Sample records for drosophila larval development

  1. Drosophila adult and larval pheromones modulate larval food choice

    PubMed Central

    Farine, Jean-Pierre; Cortot, Jérôme; Ferveur, Jean-François

    2014-01-01

    Insects use chemosensory cues to feed and mate. In Drosophila, the effect of pheromones has been extensively investigated in adults, but rarely in larvae. The colonization of natural food sources by Drosophila buzzatii and Drosophila simulans species may depend on species-specific chemical cues left in the food by larvae and adults. We identified such chemicals in both species and measured their influence on larval food preference and puparation behaviour. We also tested compounds that varied between these species: (i) two larval volatile compounds: hydroxy-3-butanone-2 and phenol (predominant in D. simulans and D. buzzatii, respectively), and (ii) adult cuticular hydrocarbons (CHs). Drosophila buzzatii larvae were rapidly attracted to non-CH adult conspecific cues, whereas D. simulans larvae were strongly repulsed by CHs of the two species and also by phenol. Larval cues from both species generally reduced larval attraction and pupariation on food, which was generally—but not always—low, and rarely reflected larval response. As these larval and adult pheromones specifically influence larval food search and the choice of a pupariation site, they may greatly affect the dispersion and survival of Drosophila species in nature. PMID:24741012

  2. Growing Pains: Development of the Larval Nocifensive Response in Drosophila

    PubMed Central

    SULKOWSKI, MIKOLAJ J.; KUROSAWA, MATHIEU S.; OX, DANIEL N.

    2014-01-01

    The ability to perceive and avoid harmful substances or stimuli is key to an organism’s survival. The neuronal cognate of the perception of pain is known as nociception, and the reflexive motion to avoid pain is termed the nocifensive response. As the nocifensive response is an ancient and evolutionarily conserved behavioral response to nociceptive stimuli, it is amenable to study in relatively simple and genetically tractable model systems such as Drosophila. Recent studies have taken advantage of the useful properties of Drosophila larvae to begin elucidating the neuronal connectivity and molecular machinery underlying the nocifensive response. However, these studies have primarily utilized the third-instar larval stage, and many mutations that potentially influence nociception survive only until earlier larval stages. Here we characterize the nocifensive responses of Drosophila throughout larval development and find dramatic changes in the nature of the behavior. Notably, we find that prior to the third instar, larvae are unable to perform the characteristic “corkscrew-like roll” behavior. Also, we identify an avoidance behavior consistent with a nocifensive response that is present immediately after larval hatching, representing a paradigm that may be useful in examining mutations with an early lethal phenotype. PMID:22186918

  3. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  4. 'Peer pressure' in larval Drosophila?

    PubMed

    Niewalda, Thomas; Jeske, Ines; Michels, Birgit; Gerber, Bertram

    2014-06-06

    Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on 'peer pressure', that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila. © 2014. Published by The Company of Biologists Ltd.

  5. ‘Peer pressure’ in larval Drosophila?

    PubMed Central

    Niewalda, Thomas; Jeske, Ines; Michels, Birgit; Gerber, Bertram

    2014-01-01

    ABSTRACT Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on ‘peer pressure’, that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila. PMID:24907371

  6. Dissection and staining of Drosophila larval ovaries.

    PubMed

    Maimon, Iris; Gilboa, Lilach

    2011-05-13

    Many organs depend on stem cells for their development during embryogenesis and for maintenance or repair during adult life. Understanding how stem cells form, and how they interact with their environment is therefore crucial for understanding development, homeostasis and disease. The ovary of the fruit fly Drosophila melanogaster has served as an influential model for the interaction of germ line stem cells (GSCs) with their somatic support cells (niche) (1, 2). The known location of the niche and the GSCs, coupled to the ability to genetically manipulate them, has allowed researchers to elucidate a variety of interactions between stem cells and their niches (3-12). Despite the wealth of information about mechanisms controlling GSC maintenance and differentiation, relatively little is known about how GSCs and their somatic niches form during development. About 18 somatic niches, whose cellular components include terminal filament and cap cells (Figure 1), form during the third larval instar (13-17). GSCs originate from primordial germ cells (PGCs). PGCs proliferate at early larval stages, but following the formation of the niche a subgroup of PGCs becomes GSCs (7, 16, 18, 19). Together, the somatic niche cells and the GSCs make a functional unit that produces eggs throughout the lifetime of the organism. Many questions regarding the formation of the GSC unit remain unanswered. Processes such as coordination between precursor cells for niches and stem cell precursors, or the generation of asymmetry within PGCs as they become GSCs, can best be studied in the larva. However, a methodical study of larval ovary development is physically challenging. First, larval ovaries are small. Even at late larval stages they are only 100μm across. In addition, the ovaries are transparent and are embedded in a white fat body. Here we describe a step-by-step protocol for isolating ovaries from late third instar (LL3) Drosophila larvae, followed by staining with fluorescent

  7. rigor mortis encodes a novel nuclear receptor interacting protein required for ecdysone signaling during Drosophila larval development.

    PubMed

    Gates, Julie; Lam, Geanette; Ortiz, José A; Losson, Régine; Thummel, Carl S

    2004-01-01

    Pulses of the steroid hormone ecdysone trigger the major developmental transitions in Drosophila, including molting and puparium formation. The ecdysone signal is transduced by the EcR/USP nuclear receptor heterodimer that binds to specific response elements in the genome and directly regulates target gene transcription. We describe a novel nuclear receptor interacting protein encoded by rigor mortis (rig) that is required for ecdysone responses during larval development. rig mutants display defects in molting, delayed larval development, larval lethality, duplicated mouth parts, and defects in puparium formation--phenotypes that resemble those seen in EcR, usp, E75A and betaFTZ-F1 mutants. Although the expression of these nuclear receptor genes is essentially normal in rig mutant larvae, the ecdysone-triggered switch in E74 isoform expression is defective. rig encodes a protein with multiple WD-40 repeats and an LXXLL motif, sequences that act as specific protein-protein interaction domains. Consistent with the presence of these elements and the lethal phenotypes of rig mutants, Rig protein interacts with several Drosophila nuclear receptors in GST pull-down experiments, including EcR, USP, DHR3, SVP and betaFTZ-F1. The ligand binding domain of betaFTZ-F1 is sufficient for this interaction, which can occur in an AF-2-independent manner. Antibody stains reveal that Rig protein is present in the brain and imaginal discs of second and third instar larvae, where it is restricted to the cytoplasm. In larval salivary gland and midgut cells, however, Rig shuttles between the cytoplasm and nucleus in a spatially and temporally regulated manner, at times that correlate with the major lethal phase of rig mutants and major switches in ecdysone-regulated gene expression. Taken together, these data indicate that rig exerts essential functions during larval development through gene-specific effects on ecdysone-regulated transcription, most likely as a cofactor for one or more

  8. Learning the specific quality of taste reinforcement in larval Drosophila.

    PubMed

    Schleyer, Michael; Miura, Daisuke; Tanimura, Teiichi; Gerber, Bertram

    2015-01-27

    The only property of reinforcement insects are commonly thought to learn about is its value. We show that larval Drosophila not only remember the value of reinforcement (How much?), but also its quality (What?). This is demonstrated both within the appetitive domain by using sugar vs amino acid as different reward qualities, and within the aversive domain by using bitter vs high-concentration salt as different qualities of punishment. From the available literature, such nuanced memories for the quality of reinforcement are unexpected and pose a challenge to present models of how insect memory is organized. Given that animals as simple as larval Drosophila, endowed with but 10,000 neurons, operate with both reinforcement value and quality, we suggest that both are fundamental aspects of mnemonic processing-in any brain.

  9. Learning the specific quality of taste reinforcement in larval Drosophila

    PubMed Central

    Schleyer, Michael; Miura, Daisuke; Tanimura, Teiichi; Gerber, Bertram

    2015-01-01

    The only property of reinforcement insects are commonly thought to learn about is its value. We show that larval Drosophila not only remember the value of reinforcement (How much?), but also its quality (What?). This is demonstrated both within the appetitive domain by using sugar vs amino acid as different reward qualities, and within the aversive domain by using bitter vs high-concentration salt as different qualities of punishment. From the available literature, such nuanced memories for the quality of reinforcement are unexpected and pose a challenge to present models of how insect memory is organized. Given that animals as simple as larval Drosophila, endowed with but 10,000 neurons, operate with both reinforcement value and quality, we suggest that both are fundamental aspects of mnemonic processing—in any brain. DOI: http://dx.doi.org/10.7554/eLife.04711.001 PMID:25622533

  10. Conserved neural circuit structure across Drosophila larval development revealed by comparative connectomics.

    PubMed

    Gerhard, Stephan; Andrade, Ingrid; Fetter, Richard D; Cardona, Albert; Schneider-Mizell, Casey M

    2017-10-23

    During postembryonic development, the nervous system must adapt to a growing body. How changes in neuronal structure and connectivity contribute to the maintenance of appropriate circuit function remains unclear. Previously , we measured the cellular neuroanatomy underlying synaptic connectivity in Drosophila (Schneider-Mizell et al., 2016). Here, we examined how neuronal morphology and connectivity change between first instar and third instar larval stages using serial section electron microscopy. We reconstructed nociceptive circuits in a larva of each stage and found consistent topographically arranged connectivity between identified neurons. Five-fold increases in each size, number of terminal dendritic branches, and total number of synaptic inputs were accompanied by cell type-specific connectivity changes that preserved the fraction of total synaptic input associated with each pre-synaptic partner. We propose that precise patterns of structural growth act to conserve the computational function of a circuit, for example determining the location of a dangerous stimulus.

  11. Patterning the dorsal longitudinal flight muscles (DLM) of Drosophila: insights from the ablation of larval scaffolds

    NASA Technical Reports Server (NTRS)

    Fernandes, J. J.; Keshishian, H.

    1996-01-01

    The six Dorsal Longitudinal flight Muscles (DLMs) of Drosophila develop from three larval muscles that persist into metamorphosis and serve as scaffolds for the formation of the adult fibers. We have examined the effect of muscle scaffold ablation on the development of DLMs during metamorphosis. Using markers that are specific to muscle and myoblasts we show that in response to the ablation, myoblasts which would normally fuse with the larval muscle, fuse with each other instead, to generate the adult fibers in the appropriate regions of the thorax. The development of these de novo DLMs is delayed and is reflected in the delayed expression of erect wing, a transcription factor thought to control differentiation events associated with myoblast fusion. The newly arising muscles express the appropriate adult-specific Actin isoform (88F), indicating that they have the correct muscle identity. However, there are frequent errors in the number of muscle fibers generated. Ablation of the larval scaffolds for the DLMs has revealed an underlying potential of the DLM myoblasts to initiate de novo myogenesis in a manner that resembles the mode of formation of the Dorso-Ventral Muscles, DVMs, which are the other group of indirect flight muscles. Therefore, it appears that the use of larval scaffolds is a superimposition on a commonly used mechanism of myogenesis in Drosophila. Our results show that the role of the persistent larval muscles in muscle patterning involves the partitioning of DLM myoblasts, and in doing so, they regulate formation of the correct number of DLM fibers.

  12. Organization of the Drosophila larval visual circuit

    PubMed Central

    Gendre, Nanae; Neagu-Maier, G Larisa; Fetter, Richard D; Schneider-Mizell, Casey M; Truman, James W; Zlatic, Marta; Cardona, Albert

    2017-01-01

    Visual systems transduce, process and transmit light-dependent environmental cues. Computation of visual features depends on photoreceptor neuron types (PR) present, organization of the eye and wiring of the underlying neural circuit. Here, we describe the circuit architecture of the visual system of Drosophila larvae by mapping the synaptic wiring diagram and neurotransmitters. By contacting different targets, the two larval PR-subtypes create two converging pathways potentially underlying the computation of ambient light intensity and temporal light changes already within this first visual processing center. Locally processed visual information then signals via dedicated projection interneurons to higher brain areas including the lateral horn and mushroom body. The stratified structure of the larval optic neuropil (LON) suggests common organizational principles with the adult fly and vertebrate visual systems. The complete synaptic wiring diagram of the LON paves the way to understanding how circuits with reduced numerical complexity control wide ranges of behaviors.

  13. A model of the evolution of larval feeding rate in Drosophila driven by conflicting energy demands.

    PubMed

    Mueller, Laurence D; Barter, Thomas T

    2015-02-01

    Energy allocation is believed to drive trade-offs in life history evolution. We develop a physiological and genetic model of energy allocation that drives evolution of feeding rate in a well-studied model system. In a variety of stressful environments Drosophila larvae adapt by altering their rate of feeding. Drosophila larvae adapted to high levels of ammonia, urea, and the presence of parasitoids evolve lower feeding rates. Larvae adapted to crowded conditions evolve higher feeding rates. Feeding rates should affect gross food intake, metabolic rates, and efficiency of food utilization. We develop a model of larval net energy intake as a function of feeding rates. We show that when there are toxic compounds in the larval food that require energy for detoxification, larvae can maximize their energy intake by slowing their feeding rates. While the reduction in feeding rates may increase development time and decrease competitive ability, we show that genotypes with lower feeding rates can be favored by natural selection if they have a sufficiently elevated viability in the toxic environment. This work shows how a simple phenotype, larval feeding rates, may be of central importance in adaptation to a wide variety of stressful environments via its role in energy allocation.

  14. Detection of in situ protein-protein complexes at the Drosophila larval neuromuscular junction using proximity ligation assay.

    PubMed

    Wang, Simon; Yoo, SooHyun; Kim, Hae-Yoon; Wang, Mannan; Zheng, Clare; Parkhouse, Wade; Krieger, Charles; Harden, Nicholas

    2015-01-20

    Discs large (Dlg) is a conserved member of the membrane-associated guanylate kinase family, and serves as a major scaffolding protein at the larval neuromuscular junction (NMJ) in Drosophila. Previous studies have shown that the postsynaptic distribution of Dlg at the larval NMJ overlaps with that of Hu-li tai shao (Hts), a homologue to the mammalian adducins. In addition, Dlg and Hts are observed to form a complex with each other based on co-immunoprecipitation experiments involving whole adult fly lysates. Due to the nature of these experiments, however, it was unknown whether this complex exists specifically at the NMJ during larval development. Proximity Ligation Assay (PLA) is a recently developed technique used mostly in cell and tissue culture that can detect protein-protein interactions in situ. In this assay, samples are incubated with primary antibodies against the two proteins of interest using standard immunohistochemical procedures. The primary antibodies are then detected with a specially designed pair of oligonucleotide-conjugated secondary antibodies, termed PLA probes, which can be used to generate a signal only when the two probes have bound in close proximity to each other. Thus, proteins that are in a complex can be visualized. Here, it is demonstrated how PLA can be used to detect in situ protein-protein interactions at the Drosophila larval NMJ. The technique is performed on larval body wall muscle preparations to show that a complex between Dlg and Hts does indeed exist at the postsynaptic region of NMJs.

  15. Natural variability in Drosophila larval and pupal NaCl tolerance.

    PubMed

    Riedl, Craig A L; Oster, Sara; Busto, Macarena; Mackay, Trudy F C; Sokolowski, Marla B

    2016-05-01

    The regulation of NaCl is essential for the maintenance of cellular tonicity and functionality, and excessive salt exposure has many adverse effects. The fruit fly, Drosophila melanogaster, is a good osmoregulator and some strains can survive on media with very low or high NaCl content. Previous analyses of mutant alleles have implicated various stress signaling cascades in NaCl sensitivity or tolerance; however, the genes influencing natural variability of NaCl tolerance remain for the most part unknown. Here, we use two approaches to investigate natural variation in D. melanogaster NaCl tolerance. We describe four D. melanogaster lines that were selected for different degrees of NaCl tolerance, and present data on their survival, development, and pupation position when raised on varying NaCl concentrations. After finding evidence for natural variation in salt tolerance, we present the results of Quantitative Trait Loci (QTL) mapping of natural variation in larval and pupal NaCl tolerance, and identify different genomic regions associated with NaCl tolerance during larval and pupal development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Dystroglycan and Protein O-Mannosyltransferases 1 and 2 Are Required to Maintain Integrity of Drosophila Larval Muscles

    PubMed Central

    Seabrooke, Sara; Stewart, Bryan A.

    2007-01-01

    In vertebrates, mutations in Protein O-mannosyltransferase1 (POMT1) or POMT2 are associated with muscular dystrophy due to a requirement for O-linked mannose glycans on the Dystroglycan (Dg) protein. In this study we examine larval body wall muscles of Drosophila mutant for Dg, or RNA interference knockdown for Dg and find defects in muscle attachment, altered muscle contraction, and a change in muscle membrane resistance. To determine if POMTs are required for Dg function in Drosophila, we examine larvae mutant for genes encoding POMT1 or POMT2. Larvae mutant for either POMT, or doubly mutant for both, show muscle attachment and muscle contraction phenotypes identical to those associated with reduced Dg function, consistent with a requirement for O-linked mannose on Drosophila Dg. Together these data establish a central role for Dg in maintaining integrity in Drosophila larval muscles and demonstrate the importance of glycosylation to Dg function in Drosophila. This study opens the possibility of using Drosophila to investigate muscular dystrophy. PMID:17881734

  17. Sequential en-face optical coherence tomography imaging and monitoring of Drosophila Melanogaster larval heart

    NASA Astrophysics Data System (ADS)

    Bradu, A.; Ma, Lisha; Bloor, J.; Podoleanu, A. GH.

