanying gonadal atrophy. The hybrid females also show significant overexpression of male-biased genes, which we attribute to incompatibilities in the regulatory mechanisms that normally act to control the expression of these genes in females. The net result of the multiple incompatibilities is that the gene-expression profiles of the parental females are more similar to each other than either is to that of the hybrid. PMID:14962989

  20. Conservation of Olfactory Avoidance in Drosophila Species and Identification of Repellents for Drosophila suzukii

    PubMed Central

    Krause Pham, Christine; Ray, Anandasankar

    2015-01-01

    Flying insects use olfaction to navigate towards fruits in complex odor environments with remarkable accuracy. Some fruits change odor profiles substantially during ripening and related species can prefer different stages. In Drosophila species attractive odorants have been studied extensively, but little is understood about the role of avoidance pathways. In order to examine the role of the avoidance cue CO2 emitted from fruit on behavior of two species with different ripening stage preferences, we investigated the CO2-detection pathway in Drosophila melanogaster and Drosophila suzukii, a harmful pest of fruits. Avoidance to CO2 is not conserved in D. suzukii suggesting a behavioral adaptation that could facilitate attraction to younger fruit with higher CO2 emission levels. We investigated known innate avoidance pathways from five species at different evolutionary distances: D. melanogaster, D. yakuba, D. suzukii, D. pseudoobscura and D. virilis. Surprisingly, only DEET shows strong repellency across all species, whereas CO2, citronellal and ethyl 3-hydroxybutyrate show only limited conservation. These findings guide us to test recently discovered safe DEET substitutes, and we identify one that protects fruits from D. suzukii thus providing a new behavioral strategy for controlling agricultural pests. PMID:26098542

  1. Loss of Drosophila pheromone reverses its role in sexual communication in Drosophila suzukii.

    PubMed

    Dekker, Teun; Revadi, Santosh; Mansourian, Suzan; Ramasamy, Sukanya; Lebreton, Sebastien; Becher, Paul G; Angeli, Sergio; Rota-Stabelli, Omar; Anfora, Gianfranco

    2015-04-01

    The Drosophila pheromone cis-11-octadecenyl acetate (cVA) is used as pheromone throughout the melanogaster group and fulfils a primary role in sexual and social behaviours. Here, we found that Drosophila suzukii, an invasive pest that oviposits in undamaged ripe fruit, does not produce cVA. In fact, its production site, the ejaculatory bulb, is atrophied. Despite loss of cVA production, its receptor, Or67d, and cognate sensillum, T1, which are essential in cVA-mediated behaviours, were fully functional. However, T1 expression was dramatically reduced in D. suzukii, and the corresponding antennal lobe glomerulus, DA1, minute. Behavioural responses to cVA depend on the input balance of Or67d neurons (driving cVA-mediated behaviours) and Or65a neurons (inhibiting cVA-mediated behaviours). Accordingly, the shifted input balance in D. suzukii has reversed cVA's role in sexual behaviour: perfuming D. suzukii males with Drosophila melanogaster equivalents of cVA strongly reduced mating rates. cVA has thus evolved from a generic sex pheromone to a heterospecific signal that disrupts mating in D. suzukii, a saltational shift, mediated through offsetting the input balance that is highly conserved in congeneric species. This study underlines that dramatic changes in a species' sensory preference can result from rather 'simple' numerical shifts in underlying neural circuits. PMID:25716789

  2. Drosophila GRAIL: An intelligent system for gene recognition in Drosophila DNA sequences

    SciTech Connect

    Xu, Ying; Einstein, J.R.; Uberbacher, E.C.; Helt, G.; Rubin, G.

    1995-06-01

    An AI-based system for gene recognition in Drosophila DNA sequences was designed and implemented. The system consists of two main modules, one for coding exon recognition and one for single gene model construction. The exon recognition module finds a coding exon by recognition of its splice junctions (or translation start) and coding potential. The core of this module is a set of neural networks which evaluate an exon candidate for the possibility of being a true coding exon using the ``recognized`` splice junction (or translation start) and coding signals. The recognition process consists of four steps: generation of an exon candidate pool, elimination of improbable candidates using heuristic rules, candidate evaluation by trained neural networks, and candidate cluster resolution and final exon prediction. The gene model construction module takes as input the clustered exon candidates and builds a ``best`` possible single gene model using an efficient dynamic programming algorithm. 129 Drosophila sequences consisting of 441 coding exons including 216358 coding bases were extructed from GenBank and used to build statistical matrices and to train the neural networks. On this training set the system recognized 97% of the coding messages and predicted only 5% false messages. Among the ``correctly`` predicted exons, 68% match the actual exon exactly and 96% have at least one edge predicted correctly. On an independent test set consisting of 30 Drosophila sequences, the system recognized 96% of the coding messages and predicted 7% false messages.

  3. Conservation of Olfactory Avoidance in Drosophila Species and Identification of Repellents for Drosophila suzukii.

    PubMed

    Krause Pham, Christine; Ray, Anandasankar

    2015-01-01

    Flying insects use olfaction to navigate towards fruits in complex odor environments with remarkable accuracy. Some fruits change odor profiles substantially during ripening and related species can prefer different stages. In Drosophila species attractive odorants have been studied extensively, but little is understood about the role of avoidance pathways. In order to examine the role of the avoidance cue CO2 emitted from fruit on behavior of two species with different ripening stage preferences, we investigated the CO2-detection pathway in Drosophila melanogaster and Drosophila suzukii, a harmful pest of fruits. Avoidance to CO2 is not conserved in D. suzukii suggesting a behavioral adaptation that could facilitate attraction to younger fruit with higher CO2 emission levels. We investigated known innate avoidance pathways from five species at different evolutionary distances: D. melanogaster, D. yakuba, D. suzukii, D. pseudoobscura and D. virilis. Surprisingly, only DEET shows strong repellency across all species, whereas CO2, citronellal and ethyl 3-hydroxybutyrate show only limited conservation. These findings guide us to test recently discovered safe DEET substitutes, and we identify one that protects fruits from D. suzukii thus providing a new behavioral strategy for controlling agricultural pests. PMID:26098542

  4. Characterization of a Drosophila Ortholog of the Cdc7 Kinase

    PubMed Central

    Stephenson, Robert; Hosler, Marcus R.; Gavande, Navnath S.; Ghosh, Arun K.; Weake, Vikki M.

    2015-01-01

    Cdc7 is a serine-threonine kinase that phosphorylates components of the pre-replication complex during DNA replication initiation. Cdc7 is highly conserved, and Cdc7 orthologs have been characterized in organisms ranging from yeast to humans. Cdc7 is activated specifically during late G1/S phase by binding to its regulatory subunit, Dbf4. Drosophila melanogaster contains a Dbf4 ortholog, Chiffon, which is essential for chorion amplification in Drosophila egg chambers. However, no Drosophila ortholog of Cdc7 has yet been characterized. Here, we report the functional and biochemical characterization of a Drosophila ortholog of Cdc7. Co-expression of Drosophila Cdc7 and Chiffon is able to complement a growth defect in yeast containing a temperature-sensitive Cdc7 mutant. Cdc7 and Chiffon physically interact and can be co-purified from insect cells. Cdc7 phosphorylates the known Cdc7 substrates Mcm2 and histone H3 in vitro, and Cdc7 kinase activity is stimulated by Chiffon and inhibited by the Cdc7-specific inhibitor XL413. Drosophila egg chamber follicle cells deficient for Cdc7 have a defect in two types of DNA replication, endoreplication and chorion gene amplification. However, follicle cells deficient for Chiffon have a defect in chorion gene amplification but still undergo endocycling. Our results show that Cdc7 interacts with Chiffon to form a functional Dbf4-dependent kinase complex and that Cdc7 is necessary for DNA replication in Drosophila egg chamber follicle cells. Additionally, we show that Chiffon is a member of an expanding subset of DNA replication initiation factors that are not strictly required for endoreplication in Drosophila. PMID:25451925

  5. Genomic and karyotypic variation in Drosophila parasitoids (Hymenoptera, Cynipoidea, Figitidae).

    PubMed

    Gokhman, Vladimir E; Johnston, J Spencer; Small, Chiyedza; Rajwani, Roma; Hanrahan, Shawn J; Govind, Shubha

    2011-01-01

    Drosophila melanogaster Meigen, 1830 has served as a model insect for over a century. Sequencing of the 11 additional Drosophila Fallen, 1823 species marks substantial progress in comparative genomics of this genus. By comparison, practically nothing is known about the genome size or genome sequences of parasitic wasps of Drosophila. Here, we present the first comparative analysis of genome size and karyotype structures of Drosophila parasitoids of the Leptopilina Förster, 1869 and Ganaspis Förster, 1869 species. The gametic genome size of Ganaspis xanthopoda (Ashmead, 1896) is larger than those of the three Leptopilina species studied. The genome sizes of all parasitic wasps studied here are also larger than those known for all Drosophila species. Surprisingly, genome sizes of these Drosophila parasitoids exceed the average value known for all previously studied Hymenoptera. The haploid chromosome number of both Leptopilina heterotoma (Thomson, 1862) and Leptopilina victoriae Nordlander, 1980 is ten. A chromosomal fusion appears to have produced a distinct karyotype for Leptopilina boulardi (Barbotin, Carton et Keiner-Pillault, 1979)(n = 9), whose genome size is smaller than that of wasps of the Leptopilina heterotoma clade. Like Leptopilina boulardi, the haploid chromosome number for Ganaspis xanthopoda is also nine. Our studies reveal a positive, but non linear, correlation between the genome size and total chromosome length in Drosophila parasitoids. These Drosophila parasitoids differ widely in their host range, and utilize different infection strategies to overcome host defense. Their comparative genomics, in relation to their exceptionally well-characterized hosts, will prove to be valuable for understanding the molecular basis of the host-parasite arms race and how such mechanisms shape the genetic structures of insectcommunities. PMID:24260630

  6. Functional properties of Drosophila inositol trisphosphate receptors.

    PubMed Central

    Swatton, J E; Morris, S A; Wissing, F; Taylor, C W

    2001-01-01

    The functional properties of the only inositol trisphosphate (IP(3)) receptor subtype expressed in Drosophila were examined in permeabilized S2 cells. The IP(3) receptors of S2 cells bound (1,4,5)IP(3) with high affinity (K(d)=8.5+/-1.1 nM), mediated positively co-operative Ca(2+) release from a thapsigargin-sensitive Ca(2+) store (EC(50)=75+/-4 nM, Hill coefficient=2.1+/-0.2), and they were recognized by an antiserum to a peptide conserved in all IP(3) receptor subtypes in the same way as mammalian IP(3) receptors. As with mammalian IP(3) receptors, (2,4,5)IP(3) (EC(50)=2.3+/-0.3 microM) and (4,5)IP(2) (EC(50) approx. 10 microM) were approx. 20- and 100-fold less potent than (1,4,5)IP(3). Adenophostin A, which is typically approx. 10-fold more potent than IP(3) at mammalian IP(3) receptors, was 46-fold more potent than IP(3) in S2 cells (EC(50)=1.67+/-0.07 nM). Responses to submaximal concentrations of IP(3) were quantal and IP(3)-evoked Ca(2+) release was biphasically regulated by cytosolic Ca(2+). Using rapid superfusion to examine the kinetics of IP(3)-evoked Ca(2+) release from S2 cells, we established that IP(3) (10 microM) maximally activated Drosophila IP(3) receptors within 400 ms. The activity of the receptors then slowly decayed (t(1/2)=2.03+/-0.07 s) to a stable state which had 47+/-1% of the activity of the maximally active state. We conclude that the single subtype of IP(3) receptor expressed in Drosophila has similar functional properties to mammalian IP(3) receptors and that analyses of IP(3) receptor function in this genetically tractable organism are therefore likely to contribute to understanding the roles of mammalian IP(3) receptors. PMID:11583592

  7. Drosophila larvae: Thermal ecology in changing environments

    NASA Astrophysics Data System (ADS)

    Wang, George

    Temperature affects almost all aspects of life. Although much work has been done to assess the impact of temperature on organismal performance, relatively little is known about how organisms behaviorally regulate temperature, how these behaviors effect population fitness, or how changing climate may interact with these behaviors. I explore these questions with the model system Drosophila larvae. Larvae are small, with a low thermal mass and limited capacity for physiological thermoregulation. Mortality is generally high in larvae, with large potential impacts on population growth rate. Thus behavioral thermoregulation in larvae should be of critical selective importance. I present a review of the current knowledge of Drosophila thermal preference. I describe quantifiable thermoregulatory behaviors ( TMV and TW) unique to larvae. I show interspecific variation of these behaviors in Drosophila melanogaster and several close relatives, and intraspecific variation between populations collected from different environments. I also investigate these behaviors in two mutant lines, ssa and biz, to investigate the genetic basis of these behaviors. I show that larval thermoregulatory systems are independent of those of adults. Further these thermoregulatory behaviors differ between two sister species, D. yakuba and D. santomea. Although these two species readily hybridize in laboratory conditions, very few hybrids are observed in the field. The surprising result that hybrids of D. yakuba and D. santomea seem to inherit TMV from D. yakuba suggests a novel extrinsic isolation mechanism between the two species. I explore how fitness is the result of the interaction between genetics and the environment. I utilize Monte Carlo simulation to show how non-linear norms of reaction generate variation in populations even in the absence of behavior or epigenetic evolutionary mechanisms. Finally I investigate the global distribution of temperatures in which these organisms exist using

  8. Functional requirements driving the gene duplication in 12 Drosophila species

    PubMed Central

    2013-01-01

    Background Gene duplication supplies the raw materials for novel gene functions and many gene families arisen from duplication experience adaptive evolution. Most studies of young duplicates have focused on mammals, especially humans, whereas reports describing their genome-wide evolutionary patterns across the closely related Drosophila species are rare. The sequenced 12 Drosophila genomes provide the opportunity to address this issue. Results In our study, 3,647 young duplicate gene families were identified across the 12 Drosophila species and three types of expansions, species-specific, lineage-specific and complex expansions, were detected in these gene families. Our data showed that the species-specific young duplicate genes predominated (86.6%) over the other two types. Interestingly, many independent species-specific expansions in the same gene family have been observed in many species, even including 11 or 12 Drosophila species. Our data also showed that the functional bias observed in these young duplicate genes was mainly related to responses to environmental stimuli and biotic stresses. Conclusions This study reveals the evolutionary patterns of young duplicates across 12 Drosophila species on a genomic scale. Our results suggest that convergent evolution acts on young duplicate genes after the species differentiation and adaptive evolution may play an important role in duplicate genes for adaption to ecological factors and environmental changes in Drosophila. PMID:23945147

  9. The bacterial communities of Drosophila suzukii collected from undamaged cherries

    PubMed Central

    James, Pamela M.; Jospin, Guillaume; Lang, Jenna M.

    2014-01-01

    Drosophila suzukii is an introduced pest insect that feeds on undamaged, attached fruit. This diet is distinct from the fallen, discomposing fruits utilized by most other species of Drosophila. Since the bacterial microbiota of Drosophila, and of many other animals, is affected by diet, we hypothesized that the bacteria associated with D. suzukii are distinct from that of other Drosophila. Using 16S rDNA PCR and Illumina sequencing, we characterized the bacterial communities of larval and adult D. suzukii collected from undamaged, attached cherries in California, USA. We find that the bacterial communities associated with these samples of D. suzukii contain a high frequency of Tatumella. Gluconobacter and Acetobacter, two taxa with known associations with Drosophila, were also found, although at lower frequency than Tatumella in four of the five samples examined. Sampling D. suzukii from different locations and/or while feeding on different fruits is needed to determine the generality of the results determined by these samples. Nevertheless this is, to our knowledge, the first study characterizing the bacterial communities of this ecologically unique and economically important species of Drosophila. PMID:25101226

  10. Gustatory processing and taste memory in Drosophila.

    PubMed

    Masek, Pavel; Keene, Alex C

    2016-06-01

    Taste allows animals to discriminate the value and potential toxicity of food prior to ingestion. Many tastants elicit an innate attractive or avoidance response that is modifiable with nutritional state and prior experience. A powerful genetic tool kit, well-characterized gustatory system, and standardized behavioral assays make the fruit fly, Drosophila melanogaster, an excellent system for investigating taste processing and memory. Recent studies have used this system to identify the neural basis for acquired taste preference. These studies have revealed a role for dopamine-mediated plasticity of the mushroom bodies that modulate the threshold of response to appetitive tastants. The identification of neural circuitry regulating taste memory provides a system to study the genetic and physiological processes that govern plasticity within a defined memory circuit. PMID:27328844

  11. Quantitative neuroanatomy for connectomics in Drosophila.

    PubMed

    Schneider-Mizell, Casey M; Gerhard, Stephan; Longair, Mark; Kazimiers, Tom; Li, Feng; Zwart, Maarten F; Champion, Andrew; Midgley, Frank M; Fetter, Richard D; Saalfeld, Stephan; Cardona, Albert

    2016-01-01

    Neuronal circuit mapping using electron microscopy demands laborious proofreading or reconciliation of multiple independent reconstructions. Here, we describe new methods to apply quantitative arbor and network context to iteratively proofread and reconstruct circuits and create anatomically enriched wiring diagrams. We measured the morphological underpinnings of connectivity in new and existing reconstructions of Drosophila sensorimotor (larva) and visual (adult) systems. Synaptic inputs were preferentially located on numerous small, microtubule-free 'twigs' which branch off a single microtubule-containing 'backbone'. Omission of individual twigs accounted for 96% of errors. However, the synapses of highly connected neurons were distributed across multiple twigs. Thus, the robustness of a strong connection to detailed twig anatomy was associated with robustness to reconstruction error. By comparing iterative reconstruction to the consensus of multiple reconstructions, we show that our method overcomes the need for redundant effort through the discovery and application of relationships between cellular neuroanatomy and synaptic connectivity. PMID:26990779

  12. Genetic control of Drosophila nerve cord development

    NASA Technical Reports Server (NTRS)

    Skeath, James B.; Thor, Stefan

    2003-01-01

    The Drosophila ventral nerve cord has been a central model system for studying the molecular genetic mechanisms that control CNS development. Studies show that the generation of neural diversity is a multistep process initiated by the patterning and segmentation of the neuroectoderm. These events act together with the process of lateral inhibition to generate precursor cells (neuroblasts) with specific identities, distinguished by the expression of unique combinations of regulatory genes. The expression of these genes in a given neuroblast restricts the fate of its progeny, by activating specific combinations of downstream genes. These genes in turn specify the identity of any given postmitotic cell, which is evident by its cellular morphology and choice of neurotransmitter.

  13. Diversity and dynamics of the Drosophila transcriptome

    PubMed Central

    Boley, Nathan; Eisman, Robert; May, Gemma E.; Stoiber, Marcus H.; Duff, Michael O.; Booth, Ben W.; Wen, Jiayu; Park, Soo; Suzuki, Ana Maria; Wan, Kenneth H.; Yu, Charles; Zhang, Dayu; Carlson, Joseph W.; Cherbas, Lucy; Eads, Brian D.; Miller, David; Mockaitis, Keithanne; Roberts, Johnny; Davis, Carrie A.; Frise, Erwin; Hammonds, Ann S.; Olson, Sara; Shenker, Sol; Sturgill, David; Samsonova, Anastasia A.; Weiszmann, Richard; Robinson, Garret; Hernandez, Juan; Andrews, Justen; Bickel, Peter J.; Carninci, Piero; Cherbas, Peter; Gingeras, Thomas R.; Hoskins, Roger A.; Kaufman, Thomas C.; Lai, Eric C.; Oliver, Brian; Perrimon, Norbert

    2014-01-01

    Animal transcriptomes are dynamic, each cell type, tissue and organ system expressing an ensemble of transcript isoforms that give rise to substantial diversity. We identified new genes, transcripts, and proteins using poly(A)+ RNA sequence from Drosophila melanogaster cultured cell lines, dissected organ systems, and environmental perturbations. We found a small set of mostly neural-specific genes has the potential to encode thousands of transcripts each through extensive alternative promoter usage and RNA splicing. The magnitudes of splicing changes are larger between tissues than between developmental stages, and most sex-specific splicing is gonad-specific. Gonads express hundreds of previously unknown coding and long noncoding RNAs (lncRNAs) some of which are antisense to protein-coding genes and produce short regulatory RNAs. Furthermore, previously identified pervasive intergenic transcription occurs primarily within newly identified introns. The fly transcriptome is substantially more complex than previously recognized arising from combinatorial usage of promoters, splice sites, and polyadenylation sites. PMID:24670639

  14. Drosophila TRP channels and animal behavior

    PubMed Central

    Fowler, Melissa A.; Montell, Craig

    2012-01-01

    Multiple classes of cell surface receptors and ion channels participate in the detection of changes in environmental stimuli, and thereby influence animal behavior. Among the many classes of ion channels, Transient Receptor Potential (TRP) cation channels are notable in contributing to virtually every sensory modality, and in controlling a daunting array of behaviors. TRP channels appear to be conserved in all metazoan organisms including worms, insects and humans. Flies encode 13 TRPs, most of which are expressed and function in sensory neurons, and impact behaviors ranging from phototaxis to thermotaxis, gravitaxis, the avoidance of noxious tastants and smells and proprioception. Multiple diseases result from defects in TRPs, and flies provide an excellent animal model for dissecting the mechanisms underlying “TRPopathies.” Drosophila TRPs also function in the sensation of botanically derived insect repellents, and related TRPs in insect pests are potential targets for the development of improved repellents to combat insect-borne diseases. PMID:22877650

  15. Antioxidants, metabolic rate and aging in Drosophila

    NASA Technical Reports Server (NTRS)

    Miquel, J.; Fleming, J.; Economos, A. C.

    1982-01-01

    The metabolic rate-of-living theory of aging was investigated by determining the effect of several life-prolonging antioxidants on the metabolic rate and life span of Drosophila. The respiration rate of groups of continuously agitated flies was determined in a Gilson respirometer. Vitamin E, 2,4-dinitrophenol, nordihydroguaiaretic acid, and thiazolidine carboxylic acid were employed as antioxidants. Results show that all of these antioxidants reduced the oxygen consumption rate and increased the mean life span, and a significant negative linear correlation was found between the mean life span and the metabolic rate. It is concluded that these findings indicate that some antioxidants may inhibit respiration rate in addition to their protective effect against free radical-induced cellular damage.

  16. A Protein Interaction Map of Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Giot, L.; Bader, J. S.; Brouwer, C.; Chaudhuri, A.; Kuang, B.; Li, Y.; Hao, Y. L.; Ooi, C. E.; Godwin, B.; Vitols, E.; Vijayadamodar, G.; Pochart, P.; Machineni, H.; Welsh, M.; Kong, Y.; Zerhusen, B.; Malcolm, R.; Varrone, Z.; Collis, A.; Minto, M.; Burgess, S.; McDaniel, L.; Stimpson, E.; Spriggs, F.; Williams, J.; Neurath, K.; Ioime, N.; Agee, M.; Voss, E.; Furtak, K.; Renzulli, R.; Aanensen, N.; Carrolla, S.; Bickelhaupt, E.; Lazovatsky, Y.; DaSilva, A.; Zhong, J.; Stanyon, C. A.; Finley, R. L.; White, K. P.; Braverman, M.; Jarvie, T.; Gold, S.; Leach, M.; Knight, J.; Shimkets, R. A.; McKenna, M. P.; Chant, J.; Rothberg, J. M.

    2003-12-01

    Drosophila melanogaster is a proven model system for many aspects of human biology. Here we present a two-hybrid-based protein-interaction map of the fly proteome. A total of 10,623 predicted transcripts were isolated and screened against standard and normalized complementary DNA libraries to produce a draft map of 7048 proteins and 20,405 interactions. A computational method of rating two-hybrid interaction confidence was developed to refine this draft map to a higher confidence map of 4679 proteins and 4780 interactions. Statistical modeling of the network showed two levels of organization: a short-range organization, presumably corresponding to multiprotein complexes, and a more global organization, presumably corresponding to intercomplex connections. The network recapitulated known pathways, extended pathways, and uncovered previously unknown pathway components. This map serves as a starting point for a systems biology modeling of multicellular organisms, including humans.

  17. Control of apoptosis by Drosophila DCAF12.

    PubMed

    Hwangbo, Dae-Sung; Biteau, Benoit; Rath, Sneha; Kim, Jihyun; Jasper, Heinrich

    2016-05-01

    Regulated Apoptosis (Programmed Cell Death, PCD) maintains tissue homeostasis in adults, and ensures proper growth and morphogenesis of tissues during development of metazoans. Accordingly, defects in cellular processes triggering or executing apoptotic programs have been implicated in a variety of degenerative and neoplastic diseases. Here, we report the identification of DCAF12, an evolutionary conserved member of the WD40-motif repeat family of proteins, as a new regulator of apoptosis in Drosophila. We find that DCAF12 is required for Diap1 cleavage in response to pro-apoptotic signals, and is thus necessary and sufficient for RHG (Reaper, Hid, and Grim)-mediated apoptosis. Loss of DCAF12 perturbs the elimination of supernumerary or proliferation-impaired cells during development, and enhances tumor growth induced by loss of neoplastic tumor suppressors, highlighting the wide requirement for DCAF12 in PCD. PMID:26972874

  18. Orientation Selectivity Sharpens Motion Detection in Drosophila.

    PubMed

    Fisher, Yvette E; Silies, Marion; Clandinin, Thomas R

    2015-10-21

    Detecting the orientation and movement of edges in a scene is critical to visually guided behaviors of many animals. What are the circuit algorithms that allow the brain to extract such behaviorally vital visual cues? Using in vivo two-photon calcium imaging in Drosophila, we describe direction selective signals in the dendrites of T4 and T5 neurons, detectors of local motion. We demonstrate that this circuit performs selective amplification of local light inputs, an observation that constrains motion detection models and confirms a core prediction of the Hassenstein-Reichardt correlator (HRC). These neurons are also orientation selective, responding strongly to static features that are orthogonal to their preferred axis of motion, a tuning property not predicted by the HRC. This coincident extraction of orientation and direction sharpens directional tuning through surround inhibition and reveals a striking parallel between visual processing in flies and vertebrate cortex, suggesting a universal strategy for motion processing. PMID:26456048

  19. Sensorimotor structure of Drosophila larva phototaxis

    PubMed Central

    Kane, Elizabeth A.; Gershow, Marc; Afonso, Bruno; Larderet, Ivan; Klein, Mason; Carter, Ashley R.; de Bivort, Benjamin L.; Sprecher, Simon G.; Samuel, Aravinthan D. T.

    2013-01-01

    The avoidance of light by fly larvae is a classic paradigm for sensorimotor behavior. Here, we use behavioral assays and video microscopy to quantify the sensorimotor structure of phototaxis using the Drosophila larva. Larval locomotion is composed of sequences of runs (periods of forward movement) that are interrupted by abrupt turns, during which the larva pauses and sweeps its head back and forth, probing local light information to determine the direction of the successive run. All phototactic responses are mediated by the same set of sensorimotor transformations that require temporal processing of sensory inputs. Through functional imaging and genetic inactivation of specific neurons downstream of the sensory periphery, we have begun to map these sensorimotor circuits into the larval central brain. We find that specific sensorimotor pathways that govern distinct light-evoked responses begin to segregate at the first relay after the photosensory neurons. PMID:24043822

  20. How Drosophila melanogaster Forms its Mechanoreceptors

    PubMed Central

    Furman, D.P; Bukharina, T.A

    2008-01-01

    A strictly determined number of external sensory organs, macrochaetes, acting as mechanoreceptors, are orderly located on drosophila head and body. Totally, they form the bristle pattern, which is a species-specific characteristic of drosophila. Each mechanoreceptor comprises four specialized cells derived from the single sensory organ precursor (SOP) cell. The conserved bristle pattern combined with a comparatively simple structure of each mechanosensory organ makes macrochaetes a convenient model for studying the formation spatial structures with a fixed number of elements at certain positions and the mechanism underlying cell differentiation. The macrochaete morphogenesis consists of three stages. At the first stage, the proneural clusters segregate from the massive of ectodermal cells of the wing imaginal disc. At the second stage, the SOP cell is determined and its position in the cluster is specified. At the third stage, the SOP cell undergoes two asymmetric divisions, and the daughter cells differentiate into the components of mechanoreceptor: shaft, socket, bipolar neuron, and sheath. The critical factor determining the neural pathway of cell development is the content of proneural proteins, products of the achaete-scute (AS-C) gene complex, reaching its maximum in the SOP cell. The experimental data on the main genes and their products involved in the control of bristle pattern formation are systematized. The roles of achaete-scute complex, EGFR and Notch signaling pathways, and selector genes in these processes are considered. An integral scheme describing the functioning of the system controlling macrochaete development in D. melanogaster is proposed based on analysis of literature data. PMID:19471605

  1. Frequency response of lift control in Drosophila.

    PubMed

    Graetzel, Chauncey F; Nelson, Bradley J; Fry, Steven N

    2010-11-01

    The flight control responses of the fruitfly represent a powerful model system to explore neuromotor control mechanisms, whose system level control properties can be suitably characterized with a frequency response analysis. We characterized the lift response dynamics of tethered flying Drosophila in presence of vertically oscillating visual patterns, whose oscillation frequency we varied between 0.1 and 13 Hz. We justified these measurements by showing that the amplitude gain and phase response is invariant to the pattern oscillation amplitude and spatial frequency within a broad dynamic range. We also showed that lift responses are largely linear and time invariant (LTI), a necessary condition for a meaningful analysis of frequency responses and a remarkable characteristic given its nonlinear constituents. The flies responded to increasing oscillation frequencies with a roughly linear decrease in response gain, which dropped to background noise levels at about 6 Hz. The phase lag decreased linearly, consistent with a constant reaction delay of 75 ms. Next, we estimated the free-flight response of the fly to generate a Bode diagram of the lift response. The limitation of lift control to frequencies below 6 Hz is explained with inertial body damping, which becomes dominant at higher frequencies. Our work provides the detailed background and techniques that allow optomotor lift responses of Drosophila to be measured with comparatively simple, affordable and commercially available techniques. The identification of an LTI, pattern velocity dependent, lift control strategy is relevant to the underlying motion computation mechanisms and serves a broader understanding of insects' flight control strategies. The relevance and potential pitfalls of applying system identification techniques in tethered preparations is discussed. PMID:20462877

  2. Vitrification-based cryopreservation of Drosophila embryos

    SciTech Connect

    Schreuders, P.D.; Mazur, P.

    1994-12-31

    Currently, over 30,000 strains of Drosophila melanogaster are maintained by geneticists through regular transfer of breeding stocks. A more cost effective solution is to cryopreserve their embryos. Cooling and warming rates >10,000{degrees}C/min. are required to prevent chilling injury. To avoid the lethal intracellular ice normally produced at such high cooling rates, it is necessary to use {ge}50% (w/w) concentrations of glass-inducing solutes to vitrify the embryos. Differential scanning calorimetry (DSC) is used to develop and evaluate ethylene glycol and polyvinyl pyrrolidone based vitrification solutions. The resulting solution consists of 8.5M ethylene glycol + 10% polyvinylpyrrolidone in D-20 Drosophila culture medium. A two stage method is used for the introduction and concentration of these solutes within the embryo. The method reduces the exposure time to the solution and, consequently, reduces toxicity. Both DSC and freezing experiments suggest that, while twelve-hour embryos will vitrify using cooling rates >200{degrees}C/min., they will devitrify and be killed with even moderately rapid warming rates of {approximately}1,900{degrees}C/min. Very rapid warming ({approximately}100,000{degrees}C/min.) results in variable numbers of successfully cryopreserved embryos. This sensitivity to warming rite is typical of devitrification. The variability in survival is reduced using embryos of a precisely determined embryonic stage. The vitrification of the older, fifteen-hour, embryos yields an optimized hatching rate of 68%, with 35 - 40% of the resulting larvae developing to normal adults. This Success rite in embryos of this age may reflect a reduced sensitivity to limited devitrification or a more even distribution of the ethylene glycol within the embryo.

  3. Temperature representation in the Drosophila brain

    PubMed Central

    Frank, Dominic D.; Jouandet, Genevieve C.; Kearney, Patrick J.; Macpherson, Lindsey J.; Gallio, Marco

    2015-01-01

    SUMMARY In Drosophila, rapid temperature changes are detected at the periphery by dedicated receptors forming a simple sensory map for hot and cold in the brain1. However, flies show a host of complex innate and learned responses to temperature, indicating that they are able to extract a range of information from this simple input. Here, we define the anatomical and physiological repertoire for temperature representation in the Drosophila brain. First, we use a photolabeling strategy2 to trace the connections that relay peripheral thermosensory information to higher brain centers, and show that they largely converge onto three target regions: the Mushroom Body, Lateral Horn (well-known centers for sensory processing) and the Posterior Lateral Protocerebrum, a region we now define as a major site of thermosensory representation. Then, using in vivo calcium imaging3, we describe the thermosensory projection neurons selectively activated by hot or cold stimuli. Fast-adapting neurons display transient “ON” and “OFF” responses and track rapid temperature shifts remarkably well, while slow-adapting cell responses better reflect the magnitude of simple thermal changes. Unexpectedly, we also find a population of ‘broadly-tuned’ cells that respond to both heating and cooling, and show that they are required for normal behavioral avoidance of both hot and cold in a simple 2-choice temperature preference assay. Taken together, our results uncover a coordinated ensemble of neural responses to temperature in the fly brain, demonstrate that a broadly tuned thermal-line contributes to rapid avoidance behavior, and illustrate how stimulus quality, temporal structure, and intensity can be extracted from a simple glomerular map at a single synaptic station. PMID:25739506

  4. Genetic effects on heavy ions in drosophila

    NASA Technical Reports Server (NTRS)

    Kale, P. G.

    1986-01-01

    Drosophila sex-linked recessive lethal mutation test was used to study the dose response relation and relative biological effectiveness of heavy ions. The experiments were performed using the heavy ion beams at BEVALAC of Lawrence Berkeley Laboratory. These experiments were undertaken according to the proposed milestones and included Ne-20, A-40 and Fe-65 ions with respective energies of 600 MeV, 840 MeV and 850 MeV. At these energies several doses of these radiations ranging from 20 to 1280 R were used. Space radiation exposure to astronauts is supposed to be quite low and therefore very low dose experiments i.e., 20 R, were also performed for the three ions. The mutation response was measured in all germ cell types i.e., spermatozoa, spermatids, spermatocytes and spermatogonia of treated Drosophila males. A linear dose frequency relation was observed for most of the range except at high doses where the saturation effect was observed. Also, a very significant difference was observed among the sensitivity of the four germ cell stages where spermatozoa and spermatids were more sensitive. At the higher doses of this range, most of the spermatogonia and spermatocytes were killed. Although comparative and identical experiments with X-rays or neutrons have not been performed, the compassion of our data with the ones available in literature suggest that the heavy ions have a high rbe and that they are several times more effective than low LET X-rays. The rbe compared to neutrons however appears to be only slightly higher.

  5. Structure and Development of Glia in Drosophila

    PubMed Central

    Hartenstein, Volker

    2014-01-01

    Insect glia represents a conspicuous and diverse population of cells and plays a role in controlling neuronal progenitor proliferation, axonal growth, neuronal differentiation and maintenance, and neuronal function. Genetic studies in Drosophila have elucidated many aspects of glial structure, function and development. Just as in vertebrates, it appears as if different classes of glial cells are specialized for different functions. Based on topology and cell shape, glial cells of the central nervous system fall into three classes (Fig. 1A–C): (i) surface glia that extend sheath-like processes to wrap around the entire brain; (ii) cortex glia (also called cell body-associated glia) that encapsulate neuronal somata and neuroblasts which form the outer layer (cortex) of the central nervous system; (iii) neuropile glia that are located at the interface between the cortex and the neuropile, the central domain of the nervous system formed by the highly branched neuronal processes and their synaptic contacts. Surface glia is further subdivided into an outer, perineurial layer, and an inner, subperineurial layer. Likewise, neuropile glia comprises a class of cells that remain at the surface of the neuropile (ensheathing glia), and a second class that forms profuse lamellar processes around nerve fibers within the neuropile (astrocyte-like or reticular glia). Glia also surrounds the peripheral nerves and sensory organs; here, one also recognizes perineurial and subperineurial glia, and a third type called “wrapping glia” that most likely corresponds to the ensheathing glia of the central nervous system. Much more experimental work is needed to determine how fundamental these differences between classes of glial cells are, or how and when during development they are specified. To aid in this work the following review will briefly summarize our knowledge of the classes of glial cells encountered in the Drosophila nervous system, and then survey their development from

  6. Ancient Anxiety Pathways Influence Drosophila Defense Behaviors

    PubMed Central

    Mohammad, Farhan; Aryal, Sameer; Ho, Joses; Stewart, James Charles; Norman, Nurul Ayuni; Tan, Teng Li; Eisaka, Agnese; Claridge-Chang, Adam

    2016-01-01

    Summary Anxiety helps us anticipate and assess potential danger in ambiguous situations [1, 2, 3]; however, the anxiety disorders are the most prevalent class of psychiatric illness [4, 5, 6]. Emotional states are shared between humans and other animals [7], as observed by behavioral manifestations [8], physiological responses [9], and gene conservation [10]. Anxiety research makes wide use of three rodent behavioral assays—elevated plus maze, open field, and light/dark box—that present a choice between sheltered and exposed regions [11]. Exposure avoidance in anxiety-related defense behaviors was confirmed to be a correlate of rodent anxiety by treatment with known anxiety-altering agents [12, 13, 14] and is now used to characterize anxiety systems. Modeling anxiety with a small neurogenetic animal would further aid the elucidation of its neuronal and molecular bases. Drosophila neurogenetics research has elucidated the mechanisms of fundamental behaviors and implicated genes that are often orthologous across species. In an enclosed arena, flies stay close to the walls during spontaneous locomotion [15, 16], a behavior proposed to be related to anxiety [17]. We tested this hypothesis with manipulations of the GABA receptor, serotonin signaling, and stress. The effects of these interventions were strikingly concordant with rodent anxiety, verifying that these behaviors report on an anxiety-like state. Application of this method was able to identify several new fly anxiety genes. The presence of conserved neurogenetic pathways in the insect brain identifies Drosophila as an attractive genetic model for the study of anxiety and anxiety-related disorders, complementing existing rodent systems. PMID:27020741

  7. Frequency response of lift control in Drosophila

    PubMed Central

    Graetzel, Chauncey F.; Nelson, Bradley J.; Fry, Steven N.

    2010-01-01

    The flight control responses of the fruitfly represent a powerful model system to explore neuromotor control mechanisms, whose system level control properties can be suitably characterized with a frequency response analysis. We characterized the lift response dynamics of tethered flying Drosophila in presence of vertically oscillating visual patterns, whose oscillation frequency we varied between 0.1 and 13 Hz. We justified these measurements by showing that the amplitude gain and phase response is invariant to the pattern oscillation amplitude and spatial frequency within a broad dynamic range. We also showed that lift responses are largely linear and time invariant (LTI), a necessary condition for a meaningful analysis of frequency responses and a remarkable characteristic given its nonlinear constituents. The flies responded to increasing oscillation frequencies with a roughly linear decrease in response gain, which dropped to background noise levels at about 6 Hz. The phase lag decreased linearly, consistent with a constant reaction delay of 75 ms. Next, we estimated the free-flight response of the fly to generate a Bode diagram of the lift response. The limitation of lift control to frequencies below 6 Hz is explained with inertial body damping, which becomes dominant at higher frequencies. Our work provides the detailed background and techniques that allow optomotor lift responses of Drosophila to be measured with comparatively simple, affordable and commercially available techniques. The identification of an LTI, pattern velocity dependent, lift control strategy is relevant to the underlying motion computation mechanisms and serves a broader understanding of insects' flight control strategies. The relevance and potential pitfalls of applying system identification techniques in tethered preparations is discussed. PMID:20462877

  8. The Evolution of Olfactory Gene Families in Drosophila and the Genomic Basis of chemical-Ecological Adaptation in Drosophila suzukii.

    PubMed

    Ramasamy, Sukanya; Ometto, Lino; Crava, Cristina M; Revadi, Santosh; Kaur, Rupinder; Horner, David S; Pisani, Davide; Dekker, Teun; Anfora, Gianfranco; Rota-Stabelli, Omar

    2016-01-01

    How the evolution of olfactory genes correlates with adaption to new ecological niches is still a debated topic. We explored this issue in Drosophila suzukii, an emerging model that reproduces on fresh fruit rather than in fermenting substrates like most other Drosophila We first annotated the repertoire of odorant receptors (ORs), odorant binding proteins (OBPs), and antennal ionotropic receptors (aIRs) in the genomes of two strains of D. suzukii and of its close relative Drosophila biarmipes We then analyzed these genes on the phylogeny of 14 Drosophila species: whereas ORs and OBPs are characterized by higher turnover rates in some lineages including D. suzukii, aIRs are conserved throughout the genus. Drosophila suzukii is further characterized by a non-random distribution of OR turnover on the gene phylogeny, consistent with a change in selective pressures. In D. suzukii, we found duplications and signs of positive selection in ORs with affinity for short-chain esters, and loss of function of ORs with affinity for volatiles produced during fermentation. These receptors-Or85a and Or22a-are characterized by divergent alleles in the European and American genomes, and we hypothesize that they may have been replaced by some of the duplicated ORs in corresponding neurons, a hypothesis reciprocally confirmed by electrophysiological recordings. Our study quantifies the evolution of olfactory genes in Drosophila and reveals an array of genomic events that can be associated with the ecological adaptations of D. suzukii. PMID:27435796

  9. The Evolution of Olfactory Gene Families in Drosophila and the Genomic Basis of chemical-Ecological Adaptation in Drosophila suzukii

    PubMed Central

    Ramasamy, Sukanya; Ometto, Lino; Crava, Cristina M.; Revadi, Santosh; Kaur, Rupinder; Horner, David S.; Pisani, Davide; Dekker, Teun; Anfora, Gianfranco; Rota-Stabelli, Omar

    2016-01-01

    How the evolution of olfactory genes correlates with adaption to new ecological niches is still a debated topic. We explored this issue in Drosophila suzukii, an emerging model that reproduces on fresh fruit rather than in fermenting substrates like most other Drosophila. We first annotated the repertoire of odorant receptors (ORs), odorant binding proteins (OBPs), and antennal ionotropic receptors (aIRs) in the genomes of two strains of D. suzukii and of its close relative Drosophila biarmipes. We then analyzed these genes on the phylogeny of 14 Drosophila species: whereas ORs and OBPs are characterized by higher turnover rates in some lineages including D. suzukii, aIRs are conserved throughout the genus. Drosophila suzukii is further characterized by a non-random distribution of OR turnover on the gene phylogeny, consistent with a change in selective pressures. In D. suzukii, we found duplications and signs of positive selection in ORs with affinity for short-chain esters, and loss of function of ORs with affinity for volatiles produced during fermentation. These receptors—Or85a and Or22a—are characterized by divergent alleles in the European and American genomes, and we hypothesize that they may have been replaced by some of the duplicated ORs in corresponding neurons, a hypothesis reciprocally confirmed by electrophysiological recordings. Our study quantifies the evolution of olfactory genes in Drosophila and reveals an array of genomic events that can be associated with the ecological adaptations of D. suzukii. PMID:27435796

  10. Multi-state Comparison of Attractants for Monitoring Drosophila suzukii (Diptera: Drosophilidae) in Blueberries and Caneberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drosophila suzukii, also referred to as the spotted wing drosophila, has recently and dramatically expanded its global range with significant consequences for its primary host crops: blueberries, blackberries, raspberries, cherries, and strawberries. D. suzukii populations can increase quickly, and ...

  11. Attractiveness of fermentation and related products to spotted wing Drosophila (Diptera: Drosophilidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory screening bioassays and field trapping experiments of spotted wing Drosophila flies, Drosophila suzukii were conducted to determine the attractiveness of 17 potentially attractive compounds as well as compare attractant efficiency during peak fruit ripeness and postharvest captures late ...

  12. The Dopaminergic System in the Aging Brain of Drosophila

    PubMed Central

    White, Katherine E.; Humphrey, Dickon M.; Hirth, Frank

    2010-01-01

    Drosophila models of Parkinson's disease are characterized by two principal phenotypes: the specific loss of dopaminergic (DA) neurons in the aging brain and defects in motor behavior. However, an age-related analysis of these baseline parameters in wildtype Drosophila is lacking. Here we analyzed the DA system and motor behavior in aging Drosophila. DA neurons in the adult brain can be grouped into bilateral symmetric clusters, each comprising a stereotypical number of cells. Analysis of TH > mCD8::GFP and cell type-specific MARCM clones revealed that DA neurons show cluster-specific, stereotypical projection patterns with terminal arborization in target regions that represent distinct functional areas of the adult brain. Target areas include the mushroom bodies, involved in memory formation and motivation, and the central complex, involved in the control of motor behavior, indicating that similar to the mammalian brain, DA neurons in the fly brain are involved in the regulation of specific behaviors. Behavioral analysis revealed that Drosophila show an age-related decline in startle-induced locomotion and negative geotaxis. Motion tracking however, revealed that walking activity, and exploration behavior, but not centrophobism increase at late stages of life. Analysis of TH > Dcr2, mCD8::GFP revealed a specific effect of Dcr2 expression on walking activity but not on exploratory or centrophobic behavior, indicating that the siRNA pathway may modulate distinct DA behaviors in Drosophila. Moreover, DA neurons were maintained between early- and late life, as quantified by TH > mCD8::GFP and anti-TH labeling, indicating that adult onset, age-related degeneration of DA neurons does not occur in the aging brain of Drosophila. Taken together, our data establish baseline parameters in Drosophila for the study of Parkinson's disease as well as other disorders affecting DA neurons and movement control. PMID:21165178

  13. NOVEL ASPECTS OF SPOTTED WING DROSOPHILA BIOLOGY AND IMPROVED METHODS OF REARING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drosophila suzukii (Mats.) or the spotted wing Drosophila (SWD), is a global pest of soft fruits that can now be reared on a standard Drosophila diet containing the fly's own natural food: soft-skinned berries. The techniques tested here can thwart bacterial and fungal disease that can destroy more ...

  14. A practical method for culturing and novel biology of the spotted wing Drosophila (Diptera: Drosophilidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The non-saprophagous vinegar fly, Drosophila suzukii (Mats.) or the spotted wing Drosophila (SWD), is a global berry pest that is rearable on a standard Drosophila diet containing the fly’s own natural food: soft-skinned berries. Techniques presented here can help curb bacterial and fungal disease o...

  15. big bang gene modulates gut immune tolerance in Drosophila.

    PubMed

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases. PMID:23378635

  16. Bioimage Informatics in the context of Drosophila research.

    PubMed

    Jug, Florian; Pietzsch, Tobias; Preibisch, Stephan; Tomancak, Pavel

    2014-06-15

    Modern biological research relies heavily on microscopic imaging. The advanced genetic toolkit of Drosophila makes it possible to label molecular and cellular components with unprecedented level of specificity necessitating the application of the most sophisticated imaging technologies. Imaging in Drosophila spans all scales from single molecules to the entire populations of adult organisms, from electron microscopy to live imaging of developmental processes. As the imaging approaches become more complex and ambitious, there is an increasing need for quantitative, computer-mediated image processing and analysis to make sense of the imagery. Bioimage Informatics is an emerging research field that covers all aspects of biological image analysis from data handling, through processing, to quantitative measurements, analysis and data presentation. Some of the most advanced, large scale projects, combining cutting edge imaging with complex bioimage informatics pipelines, are realized in the Drosophila research community. In this review, we discuss the current research in biological image analysis specifically relevant to the type of systems level image datasets that are uniquely available for the Drosophila model system. We focus on how state-of-the-art computer vision algorithms are impacting the ability of Drosophila researchers to analyze biological systems in space and time. We pay particular attention to how these algorithmic advances from computer science are made usable to practicing biologists through open source platforms and how biologists can themselves participate in their further development. PMID:24732429

  17. Drosophila wing modularity revisited through a quantitative genetic approach.

    PubMed

    Muñoz-Muñoz, Francesc; Carreira, Valeria Paula; Martínez-Abadías, Neus; Ortiz, Victoria; González-José, Rolando; Soto, Ignacio M

    2016-07-01

    To predict the response of complex morphological structures to selection it is necessary to know how the covariation among its different parts is organized. Two key features of covariation are modularity and integration. The Drosophila wing is currently considered a fully integrated structure. Here, we study the patterns of integration of the Drosophila wing and test the hypothesis of the wing being divided into two modules along the proximo-distal axis, as suggested by developmental, biomechanical, and evolutionary evidence. To achieve these goals we perform a multilevel analysis of covariation combining the techniques of geometric morphometrics and quantitative genetics. Our results indicate that the Drosophila wing is indeed organized into two main modules, the wing base and the wing blade. The patterns of integration and modularity were highly concordant at the phenotypic, genetic, environmental, and developmental levels. Besides, we found that modularity at the developmental level was considerably higher than modularity at other levels, suggesting that in the Drosophila wing direct developmental interactions are major contributors to total phenotypic shape variation. We propose that the precise time at which covariance-generating developmental processes occur and/or the magnitude of variation that they produce favor proximo-distal, rather than anterior-posterior, modularity in the Drosophila wing. PMID:27272402

  18. Intestinal stem cells in the adult Drosophila midgut

    SciTech Connect

    Jiang, Huaqi; Edgar, Bruce A.

    2011-11-15

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.

  19. Genetic effects of ethylene dibromide in Drosophila melanogaster

    SciTech Connect

    Kale, P.; Baum, J.W.

    1981-01-01

    Drosophila, an organism known to be one of the best among the available systems for mutation detection, can be used for detecting very low concentrations of airborne mutagens. Using ethylene dibromide (EDB), it was demonstrated that Drosophila could detect concentrations as low as 0.2 ppM in air when exposed for a relatively short period of 11 hrs. The exposure period can be prolonged to as many as 700 hrs using Drosophila. Response was proportional to integrated exposure in ppM-hr at low exposure values. It is, therefore, possible to detect airborne mutagens in the parts per billion range using proper germ cell stages in this system. Drosophila may, therefore, be used as a biological monitor to detect mutagenicity of air in polluted areas. Thus, the system may complement Tradescantia, another sensitive system being used for this purpose. Ethylene dibromide was selected as a test chemical in these studies since its mutagenic properties had previously been demonstrated in Drosophila and in Tradescantia. In Tradescantia, extensive data on the dose vs. mutation relation were available and these data were considered useful in evaluating the comparative sensitivity of the two systems for detecting airborne mutagens.

  20. Comparative transcriptomic analysis of human and Drosophila extracellular vesicles.

    PubMed

    Lefebvre, Fabio Alexis; Benoit Bouvrette, Louis Philip; Perras, Lilyanne; Blanchet-Cohen, Alexis; Garnier, Delphine; Rak, Janusz; Lécuyer, Éric

    2016-01-01

    Extracellular vesicles (EVs) are membrane-enclosed nanoparticles containing specific repertoires of genetic material. In mammals, EVs can mediate the horizontal transfer of various cargos and signaling molecules, notably miRNA and mRNA species. Whether this form of intercellular communication prevails in other metazoans remains unclear. Here, we report the first parallel comparative morphologic and transcriptomic characterization of EVs from Drosophila and human cellular models. Electronic microscopy revealed that human and Drosophila cells release similar EVs with diameters ranging from 30 to 200 nm, which contain complex populations of transcripts. RNA-seq identified abundant ribosomal RNAs, related pseudogenes and retrotransposons in human and Drosophila EVs. Vault RNAs and Y RNAs abounded in human samples, whereas small nucleolar RNAs involved in pseudouridylation were most prevalent in Drosophila EVs. Numerous mRNAs were identified, largely consisting of exonic sequences displaying full-length read coverage and enriched for translation and electronic transport chain functions. By analogy with human systems, these sizeable similarities suggest that EVs could potentially enable RNA-mediated intercellular communication in Drosophila. PMID:27282340

  1. Drosophila adult and larval pheromones modulate larval food choice

    PubMed Central

    Farine, Jean-Pierre; Cortot, Jérôme; Ferveur, Jean-François

    2014-01-01

    Insects use chemosensory cues to feed and mate. In Drosophila, the effect of pheromones has been extensively investigated in adults, but rarely in larvae. The colonization of natural food sources by Drosophila buzzatii and Drosophila simulans species may depend on species-specific chemical cues left in the food by larvae and adults. We identified such chemicals in both species and measured their influence on larval food preference and puparation behaviour. We also tested compounds that varied between these species: (i) two larval volatile compounds: hydroxy-3-butanone-2 and phenol (predominant in D. simulans and D. buzzatii, respectively), and (ii) adult cuticular hydrocarbons (CHs). Drosophila buzzatii larvae were rapidly attracted to non-CH adult conspecific cues, whereas D. simulans larvae were strongly repulsed by CHs of the two species and also by phenol. Larval cues from both species generally reduced larval attraction and pupariation on food, which was generally—but not always—low, and rarely reflected larval response. As these larval and adult pheromones specifically influence larval food search and the choice of a pupariation site, they may greatly affect the dispersion and survival of Drosophila species in nature. PMID:24741012

  2. Comparative transcriptomic analysis of human and Drosophila extracellular vesicles

    PubMed Central

    Lefebvre, Fabio Alexis; Benoit Bouvrette, Louis Philip; Perras, Lilyanne; Blanchet-Cohen, Alexis; Garnier, Delphine; Rak, Janusz; Lécuyer, Éric

    2016-01-01

    Extracellular vesicles (EVs) are membrane-enclosed nanoparticles containing specific repertoires of genetic material. In mammals, EVs can mediate the horizontal transfer of various cargos and signaling molecules, notably miRNA and mRNA species. Whether this form of intercellular communication prevails in other metazoans remains unclear. Here, we report the first parallel comparative morphologic and transcriptomic characterization of EVs from Drosophila and human cellular models. Electronic microscopy revealed that human and Drosophila cells release similar EVs with diameters ranging from 30 to 200 nm, which contain complex populations of transcripts. RNA-seq identified abundant ribosomal RNAs, related pseudogenes and retrotransposons in human and Drosophila EVs. Vault RNAs and Y RNAs abounded in human samples, whereas small nucleolar RNAs involved in pseudouridylation were most prevalent in Drosophila EVs. Numerous mRNAs were identified, largely consisting of exonic sequences displaying full-length read coverage and enriched for translation and electronic transport chain functions. By analogy with human systems, these sizeable similarities suggest that EVs could potentially enable RNA-mediated intercellular communication in Drosophila. PMID:27282340

  3. Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion.

    PubMed

    Guo, Yanmeng; Wang, Yuping; Zhang, Wei; Meltzer, Shan; Zanini, Damiano; Yu, Yue; Li, Jiefu; Cheng, Tong; Guo, Zhenhao; Wang, Qingxiu; Jacobs, Julie S; Sharma, Yashoda; Eberl, Daniel F; Göpfert, Martin C; Jan, Lily Yeh; Jan, Yuh Nung; Wang, Zuoren

    2016-06-28

    Drosophila larval locomotion, which entails rhythmic body contractions, is controlled by sensory feedback from proprioceptors. The molecular mechanisms mediating this feedback are little understood. By using genetic knock-in and immunostaining, we found that the Drosophila melanogaster transmembrane channel-like (tmc) gene is expressed in the larval class I and class II dendritic arborization (da) neurons and bipolar dendrite (bd) neurons, both of which are known to provide sensory feedback for larval locomotion. Larvae with knockdown or loss of tmc function displayed reduced crawling speeds, increased head cast frequencies, and enhanced backward locomotion. Expressing Drosophila TMC or mammalian TMC1 and/or TMC2 in the tmc-positive neurons rescued these mutant phenotypes. Bending of the larval body activated the tmc-positive neurons, and in tmc mutants this bending response was impaired. This implicates TMC's roles in Drosophila proprioception and the sensory control of larval locomotion. It also provides evidence for a functional conservation between Drosophila and mammalian TMCs. PMID:27298354

  4. Drosophila as a model for unfolded protein response research

    PubMed Central

    Ryoo, Hyung Don

    2015-01-01

    Endoplasmic Reticulum (ER) is an organelle where most secretory and membrane proteins are synthesized, folded, and undergo further maturation. As numerous conditions can perturb such ER function, eukaryotic cells are equipped with responsive signaling pathways, widely referred to as the Unfolded Protein Response (UPR). Chronic conditions of ER stress that cannot be fully resolved by UPR, or conditions that impair UPR signaling itself, are associated with many metabolic and degenerative diseases. In recent years, Drosophila has been actively employed to study such connections between UPR and disease. Notably, the UPR pathways are largely conserved between Drosophila and humans, and the mediating genes are essential for development in both organisms, indicating their requirement to resolve inherent stress. By now, many Drosophila mutations are known to impose stress in the ER, and a number of these appear similar to those that underlie human diseases. In addition, studies have employed the strategy of overexpressing human mutations in Drosophila tissues to perform genetic modifier screens. The fact that the basic UPR pathways are conserved, together with the availability of many human disease models in this organism, makes Drosophila a powerful tool for studying human disease mechanisms. [BMB Reports 2015; 48(8): 445-453] PMID:25999177

  5. Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster

    SciTech Connect

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-04-16

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that have recently revolutionized human, mouse and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila using an STS-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that the genome. The majority of these markers are single nucleotide polymorphisms (SNPs) and sequences for these variants are provided in an accessible format. The average density of the new markers is 1 marker per 225 kb on the autosomes and 1 marker per 1 Mb on the X chromosome. We include in this survey a set of P-element strains that provide additional utility for high-resolution mapping. We demonstrate one application of the new markers in a simple set of crosses to map a mutation in the hedgehog gene to an interval of <1 Mb. This new map resource significantly increases the efficiency and resolution of recombination mapping and will be of immediate value to the Drosophila research community.

  6. MicroRNA targets in Drosophila

    PubMed Central

    Enright, Anton J; John, Bino; Gaul, Ulrike; Tuschl, Thomas; Sander, Chris; Marks, Debora S

    2004-01-01

    Background The recent discoveries of microRNA (miRNA) genes and characterization of the first few target genes regulated by miRNAs in Caenorhabditis elegans and Drosophila melanogaster have set the stage for elucidation of a novel network of regulatory control. We present a computational method for whole-genome prediction of miRNA target genes. The method is validated using known examples. For each miRNA, target genes are selected on the basis of three properties: sequence complementarity using a position-weighted local alignment algorithm, free energies of RNA-RNA duplexes, and conservation of target sites in related genomes. Application to the D. melanogaster, Drosophila pseudoobscura and Anopheles gambiae genomes identifies several hundred target genes potentially regulated by one or more known miRNAs. Results These potential targets are rich in genes that are expressed at specific developmental stages and that are involved in cell fate specification, morphogenesis and the coordination of developmental processes, as well as genes that are active in the mature nervous system. High-ranking target genes are enriched in transcription factors two-fold and include genes already known to be under translational regulation. Our results reaffirm the thesis that miRNAs have an important role in establishing the complex spatial and temporal patterns of gene activity necessary for the orderly progression of development and suggest additional roles in the function of the mature organism. In addition the results point the way to directed experiments to determine miRNA functions. Conclusions The emerging combinatorics of miRNA target sites in the 3' untranslated regions of messenger RNAs are reminiscent of transcriptional regulation in promoter regions of DNA, with both one-to-many and many-to-one relationships between regulator and target. Typically, more than one miRNA regulates one message, indicative of cooperative translational control. Conversely, one miRNA may have

  7. Genetic basis of the difference in alcohol dehydrogenase expression between Drosophila melanogaster and Drosophila simulans.

    PubMed Central

    Laurie, C C; Heath, E M; Jacobson, J W; Thomson, M S

    1990-01-01

    Drosophila melanogaster and its sibling species, Drosophila simulans, differ in expression of the enzyme alcohol dehydrogenase (ADH). Adult melanogaster flies that are homozygous for the Slow allozyme have approximately twice the level of ADH activity and crossreacting material as simulans adults. There is no corresponding difference in ADH mRNA, however, so this difference in ADH protein level is evidently due to a difference in the rate of translation of the two RNAs and/or to a difference in protein stability. Here we report an interspecific gene-transfer experiment, using P-element transformation, to determine whether this expression difference is due to genetic background differences between the species (trans-acting modifiers) or to cis-acting factors within the Adh gene. When the Adh genes from D. melanogaster and D. simulans are put into the same genetic background, there is no detectable difference in their level of expression. The level is relatively high in the melanogaster background and relatively low in the simulans background. Therefore, the interspecific difference in Adh expression is due entirely to trans-acting modifiers, in spite of the many sequence differences between the Adh genes of the two species, which include two amino acid substitutions. PMID:2124699

  8. Regulation of the Gene Sex-Lethal: A Comparative Analysis of Drosophila Melanogaster and Drosophila Subobscura

    PubMed Central

    Penalva, LOF.; Sakamoto, H.; Navarro-Sabate, A.; Sakashita, E.; Granadino, B.; Segarra, C.; Sanchez, L.

    1996-01-01

    The Drosophila gene Sex-lethal (Sxl) controls the processes of sex determination and dosage compensation. A Drosophila subobscura genomic fragment containing all the exons and the late and early promotors in the Sxl gene of D. melanogaster was isolated. Early Sxl expression in D. subobscura seems to be controlled at the transcriptional level, possibly by the X:A signal. In the region upstream of the early Sxl transcription initiation site are two conserved regions suggested to be involved in the early activation of Sxl. Late Sxl expression in D. subobscura produces four transcripts in adult females and males. In males, the transcripts have an additional exon which contains three translational stop codons so that a truncated, presumably nonfunctional Sxl protein is produced. The Sxl pre-mRNA of D. subobscura lacks the poly-U sequence presented at the polypirimidine tract of the 3' splice site of the male-specific exon present in D. melanogaster. Introns 2 and 3 contain the Sxl-binding poly-U stretches, whose localization in intron 2 varies but in intron 3 is conserved. The Sxl protein is fully conserved at the amino acid level in both species. PMID:8978052

  9. Spatiotemporal calcium signaling in a Drosophila melanogaster cell line stably expressing a Drosophila muscarinic acetylcholine receptor.

    PubMed

    Cordova, D; Delpech, V Raymond; Sattelle, D B; Rauh, J J

    2003-11-01

    A muscarinic acetylcholine receptor (mAChR), DM1, expressed in the nervous system of Drosophila melanogaster, has been stably expressed in a Drosophila S2 cell line (S2-DM1) and used to investigate spatiotemporal calcium changes following agonist activation. Carbamylcholine (CCh) and oxotremorine are potent agonists, whereas application of the vertebrate M1 mAChR agonist, McN-A-343, results in a weak response. Activation of S2-DM1 receptors using CCh resulted in an increase in intracellular calcium ([Ca(2+)](i)) that was biphasic. Two distinct calcium sources were found to contribute to calcium signaling: (1) internal stores that are sensitive to both thapsigargin and 2-aminoethoxydiphenyl borate and (2) capacitative calcium entry. Spatiotemporal imaging of individual S2-DM1 cells showed that the CCh-induced [Ca(2+)](i) transient resulted from a homogeneous calcium increase throughout the cell, indicative of calcium release from internal stores. In contrast, ionomycin induced the formation of a "calcium ring" at the cell periphery, consistent with external calcium influx. PMID:12827518

  10. Comparative population genomics of latitudinal variation in Drosophila simulans and Drosophila melanogaster.

    PubMed

    Machado, Heather E; Bergland, Alan O; O'Brien, Katherine R; Behrman, Emily L; Schmidt, Paul S; Petrov, Dmitri A

    2016-02-01

    Examples of clinal variation in phenotypes and genotypes across latitudinal transects have served as important models for understanding how spatially varying selection and demographic forces shape variation within species. Here, we examine the selective and demographic contributions to latitudinal variation through the largest comparative genomic study to date of Drosophila simulans and Drosophila melanogaster, with genomic sequence data from 382 individual fruit flies, collected across a spatial transect of 19 degrees latitude and at multiple time points over 2 years. Consistent with phenotypic studies, we find less clinal variation in D. simulans than D. melanogaster, particularly for the autosomes. Moreover, we find that clinally varying loci in D. simulans are less stable over multiple years than comparable clines in D. melanogaster. D. simulans shows a significantly weaker pattern of isolation by distance than D. melanogaster and we find evidence for a stronger contribution of migration to D. simulans population genetic structure. While population bottlenecks and migration can plausibly explain the differences in stability of clinal variation between the two species, we also observe a significant enrichment of shared clinal genes, suggesting that the selective forces associated with climate are acting on the same genes and phenotypes in D. simulans and D. melanogaster. PMID:26523848

  11. Intestinal stem cell response to injury: lessons from Drosophila.

    PubMed

    Jiang, Huaqi; Tian, Aiguo; Jiang, Jin

    2016-09-01

    Many adult tissues and organs are maintained by resident stem cells that are activated in response to injury but the mechanisms that regulate stem cell activity during regeneration are still poorly understood. An emerging system to study such problem is the Drosophila adult midgut. Recent studies have identified both intrinsic factors and extrinsic niche signals that control the proliferation, self-renewal, and lineage differentiation of Drosophila adult intestinal stem cells (ISCs). These findings set up the stage to interrogate how niche signals are regulated and how they are integrated with cell-intrinsic factors to control ISC activity during normal homeostasis and regeneration. Here we review the current understanding of the mechanisms that control ISC self-renewal, proliferation, and lineage differentiation in Drosophila adult midgut with a focus on the niche signaling network that governs ISC activity in response to injury. PMID:27137186

  12. Insights on TRP Channels from In Vivo Studies in Drosophila

    PubMed Central

    Minke, Baruch; Parnas, Moshe

    2007-01-01

    Transient receptor potential (TRP) channels mediate responses in a large variety of signaling mechanisms. Most studies on mammalian TRP channels rely on heterologous expression, but their relevance to in vivo tissues is not entirely clear. In contrast, Drosophila TRP and TRP-like (TRPL) channels allow direct analyses of in vivo function. In Drosophila photoreceptors, activation of TRP and TRPL is mediated via the phosphoinositide cascade, with both Ca2+ and diacylglycerol (DAG) essential for generating the light response. In tissue culture cells, TRPL channels are constitutively active, and lipid second messengers greatly facilitate this activity. Inhibition of phospholipase C (PLC) completely blocks lipid activation of TRPL, suggesting that lipid activation is mediated via PLC. In vivo studies in mutant Drosophila also reveal an acute requirement for lipid-producing enzyme, which may regulate PLC activity. Thus, PLC and its downstream second messengers, Ca2+ and DAG, constitute critical mediators of TRP/TRPL gating in vivo. PMID:16460287

  13. Mechanical analysis of Drosophila indirect flight and jump muscles

    PubMed Central

    Swank, Douglas M.

    2011-01-01

    The genetic advantages of Drosophila make it a very appealing choice for investigating muscle development, muscle physiology and muscle protein structure and function. To take full advantage of this model organism, it has been vital to develop isolated Drosophila muscle preparations that can be mechanically evaluated. We describe techniques to isolate, prepare and mechanically analyze skinned muscle fibers from two Drosophila muscle types, the indirect flight muscle and the jump muscle. The function of the indirect flight muscle is similar to vertebrate cardiac muscle, to generate power in an oscillatory manner. The indirect flight muscle is ideal for evaluating the influence of protein mutations on muscle and cross-bridge stiffness, oscillatory power, and deriving cross-bridge rate constants. Jump muscle physiology and structure are more similar to skeletal vertebrate muscle than indirect flight muscle, and it is ideal for measuring maximum shortening velocity, force-velocity characteristics and steady-state power generation. PMID:22079350

  14. Insulin/IGF signaling and its regulation in Drosophila.

    PubMed

    Nässel, Dick R; Liu, Yiting; Luo, Jiangnan

    2015-09-15

    Taking advantage of Drosophila as a genetically tractable experimental animal much progress has been made in our understanding of how the insulin/IGF signaling (IIS) pathway regulates development, growth, metabolism, stress responses and lifespan. The role of IIS in regulation of neuronal activity and behavior has also become apparent from experiments in Drosophila. This review briefly summarizes these functional roles of IIS, and also how the insulin producing cells (IPCs) are regulated in the fly. Furthermore, we discuss functional aspects of the spatio-temporal production of eight different insulin-like peptides (DILP1-8) that are thought to act on one known receptor (dInR) in Drosophila. PMID:25616197

  15. Early Olfactory Processing in Drosophila: Mechanisms and Principles

    PubMed Central

    Wilson, Rachel I.