    2009-02-01

    This article demonstrates two modalities to acquire information on cardiac function in larval Drosophila Melanogaster: in-vivo imaging and heartbeat monitoring. To achieve these goals a dedicated imaging instrument able to provide simultaneous en-face Optical Coherence Tomography (OCT) and Laser Scanning Confocal Microscopy (LSCM) images has been developed. With this dual imaging system, the heart can easily be located and visualised within the specimen and the change of the heart shape in a cardiac cycle monitored. The system can easily be switched to a stethoscopic regime, simply by interrupting the scanning of the light beam across the sample, after selecting the point of interest in the imaging regime. Here we have used targeted gene expression to knockdown the myospheroid (mys) gene in the larval heart using a specific RNAi construct. By knocking down a β integrin subunit encoded by mys we have recorded an enlarged heart chamber in both diastolic and systolic states. Also, the fraction of reduction of the chamber diameter was smaller in the knockdown heart. These phenotypic differences indicate that impaired cardiac contractility occurs in the heart where the integrin gene express level is reduced. As far as we are aware, this is for the first time when it is shown in Drosophila that integrins have a direct relationship to a dilated heart defect, and conseqThis article demonstrates two modalities to acquire information on cardiac function in larval Drosophila Melanogaster: in-vivo imaging and heartbeat monitoring. To achieve these goals a dedicated imaging instrument able to provide simultaneous en-face Optical Coherence Tomography (OCT) and Laser Scanning Confocal Microscopy (LSCM) images has been developed. With this dual imaging system, the heart can easily be located and visualised within the specimen and the change of the heart shape in a cardiac cycle monitored. The system can easily be switched to a stethoscopic regime, simply by interrupting the

  18. Plant microRNAs in larval food regulate honeybee caste development

    PubMed Central

    Zhou, Zhen; Kong, Yan; Liang, Hongwei; Lin, Zheguang; Luo, Jun; Zheng, Huoqing; Wan, Ping; Zhang, Junfeng; Zen, Ke; Chen, Jiong; Hu, Fuliang; Zhang, Chen-Yu; Ren, Jie

    2017-01-01

    The major environmental determinants of honeybee caste development come from larval nutrients: royal jelly stimulates the differentiation of larvae into queens, whereas beebread leads to worker bee fate. However, these determinants are not fully characterized. Here we report that plant RNAs, particularly miRNAs, which are more enriched in beebread than in royal jelly, delay development and decrease body and ovary size in honeybees, thereby preventing larval differentiation into queens and inducing development into worker bees. Mechanistic studies reveal that amTOR, a stimulatory gene in caste differentiation, is the direct target of miR162a. Interestingly, the same effect also exists in non-social Drosophila. When such plant RNAs and miRNAs are fed to Drosophila larvae, they cause extended developmental times and reductions in body weight and length, ovary size and fecundity. This study identifies an uncharacterized function of plant miRNAs that fine-tunes honeybee caste development, offering hints for understanding cross-kingdom interaction and co-evolution. PMID:28859085

  19. Plant microRNAs in larval food regulate honeybee caste development.

    PubMed

    Zhu, Kegan; Liu, Minghui; Fu, Zheng; Zhou, Zhen; Kong, Yan; Liang, Hongwei; Lin, Zheguang; Luo, Jun; Zheng, Huoqing; Wan, Ping; Zhang, Junfeng; Zen, Ke; Chen, Jiong; Hu, Fuliang; Zhang, Chen-Yu; Ren, Jie; Chen, Xi

    2017-08-01

    The major environmental determinants of honeybee caste development come from larval nutrients: royal jelly stimulates the differentiation of larvae into queens, whereas beebread leads to worker bee fate. However, these determinants are not fully characterized. Here we report that plant RNAs, particularly miRNAs, which are more enriched in beebread than in royal jelly, delay development and decrease body and ovary size in honeybees, thereby preventing larval differentiation into queens and inducing development into worker bees. Mechanistic studies reveal that amTOR, a stimulatory gene in caste differentiation, is the direct target of miR162a. Interestingly, the same effect also exists in non-social Drosophila. When such plant RNAs and miRNAs are fed to Drosophila larvae, they cause extended developmental times and reductions in body weight and length, ovary size and fecundity. This study identifies an uncharacterized function of plant miRNAs that fine-tunes honeybee caste development, offering hints for understanding cross-kingdom interaction and co-evolution.

  20. Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart.

    PubMed

    Malloy, Cole A; Ritter, Kyle; Robinson, Jonathan; English, Connor; Cooper, Robin L

    2016-01-01

    The Drosophila melanogaster heart is a popular model in which to study cardiac physiology and development. Progress has been made in understanding the role of endogenous compounds in regulating cardiac function in this model. It is well characterized that common neurotransmitters act on many peripheral and non-neuronal tissues as they flow through the hemolymph of insects. Many of these neuromodulators, including acetylcholine (ACh), have been shown to act directly on the D. melanogaster larval heart. ACh is a primary neurotransmitter in the central nervous system (CNS) of vertebrates and at the neuromuscular junctions on skeletal and cardiac tissue. In insects, ACh is the primary excitatory neurotransmitter of sensory neurons and is also prominent in the CNS. A full understanding regarding the regulation of the Drosophila cardiac physiology by the cholinergic system remains poorly understood. Here we use semi-intact D. melanogaster larvae to study the pharmacological profile of cholinergic receptor subtypes, nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs), in modulating heart rate (HR). Cholinergic receptor agonists, nicotine and muscarine both increase HR, while nAChR agonist clothianidin exhibits no significant effect when exposed to an open preparation at concentrations as low as 100 nM. In addition, both nAChR and mAChR antagonists increase HR as well but also display capabilities of blocking agonist actions. These results provide evidence that both of these receptor subtypes display functional significance in regulating the larval heart's pacemaker activity.

  1. p53 is required for brain growth but is dispensable for resistance to nutrient restriction during Drosophila larval development

    PubMed Central

    Contreras, Esteban G.; Sierralta, Jimena

    2018-01-01

    Background Animal growth is influenced by the genetic background and the environmental circumstances. How genes promote growth and coordinate adaptation to nutrient availability is still an open question. p53 is a transcription factor that commands the cellular response to different types of stresses. In adult Drosophila melanogaster, p53 regulates the metabolic adaptation to nutrient restriction that supports fly viability. Furthermore, the larval brain is protected from nutrient restriction in a phenomenon called ‘brain sparing’. Therefore, we hypothesised that p53 may regulate brain growth and show a protective role over brain development under nutrient restriction. Results Here, we studied the function of p53 during brain growth in normal conditions and in animals subjected to developmental nutrient restriction. We showed that p53 loss of function reduced animal growth and larval brain size. Endogenous p53 was expressed in larval neural stem cells, but its levels and activity were not affected by nutritional stress. Interestingly, p53 knockdown only in neural stem cells was sufficient to decrease larval brain growth. Finally, we showed that in p53 mutant larvae under nutrient restriction, the energy storage levels were not altered, and these larvae generated adults with brains of similar size than wild-type animals. Conclusions Using genetic approaches, we demonstrate that p53 is required for proper growth of the larval brain. This developmental role of p53 does not have an impact on animal resistance to nutritional stress since brain growth in p53 mutants under nutrient restriction is similar to control animals. PMID:29621246

  2. p53 is required for brain growth but is dispensable for resistance to nutrient restriction during Drosophila larval development.

    PubMed

    Contreras, Esteban G; Sierralta, Jimena; Glavic, Alvaro

    2018-01-01

    Animal growth is influenced by the genetic background and the environmental circumstances. How genes promote growth and coordinate adaptation to nutrient availability is still an open question. p53 is a transcription factor that commands the cellular response to different types of stresses. In adult Drosophila melanogaster, p53 regulates the metabolic adaptation to nutrient restriction that supports fly viability. Furthermore, the larval brain is protected from nutrient restriction in a phenomenon called 'brain sparing'. Therefore, we hypothesised that p53 may regulate brain growth and show a protective role over brain development under nutrient restriction. Here, we studied the function of p53 during brain growth in normal conditions and in animals subjected to developmental nutrient restriction. We showed that p53 loss of function reduced animal growth and larval brain size. Endogenous p53 was expressed in larval neural stem cells, but its levels and activity were not affected by nutritional stress. Interestingly, p53 knockdown only in neural stem cells was sufficient to decrease larval brain growth. Finally, we showed that in p53 mutant larvae under nutrient restriction, the energy storage levels were not altered, and these larvae generated adults with brains of similar size than wild-type animals. Using genetic approaches, we demonstrate that p53 is required for proper growth of the larval brain. This developmental role of p53 does not have an impact on animal resistance to nutritional stress since brain growth in p53 mutants under nutrient restriction is similar to control animals.

  3. Morphological analysis of Drosophila larval peripheral sensory neuron dendrites and axons using genetic mosaics.

    PubMed

    Karim, M Rezaul; Moore, Adrian W

    2011-11-07

    Nervous system development requires the correct specification of neuron position and identity, followed by accurate neuron class-specific dendritic development and axonal wiring. Recently the dendritic arborization (DA) sensory neurons of the Drosophila larval peripheral nervous system (PNS) have become powerful genetic models in which to elucidate both general and class-specific mechanisms of neuron differentiation. There are four main DA neuron classes (I-IV)(1). They are named in order of increasing dendrite arbor complexity, and have class-specific differences in the genetic control of their differentiation(2-10). The DA sensory system is a practical model to investigate the molecular mechanisms behind the control of dendritic morphology(11-13) because: 1) it can take advantage of the powerful genetic tools available in the fruit fly, 2) the DA neuron dendrite arbor spreads out in only 2 dimensions beneath an optically clear larval cuticle making it easy to visualize with high resolution in vivo, 3) the class-specific diversity in dendritic morphology facilitates a comparative analysis to find key elements controlling the formation of simple vs. highly branched dendritic trees, and 4) dendritic arbor stereotypical shapes of different DA neurons facilitate morphometric statistical analyses. DA neuron activity modifies the output of a larval locomotion central pattern generator(14-16). The different DA neuron classes have distinct sensory modalities, and their activation elicits different behavioral responses(14,16-20). Furthermore different classes send axonal projections stereotypically into the Drosophila larval central nervous system in the ventral nerve cord (VNC)(21). These projections terminate with topographic representations of both DA neuron sensory modality and the position in the body wall of the dendritic field(7,22,23). Hence examination of DA axonal projections can be used to elucidate mechanisms underlying topographic mapping(7,22,23), as well as

  4. Conditionally Pathogenic Gut Microbes Promote Larval Growth by Increasing Redox-Dependent Fat Storage in High-Sugar Diet-Fed Drosophila.

    PubMed

    Whon, Tae Woong; Shin, Na-Ri; Jung, Mi-Ja; Hyun, Dong-Wook; Kim, Hyun Sik; Kim, Pil Soo; Bae, Jin-Woo

    2017-12-01

    Changes in the composition of the gut microbiota contribute to the development of obesity and subsequent complications that are associated with metabolic syndrome. However, the role of increased numbers of certain bacterial species during the progress of obesity and factor(s) controlling the community structure of gut microbiota remain unclear. Here, we demonstrate the inter-relationship between Drosophila melanogaster and their resident gut microbiota under chronic high-sugar diet (HSD) conditions. Chronic feeding of an HSD to Drosophila resulted in a predominance of resident uracil-secreting bacteria in the gut. Axenic insects mono-associated with uracil-secreting bacteria or supplemented with uracil under HSD conditions promoted larval development. Redox signaling induced by bacterial uracil promoted larval growth by regulating sugar and lipid metabolism via activation of p38a mitogen-activated protein kinase. The present study identified a new redox-dependent mechanism by which uracil-secreting bacteria (previously regarded as opportunistic pathobionts) protect the host from metabolic perturbation under chronic HSD conditions. These results illustrate how Drosophila and gut microbes form a symbiotic relationship under stress conditions, and changes in the gut microbiota play an important role in alleviating deleterious diet-derived effects such as hyperglycemia. Antioxid. Redox Signal. 27, 1361-1380.

  5. Binary Cell Fate Decisions and Fate Transformation in the Drosophila Larval Eye

    PubMed Central

    Rister, Jens; Ng, June; Celik, Arzu; Sprecher, Simon G.

    2013-01-01

    The functionality of sensory neurons is defined by the expression of specific sensory receptor genes. During the development of the Drosophila larval eye, photoreceptor neurons (PRs) make a binary choice to express either the blue-sensitive Rhodopsin 5 (Rh5) or the green-sensitive Rhodopsin 6 (Rh6). Later during metamorphosis, ecdysone signaling induces a cell fate and sensory receptor switch: Rh5-PRs are re-programmed to express Rh6 and become the eyelet, a small group of extraretinal PRs involved in circadian entrainment. However, the genetic and molecular mechanisms of how the binary cell fate decisions are made and switched remain poorly understood. We show that interplay of two transcription factors Senseless (Sens) and Hazy control cell fate decisions, terminal differentiation of the larval eye and its transformation into eyelet. During initial differentiation, a pulse of Sens expression in primary precursors regulates their differentiation into Rh5-PRs and repression of an alternative Rh6-cell fate. Later, during the transformation of the larval eye into the adult eyelet, Sens serves as an anti-apoptotic factor in Rh5-PRs, which helps in promoting survival of Rh5-PRs during metamorphosis and is subsequently required for Rh6 expression. Comparably, during PR differentiation Hazy functions in initiation and maintenance of rhodopsin expression. Hazy represses Sens specifically in the Rh6-PRs, allowing them to die during metamorphosis. Our findings show that the same transcription factors regulate diverse aspects of larval and adult PR development at different stages and in a context-dependent manner. PMID:24385925

  6. Binary cell fate decisions and fate transformation in the Drosophila larval eye.

    PubMed

    Mishra, Abhishek Kumar; Tsachaki, Maria; Rister, Jens; Ng, June; Celik, Arzu; Sprecher, Simon G

    2013-01-01

    The functionality of sensory neurons is defined by the expression of specific sensory receptor genes. During the development of the Drosophila larval eye, photoreceptor neurons (PRs) make a binary choice to express either the blue-sensitive Rhodopsin 5 (Rh5) or the green-sensitive Rhodopsin 6 (Rh6). Later during metamorphosis, ecdysone signaling induces a cell fate and sensory receptor switch: Rh5-PRs are re-programmed to express Rh6 and become the eyelet, a small group of extraretinal PRs involved in circadian entrainment. However, the genetic and molecular mechanisms of how the binary cell fate decisions are made and switched remain poorly understood. We show that interplay of two transcription factors Senseless (Sens) and Hazy control cell fate decisions, terminal differentiation of the larval eye and its transformation into eyelet. During initial differentiation, a pulse of Sens expression in primary precursors regulates their differentiation into Rh5-PRs and repression of an alternative Rh6-cell fate. Later, during the transformation of the larval eye into the adult eyelet, Sens serves as an anti-apoptotic factor in Rh5-PRs, which helps in promoting survival of Rh5-PRs during metamorphosis and is subsequently required for Rh6 expression. Comparably, during PR differentiation Hazy functions in initiation and maintenance of rhodopsin expression. Hazy represses Sens specifically in the Rh6-PRs, allowing them to die during metamorphosis. Our findings show that the same transcription factors regulate diverse aspects of larval and adult PR development at different stages and in a context-dependent manner.

  7. Evolution of increased larval competitive ability in Drosophila melanogaster without increased larval feeding rate.

    PubMed

    Sarangi, Manaswini; Nagarajan, Archana; Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh

    2016-09-01

    Multiple experimental evolution studies on Drosophila melanogaster in the 1980s and 1990s indicated that enhanced competitive ability evolved primarily through increased larval tolerance to nitrogenous wastes and increased larval feeding and foraging rate, at the cost of efficiency of food conversion to biomass, and this became the widely accepted view of how adaptation to larval crowding evolves in fruitflies.We recently showed that populations of D. ananassae and D. n. nasuta subjected to extreme larval crowding evolved greater competitive ability without evolving higher feeding rates, primarily through a combination of reduced larval duration, faster attainment of minimum critical size for pupation, greater efficiency of food conversion to biomass, increased pupation height and, perhaps, greater urea/ammonia tolerance. This was a very different suite of traits than that seen to evolve under similar selection in D. melanogaster and was closer to the expectations from the theory of K-selection. At that time, we suggested two possible reasons for the differences in the phenotypic correlates of greater competitive ability seen in the studies with D. melanogaster and the other two species. First, that D. ananassae and D. n. nasuta had a very different genetic architecture of traits affecting competitive ability compared to the long-term laboratory populations of D. melanogaster used in the earlier studies, either because the populations of the former two species were relatively recently wild-caught, or by virtue of being different species. Second, that the different evolutionary trajectories in D. ananassae and D. n. nasuta versus D. melanogaster were a reflection of differences in the manner in which larval crowding was imposed in the two sets of selection experiments. The D. melanogaster studies used a higher absolute density of eggs per unit volume of food, and a substantially larger total volume of food, than the studies on D. ananassae and D. n. nasuta. Here, we

  8. Functional genomics identifies regulators of the phototransduction machinery in the Drosophila larval eye and adult ocelli.

    PubMed

    Mishra, Abhishek Kumar; Bargmann, Bastiaan O R; Tsachaki, Maria; Fritsch, Cornelia; Sprecher, Simon G

    2016-02-15

    Sensory perception of light is mediated by specialized Photoreceptor neurons (PRs) in the eye. During development all PRs are genetically determined to express a specific Rhodopsin (Rh) gene and genes mediating a functional phototransduction pathway. While the genetic and molecular mechanisms of PR development is well described in the adult compound eye, it remains unclear how the expression of Rhodopsins and the phototransduction cascade is regulated in other visual organs in Drosophila, such as the larval eye and adult ocelli. Using transcriptome analysis of larval PR-subtypes and ocellar PRs we identify and study new regulators required during PR differentiation or necessary for the expression of specific signaling molecules of the functional phototransduction pathway. We found that the transcription factor Krüppel (Kr) is enriched in the larval eye and controls PR differentiation by promoting Rh5 and Rh6 expression. We also identified Camta, Lola, Dve and Hazy as key genes acting during ocellar PR differentiation. Further we show that these transcriptional regulators control gene expression of the phototransduction cascade in both larval eye and adult ocelli. Our results show that PR cell type-specific transcriptome profiling is a powerful tool to identify key transcriptional regulators involved during several aspects of PR development and differentiation. Our findings greatly contribute to the understanding of how combinatorial action of key transcriptional regulators control PR development and the regulation of a functional phototransduction pathway in both larval eye and adult ocelli. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Preference for and learning of amino acids in larval Drosophila

    PubMed Central

    Kudow, Nana; Miura, Daisuke; Schleyer, Michael; Toshima, Naoko; Gerber, Bertram

    2017-01-01

    ABSTRACT Relative to other nutrients, less is known about how animals sense amino acids and how behaviour is organized accordingly. This is a significant gap in our knowledge because amino acids are required for protein synthesis − and hence for life as we know it. Choosing Drosophila larvae as a case study, we provide the first systematic analysis of both the preference behaviour for, and the learning of, all 20 canonical amino acids in Drosophila. We report that preference for individual amino acids differs according to the kind of amino acid, both in first-instar and in third-instar larvae. Our data suggest that this preference profile changes across larval instars, and that starvation during the third instar also alters this profile. Only aspartic acid turns out to be robustly attractive across all our experiments. The essentiality of amino acids does not appear to be a determinant of preference. Interestingly, although amino acids thus differ in their innate attractiveness, we find that all amino acids are equally rewarding. Similar discrepancies between innate attractiveness and reinforcing effect have previously been reported for other tastants, including sugars, bitter substances and salt. The present analyses will facilitate the ongoing search for the receptors, sensory neurons, and internal, homeostatic amino acid sensors in Drosophila. PMID:28193602

  10. Larval Population Density Alters Adult Sleep in Wild-Type Drosophila melanogaster but Not in Amnesiac Mutant Flies

    PubMed Central

    Chi, Michael W.; Griffith, Leslie C.; Vecsey, Christopher G.

    2014-01-01

    Sleep has many important biological functions, but how sleep is regulated remains poorly understood. In humans, social isolation and other stressors early in life can disrupt adult sleep. In fruit flies housed at different population densities during early adulthood, social enrichment was shown to increase subsequent sleep, but it is unknown if population density during early development can also influence adult sleep. To answer this question, we maintained Drosophila larvae at a range of population densities throughout larval development, kept them isolated during early adulthood, and then tested their sleep patterns. Our findings reveal that flies that had been isolated as larvae had more fragmented sleep than those that had been raised at higher population densities. This effect was more prominent in females than in males. Larval population density did not affect sleep in female flies that were mutant for amnesiac, which has been shown to be required for normal memory consolidation, adult sleep regulation, and brain development. In contrast, larval population density effects on sleep persisted in female flies lacking the olfactory receptor or83b, suggesting that olfactory signals are not required for the effects of larval population density on adult sleep. These findings show that population density during early development can alter sleep behavior in adulthood, suggesting that genetic and/or structural changes are induced by this developmental manipulation that persist through metamorphosis. PMID:25116571

  11. Larval Population Density Alters Adult Sleep in Wild-Type Drosophila melanogaster but Not in Amnesiac Mutant Flies.

    PubMed

    Chi, Michael W; Griffith, Leslie C; Vecsey, Christopher G

    2014-08-11

    Sleep has many important biological functions, but how sleep is regulated remains poorly understood. In humans, social isolation and other stressors early in life can disrupt adult sleep. In fruit flies housed at different population densities during early adulthood, social enrichment was shown to increase subsequent sleep, but it is unknown if population density during early development can also influence adult sleep. To answer this question, we maintained Drosophila larvae at a range of population densities throughout larval development, kept them isolated during early adulthood, and then tested their sleep patterns. Our findings reveal that flies that had been isolated as larvae had more fragmented sleep than those that had been raised at higher population densities. This effect was more prominent in females than in males. Larval population density did not affect sleep in female flies that were mutant for amnesiac, which has been shown to be required for normal memory consolidation, adult sleep regulation, and brain development. In contrast, larval population density effects on sleep persisted in female flies lacking the olfactory receptor or83b, suggesting that olfactory signals are not required for the effects of larval population density on adult sleep. These findings show that population density during early development can alter sleep behavior in adulthood, suggesting that genetic and/or structural changes are induced by this developmental manipulation that persist through metamorphosis.

  12. Drosophila sessile hemocyte clusters are true hematopoietic tissues that regulate larval blood cell differentiation

    PubMed Central

    Leitão, Alexandre B; Sucena, Élio

    2015-01-01

    Virtually all species of coelomate animals contain blood cells that display a division of labor necessary for homeostasis. This functional partition depends upon the balance between proliferation and differentiation mostly accomplished in the hematopoietic organs. In Drosophila melanogaster, the lymph gland produces plasmatocytes and crystal cells that are not released until pupariation. Yet, throughout larval development, both hemocyte types increase in numbers. Mature plasmatocytes can proliferate but it is not known if crystal cell numbers increase by self-renewal or by de novo differentiation. We show that new crystal cells in third instar larvae originate through a Notch-dependent process of plasmatocyte transdifferentiation. This process occurs in the sessile clusters and is contingent upon the integrity of these structures. The existence of this hematopoietic tissue, relying on structure-dependent signaling events to promote blood homeostasis, creates a new paradigm for addressing outstanding questions in Drosophila hematopoiesis and establishing further parallels with vertebrate systems. DOI: http://dx.doi.org/10.7554/eLife.06166.001 PMID:25650737

  13. Bitter-sweet processing in larval Drosophila.

    PubMed

    König, Christian; Schleyer, Michael; Leibiger, Judith; El-Keredy, Amira; Gerber, Bertram

    2014-07-01

    "Sweet-" and "bitter-" tasting substances distinctively support attractive and aversive choice behavior, respectively, and therefore are thought to be processed by distinct pathways. Interestingly, electrophysiological recordings in adult Drosophila suggest that bitter and salty tastants, in addition to activating bitter, salt, or bitter/salt sensory neurons, can also inhibit sweet-sensory neurons. However, the behavioral significance of such a potential for combinatorial coding is little understood. Using larval Drosophila as a study case, we find that the preference towards fructose is inhibited when assayed in the background of the bitter tastant quinine. When testing the influence of quinine on the preference to other, equally preferred sweet tastants, we find that these sweet tastants differ in their susceptibility to be inhibited by quinine. Such stimulus specificity argues that the inhibitory effect of quinine is not due to general effects on locomotion or nausea. In turn, not all bitter tastants have the same potency to inhibit sweet preference; notably, their inhibitory potency is not determined by the strength of the avoidance of them. Likewise, equally avoided concentrations of sodium chloride differ in their potency to inhibit sugar preference. Furthermore, Gr33a-Gal4-positive neurons, while being necessary for bitter avoidance, are dispensable for inhibition of the sweet pathway. Thus, interactions across taste modalities are behaviorally significant and, as we discuss, arguably diverse in mechanism. These results suggest that the coding of tastants and the organization of gustatory behavior may be more combinatorial than is generally acknowledged. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. [Carbohydrate restriction in the larval diet causes oxidative stress in adult insects of Drosophila melanogaster].

    PubMed

    Rovenko, B M; Lushchak, V I; Lushchak, O V

    2013-01-01

    The influence of 20 and 1% glucose and fructose, which were components of larval diet, on the level of oxidized proteins and lipids, low molecular mass antioxidant content as well as activities of antioxidant and associated enzymes in adult fruit fly Drosophila melanogaster were investigated. The restriction of carbohydrates in larval diet leads to oxidative stress in adult insects. It is supported by 40-50% increased content of protein carbonyl groups and by 60-70% decreased level of protein thiol groups as well as by a 4-fold increase of lipid peroxide content in 2-day-old flies of both sexes, developed on the diet with 1% carbohydrates. Oxidative stress, induced by carbohydrate restriction of the larval diet, caused the activation of antioxidant defence, differently exhibited in male and female fruit flies. Caloric restriction increased activity of superoxide dismutase and thioredoxin reductase associating only in males with 2-fold higher activity of NADPH-producing enzymes--glucose-6-phosphate dehydrogenase and isocitrate dehydrogenase. Carbohydrate restriction in the larval diet caused the increase of uric acid content, but the decrease in catalase activity in males. In females the values of these parameters were changed in opposite direction compared with males. The obtained results let us conclude the different involvement of low molecular mass antioxidants, glutathione and uric acid, and antioxidant enzyme catalase in the protection of male and female fruit fly macromolecules against oxidative damages, caused by calorie restriction of larval diet.

  15. Evolution of increased adult longevity in Drosophila melanogaster populations selected for adaptation to larval crowding.

    PubMed

    Shenoi, V N; Ali, S Z; Prasad, N G

    2016-02-01

    In holometabolous animals such as Drosophila melanogaster, larval crowding can affect a wide range of larval and adult traits. Adults emerging from high larval density cultures have smaller body size and increased mean life span compared to flies emerging from low larval density cultures. Therefore, adaptation to larval crowding could potentially affect adult longevity as a correlated response. We addressed this issue by studying a set of large, outbred populations of D. melanogaster, experimentally evolved for adaptation to larval crowding for 83 generations. We assayed longevity of adult flies from both selected (MCUs) and control populations (MBs) after growing them at different larval densities. We found that MCUs have evolved increased mean longevity compared to MBs at all larval densities. The interaction between selection regime and larval density was not significant, indicating that the density dependence of mean longevity had not evolved in the MCU populations. The increase in longevity in MCUs can be partially attributed to their lower rates of ageing. It is also noteworthy that reaction norm of dry body weight, a trait probably under direct selection in our populations, has indeed evolved in MCU populations. To the best of our knowledge, this is the first report of the evolution of adult longevity as a correlated response of adaptation to larval crowding. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  16. Extensive morphological divergence and rapid evolution of the larval neuromuscular junction in Drosophila.

    PubMed

    Campbell, Megan; Ganetzky, Barry

    2012-03-13

    Although the complexity and circuitry of nervous systems undergo evolutionary change, we lack understanding of the general principles and specific mechanisms through which it occurs. The Drosophila larval neuromuscular junction (NMJ), which has been widely used for studies of synaptic development and function, is also an excellent system for studies of synaptic evolution because the genus spans >40 Myr of evolution and the same identified synapse can be examined across the entire phylogeny. We have now characterized morphology of the NMJ on muscle 4 (NMJ4) in >20 species of Drosophila. Although there is little variation within a species, NMJ morphology and complexity vary extensively between species. We find no significant correlation between NMJ phenotypes and phylogeny for the species examined, suggesting that drift alone cannot explain the phenotypic variation and that selection likely plays an important role. However, the nature of the selective pressure is still unclear because basic parameters of synaptic function remain uniform. Whatever the mechanism, NMJ morphology is evolving rapidly in comparison with other morphological features because NMJ phenotypes differ even between several sibling species pairs. The discovery of this unexpectedly extensive divergence in NMJ morphology among Drosophila species provides unique opportunities to investigate mechanisms that regulate synaptic growth; the interrelationships between synaptic morphology, neural function, and behavior; and the evolution of nervous systems and behavior in natural populations.

  17. Expression of the Drosophila homeobox gene, Distal-less supports an ancestral role in neural development

    PubMed Central

    Plavicki, Jessica S.; Squirrell, Jayne M.; Eliceiri, Kevin W.; Boekhoff-Falk, Grace

    2015-01-01

    Background Distal-less (Dll) encodes a homeodomain transcription factor expressed in developing appendages of organisms throughout metazoan phylogeny. Based on earlier observations in the limbless nematode Caenorhabditis elegans and the primitive chordate amphioxus, it was proposed that Dll had an ancestral function in nervous system development. Consistent with this hypothesis, Dll is necessary for the development of both peripheral and central components of the Drosophila olfactory system. Furthermore, vertebrate homologs of Dll, the Dlx genes, play critical roles in mammalian brain development. Results Using fluorescent immunohistochemistry of fixed samples and multiphoton microscopy of living Drosophila embryos we show that Dll is expressed in the embryonic, larval and adult CNS and PNS in embryonic and larval neurons, brain and ventral nerve cord (VNC) glia, as well as in PNS structures associated with chemosensation. In adult flies, Dll expression is expressed in the optic lobes, central brain regions and the antennal lobes. Conclusions Characterization of Dll expression in the developing nervous system supports a role of Dll in neural development and function and establishes an important basis for determining the specific functional roles of Dll in Drosophila development and for comparative studies of Drosophila Dll functions with those of its vertebrate counterparts. PMID:26472170

  18. NIP/DuoxA is essential for Drosophila embryonic development and regulates oxidative stress response.

    PubMed

    Xie, Xiaojun; Hu, Jack; Liu, Xiping; Qin, Hanjuan; Percival-Smith, Anthony; Rao, Yong; Li, Shawn S C

    2010-05-11

    NIP/DuoxA, originally cloned as a protein capable of binding to the cell fate determinant Numb in Drosophila, was recently identified as a modulator of reactive oxygen species (ROS) production in mammalian systems. Despite biochemical and cellular studies that link NIP/DuoxA to the generation of ROS through the dual oxidase (Duox) enzyme, the in vivo function of NIP/DuoxA has not been characterized to date. Here we report a genetic and functional characterization of nip in Drosophila melanogaster. We show that nip is essential for Drosophila development as nip null mutants die at the 1(st) larval instar. Expression of UAS-nip, but not UAS-Duox, rescued the lethality. To understand the function of nip beyond the early larval stage, we generated GAL4 inducible UAS-RNAi transgenes. da(G32)-GAL4 driven, ubiquitous RNAi-mediated silencing of nip led to profound abnormality in pre-adult development, crinkled wing and markedly reduced lifespan at 29 degrees C. Compared to wild type flies, da-GAL4 induced nip-RNAi transgenic flies exhibited significantly reduced ability to survive under oxidative stress and displayed impaired mitochondrial aconitase function. Our work provides in vivo evidence for a critical role for nip in the development and oxidative stress response in Drosophila.

  19. larvalign: Aligning Gene Expression Patterns from the Larval Brain of Drosophila melanogaster.

    PubMed

    Muenzing, Sascha E A; Strauch, Martin; Truman, James W; Bühler, Katja; Thum, Andreas S; Merhof, Dorit

    2018-01-01

    The larval brain of the fruit fly Drosophila melanogaster is a small, tractable model system for neuroscience. Genes for fluorescent marker proteins can be expressed in defined, spatially restricted neuron populations. Here, we introduce the methods for 1) generating a standard template of the larval central nervous system (CNS), 2) spatial mapping of expression patterns from different larvae into a reference space defined by the standard template. We provide a manually annotated gold standard that serves for evaluation of the registration framework involved in template generation and mapping. A method for registration quality assessment enables the automatic detection of registration errors, and a semi-automatic registration method allows one to correct registrations, which is a prerequisite for a high-quality, curated database of expression patterns. All computational methods are available within the larvalign software package: https://github.com/larvalign/larvalign/releases/tag/v1.0.

  20. Experimental control and characterization of autophagy in Drosophila.

    PubMed

    Juhasz, Gabor; Neufeld, Thomas P

    2008-01-01

    Insects such as the fruit fly Drosophila melanogaster, which fundamentally reorganize their body plan during metamorphosis, make extensive use of autophagy for their normal development and physiology. In the fruit fly, the hepatic/adipose organ known as the fat body accumulates nutrient stores during the larval feeding stage. Upon entering metamorphosis, as well as in response to starvation, these nutrients are mobilized through a massive induction of autophagy, providing support to other tissues and organs during periods of nutrient deprivation. High levels of autophagy are also observed in larval tissues destined for elimination, such as the salivary glands and larval gut. Drosophila is emerging as an important system for studying the functions and regulation of autophagy in an in vivo setting. In this chapter we describe reagents and methods for monitoring autophagy in Drosophila, focusing on the larval fat body. We also describe methods for experimentally activating and inhibiting autophagy in this system and discuss the potential for genetic analysis in Drosophila to identify novel genes involved in autophagy.

  1. Dpp dependent Hematopoietic stem cells give rise to Hh dependent blood progenitors in larval lymph gland of Drosophila.

    PubMed

    Dey, Nidhi Sharma; Ramesh, Parvathy; Chugh, Mayank; Mandal, Sudip; Mandal, Lolitika

    2016-10-26

    Drosophila hematopoiesis bears striking resemblance with that of vertebrates, both in the context of distinct phases and the signaling molecules. Even though, there has been no evidence of Hematopoietic stem cells (HSCs) in Drosophila , the larval lymph gland with its Hedgehog dependent progenitors served as an invertebrate model of progenitor biology. Employing lineage-tracing analyses, we have now identified Notch expressing HSCs in the first instar larval lymph gland. Our studies clearly establish the hierarchical relationship between Notch expressing HSCs and the previously described Domeless expressing progenitors. These HSCs require Decapentapelagic (Dpp) signal from the hematopoietic niche for their maintenance in an identical manner to vertebrate aorta-gonadal-mesonephros (AGM) HSCs. Thus, this study not only extends the conservation across these divergent taxa, but also provides a new model that can be exploited to gain better insight into the AGM related Hematopoietic stem cells (HSCs).

  2. Hydroxyurea-mediated neuroblast ablation establishes birthdates of secondary lineages and addresses neuronal interactions in the developing Drosophila brain

    PubMed Central

    Lovick, Jennifer K.; Hartenstein, Volker

    2015-01-01

    The Drosophila brain is comprised of neurons formed by approximately 100 lineages, each of which is derived from a stereotyped, asymmetrically dividing neuroblast. Lineages serve as structural and developmental units of Drosophila brain anatomy and reconstruction of lineage projection patterns represents a suitable map of Drosophila brain circuitry at the level of neuron populations (“macro-circuitry”). Two phases of neuroblast proliferation, the first in the embryo and the second during the larval phase (following a period of mitotic quiescence), produce primary and secondary lineages, respectively. Using temporally controlled pulses of hydroxyurea (HU) to ablate neuroblasts and their corresponding secondary lineages during the larval phase, we analyzed the effect on development of primary and secondary lineages in the late larval and adult brain. Our findings indicate that timing of neuroblast re-activation is highly stereotyped, allowing us to establish “birth dates” for all secondary lineages. Furthermore, our results demonstrate that, whereas the trajectory and projection pattern of primary and secondary lineages is established in a largely independent manner, the final branching pattern of secondary neurons is dependent upon the presence of appropriate neuronal targets. Taken together, our data provide new insights into the degree of neuronal plasticity during Drosophila brain development. PMID:25773365

  3. Identification of factors that function in Drosophila salivary gland cell death during development using proteomics

    PubMed Central

    McPhee, C K; Balgley, B M; Nelson, C; Hill, J H; Batlevi, Y; Fang, X; Lee, C S; Baehrecke, E H

    2013-01-01

    Proteasome inhibitors induce cell death and are used in cancer therapy, but little is known about the relationship between proteasome impairment and cell death under normal physiological conditions. Here, we investigate the relationship between proteasome function and larval salivary gland cell death during development in Drosophila. Drosophila larval salivary gland cells undergo synchronized programmed cell death requiring both caspases and autophagy (Atg) genes during development. Here, we show that ubiquitin proteasome system (UPS) function is reduced during normal salivary gland cell death, and that ectopic proteasome impairment in salivary gland cells leads to early DNA fragmentation and salivary gland condensation in vivo. Shotgun proteomic analyses of purified dying salivary glands identified the UPS as the top category of proteins enriched, suggesting a possible compensatory induction of these factors to maintain proteolysis during cell death. We compared the proteome following ectopic proteasome impairment to the proteome during developmental cell death in salivary gland cells. Proteins that were enriched in both populations of cells were screened for their function in salivary gland degradation using RNAi knockdown. We identified several factors, including trol, a novel gene CG11880, and the cop9 signalsome component cop9 signalsome 6, as required for Drosophila larval salivary gland degradation. PMID:22935612

  4. A Role for Adenosine Deaminase in Drosophila Larval Development

    PubMed Central

    Dolezal, Tomas; Dolezelova, Eva; Zurovec, Michal

    2005-01-01

    Adenosine deaminase (ADA) is an enzyme present in all organisms that catalyzes the irreversible deamination of adenosine and deoxyadenosine to inosine and deoxyinosine. Both adenosine and deoxyadenosine are biologically active purines that can have a deep impact on cellular physiology; notably, ADA deficiency in humans causes severe combined immunodeficiency. We have established a Drosophila model to study the effects of altered adenosine levels in vivo by genetic elimination of adenosine deaminase-related growth factor-A (ADGF-A), which has ADA activity and is expressed in the gut and hematopoietic organ. Here we show that the hemocytes (blood cells) are the main regulator of adenosine in the Drosophila larva, as was speculated previously for mammals. The elevated level of adenosine in the hemolymph due to lack of ADGF-A leads to apparently inconsistent phenotypic effects: precocious metamorphic changes including differentiation of macrophage-like cells and fat body disintegration on one hand, and delay of development with block of pupariation on the other. The block of pupariation appears to involve signaling through the adenosine receptor (AdoR), but fat body disintegration, which is promoted by action of the hemocytes, seems to be independent of the AdoR. The existence of such an independent mechanism has also been suggested in mammals. PMID:15907156

  5. Drosophila Activin- and the Activin-like product Dawdle function redundantly to regulate proliferation in the larval brain.