    2014-01-01

    In the olfactory system of Drosophila melanogaster, it is relatively straightforward to make in vivo measurements of activity in neurons corresponding to targeted processing. This, together with the numerical simplicity of the Drosophila olfactory system, has produced rapid gains in our understanding of Drosophila olfaction. This review summarizes the neurophysiology of the first two layers of this system: the peripheral olfactory receptor neurons and their postsynaptic targets in the antennal lobe. We now understand in some detail the cellular and synaptic mechanisms that shape odor representations in these neurons. Together, these mechanisms imply that interesting neural adaptations to environmental statistics have occurred and place some fundamental constraints on early sensory processing that pose challenges for higher brain regions. These findings suggest some general principles with broad relevance to early sensory processing in other modalities. PMID:23841839

  16. Autophagy in Drosophila: From Historical Studies to Current Knowledge

    PubMed Central

    Mulakkal, Nitha C.; Nagy, Peter; Takats, Szabolcs; Tusco, Radu; Juhász, Gábor; Nezis, Ioannis P.

    2014-01-01

    The discovery of evolutionarily conserved Atg genes required for autophagy in yeast truly revolutionized this research field and made it possible to carry out functional studies on model organisms. Insects including Drosophila are classical and still popular models to study autophagy, starting from the 1960s. This review aims to summarize past achievements and our current knowledge about the role and regulation of autophagy in Drosophila, with an outlook to yeast and mammals. The basic mechanisms of autophagy in fruit fly cells appear to be quite similar to other eukaryotes, and the role that this lysosomal self-degradation process plays in Drosophila models of various diseases already made it possible to recognize certain aspects of human pathologies. Future studies in this complete animal hold great promise for the better understanding of such processes and may also help finding new research avenues for the treatment of disorders with misregulated autophagy. PMID:24949430

  17. Drosophila melanogaster: a fly through its history and current use.

    PubMed

    Stephenson, R; Metcalfe, N H

    2013-01-01

    Drosophila melanogaster, the common fruit fly, has been used as a model organism in both medical and scientific research for over a century. Work by Thomas Hunt Morgan (1866-1945) and his students at Columbia University at the beginning of the twentieth century led to great discoveries such as sex-linked inheritance and that ionising radiation causes mutations in genes. However, the use of Drosophila was not limited to genetic research. Experimentation with this model organism has also led to discoveries in neuroscience and neurodevelopment, including the basis of circadian rhythms. Its complex nervous system, conserved neurological function, and human disease-related loci allow Drosophila to be an ideal model organism for the study of neurodegenerative disease, for which it is used today, aiding research into diseases such as Alzheimer's and Parkinson's, which are becoming more prevalent in today's ageing population. PMID:23516695

  18. JAK/STAT pathway dysregulation in tumors: A Drosophila perspective

    PubMed Central

    Amoyel, Marc; Anderson, Abigail M.; Bach, Erika A.

    2014-01-01

    Sustained activation of the JAK/STAT pathway is causal to human cancers. This pathway is less complex in Drosophila, and its dysregulation has been linked to several tumor models in this organism. Here, we discuss models of metastatic epithelial and hematopoietic tumors that are causally linked to dysregulation of JAK/STAT signaling in Drosophila. First, we focus on cancer models in imaginal discs where ectopic expression of the JAK/STAT pathway ligand Unpaired downstream of distinct tumor suppressors has emerged as an unexpected mediator of neoplastic transformation. We also discuss the collaboration between STAT and oncogenic Ras in epithelial transformation. Second, we examine hematopoietic tumors, where mutations that cause hyperactive JAK/STAT signaling are necessary and sufficient for “fly leukemia”. We highlight the important contributions that genetic screens in Drosophila have made to understanding the JAK/STAT pathway, its developmental roles, and how its function is co-opted during tumorigenesis. PMID:24685611

  19. A kinetic analysis of Drosophila melanogaster dopa decarboxylase.

    PubMed

    Black, B C; Smarrelli, J

    1986-03-01

    The kinetic mechanism of dopa decarboxylase (3,4-dihydroxy-L-phenylalanine carboxy-lyase, EC 4.1.1.28) was investigated in Drosophila melanogaster. Based on initial velocity and product inhibition studies, an ordered reaction is proposed for dopa decarboxylase. This kinetic mechanism is interpreted in the context of measured enzyme activities and the catecholamine pools in Drosophila. The 1(2)amd gene is immediately adjacent to the gene coding for dopa decarboxylase (Ddc) and determines hypersensitivity to alpha-methyldopa in Drosophila. Dopa decarboxylase does not decarboxylate alpha-methyldopa and hence does not generate a toxic product capable of inhibiting 1(2)amd gene function. We propose that the 1(2)amd gene is involved with an unknown catecholamine pathway involving dopa but not dopamine. PMID:3081033

  20. Shared neurocircuitry underlying feeding and drugs of abuse in Drosophila.

    PubMed

    Landayan, Dan; Wolf, Fred W

    2015-12-01

    The neural circuitry and molecules that control the rewarding properties of food and drugs of abuse appear to partially overlap in the mammalian brain. This has raised questions about the extent of the overlap and the precise role of specific circuit elements in reward and in other behaviors associated with feeding regulation and drug responses. The much simpler brain of invertebrates including the fruit fly Drosophila, offers an opportunity to make high-resolution maps of the circuits and molecules that govern behavior. Recent progress in Drosophila has revealed not only some common substrates for the actions of drugs of abuse and for the regulation of feeding, but also a remarkable level of conservation with vertebrates for key neuromodulatory transmitters. We speculate that Drosophila may serve as a model for distinguishing the neural mechanisms underlying normal and pathological motivational states that will be applicable to mammals. PMID:27013449

  1. Drosophila as a model system to study autophagy

    PubMed Central

    Zirin, Jonathan; Perrimon, Norbert

    2013-01-01

    Originally identified as a response to starvation in yeast, autophagy is now understood to fulfill a variety of roles in higher eukaryotes, from the maintenance of cellular homeostasis to the cellular response to stress, starvation, and infection. Although genetics and biochemical studies in yeast have identified many components involved in autophagy, the findings that some of the essential components of the yeast pathway are missing in higher organisms underscore the need to study autophagy in more complex systems. This review focuses on the use of the fruitfly, Drosophila melanogaster as a model system for analysis of autophagy. Drosophila is an organism well-suited for genetic analysis and represents an intermediate between yeast and mammals with respect to conservation of the autophagy machinery. Furthermore, the complex biology and physiology of Drosophila presents an opportunity to model human diseases in a tissue specific and analogous context. PMID:20798940

  2. Identification of common excitatory motoneurons in Drosophila melanogaster larvae.

    PubMed

    Takizawa, Eiji; Komatsu, Akira; Tsujimura, Hidenobu

    2007-05-01

    In insects, four types of motoneurons have long been known, including fast motoneurons, slow motoneurons, common inhibitory motoneurons, and DUM neurons. They innervate the same muscle and control its contraction together. Recent studies in Drosophila have suggested the existence of another type of motoneuron, the common excitatory motoneuron. Here, we found that shakB-GAL4 produced by labels this type of motoneuron in Drosophila larvae. We found that Drosophila larvae have two common excitatory motoneurons in each abdominal segment, RP2 for dorsal muscles and MNSNb/d-Is for ventral muscles. They innervate most of the internal longitudinal or oblique muscles on the dorsal or ventral body wall with type-Is terminals and use glutamate as a transmitter. Electrophysiological recording indicated that stimulation of the RP2 axon evoked excitatory junctional potential in a dorsal muscle. PMID:17867850

  3. RNA editing in Drosophila melanogaster: new targets and functionalconsequences

    SciTech Connect

    Stapleton, Mark; Carlson, Joseph W.; Celniker, Susan E.

    2006-09-05

    Adenosine deaminases that act on RNA (ADARs) catalyze the site-specific conversion of adenosine to inosine in primary mRNA transcripts. These re-coding events affect coding potential, splice-sites, and stability of mature mRNAs. ADAR is an essential gene and studies in mouse, C. elegans, and Drosophila suggest its primary function is to modify adult behavior by altering signaling components in the nervous system. By comparing the sequence of isogenic cDNAs to genomic DNA, we have identified and experimentally verified 27 new targets of Drosophila ADAR. Our analyses lead us to identify new classes of genes whose transcripts are targets of ADAR including components of the actin cytoskeleton, and genes involved in ion homeostasis and signal transduction. Our results indicate that editing in Drosophila increases the diversity of the proteome, and does so in a manner that has direct functional consequences on protein function.

  4. An assay for social interaction in Drosophila fragile X mutants

    PubMed Central

    Bolduc, Francois V.; Valente, Dan; Nguyen, Antoinette T.; Mitra, Partha P.; Tully, Tim

    2010-01-01

    We developed a novel assay to examine social interactions in Drosophila and, as a first attempt, apply it here at examining the behavior of Drosophila Fragile X Mental Retardation gene (dfmr1) mutants. Fragile X syndrome is the most common cause of single gene intellectual disability (ID) and is frequently associated with autism. Our results suggest that dfmr1 mutants are less active than wild-type flies and interact with each other less often. In addition, mutants for one allele of dfmr1, dfmr1B55, are more likely to come in close contact with a wild-type fly than another dfmr1B55 mutant. Our results raise the possibility of defective social expression with preserved receptive abilities. We further suggest that the assay may be applied in a general strategy of examining endophenoypes of complex human neurological disorders in Drosophila, and specifically in order to understand the genetic basis of social interaction defects linked with ID. PMID:20519966

  5. Mechanical analysis of Drosophila indirect flight and jump muscles.

    PubMed

    Swank, Douglas M

    2012-01-01

    The genetic advantages of Drosophila make it a very appealing choice for investigating muscle development, muscle physiology and muscle protein structure and function. To take full advantage of this model organism, it has been vital to develop isolated Drosophila muscle preparations that can be mechanically evaluated. We describe techniques to isolate, prepare and mechanically analyze skinned muscle fibers from two Drosophila muscle types, the indirect flight muscle and the jump muscle. The function of the indirect flight muscle is similar to vertebrate cardiac muscle, to generate power in an oscillatory manner. The indirect flight muscle is ideal for evaluating the influence of protein mutations on muscle and cross-bridge stiffness, oscillatory power, and deriving cross-bridge rate constants. Jump muscle physiology and structure are more similar to skeletal vertebrate muscle than indirect flight muscle, and it is ideal for measuring maximum shortening velocity, force-velocity characteristics and steady-state power generation. PMID:22079350

  6. DNA topoisomerase I is essential in Drosophila melanogaster.

    PubMed Central

    Lee, M P; Brown, S D; Chen, A; Hsieh, T S

    1993-01-01

    Both biochemical and genetic experiments suggest that the type I DNA topoisomerase may participate in DNA replication, recombination, transcription, and other aspects of DNA metabolism. Despite its apparent importance, genetic studies in unicellular organisms including eubacteria and yeasts indicate that topoisomerase I is not essential for viability. We have previously isolated the cDNA clone encoding DNA topoisomerase I from Drosophila melanogaster. We report here the cytogenetic mapping of top1 to the X chromosome at 13C1 and isolation of top1 genomic DNA. Using P-element mutagenesis, we have isolated a mutant deficient in Drosophila topoisomerase I functions. Genetic studies of this mutant show that topoisomerase I is essential for the growth and development of the fruit fly, a multicellular organism. The biological functions of topoisomerase I are inferred from our analysis of the regulation of topoisomerase I expression during Drosophila development. Images Fig. 1 Fig. 3 PMID:8393572

  7. Statistical Analysis of Nondisjunction Assays in Drosophila

    PubMed Central

    Zeng, Yong; Li, Hua; Schweppe, Nicole M.; Hawley, R. Scott; Gilliland, William D.

    2010-01-01

    Many advances in the understanding of meiosis have been made by measuring how often errors in chromosome segregation occur. This process of nondisjunction can be studied by counting experimental progeny, but direct measurement of nondisjunction rates is complicated by not all classes of nondisjunctional progeny being viable. For X chromosome nondisjunction in Drosophila female meiosis, all of the normal progeny survive, while nondisjunctional eggs produce viable progeny only if fertilized by sperm that carry the appropriate sex chromosome. The rate of nondisjunction has traditionally been estimated by assuming a binomial process and doubling the number of observed nondisjunctional progeny, to account for the inviable classes. However, the correct way to derive statistics (such as confidence intervals or hypothesis testing) by this approach is far from clear. Instead, we use the multinomial-Poisson hierarchy model and demonstrate that the old estimator is in fact the maximum-likelihood estimator (MLE). Under more general assumptions, we derive asymptotic normality of this estimator and construct confidence interval and hypothesis testing formulae. Confidence intervals under this framework are always larger than under the binomial framework, and application to published data shows that use of the multinomial approach can avoid an apparent type 1 error made by use of the binomial assumption. The current study provides guidance for researchers designing genetic experiments on nondisjunction and improves several methods for the analysis of genetic data. PMID:20660647

  8. Farnesol-Detecting Olfactory Neurons in Drosophila

    PubMed Central

    Ronderos, David S.; Lin, Chun-Chieh; Potter, Christopher J.

    2014-01-01

    We set out to deorphanize a subset of putative Drosophila odorant receptors expressed in trichoid sensilla using a transgenic in vivo misexpression approach. We identified farnesol as a potent and specific activator for the orphan odorant receptor Or83c. Farnesol is an intermediate in juvenile hormone biosynthesis, but is also produced by ripe citrus fruit peels. Here, we show that farnesol stimulates robust activation of Or83c-expressing olfactory neurons, even at high dilutions. The CD36 homolog Snmp1 is required for normal farnesol response kinetics. The neurons expressing Or83c are found in a subset of poorly characterized intermediate sensilla. We show that these neurons mediate attraction behavior to low concentrations of farnesol and that Or83c receptor mutants are defective for this behavior. Or83c neurons innervate the DC3 glomerulus in the antennal lobe and projection neurons relaying information from this glomerulus to higher brain centers target a region of the lateral horn previously implicated in pheromone perception. Our findings identify a sensitive, narrowly tuned receptor that mediates attraction behavior to farnesol and demonstrates an effective approach to deorphanizing odorant receptors expressed in neurons located in intermediate and trichoid sensilla that may not function in the classical “empty basiconic neuron” system. PMID:24623773

  9. Tools for neuroanatomy and neurogenetics in Drosophila

    SciTech Connect

    Pfeiffer, Barret D.; Jenett, Arnim; Hammonds, Ann S.; Ngo, Teri-T B.; Misra, Sima; Murphy, Christine; Scully, Audra; Carlson, Joseph W.; Wan, Kenneth H.; Laverty, Todd R.; Mungall, Chris; Svirskas, Rob; Kadonaga, James T.; Doe, Chris Q.; Eisen, Michael B.; Celniker, Susan E.; Rubin, Gerald M.

    2008-08-11

    We demonstrate the feasibility of generating thousands of transgenic Drosophila melanogaster lines in which the expression of an exogenous gene is reproducibly directed to distinct small subsets of cells in the adult brain. We expect the expression patterns produced by the collection of 5,000 lines that we are currently generating to encompass all neurons in the brain in a variety of intersecting patterns. Overlapping 3-kb DNA fragments from the flanking noncoding and intronic regions of genes thought to have patterned expression in the adult brain were inserted into a defined genomic location by site-specific recombination. These fragments were then assayed for their ability to function as transcriptional enhancers in conjunction with a synthetic core promoter designed to work with a wide variety of enhancer types. An analysis of 44 fragments from four genes found that >80% drive expression patterns in the brain; the observed patterns were, on average, comprised of <100 cells. Our results suggest that the D. melanogaster genome contains >50,000 enhancers and that multiple enhancers drive distinct subsets of expression of a gene in each tissue and developmental stage. We expect that these lines will be valuable tools for neuroanatomy as well as for the elucidation of neuronal circuits and information flow in the fly brain.

  10. Caffeine Taste Signaling in Drosophila Larvae

    PubMed Central

    Apostolopoulou, Anthi A.; Köhn, Saskia; Stehle, Bernhard; Lutz, Michael; Wüst, Alexander; Mazija, Lorena; Rist, Anna; Galizia, C. Giovanni; Lüdke, Alja; Thum, Andreas S.

    2016-01-01

    The Drosophila larva has a simple peripheral nervous system with a comparably small number of sensory neurons located externally at the head or internally along the pharynx to assess its chemical environment. It is assumed that larval taste coding occurs mainly via external organs (the dorsal, terminal, and ventral organ). However, the contribution of the internal pharyngeal sensory organs has not been explored. Here we find that larvae require a single pharyngeal gustatory receptor neuron pair called D1, which is located in the dorsal pharyngeal sensilla, in order to avoid caffeine and to associate an odor with caffeine punishment. In contrast, caffeine-driven reduction in feeding in non-choice situations does not require D1. Hence, this work provides data on taste coding via different receptor neurons, depending on the behavioral context. Furthermore, we show that the larval pharyngeal system is involved in bitter tasting. Using ectopic expressions, we show that the caffeine receptor in neuron D1 requires the function of at least four receptor genes: the putative co-receptors Gr33a, Gr66a, the putative caffeine-specific receptor Gr93a, and yet unknown additional molecular component(s). This suggests that larval taste perception is more complex than previously assumed already at the sensory level. Taste information from different sensory organs located outside at the head or inside along the pharynx of the larva is assembled to trigger taste guided behaviors. PMID:27555807

  11. Conditions Affecting Social Space in Drosophila melanogaster.

    PubMed

    McNeil, Alison R; Jolley, Sam N; Akinleye, Adesanya A; Nurilov, Marat; Rouzyi, Zulekha; Milunovich, Austin J; Chambers, Moria C; Simon, Anne F

    2015-01-01

    The social space assay described here can be used to quantify social interactions of Drosophila melanogaster - or other small insects - in a straightforward manner. As we previously demonstrated (1), in a two-dimensional chamber, we first force the flies to form a tight group, subsequently allowing them to take their preferred distance from each other. After the flies have settled, we measure the distance to the closest neighbor (or social space), processing a static picture with free online software (ImageJ). The analysis of the distance to the closest neighbor allows researchers to determine the effects of genetic and environmental factors on social interaction, while controlling for potential confounding factors. Diverse factors such as climbing ability, time of day, sex, and number of flies, can modify social spacing of flies. We thus propose a series of experimental controls to mitigate these confounding effects. This assay can be used for at least two purposes. First, researchers can determine how their favorite environmental shift (such as isolation, temperature, stress or toxins) will impact social spacing (1,2). Second, researchers can dissect the genetic and neural underpinnings of this basic form of social behavior (1,3). Specifically, we used it as a diagnostic tool to study the role of orthologous genes thought to be involved in social behavior in other organisms, such as candidate genes for autism in humans (4). PMID:26575105

  12. Mechanosensory interactions drive collective behaviour in Drosophila.

    PubMed

    Ramdya, Pavan; Lichocki, Pawel; Cruchet, Steeve; Frisch, Lukas; Tse, Winnie; Floreano, Dario; Benton, Richard

    2015-03-12

    Collective behaviour enhances environmental sensing and decision-making in groups of animals. Experimental and theoretical investigations of schooling fish, flocking birds and human crowds have demonstrated that simple interactions between individuals can explain emergent group dynamics. These findings indicate the existence of neural circuits that support distributed behaviours, but the molecular and cellular identities of relevant sensory pathways are unknown. Here we show that Drosophila melanogaster exhibits collective responses to an aversive odour: individual flies weakly avoid the stimulus, but groups show enhanced escape reactions. Using high-resolution behavioural tracking, computational simulations, genetic perturbations, neural silencing and optogenetic activation we demonstrate that this collective odour avoidance arises from cascades of appendage touch interactions between pairs of flies. Inter-fly touch sensing and collective behaviour require the activity of distal leg mechanosensory sensilla neurons and the mechanosensory channel NOMPC. Remarkably, through these inter-fly encounters, wild-type flies can elicit avoidance behaviour in mutant animals that cannot sense the odour--a basic form of communication. Our data highlight the unexpected importance of social context in the sensory responses of a solitary species and open the door to a neural-circuit-level understanding of collective behaviour in animal groups. PMID:25533959

  13. Drosophila sperm motility in the reproductive tract.

    PubMed

    Yang, Yong; Lu, Xiangyi

    2011-05-01

    Motile cilia and flagella exhibit many waveforms as outputs of dynein activation sequences on the highly conserved axoneme. Motility change of sperm in the reproductive tract is difficult to study and remains an important area of investigation. Sperm typically execute a sinusoidal waveform. Increased viscosity in the medium induces somewhat unusual arc-line and helical waveforms in some sperm. However, whether the latter two waveforms occur in vivo is not known. Using green fluorescence protein imaging, we show that Drosophila sperm in the uterus move in circular foci via arc-line waves, predominantly in a tail-leading orientation. From the uterus, a small fraction of the sperm enters the seminal receptacle (SR) in parallel formations. After sperm storage and coincident with fertilization of the egg, the sperm exit the SR via head-leading helical waves. Consistent with the observed bidirectional movements, the sperm show the ability to propagate both base-to-tip and tip-to-base flagellar waves. Numerous studies have shown that sperm motility is regulated by intraflagellar calcium concentrations; in particular, the Pkd2 calcium channel has been shown to affect sperm storage. Our analyses here suggest that Pkd2 is required for the sperm to adopt the correct waveform and movement orientation during SR entry. A working model for the sperm's SR entry movement is proposed. PMID:21293028

  14. Quantitative neuroanatomy for connectomics in Drosophila

    PubMed Central

    Schneider-Mizell, Casey M; Gerhard, Stephan; Longair, Mark; Kazimiers, Tom; Li, Feng; Zwart, Maarten F; Champion, Andrew; Midgley, Frank M; Fetter, Richard D; Saalfeld, Stephan; Cardona, Albert

    2016-01-01

    Neuronal circuit mapping using electron microscopy demands laborious proofreading or reconciliation of multiple independent reconstructions. Here, we describe new methods to apply quantitative arbor and network context to iteratively proofread and reconstruct circuits and create anatomically enriched wiring diagrams. We measured the morphological underpinnings of connectivity in new and existing reconstructions of Drosophila sensorimotor (larva) and visual (adult) systems. Synaptic inputs were preferentially located on numerous small, microtubule-free 'twigs' which branch off a single microtubule-containing 'backbone'. Omission of individual twigs accounted for 96% of errors. However, the synapses of highly connected neurons were distributed across multiple twigs. Thus, the robustness of a strong connection to detailed twig anatomy was associated with robustness to reconstruction error. By comparing iterative reconstruction to the consensus of multiple reconstructions, we show that our method overcomes the need for redundant effort through the discovery and application of relationships between cellular neuroanatomy and synaptic connectivity. DOI: http://dx.doi.org/10.7554/eLife.12059.001 PMID:26990779

  15. Sleep restores behavioral plasticity to Drosophila mutants

    PubMed Central

    Dissel, Stephane; Angadi, Veena; Kirszenblat, Leonie; Suzuki, Yasuko; Donlea, Jeff; Klose, Markus; Koch, Zachary; English, Denis; Winsky-Sommerer, Raphaelle; van Swinderen, Bruno; Shaw, Paul J.

    2015-01-01

    SUMMARY Given the role that sleep plays in modulating plasticity, we hypothesized that increasing sleep would restore memory to canonical memory mutants without specifically rescuing the causal molecular-lesion. Sleep was increased using three independent strategies: activating the dorsal Fan Shaped Body (FB), increasing the expression of Fatty acid binding protein (dFabp) or by administering the GABA-A agonist 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol (THIP). Short-term memory (STM) or Long-term memory (LTM) was evaluated in rutabaga (rut) and dunce (dnc) mutants using Aversive Phototaxic Suppression (APS) and courtship conditioning. Each of the three independent strategies increased sleep and restored memory to rut and dnc mutants. Importantly, inducing sleep also reverses memory defects in a Drosophila model of Alzheimer’s disease. Together these data demonstrate that sleep plays a more fundamental role in modulating behavioral plasticity than previously appreciated and suggests that increasing sleep may benefit patients with certain neurological disorders. PMID:25913403

  16. Functional neuroanatomy of Drosophila olfactory memory formation

    PubMed Central

    Guven-Ozkan, Tugba

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry extending from the site(s) of acquisition to the site(s) controlling memory expression? (3) How is information processed across this circuit to consolidate early-forming, disruptable memories to stable, late memories? Much progress has been made and a few strong conclusions have emerged: (1) Acquisition occurs at multiple sites within the olfactory nervous system but is mediated predominantly by the γ mushroom body neurons. (2) The expression of long-term memory is completely dependent on the synaptic output of α/β mushroom body neurons. (3) Consolidation occurs, in part, through circuit interactions between mushroom body and dorsal paired medial neurons. Despite this progress, a complete and unified model that details the pathway from acquisition to memory expression remains elusive. PMID:25225297

  17. Functional neuroanatomy of Drosophila olfactory memory formation.

    PubMed

    Guven-Ozkan, Tugba; Davis, Ronald L

    2014-10-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry extending from the site(s) of acquisition to the site(s) controlling memory expression? (3) How is information processed across this circuit to consolidate early-forming, disruptable memories to stable, late memories? Much progress has been made and a few strong conclusions have emerged: (1) Acquisition occurs at multiple sites within the olfactory nervous system but is mediated predominantly by the γ mushroom body neurons. (2) The expression of long-term memory is completely dependent on the synaptic output of α/β mushroom body neurons. (3) Consolidation occurs, in part, through circuit interactions between mushroom body and dorsal paired medial neurons. Despite this progress, a complete and unified model that details the pathway from acquisition to memory expression remains elusive. PMID:25225297

  18. Chromosome speciation: Humans, Drosophila, and mosquitoes

    PubMed Central

    Ayala, Francisco J.; Coluzzi, Mario

    2005-01-01

    Chromosome rearrangements (such as inversions, fusions, and fissions) may play significant roles in the speciation between parapatric (contiguous) or partly sympatric (geographically overlapping) populations. According to the “hybrid-dysfunction” model, speciation occurs because hybrids with heterozygous chromosome rearrangements produce dysfunctional gametes and thus have low reproductive fitness. Natural selection will, therefore, promote mutations that reduce the probability of intercrossing between populations carrying different rearrangements and thus promote their reproductive isolation. This model encounters a disabling difficulty: namely, how to account for the spread in a population of a chromosome rearrangement after it first arises as a mutation in a single individual. The “suppressed-recombination” model of speciation points out that chromosome rearrangements act as a genetic filter between populations. Mutations associated with the rearranged chromosomes cannot flow from one to another population, whereas genetic exchange will freely occur between colinear chromosomes. Mutations adaptive to local conditions will, therefore, accumulate differentially in the protected chromosome regions so that parapatric or partially sympatric populations will genetically differentiate, eventually evolving into different species. The speciation model of suppressed recombination has recently been tested by gene and DNA sequence comparisons between humans and chimpanzees, between Drosophila species, and between species related to Anopheles gambiae, the vector of malignant malaria in Africa. PMID:15851677

  19. Caffeine Taste Signaling in Drosophila Larvae.

    PubMed

    Apostolopoulou, Anthi A; Köhn, Saskia; Stehle, Bernhard; Lutz, Michael; Wüst, Alexander; Mazija, Lorena; Rist, Anna; Galizia, C Giovanni; Lüdke, Alja; Thum, Andreas S

    2016-01-01

    The Drosophila larva has a simple peripheral nervous system with a comparably small number of sensory neurons located externally at the head or internally along the pharynx to assess its chemical environment. It is assumed that larval taste coding occurs mainly via external organs (the dorsal, terminal, and ventral organ). However, the contribution of the internal pharyngeal sensory organs has not been explored. Here we find that larvae require a single pharyngeal gustatory receptor neuron pair called D1, which is located in the dorsal pharyngeal sensilla, in order to avoid caffeine and to associate an odor with caffeine punishment. In contrast, caffeine-driven reduction in feeding in non-choice situations does not require D1. Hence, this work provides data on taste coding via different receptor neurons, depending on the behavioral context. Furthermore, we show that the larval pharyngeal system is involved in bitter tasting. Using ectopic expressions, we show that the caffeine receptor in neuron D1 requires the function of at least four receptor genes: the putative co-receptors Gr33a, Gr66a, the putative caffeine-specific receptor Gr93a, and yet unknown additional molecular component(s). This suggests that larval taste perception is more complex than previously assumed already at the sensory level. Taste information from different sensory organs located outside at the head or inside along the pharynx of the larva is assembled to trigger taste guided behaviors. PMID:27555807

  20. Structure of full-length Drosophila cryptochrome

    SciTech Connect

    Zoltowski, Brian D.; Vaidya, Anand T.; Top, Deniz; Widom, Joanne; Young, Michael W.; Crane, Brian R.

    2011-12-15

    The cryptochrome/photolyase (CRY/PL) family of photoreceptors mediates adaptive responses to ultraviolet and blue light exposure in all kingdoms of life. Whereas PLs function predominantly in DNA repair of cyclobutane pyrimidine dimers (CPDs) and 6-4 photolesions caused by ultraviolet radiation, CRYs transduce signals important for growth, development, magnetosensitivity and circadian clocks. Despite these diverse functions, PLs/CRYs preserve a common structural fold, a dependence on flavin adenine dinucleotide (FAD) and an internal photoactivation mechanism. However, members of the CRY/PL family differ in the substrates recognized (protein or DNA), photochemical reactions catalysed and involvement of an antenna cofactor. It is largely unknown how the animal CRYs that regulate circadian rhythms act on their substrates. CRYs contain a variable carboxy-terminal tail that appends the conserved PL homology domain (PHD) and is important for function. Here, we report a 2.3-{angstrom} resolution crystal structure of Drosophila CRY with an intact C terminus. The C-terminal helix docks in the analogous groove that binds DNA substrates in PLs. Conserved Trp536 juts into the CRY catalytic centre to mimic PL recognition of DNA photolesions. The FAD anionic semiquinone found in the crystals assumes a conformation to facilitate restructuring of the tail helix. These results help reconcile the diverse functions of the CRY/PL family by demonstrating how conserved protein architecture and photochemistry can be elaborated into a range of light-driven functions.

  1. Collective synchronization of divisions in Drosophila development

    NASA Astrophysics Data System (ADS)

    Vergassola, Massimo

    Mitoses in the early development of most metazoans are rapid and synchronized across the entire embryo. While diffusion is too slow, in vitro experiments have shown that waves of the cell-cycle regulator Cdk1 can transfer information rapidly across hundreds of microns. However, the signaling dynamics and the physical properties of chemical waves during embryonic development remain unclear. We develop FRET biosensors for the activity of Cdk1 and the checkpoint kinase Chk1 in Drosophila embryos and exploit them to measure waves in vivo. We demonstrate that Cdk1 chemical waves control mitotic waves and that their speed is regulated by the activity of Cdk1 during the S-phase (and not mitosis). We quantify the progressive slowdown of the waves with developmental cycles and identify its underlying control mechanism by the DNA replication checkpoint through the Chk1/Wee1 pathway. The global dynamics of the mitotic signaling network illustrates a novel control principle: the S-phase activity of Cdk1 regulates the speed of the mitotic wave, while the Cdk1 positive feedback ensures an invariantly rapid onset of mitosis. Mathematical modeling captures the speed of the waves and predicts a fundamental distinction between the S-phase Cdk1 trigger waves and the mitotic phase waves, which is illustrated by embryonic ablation experiments. In collaboration with Victoria Deneke1, Anna Melbinger2, and Stefano Di Talia1 1 Department of Cell Biology, Duke University Medical Center 2 Department of Physics, University of California San Diego.