    PubMed

    Zhu, Changqi C; Boone, Jason Q; Jensen, Philip A; Hanna, Scott; Podemski, Lynn; Locke, John; Doe, Chris Q; O'Connor, Michael B

    2008-02-01

    The Drosophila Activin-like ligands Activin-beta and Dawdle control several aspects of neuronal morphogenesis, including mushroom body remodeling, dorsal neuron morphogenesis and motoneuron axon guidance. Here we show that the same two ligands act redundantly through the Activin receptor Babo and its transcriptional mediator Smad2 (Smox), to regulate neuroblast numbers and proliferation rates in the developing larval brain. Blocking this pathway results in the development of larvae with small brains and aberrant photoreceptor axon targeting, and restoring babo function in neuroblasts rescued these mutant phenotypes. These results suggest that the Activin signaling pathway is required for producing the proper number of neurons to enable normal connection of incoming photoreceptor axons to their targets. Furthermore, as the Activin pathway plays a key role in regulating propagation of mouse and human embryonic stem cells, our observation that it also regulates neuroblast numbers and proliferation in Drosophila suggests that involvement of Activins in controlling stem cell propagation may be a common regulatory feature of this family of TGF-beta-type ligands.

  6. Drosophila Nociceptors Mediate Larval Aversion to Dry Surface Environments Utilizing Both the Painless TRP Channel and the DEG/ENaC Subunit, PPK1

    PubMed Central

    Johnson, Wayne A.; Carder, Justin W.

    2012-01-01

    A subset of sensory neurons embedded within the Drosophila larval body wall have been characterized as high-threshold polymodal nociceptors capable of responding to noxious heat and noxious mechanical stimulation. They are also sensitized by UV-induced tissue damage leading to both thermal hyperalgesia and allodynia very similar to that observed in vertebrate nociceptors. We show that the class IV multiple-dendritic(mdIV) nociceptors are also required for a normal larval aversion to locomotion on to a dry surface environment. Drosophila melanogaster larvae are acutely susceptible to desiccation displaying a strong aversion to locomotion on dry surfaces severely limiting the distance of movement away from a moist food source. Transgenic inactivation of mdIV nociceptor neurons resulted in larvae moving inappropriately into regions of low humidity at the top of the vial reflected as an increased overall pupation height and larval desiccation. This larval lethal desiccation phenotype was not observed in wild-type controls and was completely suppressed by growth in conditions of high humidity. Transgenic hyperactivation of mdIV nociceptors caused a reciprocal hypersensitivity to dry surfaces resulting in drastically decreased pupation height but did not induce the writhing nocifensive response previously associated with mdIV nociceptor activation by noxious heat or harsh mechanical stimuli. Larvae carrying mutations in either the Drosophila TRP channel, Painless, or the degenerin/epithelial sodium channel subunit Pickpocket1(PPK1), both expressed in mdIV nociceptors, showed the same inappropriate increased pupation height and lethal desiccation observed with mdIV nociceptor inactivation. Larval aversion to dry surfaces appears to utilize the same or overlapping sensory transduction pathways activated by noxious heat and harsh mechanical stimulation but with strikingly different sensitivities and disparate physiological responses. PMID:22403719

  7. Loss of SPARC dysregulates basal lamina assembly to disrupt larval fat body homeostasis in Drosophila melanogaster.

    PubMed

    Shahab, Jaffer; Baratta, Cristina; Scuric, Bianca; Godt, Dorothea; Venken, Koen J T; Ringuette, Maurice J

    2015-04-01

    SPARC is a collagen-binding glycoprotein whose functions during early development are unknown. We previously reported that SPARC is expressed in Drosophila by hemocytes and the fat body (FB) and enriched in basal laminae (BL) surrounding tissues, including adipocytes. We sought to explore if SPARC is required for proper BL assembly in the FB. SPARC deficiency leads to larval lethality, associated with remodeling of the FB. In the absence of SPARC, FB polygonal adipocytes assume a spherical morphology. Loss-of-function clonal analyses revealed a cell-autonomous accumulation of BL components around mutant cells that include collagen IV (Col lV), Laminin, and Perlecan. Ultrastructural analyses indicate SPARC-deficient adipocytes are surrounded by an aberrant accumulation of a fibrous extracellular matrix. Our data indicate a critical requirement for SPARC for the proper BL assembly in Drosophila FB. Since Col IV within the BL is a prime determinant of cell shape, the rounded appearance of SPARC-deficient adipocytes is due to aberrant assembly of Col IV. © 2014 Wiley Periodicals, Inc.

  8. Brain development in the yellow fever mosquito Aedes aegypti: a comparative immunocytochemical analysis using cross-reacting antibodies from Drosophila melanogaster.

    PubMed

    Mysore, Keshava; Flister, Susanne; Müller, Pie; Rodrigues, Veronica; Reichert, Heinrich

    2011-12-01

    Considerable effort has been directed towards understanding the organization and function of peripheral and central nervous system of disease vector mosquitoes such as Aedes aegypti. To date, all of these investigations have been carried out on adults but none of the studies addressed the development of the nervous system during the larval and pupal stages in mosquitoes. Here, we first screen a set of 30 antibodies, which have been used to study brain development in Drosophila, and identify 13 of them cross-reacting and labeling epitopes in the developing brain of Aedes. We then use the identified antibodies in immunolabeling studies to characterize general neuroanatomical features of the developing brain and compare them with the well-studied model system, Drosophila melanogaster, in larval, pupal, and adult stages. Furthermore, we use immunolabeling to document the development of specific components of the Aedes brain, namely the optic lobes, the subesophageal neuropil, and serotonergic system of the subesophageal neuropil in more detail. Our study reveals prominent differences in the developing brain in the larval stage as compared to the pupal (and adult) stage of Aedes. The results also uncover interesting similarities and marked differences in brain development of Aedes as compared to Drosophila. Taken together, this investigation forms the basis for future cellular and molecular investigations of brain development in this important disease vector. © Springer-Verlag 2011

  9. Larval exposure to azadirachtin affects fitness and oviposition site preference of Drosophila melanogaster.

    PubMed

    Bezzar-Bendjazia, Radia; Kilani-Morakchi, Samira; Aribi, Nadia

    2016-10-01

    Azadirachtin, a biorational insecticide, is one of the prominent biopesticide commercialized today and represent an alternative to conventional insecticides. The current study examined the lethal and sublethal effects of azadirachtin on Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae) as biological model. Various doses ranging from 0.1 to 2μg were applied topically on early third instar larvae and the cumulative mortality of immature stage was determined. In second series of experiments, azadirachtin was applied at its LD 25 (0.28μg) and LD 50 (0.67μg) and evaluated on fitness (development duration, fecundity, adult survival) and oviposition site preference with and without choice. Results showed that azadirachtin increased significantly at the two tested doses the duration of larval and pupal development. Moreover, azadirachtin treatment reduced significantly adult's survival of both sex as compared to control. In addition, azadirachtin affected fecundity of flies by a significant reduction of the number of eggs laid. Finally results showed that females present clear preference for oviposition in control medium. Pre-imaginal exposure (L3) to azadirachtin increased aversion to this substance suggesting a memorability of the learned avoidance. The results provide some evidence that larval exposure to azadirachtin altered adult oviposition preference as well as major fitness traits of D. melanogaster. Theses finding may reinforce behavioural avoidance of azadirachtin and contribute as repellent strategies in integrated pest management programmes. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The Him gene inhibits the development of Drosophila flight muscles during metamorphosis.

    PubMed

    Soler, Cédric; Taylor, Michael V

    2009-07-01

    During Drosophila metamorphosis some larval tissues escape the general histolysis and are remodelled to form adult tissues. One example is the dorso-longitudinal muscles (DLMs) of the indirect flight musculature. They are formed by an intriguing process in which residual larval oblique muscles (LOMs) split and fuse with imaginal myoblasts associated with the wing disc. These myoblasts arise in the embryo, but remain undifferentiated throughout embryogenesis and larval life, and thus share characteristics with mammalian satellite cells. However, the mechanisms that maintain the Drosophila myoblasts in an undifferentiated state until needed for LOM remodelling are not understood. Here we show that the Him gene is expressed in these myoblasts, but is undetectable in developing DLM fibres. Consistent with this, we found that Him could inhibit DLM development: it inhibited LOM splitting and resulted in fibre degeneration. We then uncovered a balance between mef2, a positive factor required for proper DLM development, and the inhibitory action of Him. Mef2 suppressed the inhibitory effect of Him on DLM development, while Him could suppress the premature myosin expression induced by mef2 in myoblasts. Furthermore, either decreased Him function or increased mef2 function disrupted DLM development. These findings, together with the co-expression of Him and Mef2 in myoblasts, indicate that Him may antagonise mef2 function during normal DLM development and that Him participates in a balance of signals that controls adult myoblast differentiation and remodelling of these muscle fibres. Lastly, we provide evidence for a link between Notch function and Him and mef2 in this balance.

  11. Adaptive adjustment of the generalization-discrimination balance in larval Drosophila.

    PubMed

    Mishra, Dushyant; Louis, Matthieu; Gerber, Bertram

    2010-09-01

    Learnt predictive behavior faces a dilemma: predictive stimuli will never 'replay' exactly as during the learning event, requiring generalization. In turn, minute differences can become meaningful, prompting discrimination. To provide a study case for an adaptive adjustment of this generalization-discrimination balance, the authors ask whether Drosophila melanogaster larvae are able to either generalize or discriminate between two odors (1-octen-3-ol and 3-octanol), depending on the task. The authors find that after discriminatively rewarding one but not the other odor, larvae show conditioned preference for the rewarded odor. On the other hand, no odor specificity is observed after nondiscriminative training, even if the test involves a choice between both odors. Thus, for this odor pair at least, discrimination training is required to confer an odor-specific memory trace. This requires that there is at least some difference in processing between the two odors already at the beginning of the training. Therefore, as a default, there is a small yet salient difference in processing between 1-octen-3-ol and 3-octanol; this difference is ignored after nondiscriminative training (generalization), whereas it is accentuated by odor-specific reinforcement (discrimination). Given that, as the authors show, both faculties are lost in anosmic Or83b(1) mutants, this indicates an adaptive adjustment of the generalization-discrimination balance in larval Drosophila, taking place downstream of Or83b-expressing sensory neurons.

  12. Identification of the essential protein domains for Mib2 function during the development of the Drosophila larval musculature and adult flight muscles.

    PubMed

    Domsch, Katrin; Acs, Andreas; Obermeier, Claudia; Nguyen, Hanh T; Reim, Ingolf

    2017-01-01

    The proper differentiation and maintenance of myofibers is fundamental to a functional musculature. Disruption of numerous mostly structural factors leads to perturbations of these processes. Among the limited number of known regulatory factors for these processes is Mind bomb2 (Mib2), a muscle-associated E3 ubiquitin ligase, which was previously established to be required for maintaining the integrity of larval muscles. In this study, we have examined the mechanistic aspects of Mib2 function by performing a detailed functional dissection of the Mib2 protein. We show that the ankyrin repeats, in its entirety, and the hitherto uncharacterized Mib-specific domains (MIB), are important for the major function of Mib2 in skeletal and visceral muscles in the Drosophila embryo. Furthermore, we characterize novel mib2 alleles that have arisen from a forward genetic screen aimed at identifying regulators of myogenesis. Two of these alleles are viable, but flightless hypomorphic mib2 mutants, and harbor missense mutations in the MIB domain and RING finger, respectively. Functional analysis of these new alleles, including in vivo imaging, demonstrates that Mib2 plays an additional important role in the development of adult thorax muscles, particularly in maintaining the larval templates for the dorsal longitudinal indirect flight muscles during metamorphosis.

  13. Identification of the essential protein domains for Mib2 function during the development of the Drosophila larval musculature and adult flight muscles

    PubMed Central

    Domsch, Katrin; Acs, Andreas; Obermeier, Claudia; Nguyen, Hanh T.

    2017-01-01

    The proper differentiation and maintenance of myofibers is fundamental to a functional musculature. Disruption of numerous mostly structural factors leads to perturbations of these processes. Among the limited number of known regulatory factors for these processes is Mind bomb2 (Mib2), a muscle-associated E3 ubiquitin ligase, which was previously established to be required for maintaining the integrity of larval muscles. In this study, we have examined the mechanistic aspects of Mib2 function by performing a detailed functional dissection of the Mib2 protein. We show that the ankyrin repeats, in its entirety, and the hitherto uncharacterized Mib-specific domains (MIB), are important for the major function of Mib2 in skeletal and visceral muscles in the Drosophila embryo. Furthermore, we characterize novel mib2 alleles that have arisen from a forward genetic screen aimed at identifying regulators of myogenesis. Two of these alleles are viable, but flightless hypomorphic mib2 mutants, and harbor missense mutations in the MIB domain and RING finger, respectively. Functional analysis of these new alleles, including in vivo imaging, demonstrates that Mib2 plays an additional important role in the development of adult thorax muscles, particularly in maintaining the larval templates for the dorsal longitudinal indirect flight muscles during metamorphosis. PMID:28282454

  14. Whole-central nervous system functional imaging in larval Drosophila

    PubMed Central

    Lemon, William C.; Pulver, Stefan R.; Höckendorf, Burkhard; McDole, Katie; Branson, Kristin; Freeman, Jeremy; Keller, Philipp J.

    2015-01-01

    Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord. PMID:26263051

  15. Drosophila Growth and Development in the Absence of dMyc and dMnt

    PubMed Central

    Pierce, Sarah B.; Yost, Cynthia; Anderson, Sarah A. R.; Flynn, Erin M.; Delrow, Jeffrey; Eisenman, Robert N.

    2008-01-01

    Myc oncoproteins are essential regulators of the growth and proliferation of mammalian cells. In Drosophila the single ortholog of Myc (dMyc), encoded by the dm gene, influences organismal size and the growth of both mitotic and endoreplicating cells. A null mutation in dm results in attenuated endoreplication and growth arrest early in larval development. Drosophila also contains a single ortholog of the mammalian Mad/Mnt transcriptional repressor proteins (dMnt), which is thought to antagonize dMyc function. Here we show that animals lacking both dMyc and dMnt display increased viability and grow significantly larger and develop further than dMyc single mutants. We observe increased endoreplication and growth of larval tissues in these double mutants and disproportionate growth of the imaginal discs. Gene expression analysis indicates that loss of dMyc leads to decreased expression of genes required for ribosome biogenesis and protein synthesis. The additional loss of dMnt partially rescues expression of a small number of dMyc and dMnt genes that are primarily involved in rRNA synthesis and processing. Our results indicate that dMnt repression is normally overridden by dMyc activation during larval development. Therefore the severity of the dm null phenotype is likely due to unopposed repression by dMnt on a subset of genes critical for cell and organismal growth. Surprisingly, considerable growth and development can occur in the absence of both dMyc and dMnt. PMID:18241851

  16. Autophagy promotes synapse development in Drosophila.

    PubMed

    Shen, Wei; Ganetzky, Barry

    2009-10-05

    Autophagy, a lysosome-dependent degradation mechanism, mediates many biological processes, including cellular stress responses and neuroprotection. In this study, we demonstrate that autophagy positively regulates development of the Drosophila melanogaster larval neuromuscular junction (NMJ). Autophagy induces an NMJ overgrowth phenotype closely resembling that of highwire (hiw), an E3 ubiquitin ligase mutant. Moreover, like hiw, autophagy-induced NMJ overgrowth is suppressed by wallenda (wnd) and by a dominant-negative c-Jun NH(2)-terminal kinase (bsk(DN)). We show that autophagy promotes NMJ growth by reducing Hiw levels. Thus, autophagy and the ubiquitin-proteasome system converge in regulating synaptic development. Because autophagy is triggered in response to many environmental cues, our findings suggest that it is perfectly positioned to link environmental conditions with synaptic growth and plasticity.

  17. Developmental nicotine exposure affects larval brain size and the adult dopaminergic system of Drosophila melanogaster.

    PubMed

    Morris, Melanie; Shaw, Ariel; Lambert, Madison; Perry, Haley Halperin; Lowenstein, Eve; Valenzuela, David; Velazquez-Ulloa, Norma Andrea

    2018-06-14

    Pregnant women may be exposed to nicotine if they smoke or use tobacco products, nicotine replacement therapy, or via e-cigarettes. Prenatal nicotine exposure has been shown to have deleterious effects on the nervous system in mammals including changes in brain size and in the dopaminergic system. The genetic and molecular mechanisms for these changes are not well understood. A Drosophila melanogaster model for these effects of nicotine exposure could contribute to faster identification of genes and molecular pathways underlying these effects. The purpose of this study was to determine if developmental nicotine exposure affects the nervous system of Drosophila melanogaster, focusing on changes to brain size and the dopaminergic system at two developmental stages. We reared flies on control or nicotine food from egg to 3rd instar larvae or from egg to adult and determined effectiveness of the nicotine treatment. We used immunohistochemistry to visualize the whole brain and dopaminergic neurons, using tyrosine hydroxylase as the marker. We measured brain area, tyrosine hydroxylase fluorescence, and counted the number of dopaminergic neurons in brain clusters. We detected an increase in larval brain hemisphere area, a decrease in tyrosine hydroxylase fluorescence in adult central brains, and a decrease in the number of neurons in the PPM3 adult dopaminergic cluster. We tested involvement of Dα7, one of the nicotinic acetylcholine receptor subunits, and found it was involved in eclosion, as previously described, but not involved in brain size. We conclude that developmental nicotine exposure in Drosophila melanogaster affects brain size and the dopaminergic system. Prenatal nicotine exposure in mammals has also been shown to have effects on brain size and in the dopaminergic system. This study further establishes Drosophila melanogaster as model organism to study the effects of developmental nicotine exposure. The genetic and molecular tools available for Drosophila

  18. Lineage-associated tracts defining the anatomy of the Drosophila first instar larval brain

    PubMed Central

    Hartenstein, Volker; Younossi-Hartenstein, Amelia; Lovick, Jennifer; Kong, Angel; Omoto, Jaison; Ngo, Kathy; Viktorin, Gudrun

    2015-01-01

    Fixed lineages derived from unique, genetically specified neuroblasts form the anatomical building blocks of the Drosophila brain. Neurons belonging to the same lineage project their axons in a common tract, which is labeled by neuronal markers. In this paper, we present a detailed atlas of the lineage-associated tracts forming the brain of the early Drosophila larva, based on the use of global markers (anti-Neuroglian, anti-Neurotactin, Inscuteable-Gal4>UAS-chRFP-Tub) and lineage-specific reporters. We describe 68 discrete fiber bundles that contain axons of one lineage or pairs/small sets of adjacent lineages. Bundles enter the neuropil at invariant locations, the lineage tract entry portals. Within the neuropil, these fiber bundles form larger fascicles that can be classified, by their main orientation, into longitudinal, transverse, and vertical (ascending/descending) fascicles. We present 3D digital models of lineage tract entry portals and neuropil fascicles, set into relationship to commonly used, easily recognizable reference structures such as the mushroom body, the antennal lobe, the optic lobe, and the Fasciclin II-positive fiber bundles that connect the brain and ventral nerve cord. Correspondences and differences between early larval tract anatomy and the previously described late larval and adult lineage patterns are highlighted. Our L1 neuro-anatomical atlas of lineages constitutes an essential step towards following morphologically defined lineages to the neuroblasts of the early embryo, which will ultimately make it possible to link the structure and connectivity of a lineage to the expression of genes in the particular neuroblast that gives rise to that lineage. Furthermore, the L1 atlas will be important for a host of ongoing work that attempts to reconstruct neuronal connectivity at the level of resolution of single neurons and their synapses. PMID:26141956

  19. Lineage-associated tracts defining the anatomy of the Drosophila first instar larval brain.

    PubMed

    Hartenstein, Volker; Younossi-Hartenstein, Amelia; Lovick, Jennifer K; Kong, Angel; Omoto, Jaison J; Ngo, Kathy T; Viktorin, Gudrun

    2015-10-01

    Fixed lineages derived from unique, genetically specified neuroblasts form the anatomical building blocks of the Drosophila brain. Neurons belonging to the same lineage project their axons in a common tract, which is labeled by neuronal markers. In this paper, we present a detailed atlas of the lineage-associated tracts forming the brain of the early Drosophila larva, based on the use of global markers (anti-Neuroglian, anti-Neurotactin, inscuteable-Gal4>UAS-chRFP-Tub) and lineage-specific reporters. We describe 68 discrete fiber bundles that contain axons of one lineage or pairs/small sets of adjacent lineages. Bundles enter the neuropil at invariant locations, the lineage tract entry portals. Within the neuropil, these fiber bundles form larger fascicles that can be classified, by their main orientation, into longitudinal, transverse, and vertical (ascending/descending) fascicles. We present 3D digital models of lineage tract entry portals and neuropil fascicles, set into relationship to commonly used, easily recognizable reference structures such as the mushroom body, the antennal lobe, the optic lobe, and the Fasciclin II-positive fiber bundles that connect the brain and ventral nerve cord. Correspondences and differences between early larval tract anatomy and the previously described late larval and adult lineage patterns are highlighted. Our L1 neuro-anatomical atlas of lineages constitutes an essential step towards following morphologically defined lineages to the neuroblasts of the early embryo, which will ultimately make it possible to link the structure and connectivity of a lineage to the expression of genes in the particular neuroblast that gives rise to that lineage. Furthermore, the L1 atlas will be important for a host of ongoing work that attempts to reconstruct neuronal connectivity at the level of resolution of single neurons and their synapses. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Evolved differences in larval social behavior mediated by novel pheromones

    PubMed Central

    Mast, Joshua D; De Moraes, Consuelo M; Alborn, Hans T; Lavis, Luke D; Stern, David L

    2014-01-01

    Pheromones, chemical signals that convey social information, mediate many insect social behaviors, including navigation and aggregation. Several studies have suggested that behavior during the immature larval stages of Drosophila development is influenced by pheromones, but none of these compounds or the pheromone-receptor neurons that sense them have been identified. Here we report a larval pheromone-signaling pathway. We found that larvae produce two novel long-chain fatty acids that are attractive to other larvae. We identified a single larval chemosensory neuron that detects these molecules. Two members of the pickpocket family of DEG/ENaC channel subunits (ppk23 and ppk29) are required to respond to these pheromones. This pheromone system is evolving quickly, since the larval exudates of D. simulans, the sister species of D. melanogaster, are not attractive to other larvae. Our results define a new pheromone signaling system in Drosophila that shares characteristics with pheromone systems in a wide diversity of insects. DOI: http://dx.doi.org/10.7554/eLife.04205.001 PMID:25497433

  1. Embryonic multipotent progenitors remodel the Drosophila airways during metamorphosis

    PubMed Central

    Pitsouli, Chrysoula; Perrimon, Norbert

    2010-01-01

    Adult structures in holometabolous insects such as Drosophila are generated by groups of imaginal cells dedicated to the formation of different organs. Imaginal cells are specified in the embryo and remain quiescent until the larval stages, when they proliferate and differentiate to form organs. The Drosophila tracheal system is extensively remodeled during metamorphosis by a small number of airway progenitors. Among these, the spiracular branch tracheoblasts are responsible for the generation of the pupal and adult abdominal airways. To understand the coordination of proliferation and differentiation during organogenesis of tubular organs, we analyzed the remodeling of Drosophila airways during metamorphosis. We show that the embryonic spiracular branch tracheoblasts are multipotent cells that express the homeobox transcription factor Cut, which is necessary for their survival and normal development. They give rise to three distinct cell populations at the end of larval development, which generate the adult tracheal tubes, the spiracle and the epidermis surrounding the spiracle. Our study establishes the series of events that lead to the formation of an adult tubular structure in Drosophila. PMID:20940225

  2. Genetic and evolutionary analysis of the Drosophila larval neuromuscular junction

    NASA Astrophysics Data System (ADS)

    Campbell, Megan

    Although evolution of brains and behaviors is of fundamental biological importance, we lack comprehensive understanding of the general principles governing these processes or the specific mechanisms and molecules through which the evolutionary changes are effected. Because synapses are the basic structural and functional units of nervous systems, one way to address these problems is to dissect the genetic and molecular pathways responsible for morphological evolution of a defined synapse. I have undertaken such an analysis by examining morphology of the larval neuromuscular junction (NMJ) in wild caught D. melanogaster as well as in over 20 other species of Drosophila. Whereas variation in NMJ morphology within a species is limited, I discovered a surprisingly extensive variation among different species. Compared with evolution of other morphological traits, NMJ morphology appears to be evolving very rapidly. Moreover, my data indicate that natural selection rather than genetic drift is primarily responsible for evolution of NMJ morphology. To dissect underlying molecular mechanisms that may govern NMJ growth and evolutionary divergence, I focused on a naturally occurring variant in D. melanogaster that causes NMJ overgrowth. I discovered that the variant mapped to Mob2, a gene encoding a kinase adapter protein originally described in yeast as a member of the Mitotic Exit Network (MEN). I have subsequently examined mutations in the Drosophila orthologs of all the core components of the yeast MEN and found that all of them function as part of a common pathway that acts presynaptically to negatively regulate NMJ growth. As in the regulation of yeast cytokinesis, these components of the MEN appear to act ultimately by regulating actin dynamics during the process of bouton growth and division. These studies have thus led to the discovery of an entirely new role for the MEN---regulation of synaptic growth---that is separate from its function in cell division. This work

  3. Crowding of Drosophila larvae affects lifespan and other life-history traits via reduced availability of dietary yeast.

    PubMed

    Klepsatel, Peter; Procházka, Emanuel; Gáliková, Martina

    2018-06-19

    Conditions experienced during development have often long-lasting effects persisting into adulthood. In Drosophila, it is well-documented that larval crowding influences fitness-related traits such as body size, starvation resistance and lifespan. However, the underlying mechanism of this phenomenon is not well understood. Here, we show that the effects of increased larval density on life-history traits can be explained by decreased yeast availability in the diet during development. Yeast-poor larval diet alters various life-history traits and mimics the effects of larval crowding. In particular, reduced amount of yeast in larval diet prolongs developmental time, reduces body size, increases body fat content and starvation resistance, and prolongs Drosophila lifespan. Conversely, the effects of larval crowding can be rescued by increasing the concentration of the dietary yeast in the diet during development. Altogether, our results show that the well-known effects of larval crowding on life-history traits are mainly caused by the reduced availability of dietary yeasts due to increased larval competition. Copyright © 2018. Published by Elsevier Inc.

  4. Drosophila development, physiology, behavior, and lifespan are influenced by altered dietary composition

    PubMed Central

    Ormerod, Kiel G.; LePine, Olivia K.; Abbineni, Prabhodh S.; Bridgeman, Justin M.; Mercier, A. Joffre; Tattersall, Glenn J.

    2017-01-01

    ABSTRACT Diet profoundly influences the behavior of animals across many phyla. Despite this, most laboratories using model organisms, such as Drosophila, use multiple, different, commercial or custom-made media for rearing their animals. In addition to measuring growth, fecundity and longevity, we used several behavioral and physiological assays to determine if and how altering food media influence wild-type (Canton S) Drosophila melanogaster, at larval, pupal, and adult stages. Comparing 2 commonly used commercial food media we observed several key developmental and morphological differences. Third-instar larvae and pupae developmental timing, body weight and size, and even lifespan significantly differed between the 2 diets, and some of these differences persisted into adulthood. Diet was also found to produce significantly different thermal preference, locomotory capacity for geotaxis, feeding rates, and lower muscle response to hormonal stimulation. There were no differences, however, in adult thermal preferences, in the number or viability of eggs laid, or in olfactory learning and memory between the diets. We characterized the composition of the 2 diets and found particularly significant differences in cholesterol and (phospho)lipids between them. Notably, diacylglycerol (DAG) concentrations vary substantially between the 2 diets, and may contribute to key phenotypic differences, including lifespan. Overall, the data confirm that 2 different diets can profoundly influence the behavior, physiology, morphology and development of wild-type Drosophila, with greater behavioral and physiologic differences occurring during the larval stages. PMID:28277941

  5. Adaptation to new nutritional environments: larval performance, foraging decisions, and adult oviposition choices in Drosophila suzukii.

    PubMed

    Silva-Soares, Nuno F; Nogueira-Alves, A; Beldade, P; Mirth, Christen Kerry

    2017-06-07

    Understanding how species adapt to new niches is a central issue in evolutionary ecology. Nutrition is vital for the survival of all organisms and impacts species fitness and distribution. While most Drosophila species exploit rotting plant parts, some species have diversified to use ripe fruit, allowing earlier colonization. The decomposition of plant material is facilitated by yeast colonization and proliferation. These yeasts serve as the main protein source for Drosophila larvae. This dynamic rotting process entails changes in the nutritional composition of the food and other properties, and animals feeding on material at different stages of decay are expected to have behavioural and nutritional adaptations. We compared larval performance, feeding behaviour and adult oviposition site choice between the ripe fruit colonizer and invasive pest Drosophila suzukii, and a closely-related rotting fruit colonizer, Drosophila biarmipes. Through the manipulation of protein:carbohydrate ratios in artificial diets, we found that D. suzukii larvae perform better at lower protein concentrations and consume less protein rich diets relative to D. biarmipes. For adult oviposition, these species differed in preference for substrate hardness, but not for the substrate nutritional composition. Our findings highlight that rather than being an exclusive specialist on ripe fruit, D. suzukii's adaptation to use ripening fruit allow it to colonize a wider range of food substrates than D. biarmipes, which is limited to soft foods with higher protein concentrations. Our results underscore the importance of nutritional performance and feeding behaviours in the colonization of new food niches.

  6. Physiological responses of insects to microbial fermentation products: Insights from the interactions between Drosophila and acetic acid.

    PubMed

    Kim, Geonho; Huang, Jia Hsin; McMullen, John G; Newell, Peter D; Douglas, Angela E

    2018-04-01

    Acetic acid is a fermentation product of many microorganisms, including some that inhabit the food and guts of Drosophila. Here, we investigated the effect of dietary acetic acid on oviposition and larval performance of Drosophila. At all concentrations tested (0.34-3.4%), acetic acid promoted egg deposition by mated females in no-choice assays; and females preferred to oviposit on diet with acetic acid relative to acetic acid-free diet. However, acetic acid depressed larval performance, particularly extending the development time of both larvae colonized with the bacterium Acetobacter pomorum and axenic (microbe-free) larvae. The larvae may incur an energetic cost associated with dissipating the high acid load on acetic acid-supplemented diets. This effect was compounded by suppressed population growth of A. pomorum on the 3.4% acetic acid diet, such that the gnotobiotic Drosophila on this diet displayed traits characteristic of axenic Drosophila, specifically reduced developmental rate and elevated lipid content. It is concluded that acetic acid is deleterious to larval Drosophila, and hypothesized that acetic acid may function as a reliable cue for females to oviposit in substrates bearing microbial communities that promote larval nutrition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Hox control of Drosophila larval anatomy; The Alary and Thoracic Alary-Related Muscles.

    PubMed

    Bataillé, Laetitia; Frendo, Jean-Louis; Vincent, Alain

    2015-11-01

    The body plan of arthropods and vertebrates involves the formation of repetitive segments, which subsequently diversify to give rise to different body parts along the antero-posterior/rostro-caudal body axis. Anatomical variations between body segments are crucial for organ function and organismal fitness. Pioneering work in Drosophila has established that Hox transcription factors play key roles both in endowing initially identical segments with distinct identities and organogenesis. The focus of this review is on Alary Muscles (AMs) and the newly discovered Thoracic Alary-Related Muscles (TARMs). AMs and TARMs are thin muscles which together connect the circulatory system and different midgut regions to the exoskeleton, while intertwining with the respiratory tubular network. They were hypothesized to represent a new type of muscles with spring-like properties, maintaining internal organs in proper anatomical positions during larval locomotion. Both the morphology of TARMs relative to AMs, and morphogenesis of connected tissues is under Hox control, emphasizing the key role of Hox proteins in coordinating the anatomical development of the larva. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Gene Expression Profiling Identifies FKBP39 as an Inhibitor of Autophagy in Larval Drosophila Fat Body

    PubMed Central

    Juhász, Gábor; Puskás, László G.; Komonyi, Orbán; Érdi, Balázs; Maróy, Péter; Neufeld, Thomas P.; Sass, Miklós

    2007-01-01

    In Drosophila, the fat body undergoes a massive burst of autophagy at the end of larval development in preparation for the pupal transition. To identify genes involved in this process, we carried out a microarray analysis. We found that mRNA levels of the homologs of Atg8, the coat protein of early autophagic structures, and lysosomal hydrolases were upregulated, consistent with previous results. Genes encoding mitochondrial proteins and many chaperones were downregulated, including the inhibitor of eIF2alpha kinases and the peptidyl-prolyl cis-trans isomerase (PPiase) FKBP39. Genetic manipulation of FKBP39 expression had a significant effect on autophagy, potentially through modulation of the transcription factor Foxo. Accordingly, we found that Foxo mutants can not properly undergo autophagy in response to starvation, and that overexpression of Foxo induces autophagy. PMID:17363962

  9. dHb9 expressing larval motor neurons persist through metamorphosis to innervate adult-specific muscle targets and function in Drosophila eclosion.

    PubMed

    Banerjee, Soumya; Toral, Marcus; Siefert, Matthew; Conway, David; Dorr, Meredith; Fernandes, Joyce

    2016-12-01

    The Drosophila larval nervous system is radically restructured during metamorphosis to produce adult specific neural circuits and behaviors. Genesis of new neurons, death of larval neurons and remodeling of those neurons that persistent collectively act to shape the adult nervous system. Here, we examine the fate of a subset of larval motor neurons during this restructuring process. We used a dHb9 reporter, in combination with the FLP/FRT system to individually identify abdominal motor neurons in the larval to adult transition using a combination of relative cell body location, axonal position, and muscle targets. We found that segment specific cell death of some dHb9 expressing motor neurons occurs throughout the metamorphosis period and continues into the post-eclosion period. Many dHb9 > GFP expressing neurons however persist in the two anterior hemisegments, A1 and A2, which have segment specific muscles required for eclosion while a smaller proportion also persist in A2-A5. Consistent with a functional requirement for these neurons, ablating them during the pupal period produces defects in adult eclosion. In adults, subsequent to the execution of eclosion behaviors, the NMJs of some of these neurons were found to be dismantled and their muscle targets degenerate. Our studies demonstrate a critical continuity of some larval motor neurons into adults and reveal that multiple aspects of motor neuron remodeling and plasticity that are essential for adult motor behaviors. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1387-1416, 2016. © 2016 Wiley Periodicals, Inc.

  10. Nerve-muscle interactions during flight muscle development in Drosophila

    NASA Technical Reports Server (NTRS)

    Fernandes, J. J.; Keshishian, H.

    1998-01-01

    During Drosophila pupal metamorphosis, the motoneurons and muscles differentiate synchronously, providing an opportunity for extensive intercellular regulation during synapse formation. We examined the existence of such interactions by developmentally delaying or permanently eliminating synaptic partners during the formation of indirect flight muscles. When we experimentally delayed muscle development, we found that although adult-specific primary motoneuron branching still occurred, the higher order (synaptic) branching was suspended until the delayed muscle fibers reached a favourable developmental state. In reciprocal experiments we found that denervation caused a decrease in the myoblast pool. Furthermore, the formation of certain muscle fibers (dorsoventral muscles) was specifically blocked. Exceptions were the adult muscles that use larval muscle fibers as myoblast fusion targets (dorsal longitudinal muscles). However, when these muscles were experimentally compelled to develop without their larval precursors, they showed an absolute dependence on the motoneurons for their formation. These data show that the size of the myoblast pool and early events in fiber formation depend on the presence of the nerve, and that, conversely, peripheral arbor development and synaptogenesis is closely synchronized with the developmental state of the muscle.