  2. A Model of Drosophila Larva Chemotaxis

    PubMed Central

    Davies, Alex; Louis, Matthieu; Webb, Barbara

    2015-01-01

    Detailed observations of larval Drosophila chemotaxis have characterised the relationship between the odour gradient and the runs, head casts and turns made by the animal. We use a computational model to test whether hypothesised sensorimotor control mechanisms are sufficient to account for larval behaviour. The model combines three mechanisms based on simple transformations of the recent history of odour intensity at the head location. The first is an increased probability of terminating runs in response to gradually decreasing concentration, the second an increased probability of terminating head casts in response to rapidly increasing concentration, and the third a biasing of run directions up concentration gradients through modulation of small head casts. We show that this model can be tuned to produce behavioural statistics comparable to those reported for the larva, and that this tuning results in similar chemotaxis performance to the larva. We demonstrate that each mechanism can enable odour approach but the combination of mechanisms is most effective, and investigate how these low-level control mechanisms relate to behavioural measures such as the preference indices used to investigate larval learning behaviour in group assays. PMID:26600460

  3. Study of dosage compensation in Drosophila.

    PubMed Central

    Chiang, Pei-Wen; Kurnit, David M

    2003-01-01

    Using a sensitive RT-QPCR assay, we analyzed the regulatory effects of sex and different dosage compensation mutations in Drosophila. To validate the assay, we showed that regulation for several genes indeed varied with the number of functional copies of that gene. We then confirmed that dosage compensation occurred for most genes we examined in male and female flies. Finally, we examined the effects on regulation of several genes in the MSL pathway, presumed to be involved in sex-dependent determination of regulation. Rather than seeing global alterations of either X chromosomal or autosomal genes, regulation of genes on either the X chromosome or the autosomes could be elevated, depressed, or unaltered between sexes in unpredictable ways for the various MSL mutations. Relative dosage for a given gene between the sexes could vary at different developmental times. Autosomal genes often showed deranged regulatory levels, indicating they were in pathways perturbed by X chromosomal changes. As exemplified by the BR-C locus and its dependent Sgs genes, multiple genes in a given pathway could exhibit coordinate regulatory modulation. The variegated pattern shown for expression of both X chromosomal and autosomal loci underscores the complexity of gene expression so that the phenotype of MSL mutations does not reflect only simple perturbations of genes on the X chromosome. PMID:14668373

  4. Transgenerational memory effect of ageing in Drosophila.

    PubMed

    Burns, James G; Mery, Frederic

    2010-04-01

    Children born to older parents tend to have lower intelligence and are at higher risk for disorders such as schizophrenia and autism. Such observations of ageing damage being passed on from parents to offspring are not often considered within the evolutionary theory of ageing. Here, we show the 25% memory impairment in Drosophila melanogaster offspring solely dependent on the age of the parents and also passed on to the F2 generation. Furthermore, this parental age effect was not attributed to a generalized reduction in condition of the offspring but was specific to short-term memory. We also provide evidence implicating oxidative stress as a causal factor by showing that lines selected for resistance to oxidative stress did not display a memory impairment in offspring of old parents. The identification of the parental age-related memory impairment in a model system should stimulate integration between mechanistic studies of age-related mortality risk and functional studies of parental age effects on the fitness of future generations. PMID:20149023

  5. Ferritin Assembly in Enterocytes of Drosophila melanogaster.

    PubMed

    Rosas-Arellano, Abraham; Vásquez-Procopio, Johana; Gambis, Alexis; Blowes, Liisa M; Steller, Hermann; Mollereau, Bertrand; Missirlis, Fanis

    2016-01-01

    Ferritins are protein nanocages that accumulate inside their cavity thousands of oxidized iron atoms bound to oxygen and phosphates. Both characteristic types of eukaryotic ferritin subunits are present in secreted ferritins from insects, but here dimers between Ferritin 1 Heavy Chain Homolog (Fer1HCH) and Ferritin 2 Light Chain Homolog (Fer2LCH) are further stabilized by disulfide-bridge in the 24-subunit complex. We addressed ferritin assembly and iron loading in vivo using novel transgenic strains of Drosophila melanogaster. We concentrated on the intestine, where the ferritin induction process can be controlled experimentally by dietary iron manipulation. We showed that the expression pattern of Fer2LCH-Gal4 lines recapitulated iron-dependent endogenous expression of the ferritin subunits and used these lines to drive expression from UAS-mCherry-Fer2LCH transgenes. We found that the Gal4-mediated induction of mCherry-Fer2LCH subunits was too slow to effectively introduce them into newly formed ferritin complexes. Endogenous Fer2LCH and Fer1HCH assembled and stored excess dietary iron, instead. In contrast, when flies were genetically manipulated to co-express Fer2LCH and mCherry-Fer2LCH simultaneously, both subunits were incorporated with Fer1HCH in iron-loaded ferritin complexes. Our study provides fresh evidence that, in insects, ferritin assembly and iron loading in vivo are tightly regulated. PMID:26861293

  6. Ferritin Assembly in Enterocytes of Drosophila melanogaster

    PubMed Central

    Rosas-Arellano, Abraham; Vásquez-Procopio, Johana; Gambis, Alexis; Blowes, Liisa M.; Steller, Hermann; Mollereau, Bertrand; Missirlis, Fanis

    2016-01-01

    Ferritins are protein nanocages that accumulate inside their cavity thousands of oxidized iron atoms bound to oxygen and phosphates. Both characteristic types of eukaryotic ferritin subunits are present in secreted ferritins from insects, but here dimers between Ferritin 1 Heavy Chain Homolog (Fer1HCH) and Ferritin 2 Light Chain Homolog (Fer2LCH) are further stabilized by disulfide-bridge in the 24-subunit complex. We addressed ferritin assembly and iron loading in vivo using novel transgenic strains of Drosophila melanogaster. We concentrated on the intestine, where the ferritin induction process can be controlled experimentally by dietary iron manipulation. We showed that the expression pattern of Fer2LCH-Gal4 lines recapitulated iron-dependent endogenous expression of the ferritin subunits and used these lines to drive expression from UAS-mCherry-Fer2LCH transgenes. We found that the Gal4-mediated induction of mCherry-Fer2LCH subunits was too slow to effectively introduce them into newly formed ferritin complexes. Endogenous Fer2LCH and Fer1HCH assembled and stored excess dietary iron, instead. In contrast, when flies were genetically manipulated to co-express Fer2LCH and mCherry-Fer2LCH simultaneously, both subunits were incorporated with Fer1HCH in iron-loaded ferritin complexes. Our study provides fresh evidence that, in insects, ferritin assembly and iron loading in vivo are tightly regulated. PMID:26861293

  7. Neuronal control of locomotor handedness in Drosophila

    PubMed Central

    Buchanan, Sean M.; Kain, Jamey S.; de Bivort, Benjamin L.

    2015-01-01

    Genetically identical individuals display variability in their physiology, morphology, and behaviors, even when reared in essentially identical environments, but there is little mechanistic understanding of the basis of such variation. Here, we investigated whether Drosophila melanogaster displays individual-to-individual variation in locomotor behaviors. We developed a new high-throughout platform capable of measuring the exploratory behavior of hundreds of individual flies simultaneously. With this approach, we find that, during exploratory walking, individual flies exhibit significant bias in their left vs. right locomotor choices, with some flies being strongly left biased or right biased. This idiosyncrasy was present in all genotypes examined, including wild-derived populations and inbred isogenic laboratory strains. The biases of individual flies persist for their lifetime and are nonheritable: i.e., mating two left-biased individuals does not yield left-biased progeny. This locomotor handedness is uncorrelated with other asymmetries, such as the handedness of gut twisting, leg-length asymmetry, and wing-folding preference. Using transgenics and mutants, we find that the magnitude of locomotor handedness is under the control of columnar neurons within the central complex, a brain region implicated in motor planning and execution. When these neurons are silenced, exploratory laterality increases, with more extreme leftiness and rightiness. This observation intriguingly implies that the brain may be able to dynamically regulate behavioral individuality. PMID:25953337

  8. Accelerated food source location in aging Drosophila.

    PubMed

    Egenriether, Sada M; Chow, Eileen S; Krauth, Nathalie; Giebultowicz, Jadwiga M

    2015-10-01

    Adequate energy stores are essential for survival, and sophisticated neuroendocrine mechanisms evolved to stimulate foraging in response to nutrient deprivation. Food search behavior is usually investigated in young animals, and it is not known how aging alters this behavior. To address this question in Drosophila melanogaster, we compared the ability to locate food by olfaction in young and old flies using a food-filled trap. As aging is associated with a decline in motor functions, learning, and memory, we expected that aged flies would take longer to enter the food trap than their young counterparts. Surprisingly, old flies located food with significantly shorter latency than young ones. Robust food search behavior was associated with significantly lower fat reserves and lower starvation resistance in old flies. Food-finding latency (FFL) was shortened in young wild-type flies that were starved until their fat was depleted but also in heterozygous chico mutants with reduced insulin receptor activity and higher fat deposits. Conversely, food trap entry was delayed in old flies with increased insulin signaling. Our results suggest that the difference in FFL between young and old flies is linked to age-dependent differences in metabolic status and may be mediated by reduced insulin signaling. PMID:26102220

  9. Effects of Spaceflight on Drosophila Neural Development

    NASA Technical Reports Server (NTRS)

    Keshishian, Haig S.

    1997-01-01

    The major goal from the animal side, however, has been achieved, namely to develop Drosophila lines where we can assay individual neuromuscular endings directly without dissection. This was achieved by means of using the GAL4-UAS system, where we have succeeded in establishing stocks of flies where the key neuromuscular connections can be assayed directly in undissected larvae by means of the expression of endogenously fluorescent reporters in the specific motor endings. The green fluorescent protein (GFP) as a reporter allows scoring of neural anatomy en-masse in whole mount using fluorescent microscopy without the need for either dissection or specific labeling. Two stocks have been developed. The first, which we developed first, uses the S65T mutant form, which has a dramatically brighter expression than the native protein. This animal will use GAL4 drivers with expression under the control of the elav gene, and which will ensure expression in all neurons of the embryo and larva. The second transgenic animal we have developed is of a novel kind, and makes use of dicistronic design, so that two copies of the protein will be expressed per insert. We have also developed a tricistronic form, but this has not yet been transformed into flies, and we do not imagine that this third line will be ready in time for the flight.

  10. Population transcriptomics of Drosophila melanogaster females

    PubMed Central

    2011-01-01

    Background Variation at the level of gene expression is abundant in natural populations and is thought to contribute to the adaptive divergence of populations and species. Gene expression also differs considerably between males and females. Here we report a microarray analysis of gene expression variation among females of 16 Drosophila melanogaster strains derived from natural populations, including eight strains from the putative ancestral range in sub-Saharan Africa and eight strains from Europe. Gene expression variation among males of the same strains was reported previously. Results We detected relatively low levels of expression polymorphism within populations, but much higher expression divergence between populations. A total of 569 genes showed a significant expression difference between the African and European populations at a false discovery rate of 5%. Genes with significant over-expression in Europe included the insecticide resistance gene Cyp6g1, as well as genes involved in proteolysis and olfaction. Genes with functions in carbohydrate metabolism and vision were significantly over-expressed in the African population. There was little overlap between genes expressed differently between populations in females and males. Conclusions Our results suggest that adaptive changes in gene expression have accompanied the out-of-Africa migration of D. melanogaster. Comparison of female and male expression data indicates that the vast majority of genes differing in expression between populations do so in only one sex and suggests that most regulatory adaptation has been sex-specific. PMID:21276238

  11. Patterns of Hermes transposition in Drosophila melanogaster.

    PubMed

    Guimond, N; Bideshi, D K; Pinkerton, A C; Atkinson, P W; O'Brochta, D A

    2003-03-01

    Transposable elements are being developed as tools for genomics and for the manipulation of insect genotypes for the purposes of biological control. An understanding of their transposition behavior will facilitate the use of these elements. The behavior of an autonomous Hermes transposable element from Musca domestica in the soma and germ-line of Drosophila melanogaster was investigated using the method of transposon display. In the germ-line, Hermes transposed at a rate of approximately 0.03 jumps per element per generation. Within the soma Hermes exhibited markedly non-random patterns of integration. Certain regions of the genome were distinctly preferred over others as integration targets, while other regions were underrepresented among the integration sites used. One particular site accounted for 4.4% of the transpositions recovered in this experiment, all of which were located within a 2.5-kb region of the actin5C promoter. This region was also present within the Hermes element itself, suggesting that this clustering is an example of transposable element "homing". Clusters of integration sites were also observed near the original donor sites; these represent examples of local hopping. The information content (sequence specificity) of the 8-bp target site was low, and the consensus target site resembles that determined from plasmid-based integration assays. PMID:12655404

  12. Dynamic properties of Drosophila olfactory electroantennograms.

    PubMed

    Schuckel, Julia; Meisner, Shannon; Torkkeli, Päivi H; French, Andrew S

    2008-05-01

    Time-dependent properties of chemical signals are probably crucially important to many animals, but little is known about the dynamics of chemoreceptors. Behavioral evidence of dynamic sensitivity includes the control of moth flight by pheromone plume structure, and the ability of some blood-sucking insects to detect varying concentrations of carbon dioxide, possibly matched to host breathing rates. Measurement of chemoreceptor dynamics has been limited by the technical challenge of producing controlled, accurate modulation of olfactory and gustatory chemical concentrations over suitably wide ranges of amplitude and frequency. We used a new servo-controlled laminar flow system, combined with photoionization detection of surrogate tracer gas, to characterize electroantennograms (EAG) of Drosophila antennae during stimulation with fruit odorants or aggregation pheromone in air. Frequency response functions and coherence functions measured over a bandwidth of 0-100 Hz were well characterized by first-order low-pass linear filter functions. Filter time constant varied over almost a tenfold range, and was characteristic for each odorant, indicating that several dynamically different chemotransduction mechanisms are present. Pheromone response was delayed relative to fruit odors. Amplitude of response, and consequently signal-to-noise ratio, also varied consistently with different compounds. Accurate dynamic characterization promises to provide important new information about chemotransduction and odorant-stimulated behavior. PMID:18320197

  13. Spindle Dynamics during Meiosis in Drosophila Oocytes

    PubMed Central

    Endow, Sharyn A.; Komma, Donald J.

    1997-01-01

    Mature oocytes of Drosophila are arrested in metaphase of meiosis I. Upon activation by ovulation or fertilization, oocytes undergo a series of rapid changes that have not been directly visualized previously. We report here the use of the Nonclaret disjunctional (Ncd) microtubule motor protein fused to the green fluorescent protein (GFP) to monitor changes in the meiotic spindle of live oocytes after activation in vitro. Meiotic spindles of metaphase-arrested oocytes are relatively stable, however, meiotic spindles of in vitro–activated oocytes are highly dynamic: the spindles elongate, rotate around their long axis, and undergo an acute pivoting movement to reorient perpendicular to the oocyte surface. Many oocytes spontaneously complete the meiotic divisions, permitting visualization of progression from meiosis I to II. The movements of the spindle after oocyte activation provide new information about the dynamic changes in the spindle that occur upon re-entry into meiosis and completion of the meiotic divisions. Spindles in live oocytes mutant for a lossof-function ncd allele fused to gfp were also imaged. The genesis of spindle defects in the live mutant oocytes provides new insights into the mechanism of Ncd function in the spindle during the meiotic divisions. PMID:9182665

  14. Drosophila melanogaster metallothionein genes: Selection for duplications

    SciTech Connect

    Lange, B.W.

    1989-01-01

    The metallothionein genes of Drosophila melanogaster, Mtn and Mto, may play an important role in heavy-metal detoxification. In order to investigate the possibility of increased selection for duplications of these genes in natural populations exposed to high levels of heavy metals, I compared the frequencies of such duplications among flies collected from metal-contaminated and non-contaminated orchards in Pennsylvania, Tennessee, and Georgia. Contaminated of collection sites and of local flies was confirmed by atomic absorption spectrosphotometry. Six-nucleotide-recognizing restriction enzyme analysis was used to screen 1666 wild third chromosomes for Mtn duplications. A subset (327) of these lines was screened for Mto duplications: none were found. Cadmium tolerance test performed on F{sub 2} progeny of wild females failed to detect a difference in tolerance levels between flies from contaminated orchards and flies from control orchards. Estimates of sequence diversity among a subsample (92) of the chromosomes used in the duplication survey, including all 27 Mtn duplication chromosomes, were obtained using four-nucleotide-recognizing restriction enzyme analysis.

  15. Parallel geographic variation in Drosophila melanogaster.

    PubMed

    Reinhardt, Josie A; Kolaczkowski, Bryan; Jones, Corbin D; Begun, David J; Kern, Andrew D

    2014-05-01

    Drosophila melanogaster, an ancestrally African species, has recently spread throughout the world, associated with human activity. The species has served as the focus of many studies investigating local adaptation relating to latitudinal variation in non-African populations, especially those from the United States and Australia. These studies have documented the existence of shared, genetically determined phenotypic clines for several life history and morphological traits. However, there are no studies designed to formally address the degree of shared latitudinal differentiation at the genomic level. Here we present our comparative analysis of such differentiation. Not surprisingly, we find evidence of substantial, shared selection responses on the two continents, probably resulting from selection on standing ancestral variation. The polymorphic inversion In(3R)P has an important effect on this pattern, but considerable parallelism is also observed across the genome in regions not associated with inversion polymorphism. Interestingly, parallel latitudinal differentiation is observed even for variants that are not particularly strongly differentiated, which suggests that very large numbers of polymorphisms are targets of spatially varying selection in this species. PMID:24610860

  16. Drosophila melanogaster locomotion in cold thin air.

    PubMed

    Dillon, Michael E; Frazier, Melanie R

    2006-01-01

    The alpine environment is likely to challenge insect locomotion because of low mean temperatures and reduced barometric pressure. In this study, we measured the direct and interactive effects of these factors on walking and flight performance of wild-caught Drosophila melanogaster Meigen. We found that decreased temperature and decreased air pressure both reduced walking speed and flight performance. Flies walked more slowly at 18 degrees C and in the lowest air pressure treatment (34 kPa). This treatment, equivalent in air pressure to the top of Mount Everest, was the only air pressure that significantly reduced fly walking speed. Therefore, walking performance in the wild is likely limited by temperature, but not oxygen availability. In contrast to walking performance, low but ecologically realistic air pressures dramatically reduced overall flight performance. The effects of reduced air pressure on flight performance were more pronounced at colder temperatures. Reduced flight performance in high altitude conditions was primarily driven by an increased reluctance for flies to initiate flight rather than outright failure to fly. Such reluctance to fly in high altitude conditions may in part explain the prevalence of aptery and brachyptery in high altitude insects. The observed interactive effects of temperature and air pressure on flight performance confirm the importance of simultaneously manipulating both of these factors when studying the impact of altitudinal conditions on insect physiology and behavior. PMID:16391358

  17. Burkholderia thailandensis Is Virulent in Drosophila melanogaster

    PubMed Central

    Pilátová, Martina; Dionne, Marc S.

    2012-01-01

    Melioidosis is a serious infectious disease endemic to Southeast Asia and Northern Australia. This disease is caused by the Gram-negative bacterium Burkholderia pseudomallei; Burkholderia thailandensis is a closely-related organism known to be avirulent in humans. B. thailandensis has not previously been used to infect Drosophila melanogaster. We examined the effect of B. thailandensis infection on fly survival, on antimicrobial peptide expression, and on phagocytic cells. In the fruit fly, which possesses only an innate immune system, B. thailandensis is highly virulent, causing rapid death when injected or fed. One intriguing aspect of this infection is its temperature dependence: infected flies maintained at 25°C exhibit rapid bacterial proliferation and death in a few days, while infected animals maintained at 18°C exhibit very slow bacterial proliferation and take weeks to die; this effect is due in part to differences in immune activity of the host. Death in this infection is likely due at least in part to a secreted toxin, as injection of flies with sterile B. thailandensis-conditioned medium is able to kill. B. thailandensis infection strongly induces the expression of antimicrobial peptides, but this is insufficient to inhibit bacterial proliferation in infected flies. Finally, the function of fly phagocytes is not affected by B. thailandensis infection. The high virulence of B. thailandensis in the fly suggests the possibility that this organism is a natural pathogen of one or more invertebrates. PMID:23209596

  18. How Food Controls Aggression in Drosophila

    PubMed Central

    Lim, Rod S.; Eyjólfsdóttir, Eyrún; Shin, Euncheol; Perona, Pietro; Anderson, David J.

    2014-01-01

    How animals use sensory information to weigh the risks vs. benefits of behavioral decisions remains poorly understood. Inter-male aggression is triggered when animals perceive both the presence of an appetitive resource, such as food or females, and of competing conspecific males. How such signals are detected and integrated to control the decision to fight is not clear. For instance, it is unclear whether food increases aggression directly, or as a secondary consequence of increased social interactions caused by attraction to food. Here we use the vinegar fly, Drosophila melanogaster, to investigate the manner by which food influences aggression. We show that food promotes aggression in flies, and that it does so independently of any effect on frequency of contact between males, increase in locomotor activity or general enhancement of social interactions. Importantly, the level of aggression depends on the absolute amount of food, rather than on its surface area or concentration. When food resources exceed a certain level, aggression is diminished, suggestive of reduced competition. Finally, we show that detection of sugar via Gr5a+ gustatory receptor neurons (GRNs) is necessary for food-promoted aggression. These data demonstrate that food exerts a specific effect to promote aggression in male flies, and that this effect is mediated, at least in part, by sweet-sensing GRNs. PMID:25162609

  19. Mechanics of Morphogenesis: The Drosophila Eye

    NASA Astrophysics Data System (ADS)

    Hilgenfeldt, Sascha; Gemp, Ian; Carthew, Richard

    2008-11-01

    Epithelial tissues are highly organized layers of individual cells with non-trivial geometry both in equilibrium and during tissue development. In the latter case, individual cell rearrangements and deformations can result in larger-scale, flow-like restructuring. The complex, highly reproducible shapes of epithelial cells in the retina of the Drosophila eye are crucially dependent on the expression of adhesion molecules (cadherins). We show that not only the overall tissue organization, but the shape of each individual cell can be understood through quantitative modeling using minimization of an interfacial energy functional. The model contains only two free parameters, encoding for the adhesion strengths of E- and N-cadherin, and reproduces interfacial angles and lengths to within a few percent accuracy [1]. Characteristic morphological changes in mutant ommatidia can be modeled within this approach, changes that are also present during natural morphogenesis of epithelia. We investigate the role of changing cadherin expression and cytoskeletal tension in these dynamical processes. [1] S. Hilgenfeldt, S. Erisken & R. W. Carthew, Proc. Natl. Acad. Sci. USA 105, 907 (2008)

  20. In-vivo Centrifugation of Drosophila Embryos

    PubMed Central

    Tran, Susan L.; Welte, Michael A.

    2010-01-01

    A major strategy for purifying and isolating different types of intracellular organelles is to separate them from each other based on differences in buoyant density. However, when cells are disrupted prior to centrifugation, proteins and organelles in this non-native environment often inappropriately stick to each other. Here we describe a method to separate organelles by density in intact, living Drosophila embryos. Early embryos before cellularization are harvested from population cages, and their outer egg shells are removed by treatment with 50% bleach. Embryos are then transferred to a small agar plate and inserted, posterior end first, into small vertical holes in the agar. The plates containing embedded embryos are centrifuged for 30 min at 3000g. The agar supports the embryos and keeps them in a defined orientation. Afterwards, the embryos are dug out of the agar with a blunt needle. Centrifugation separates major organelles into distinct layers, a stratification easily visible by bright-field microscopy. A number of fluorescent markers are available to confirm successful stratification in living embryos. Proteins associated with certain organelles will be enriched in a particular layer, demonstrating colocalization. Individual layers can be recovered for biochemical analysis or transplantation into donor eggs. This technique is applicable for organelle separation in other large cells, including the eggs and oocytes of diverse species. PMID:20613707

  1. Alzheimer's Disease, Drosophila melanogaster and Polyphenols.

    PubMed

    Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos

    2015-01-01

    Alzheimer's disease (AD) is an insidious neurological disorder that affects memory, one of the human brain's main cognitive functions. Around 5.2 million Americans currently have AD, and the number threatens to climb to 7 million by 2020. Our native country, Colombia, is no exception with an estimated 260,000 individuals to be affected by AD in 2020. A large, genetically-isolated community in Antioquia, Colombia, with early-onset familial Alzheimer's disease due to a presenilin-1 mutation is ideally suited for the study of molecular mechanisms of AD, and hence accelerate the discovery of new or alternative treatment approaches. In this regard, polyphenols--also known as polyhydroxyphenols--have shown antioxidant activity, gene regulation, metal chelator and anti-amyloidogenic aggregation effects. However, further in vitro and in vivo investigations are warranted to validate their use in clinical trials. Drosophila melanogaster is increasingly being used as a valid in vivo model of AD. Here, we summarise data published within the past 16 years (1998-2014) on the molecular biology of AD and the use of polyphenols in the fly to understand the molecular actions and feasibility of these compounds in the treatment of AD. PMID:26092625

  2. The origin of dorsoventral polarity in Drosophila.

    PubMed Central

    Roth, Siegfried

    2003-01-01

    In Drosophila dorsoventral (DV) polarity arises during oogenesis when the oocyte nucleus moves from a central posterior to an asymmetrical anterior position. Nuclear movement is a symmetry-breaking step and establishes orthogonality between the anteroposterior and the DV axes. The asymmetrically anchored nucleus defines a cortical region within the oocyte which accumulates high levels of gurken messenger RNA (mRNA) and protein. Gurken is an ovarian-specific member of the transforming growth factor-alpha (TGF-alpha) family of secreted ligands. Secreted Gurken forms a concentration gradient that results in a dorsal-to-ventral gradient of EGF receptor activation in the follicle cells surrounding the oocyte. This leads to concentration-dependent activation or repression of target genes of the EGF pathway in the follicular epithelium. One outcome of this process is the restriction of pipe expression to a ventral domain that comprises 40% of the egg circumference. Pipe presumably modifies extracellular matrix components that are secreted by the follicle cells and are present at the ventral side of embryo after egg deposition. Here, they activate a proteolytic cascade that generates a gradient of the diffusible ligand, Spätzle. Spätzle activates the Toll receptor at the surface of the embryo that stimulates the nuclear uptake of the transcription factor Dorsal. This leads to a nuclear concentration gradient of Dorsal that specifies the cell types along the DV axis of the embryo. PMID:14511478

  3. The Sexually Antagonistic Genes of Drosophila melanogaster

    PubMed Central

    Innocenti, Paolo; Morrow, Edward H.

    2010-01-01

    When selective pressures differ between males and females, the genes experiencing these conflicting evolutionary forces are said to be sexually antagonistic. Although the phenotypic effect of these genes has been documented in both wild and laboratory populations, their identity, number, and location remains unknown. Here, by combining data on sex-specific fitness and genome-wide transcript abundance in a quantitative genetic framework, we identified a group of candidate genes experiencing sexually antagonistic selection in the adult, which correspond to 8% of Drosophila melanogaster genes. As predicted, the X chromosome is enriched for these genes, but surprisingly they represent only a small proportion of the total number of sex-biased transcripts, indicating that the latter is a poor predictor of sexual antagonism. Furthermore, the majority of genes whose expression profiles showed a significant relationship with either male or female adult fitness are also sexually antagonistic. These results provide a first insight into the genetic basis of intralocus sexual conflict and indicate that genetic variation for fitness is dominated and maintained by sexual antagonism, potentially neutralizing any indirect genetic benefits of sexual selection. PMID:20305719

  4. Genetics and genomics of Drosophila mating behavior

    PubMed Central

    Mackay, Trudy F. C.; Heinsohn, Stefanie L.; Lyman, Richard F.; Moehring, Amanda J.; Morgan, Theodore J.; Rollmann, Stephanie M.

    2005-01-01

    The first steps of animal speciation are thought to be the development of sexual isolating mechanisms. In contrast to recent progress in understanding the genetic basis of postzygotic isolating mechanisms, little is known about the genetic architecture of sexual isolation. Here, we have subjected Drosophila melanogaster to 29 generations of replicated divergent artificial selection for mating speed. The phenotypic response to selection was highly asymmetrical in the direction of reduced mating speed, with estimates of realized heritability averaging 7%. The selection response was largely attributable to a reduction in female receptivity. We assessed the whole genome transcriptional response to selection for mating speed using Affymetrix GeneChips and a rigorous statistical analysis. Remarkably, >3,700 probe sets (21% of the array elements) exhibited a divergence in message levels between the Fast and Slow replicate lines. Genes with altered transcriptional abundance in response to selection fell into many different biological process and molecular function Gene Ontology categories, indicating substantial pleiotropy for this complex behavior. Future functional studies are necessary to test the extent to which transcript profiling of divergent selection lines accurately predicts genes that directly affect the selected trait. PMID:15851659

  5. Unexpected stability of mariner transgenes in Drosophila.

    PubMed

    Lozovsky, Elena R; Nurminsky, Dmitry; Wimmer, Ernst A; Hartl, Daniel L

    2002-02-01

    A number of mariner transformation vectors based on the mauritiana subfamily of transposable elements were introduced into the genome of Drosophila melanogaster and examined for their ability to be mobilized by the mariner transposase. Simple insertion vectors were constructed from single mariner elements into which exogenous DNA ranging in size from 1.3 to 4.5 kb had been inserted; composite vectors were constructed with partial or complete duplications of mariner flanking the exogenous DNA. All of the simple insertion vectors showed levels of somatic and germline excision that were at least 100-fold lower than the baseline level of uninterrupted mariner elements. Although composite vectors with inverted duplications were unable to be mobilized at detectable frequencies, vectors with large direct duplications of mariner could be mobilized. A vector consisting of two virtually complete elements flanking exogenous DNA yielded a frequency of somatic eye-color mosaicism of approximately 10% and a frequency of germline excision of 0.04%. These values are far smaller than those observed for uninterrupted elements. The results imply that efficient mobilization of mariner in vivo requires the presence and proper spacing of sequences internal to the element as well as the inverted repeats. PMID:11861559

  6. Loss of genomic imprinting in Drosophila clones.

    PubMed

    Haigh, Andrew J; Lloyd, Vett K

    2006-08-01

    Genomic imprinting is a process that genetically distinguishes maternal and paternal genomes, and can result in parent-of-origin-dependent monoallelic expression of a gene that is dependent on the parent of origin. As such, an otherwise functional maternally inherited allele may be silenced so that the gene is expressed exclusively from the paternal allele, or vice versa. Once thought to be restricted to mammals, genomic imprinting has been documented in angiosperm plants (J.L. Kermicle. 1970. Genetics, 66: 69-85), zebrafish (C.C. Martin and R. McGowan. 1995. Genet. Res. 65: 21-28), insects, and C. elegans (C.J. Bean, C.E. Schaner, and W.G. Kelly. 2004. Nat. Genet. 36: 100-105.). In each case, it appears to rely on differential chromatin structure. Aberrant imprinting has been implicated in various human cancers and has been detected in a number of cloned mammals, potentially limiting the usefulness of somatic nuclear transfer. Here we show that genomic imprinting associated with a mini-X chromosome is lost in Drosophila melanogaster clones. PMID:17036079

  7. Host Plant Adaptation in Drosophila mettleri Populations

    PubMed Central

    Castrezana, Sergio; Bono, Jeremy M.

    2012-01-01

    The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total). We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea) for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp.) in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts. PMID:22493678

  8. Host plant adaptation in Drosophila mettleri populations.

    PubMed

    Castrezana, Sergio; Bono, Jeremy M

    2012-01-01

    The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total). We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea) for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp.) in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts. PMID:22493678

  9. Neuronal control of locomotor handedness in Drosophila.

    PubMed

    Buchanan, Sean M; Kain, Jamey S; de Bivort, Benjamin L

    2015-05-26

    Genetically identical individuals display variability in their physiology, morphology, and behaviors, even when reared in essentially identical environments, but there is little mechanistic understanding of the basis of such variation. Here, we investigated whether Drosophila melanogaster displays individual-to-individual variation in locomotor behaviors. We developed a new high-throughout platform capable of measuring the exploratory behavior of hundreds of individual flies simultaneously. With this approach, we find that, during exploratory walking, individual flies exhibit significant bias in their left vs. right locomotor choices, with some flies being strongly left biased or right biased. This idiosyncrasy was present in all genotypes examined, including wild-derived populations and inbred isogenic laboratory strains. The biases of individual flies persist for their lifetime and are nonheritable: i.e., mating two left-biased individuals does not yield left-biased progeny. This locomotor handedness is uncorrelated with other asymmetries, such as the handedness of gut twisting, leg-length asymmetry, and wing-folding preference. Using transgenics and mutants, we find that the magnitude of locomotor handedness is under the control of columnar neurons within the central complex, a brain region implicated in motor planning and execution. When these neurons are silenced, exploratory laterality increases, with more extreme leftiness and rightiness. This observation intriguingly implies that the brain may be able to dynamically regulate behavioral individuality. PMID:25953337

  10. Infection Dynamics and Immune Response in a Newly Described Drosophila-Trypanosomatid Association

    PubMed Central

    Votýpka, Jan; Dostálová, Anna; Yurchenko, Vyacheslav; Bird, Nathan H.; Lukeš, Julius; Lemaitre, Bruno

    2015-01-01

    ABSTRACT Trypanosomatid parasites are significant causes of human disease and are ubiquitous in insects. Despite the importance of Drosophila melanogaster as a model of infection and immunity and a long awareness that trypanosomatid infection is common in the genus, no trypanosomatid parasites naturally infecting Drosophila have been characterized. Here, we establish a new model of trypanosomatid infection in Drosophila—Jaenimonas drosophilae, gen. et sp. nov. As far as we are aware, this is the first Drosophila-parasitic trypanosomatid to be cultured and characterized. Through experimental infections, we find that Drosophila falleni, the natural host, is highly susceptible to infection, leading to a substantial decrease in host fecundity. J. drosophilae has a broad host range, readily infecting a number of Drosophila species, including D. melanogaster, with oral infection of D. melanogaster larvae resulting in the induction of numerous immune genes. When injected into adult hemolymph, J. drosophilae kills D. melanogaster, although interestingly, neither the Imd nor the Toll pathway is induced and Imd mutants do not show increased susceptibility to infection. In contrast, mutants deficient in drosocrystallin, a major component of the peritrophic matrix, are more severely infected during oral infection, suggesting that the peritrophic matrix plays an important role in mediating trypanosomatid infection in Drosophila. This work demonstrates that the J. drosophilae-Drosophila system can be a powerful model to uncover the effects of trypanosomatids in their insect hosts. PMID:26374124

  11. Estimating divergence dates and substitution rates in the Drosophila phylogeny.

    PubMed

    Obbard, Darren J; Maclennan, John; Kim, Kang-Wook; Rambaut, Andrew; O'Grady, Patrick M; Jiggins, Francis M

    2012-11-01

    An absolute timescale for evolution is essential if we are to associate evolutionary phenomena, such as adaptation or speciation, with potential causes, such as geological activity or climatic change. Timescales in most phylogenetic studies use geologically dated fossils or phylogeographic events as calibration points, but more recently, it has also become possible to use experimentally derived estimates of the mutation rate as a proxy for substitution rates. The large radiation of drosophilid taxa endemic to the Hawaiian islands has provided multiple calibration points for the Drosophila phylogeny, thanks to the "conveyor belt" process by which this archipelago forms and is colonized by species. However, published date estimates for key nodes in the Drosophila phylogeny vary widely, and many are based on simplistic models of colonization and coalescence or on estimates of island age that are not current. In this study, we use new sequence data from seven species of Hawaiian Drosophila to examine a range of explicit coalescent models and estimate substitution rates. We use these rates, along with a published experimentally determined mutation rate, to date key events in drosophilid evolution. Surprisingly, our estimate for the date for the most recent common ancestor of the genus Drosophila based on mutation rate (25-40 Ma) is closer to being compatible with independent fossil-derived dates (20-50 Ma) than are most of the Hawaiian-calibration models and also has smaller uncertainty. We find that Hawaiian-calibrated dates are extremely sensitive to model choice and give rise to point estimates that range between 26 and 192 Ma, depending on the details of the model. Potential problems with the Hawaiian calibration may arise from systematic variation in the molecular clock due to the long generation time of Hawaiian Drosophila compared with other Drosophila and/or uncertainty in linking island formation dates with colonization dates. As either source of error will

  12. Estimating Divergence Dates and Substitution Rates in the Drosophila Phylogeny

    PubMed Central

    Obbard, Darren J.; Maclennan, John; Kim, Kang-Wook; Rambaut, Andrew; O’Grady, Patrick M.; Jiggins, Francis M.