  11. TIF-IA-dependent regulation of ribosome synthesis in drosophila muscle is required to maintain systemic insulin signaling and larval growth.

    PubMed

    Ghosh, Abhishek; Rideout, Elizabeth J; Grewal, Savraj S

    2014-10-01

    The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis-a limiting step in ribosome biogenesis-via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2-a secreted factor that binds and inhibits dILP activity-from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.

  12. TIF-IA-Dependent Regulation of Ribosome Synthesis in Drosophila Muscle Is Required to Maintain Systemic Insulin Signaling and Larval Growth

    PubMed Central

    Ghosh, Abhishek; Rideout, Elizabeth J.; Grewal, Savraj S.

    2014-01-01

    The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis—a limiting step in ribosome biogenesis—via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2—a secreted factor that binds and inhibits dILP activity—from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis. PMID:25356674

  13. FGF signaling supports Drosophila fertility by regulating development of ovarian muscle tissues

    PubMed Central

    Irizarry, Jihyun; Stathopoulos, Angelike

    2015-01-01

    The thisbe (ths) gene encodes a Drosophila fibroblast growth factor (FGF), and mutant females are viable but sterile suggesting a link between FGF signaling and fertility. Ovaries exhibit abnormal morphology including lack of epithelial sheaths, muscle tissues that surround ovarioles. Here we investigated how FGF influences Drosophila ovary morphogenesis and identified several roles. Heartless (Htl) FGF receptor was found expressed within somatic cells at the larval and pupal stages, and phenotypes were uncovered using RNAi. Differentiation of terminal filament cells was affected, but this effect did not alter ovariole number. In addition, proliferation of epithelial sheath progenitors, the apical cells, was decreased in both htl and ths mutants, while ectopic expression of the Ths ligand led to these cells’ over-proliferation suggesting that FGF signaling supports ovarian muscle sheath formation by controlling apical cell number in the developing gonad. Additionally, live imaging of adult ovaries was used to show that htl RNAi mutants, hypomorphic mutants in which epithelial sheaths are present, exhibit abnormal muscle contractions. Collectively, our results demonstrate that proper formation of ovarian muscle tissues is regulated by FGF signaling in the larval and pupal stages through control of apical cell proliferation and is required to support fertility. PMID:25958090

  14. Quantifying and predicting Drosophila larvae crawling phenotypes

    NASA Astrophysics Data System (ADS)

    Günther, Maximilian N.; Nettesheim, Guilherme; Shubeita, George T.

    2016-06-01

    The fruit fly Drosophila melanogaster is a widely used model for cell biology, development, disease, and neuroscience. The fly’s power as a genetic model for disease and neuroscience can be augmented by a quantitative description of its behavior. Here we show that we can accurately account for the complex and unique crawling patterns exhibited by individual Drosophila larvae using a small set of four parameters obtained from the trajectories of a few crawling larvae. The values of these parameters change for larvae from different genetic mutants, as we demonstrate for fly models of Alzheimer’s disease and the Fragile X syndrome, allowing applications such as genetic or drug screens. Using the quantitative model of larval crawling developed here we use the mutant-specific parameters to robustly simulate larval crawling, which allows estimating the feasibility of laborious experimental assays and aids in their design.

  15. Early development of the Drosophila brain: V. Pattern of postembryonic neuronal lineages expressing DE-cadherin.

    PubMed

    Dumstrei, Karin; Wang, Fay; Nassif, Claude; Hartenstein, Volker

    2003-01-20

    The Drosophila E-cadherin homolog, DE-cadherin, is expressed postembryonically by brain neuroblasts and their lineages of neurons ("secondary lineages"). DE-cadherin appears in neuroblasts as soon as they can be identified by their increase in size and then remains expressed uninterruptedly throughout larval life. DE-cadherin remains transiently expressed in the cell bodies and axons of neurons produced by neuroblast proliferation. In general, axons of neurons belonging to one lineage form tight bundles. The trajectories of these bundles are correlated with the location of the neuronal lineages to which they belong. Thus, axon bundles of lineages that are neighbors in the cortex travel parallel to each other and reach the neuropile at similar positions. It is, therefore, possible to assign coherent groups of neuroblasts and their lineages to the individual neuropile compartments and long axon tracts introduced in the accompanying articles (Nassif et al. [2003] J Comp Neurol 455:417-434; Younossi-Hartenstein et al. [2003] J Comp Neurol 455:435-450). In this study, we have reconstructed the pattern of secondary lineages and their projection in relationship to the compartments and Fasciclin II-positive long axon tracts. Based on topology and axonal trajectory, the lineages of the central brain can be subdivided into 11 groups that can be followed throughout successive larval stages. The map of larval lineages and their axonal projection will be important for future studies on postembryonic neurogenesis in Drosophila. It also lays a groundwork for investigating the role of DE-cadherin in larval brain development. Copyright 2002 Wiley-Liss, Inc.

  16. Drosophila Hey is a target of Notch in asymmetric divisions during embryonic and larval neurogenesis.

    PubMed

    Monastirioti, Maria; Giagtzoglou, Nikolaos; Koumbanakis, Konstantinos A; Zacharioudaki, Evanthia; Deligiannaki, Myrto; Wech, Irmgard; Almeida, Mara; Preiss, Anette; Bray, Sarah; Delidakis, Christos

    2010-01-01

    bHLH-O proteins are a subfamily of the basic-helix-loop-helix transcription factors characterized by an 'Orange' protein-protein interaction domain. Typical members are the Hairy/E(spl), or Hes, proteins, well studied in their ability, among others, to suppress neuronal differentiation in both invertebrates and vertebrates. Hes proteins are often effectors of Notch signalling. In vertebrates, another bHLH-O protein group, the Hey proteins, have also been shown to be Notch targets and to interact with Hes. We have studied the single Drosophila Hey orthologue. We show that it is primarily expressed in a subset of newly born neurons, which receive Notch signalling during their birth. Unlike in vertebrates, however, Hey is not expressed in precursor cells and does not block neuronal differentiation. It rather promotes one of two alternative fates that sibling neurons adopt at birth. Although in the majority of cases Hey is a Notch target, it is also expressed independently of Notch in some lineages, most notably the larval mushroom body. The availability of Hey as a Notch readout has allowed us to study Notch signalling during the genesis of secondary neurons in the larval central nervous system.

  17. Predatory cannibalism in Drosophila melanogaster larvae.

    PubMed

    Vijendravarma, Roshan K; Narasimha, Sunitha; Kawecki, Tadeusz J

    2013-01-01

    Hunting live prey is risky and thought to require specialized adaptations. Therefore, observations of predatory cannibalism in otherwise non-carnivorous animals raise questions about its function, adaptive significance and evolutionary potential. Here we document predatory cannibalism on larger conspecifics in Drosophila melanogaster larvae and address its evolutionary significance. We found that under crowded laboratory conditions younger larvae regularly attack and consume 'wandering-stage' conspecifics, forming aggregations mediated by chemical cues from the attacked victim. Nutrition gained this way can be significant: an exclusively cannibalistic diet was sufficient for normal development from eggs to fertile adults. Cannibalistic diet also induced plasticity of larval mouth parts. Finally, during 118 generations of experimental evolution, replicated populations maintained under larval malnutrition evolved enhanced propensity towards cannibalism. These results suggest that, at least under laboratory conditions, predation on conspecifics in Drosophila is a functional, adaptive behaviour, which can rapidly evolve in response to nutritional conditions.

  18. Altered LARK Expression Perturbs Development and Physiology of the Drosophila PDF Clock Neurons

    PubMed Central

    Huang, Yanmei; Howlett, Eric; Stern, Michael; Jackson, F. Rob

    2009-01-01

    The LARK RNA-binding protein (RBP) has well documented roles in the circadian systems of Drosophila and mammals. Recent studies have demonstrated that the Drosophila LARK RBP is associated with many mRNA targets, in vivo, including those that regulate either neurophysiology or development of the nervous system. In the present study, we have employed conditional expression techniques to distinguish developmental and physiological functions of LARK for a defined class of neurons: the Pigment Dispersing Factor (PDF)-containing LNv clock neurons. We found that increased LARK expression during development dramatically alters the small LNv class of neurons with no obvious effects on the large LNv cells. Conversely, conditional expression of LARK at the adult stage results in altered clock protein rhythms and circadian locomotor activity, even though neural morphology is normal in such animals. Electrophysiological analyses at the larval neuromuscular junction indicate a role for LARK in regulating neuronal excitability. Altogether, our results demonstrate that LARK activity is critical for neuronal development and physiology. PMID:19303442

  19. Food selection in larval fruit flies: dynamics and effects on larval development

    NASA Astrophysics Data System (ADS)

    Schwarz, Sebastian; Durisko, Zachary; Dukas, Reuven

    2014-01-01

    Selecting food items and attaining a nutritionally balanced diet is an important challenge for all animals including humans. We aimed to establish fruit fly larvae ( Drosophila melanogaster) as a simple yet powerful model system for examining the mechanisms of specific hunger and diet selection. In two lab experiments with artificial diets, we found that larvae deprived of either sucrose or protein later selectively fed on a diet providing the missing nutrient. When allowed to freely move between two adjacent food patches, larvae surprisingly preferred to settle on one patch containing yeast and ignored the patch providing sucrose. Moreover, when allowed to move freely between three patches, which provided either yeast only, sucrose only or a balanced mixture of yeast and sucrose, the majority of larvae settled on the yeast-plus-sucrose patch and about one third chose to feed on the yeast only food. While protein (yeast) is essential for development, we also quantified larval success on diets with or without sucrose and show that larvae develop faster on diets containing sucrose. Our data suggest that fruit fly larvae can quickly assess major nutrients in food and seek a diet providing a missing nutrient. The larvae, however, probably prefer to quickly dig into a single food substrate for enhanced protection over achieving an optimal diet.

  20. Neurotrophic actions of dopamine on the development of a serotonergic feeding circuit in Drosophila melanogaster

    PubMed Central

    2012-01-01

    Background In the fruit fly, Drosophila melanogaster, serotonin functions both as a neurotransmitter to regulate larval feeding, and in the development of the stomatogastric feeding circuit. There is an inverse relationship between neuronal serotonin levels during late embryogenesis and the complexity of the serotonergic fibers projecting from the larval brain to the foregut, which correlate with perturbations in feeding, the functional output of the circuit. Dopamine does not modulate larval feeding, and dopaminergic fibers do not innervate the larval foregut. Since dopamine can function in central nervous system development, separate from its role as a neurotransmitter, the role of neuronal dopamine was assessed on the development, and mature function, of the 5-HT larval feeding circuit. Results Both decreased and increased neuronal dopamine levels in late embryogenesis during development of this circuit result in depressed levels of larval feeding. Perturbations in neuronal dopamine during this developmental period also result in greater branch complexity of the serotonergic fibers innervating the gut, as well as increased size and number of the serotonin-containing vesicles along the neurite length. This neurotrophic action for dopamine is modulated by the D2 dopamine receptor expressed during late embryogenesis in central 5-HT neurons. Animals carrying transgenic RNAi constructs to knock down both dopamine and serotonin synthesis in the central nervous system display normal feeding and fiber architecture. However, disparate levels of neuronal dopamine and serotonin during development of the circuit result in abnormal gut fiber architecture and feeding behavior. Conclusions These results suggest that dopamine can exert a direct trophic influence on the development of a specific neural circuit, and that dopamine and serotonin may interact with each other to generate the neural architecture necessary for normal function of the circuit. PMID:22413901

  1. Analysis of the hypoxia-sensing pathway in Drosophila melanogaster

    PubMed Central

    Arquier, Nathalie; Vigne, Paul; Duplan, Eric; Hsu, Tien; Therond, Pascal P.; Frelin, Christian; D'Angelo, Gisela

    2005-01-01

    The mechanism by which hypoxia induces gene transcription involves the inhibition of HIF-1α (hypoxia-inducible factor-1 α subunit) PHD (prolyl hydroxylase) activity, which prevents the VHL (von Hippel-Lindau)-dependent targeting of HIF-1α to the ubiquitin/proteasome pathway. HIF-1α thus accumulates and promotes gene transcription. In the present study, first we provide direct biochemical evidence for the presence of a conserved hypoxic signalling pathway in Drosophila melanogaster. An assay for 2-oxoglutarate-dependent dioxygenases was developed using Drosophila embryonic and larval homogenates as a source of enzyme. Drosophila PHD has a low substrate specificity and hydroxylates key proline residues in the ODD (oxygen-dependent degradation) domains of human HIF-1α and Similar, the Drosophila homologue of HIF-1α. The enzyme promotes human and Drosophila [35S]VHL binding to GST (glutathione S-transferase)–ODD-domain fusion protein. Hydroxylation is enhanced by proteasomal inhibitors and was ascertained using an anti-hydroxyproline antibody. Secondly, by using transgenic flies expressing a fusion protein that combined an ODD domain and the green fluorescent protein (ODD–GFP), we analysed the hypoxic cascade in different embryonic and larval tissues. Hypoxic accumulation of the reporter protein was observed in the whole tracheal tree, but not in the ectoderm. Hypoxic stabilization of ODD–GFP in the ectoderm was restored by inducing VHL expression in these cells. These results show that Drosophila tissues exhibit different sensitivities to hypoxia. PMID:16176182

  2. Balancing crosstalk between 20-hydroxyecdysone-induced autophagy and caspase activity in the fat body during Drosophila larval-prepupal transition.

    PubMed

    Liu, Hanhan; Jia, Qiangqiang; Tettamanti, Gianluca; Li, Sheng

    2013-11-01

    In the fruitfly, Drosophila melanogaster, autophagy and caspase activity function in parallel in the salivary gland during metamorphosis and in a common regulatory hierarchy during oogenesis. Both autophagy and caspase activity progressively increase in the remodeling fat body, and they are induced by a pulse of the molting hormone (20-hydroxyecdysone, 20E) during the larval-prepupal transition. Inhibition of autophagy and/or caspase activity in the remodeling fat body results in 25-40% pupal lethality, depending on the genotypes. Interestingly, a balancing crosstalk occurs between autophagy and caspase activity in this tissue: the inhibition of autophagy induces caspase activity and the inhibition of caspases induces autophagy. The Drosophila remodeling fat body provides an in vivo model for understanding the molecular mechanism of the balancing crosstalk between autophagy and caspase activity, which oppose with each other and are induced by the common stimulus 20E, and blockage of either path reinforces the other path. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. dSet1 Is the Main H3K4 Di- and Tri-Methyltransferase Throughout Drosophila Development

    PubMed Central

    Hallson, Graham; Hollebakken, Robert E.; Li, Taosui; Syrzycka, Monika; Kim, Inho; Cotsworth, Shawn; Fitzpatrick, Kathleen A.; Sinclair, Donald A. R.; Honda, Barry M.

    2012-01-01

    In eukaryotes, the post-translational addition of methyl groups to histone H3 lysine 4 (H3K4) plays key roles in maintenance and establishment of appropriate gene expression patterns and chromatin states. We report here that an essential locus within chromosome 3L centric heterochromatin encodes the previously uncharacterized Drosophila melanogaster ortholog (dSet1, CG40351) of the Set1 H3K4 histone methyltransferase (HMT). Our results suggest that dSet1 acts as a “global” or general H3K4 di- and trimethyl HMT in Drosophila. Levels of H3K4 di- and trimethylation are significantly reduced in dSet1 mutants during late larval and post-larval stages, but not in animals carrying mutations in genes encoding other well-characterized H3K4 HMTs such as trr, trx, and ash1. The latter results suggest that Trr, Trx, and Ash1 may play more specific roles in regulating key cellular targets and pathways and/or act as global H3K4 HMTs earlier in development. In yeast and mammalian cells, the HMT activity of Set1 proteins is mediated through an evolutionarily conserved protein complex known as Complex of Proteins Associated with Set1 (COMPASS). We present biochemical evidence that dSet1 interacts with members of a putative Drosophila COMPASS complex and genetic evidence that these members are functionally required for H3K4 methylation. Taken together, our results suggest that dSet1 is responsible for the bulk of H3K4 di- and trimethylation throughout Drosophila development, thus providing a model system for better understanding the requirements for and functions of these modifications in metazoans. PMID:22048023

  4. Genetic control of cuticle formation during embryonic development of Drosophila melanogaster.

    PubMed Central

    Ostrowski, Stephen; Dierick, Herman A; Bejsovec, Amy

    2002-01-01

    The embryonic cuticle of Drosophila melanogaster is deposited by the epidermal epithelium during stage 16 of development. This tough, waterproof layer is essential for maintaining the structural integrity of the larval body. We have characterized mutations in a set of genes required for proper deposition and/or morphogenesis of the cuticle. Zygotic disruption of any one of these genes results in embryonic lethality. Mutant embryos are hyperactive within the eggshell, resulting in a high proportion reversed within the eggshell (the "retroactive" phenotype), and all show poor cuticle integrity when embryos are mechanically devitellinized. This last property results in embryonic cuticle preparations that appear grossly inflated compared to wild-type cuticles (the "blimp" phenotype). We find that one of these genes, krotzkopf verkehrt (kkv), encodes the Drosophila chitin synthase enzyme and that a closely linked gene, knickkopf (knk), encodes a novel protein that shows genetic interaction with the Drosophila E-cadherin, shotgun. We also demonstrate that two other known mutants, grainy head (grh) and retroactive (rtv), show the blimp phenotype when devitellinized, and we describe a new mutation, called zeppelin (zep), that shows the blimp phenotype but does not produce defects in the head cuticle as the other mutations do. PMID:12019232

  5. Oral intake of zirconia nanoparticle alters neuronal development and behaviour of Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Mishra, Monalisa; Sabat, Debabrat; Ekka, Basanti; Sahu, Swetapadma; P, Unnikannan; Dash, Priyabrat

    2017-08-01

    Zirconia nanoparticles (ZrO2 NPs) have been extensively used in teeth and bone implants and thus get a chance to interact with the physiological system. The current study investigated the oral administration of various concentrations of ZrO2 NPs synthesized by the hydrothermal method (0.25 to 5.0 mg L-1) on Drosophila physiology and behaviour. The size of the currently studied nanoparticle varies from 10 to 12 nm. ZrO2 NPs accumulated within the gut in a concentration-dependent manner and generate reactive oxygen species (ROS) only at 2.5 and 5.0 mg L-1 concentrations. ROS was detected by nitroblue tetrazolium (NBT) assay and 2',7'-dichlorofluorescein http://www.ncbi.nlm.nih.gov/pubmed/20370560 (H2DCF) staining. The ROS toxicity alters the larval gut structure as revealed by DAPI staining. The NP stress of larvae affects the Drosophila development by distressing pupa count and varying the phenotypic changes in sensory organs (eye, thorax bristle, wings). Besides phenotypic changes, flawed climbing behaviour against gravity was seen in ZrO2 NP-treated flies. All together, for the first time, we have reported that a ROS-mediated ZrO2 NP toxicity alters neuronal development and functioning using Drosophila as a model organism. [Figure not available: see fulltext.

  6. Adaptation to larval crowding in Drosophila ananassae leads to the evolution of population stability.

    PubMed

    Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh

    2012-05-01

    Density-dependent selection is expected to lead to population stability, especially if r and K tradeoff. Yet, there is no empirical evidence of adaptation to crowding leading to the evolution of stability. We show that populations of Drosophila ananassae selected for adaptation to larval crowding have higher K and lower r, and evolve greater stability than controls. We also show that increased population growth rates at high density can enhance stability, even in the absence of a decrease in r, by ensuring that the crowding adapted populations do not fall to very low sizes. We discuss our results in the context of traits known to have diverged between the selected and control populations, and compare our results with previous work on the evolution of stability in D. melanogaster. Overall, our results suggest that density-dependent selection may be an important factor promoting the evolution of relatively stable dynamics in natural populations.

  7. Nutritional supplement chromium picolinate generates chromosomal aberrations and impedes progeny development in Drosophila melanogaster.

    PubMed

    Stallings, Dontarie M; Hepburn, Dion D D; Hannah, Meredith; Vincent, John B; O'Donnell, Janis

    2006-11-07

    Chromium picolinate, [Cr(pic)(3)], is a popular nutritional supplement found in a variety of consumer products. Despite its popularity, safety concerns over its use have arisen. The supplement has been shown to generate clastogenic damage, mitochondrial damage, oxidative damage, and mutagenic effects in cultured cells and oxidative DNA damage and lipid peroxidation in rats. Recently [Cr(pic)(3)] has been demonstrated to generate heritable genetic change and delays in progeny development in Drosophila melanogaster. Based on the damage to chromosomes of cultured cells and of animal models, similar chromosome damage appeared to be a likely source of the mutagenic effects of the supplement in Drosophila. The current three-part study examines the effects of several chromium-containing supplements and their components on hatching and eclosion rates and success of development of first generation progeny of adult Drosophila fed food containing these compounds. It further examines the effects of the compounds on longevity of virgin male and female adults. Finally, the chromosomes in the salivary glands of Drosophila late in the third instar larval stage, which were the progeny of Drosophila whose diets were supplemented with nutritional levels of [Cr(pic)(3)], are shown to contain on average over one chromosomal aberration per two identifiable chromosomal arms. No aberrations were observed in chromosomes of progeny of untreated flies. The results suggest that human consumption of the supplement should be a matter of concern and continued investigation to provide insight into the requirements of chromium-containing supplements to give rise to genotoxic effects.

  8. Immunolocalization of the vesicular acetylcholine transporter in larval and adult Drosophila neurons.

    PubMed

    Boppana, Sridhar; Kendall, Natalie; Akinrinsola, Opeyemi; White, Daniel; Patel, Krushali; Lawal, Hakeem

    2017-03-16

    Vesicular acetylcholine transporter (VAChT) function is essential for organismal survival, mediating the packaging of acetylcholine (ACh) for exocytotic release. However, its expression pattern in the Drosophila brain has not been fully elucidated. To investigate the localization of VAChT, we developed an antibody against the C terminal region of the protein and we show that this antibody recognizes a 65KDa protein corresponding to VAChT on an immunoblot in both Drosophila head homogenates and in Schneider 2 cells. Further, we report for the first time the expression of VAChT in the antennal lobe and ventral nerve cord of Drosophila larva; and we independently confirm the expression of the protein in mushroom bodies and optic lobes of adult Drosophila. Importantly, we show that VAChT co-localizes with a synaptic vesicle marker in vivo, confirming previous reports of the localization of VAChT to synaptic terminals. Together, these findings help establish the vesicular localization of VAChT in cholinergic neurons in Drosophila and present an important molecular tool with which to dissect the function of the transporter in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Steroid hormone induction of temporal gene expression in Drosophila brain neuroblasts generates neuronal and glial diversity.

    PubMed

    Syed, Mubarak Hussain; Mark, Brandon; Doe, Chris Q

    2017-04-10

    An important question in neuroscience is how stem cells generate neuronal diversity. During Drosophila embryonic development, neural stem cells (neuroblasts) sequentially express transcription factors that generate neuronal diversity; regulation of the embryonic temporal transcription factor cascade is lineage-intrinsic. In contrast, larval neuroblasts generate longer ~50 division lineages, and currently only one mid-larval molecular transition is known: Chinmo/Imp/Lin-28+ neuroblasts transition to Syncrip+ neuroblasts. Here we show that the hormone ecdysone is required to down-regulate Chinmo/Imp and activate Syncrip, plus two late neuroblast factors, Broad and E93. We show that Seven-up triggers Chinmo/Imp to Syncrip/Broad/E93 transition by inducing expression of the Ecdysone receptor in mid-larval neuroblasts, rendering them competent to respond to the systemic hormone ecdysone. Importantly, late temporal gene expression is essential for proper neuronal and glial cell type specification. This is the first example of hormonal regulation of temporal factor expression in Drosophila embryonic or larval neural progenitors.

  10. Activities of natural methyl farnesoids on pupariation and metamorphosis of Drosophila melanogaster

    USDA-ARS?s Scientific Manuscript database

    Methyl farnesoate (MF) and juvenile hormone (JH III), which respectively bind to the receptors USP and MET, and bisepoxy JH III (bisJHIII) were assessed for several activities during Drosophila larval development, and during prepupal development to eclosed adults. Dietary MF and JH III were similar...

  11. A Clonal Genetic Screen for Mutants Causing Defects in Larval Tracheal Morphogenesis in Drosophila

    PubMed Central

    Baer, Magdalena M.; Bilstein, Andreas; Leptin, Maria

    2007-01-01

    The initial establishment of the tracheal network in the Drosophila embryo is beginning to be understood in great detail, both in its genetic control cascades and in its cell biological events. By contrast, the vast expansion of the system during larval growth, with its extensive ramification of preexisting tracheal branches, has been analyzed less well. The mutant phenotypes of many genes involved in this process are probably not easy to reveal, as these genes may be required for other functions at earlier developmental stages. We therefore conducted a screen for defects in individual clonal homozygous mutant cells in the tracheal network of heterozygous larvae using the mosaic analysis with a repressible cell marker (MARCM) system to generate marked, recombinant mitotic clones. We describe the identification of a set of mutants with distinct phenotypic effects. In particular we found a range of defects in terminal cells, including failure in lumen formation and reduced or extensive branching. Other mutations affect cell growth, cell shape, and cell migration. PMID:17603107

  12. Erythritol and Lufenuron detrimentally alter age structure of Wild Spotted Wing Drosophila (SWD) Drosophila suzukii (Diptera: Drosophilidae) populations in blueberry and blackberry

    USDA-ARS?s Scientific Manuscript database

    We report on the efficacy of 0.5 M (61,000 ppm) Erythritol (E) in Truvia Baking Blend®, 10 ppm Lufenuron (L), and their combination (LE) to reduce egg and larval densities of wild populations of spotted wing Drosophila, Drosophila suzukii (Matsumura) (SWD) infesting fields of rabbiteye blueberries (...

  13. Azadirachtin induced larval avoidance and antifeeding by disruption of food intake and digestive enzymes in Drosophila melanogaster (Diptera: Drosophilidae).

    PubMed

    Bezzar-Bendjazia, Radia; Kilani-Morakchi, Samira; Maroua, Ferdenache; Aribi, Nadia

    2017-11-01

    Botanical insecticides are a promising alternative to reduce the harmful effects of synthetic chemicals. Among the botanical biopesticides, azadirachtin obtained from the Indian neem tree Azadirachta indica A. Juss. (Meliaceae) is probably the biorational insecticide with greatest agriculture use nowadays due to its broad insecticide activity. The current study, evaluated the lethal and sublethal effects of azadirachtin on larval avoidance, food intake and digestive enzymes of Drosophila melanogaster larvae as biological model. Azadirachtin was applied topically at two doses LD 25 (0.28μg) and LD 50 (0.67μg) on early third instars larvae. Results evaluated 24h after treatment showed that larvae exhibited significant repellence to azadirachtin and prefer keeping in untreated arenas rather than moving to treated one. In addition, azadirachtin avoidance was more marked in larvae previously treated with this compound as compared with naïf larvae (controls). Moreover, azadirachtin treatment decreased significantly the amount of larval food intake. Finally, azadirachtin reduced significantly the activity of larval α-amylase, chitinase and protease and increased the activity of lipase. This finding showed that azadirachtin induced behavioral and physiological disruption affecting the ability of the insect to digest food. This rapid installation of avoidance and long term antifeedancy might reinforce the action of azadirachtin and provide a new behavioral strategy for integrated pest management programs. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Immunological detection of phenylalanine hydroxylase protein in Drosophila melanogaster.

    PubMed Central

    Silva, F J; Bel, Y; Botella, L M; Cotton, R G; Ferré, J

    1992-01-01

    A monoclonal antibody raised against monkey liver phenylalanine hydroxylase (PAH) has been used to detect this protein in Drosophila melanogaster. A cross-reacting material (CRM) band of apparent molecular mass 50-52 kDa, equivalent to that deduced for the Drosophila melanogaster PAH protein based on the pah gene cDNA sequence, has been detected. This CRM was analysed throughout development and showed an equivalent pattern to that reported for PAH activity in this insect, with maxima at pupariation and at pharate adult formation. Distribution of this CRM in larval tissues, the haemolymph and the adult body is mainly restricted to the larval fat body and the adult head. Demonstration of this CRM as the PAH protein comes from the correlation between the decreased PAH enzyme activities of two mutant strains and their decreased amounts of CRM by Western blotting. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:1417795

  15. Differences in larval nutritional requirements and female oviposition preference reflect the order of fruit colonization of Zaprionus indianus and Drosophila simulans.

    PubMed

    Matavelli, Cristiane; Carvalho, Maria João A; Martins, Nelson E; Mirth, Christen K

    2015-11-01

    Species coexist using the same nutritional resource by partitioning it either in space or time, but few studies explore how species-specific nutritional requirements allow partitioning. Zaprionus indianus and Drosophila simulans co-exist in figs by invading the fruit at different stages; Z. indianus colonizes ripe figs, whereas D. simulans oviposits in decaying fruit. Larvae feed on yeast growing on the fruit, which serves as their primary protein source. Because yeast populations increase as fruit decays, we find that ripe fruit has lower protein content than rotting fruit. Therefore, we hypothesized that Z. indianus and D. simulans larvae differ in their dietary requirements for protein. We used nutritional geometry to assess the effects of protein and carbohydrate concentration in the larval diet on life history characters in both species. Survival, development time, and ovariole number respond differently to the composition of the larval diet, with Z. indianus generally performing better across a wider range of protein concentrations. Correspondingly, we found that Z. indianus females preferred to lay eggs on low protein foods, while D. simulans females chose higher protein foods for oviposition when competing with Z. indianus. We propose the different nutritional requirements and oviposition preference of these two species allows them to temporally partition their habitat. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The sex of specific neurons controls female body growth in Drosophila.

    PubMed

    Sawala, Annick; Gould, Alex P

    2017-10-01

    Sexual dimorphisms in body size are widespread throughout the animal kingdom but their underlying mechanisms are not well characterized. Most models for how sex chromosome genes specify size dimorphism have emphasized the importance of gonadal hormones and cell-autonomous influences in mammals versus strictly cell-autonomous mechanisms in Drosophila melanogaster. Here, we use tissue-specific genetics to investigate how sexual size dimorphism (SSD) is established in Drosophila. We find that the larger body size characteristic of Drosophila females is established very early in larval development via an increase in the growth rate per unit of body mass. We demonstrate that the female sex determination gene, Sex-lethal (Sxl), functions in central nervous system (CNS) neurons as part of a relay that specifies the early sex-specific growth trajectories of larval but not imaginal tissues. Neuronal Sxl acts additively in 2 neuronal subpopulations, one of which corresponds to 7 median neurosecretory cells: the insulin-producing cells (IPCs). Surprisingly, however, male-female differences in the production of insulin-like peptides (Ilps) from the IPCs do not appear to be involved in establishing SSD in early larvae, although they may play a later role. These findings support a relay model in which Sxl in neurons and Sxl in local tissues act together to specify the female-specific growth of the larval body. They also reveal that, even though the sex determination pathways in Drosophila and mammals are different, they both modulate body growth via a combination of tissue-autonomous and nonautonomous inputs.

  17. The sex of specific neurons controls female body growth in Drosophila

    PubMed Central

    Sawala, Annick

    2017-01-01

    Sexual dimorphisms in body size are widespread throughout the animal kingdom but their underlying mechanisms are not well characterized. Most models for how sex chromosome genes specify size dimorphism have emphasized the importance of gonadal hormones and cell-autonomous influences in mammals versus strictly cell-autonomous mechanisms in Drosophila melanogaster. Here, we use tissue-specific genetics to investigate how sexual size dimorphism (SSD) is established in Drosophila. We find that the larger body size characteristic of Drosophila females is established very early in larval development via an increase in the growth rate per unit of body mass. We demonstrate that the female sex determination gene, Sex-lethal (Sxl), functions in central nervous system (CNS) neurons as part of a relay that specifies the early sex-specific growth trajectories of larval but not imaginal tissues. Neuronal Sxl acts additively in 2 neuronal subpopulations, one of which corresponds to 7 median neurosecretory cells: the insulin-producing cells (IPCs). Surprisingly, however, male-female differences in the production of insulin-like peptides (Ilps) from the IPCs do not appear to be involved in establishing SSD in early larvae, although they may play a later role. These findings support a relay model in which Sxl in neurons and Sxl in local tissues act together to specify the female-specific growth of the larval body. They also reveal that, even though the sex determination pathways in Drosophila and mammals are different, they both modulate body growth via a combination of tissue-autonomous and nonautonomous inputs. PMID:28976974

  18. Postembryonic lineages of the Drosophila brain: I. Development of the lineage-associated fiber tracts

    PubMed Central

    Lovick, Jennifer K.; Ngo, Kathy T.; Omoto, Jaison J.; Wong, Darren C.; Nguyen, Joseph D.; Hartenstein, Volker

    2013-01-01

    Neurons of the Drosophila central brain fall into approximately 100 paired groups, termed lineages. Each lineage is derived from a single asymmetrically-dividing neuroblast. Embryonic neuroblasts produce 1,500 primary neurons (per hemisphere) that make up the larval CNS followed by a second mitotic period in the larva that generates approximately 10,000 secondary, adult-specific neurons. Clonal analyses based on previous works using lineage-specific Gal4 drivers have established that such lineages form highly invariant morphological units. All neurons of a lineage project as one or a few axon tracts (secondary axon tracts, SATs) with characteristic trajectories, thereby representing unique hallmarks. In the neuropil, SATs assemble into larger fiber bundles (fascicles) which interconnect different neuropil compartments. We have analyzed the SATs and fascicles formed by lineages during larval, pupal, and adult stages using antibodies against membrane molecules (Neurotactin/Neuroglian) and synaptic proteins (Bruchpilot/N-Cadherin). The use of these markers allows one to identify fiber bundles of the adult brain and associate them with SATs and fascicles of the larval brain. This work lays the foundation for assigning the lineage identity of GFP-labeled MARCM clones on the basis of their close association with specific SATs and neuropil fascicles, as described in the accompanying paper (Wong et al., 2013. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. Submitted.). PMID:23880429

  19. Developmental analysis of the dopamine-containing neurons of the Drosophila brain

    PubMed Central

    Hartenstein, Volker; Cruz, Louie; Lovick, Jennifer K.; Guo, Ming

    2016-01-01

    The Drosophila dopaminergic (DA) system consists of a relatively small number of neurons clustered throughout the brain and ventral nerve cord. Previous work shows that clusters of DA neurons innervate different brain compartments, which in part accounts for functional diversity of the DA system. In this paper, we analyzed the association between DA neuron clusters and specific brain lineages, developmental and structural units of the Drosophila brain which provide a framework of connections that can be followed throughout development. The hatching larval brain contains six groups of primary DA neurons (born in the embryo), which we assign to six distinct lineages. We can show that all larval DA clusters persist into the adult brain. Some clusters increase in cell number during late larval stages while others do not become DA-positive until early pupa. Ablating neuroblasts with hydroxyurea (HU) prior to onset of larval proliferation (generates secondary neurons) confirms these added DA clusters are primary neurons born in the embryo, rather than secondary neurons. A single cluster that becomes DA-positive in the late pupa, PAM1/lineage DALcm1/2, forms part of a secondary lineage which can be ablated by larval HU application. By supplying lineage information for each DA cluster, our analysis promotes further developmental and functional analyses of this important system of neurons. PMID:27350102

  20. Functional characterization of the Drosophila MRP (mitochondrial RNA processing) RNA gene.

    PubMed

    Schneider, Mary D; Bains, Anupinder K; Rajendra, T K; Dominski, Zbigniew; Matera, A Gregory; Simmonds, Andrew J

    2010-11-01

    MRP RNA is a noncoding RNA component of RNase mitochondrial RNA processing (MRP), a multi-protein eukaryotic endoribonuclease reported to function in multiple cellular processes, including ribosomal RNA processing, mitochondrial DNA replication, and cell cycle regulation. A recent study predicted a potential Drosophila ortholog of MRP RNA (CR33682) by computer-based genome analysis. We have confirmed the expression of this gene and characterized the phenotype associated with this locus. Flies with mutations that specifically affect MRP RNA show defects in growth and development that begin in the early larval period and end in larval death during the second instar stage. We present several lines of evidence demonstrating a role for Drosophila MRP RNA in rRNA processing. The nuclear fraction of Drosophila MRP RNA localizes to the nucleolus. Further, a mutant strain shows defects in rRNA processing that include a defect in 5.8S rRNA processing, typical of MRP RNA mutants in other species, as well as defects in early stages of rRNA processing.

  1. Snipper, an Eri1 homologue, affects histone mRNA abundance and is crucial for normal Drosophila melanogaster development.