    2012-01-01

    An absolute timescale for evolution is essential if we are to associate evolutionary phenomena, such as adaptation or speciation, with potential causes, such as geological activity or climatic change. Timescales in most phylogenetic studies use geologically dated fossils or phylogeographic events as calibration points, but more recently, it has also become possible to use experimentally derived estimates of the mutation rate as a proxy for substitution rates. The large radiation of drosophilid taxa endemic to the Hawaiian islands has provided multiple calibration points for the Drosophila phylogeny, thanks to the "conveyor belt" process by which this archipelago forms and is colonized by species. However, published date estimates for key nodes in the Drosophila phylogeny vary widely, and many are based on simplistic models of colonization and coalescence or on estimates of island age that are not current. In this study, we use new sequence data from seven species of Hawaiian Drosophila to examine a range of explicit coalescent models and estimate substitution rates. We use these rates, along with a published experimentally determined mutation rate, to date key events in drosophilid evolution. Surprisingly, our estimate for the date for the most recent common ancestor of the genus Drosophila based on mutation rate (25–40 Ma) is closer to being compatible with independent fossil-derived dates (20–50 Ma) than are most of the Hawaiian-calibration models and also has smaller uncertainty. We find that Hawaiian-calibrated dates are extremely sensitive to model choice and give rise to point estimates that range between 26 and 192 Ma, depending on the details of the model. Potential problems with the Hawaiian calibration may arise from systematic variation in the molecular clock due to the long generation time of Hawaiian Drosophila compared with other Drosophila and/or uncertainty in linking island formation dates with colonization dates. As either source of error will

  13. Ultrastructural Analysis of Drosophila Ovaries by Electron Microscopy.

    PubMed

    Hurd, Thomas R; Sanchez, Carlos G; Teixeira, Felipe K; Petzold, Chris; Dancel-Manning, Kristen; Wang, Ju-Yu S; Lehmann, Ruth; Liang, Feng-Xia A

    2015-01-01

    The Drosophila melanogaster ovary is a powerful, genetically tractable system through which one can elucidate the principles underlying cellular function and organogenesis in vivo. In order to understand the intricate process of oogenesis at the subcellular level, microscopic analysis with the highest possible resolution is required. In this chapter, we describe the preparation of ovaries for ultrastructural analysis using transmission electron microscopy and focused ion beam scanning electron microscopy. We discuss and provide protocols for chemical fixation of Drosophila ovaries that facilitate optimal imaging with particular attention paid to preserving and resolving mitochondrial membrane morphology and structure. PMID:26324436

  14. Determination of the Spontaneous Locomotor Activity in Drosophila melanogaster

    PubMed Central

    Woods, Jared K.; Kowalski, Suzanne; Rogina, Blanka

    2014-01-01

    Drosophila melanogaster has been used as an excellent model organism to study environmental and genetic manipulations that affect behavior. One such behavior is spontaneous locomotor activity. Here we describe our protocol that utilizes Drosophila population monitors and a tracking system that allows continuous monitoring of the spontaneous locomotor activity of flies for several days at a time. This method is simple, reliable, and objective and can be used to examine the effects of aging, sex, changes in caloric content of food, addition of drugs, or genetic manipulations that mimic human diseases. PMID:24747955

  15. Mammalian homologues of the Drosophila eye specification genes.

    PubMed

    Hanson, I M

    2001-12-01

    The Drosophila compound eye is specified by the simultaneous and interdependent activity of transcriptional regulatory genes from four families: PAX6 (eyeless, twin of eyeless, eyegone), EYA (eyes absent), SIX (sine oculis, Optix) and DACH (dachshund). Mammals have homologues of all these genes, and many of them are expressed in the embryonic or adult eye, but the functional relationships between them are currently much less clear than in Drosophila. Nevertheless, mutations in the mammalian genes highlight their requirement both within and outside the eye in embryos and adults, and emphasize that they can be deployed in many different contexts. PMID:11735383

  16. Ultrastructural Analysis of Drosophila Ovaries by Electron Microscopy

    PubMed Central

    Hurd, Thomas R.; Sanchez, Carlos G.; Teixeira, Felipe K.; Petzold, Chris; Dancel-Manning, Kristen; Wang, Ju-Yu S.; Lehmann, Ruth; Liang, Feng-Xia A.

    2016-01-01

    i. Summary The Drosophila melanogaster ovary is a powerful, genetically tractable system through which one can elucidate the principles underlying cellular function and organogenesis in vivo. In order to understand the intricate process of oogenesis at the subcellular level, microscopic analysis with the highest possible resolution is required. In this chapter, we describe the preparation of ovaries for ultrastructural analysis using transmission electron microscopy and focused ion beam scanning electron microscopy. We discuss and provide protocols for chemical fixation of Drosophila ovaries that facilitate optimal imaging with particular attention paid to preserving and resolving mitochondrial membrane morphology and structure. PMID:26324436

  17. Understanding how differentiation is maintained: lessons from the Drosophila brain.

    PubMed

    Froldi, Francesca; Cheng, Louise Y

    2016-04-01

    The ability to maintain cells in a differentiated state and to prevent them from reprogramming into a multipotent state has recently emerged as a central theme in neural development as well as in oncogenesis. In the developing central nervous system (CNS) of the fruit fly Drosophila, several transcription factors were recently identified to be required in postmitotic cells to maintain differentiation, and in their absence, mature neurons undergo dedifferentiation, giving rise to proliferative neural stem cells and ultimately to tumor growth. In this review, we will highlight the current understanding of dedifferentiation and cell plasticity in the Drosophila CNS. PMID:26817462

  18. Nutritional regulation of stem and progenitor cells in Drosophila

    PubMed Central

    Shim, Jiwon; Gururaja-Rao, Shubha; Banerjee, Utpal

    2013-01-01

    Stem cells and their progenitors are maintained within a microenvironment, termed the niche, through local cell-cell communication. Systemic signals originating outside the niche also affect stem cell and progenitor behavior. This review summarizes studies that pertain to nutritional effects on stem and progenitor cell maintenance and proliferation in Drosophila. Multiple tissue types are discussed that utilize the insulin-related signaling pathway to convey nutritional information either directly to these progenitors or via other cell types within the niche. The concept of systemic control of these cell types is not limited to Drosophila and may be functional in vertebrate systems, including mammals. PMID:24255094

  19. Modeling dietary influences on offspring metabolic programming in Drosophila melanogaster.

    PubMed

    Brookheart, Rita T; Duncan, Jennifer G

    2016-09-01

    The influence of nutrition on offspring metabolism has become a hot topic in recent years owing to the growing prevalence of maternal and childhood obesity. Studies in mammals have identified several factors correlating with parental and early offspring dietary influences on progeny health; however, the molecular mechanisms that underlie these factors remain undiscovered. Mammalian metabolic tissues and pathways are heavily conserved in Drosophila melanogaster, making the fly an invaluable genetic model organism for studying metabolism. In this review, we discuss the metabolic similarities between mammals and Drosophila and present evidence supporting its use as an emerging model of metabolic programming. PMID:27450801

  20. Getting started : an overview on raising and handling Drosophila.

    PubMed

    Stocker, Hugo; Gallant, Peter

    2008-01-01

    Drosophila melanogaster has long been a prime model organism for developmental biologists. During their work, they have established a large collection of techniques and reagents. This in turn has made fruit flies an attractive system for many other biomedical researchers who have otherwise no background in fly biology. This review intends to help Drosophila neophytes in setting up a fly lab. It briefly introduces the biological properties of fruit flies, describes the minimal equipment required for working with flies, and offers some basic advice for maintaining fly lines and setting up and analyzing experiments. PMID:18641939

  1. The making of a fusion branch in the Drosophila trachea.

    PubMed

    Gervais, Louis; Lebreton, Gaelle; Casanova, Jordi

    2012-02-15

    Connection of epithelial tubes to generate a common network is a key step in the formation of tubular organs such as the tracheal respiratory and the vascular systems. However, it is not clear how these connecting tubes arise. Here we address this issue by studying the dorsal fusion branches in the Drosophila trachea, taking into account the morphology and contribution of each cell type on the basis of their individual labeling. Our results explain how a fusion branch forms and also illustrate the different nature of the two seamless tubes in the Drosophila trachea, generated by fusion and terminal cells respectively. PMID:22178247

  2. Determination of the spontaneous locomotor activity in Drosophila melanogaster.

    PubMed

    Woods, Jared K; Kowalski, Suzanne; Rogina, Blanka

    2014-01-01

    Drosophila melanogaster has been used as an excellent model organism to study environmental and genetic manipulations that affect behavior. One such behavior is spontaneous locomotor activity. Here we describe our protocol that utilizes Drosophila population monitors and a tracking system that allows continuous monitoring of the spontaneous locomotor activity of flies for several days at a time. This method is simple, reliable, and objective and can be used to examine the effects of aging, sex, changes in caloric content of food, addition of drugs, or genetic manipulations that mimic human diseases. PMID:24747955

  3. Hedgehog and extramacrochaetae in the Drosophila eye

    PubMed Central

    Spratford, Carrie M; Kumar, Justin P

    2014-01-01

    During the third and final larval instar stage, thousands of pluripotent cells within the Drosophila eye imaginal disc are transformed into a near perfect neurocrystalline lattice of 800 unit eyes called ommatidia. This transformation begins with the initiation of the morphogenetic furrow at the posterior margin of the eye field. The furrow, which marks the leading edge of a wave of differentiation, passes across the epithelium transforming unpatterned and undifferentiated cells into rows of periodically spaced clusters of photoreceptor neurons. As cells enter and exit the furrow they undergo dramatic alterations in cellular architecture and gene expression, many of which are required to propel the furrow forward and for proper cell fate specification. The Decapentaplegic (Dpp) and Hedgehog (Hh) signaling pathways are required for the initiation and progression of the furrow, respectively. Consistent with a role in furrow progression, the loss of Hh pathway activity results in a “furrow stop” phenotype. In contrast, reductions in levels of the helix-loop-helix transcription factor, Extramacrochaetae (Emc), lead to the polar opposite phenotype—the furrow accelerates. Recently, we demonstrated that the furrow stop and furrow acceleration phenotypes are molecularly connected. Emc appears to serve as a brake on the furrow by dampening the activity of the Hh pathway. Loss of Emc leads to an upsurge in Hh pathway activity and a faster moving furrow. The acceleration of the furrow appears to be due to an increase in levels of the full-length isoform of Cubitus Interruptus (Ci155) and Suppressor of Fused [Su(fu)]. Here we will briefly review the mechanisms by which Hh drives and Emc impedes the progression of the furrow across the developing retina. PMID:24406336

  4. Selection on Wing Allometry in Drosophila Melanogaster

    PubMed Central

    Weber, K. E.

    1990-01-01

    Five bivariate distributions of wing dimensions of Drosophila melanogaster were measured, in flies 1) subjected to four defined environmental regimes during development, 2) taken directly from nature in seven U.S. states, 3) selected in ten populations for change in wing form, and 4) sampled from 21 long inbred wild-type lines. Environmental stresses during development altered both wing size and the ratios of wing dimensions, but regardless of treatment all wing dimensions fell near a common allometric baseline in each bivariate distribution. The wings of wild-caught flies from seven widely separated localities, and of their laboratory-reared offspring, also fell along the same baselines. However, when flies were selected divergently for lateral offset from these developmental baselines, response to selection was rapid in every case. The mean divergence in offset between oppositely selected lines was 14.68 SD of the base population offset, after only 15 generations of selection at 20%. Measurements of 21 isofemale lines, founded from wild-caught flies and maintained in small populations for at least 22 years, showed large reductions in phenotypic variance of offsets within lines, but a large increase in the variance among lines. The variance of means of isofemale lines within collection localities was ten times the variance of means among localities of newly established wild lines. These observations show that much additive genetic variance exists for individual dimensions within the wing, such that bivariate developmental patterns can be changed in any direction by selection or by drift. The relative invariance of the allometric baselines of wing morphology in nature is most easily explained as the result of continuous natural selection around a local optimum of functional design. PMID:2127580

  5. Behavioral role of the sexcombs in Drosophila melanogaster and Drosophila simulans.

    PubMed

    Cook, R M

    1977-09-01

    The sexcombs were amputated from males of three strains of Drosophila melanogaster and one strain of D. simulans in order to assess the importance of these structures in the sexual behavior of these species. In D. melanogaster the sexcombs are important in attempts to copulate with the female. Their removal delays copulation but does not suppress it entirely. Other aspects of courtship are not influenced by removal of the sexcombs. Strain differences in quanitative aspects of courtship were found, and also in the insemination rates of females by males without sexcombs. The present evidence suggests that the sexcombs are primarily structures adapted to grasping the female securely during the act of intromission. PMID:411471

  6. Thermotaxis, circadian rhythms, and TRP channels in Drosophila.

    PubMed

    Bellemer, Andrew

    2015-01-01

    The fruit fly Drosophila melanogaster is a poikilothermic organism that must detect and respond to both fine and coarse changes in environmental temperature in order maintain optimal body temperature, synchronize behavior to daily temperature fluctuations, and to avoid potentially injurious environmental hazards. Members of the Transient Receptor Potential (TRP) family of cation channels are well known for their activation by changes in temperature and their essential roles in sensory transduction in both invertebrates and vertebrates. The Drosophila genome encodes 13 TRP channels, and several of these have key sensory transduction and modulatory functions in allowing larval and adult flies to make fine temperature discriminations to attain optimal body temperature, detect and avoid large environmental temperature fluctuations, and make rapid escape responses to acutely noxious stimuli. Drosophila use multiple, redundant signaling pathways and neural circuits to execute these behaviors in response to both increases and decreases in temperature of varying magnitudes and time scales. A plethora of powerful molecular and genetic tools and the fly's simple, well-characterized nervous system have given Drosophila neurobiologists a powerful platform to study the cellular and molecular mechanisms of TRP channel function and how these mechanisms are conserved in vertebrates, as well as how these channels function within sensorimotor circuits to generate both simple and complex thermosensory behaviors. PMID:27227026

  7. Embryonic multipotent progenitors remodel the Drosophila airways during metamorphosis

    PubMed Central

    Pitsouli, Chrysoula; Perrimon, Norbert

    2010-01-01

    Adult structures in holometabolous insects such as Drosophila are generated by groups of imaginal cells dedicated to the formation of different organs. Imaginal cells are specified in the embryo and remain quiescent until the larval stages, when they proliferate and differentiate to form organs. The Drosophila tracheal system is extensively remodeled during metamorphosis by a small number of airway progenitors. Among these, the spiracular branch tracheoblasts are responsible for the generation of the pupal and adult abdominal airways. To understand the coordination of proliferation and differentiation during organogenesis of tubular organs, we analyzed the remodeling of Drosophila airways during metamorphosis. We show that the embryonic spiracular branch tracheoblasts are multipotent cells that express the homeobox transcription factor Cut, which is necessary for their survival and normal development. They give rise to three distinct cell populations at the end of larval development, which generate the adult tracheal tubes, the spiracle and the epidermis surrounding the spiracle. Our study establishes the series of events that lead to the formation of an adult tubular structure in Drosophila. PMID:20940225

  8. Meiotic Segregation and Male Recombination in Interspecific Hybrids of Drosophila

    PubMed Central

    Coyne, Jerry A.

    1986-01-01

    Male hybrids between three pairs of Drosophila species show no substantial distortion of Mendelian segregation and no appreciable male recombination. These results do not support the theories that meiotic drive alleles of large effect are often fixed within species and that transposable genetic elements cause speciation. PMID:3021573

  9. Immunohistological techniques for studying the Drosophila male germline stem cell.

    PubMed

    Singh, Shree Ram; Hou, Steven X

    2008-01-01

    Stem cells are undifferentiated cells that have a remarkable ability to self-renew and produce differentiated cells that support normal development and tissue homeostasis. This unique capacity makes stem cells a powerful tool for future regenerative medicine and gene therapy. Accumulative evidence suggests that stem cell self-renewal or differentiation is controlled by both intrinsic and extrinsic factors, and that deregulation of stem cell behavior results in cancer formation, tissue degeneration, and premature aging. The Drosophila testis provides an excellent in vivo model for studying and understanding the fundamental cellular and molecular mechanisms controlling stem cell behavior and the relationship between niches and stem cells. At the tip of the Drosophila testes, germline stem cells (GSCs) and somatic stem cells (SSCs) contact each other and share common niches (known as a hub) to maintain spermatogenesis. Signaling pathways, such as the Janus kinase (JAK)/signal transducer and activator of transcription (STAT), bone morphogenetic protein (BMP), ras-associated protein-guanine nucleotide exchange factor for small GTPase (Rap-GEF), and epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK), are known to regulate self-renewal or differentiation of Drosophila male germline stem cells. We describe the detailed in vivo immunohistological protocols that mark GSCs, SSCs, and their progeny in Drosophila testes. PMID:18370050

  10. Drosophila Females Undergo Genome Expansion after Interspecific Hybridization.

    PubMed

    Romero-Soriano, Valèria; Burlet, Nelly; Vela, Doris; Fontdevila, Antonio; Vieira, Cristina; García Guerreiro, María Pilar

    2016-03-01

    Genome size (or C-value) can present a wide range of values among eukaryotes. This variation has been attributed to differences in the amplification and deletion of different noncoding repetitive sequences, particularly transposable elements (TEs). TEs can be activated under different stress conditions such as interspecific hybridization events, as described for several species of animals and plants. These massive transposition episodes can lead to considerable genome expansions that could ultimately be involved in hybrid speciation processes. Here, we describe the effects of hybridization and introgression on genome size of Drosophila hybrids. We measured the genome size of two close Drosophila species, Drosophila buzzatii and Drosophila koepferae, their F1 offspring and the offspring from three generations of backcrossed hybrids; where mobilization of up to 28 different TEs was previously detected. We show that hybrid females indeed present a genome expansion, especially in the first backcross, which could likely be explained by transposition events. Hybrid males, which exhibit more variable C-values among individuals of the same generation, do not present an increased genome size. Thus, we demonstrate that the impact of hybridization on genome size can be detected through flow cytometry and is sex-dependent. PMID:26872773

  11. An infrared system for monitoring Drosophila motility during microgravity.

    PubMed

    Miller, Mark S; Fortney, Michael D; Keller, Tony S

    2002-12-01

    Presently, the precise mechanisms of the aging process are unknown. Examination and comprehension of the aging process in other species could lead to significant advances in the understanding of human aging. Drosophila melanogaster (fruit fly), commonly used for aging studies, is a widely studied organism in terms of behavior, development, and genetics. Previous microgravity experiments have shown a significant decrease in the life span of young male Drosophila after microgravity exposure. This decrease in lifespan may be related to locomotor activity, a convenient measure of overall physiological performance. This study describes the design and performance of a Drosophila Infrared Motility Monitoring System (DIMMS). The DIMMS uses a unique design of two infrared (IR) beams per fly to measure the locomotor activity of 240 flies. Locomotor activity is measured in terms of number of IR crossings per unit time, instantaneous velocity, and continuous velocity. Ground-based results using the DIMMS equipment agree well with previous values for Drosophila locomotor velocity. DIMMS is an improvement over equipment previously used due to its ability to continuously monitor locomotor activity throughout short-duration microgravity exposure. DIMMS is also lightweight, compact, and power efficient. DIMMS has been flight tested onboard NASA's KC-135 reduced gravity research aircraft and a Nike-Orion sounding rocket. PMID:14638462

  12. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns

    PubMed Central

    Cruchet, Steeve; Gustafson, Kyle; Benton, Richard; Floreano, Dario

    2015-01-01

    The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs—locomotor bouts—matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior. PMID:26600381

  13. In Vivo Dynamics of Drosophila Nuclear Envelope Components

    PubMed Central

    Katsani, Katerina R.; Karess, Roger E.; Dostatni, Nathalie

    2008-01-01

    Nuclear pore complexes (NPCs) are multisubunit protein entities embedded into the nuclear envelope (NE). Here, we examine the in vivo dynamics of the essential Drosophila nucleoporin Nup107 and several other NE-associated proteins during NE and NPCs disassembly and reassembly that take place within each mitosis. During both the rapid mitosis of syncytial embryos and the more conventional mitosis of larval neuroblasts, Nup107 is gradually released from the NE, but it remains partially confined to the nuclear (spindle) region up to late prometaphase, in contrast to nucleoporins detected by wheat germ agglutinin and lamins. We provide evidence that in all Drosophila cells, a structure derived from the NE persists throughout metaphase and early anaphase. Finally, we examined the dynamics of the spindle checkpoint proteins Mad2 and Mad1. During mitotic exit, Mad2 and Mad1 are actively imported back from the cytoplasm into the nucleus after the NE and NPCs have reformed, but they reassociate with the NE only later in G1, concomitantly with the recruitment of the basket nucleoporin Mtor (the Drosophila orthologue of vertebrate Tpr). Surprisingly, Drosophila Nup107 shows no evidence of localization to kinetochores, despite the demonstrated importance of this association in mammalian cells. PMID:18562695

  14. Analysis of murine HOXA-2 activity in Drosophila melanogaster.

    PubMed

    Percival-Smith, A; Bondy, J A

    1999-01-01

    The murine HOXA-2 protein shares amino acid sequence similarity with Drosophila Proboscipedia (PB). In this paper, we test whether HOXA-2 and PB are functionally equivalent in Drosophila. In Drosophila, PB inhibits SCR activity required for larval T1 beard formation and adult tarsus formation and is required for maxillary palp and proboscis formation. HOXA-2 expressed from a heat-shock promoter weakly suppressed SCR activity required for T1 beard formation. But interestingly neither PB nor HOXA-2 expressed from a heat-shock promoter suppressed murine HOXA-5 activity, the murine SCR homologue, from inducing ectopic T1 beards in T2 and T3, indicating that HOXA-5 does not interact with PB. HOXA-2 activity expressed from the Tubulin alpha 1 promoter modified the pb null phenotype resulting in a proboscis-to-arista transformation, indicating that HOXA-2 was able to suppress SCR activity required for tarsus formation. However, HOXA-2 expressed from a Tubulin alpha 1 promoter was unable to direct maxillary palp determination when either ectopically expressed in the antenna or in the maxillary palp primordia of a pb null mutant. HOXA-2 was also unable to rescue pseudotrachea formation in a pb null mutant. These results indicate that the only activity that PB and HOXA-2 weakly share is the inhibition of SCR activity, and that murine HOXA-5 and Drosophila SCR do not share inhibition by PB activity. PMID:10322642

  15. Monitoring Drosophila suzukii Matsumura in Oregon, USA sweet cherry orchards.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drosophila suzukii rapidly became a significant cherry pest in the western United States after it was observed damaging cherries in 2009 in California. It has caused significant damage to ripening cherries in all major USA cherry production districts leading to increased management costs and reduced...

  16. Characterization and manipulation of fruit susceptibility to Drosophila suzukii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drosophila suzukii (Matsumura) is an economic pest of small fruits and cherries that attacks intact ripening fruits. Host susceptibility is influenced by characteristics such as flesh firmness, penetration force of the skin, total soluble solids (TSS, also known as °Brix) and pH. Improved knowledge ...

  17. Late Replication Domains Are Evolutionary Conserved in the Drosophila Genome

    PubMed Central

    Makunin, Igor V.; Pokholkova, Galina V.; Boldyreva, Lidiya V.; Zykova, Tatyana Yu.; Zhimulev, Igor F.; Belyaeva, Elena S.

    2013-01-01

    Drosophila chromosomes are organized into distinct domains differing in their predominant chromatin composition, replication timing and evolutionary conservation. We show on a genome-wide level that genes whose order has remained unaltered across 9 Drosophila species display late replication timing and frequently map to the regions of repressive chromatin. This observation is consistent with the existence of extensive domains of repressive chromatin that replicate extremely late and have conserved gene order in the Drosophila genome. We suggest that such repressive chromatin domains correspond to a handful of regions that complete replication at the very end of S phase. We further demonstrate that the order of genes in these regions is rarely altered in evolution. Substantial proportion of such regions significantly coincide with large synteny blocks. This indicates that there are evolutionary mechanisms maintaining the integrity of these late-replicating chromatin domains. The synteny blocks corresponding to the extremely late-replicating regions in the D. melanogaster genome consistently display two-fold lower gene density across different Drosophila species. PMID:24391753

  18. Dynamical Analysis of bantam-Regulated Drosophila Circadian Rhythm Model

    NASA Astrophysics Data System (ADS)

    Li, Ying; Liu, Zengrong

    MicroRNAs (miRNAs) interact with 3‧untranslated region (UTR) elements of target genes to regulate mRNA stability or translation, and play a crucial role in regulating many different biological processes. bantam, a conserved miRNA, is involved in several functions, such as regulating Drosophila growth and circadian rhythm. Recently, it has been discovered that bantam plays a crucial role in the core circadian pacemaker. In this paper, based on experimental observations, a detailed dynamical model of bantam-regulated circadian clock system is developed to show the post-transcriptional behaviors in the modulation of Drosophila circadian rhythm, in which the regulation of bantam is incorporated into a classical model. The dynamical behaviors of the model are consistent with the experimental observations, which shows that bantam is an important regulator of Drosophila circadian rhythm. The sensitivity analysis of parameters demonstrates that with the regulation of bantam the system is more sensitive to perturbations, indicating that bantam regulation makes it easier for the organism to modulate its period against the environmental perturbations. The effectiveness in rescuing locomotor activity rhythms of mutated flies shows that bantam is necessary for strong and sustained rhythms. In addition, the biological mechanisms of bantam regulation are analyzed, which may help us more clearly understand Drosophila circadian rhythm regulated by other miRNAs.

  19. Gr33a modulates Drosophila male courtship preference.

    PubMed

    Hu, Yujia; Han, Yi; Shao, Yingyao; Wang, Xingjun; Ma, Yeqing; Ling, Erjun; Xue, Lei

    2015-01-01

    In any gamogenetic species, attraction between individuals of the opposite sex promotes reproductive success that guarantees their thriving. Consequently, mate determination between two sexes is effortless for an animal. However, choosing a spouse from numerous attractive partners of the opposite sex needs deliberation. In Drosophila melanogaster, both younger virgin females and older ones are equally liked options to males; nevertheless, when given options, males prefer younger females to older ones. Non-volatile cuticular hydrocarbons, considered as major pheromones in Drosophila, constitute females' sexual attraction that act through males' gustatory receptors (Grs) to elicit male courtship. To date, only a few putative Grs are known to play roles in male courtship. Here we report that loss of Gr33a function or abrogating the activity of Gr33a neurons does not disrupt male-female courtship, but eliminates males' preference for younger mates. Furthermore, ectopic expression of human amyloid precursor protein (APP) in Gr33a neurons abolishes males' preference behavior. Such function of APP is mediated by the transcription factor forkhead box O (dFoxO). These results not only provide mechanistic insights into Drosophila male courtship preference, but also establish a novel Drosophila model for Alzheimer's disease (AD). PMID:25586066

  20. Gr33a Modulates Drosophila Male Courtship Preference

    PubMed Central

    Hu, Yujia; Han, Yi; Shao, Yingyao; Wang, Xingjun; Ma, Yeqing; Ling, Erjun; Xue, Lei

    2015-01-01

    In any gamogenetic species, attraction between individuals of the opposite sex promotes reproductive success that guarantees their thriving. Consequently, mate determination between two sexes is effortless for an animal. However, choosing a spouse from numerous attractive partners of the opposite sex needs deliberation. In Drosophila melanogaster, both younger virgin females and older ones are equally liked options to males; nevertheless, when given options, males prefer younger females to older ones. Non-volatile cuticular hydrocarbons, considered as major pheromones in Drosophila, constitute females' sexual attraction that act through males' gustatory receptors (Grs) to elicit male courtship. To date, only a few putative Grs are known to play roles in male courtship. Here we report that loss of Gr33a function or abrogating the activity of Gr33a neurons does not disrupt male-female courtship, but eliminates males' preference for younger mates. Furthermore, ectopic expression of human amyloid precursor protein (APP) in Gr33a neurons abolishes males' preference behavior. Such function of APP is mediated by the transcription factor forkhead box O (dFoxO). These results not only provide mechanistic insights into Drosophila male courtship preference, but also establish a novel Drosophila model for Alzheimer's disease (AD). PMID:25586066

  1. An infrared system for monitoring Drosophila motility during microgravity

    NASA Technical Reports Server (NTRS)

    Miller, Mark S.; Fortney, Michael D.; Keller, Tony S.

    2002-01-01

    Presently, the precise mechanisms of the aging process are unknown. Examination and comprehension of the aging process in other species could lead to significant advances in the understanding of human aging. Drosophila melanogaster (fruit fly), commonly used for aging studies, is a widely studied organism in terms of behavior, development, and genetics. Previous microgravity experiments have shown a significant decrease in the life span of young male Drosophila after microgravity exposure. This decrease in lifespan may be related to locomotor activity, a convenient measure of overall physiological performance. This study describes the design and performance of a Drosophila Infrared Motility Monitoring System (DIMMS). The DIMMS uses a unique design of two infrared (IR) beams per fly to measure the locomotor activity of 240 flies. Locomotor activity is measured in terms of number of IR crossings per unit time, instantaneous velocity, and continuous velocity. Ground-based results using the DIMMS equipment agree well with previous values for Drosophila locomotor velocity. DIMMS is an improvement over equipment previously used due to its ability to continuously monitor locomotor activity throughout short-duration microgravity exposure. DIMMS is also lightweight, compact, and power efficient. DIMMS has been flight tested onboard NASA's KC-135 reduced gravity research aircraft and a Nike-Orion sounding rocket.

  2. Cohesin, Gene Expression and Development: Lessons from Drosophila

    PubMed Central

    Dorsett, Dale

    2010-01-01

    The cohesin complex, discovered for its role in sister chromatid cohesion, also plays roles in gene expression and development in organisms from yeast to man. This review highlights what has been learned about the gene control and developmental functions of cohesin and the Nipped-B (NIPBL/Scc2) cohesin loading factor in Drosophila. The Drosophila studies have provided unique insights into the etiology of Cornelia de Lange syndrome (CdLS), which is caused by mutations affecting sister chromatid cohesion proteins in humans. In vivo experiments with Drosophila show that cohesin and Nipped-B have dosage-sensitive effects on the functions of many evolutionarily conserved genes and developmental pathways. Genome-wide studies with Drosophila cultured cells show that Nipped-B and cohesin co-localize on chromosomes, and bind preferentially, but not exclusively, to many actively-transcribed genes and their regulatory sequences, including many of the proposed in vivo target genes. In contrast, the cohesion factors are largely excluded from genes silenced by Polycomb group (PcG) proteins. Combined, the in vivo genetic data and the binding patterns of cohesin and Nipped-B in cultured cells are consistent with the hypothesis that they control the action of gene regulatory sequences, including transcriptional enhancers and insulators, and suggest that they might also help define active chromatin domains and influence transcriptional elongation. PMID:19308700

  3. SnapShot: Olfactory Classical Conditioning of Drosophila.

    PubMed

    Davis, Ronald L

    2015-10-01

    This SnapShot summarizes current knowledge about the molecules and circuitry that mediate olfactory memory formation in Drosophila, with emphasis on neural circuits carrying the learned sensory information; the molecular mechanisms for acquisition, memory storage, and forgetting; and the output pathways for memory expression. To view this SnapShot, open or download the PDF. PMID:26451491

  4. Biogeography of Drosophila (Diptera: Drosophilidae) in East and Southeast Asia

    PubMed Central

    Robert Liu, Fu-Guo; Tsaur, Shun-Chern; Huang, Hsiao-Ting

    2015-01-01

    The causes of high biological diversity in biodiversity hotspots have long been a major subject of study in conservation biology. To investigate this matter, we conducted a phylogeographic study of five Drosophila (Diptera: Drosophilidae) species from East and Southeast Asia: Drosophila albomicans Duda, D. formosana Duda, D. immigrans Sturtevant, D. melanogaster Meigen, and D. simulans Sturtevant. We collected 185 samples from 28 localities in eight countries. From each collected individual, we sequenced the autosomal extra sex comb gene (esc) and seven mitochondrial genes, including nicotinamide adenine dinucleotide hydrate-reductase dehydrogenase subunit 4 (ND4), ND4L, tRNA-His, tRNA-Pro, tRNA-Thr, partial ND5, and partial ND6. Phylogenetic analyses using maximum- likelihood and Bayesian methods revealed interesting population structure and identified the existence of two distinct D. formosana lineages (Southeast Asian and Taiwanese populations). Genetic differentiation among groups of D. immigrans suggests the possibility of endemic speciation in Taiwan. In contrast, D. melanogaster remained one extensively large population throughout East and Southeast Asia, including nearby islets. A molecular clock was used to estimate divergence times, which were compared with past geographical events to infer evolutionary scenarios. Our findings suggest that interglacial periods may have caused population isolation, thus enhancing population differentiation more strongly for some of the Drosophila species. The population structure of each Drosophila species in East and Southeast Asia has been influenced by past geographic events. PMID:26078303

  5. Rate variation of DNA sequence evolution in the Drosophila lineages.

    PubMed Central

    Takano, T S

    1998-01-01

    Rate constancy of DNA sequence evolution was examined for three species of Drosophila, using two samples: the published sequences of eight genes from regions of the normal recombination rates and new data of the four AS-C (ac, sc, l'sc and ase) and ci genes. The AS-C and ci genes were chosen because these genes are located in the regions of very reduced recombination in Drosophila melanogaster and their locations remain unchanged throughout the entire lineages involved, yielding less effect of ancestral polymorphism in the study of rate constancy. The synonymous substitution pattern of the three lineages was found to be erratic in both samples. The dispersion index for replacement substitution was relatively high for the per, G6pd and ac genes. A significant heterogeneity was found in the number of synonymous substitutions in the three lineages between the two samples of genes with different recombination rates. This is partly due to a lack of the lineage effect in the D. melanogaster and Drosophila simulans lineages in the AS-C and ci genes in contrast to Akashi's observation of genes in regions of normal recombination. The higher codon bias in Drosophila yakuba as compared with D. melanogaster and D. simulans was observed in the four AS-C genes, which suggests change(s) in action of natural selection involved in codon usage on these genes. Fluctuating selection intensity may also be responsible for the observed locus-lineage interaction effects in synonymous substitution. PMID:9611206

  6. Resources for Functional Genomics Studies in Drosophila melanogaster

    PubMed Central

    Mohr, Stephanie E.; Hu, Yanhui; Kim, Kevin; Housden, Benjamin E.; Perrimon, Norbert

    2014-01-01

    Drosophila melanogaster has become a system of choice for functional genomic studies. Many resources, including online databases and software tools, are now available to support design or identification of relevant fly stocks and reagents or analysis and mining of existing functional genomic, transcriptomic, proteomic, etc. datasets. These include large community collections of fly stocks and plasmid clones, “meta” information sites like FlyBase and FlyMine, and an increasing number of more specialized reagents, databases, and online tools. Here, we introduce key resources useful to plan large-scale functional genomics studies in Drosophila and to analyze, integrate, and mine the results of those studies in ways that facilitate identification of highest-confidence results and generation of new hypotheses. We also discuss ways in which existing resources can be used and might be improved and suggest a few areas of future development that would further support large- and small-scale studies in Drosophila and facilitate use of Drosophila information by the research community more generally. PMID:24653003

  7. Local adaptation for body color in Drosophila americana

    PubMed Central

    Wittkopp, P J; Smith-Winberry, G; Arnold, L L; Thompson, E M; Cooley, A M; Yuan, D C; Song, Q; McAllister, B F

    2011-01-01

    Pigmentation is one of the most variable traits within and between Drosophila species. Much of this diversity appears to be adaptive, with environmental factors often invoked as selective forces. Here, we describe the geographic structure of pigmentation in Drosophila americana and evaluate the hypothesis that it is a locally adapted trait. Body pigmentation was quantified using digital images and spectrometry in up to 10 flies from each of 93 isofemale lines collected from 17 locations across the United States and found to correlate most strongly with longitude. Sequence variation at putatively neutral loci showed no evidence of population structure and was inconsistent with an isolation-by-distance model, suggesting that the pigmentation cline exists despite extensive gene flow throughout the species range, and is most likely the product of natural selection. In all other Drosophila species examined to date, dark pigmentation is associated with arid habitats; however, in D. americana, the darkest flies were collected from the most humid regions. To investigate this relationship further, we examined desiccation resistance attributable to an allele that darkens pigmentation in D. americana. We found no significant effect of pigmentation on desiccation resistance in this experiment, suggesting that pigmentation and desiccation resistance are not unequivocally linked in all Drosophila species. PMID:20606690

  8. Plexins function in epithelial repair in both Drosophila and zebrafish

    PubMed Central

    Yoo, Sa Kan; Pascoe, Heath G.; Pereira, Telmo; Kondo, Shu; Jacinto, Antonio; Zhang, Xuewu; Hariharan, Iswar K.

    2016-01-01

    In most multicellular organisms, homeostasis is contingent upon maintaining epithelial integrity. When unanticipated insults breach epithelial barriers, dormant programmes of tissue repair are immediately activated. However, many of the mechanisms that repair damaged epithelia remain poorly characterized. Here we describe a role for Plexin A (PlexA), a protein with particularly well-characterized roles in axonal pathfinding, in the healing of damaged epithelia in Drosophila. Semaphorins, which are PlexA ligands, also regulate tissue repair. We show that Drosophila PlexA has GAP activity for the Rap1 GTPase, which is known to regulate the stability of adherens junctions. Our observations suggest that the inhibition of Rap1 activity by PlexA in damaged Drosophila epithelia allows epithelial remodelling, thus facilitating wound repair. We also demonstrate a role for Plexin A1, a zebrafish orthologue of Drosophila PlexA, in epithelial repair in zebrafish tail fins. Thus, plexins function in epithelial wound healing in diverse taxa. PMID:27452696

  9. Enhancing Undergraduate Teaching and Research with a Drosophila Virginizing System

    PubMed Central

    2006-01-01

    Laboratory exercises using Drosophila crosses are an effective pedagogical method to complement traditional lecture and textbook presentations of genetics. Undergraduate thesis research is another common setting for using Drosophila. A significant barrier to using Drosophila for undergraduate teaching or research is the time and skill required to accurately collect virgins for use in controlled crosses. Erroneously collecting males or nonvirgin females contaminates crosses with unintended genotypes and confounds the results. Collecting adequate numbers of virgins requires large amounts of time, even for those skilled in virgin collection. I have adapted an effective method for virgin collection that eliminates these concerns and is straightforward to use in undergraduate settings. Using a heat-shock–induced, conditional lethal transgene specifically in males, male larvae can be eliminated from a culture before adults eclose. Females thus eclose in the absence of males and remain virgin, eliminating the need to laboriously score and segregate freshly eclosed females. This method is reliable, easily adaptable to any desired phenotypic marker, and readily scaleable to provide sufficient virgins for large laboratory classes or undergraduate research projects. In addition, it allows instructors lacking Drosophila expertise to use this organism as a pedagogical tool. PMID:17146043

  10. Drosophila Females Undergo Genome Expansion after Interspecific Hybridization

    PubMed Central

    Romero-Soriano, Valèria; Burlet, Nelly; Vela, Doris; Fontdevila, Antonio; Vieira, Cristina; García Guerreiro, María Pilar

    2016-01-01

    Genome size (or C-value) can present a wide range of values among eukaryotes. This variation has been attributed to differences in the amplification and deletion of different noncoding repetitive sequences, particularly transposable elements (TEs). TEs can be activated under different stress conditions such as interspecific hybridization events, as described for several species of animals and plants. These massive transposition episodes can lead to considerable genome expansions that could ultimately be involved in hybrid speciation processes. Here, we describe the effects of hybridization and introgression on genome size of Drosophila hybrids. We measured the genome size of two close Drosophila species, Drosophila buzzatii and Drosophila koepferae, their F1 offspring and the offspring from three generations of backcrossed hybrids; where mobilization of up to 28 different TEs was previously detected. We show that hybrid females indeed present a genome expansion, especially in the first backcross, which could likely be explained by transposition events. Hybrid males, which exhibit more variable C-values among individuals of the same generation, do not present an increased genome size. Thus, we demonstrate that the impact of hybridization on genome size can be detected through flow cytometry and is sex-dependent. PMID:26872773

  11. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    PubMed Central

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118

  12. Handling Alters Aggression and "Loser" Effect Formation in "Drosophila Melanogaster"

    ERIC Educational Resources Information Center

    Trannoy, Severine; Chowdhury, Budhaditya; Kravitz, Edward A.

    2015-01-01

    In "Drosophila," prior fighting experience influences the outcome of later contests: losing a fight increases the probability of losing second contests, thereby revealing "loser" effects that involve learning and memory. In these experiments, to generate and quantify the behavioral changes observed as consequences of losing…

  13. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster

    PubMed Central

    Baenas, Nieves; Piegholdt, Stefanie; Schloesser, Anke; Moreno, Diego A.; García-Viguera, Cristina; Rimbach, Gerald; Wagner, Anika E.

    2016-01-01

    We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus. PMID:26901196

  14. Cubilin and Amnionless Mediate Protein Reabsorption in Drosophila Nephrocytes

    PubMed Central

    Zhang, Fujian; Zhao, Ying; Chao, Yufang; Muir, Katherine

    2013-01-01

    The insect nephrocyte and the mammalian glomerular podocyte are similar with regard to filtration, but it remains unclear whether there is an organ or cell type in flies that reabsorbs proteins. Here, we show that the Drosophila nephrocyte has molecular, structural, and functional similarities to the renal proximal tubule cell. We screened for genes required for nephrocyte function and identified two Drosophila genes encoding orthologs of mammalian cubilin and amnionless (AMN), two major receptors for protein reabsorption in the proximal tubule. In Drosophila, expression of dCubilin and dAMN is specific to nephrocytes, where they function as co-receptors for protein uptake. Targeted expression of human AMN in Drosophila nephrocytes was sufficient to rescue defective protein uptake induced by dAMN knockdown, suggesting evolutionary conservation of Cubilin/AMN co-receptors function from flies to humans. Furthermore, we found that Cubilin/AMN-mediated protein reabsorption is required for the maintenance of nephrocyte ultrastructure and fly survival under conditions of toxic stress. In conclusion, the insect nephrocyte combines filtration with protein reabsorption, using evolutionarily conserved genes and subcellular structures, suggesting that it can serve as a simplified model for both podocytes and the renal proximal tubule. PMID:23264686

  15. Thermotaxis, circadian rhythms, and TRP channels in Drosophila

    PubMed Central

    Bellemer, Andrew

    2015-01-01

    The fruit fly Drosophila melanogaster is a poikilothermic organism that must detect and respond to both fine and coarse changes in environmental temperature in order maintain optimal body temperature, synchronize behavior to daily temperature fluctuations, and to avoid potentially injurious environmental hazards. Members of the Transient Receptor Potential (TRP) family of cation channels are well known for their activation by changes in temperature and their essential roles in sensory transduction in both invertebrates and vertebrates. The Drosophila genome encodes 13 TRP channels, and several of these have key sensory transduction and modulatory functions in allowing larval and adult flies to make fine temperature discriminations to attain optimal body temperature, detect and avoid large environmental temperature fluctuations, and make rapid escape responses to acutely noxious stimuli. Drosophila use multiple, redundant signaling pathways and neural circuits to execute these behaviors in response to both increases and decreases in temperature of varying magnitudes and time scales. A plethora of powerful molecular and genetic tools and the fly's simple, well-characterized nervous system have given Drosophila neurobiologists a powerful platform to study the cellular and molecular mechanisms of TRP channel function and how these mechanisms are conserved in vertebrates, as well as how these channels function within sensorimotor circuits to generate both simple and complex thermosensory behaviors. PMID:27227026

  16. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster.

    PubMed

    Baenas, Nieves; Piegholdt, Stefanie; Schloesser, Anke; Moreno, Diego A; García-Viguera, Cristina; Rimbach, Gerald; Wagner, Anika E

    2016-01-01

    We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus. PMID:26901196

  17. Context and Occasion Setting in "Drosophila" Visual Learning

    ERIC Educational Resources Information Center

    Brembs, Bjorn; Wiener, Jan

    2006-01-01

    In a permanently changing environment, it is by no means an easy task to distinguish potentially important events from negligible ones. Yet, to survive, every animal has to continuously face that challenge. How does the brain accomplish this feat? Building on previous work in "Drosophila melanogaster" visual learning, we have developed an…

  18. Nociceptive neurons protect Drosophila larvae from parasitoid wasps

    PubMed Central

    Xu, Yifan; Johnson, Trevor; Zhang, Feng; Deisseroth, Karl

    2008-01-01

    Summary Background Natural selection has resulted in a complex and fascinating repertoire of innate behaviors that are produced by insects. One puzzling example occurs in fruitfly larvae that have been subjected to a noxious mechanical or thermal sensory input. In response, the larvae “roll” using a motor pattern that is completely distinct from the style of locomotion that is used for foraging. Results We have precisely mapped the sensory neurons that are used by the Drosophila larvae to detect nociceptive stimuli. Using complementary optogenetic activation and targeted silencing of sensory neurons, we have demonstrated that a single class of neuron (Class IV multidendritic neuron) is sufficient and necessary for triggering the unusual rolling behavior. In addition, we find that larvae have an innately encoded directional preference in the directionality of rolling. Surprisingly, the initial direction of rolling locomotion is towards the side of the body that has been stimulated. We propose that directional rolling might provide a selective advantage in escape from parasitoid wasps that are ubiquitously present in the natural environment of Drosophila. Consistent with this hypothesis, we have documented that larvae can escape attack of Leptopilina boulardi parasitoid wasps by rolling, occasionally flipping the attacker onto its back. Conclusions The Class IV multidendritic neurons of Drosophila larvae are nociceptive. The nociception behavior of Drosophila melanagaster larvae includes an innately encoded directional preference. Nociception behavior is elicited by the ecologically relevant sensory stimulus of parasitoid wasp attack. PMID:18060782

  19. Bazooka mediates secondary axon morphology in Drosophila brain lineages

    PubMed Central

    2011-01-01

    In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that multiple GAL4 drivers have been mapped to several lineages of the Drosophila brain enables investigation of the role of Bazooka from larval to adult stages Bazooka loss-of-function (LOF) clones had abnormal morphologies, including aberrant pathway choice of ventral projection neurons in the BAla1 lineage, ectopic branching in the DALv2 and BAmv1 lineages, and excess BLD5 lineage axon projections in the optic medulla. Exogenous expression of Bazooka protein in BAla1 neurons rescued defective guidance, supporting an intrinsic requirement for Bazooka in the post-mitotic neuron. Elimination of the Par-complex member Par6 recapitulated Bazooka phenotypes in some but not all lineages, suggesting that the Par complex functions in a lineage-dependent manner, and that Bazooka may act independently in some lineages. Importantly, this study highlights the potential of using a multilineage approach when studying gene function during neural development in Drosophila. PMID:21524279

  20. Bazooka mediates secondary axon morphology in Drosophila brain lineages.

    PubMed

    Spindler, Shana R; Hartenstein, Volker

    2011-01-01

    In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that multiple GAL4 drivers have been mapped to several lineages of the Drosophila brain enables investigation of the role of Bazooka from larval to adult stages Bazooka loss-of-function (LOF) clones had abnormal morphologies, including aberrant pathway choice of ventral projection neurons in the BAla1 lineage, ectopic branching in the DALv2 and BAmv1 lineages, and excess BLD5 lineage axon projections in the optic medulla. Exogenous expression of Bazooka protein in BAla1 neurons rescued defective guidance, supporting an intrinsic requirement for Bazooka in the post-mitotic neuron. Elimination of the Par-complex member Par6 recapitulated Bazooka phenotypes in some but not all lineages, suggesting that the Par complex functions in a lineage-dependent manner, and that Bazooka may act independently in some lineages. Importantly, this study highlights the potential of using a multilineage approach when studying gene function during neural development in Drosophila. PMID:21524279

  1. Substrate-borne vibratory communication during courtship in Drosophila melanogaster.

    PubMed

    Fabre, Caroline C G; Hedwig, Berthold; Conduit, Graham; Lawrence, Peter A; Goodwin, Stephen F; Casal, José

    2012-11-20

    Courtship in Drosophila melanogaster has become an iconic example of an innate and interactive series of behaviors. The female signals her acceptance of copulation by becoming immobile in response to a male's display of stereotyped actions. The male and female communicate via vision, air-borne sounds, and pheromones, but what triggers the female's immobility is undetermined. Here, we describe an overlooked and important component of Drosophila courtship. Video recordings and laser vibrometry show that the male abdomen shakes ("quivers"), generating substrate-borne vibrations at about six pulses per second. We present evidence that the female becomes receptive and stops walking because she senses these vibrations, rather than as a response to air-borne songs produced by the male fluttering the wings. We also present evidence that the neural circuits expressing the sex-determination genes fruitless and doublesex drive quivering behavior. These abdominal quivers and associated vibrations, as well as their effect on female receptivity, are conserved in other Drosophila species. Substrate-borne vibrations are an ancient form of communication that is widespread in animals. Our findings in Drosophila open a door to study the neuromuscular circuitry responsible for these signals and the sensory systems needed for their reception. PMID:23103187

  2. Unraveling Selection in the Mitochondrial Genome of Drosophila

    PubMed Central

    Ballard, JWO.; Kreitman, M.

    1994-01-01

    We examine mitochondrial DNA variation at the cytochrome b locus within and between three species of Drosophila to determine whether patterns of variation conform to the predictions of neutral molecular evolution. The entire 1137-bp cytochrome b locus was sequenced in 16 lines of Drosophila melanogaster, 18 lines of Drosophila simulans and 13 lines of Drosophila yakuba. Patterns of variation depart from neutrality by several test criteria. Analysis of the evolutionary clock hypothesis shows unequal rates of change along D. simulans lineages. A comparison within and between species of the ratio of amino acid replacement change to synonymous change reveals a relative excess of amino acid replacement polymorphism compared to the neutral prediction, suggestive of slightly deleterious or diversifying selection. There is evidence for excess homozygosity in our world wide sample of D. melanogaster and D. simulans alleles, as well as a reduction in the number of segregating sites in D. simulans, indicative of selective sweeps. Furthermore, a test of neutrality for codon usage shows the direction of mutations at third positions differs among different topological regions of the gene tree. The analyses indicate that molecular variation and evolution of mtDNA are governed by many of the same selective forces that have been shown to govern nuclear genome evolution and suggest caution be taken in the use of mtDNA as a ``neutral'' molecular marker. PMID:7851772

  3. P element excision in drosophila melanogaster and related drosophilids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The frequency of P element excision and the structure of the resulting excision products were determined in three drosophilid species, Drosophila melanogaster, D. virilis, and Chymomyza procnemis. A transient P element mobility assay was conducted in the cells of developing insect embryos, but unlik...

  4. Analysis of the Molecular Mechanisms of Reepithelialization in Drosophila Embryos

    PubMed Central

    Matsubayashi, Yutaka; Millard, Tom H.

    2016-01-01

    Significance: The epidermis provides the main barrier function of skin, and therefore its repair following wounding is an essential component of wound healing. Repair of the epidermis, also known as reepithelialization, occurs by collective migration of epithelial cells from around the wound edge across the wound until the advancing edges meet and fuse. Therapeutic manipulation of this process could potentially be used to accelerate wound healing. Recent Advances: It is difficult to analyze the cellular and molecular mechanisms of reepithelialization in human tissue, so a variety of model organisms have been used to improve our understanding of the process. One model system that has been especially useful is the embryo of the fruit fly Drosophila, which provides a simple, accessible model of the epidermis and can be manipulated genetically, allowing detailed analysis of reepithelialization at the molecular level. This review will highlight the key insights that have been gained from studying reepithelialization in Drosophila embryos. Critical Issues: Slow reepithelialization increases the risk of wounds becoming infected and ulcerous; therefore, the development of therapies to accelerate or enhance the process would be a great clinical advance. Improving our understanding of the molecular mechanisms that underlie reepithelialization will help in the development of such therapies. Future Directions: Research in Drosophila embryos has identified a variety of genes and proteins involved in triggering and driving reepithelialization, many of which are conserved in humans. These novel reepithelialization proteins are potential therapeutic targets and therefore findings obtained in Drosophila may ultimately lead to significant clinical advances. PMID:27274434

  5. Unique transposon landscapes are pervasive across Drosophila melanogaster genomes

    PubMed Central

    Rahman, Reazur; Chirn, Gung-wei; Kanodia, Abhay; Sytnikova, Yuliya A.; Brembs, Björn; Bergman, Casey M.; Lau, Nelson C.

    2015-01-01

    To understand how transposon landscapes (TLs) vary across animal genomes, we describe a new method called the Transposon Insertion and Depletion AnaLyzer (TIDAL) and a database of >300 TLs in Drosophila melanogaster (TIDAL-Fly). Our analysis reveals pervasive TL diversity across cell lines and fly strains, even for identically named sub-strains from different laboratories such as the ISO1 strain used for the reference genome sequence. On average, >500 novel insertions exist in every lab strain, inbred strains of the Drosophila Genetic Reference Panel (DGRP), and fly isolates in the Drosophila Genome Nexus (DGN). A minority (<25%) of transposon families comprise the majority (>70%) of TL diversity across fly strains. A sharp contrast between insertion and depletion patterns indicates that many transposons are unique to the ISO1 reference genome sequence. Although TL diversity from fly strains reaches asymptotic limits with increasing sequencing depth, rampant TL diversity causes unsaturated detection of TLs in pools of flies. Finally, we show novel transposon insertions negatively correlate with Piwi-interacting RNA (piRNA) levels for most transposon families, except for the highly-abundant roo retrotransposon. Our study provides a useful resource for Drosophila geneticists to understand how transposons create extensive genomic diversity in fly cell lines and strains. PMID:26578579

  6. Trap designs for monitoring Drosophila suzukii (Diptera: Drosophilidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drosophila suzukii Matsumura, an invasive pest of small and stone fruits, has been recently detected in 33 states of the U.S.A., and in Canada, Mexico, and Europe. This pest attacks ripening fruit causing economic losses including increased management costs and crop rejection. Ongoing research aim...

  7. Sucrose Improves Insecticide Activity Against Drosophila suzukii (Diptera: Drosophilidae).

    PubMed

    Cowles, Richard S; Rodriguez-Saona, Cesar; Holdcraft, Robert; Loeb, Gregory M; Elsensohn, Johanna E; Hesler, Steven P

    2015-04-01

    The addition of sucrose to insecticides targeting spotted wing drosophila, Drosophila suzukii (Matsumura), enhanced lethality in laboratory, semifield, and field tests. In the laboratory, 0.1% sucrose added to a spray solution enhanced spotted wing drosophila feeding. Flies died 120 min earlier when exposed to spinosad residues at label rates enhanced with sucrose. Added sucrose reduced the LC50 for dried acetamiprid residues from 82 to 41 ppm in the spray solution. Laboratory bioassays of spotted wing drosophila mortality followed exposure to grape and blueberry foliage and/or fruit sprayed and aged in the field. On grape foliage, the addition of 2.4 g/liter of sugar with insecticide sprays resulted in an 11 and 6% increase of spotted wing drosophila mortality at 1 and 2 d exposures to residues, respectively, averaged over seven insecticides with three concentrations. In a separate experiment, spinetoram and cyantraniliprole reduced by 95-100% the larval infestation of blueberries, relative to the untreated control, 7 d after application at labeled rates when applied with 1.2 g/liter sucrose in a spray mixture, irrespective of rainfall; without sucrose infestation was reduced by 46-91%. Adding sugar to the organically acceptable spinosyn, Entrust, reduced larval infestation of strawberries by >50% relative to without sugar for five of the six sample dates during a season-long field trial. In a small-plot field test with blueberries, weekly applications in alternating sprays of sucrose plus reduced-risk insecticides, spinetoram or acetamiprid, reduced larval infestation relative to the untreated control by 76%; alternating bifenthrin and phosmet (without sucrose) reduced infestation by 65%. PMID:26470175

  8. A mathematical model for apoptotic switch in Drosophila

    NASA Astrophysics Data System (ADS)

    Ziraldo, Riccardo; Ma, Lan

    2015-10-01

    Apoptosis is an evolutionarily-conserved process of autonomous cell death. The molecular switch mechanism underlying the fate decision of apoptosis in mammalian cells has been intensively studied by mathematical modeling. In contrast, the apoptotic switch in invertebrates, with highly conserved signaling proteins and pathway, remains poorly understood mechanistically and calls for theoretical elucidation. In this study, we develop a mathematical model of the apoptosis pathway in Drosophila and compare the switch mechanism to that in mammals. Enumeration of the elementary reactions for the model demonstrates that the molecular interactions among the signaling components are considerably different from their mammalian counterparts. A notable distinction in network organization is that the direct positive feedback from the effector caspase (EC) to the initiator caspase in mammalian pathway is replaced by a double-negative regulation in Drosophila. The model is calibrated by experimental input-output relationship and the simulated trajectories exhibit all-or-none bimodal behavior. Bifurcation diagrams confirm that the model of Drosophila apoptotic switch possesses bistability, a well-recognized feature for an apoptosis system. Since the apoptotic protease activating factor-1 (APAF1) induced irreversible activation of caspase is an essential and beneficial property for the mammalian apoptotic switch, we perform analysis of the bistable caspase activation with respect to the input of DARK protein, the Drosophila homolog of APAF1. Interestingly, this bistable behavior in Drosophila is predicted to be reversible. Further analysis suggests that the mechanism underlying the systems property of reversibility is the double-negative feedback from the EC to the initiator caspase. Using theoretical modeling, our study proposes plausible evolution of the switch mechanism for apoptosis between organisms.

  9. Combinatorial Gene Regulatory Functions Underlie Ultraconserved Elements in Drosophila

    PubMed Central

    Warnefors, Maria; Hartmann, Britta; Thomsen, Stefan; Alonso, Claudio R.

    2016-01-01

    Ultraconserved elements (UCEs) are discrete genomic elements conserved across large evolutionary distances. Although UCEs have been linked to multiple facets of mammalian gene regulation their extreme evolutionary conservation remains largely unexplained. Here, we apply a computational approach to investigate this question in Drosophila, exploring the molecular functions of more than 1,500 UCEs shared across the genomes of 12 Drosophila species. Our data indicate that Drosophila UCEs are hubs for gene regulatory functions and suggest that UCE sequence invariance originates from their combinatorial roles in gene control. We also note that the gene regulatory roles of intronic and intergenic UCEs (iUCEs) are distinct from those found in exonic UCEs (eUCEs). In iUCEs, transcription factor (TF) and epigenetic factor binding data strongly support iUCE roles in transcriptional and epigenetic regulation. In contrast, analyses of eUCEs indicate that they are two orders of magnitude more likely than the expected to simultaneously include protein-coding sequence, TF-binding sites, splice sites, and RNA editing sites but have reduced roles in transcriptional or epigenetic regulation. Furthermore, we use a Drosophila cell culture system and transgenic Drosophila embryos to validate the notion of UCE combinatorial regulatory roles using an eUCE within the Hox gene Ultrabithorax and show that its protein-coding region also contains alternative splicing regulatory information. Taken together our experiments indicate that UCEs emerge as a result of combinatorial gene regulatory roles and highlight common features in mammalian and insect UCEs implying that similar processes might underlie ultraconservation in diverse animal taxa. PMID:27247329

  10. Combinatorial Gene Regulatory Functions Underlie Ultraconserved Elements in Drosophila.

    PubMed

    Warnefors, Maria; Hartmann, Britta; Thomsen, Stefan; Alonso, Claudio R

    2016-09-01

    Ultraconserved elements (UCEs) are discrete genomic elements conserved across large evolutionary distances. Although UCEs have been linked to multiple facets of mammalian gene regulation their extreme evolutionary conservation remains largely unexplained. Here, we apply a computational approach to investigate this question in Drosophila, exploring the molecular functions of more than 1,500 UCEs shared across the genomes of 12 Drosophila species. Our data indicate that Drosophila UCEs are hubs for gene regulatory functions and suggest that UCE sequence invariance originates from their combinatorial roles in gene control. We also note that the gene regulatory roles of intronic and intergenic UCEs (iUCEs) are distinct from those found in exonic UCEs (eUCEs). In iUCEs, transcription factor (TF) and epigenetic factor binding data strongly support iUCE roles in transcriptional and epigenetic regulation. In contrast, analyses of eUCEs indicate that they are two orders of magnitude more likely than the expected to simultaneously include protein-coding sequence, TF-binding sites, splice sites, and RNA editing sites but have reduced roles in transcriptional or epigenetic regulation. Furthermore, we use a Drosophila cell culture system and transgenic Drosophila embryos to validate the notion of UCE combinatorial regulatory roles using an eUCE within the Hox gene Ultrabithorax and show that its protein-coding region also contains alternative splicing regulatory information. Taken together our experiments indicate that UCEs emerge as a result of combinatorial gene regulatory roles and highlight common features in mammalian and insect UCEs implying that similar processes might underlie ultraconservation in diverse animal taxa. PMID:27247329

  11. Environmental ethanol as an ecological constraint on the dietary breadth of the Spotted-Wing Drosophila, Drosophila suzukii Mat. (Diptera: Drosophilidae) and its implication for integrated pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spotted-wing Drosophila (SWD), Drosophila suzukii, is a recent exotic insect pest of the Americas. What makes SWD particularly destructive is the female’s double bladed and prominently serrated ovipositor, which inserts eggs below the epidermis of intact berries. Unlike the vast majority of Drosophi...

  12. Trapping spotted wing drosophila, Drosophila suzukii (Matsumura)(Diptera: Drosophilidae) with combinations of vinegar and wine, and acetic acid and ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recommendations for monitoring spotted wing drosophila (SWD) Drosophila suzukii, (Matsumura) are to use either vinegar or wine as a bait for traps. Traps baited with vinegar and traps baited with wine, in field tests in northern Oregon, captured large numbers of male and female SWD flies. Numbers of...

  13. Effect of sterol metabolism in the yeast-Drosophila system on the frequency of radiation-induced aneuploidy in the Drosophila melanogaster oocytes

    SciTech Connect

    Savitskii, V.V.; Luchnikova, E.M.; Inge-Vechtomov, S.G.

    1986-01-01

    The effect of sterol metabolism on induced mutagenesis of Drosophila melanogaster was studied in the ecogenetic system of yeast-Drosophila. Sterol deficiency was created in Drosophila by using the biomass of live cells of Saccharomyces cerevisiae strain 9-2-P712 till mutation in locus nys/sup r1/ blocking the synthesis of ergosterol as the food. It was found that rearing of Drosophila females on the mutant yeast increases the frequency of loss and nondisjunction of X chromosomes induced in mature oocytes by X rays (1000 R). Addition of 0.1% of cholesterol solution in 10% ethanol to the yeast biomass restores the resistance of oocyte to X irradiation to the control level. The possible hormonal effect on membrane leading to increased radiation-induced aneuploidy in Drosophila and the role of sterol metabolism in determining the resistance to various damaging factors are discussed.

  14. Drosophila melanogaster as a model for human intestinal infection and pathology

    PubMed Central

    Apidianakis, Yiorgos; Rahme, Laurence G.

    2011-01-01

    Recent findings concerning Drosophila melanogaster intestinal pathology suggest that this model is well suited for the study of intestinal stem cell physiology during aging, stress and infection. Despite the physiological divergence between vertebrates and insects, the modeling of human intestinal diseases is possible in Drosophila because of the high degree of conservation between Drosophila and mammals with respect to the signaling pathways that control intestinal development, regeneration and disease. Furthermore, the genetic amenability of Drosophila makes it an advantageous model species. The well-studied intestinal stem cell lineage, as well as the tools available for its manipulation in vivo, provide a promising framework that can be used to elucidate many aspects of human intestinal pathology. In this Perspective, we discuss recent advances in the study of Drosophila intestinal infection and pathology, and briefly review the parallels and differences between human and Drosophila intestinal regeneration and disease. PMID:21183483

  15. Solvent dimethylsulfoxide (DMSO) does not induce aneuploidy in oocytes of Drosophila melanogaster

    SciTech Connect

    Traut, H.

    1983-01-01

    Both with a conventional method and with the ''aneuploidy pattern method'' the authors tested whether the solvent dimethylsulfoxide (DMSO) is able to induce aneuploidy (numerical chromosome aberrations) in oocytes of Drosophila melanogaster. DMSO was fed as a 2% solution to Drosophila females. No evidence for a mutagenic activity was obtained. This finding and the negative results reported by other authors for other types of mutation in Drosophila show that DMSO can be used as a solvent for chemical agents in mutagencity screening in Drosophila melanogaster.

  16. Studies of the repair of radiation-induced genetic damage in Drosophila. Annual progress report, February 1-July 1, 1983

    SciTech Connect

    Not Available

    1983-01-01

    Research progress is reported in the following areas: (1) characterization of a photo-repair deficient mutant in Drosophila; (2) the role of poly(ADPR)polymerase in Drosophila repair; and (3) service functions. (ACR)

  17. Model systems, taxonomic bias, and sexual selection: beyond Drosophila.

    PubMed

    Zuk, Marlene; Garcia-Gonzalez, Francisco; Herberstein, Marie Elisabeth; Simmons, Leigh W

    2014-01-01

    Although model systems are useful in entomology, allowing generalizations based on a few well-known species, they also have drawbacks. It can be difficult to know how far to generalize from information in a few species: Are all flies like Drosophila? The use of model systems is particularly problematic in studying sexual selection, where variability among taxa is key to the evolution of different behaviors. A bias toward the use of a few insect species, particularly from the genus Drosophila, is evident in the sexual selection and sexual conflict literature over the past several decades, although the diversity of study organisms has increased more recently. As the number of model systems used to study sexual conflict increased, support for the idea that sexual interactions resulted in harm to females decreased. Future work should choose model systems thoughtfully, combining well-known species with those that can add to the variation that allows us to make more meaningful generalizations. PMID:24160422

  18. Drosophila melanogaster as a model for basal body research.

    PubMed

    Jana, Swadhin Chandra; Bettencourt-Dias, Mónica; Durand, Bénédicte; Megraw, Timothy L

    2016-01-01

    The fruit fly, Drosophila melanogaster, is one of the most extensively studied organisms in biological research and has centrioles/basal bodies and cilia that can be modelled to investigate their functions in animals generally. Centrioles are nine-fold symmetrical microtubule-based cylindrical structures required to form centrosomes and also to nucleate the formation of cilia and flagella. When they function to template cilia, centrioles transition into basal bodies. The fruit fly has various types of basal bodies and cilia, which are needed for sensory neuron and sperm function. Genetics, cell biology and behaviour studies in the fruit fly have unveiled new basal body components and revealed different modes of assembly and functions of basal bodies that are conserved in many other organisms, including human, green algae and plasmodium. Here we describe the various basal bodies of Drosophila, what is known about their composition, structure and function. PMID:27382461

  19. Effect of a Magnetic Field on Drosophila under Supercooled Conditions

    PubMed Central

    Mihara, Makoto; Terayama, Hayato; Hatayama, Naoyuki; Hayashi, Shogo; Matsushita, Masayuki; Itoh, Masahiro

    2012-01-01

    Under subzero degree conditions, free water contained in biological cells tends to freeze and then most living things die due to low temperatures. We examined the effect of a variable magnetic field on Drosophila under supercooled conditions (a state in which freezing is not caused even below the freezing point). Under such supercooled conditions with the magnetic field at 0°C for 72 hours, −4°C for 24 hours and −8°C for 1 hour, the Drosophila all survived, while all conversely died under the supercooled conditions without the magnetic field. This result indicates a possibility that the magnetic field can reduce cell damage caused due to low temperatures in living things. PMID:23284809

  20. Dissecting neural pathways for forgetting in Drosophila olfactory aversive memory

    PubMed Central

    Shuai, Yichun; Hirokawa, Areekul; Ai, Yulian; Zhang, Min; Li, Wanhe; Zhong, Yi

    2015-01-01

    Recent studies have identified molecular pathways driving forgetting and supported the notion that forgetting is a biologically active process. The circuit mechanisms of forgetting, however, remain largely unknown. Here we report two sets of Drosophila neurons that account for the rapid forgetting of early olfactory aversive memory. We show that inactivating these neurons inhibits memory decay without altering learning, whereas activating them promotes forgetting. These neurons, including a cluster of dopaminergic neurons (PAM-β′1) and a pair of glutamatergic neurons (MBON-γ4>γ1γ2), terminate in distinct subdomains in the mushroom body and represent parallel neural pathways for regulating forgetting. Interestingly, although activity of these neurons is required for memory decay over time, they are not required for acute forgetting during reversal learning. Our results thus not only establish the presence of multiple neural pathways for forgetting in Drosophila but also suggest the existence of diverse circuit mechanisms of forgetting in different contexts. PMID:26627257

  1. Awakening to the behavioral analysis of sleep in Drosophila.

    PubMed

    Shaw, Paul

    2003-02-01

    Perhaps the most observable of the many circadian oscillations that have been described in both vertebrate and invertebrate animals is the daily alterations in periods of rest and activity. Recent studies in the fruit fly Drosophila melanogaster suggest that these periods of inactivity are not simply rest but share many of the fundamental components that define mammalian sleep. Thus, quiescent episodes are characterized by reduced awareness of the environment and are homeostatically regulated. Although this field is in its infancy, recent studies have focused on the interaction between circadian and homeostatic processes. These results indicate that components of the circadian clock may play a substantial role in mechanisms underlying sleep homeostasis at the molecular level. In this article, the author reviews recent advances obtained using Drosophila as a model system to elucidate fundamental components of sleep regulation. PMID:12568240

  2. The DHR96 nuclear receptor controls triacylglycerol homeostasis in Drosophila.

    PubMed

    Sieber, Matthew H; Thummel, Carl S

    2009-12-01

    Triacylglycerol (TAG) homeostasis is an integral part of normal physiology and essential for proper energy metabolism. Here we show that the single Drosophila ortholog of the PXR and CAR nuclear receptors, DHR96, plays an essential role in TAG homeostasis. DHR96 mutants are sensitive to starvation, have reduced levels of TAG in the fat body and midgut, and are resistant to diet-induced obesity, while DHR96 overexpression leads to starvation resistance and increased TAG levels. We show that DHR96 function is required in the midgut for the breakdown of dietary fat and that it exerts this effect through the CG5932 gastric lipase, which is essential for TAG homeostasis. This study provides insights into the regulation of dietary fat metabolism in Drosophila and demonstrates that the regulation of lipid metabolism is an ancestral function of the PXR/CAR/DHR96 nuclear receptor subfamily. PMID:19945405

  3. Separate TRP channels mediate amplification and transduction in drosophila

    NASA Astrophysics Data System (ADS)

    Lehnert, Brendan P.; Baker, Allison E.; Wilson, Rachel I.

    2015-12-01

    Auditory receptor cells rely on mechanically-gated channels to transform sound stimuli into neural activity. Several TRP channels have been implicated in Drosophila auditory transduction, but mechanistic studies have been hampered by the inability to record subthreshold signals from receptor neurons. We developed a non-invasive method for measuring these signals by recording from a central neuron that is electrically coupled to a genetically-defined population of auditory receptors. We find that the TRPN family member NompC, which is necessary for the active amplification of motion by the auditory organ, is not required for transduction. Instead, NompC sensitizes the transduction complex to movement and precisely regulates the static forces on the complex. In contrast, the TRPV channels Nanchung and Inactive are required for responses to sound, suggesting they are components of the transduction complex. Thus, transduction and active amplification are genetically separable processes in Drosophila hearing.

  4. Heterochromatin remodeling by CDK12 contributes to learning in Drosophila

    PubMed Central

    Pan, Lixia; Xie, Wenbing; Li, Kai-Le; Yang, Zhihao; Xu, Jiang; Zhang, Wenhao; Liu, Lu-Ping; Ren, Xingjie; He, Zhimin; Wu, Junyu; Sun, Jin; Wei, Hui-Min; Wang, Daliang; Xie, Wei; Li, Wei; Ni, Jian-Quan; Sun, Fang-Lin

    2015-01-01

    Dynamic regulation of chromatin structure is required to modulate the transcription of genes in eukaryotes. However, the factors that contribute to the plasticity of heterochromatin structure are elusive. Here, we report that cyclin-dependent kinase 12 (CDK12), a transcription elongation-associated RNA polymerase II (RNAPII) kinase, antagonizes heterochromatin enrichment in Drosophila chromosomes. Notably, loss of CDK12 induces the ectopic accumulation of heterochromatin protein 1 (HP1) on euchromatic arms, with a prominent enrichment on the X chromosome. Furthermore, ChIP and sequencing analysis reveals that the heterochromatin enrichment on the X chromosome mainly occurs within long genes involved in neuronal functions. Consequently, heterochromatin enrichment reduces the transcription of neuronal genes in the adult brain and results in a defect in Drosophila courtship learning. Taken together, these results define a previously unidentified role of CDK12 in controlling the epigenetic transition between euchromatin and heterochromatin and suggest a chromatin regulatory mechanism in neuronal behaviors. PMID:26508632

  5. Circadian Organization of Behavior and Physiology in Drosophila

    PubMed Central

    Allada, Ravi; Chung, Brian Y.

    2010-01-01

    Circadian clocks organize behavior and physiology to adapt to daily environmental cycles. Genetic approaches in the fruit fly, Drosophila melanogaster, have revealed widely conserved molecular gears of these 24-h timers. Yet much less is known about how these cell-autonomous clocks confer temporal information to modulate cellular functions. Here we discuss our current knowledge of circadian clock function in Drosophila, providing an overview of the molecular underpinnings of circadian clocks. We then describe the neural network important for circadian rhythms of locomotor activity, including how these molecular clocks might influence neuronal function. Finally, we address a range of behaviors and physiological systems regulated by circadian clocks, including discussion of specific peripheral oscillators and key molecular effectors where they have been described. These studies reveal a remarkable complexity to circadian pathways in this “simple” model organism. PMID:20148690

  6. Frequent Replenishment Sustains the Beneficial Microbiome of Drosophila melanogaster

    PubMed Central

    Blum, Jessamina E.; Fischer, Caleb N.; Miles, Jessica; Handelsman, Jo

    2013-01-01

    ABSTRACT We report that establishment and maintenance of the Drosophila melanogaster microbiome depend on ingestion of bacteria. Frequent transfer of flies to sterile food prevented establishment of the microbiome in newly emerged flies and reduced the predominant members, Acetobacter and Lactobacillus spp., by 10- to 1,000-fold in older flies. Flies with a normal microbiome were less susceptible than germfree flies to infection by Serratia marcescens and Pseudomonas aeruginosa. Augmentation of the normal microbiome with higher populations of Lactobacillus plantarum, a Drosophila commensal and probiotic used in humans, further protected the fly from infection. Replenishment represents an unexplored strategy by which animals can sustain a gut microbial community. Moreover, the population behavior and health benefits of L. plantarum resemble features of certain probiotic bacteria administered to humans. As such, L. plantarum in the fly gut may serve as a simple model for dissecting the population dynamics and mode of action of probiotics in animal hosts. PMID:24194543

  7. Calmodulin Point Mutations Affect Drosophila Development and Behavior

    PubMed Central

    Nelson, H. B.; Heiman, R. G.; Bolduc, C.; Kovalick, G. E.; Whitley, P.; Stern, M.; Beckingham, K.

    1997-01-01

    Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations. PMID:9409836

  8. Measurement of Metabolic Rate in Drosophila using Respirometry

    PubMed Central

    Yatsenko, Andriy S.; Marrone, April K.; Kucherenko, Mariya M.; Shcherbata, Halyna R.

    2014-01-01

    Metabolic disorders are a frequent problem affecting human health. Therefore, understanding the mechanisms that regulate metabolism is a crucial scientific task. Many disease causing genes in humans have a fly homologue, making Drosophila a good model to study signaling pathways involved in the development of different disorders. Additionally, the tractability of Drosophila simplifies genetic screens to aid in identifying novel therapeutic targets that may regulate metabolism. In order to perform such a screen a simple and fast method to identify changes in the metabolic state of flies is necessary. In general, carbon dioxide production is a good indicator of substrate oxidation and energy expenditure providing information about metabolic state. In this protocol we introduce a simple method to measure CO2 output from flies. This technique can potentially aid in the identification of genetic perturbations affecting metabolic rate. PMID:24998593

  9. Systemic Bacterial Infection and Immune Defense Phenotypes in Drosophila Melanogaster

    PubMed Central

    Khalil, Sarah; Jacobson, Eliana; Chambers, Moria C.; Lazzaro, Brian P.

    2015-01-01

    The fruit fly Drosophila melanogaster is one of the premier model organisms for studying the function and evolution of immune defense. Many aspects of innate immunity are conserved between insects and mammals, and since Drosophila can readily be genetically and experimentally manipulated, they are powerful for studying immune system function and the physiological consequences of disease. The procedure demonstrated here allows infection of flies by introduction of bacteria directly into the body cavity, bypassing epithelial barriers and more passive forms of defense and allowing focus on systemic infection. The procedure includes protocols for the measuring rates of host mortality, systemic pathogen load, and degree of induction of the host immune system. This infection procedure is inexpensive, robust and quantitatively repeatable, and can be used in studies of functional genetics, evolutionary life history, and physiology. PMID:25992475

  10. Fluorescent visualization of macromolecules in Drosophila whole mounts.

    PubMed

    Ramos, Ricardo Guelerman Pinheiro; Machado, Luciana Claudia Herculano; Moda, Livia Maria Rosatto

    2010-01-01

    The ability to determine the expression dynamics of individual genes "in situ" by visualizing the precise spatial and temporal distribution of their products in whole mounts by histochemical and immunocytochemical reactions has revolutionized our understanding of cellular processes. Drosophila developmental genetics was one of the fields that benefited most from these technologies, and a variety of fluorescent methods were specifically designed for investigating the localization of developmentally important proteins and cell markers during embryonic and post embryonic stages of this model organism. In this chapter we present detailed protocols for fluorescence immunocytochemistry of whole mount embryos, imaginal discs, pupal retinas, and salivary glands of Drosophila melanogaster, as well as methods for fluorescent visualization of specific subcellular structures in these tissues. PMID:20012830

  11. Electron spin changes during general anesthesia in Drosophila

    PubMed Central

    Turin, Luca; Skoulakis, Efthimios M. C.; Horsfield, Andrew P.

    2014-01-01

    We show that the general anesthetics xenon, sulfur hexafluoride, nitrous oxide, and chloroform cause rapid increases of different magnitude and time course in the electron spin content of Drosophila. With the exception of CHCl3, these changes are reversible. Anesthetic-resistant mutant strains of Drosophila exhibit a different pattern of spin responses to anesthetic. In two such mutants, the spin response to CHCl3 is absent. We propose that these spin changes are caused by perturbation of the electronic structure of proteins by general anesthetics. Using density functional theory, we show that general anesthetics perturb and extend the highest occupied molecular orbital of a nine-residue α-helix. The calculated perturbations are qualitatively in accord with the Meyer–Overton relationship and some of its exceptions. We conclude that there may be a connection between spin, electron currents in cells, and the functioning of the nervous system. PMID:25114249

  12. Drosophila melanogaster as a Model Organism of Brain Diseases

    PubMed Central

    Jeibmann, Astrid; Paulus, Werner

    2009-01-01

    Drosophila melanogaster has been utilized to model human brain diseases. In most of these invertebrate transgenic models, some aspects of human disease are reproduced. Although investigation of rodent models has been of significant impact, invertebrate models offer a wide variety of experimental tools that can potentially address some of the outstanding questions underlying neurological disease. This review considers what has been gleaned from invertebrate models of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, metabolic diseases such as Leigh disease, Niemann-Pick disease and ceroid lipofuscinoses, tumor syndromes such as neurofibromatosis and tuberous sclerosis, epilepsy as well as CNS injury. It is to be expected that genetic tools in Drosophila will reveal new pathways and interactions, which hopefully will result in molecular based therapy approaches. PMID:19333415

  13. Building from the ground up: basement membranes in Drosophila development

    PubMed Central

    Isabella, Adam J.; Horne-Badovinac, Sally

    2016-01-01

    Basement Membranes (BMs) are sheet-like extracellular matrices found at the basal surfaces of epithelial tissues. The structural and functional diversity of these matrices within the body endows them with the ability to affect multiple aspects of cell behavior and communication; for this reason, BMs are integral to many developmental processes. The power of Drosophila genetics, as applied to the BM, has yielded substantial insight into how these matrices influence development. Here, we explore three facets of BM biology to which Drosophila research has made particularly important contributions. First we discuss how newly synthesized BM proteins are secreted to and assembled exclusively on basal epithelial surfaces. Next, we examine how regulation of the structural properties of the BM mechanically supports and guides tissue morphogenesis. Finally, we explore how BMs influence development through the modulation of several major signaling pathways. PMID:26610918

  14. Drosophila neuroligin 4 regulates sleep through modulating GABA transmission.

    PubMed

    Li, Yi; Zhou, Zikai; Zhang, Xinwang; Tong, Huawei; Li, Peipei; Zhang, Zi Chao; Jia, Zhengping; Xie, Wei; Han, Junhai

    2013-09-25

    Sleep is an essential and evolutionarily conserved behavior that is closely related to synaptic function. However, whether neuroligins (Nlgs), which are cell adhesion molecules involved in synapse formation and synaptic transmission, are involved in sleep is not clear. Here, we show that Drosophila Nlg4 (DNlg4) is highly expressed in large ventral lateral clock neurons (l-LNvs) and that l-LNv-derived DNlg4 is essential for sleep regulation. GABA transmission is impaired in mutant l-LNv, and sleep defects in dnlg4 mutant flies can be rescued by genetic manipulation of GABA transmission. Furthermore, dnlg4 mutant flies exhibit a severe reduction in GABAA receptor RDL clustering, and DNlg4 associates with RDLs in vivo. These results demonstrate that DNlg4 regulates sleep through modulating GABA transmission in l-LNvs, which provides the first known link between a synaptic adhesion molecule and sleep in Drosophila. PMID:24068821

  15. Learning the specific quality of taste reinforcement in larval Drosophila

    PubMed Central

    Schleyer, Michael; Miura, Daisuke; Tanimura, Teiichi; Gerber, Bertram

    2015-01-01

    The only property of reinforcement insects are commonly thought to learn about is its value. We show that larval Drosophila not only remember the value of reinforcement (How much?), but also its quality (What?). This is demonstrated both within the appetitive domain by using sugar vs amino acid as different reward qualities, and within the aversive domain by using bitter vs high-concentration salt as different qualities of punishment. From the available literature, such nuanced memories for the quality of reinforcement are unexpected and pose a challenge to present models of how insect memory is organized. Given that animals as simple as larval Drosophila, endowed with but 10,000 neurons, operate with both reinforcement value and quality, we suggest that both are fundamental aspects of mnemonic processing—in any brain. DOI: http://dx.doi.org/10.7554/eLife.04711.001 PMID:25622533

  16. Drosophila Myc: a master regulator of cellular performance

    PubMed Central

    Grifoni, Daniela; Bellosta, Paola

    2014-01-01

    The identification of the Drosophila homolog of the human MYC oncogene has fostered a series of studies aimed to address its functions in development and cancer biology. Due to its essential roles in many fundamental biological processes it is hard to imagine a molecular mechanism in which MYC function is not required. For this reason, the easily manipulated Drosophila system has greatly helped in the dissection of the genetic and molecular pathways that regulate and are regulated by MYC function. In this review, we focus on studies of MYC in the fruitfly with particular emphasis on metabolism and cell competition, highlighting the contributions of this model system in the last decade to our understanding of MYC’s complex biological nature. PMID:25010747

  17. Cas9-Mediated Genome Engineering in Drosophila melanogaster.

    PubMed

    Housden, Benjamin E; Perrimon, Norbert

    2016-01-01

    The recent development of the CRISPR-Cas9 system for genome engineering has revolutionized our ability to modify the endogenous DNA sequence of many organisms, including Drosophila This system allows alteration of DNA sequences in situ with single base-pair precision and is now being used for a wide variety of applications. To use the CRISPR system effectively, various design parameters must be considered, including single guide RNA target site selection and identification of successful editing events. Here, we review recent advances in CRISPR methodology in Drosophila and introduce protocols for some of the more difficult aspects of CRISPR implementation: designing and generating CRISPR reagents and detecting indel mutations by high-resolution melt analysis. PMID:27587786

  18. Conventional and Non-Conventional Drosophila Toll Signaling

    PubMed Central

    Lindsay, Scott A.; Wasserman, Steven A.

    2013-01-01

    The discovery of Toll in Drosophila and of the remarkable conservation in pathway composition and organization catalyzed a transformation in our understanding of innate immune recognition and response. At the center of that picture is a cascade of interactions in which specific microbial cues activate Toll receptors, which then transmit signals driving transcription factor nuclear localization and activity. Experiments gave substance to the vision of pattern recognition receptors, linked phenomena in development, gene regulation, and immunity into a coherent whole, and revealed a rich set of variations for identifying non-self and responding effectively. More recently, research in Drosophila has illuminated the positive and negative regulation of Toll activation, the organization of signaling events at and beneath membranes, the sorting of information flow, and the existence of non-conventional signaling via Toll-related receptors. Here, we provide an overview of the Toll pathway of flies and highlight these ongoing realms of research. PMID:23632253

  19. Clonal development and organization of the adult Drosophila central brain

    PubMed Central

    Yu, Hung-Hsiang; Awasaki, Takeshi; Schroeder, Mark David; Long, Fuhui; Yang, Jacob S.; He, Yisheng; Ding, Peng; Kao, Jui-Chun; Wu, Gloria Yueh-Yi; Peng, Hanchuan; Myers, Gene; Lee, Tzumin

    2013-01-01

    Summary Background The insect brain can be divided into neuropils that are formed by neurites of both local and remote origin. The complexity of the interconnections obscures how these neuropils are established and interconnected through development. The Drosophila central brain develops from a fixed number of neuroblasts (NBs) that deposit neurons in regional clusters. Results By determining individual NB clones and pursuing their projections into specific neuropils we unravel the regional development of the brain neural network. Exhaustive clonal analysis revealed 95 stereotyped neuronal lineages with characteristic cell body locations and neurite trajectories. Most clones show complex projection patterns, but despite the complexity, neighboring clones often co-innervate the same local neuropil(s) and further target a restricted set of distant neuropils. Conclusions These observations argue for regional clonal development of both neuropils and neuropil connectivity throughout the Drosophila central brain. PMID:23541733

  20. Heterochromatin remodeling by CDK12 contributes to learning in Drosophila.

    PubMed

    Pan, Lixia; Xie, Wenbing; Li, Kai-Le; Yang, Zhihao; Xu, Jiang; Zhang, Wenhao; Liu, Lu-Ping; Ren, Xingjie; He, Zhimin; Wu, Junyu; Sun, Jin; Wei, Hui-Min; Wang, Daliang; Xie, Wei; Li, Wei; Ni, Jian-Quan; Sun, Fang-Lin

    2015-11-10

    Dynamic regulation of chromatin structure is required to modulate the transcription of genes in eukaryotes. However, the factors that contribute to the plasticity of heterochromatin structure are elusive. Here, we report that cyclin-dependent kinase 12 (CDK12), a transcription elongation-associated RNA polymerase II (RNAPII) kinase, antagonizes heterochromatin enrichment in Drosophila chromosomes. Notably, loss of CDK12 induces the ectopic accumulation of heterochromatin protein 1 (HP1) on euchromatic arms, with a prominent enrichment on the X chromosome. Furthermore, ChIP and sequencing analysis reveals that the heterochromatin enrichment on the X chromosome mainly occurs within long genes involved in neuronal functions. Consequently, heterochromatin enrichment reduces the transcription of neuronal genes in the adult brain and results in a defect in Drosophila courtship learning. Taken together, these results define a previously unidentified role of CDK12 in controlling the epigenetic transition between euchromatin and heterochromatin and suggest a chromatin regulatory mechanism in neuronal behaviors. PMID:26508632

  1. Dissecting neural pathways for forgetting in Drosophila olfactory aversive memory.

    PubMed

    Shuai, Yichun; Hirokawa, Areekul; Ai, Yulian; Zhang, Min; Li, Wanhe; Zhong, Yi

    2015-12-01

    Recent studies have identified molecular pathways driving forgetting and supported the notion that forgetting is a biologically active process. The circuit mechanisms of forgetting, however, remain largely unknown. Here we report two sets of Drosophila neurons that account for the rapid forgetting of early olfactory aversive memory. We show that inactivating these neurons inhibits memory decay without altering learning, whereas activating them promotes forgetting. These neurons, including a cluster of dopaminergic neurons (PAM-β'1) and a pair of glutamatergic neurons (MBON-γ4>γ1γ2), terminate in distinct subdomains in the mushroom body and represent parallel neural pathways for regulating forgetting. Interestingly, although activity of these neurons is required for memory decay over time, they are not required for acute forgetting during reversal learning. Our results thus not only establish the presence of multiple neural pathways for forgetting in Drosophila but also suggest the existence of diverse circuit mechanisms of forgetting in different contexts. PMID:26627257

  2. The Anoctamin Family Channel Subdued Mediates Thermal Nociception in Drosophila*

    PubMed Central

    Jang, Wijeong; Kim, Ji Young; Cui, Shanyu; Jo, Juyeon; Lee, Byoung-Cheol; Lee, Yeonwoo; Kwon, Ki-Sun; Park, Chul-Seung; Kim, Changsoo

    2015-01-01

    Calcium-permeable and thermosensitive transient receptor potential (TRP) channels mediate the nociceptive transduction of noxious temperature in Drosophila nociceptors. However, the underlying molecular mechanisms are not completely understood. Here we find that Subdued, a calcium-activated chloride channel of the Drosophila anoctamin family, functions in conjunction with the thermo-TRPs in thermal nociception. Genetic analysis with deletion and the RNAi-mediated reduction of subdued show that subdued is required for thermal nociception in nociceptors. Further genetic analysis of subdued mutant and thermo-TRP mutants show that they interact functionally in thermal nociception. We find that Subdued expressed in heterologous cells mediates a strong chloride conductance in the presence of both heat and calcium ions. Therefore, our analysis suggests that Subdued channels may amplify the nociceptive neuronal firing that is initiated by thermo-TRP channels in response to thermal stimuli. PMID:25505177

  3. NF-κB in the Immune Response of Drosophila

    PubMed Central

    Hetru, Charles; Hoffmann, Jules A.

    2009-01-01

    The nuclear factor κB (NF-κB) pathways play a major role in Drosophila host defense. Two recognition and signaling cascades control this immune response. The Toll pathway is activated by Gram-positive bacteria and by fungi, whereas the immune deficiency (Imd) pathway responds to Gram-negative bacterial infection. The basic mechanisms of recognition of these various types of microbial infections by the adult fly are now globally understood. Even though some elements are missing in the intracellular pathways, numerous proteins and interactions have been identified. In this article, we present a general picture of the immune functions of NF-κB in Drosophila with all the partners involved in recognition and in the signaling cascades. PMID:20457557

  4. Oligonucleotide-directed site-specific mutagenesis in Drosophila melanogaster.

    PubMed Central

    Banga, S S; Boyd, J B

    1992-01-01

    An efficient technique has been developed for performing in vivo site-directed mutagenesis in Drosophila melanogaster. This procedure involves directed repair of P-element-induced DNA lesions after injection of a modified DNA sequence into early embryos. An oligonucleotide of 50 base pairs, whose sequence spans the P-element insertion site, mediates base replacement in the endogenous gene. Restriction mapping, DNA sequencing, and polymerase chain reaction analysis demonstrate that base substitutions present in an injected oligonucleotide are incorporated into genomic sequences flanking a P insertion site in the white gene. This analysis suggests that progeny bearing directed mutations are recovered with a frequency of about 0.5 x 10(-3). Because Drosophila remains a premier organism for the analysis of eukaryotic gene regulation, this system should find strong application in that analysis as well as in the analysis of DNA recombination, conversion, repair, and mutagenesis. Images PMID:1311850

  5. Measurement of Larval Activity in the Drosophila Activity Monitor

    PubMed Central

    McParland, Aidan L.; Follansbee, Taylor L.; Ganter, Geoffrey K.

    2016-01-01

    Drosophila larvae are used in many behavioral studies, yet a simple device for measuring basic parameters of larval activity has not been available. This protocol repurposes an instrument often used to measure adult activity, the TriKinetics Drosophila activity monitor (MB5 Multi-Beam Activity Monitor) to study larval activity. The instrument can monitor the movements of animals in 16 individual 8 cm glass assay tubes, using 17 infrared detection beams per tube. Logging software automatically saves data to a computer, recording parameters such as number of moves, times sensors were triggered, and animals’ positions within the tubes. The data can then be analyzed to represent overall locomotion and/or position preference as well as other measurements. All data are easily accessible and compatible with basic graphing and data manipulation software. This protocol will discuss how to use the apparatus, how to operate the software and how to run a larval activity assay from start to finish. PMID:25993121

  6. Drosophila Cancer Models Identify Functional Differences between Ret Fusions.

    PubMed

    Levinson, Sarah; Cagan, Ross L

    2016-09-13

    We generated and compared Drosophila models of RET fusions CCDC6-RET and NCOA4-RET. Both RET fusions directed cells to migrate, delaminate, and undergo EMT, and both resulted in lethality when broadly expressed. In all phenotypes examined, NCOA4-RET was more severe than CCDC6-RET, mirroring their effects on patients. A functional screen against the Drosophila kinome and a library of cancer drugs found that CCDC6-RET and NCOA4-RET acted through different signaling networks and displayed distinct drug sensitivities. Combining data from the kinome and drug screens identified the WEE1 inhibitor AZD1775 plus the multi-kinase inhibitor sorafenib as a synergistic drug combination that is specific for NCOA4-RET. Our work emphasizes the importance of identifying and tailoring a patient's treatment to their specific RET fusion isoform and identifies a multi-targeted therapy that may prove effective against tumors containing the NCOA4-RET fusion. PMID:27626672

  7. A pulsed magnetic stress applied to Drosophila melanogaster flies

    NASA Astrophysics Data System (ADS)

    Delle Side, D.; Bozzetti, M. P.; Friscini, A.; Giuffreda, E.; Nassisi, V.; Specchia, V.; Velardi, L.

    2014-04-01

    We report the development of a system to feed pulsed magnetic stress to biological samples. The device is based on a RLC circuit that transforms the energy stored in a high voltage capacitor into a magnetic field inside a coil. The field has been characterized and we found that charging the capacitor with 24 kV results in a peak field of 0.4 T. In order to test its effect, we applied such a stress to the Drosophila melanogaster model and we examined its bio-effects. We analysed, in the germ cells, the effects on the control of specific DNA repetitive sequences that are activated after different environmental stresses. The deregulation of these sequences causes genomic instability and chromosomes breaks leading to sterility. The magnetic field treatment did not produce effects on repetitive sequences in the germ cells of Drosophila. Hence, this field doesn't produce deleterious effects linked to repetitive sequences derepression.

  8. Development and organization of glial cells in Drosophila melanogaster.

    PubMed

    Giangrande, A

    1996-10-01

    Glial cells constitute a crucial component of the nervous system. They wrap the neuronal somata and axons and play a number of roles during normal neuronal development and activity as well as during axonal regeneration after wounding. The availability of cellular markers and genetic tools have made it possible in Drosophila to start identifying the genes and the cell-cell interactions leading to glial cell differentiation. The existence of multipotent precursor cells in the nervous system, the requirement for master genes determining the glial cell fate, the migratory abilities of fly glial cells and the existence of neuron-glial cell interactions during development are some of the features revealed by these approaches. These findings also indicate an evolutionary conservation in the developmental mechanisms between invertebrates and vertebrates. Finally, Drosophila is an ideal model system to determine in vivo the precise roles of glial cells and to study the etiology of pathologies associated with abnormal glial differentiation. PMID:8946240

  9. Structures of the human and Drosophila 80S ribosome.

    PubMed

    Anger, Andreas M; Armache, Jean-Paul; Berninghausen, Otto; Habeck, Michael; Subklewe, Marion; Wilson, Daniel N; Beckmann, Roland

    2013-05-01

    Protein synthesis in all cells is carried out by macromolecular machines called ribosomes. Although the structures of prokaryotic, yeast and protist ribosomes have been determined, the more complex molecular architecture of metazoan 80S ribosomes has so far remained elusive. Here we present structures of Drosophila melanogaster and Homo sapiens 80S ribosomes in complex with the translation factor eEF2, E-site transfer RNA and Stm1-like proteins, based on high-resolution cryo-electron-microscopy density maps. These structures not only illustrate the co-evolution of metazoan-specific ribosomal RNA with ribosomal proteins but also reveal the presence of two additional structural layers in metazoan ribosomes, a well-ordered inner layer covered by a flexible RNA outer layer. The human and Drosophila ribosome structures will provide the basis for more detailed structural, biochemical and genetic experiments. PMID:23636399

  10. Extracellular matrix and its receptors in Drosophila neural development

    PubMed Central

    Broadie, Kendal; Baumgartner, Stefan; Prokop, Andreas

    2011-01-01

    Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: 1) neural progenitor proliferation, 2) axonal growth and pathfinding and 3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions. PMID:21688401

  11. Effect of a magnetic field on Drosophila under supercooled conditions.

    PubMed

    Naito, Munekazu; Hirai, Shuichi; Mihara, Makoto; Terayama, Hayato; Hatayama, Naoyuki; Hayashi, Shogo; Matsushita, Masayuki; Itoh, Masahiro

    2012-01-01

    Under subzero degree conditions, free water contained in biological cells tends to freeze and then most living things die due to low temperatures. We examined the effect of a variable magnetic field on Drosophila under supercooled conditions (a state in which freezing is not caused even below the freezing point). Under such supercooled conditions with the magnetic field at 0°C for 72 hours, -4°C for 24 hours and -8°C for 1 hour, the Drosophila all survived, while all conversely died under the supercooled conditions without the magnetic field. This result indicates a possibility that the magnetic field can reduce cell damage caused due to low temperatures in living things. PMID:23284809

  12. Classical conditioning through auditory stimuli in Drosophila: methods and models

    PubMed Central

    Menda, Gil; Bar, Haim Y.; Arthur, Ben J.; Rivlin, Patricia K.; Wyttenbach, Robert A.; Strawderman, Robert L.; Hoy, Ronald R.

    2011-01-01

    SUMMARY The role of sound in Drosophila melanogaster courtship, along with its perception via the antennae, is well established, as is the ability of this fly to learn in classical conditioning protocols. Here, we demonstrate that a neutral acoustic stimulus paired with a sucrose reward can be used to condition the proboscis-extension reflex, part of normal feeding behavior. This appetitive conditioning produces results comparable to those obtained with chemical stimuli in aversive conditioning protocols. We applied a logistic model with general estimating equations to predict the dynamics of learning, which successfully predicts the outcome of training and provides a quantitative estimate of the rate of learning. Use of acoustic stimuli with appetitive conditioning provides both an alternative to models most commonly used in studies of learning and memory in Drosophila and a means of testing hearing in both sexes, independently of courtship responsiveness. PMID:21832129

  13. Multilocus analysis of introgression between two sympatric sister species of Drosophila: Drosophila yakuba and D. santomea.

    PubMed

    Llopart, Ana; Lachaise, Daniel; Coyne, Jerry A

    2005-09-01

    Drosophila yakuba is widely distributed in sub-Saharan Africa, while D. santomea is endemic to the volcanic island of São Tomé in the Atlantic Ocean, 280 km west of Gabon. On São Tomé, D. yakuba is found mainly in open lowland forests, and D. santomea is restricted to the wet misty forests at higher elevations. At intermediate elevations, the species form a hybrid zone where hybrids occur at a frequency of approximately 1%. To determine the extent of gene flow between these species we studied polymorphism and divergence patterns in 29 regions distributed throughout the genome, including mtDNA and three genes on the Y chromosome. This multilocus approach, together with the comparison to the two allopatric species D. mauritiana and D. sechellia, allowed us to distinguish between forces that should affect all genes and forces that should act on some genes (e.g., introgression). Our results show that D. yakuba mtDNA has replaced that of D. santomea and that there is also significant introgression for two nuclear genes, yellow and salr. The majority of genes, however, has remained distinct. These two species therefore do not form a "hybrid swarm" in which much of the genome shows substantial introgression while disruptive selection maintains distinctness for only a few traits (e.g., pigmentation and male genitalia). PMID:15965264

  14. Genic Heterogeneity at Two Alcohol Dehydrogenase Loci in DROSOPHILA PSEUDOOBSCURA and DROSOPHILA PERSIMILIS

    PubMed Central

    Coyne, Jerry A.; Felton, Alexander A.

    1977-01-01

    A sequential electrophoretic survey of the second chromosome loci, alcohol dehydrogenase-6 (Adh-6) and octanol dehydrogenase ( Odh), was performed on 147 isochromosomal lines of Drosophila pseudoobscura and 60 lines of its sibling species, D. persimilis. Gels run with a variety of acrylamide concentrations and buffer pH's revealed the presence of 18 alleles of Adh-6 in the two species, where only eight had been previously detected by conventional electrophoretic methods. Only two alleles were added with our techniques to the previous total of nine in both species at the largely monomorphic Odh locus. Both enzymes show a predominance of one allele, with the other variants being fairly rare. There was no evidence of increased genetic divergence between the two species, but we found a striking increase in differentiation of Adh-6 alleles between the main body of D. pseudoobscura populations and the conspecific isolate from Bogotá, Colombia. These results are compared with our previous surveys of xanthine dehydrogenase in these species and discussed in reference to theories of genic polymorphism. PMID:17248763

  15. Genetic and biochemical analysis of brown eye mutation in Drosophila nasuta nasuta and Drosophila nasuta albomicans.

    PubMed

    Ashadevi, J S; Ramesh, S R

    2000-01-01

    By analyzing the progeny of crosses involving brown eye mutants and the wild types in two members of Drosophila nasuta subgroup namely D. n. nasuta and D. n. albomicans we could show that the mutant gene is recessive, located in the chromosome 2 and the alleles of this gene are present at different loci. A study of fitness in the eye color mutants in comparison with the wild types revealed that D. n. nasuta mutant has higher viability at both 25+/-1 degrees C and ambient temperatures; while D. n. albomicans mutant has faster rate of development only at 25+/-1 degrees C. Quantitative analysis of eye pigments in the mutants revealed that there is biosynthesis of both pteridines and xanthommatins unlike in bw/bw of D. melanogaster, where only xanthommatins are synthesized. In both the species, the pteridine quantities in mutants are similar; whereas xanthommatin quantity in bw(n)/bw(n) is 10 times higher than that of bw(a)/bw(a). Further, the F1 progeny of intraspecific crosses (wild type X mutant) are found to have high amounts of pteridine, even when compared with parental wild type. PMID:11430487

  16. Cadmium resistance in Drosophila: a small cadmium binding substance

    SciTech Connect

    Jacobson, K.B.; Williams, M.W.; Richter, L.J.; Holt, S.E.; Hook, G.J.; Knoop, S.M.; Sloop, F.V.; Faust, J.B.

    1985-01-01

    A small cadmium-binding substance (CdBS) has been observed in adult Drosophila melanogaster that were raised for their entire growth cycle on a diet that contained 0.15 mM CdCl/sub 2/. Induction of CdBS was observed in strains that differed widely in their sensitivity of CdCl/sub 2/. This report describes the induction of CdBS and some of its characteristics. 17 refs., 4 figs., 1 tab.

  17. Mutagenicity of four hair dyes in Drosophila melanogaster.

    PubMed

    Blijleven, W G

    1977-04-01

    The hair dye constituents p-phenylenediamine, 2,4-diaminoanisole sulfate, 2,4-diaminotoluene and 4-nitro-0-phenylenediamine were tested for mutagenicity in Drosophila melanogaster. The compounds were given orally to adult males. The induction of sex-linked recessive lethal mutation was used as a measure of mutagenicity. All four of the dyes tested were mutagenic with a peak mutagenic activity in metabolically active germ cells (spermatids and spermatocytes). PMID:406556

  18. P transposable elements in Drosophila and other eukaryotic organisms

    PubMed Central

    Majumdar, Sharmistha; Rio, Donald C.

    2015-01-01

    P transposable elements were discovered in Drosophila as the causative agents of a syndrome of genetic traits called hybrid dysgenesis. Hybrid dysgenesis exhibits a unique pattern of maternal inheritance linked to the germline-specific small RNA piwi-interacting (piRNA) pathway. The use of P transposable elements as vectors for gene transfer and as genetic tools revolutionized the field of Drosophila molecular genetics. P element transposons have served as a useful model to investigate mechanisms of cut-and-paste transposition in eukaryotes. Biochemical studies have revealed new and unexpected insights into how eukaryotic DNA-based transposons are mobilized. For example, the P element transposase makes unusual 17nt-3’ extended double-strand DNA breaks at the transposon termini and uses guanosine triphosphate (GTP) as a cofactor to promote synapsis of the two transposon ends early in the transposition pathway. The N-terminal DNA binding domain of the P element transposase, called a THAP domain, contains a C2CH zinc-coordinating motif and is the founding member of a large family of animal-specific site-specific DNA binding proteins. Over the past decade genome sequencing efforts have revealed the presence of P element-like transposable elements or P element transposase-like genes (called THAP9) in many eukaryotic genomes, including vertebrates, such as primates including humans, zebrafish and Xenopus, as well as the human parasite Trichomonas vaginalis, the sea squirt Ciona, sea urchin and hydra. Surprisingly, the human and zebrafish P element transposase-related THAP9 genes promote transposition of the Drosophila P element transposon DNA in human and Drosophila cells, indicating that the THAP9 genes encode active P element “transposase” proteins. PMID:25893144

  19. Toll-deficient Drosophila is susceptible to Pythium insidiosum infection.

    PubMed

    Zanette, Régis A; Santurio, Janio M; Loreto, Érico S; Alves, Sydney H; Kontoyiannis, Dimitrios P

    2013-10-01

    There is a paucity of animal models of pythiosis, a life-threatening disease of humans and animals, the immunopathogenesis of which is poorly understood. A pythiosis model was developed by injecting Toll (Tl)-deficient Drosophila melanogaster flies with Pythium insidiosum zoospores. The infected Tl mutant flies had significantly lower survival rates (73.7%) than did control flies. This study reveals the important role of Tl pathway activation in fly immune response to pythiosis. PMID:23865688

  20. Genome-Wide Approaches to Drosophila Heart Development

    PubMed Central

    Frasch, Manfred

    2016-01-01

    The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system. More recently, approaches have been taken that aim to interrogate the entire genome in order to identify novel components and describe genomic features that are pertinent to the regulation of heart development. Apart from classical forward genetic screens, the availability of the thoroughly annotated Drosophila genome sequence made new genome-wide approaches possible, which include the generation of massive numbers of RNA interference (RNAi) reagents that were used in forward genetic screens, as well as studies of the transcriptomes and proteomes of the developing heart under normal and experimentally manipulated conditions. Moreover, genome-wide chromatin immunoprecipitation experiments have been performed with the aim to define the full set of genomic binding sites of the major cardiogenic transcription factors, their relevant target genes, and a more complete picture of the regulatory network that drives cardiogenesis. This review will give an overview on these genome-wide approaches to Drosophila heart development and on computational analyses of the obtained information that ultimately aim to provide a description of this process at the systems level. PMID:27294102

  1. A Modified Cooling Method and Its Application in "Drosophila" Experiments

    ERIC Educational Resources Information Center

    Qu, Wen-hui; Zhu, Tong-bo; Yang, Da-Xiang

    2015-01-01

    Chilling is a cost-effective and safe method of immobilising flies in "Drosophila" experiments. However, should condensation form on the plate, it would be fatal to the flies. Here we describe a modified cooling method using reusable commercial ice pack(s) (ca. 400 ml, 2-3 cm tall) rather than crushed ice. The ice pack is covered with a…

  2. Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps.

    PubMed

    Xie, J; Butler, S; Sanchez, G; Mateos, M

    2014-04-01

    Maternally transmitted associations between endosymbiotic bacteria and insects are diverse and widespread in nature. Owing to imperfect vertical transmission, many heritable microbes have evolved compensational mechanisms to enhance their persistence in host lineages, such as manipulating host reproduction and conferring fitness benefits to host. Symbiont-mediated defense against natural enemies of hosts is increasingly recognized as an important mechanism by which endosymbionts enhance host fitness. Members of the genus Spiroplasma associated with distantly related Drosophila hosts are known to engage in either reproductive parasitism (i.e., male killing) or defense against natural enemies (the parasitic wasp Leptopilina heterotoma and a nematode). A male-killing strain of Spiroplasma (strain Melanogaster Sex Ratio Organism (MSRO)) co-occurs with Wolbachia (strain wMel) in certain wild populations of the model organism Drosophila melanogaster. We examined the effects of Spiroplasma MSRO and Wolbachia wMel on Drosophila survival against parasitism by two common wasps, Leptopilina heterotoma and Leptopilina boulardi, that differ in their host ranges and host evasion strategies. The results indicate that Spiroplasma MSRO prevents successful development of both wasps, and confers a small, albeit significant, increase in larva-to-adult survival of flies subjected to wasp attacks. We modeled the conditions under which defense can contribute to Spiroplasma persistence. Wolbachia also confers a weak, but significant, survival advantage to flies attacked by L. heterotoma. The host protective effects exhibited by Spiroplasma and Wolbachia are additive and may provide the conditions for such cotransmitted symbionts to become mutualists. Occurrence of Spiroplasma-mediated protection against distinct parasitoids in divergent Drosophila hosts suggests a general protection mechanism. PMID:24281548

  3. Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps

    PubMed Central

    Xie, J; Butler, S; Sanchez, G; Mateos, M

    2014-01-01

    Maternally transmitted associations between endosymbiotic bacteria and insects are diverse and widespread in nature. Owing to imperfect vertical transmission, many heritable microbes have evolved compensational mechanisms to enhance their persistence in host lineages, such as manipulating host reproduction and conferring fitness benefits to host. Symbiont-mediated defense against natural enemies of hosts is increasingly recognized as an important mechanism by which endosymbionts enhance host fitness. Members of the genus Spiroplasma associated with distantly related Drosophila hosts are known to engage in either reproductive parasitism (i.e., male killing) or defense against natural enemies (the parasitic wasp Leptopilina heterotoma and a nematode). A male-killing strain of Spiroplasma (strain Melanogaster Sex Ratio Organism (MSRO)) co-occurs with Wolbachia (strain wMel) in certain wild populations of the model organism Drosophila melanogaster. We examined the effects of Spiroplasma MSRO and Wolbachia wMel on Drosophila survival against parasitism by two common wasps, Leptopilina heterotoma and Leptopilina boulardi, that differ in their host ranges and host evasion strategies. The results indicate that Spiroplasma MSRO prevents successful development of both wasps, and confers a small, albeit significant, increase in larva-to-adult survival of flies subjected to wasp attacks. We modeled the conditions under which defense can contribute to Spiroplasma persistence. Wolbachia also confers a weak, but significant, survival advantage to flies attacked by L. heterotoma. The host protective effects exhibited by Spiroplasma and Wolbachia are additive and may provide the conditions for such cotransmitted symbionts to become mutualists. Occurrence of Spiroplasma-mediated protection against distinct parasitoids in divergent Drosophila hosts suggests a general protection mechanism. PMID:24281548

  4. Modeling novelty habituation during exploratory activity in Drosophila.

    PubMed

    Soibam, Benjamin; Shah, Shishir; Gunaratne, Gemunu H; Roman, Gregg W

    2013-07-01

    Habituation is a common form of non-associative learning in which the organism gradually decreases its response to repeated stimuli. The decrease in exploratory activity of many animal species during exposure to a novel open field arena is a widely studied habituation paradigm. However, a theoretical framework to quantify how the novelty of the arena is learned during habituation is currently missing. Drosophila melanogaster display a high mean absolute activity and a high probability for directional persistence when first introduced to a novel arena. Both measures decrease during habituation to the arena. Here, we propose a phenomenological model of habituation for Drosophila exploration based on two principles: Drosophila form a spatial representation of the arena edge as a set of connected local patches, and repeated exposure to these patches is essential for the habituation of the novelty. The level of exposure depends on the number of visitations and is quantified by a variable referred to as "coverage". This model was tested by comparing predictions against the experimentally measured behavior of wild type Drosophila. The novelty habituation of wild type Canton-S depends on coverage and is specifically independent of the arena radius. Our model describes the time dependent locomotor activity, ΔD, of Canton-S using an experimentally established stochastic process Pn(ΔD), which depends on the coverage. The quantitative measures of exploration and habituation were further applied to three mutant genotypes. Consistent with a requirement for vision in novelty habituation, blind no receptor potential A(7) mutants display a failure in the decay of probability for directional persistence and mean absolute activity. The rutabaga(2080) habituation mutant also shows defects in these measures. The kurtz(1) non-visual arrestin mutant demonstrates a rapid decay in these measures, implying reduced motivation. The model and the habituation measures offer a powerful

  5. P Transposable Elements in Drosophila and other Eukaryotic Organisms.

    PubMed

    Majumdar, Sharmistha; Rio, Donald C

    2015-04-01

    P transposable elements were discovered in Drosophila as the causative agents of a syndrome of genetic traits called hybrid dysgenesis. Hybrid dysgenesis exhibits a unique pattern of maternal inheritance linked to the germline-specific small RNA piwi-interacting (piRNA) pathway. The use of P transposable elements as vectors for gene transfer and as genetic tools revolutionized the field of Drosophila molecular genetics. P element transposons have served as a useful model to investigate mechanisms of cut-and-paste transposition in eukaryotes. Biochemical studies have revealed new and unexpected insights into how eukaryotic DNA-based transposons are mobilized. For example, the P element transposase makes unusual 17nt-3' extended double-strand DNA breaks at the transposon termini and uses guanosine triphosphate (GTP) as a cofactor to promote synapsis of the two transposon ends early in the transposition pathway. The N-terminal DNA binding domain of the P element transposase, called a THAP domain, contains a C2CH zinc-coordinating motif and is the founding member of a large family of animal-specific site-specific DNA binding proteins. Over the past decade genome sequencing efforts have revealed the presence of P element-like transposable elements or P element transposase-like genes (called THAP9) in many eukaryotic genomes, including vertebrates, such as primates including humans, zebrafish and Xenopus, as well as the human parasite Trichomonas vaginalis, the sea squirt Ciona, sea urchin and hydra. Surprisingly, the human and zebrafish P element transposase-related THAP9 genes promote transposition of the Drosophila P element transposon DNA in human and Drosophila cells, indicating that the THAP9 genes encode active P element "transposase" proteins. PMID:26104714

  6. Drosophila alcohol dehydrogenase: developmental studies on cryptic variant lines.

    PubMed

    Miglani, G S; Ampy, F R

    1981-10-01

    Thirty-five cryptic variant lines were used to examine the mechanisms involved in genetic modulation of alcohol metabolism in Drosophila. Late third-instar larval, preemergence pupal, and adult stages cultured at 18 and 28 C were examined. Spectrophotometric analyses for native alcohol dehydrogenase (ADH) activity and residual ADH activity after treatment with guanidine hydrochloride and heat were performed. Differential response of cryptic variants to treatment with the denaturants during development suggested that this variation may have an adaptive significance. PMID:6800354

  7. Maternal control of the Drosophila dorsal–ventral body axis

    PubMed Central

    Stein, David S.; Stevens, Leslie M.

    2016-01-01

    The pathway that generates the dorsal–ventral (DV) axis of the Drosophila embryo has been the subject of intense investigation over the previous three decades. The initial asymmetric signal originates during oogenesis by the movement of the oocyte nucleus to an anterior corner of the oocyte, which establishes DV polarity within the follicle through signaling between Gurken, the Drosophila Transforming Growth Factor (TGF)-α homologue secreted from the oocyte, and the Drosophila Epidermal Growth Factor Receptor (EGFR) that is expressed by the follicular epithelium cells that envelop the oocyte. Follicle cells that are not exposed to Gurken follow a ventral fate and express Pipe, a sulfotransferase that enzymatically modifies components of the inner vitelline membrane layer of the eggshell, thereby transferring DV spatial information from the follicle to the egg. These ventrally sulfated eggshell proteins comprise a localized cue that directs the ventrally restricted formation of the active Spätzle ligand within the perivitelline space between the eggshell and the embryonic membrane. Spätzle activates Toll, a transmembrane receptor in the embryonic membrane. Transmission of the Toll signal into the embryo leads to the formation of a ventral-to-dorsal gradient of the transcription factor Dorsal within the nuclei of the syncytial blastoderm stage embryo. Dorsal controls the spatially specific expression of a large constellation of zygotic target genes, the Dorsal gene regulatory network, along the embryonic DV circumference. This article reviews classic studies and integrates them with the details of more recent work that has advanced our understanding of the complex pathway that establishes Drosophila embryo DV polarity. PMID:25124754

  8. Specialized Cortex Glial Cells Accumulate Lipid Droplets in Drosophila melanogaster

    PubMed Central

    Kis, Viktor; Barti, Benjámin; Lippai, Mónika; Sass, Miklós

    2015-01-01

    Lipid droplets (LDs) are common organelles of the majority of eukaryotic cell types. Their biological significance has been extensively studied in mammalian liver cells and white adipose tissue. Although the central nervous system contains the highest relative amount and the largest number of different lipid species, neither the spatial nor the temporal distribution of LDs has been described. In this study, we used the brain of the fruitfly, Drosophila melanogaster, to investigate the neuroanatomy of LDs. We demonstrated that LDs are exclusively localised in glial cells but not in neurons in the larval nervous system. We showed that the brain’s LD pool, rather than being constant, changes dynamically during development and reaches its highest value at the beginning of metamorphosis. LDs are particularly enriched in cortex glial cells located close to the brain surface. These specialized superficial cortex glial cells contain the highest amount of LDs among glial cell types and encapsulate neuroblasts and their daughter cells. Superficial cortex glial cells, combined with subperineurial glial cells, express the Drosophila fatty acid binding protein (Dfabp), as we have demonstrated through light- and electron microscopic immunocytochemistry. To the best of our best knowledge this is the first study that describes LD neuroanatomy in the Drosophila larval brain. PMID:26148013

  9. Specialized Cortex Glial Cells Accumulate Lipid Droplets in Drosophila melanogaster.

    PubMed

    Kis, Viktor; Barti, Benjámin; Lippai, Mónika; Sass, Miklós

    2015-01-01

    Lipid droplets (LDs) are common organelles of the majority of eukaryotic cell types. Their biological significance has been extensively studied in mammalian liver cells and white adipose tissue. Although the central nervous system contains the highest relative amount and the largest number of different lipid species, neither the spatial nor the temporal distribution of LDs has been described. In this study, we used the brain of the fruitfly, Drosophila melanogaster, to investigate the neuroanatomy of LDs. We demonstrated that LDs are exclusively localised in glial cells but not in neurons in the larval nervous system. We showed that the brain's LD pool, rather than being constant, changes dynamically during development and reaches its highest value at the beginning of metamorphosis. LDs are particularly enriched in cortex glial cells located close to the brain surface. These specialized superficial cortex glial cells contain the highest amount of LDs among glial cell types and encapsulate neuroblasts and their daughter cells. Superficial cortex glial cells, combined with subperineurial glial cells, express the Drosophila fatty acid binding protein (Dfabp), as we have demonstrated through light- and electron microscopic immunocytochemistry. To the best of our best knowledge this is the first study that describes LD neuroanatomy in the Drosophila larval brain. PMID:26148013

  10. Genetic basis of transcriptome diversity in Drosophila melanogaster

    PubMed Central

    Huang, Wen; Carbone, Mary Anna; Magwire, Michael M.; Peiffer, Jason A.; Lyman, Richard F.; Stone, Eric A.; Anholt, Robert R. H.; Mackay, Trudy F. C.

    2015-01-01

    Understanding how DNA sequence variation is translated into variation for complex phenotypes has remained elusive but is essential for predicting adaptive evolution, for selecting agriculturally important animals and crops, and for personalized medicine. Gene expression may provide a link between variation in DNA sequence and organismal phenotypes, and its abundance can be measured efficiently and accurately. Here we quantified genome-wide variation in gene expression in the sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP), increasing the annotated Drosophila transcriptome by 11%, including thousands of novel transcribed regions (NTRs). We found that 42% of the Drosophila transcriptome is genetically variable in males and females, including the NTRs, and is organized into modules of genetically correlated transcripts. We found that NTRs often were negatively correlated with the expression of protein-coding genes, which we exploited to annotate NTRs functionally. We identified regulatory variants for the mean and variance of gene expression, which have largely independent genetic control. Expression quantitative trait loci (eQTLs) for the mean, but not for the variance, of gene expression were concentrated near genes. Notably, the variance eQTLs often interacted epistatically with local variants in these genes to regulate gene expression. This comprehensive characterization of population-scale diversity of transcriptomes and its genetic basis in the DGRP is critically important for a systems understanding of quantitative trait variation. PMID:26483487

  11. An improved method for nematode infection assays in Drosophila larvae

    PubMed Central

    Dobes, Pavel; Wang, Zhi; Markus, Robert; Theopold, Ulrich; Hyrsl, Pavel

    2012-01-01

    The infective juveniles (IJs) of entomopathogenic nematodes (EPNs) seek out host insects and release their symbiotic bacteria into their body cavity causing septicaemia, which eventually leads to host death. The interaction between EPNs and their hosts are only partially understood, in particular the host immune responses appears to involve pathways other than phagocytosis and the canonical transcriptional induction pathways. These pathways are genetically tractable and include for example clotting factors and lipid mediators. The aim of this study was to optimize the nematode infections in Drosophila melanogaster larvae, a well-studied and genetically tractable model organism. Here we show that two nematode species namely Steinernema feltiae and Heterorhabditis bacteriophora display different infectivity toward Drosophila larvae with the latter being less pathogenic. The effects of supporting media and IJ dosage on the mortality of the hosts were assessed and optimized. Using optimum conditions, a faster and efficient setup for nematode infections was developed. This newly established infection model in Drosophila larvae will be applicable in large scale screens aimed at identifying novel genes/pathways involved in innate immune responses. PMID:22614785

  12. Hundreds of putatively functional small open reading frames in Drosophila

    PubMed Central

    2011-01-01

    Background The relationship between DNA sequence and encoded information is still an unsolved puzzle. The number of protein-coding genes in higher eukaryotes identified by genome projects is lower than was expected, while a considerable amount of putatively non-coding transcription has been detected. Functional small open reading frames (smORFs) are known to exist in several organisms. However, coding sequence detection methods are biased against detecting such very short open reading frames. Thus, a substantial number of non-canonical coding regions encoding short peptides might await characterization. Results Using bio-informatics methods, we have searched for smORFs of less than 100 amino acids in the putatively non-coding euchromatic DNA of Drosophila melanogaster, and initially identified nearly 600,000 of them. We have studied the pattern of conservation of these smORFs as coding entities between D. melanogaster and Drosophila pseudoobscura, their presence in syntenic and in transcribed regions of the genome, and their ratio of conservative versus non-conservative nucleotide changes. For negative controls, we compared the results with those obtained using random short sequences, while a positive control was provided by smORFs validated by proteomics data. Conclusions The combination of these analyses led us to postulate the existence of at least 401 functional smORFs in Drosophila, with the possibility that as many as 4,561 such functional smORFs may exist. PMID:22118156

  13. Tissue communication in a systemic immune response of Drosophila.

    PubMed

    Yang, Hairu; Hultmark, Dan

    2016-07-01

    Several signaling pathways, including the JAK/STAT and Toll pathways, are known to activate blood cells (hemocytes) in Drosophila melanogaster larvae. They are believed to regulate the immune response against infections by parasitoid wasps, such as Leptopilina boulardi, but how these pathways control the hemocytes is not well understood. Here, we discuss the recent discovery that both muscles and fat body take an active part in this response. Parasitoid wasp infection induces Upd2 and Upd3 secretion from hemocytes, leading to JAK/STAT activation mainly in hemocytes and in skeletal muscles. JAK/STAT activation in muscles, but not in hemocytes, is required for an efficient encapsulation of wasp eggs. This suggests that Upd2 and Upd3 are important cytokines, coordinating different tissues for the cellular immune response in Drosophila. In the fat body, Toll signaling initiates a systemic response in which hemocytes are mobilized and activated hemocytes (lamellocytes) are generated. However, the contribution of Toll signaling to the defense against wasps is limited, probably because the wasps inject inhibitors that prevent the activation of the Toll pathway. In conclusion, parasite infection induces a systemic response in Drosophila larvae involving major organ systems and probably the physiology of the entire organism. PMID:27116253

  14. Distinct Biochemical Activities of Eyes absent During Drosophila Eye Development

    PubMed Central

    Jin, Meng; Mardon, Graeme

    2016-01-01

    Eyes absent (Eya) is a highly conserved transcriptional coactivator and protein phosphatase that plays vital roles in multiple developmental processes from Drosophila to humans. Eya proteins contain a PST (Proline-Serine-Threonine)-rich transactivation domain, a threonine phosphatase motif (TPM), and a tyrosine protein phosphatase domain. Using a genomic rescue system, we find that the PST domain is essential for Eya activity and Dac expression, and the TPM is required for full Eya function. We also find that the threonine phosphatase activity plays only a minor role during Drosophila eye development and the primary function of the PST and TPM domains is transactivation that can be largely substituted by the heterologous activation domain VP16. Along with our previous results that the tyrosine phosphatase activity of Eya is dispensable for normal Eya function in eye formation, we demonstrate that a primary function of Eya during Drosophila eye development is as a transcriptional coactivator. Moreover, the PST/TPM and the threonine phosphatase activity are not required for in vitro interaction between retinal determination factors. Finally, this work is the first report of an Eya-Ey physical interaction. These findings are particularly important because they highlight the need for an in vivo approach that accurately dissects protein function. PMID:26980695

  15. Axonal injury and regeneration in the adult brain of Drosophila

    PubMed Central

    Ayaz, Derya; Leyssen, Maarten; Koch, Marta; Yan, Jiekun; Srahna, Mohammed; Sheeba, Vasu; Fogle, Keri J.; Holmes, Todd C.; Hassan, Bassem A.

    2009-01-01

    Drosophila melanogaster is a leading genetic model system in nervous system development and disease research. Using the power of fly genetics in traumatic axonal injury research will significantly speed up the characterization of molecular processes that control axonal regeneration in the Central Nervous System (CNS). We developed a versatile and physiologically robust preparation for the long-term culture of the whole Drosophila brain. We use this method to develop a novel Drosophila model for CNS axonal injury and regeneration. We first show that, similar to mammalian CNS axons, injured adult wild type fly CNS axons fail to regenerate, whereas adult-specific enhancement of Protein Kinase A activity increases the regenerative capacity of lesioned neurons. Combined, these observations suggest conservation of neuronal regeneration mechanisms following injury. We next exploit this model to explore pathways that induce robust regeneration and find that adult-specific activation of JNK signalling is sufficient for de novo CNS axonal regeneration after injury, including the growth of new axons past the lesion site and into the normal target area. PMID:18524906

  16. Development and plasticity of the Drosophila larval neuromuscular junction

    PubMed Central

    Menon, Kaushiki P.; Carrillo, Robert A.; Zinn, Kai

    2013-01-01

    The Drosophila larval neuromuscular system is relatively simple, containing only 32 motor neurons in each abdominal hemisegment, and its neuromuscular junctions (NMJs) are large, individually specified, and easy to visualize and record from. NMJ synapses exhibit developmental and functional plasticity while displaying stereotyped connectivity. Drosophila Type I NMJ synapses are glutamatergic, while the vertebrate NMJ uses acetylcholine as its primary neurotransmitter. The larval NMJ synapses use ionotropic glutamate receptors (GluRs) that are homologous to AMPA-type glutamate receptors in the mammalian brain, and they have postsynaptic scaffolds that resemble those found in mammalian postsynaptic densities. These features make the Drosophila neuromuscular system an excellent genetic model for the study of excitatory synapses in the mammalian central nervous system. The first section of the review presents an overview of NMJ development. The second section describes genes that regulate NMJ development, including: 1) genes that positively and negatively regulate growth of the NMJ; 2) genes required for maintenance of NMJ bouton structure; 3) genes that modulate neuronal activity and alter NMJ growth; 4) genes involved in trans-synaptic signaling at the NMJ. The third section describes genes that regulate acute plasticity, focusing on translational regulatory mechanisms. Since this review is intended for a developmental biology audience, it does not cover NMJ electrophysiology in detail, and does not review genes for which mutations produce only electrophysiological but no structural phenotypes. PMID:24014452

  17. Evaluation of polylactic acid nanoparticles safety using Drosophila model.

    PubMed

    Legaz, Sophie; Exposito, Jean-Yves; Lethias, Claire; Viginier, Barbara; Terzian, Christophe; Verrier, Bernard

    2016-10-01

    Cytotoxicity of nanoparticles and their sub-lethal effect on cell behavior and cell fate are a high topic of studies in the nanomaterial field. With an explosion of nanoparticle types (size, shape, polarity, stiffness, composition, etc.), Drosophila has become an attractive animal model for high throughput analysis of these nanocarriers in the drug delivery field with applications in cancer therapy, or simply to generate a fast and complete cytotoxic study of a peculiar nanoparticle. In respect to that, we have conducted an in cellulo study of poly(lactic acid) (PLA) nanoparticle cytotoxicity, and determined that near lethal nanoparticle doses, oxidative stress as well as P53 and ATP pathways may lead to cell cycle arrest at G1, and ultimately to cell death. Neither viability nor the development of Drosophila larvae are affected by the ingestion of PLA nanoparticles at sub-lethal concentrations. Drosophila will be a useful model to study PLA and PLA-modified nanoparticle toxicity, and nanoparticle fate after ingestion. PMID:27108761

  18. Abnormal Synaptic Vesicle Biogenesis in Drosophila Synaptogyrin Mutants

    PubMed Central

    Stevens, Robin J.; Akbergenova, Yulia; Jorquera, Ramon A.; Littleton, J. Troy

    2012-01-01

    Sustained neuronal communication relies on the coordinated activity of multiple proteins that regulate synaptic vesicle biogenesis and cycling within the presynaptic terminal. Synaptogyrin and synaptophysin are conserved MARVEL domain-containing transmembrane proteins that are among the most abundant synaptic vesicle constituents, although their role in the synaptic vesicle cycle has remained elusive. To further investigate the function of these proteins, we generated and characterized a synaptogyrin (gyr) null mutant in Drosophila, whose genome encodes a single synaptogyrin isoform and lacks a synaptophysin homolog. We demonstrate that Drosophila synaptogyrin plays a modulatory role in synaptic vesicle biogenesis at larval neuromuscular junctions. Drosophila lacking synaptogyrin are viable and fertile and have no overt deficits in motor function. However, ultrastructural analysis of gyr larvae revealed increased synaptic vesicle diameter and enhanced variability in the size of synaptic vesicles. In addition, the resolution of endocytic cisternae into synaptic vesicles in response to strong stimulation is defective in gyr mutants. Electrophysiological analysis demonstrated an increase in quantal size and a concomitant decrease in quantal content, suggesting functional consequences for transmission caused by the loss of synaptogyrin. Furthermore, high-frequency stimulation resulted in increased facilitation and a delay in recovery from synaptic depression, indicating that synaptic vesicle exo-endocytosis is abnormally regulated during intense stimulation conditions. These results suggest that synaptogyrin modulates the synaptic vesicle exo-endocytic cycle and is required for the proper biogenesis of synaptic vesicles at nerve terminals. PMID:23238721

  19. Interactions among Drosophila larvae before and during collision.

    PubMed

    Otto, Nils; Risse, Benjamin; Berh, Dimitri; Bittern, Jonas; Jiang, Xiaoyi; Klämbt, Christian

    2016-01-01

    In populations of Drosophila larvae, both, an aggregation and a dispersal behavior can be observed. However, the mechanisms coordinating larval locomotion in respect to other animals, especially in close proximity and during/after physical contacts are currently only little understood. Here we test whether relevant information is perceived before or during larva-larva contacts, analyze its influence on behavior and ask whether larvae avoid or pursue collisions. Employing frustrated total internal reflection-based imaging (FIM) we first found that larvae visually detect other moving larvae in a narrow perceptive field and respond with characteristic escape reactions. To decipher larval locomotion not only before but also during the collision we utilized a two color FIM approach (FIM(2c)), which allowed to faithfully extract the posture and motion of colliding animals. We show that during collision, larval locomotion freezes and sensory information is sampled during a KISS phase (german: Kollisions Induziertes Stopp Syndrom or english: collision induced stop syndrome). Interestingly, larvae react differently to living, dead or artificial larvae, discriminate other Drosophila species and have an increased bending probability for a short period after the collision terminates. Thus, Drosophila larvae evolved means to specify behaviors in response to other larvae. PMID:27511760

  20. Regulation of cytochrome P450 expression in Drosophila: Genomic insights.

    PubMed

    Giraudo, Maeva; Unnithan, G Chandran; Le Goff, Gaëlle; Feyereisen, René

    2010-06-01

    Genomic tools such as the availability of the Drosophila genome sequence, the relative ease of stable transformation, and DNA microarrays have made the fruit fly a powerful model in insecticide toxicology research. We have used transgenic promoter-GFP constructs to document the detailed pattern of induced Cyp6a2 gene expression in larval and adult Drosophila tissues. We also compared various insecticides and xenobiotics for their ability to induce this cytochrome P450 gene, and show that the pattern of Cyp6a2 inducibility is comparable to that of vertebrate CYP2B genes, and different from that of vertebrate CYP1A genes, suggesting a degree of evolutionary conservation for the "phenobarbital-type" induction mechanism. Our results are compared to the increasingly diverse reports on P450 induction that can be gleaned from whole genome or from "detox" microarray experiments in Drosophila. These suggest that only a third of the genomic repertoire of CYP genes is inducible by xenobiotics, and that there are distinct subsets of inducers / induced genes, suggesting multiple xenobiotic transduction mechanisms. A relationship between induction and resistance is not supported by expression data from the literature. The relative abundance of expression data now available is in contrast to the paucity of studies on functional expression of P450 enzymes, and this remains a challenge for our understanding of the toxicokinetic aspects of insecticide action. PMID:20582327