    PubMed

    Alexiadis, Anastasios; Delidakis, Christos; Kalantidis, Kriton

    2017-07-01

    The conserved 3'-5' RNA exonuclease ERI1 is implicated in RNA interference inhibition, 5.8S rRNA maturation and histone mRNA maturation and turnover. The single ERI1 homologue in Drosophila melanogaster Snipper (Snp) is a 3'-5' exonuclease, but its in vivo function remains elusive. Here, we report Snp requirement for normal Drosophila development, since its perturbation leads to larval arrest and tissue-specific downregulation results in abnormal tissue development. Additionally, Snp directly interacts with histone mRNA, and its depletion results in drastic reduction in histone transcript levels. We propose that Snp protects the 3'-ends of histone mRNAs and upon its absence, histone transcripts are readily degraded. This in turn may lead to cell cycle delay or arrest, causing growth arrest and developmental perturbations. © 2017 Federation of European Biochemical Societies.

  2. Clash of kingdoms or why Drosophila larvae positively respond to fungal competitors.

    PubMed

    Rohlfs, Marko

    2005-01-27

    BACKGROUND: Competition with filamentous fungi has been demonstrated to be an important cause of mortality for the vast group of insects that depend on ephemeral resources (e.g. fruit, dung, carrion). Recent data suggest that the well-known aggregation of Drosophila larvae across decaying fruit yields a competitive advantage over mould, by which the larvae achieve a higher survival probability in larger groups compared with smaller ones. Feeding and locomotor behaviour of larger larval groups is assumed to cause disruption of fungal hyphae, leading to suppression of fungal growth, which in turn improves the chances of larval survival to the adult stage. Given the relationship between larval density, mould suppression and larval survival, the present study has tested whether fungal-infected food patches elicit communal foraging behaviour on mould-infected sites by which larvae might hamper mould growth more efficiently. RESULTS: Based on laboratory experiments in which Drosophila larvae were offered the choice between fungal-infected and uninfected food patches, larvae significantly aggregated on patches containing young fungal colonies. Grouping behaviour was also visible when larvae were offered only fungal-infected or only uninfected patches; however, larval aggregation was less strong under these conditions than in a heterogeneous environment (infected and uninfected patches). CONCLUSION: Because filamentous fungi can be deadly competitors for insect larvae on ephemeral resources, social attraction of Drosophila larvae to fungal-infected sites leading to suppression of mould growth may reflect an adaptive behavioural response that increases insect larval fitness and can thus be discussed as an anti-competitor behaviour. These observations support the hypothesis that adverse environmental conditions operate in favour of social behaviour. In a search for the underlying mechanisms of communal behaviour in Drosophila, this study highlights the necessity of

  3. Drosophila hematopoiesis under normal conditions and in response to immune stress.

    PubMed

    Letourneau, Manon; Lapraz, Francois; Sharma, Anurag; Vanzo, Nathalie; Waltzer, Lucas; Crozatier, Michèle

    2016-11-01

    The emergence of hematopoietic progenitors and their differentiation into various highly specialized blood cell types constitute a finely tuned process. Unveiling the genetic cascades that control blood cell progenitor fate and understanding how they are modulated in response to environmental changes are two major challenges in the field of hematopoiesis. In the last 20 years, many studies have established important functional analogies between blood cell development in vertebrates and in the fruit fly, Drosophila melanogaster. Thereby, Drosophila has emerged as a powerful genetic model for studying mechanisms that control hematopoiesis during normal development or in pathological situations. Moreover, recent advances in Drosophila have highlighted how intricate cell communication networks and microenvironmental cues regulate blood cell homeostasis. They have also revealed the striking plasticity of Drosophila mature blood cells and the presence of different sites of hematopoiesis in the larva. This review provides an overview of Drosophila hematopoiesis during development and summarizes our current knowledge on the molecular processes controlling larval hematopoiesis, both under normal conditions and in response to an immune challenge, such as wasp parasitism. © 2016 Federation of European Biochemical Societies.

  4. The Neuro-Ecology of Drosophila Pupation Behavior

    PubMed Central

    Del Pino, Francisco; Jara, Claudia; Pino, Luis; Godoy-Herrera, Raúl

    2014-01-01

    Many species of Drosophila form conspecific pupa aggregations across the breeding sites. These aggregations could result from species-specific larval odor recognition. To test this hypothesis we used larval odors of D. melanogaster and D. pavani, two species that coexist in the nature. When stimulated by those odors, wild type and vestigial (vg) third-instar larvae of D. melanogaster pupated on conspecific larval odors, but individuals deficient in the expression of the odor co-receptor Orco randomly pupated across the substrate, indicating that in this species, olfaction plays a role in pupation site selection. Larvae are unable to learn but can smell, the Syn97CS and rut strains of D. melanogaster, did not respond to conspecific odors or D. pavani larval cues, and they randomly pupated across the substrate, suggesting that larval odor-based learning could influence the pupation site selection. Thus, Orco, Syn97CS and rut loci participated in the pupation site selection. When stimulated by conspecific and D. melanogaster larval cues, D. pavani larvae also pupated on conspecific odors. The larvae of D. gaucha, a sibling species of D. pavani, did not respond to D. melanogaster larval cues, pupating randomly across the substrate. In nature, D. gaucha is isolated from D. melanogaster. Interspecific hybrids, which result from crossing pavani female with gaucha males clumped their pupae similarly to D. pavani, but the behavior of gaucha female x pavani male hybrids was similar to D. gaucha parent. The two sibling species show substantial evolutionary divergence in organization and functioning of larval nervous system. D. melanogaster and D. pavani larvae extracted information about odor identities and the spatial location of congener and alien larvae to select pupation sites. We hypothesize that larval recognition contributes to the cohabitation of species with similar ecologies, thus aiding the organization and persistence of Drosophila species guilds in the wild. PMID

  5. Pavlovian Conditioning of Larval Drosophila: An Illustrated, Multilingual, Hands-On Manual for Odor-Taste Associative Learning in Maggots

    PubMed Central

    Michels, Birgit; Saumweber, Timo; Biernacki, Roland; Thum, Jeanette; Glasgow, Rupert D. V.; Schleyer, Michael; Chen, Yi-chun; Eschbach, Claire; Stocker, Reinhard F.; Toshima, Naoko; Tanimura, Teiichi; Louis, Matthieu; Arias-Gil, Gonzalo; Marescotti, Manuela; Benfenati, Fabio; Gerber, Bertram

    2017-01-01

    Larval Drosophila offer a study case for behavioral neurogenetics that is simple enough to be experimentally tractable, yet complex enough to be worth the effort. We provide a detailed, hands-on manual for Pavlovian odor-reward learning in these animals. Given the versatility of Drosophila for genetic analyses, combined with the evolutionarily shared genetic heritage with humans, the paradigm has utility not only in behavioral neurogenetics and experimental psychology, but for translational biomedicine as well. Together with the upcoming total synaptic connectome of the Drosophila nervous system and the possibilities of single-cell-specific transgene expression, it offers enticing opportunities for research. Indeed, the paradigm has already been adopted by a number of labs and is robust enough to be used for teaching in classroom settings. This has given rise to a demand for a detailed, hands-on manual directed at newcomers and/or at laboratory novices, and this is what we here provide. The paradigm and the present manual have a unique set of features: The paradigm is cheap, easy, and robust; The manual is detailed enough for newcomers or laboratory novices; It briefly covers the essential scientific context; It includes sheets for scoring, data analysis, and display; It is multilingual: in addition to an English version we provide German, French, Japanese, Spanish and Italian language versions as well. The present manual can thus foster science education at an earlier age and enable research by a broader community than has been the case to date. PMID:28469564

  6. Steroid hormone induction of temporal gene expression in Drosophila brain neuroblasts generates neuronal and glial diversity

    PubMed Central

    Syed, Mubarak Hussain; Mark, Brandon; Doe, Chris Q

    2017-01-01

    An important question in neuroscience is how stem cells generate neuronal diversity. During Drosophila embryonic development, neural stem cells (neuroblasts) sequentially express transcription factors that generate neuronal diversity; regulation of the embryonic temporal transcription factor cascade is lineage-intrinsic. In contrast, larval neuroblasts generate longer ~50 division lineages, and currently only one mid-larval molecular transition is known: Chinmo/Imp/Lin-28+ neuroblasts transition to Syncrip+ neuroblasts. Here we show that the hormone ecdysone is required to down-regulate Chinmo/Imp and activate Syncrip, plus two late neuroblast factors, Broad and E93. We show that Seven-up triggers Chinmo/Imp to Syncrip/Broad/E93 transition by inducing expression of the Ecdysone receptor in mid-larval neuroblasts, rendering them competent to respond to the systemic hormone ecdysone. Importantly, late temporal gene expression is essential for proper neuronal and glial cell type specification. This is the first example of hormonal regulation of temporal factor expression in Drosophila embryonic or larval neural progenitors. DOI: http://dx.doi.org/10.7554/eLife.26287.001 PMID:28394252

  7. Drosophila haematopoiesis.

    PubMed

    Crozatier, Michèle; Meister, Marie

    2007-05-01

    Like in vertebrates, Drosophila haematopoiesis occurs in two waves. It gives rise to three types of haemocytes: plasmatocytes (phagocytosis), crystal cells (melanization) and lamellocytes (encapsulation of parasites). A first population of haemocytes, specified during embryogenesis, gives rise to an invariant number of plasmatocytes and crystal cells. A second population of haemocytes is specified during larval development in a specialized haematopoietic organ, the lymph gland. All three types of haemocytes can be specified in this organ, but lamellocytes only differentiate in response to parasitism. Thus, larval in contrast to embryonic haematopoiesis can be modulated by physiological constraints. Molecular cascades controlling embryonic haematopoiesis are relatively well established and require transactivators such as GATA, FOG and Runx factors, which are also co-opted in mammalian haematopoiesis. Mechanisms involved during larval haematopoiesis are less well understood although a number of chromatin remodelling factors and signalling pathways (JAK/STAT, Toll, Hedgehog, Notch) are required. In healthy larvae a pool of progenitors is maintained within the lymph gland, under the control of a signalling centre which expresses Collier, Serrate, Antennapedia and Hedgehog, and controls haemocyte homeostasis. Its key role in haemocyte homeostasis is reminiscent of interactions described in vertebrates between haematopoietic stem cells and their microenvironment (niche).

  8. Postembryonic lineages of the Drosophila brain: I. Development of the lineage-associated fiber tracts.

    PubMed

    Lovick, Jennifer K; Ngo, Kathy T; Omoto, Jaison J; Wong, Darren C; Nguyen, Joseph D; Hartenstein, Volker

    2013-12-15

    Neurons of the Drosophila central brain fall into approximately 100 paired groups, termed lineages. Each lineage is derived from a single asymmetrically-dividing neuroblast. Embryonic neuroblasts produce 1,500 primary neurons (per hemisphere) that make up the larval CNS followed by a second mitotic period in the larva that generates approximately 10,000 secondary, adult-specific neurons. Clonal analyses based on previous works using lineage-specific Gal4 drivers have established that such lineages form highly invariant morphological units. All neurons of a lineage project as one or a few axon tracts (secondary axon tracts, SATs) with characteristic trajectories, thereby representing unique hallmarks. In the neuropil, SATs assemble into larger fiber bundles (fascicles) which interconnect different neuropil compartments. We have analyzed the SATs and fascicles formed by lineages during larval, pupal, and adult stages using antibodies against membrane molecules (Neurotactin/Neuroglian) and synaptic proteins (Bruchpilot/N-Cadherin). The use of these markers allows one to identify fiber bundles of the adult brain and associate them with SATs and fascicles of the larval brain. This work lays the foundation for assigning the lineage identity of GFP-labeled MARCM clones on the basis of their close association with specific SATs and neuropil fascicles, as described in the accompanying paper (Wong et al., 2013. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. Submitted.). Copyright © 2013 Elsevier Inc. All rights reserved.

  9. A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Pappus, S. Aurosman; Ekka, Basanti; Sahu, Swetapadma; Sabat, Debabrat; Dash, Priyabrat; Mishra, Monalisa

    2017-04-01

    The effects of oral intake of hydroxyapatite nanoparticles (HApNPs) were investigated on growth, development and behaviour of Drosophila. The Drosophila responses to various concentrations of HApNPs were compared. At lower concentrations, i.e. 5 mg L-1 more amount of oxidative stress was produced than that of highest concentration, i.e. 80 mg L-1. The increased amounts of oxidative stress reflect a higher amount of ROS production and increased cell damage within the larval gut. HApNPs was further shown to interfere with the calcium and phosphorus absorption pathway. Besides all these damage, HApNPs causes developmental delay in the late third instar larvae. The most significant anomaly was observed in pupae count, fly hatching after the feeding of HApNPs. Flies hatched from treated vials have decreased body weight with defective walking behaviour. Hatched flies have a phenotypic defect in the wing, eye and thorax of the bristles. Along with these changes, the adult fly becomes more prone towards stress. The findings hint that HApNPs persuade noxious effects and alter the development, structure, function and behaviour of the fly in a concentration-dependent manner.

  10. Development and Function of the Drosophila Tracheal System.

    PubMed

    Hayashi, Shigeo; Kondo, Takefumi

    2018-06-01

    The tracheal system of insects is a network of epithelial tubules that functions as a respiratory organ to supply oxygen to various target organs. Target-derived signaling inputs regulate stereotyped modes of cell specification, branching morphogenesis, and collective cell migration in the embryonic stage. In the postembryonic stages, the same set of signaling pathways controls highly plastic regulation of size increase and pattern elaboration during larval stages, and cell proliferation and reprograming during metamorphosis. Tracheal tube morphogenesis is also regulated by physicochemical interaction of the cell and apical extracellular matrix to regulate optimal geometry suitable for air flow. The trachea system senses both the external oxygen level and the metabolic activity of internal organs, and helps organismal adaptation to changes in environmental oxygen level. Cellular and molecular mechanisms underlying the high plasticity of tracheal development and physiology uncovered through research on Drosophila are discussed. Copyright © 2018 by the Genetics Society of America.

  11. Nutrient-Dependent Impact of Microbes on Drosophila suzukii Development.

    PubMed

    Bing, XiaoLi; Gerlach, Joseph; Loeb, Gregory; Buchon, Nicolas

    2018-03-20

    wing drosophila. Our study results demonstrate that the abundance and structure of microbiota in D. suzukii are strongly affected by the environment, where microbes have variable roles depending on the nutritional situation. For instance, we found that the presence of microbes is deleterious for flies growing on a protein-rich diet and yet is beneficial for flies growing on a diet of protein-poor fruits. Additionally, germ-free flies must feed on microbes to obtain the necessary protein for larval development on strawberries and blueberries. Our report validates the complexity seen in host-microbe interactions and may provide information useful for D. suzukii pest control. Copyright © 2018 Bing et al.

  12. Functional reconstitution of Drosophila melanogaster NMJ glutamate receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Tae Hee; Dharkar, Poorva; Mayer, Mark L.

    The Drosophila larval neuromuscular junction (NMJ), at which glutamate acts as the excitatory neurotransmitter, is a widely used model for genetic analysis of synapse function and development. Despite decades of study, the inability to reconstitute NMJ glutamate receptor function using heterologous expression systems has complicated the analysis of receptor function, such that it is difficult to resolve the molecular basis for compound phenotypes observed in mutant flies. In this paper, we find that Drosophila Neto functions as an essential component required for the function of NMJ glutamate receptors, permitting analysis of glutamate receptor responses in Xenopus oocytes. Finally, in combinationmore » with a crystallographic analysis of the GluRIIB ligand binding domain, we use this system to characterize the subunit dependence of assembly, channel block, and ligand selectivity for Drosophila NMJ glutamate receptors.« less

  13. Functional reconstitution of Drosophila melanogaster NMJ glutamate receptors

    DOE PAGES

    Han, Tae Hee; Dharkar, Poorva; Mayer, Mark L.; ...

    2015-04-27

    The Drosophila larval neuromuscular junction (NMJ), at which glutamate acts as the excitatory neurotransmitter, is a widely used model for genetic analysis of synapse function and development. Despite decades of study, the inability to reconstitute NMJ glutamate receptor function using heterologous expression systems has complicated the analysis of receptor function, such that it is difficult to resolve the molecular basis for compound phenotypes observed in mutant flies. In this paper, we find that Drosophila Neto functions as an essential component required for the function of NMJ glutamate receptors, permitting analysis of glutamate receptor responses in Xenopus oocytes. Finally, in combinationmore » with a crystallographic analysis of the GluRIIB ligand binding domain, we use this system to characterize the subunit dependence of assembly, channel block, and ligand selectivity for Drosophila NMJ glutamate receptors.« less

  14. Development of the Cellular Immune System of Drosophila Requires the Membrane Attack Complex/Perforin-Like Protein Torso-Like.

    PubMed

    Forbes-Beadle, Lauren; Crossman, Tova; Johnson, Travis K; Burke, Richard; Warr, Coral G; Whisstock, James C

    2016-10-01

    Pore-forming members of the membrane attack complex/perforin-like (MACPF) protein superfamily perform well-characterized roles as mammalian immune effectors. For example, complement component 9 and perforin function to directly form pores in the membrane of Gram-negative pathogens or virally infected/transformed cells, respectively. In contrast, the only known MACPF protein in Drosophila melanogaster, Torso-like, plays crucial roles during development in embryo patterning and larval growth. Here, we report that in addition to these functions, Torso-like plays an important role in Drosophila immunity. However, in contrast to a hypothesized effector function in, for example, elimination of Gram-negative pathogens, we find that torso-like null mutants instead show increased susceptibility to certain Gram-positive pathogens such as Staphylococcus aureus and Enterococcus faecalis We further show that this deficit is due to a severely reduced number of circulating immune cells and, as a consequence, an impaired ability to phagocytose bacterial particles. Together these data suggest that Torso-like plays an important role in controlling the development of the Drosophila cellular immune system. Copyright © 2016 by the Genetics Society of America.

  15. SNF4Agamma, the Drosophila AMPK gamma subunit is required for regulation of developmental and stress-induced autophagy.

    PubMed

    Lippai, Mónika; Csikós, György; Maróy, Péter; Lukácsovich, Tamás; Juhász, Gábor; Sass, Miklós

    2008-05-01

    In holometabolous insects including Drosophila melanogaster a wave of autophagy triggered by 20-hydroxyecdysone is observed in the larval tissues during the third larval stage of metamorphosis. We used this model system to study the genetic regulation of autophagy. We performed a genetic screen to select P-element insertions that affect autophagy in the larval fat body. Light and electron microscopy of one of the isolated mutants (l(3)S005042) revealed the absence of autophagic vesicles in their fat body cells during the third larval stage. We show that formation of autophagic vesicles cannot be induced by 20-hydroxyecdysone in the tissues of mutant flies and represent evidence demonstrating that the failure to form autophagic vesicles is due to the insertion of a P-element into the gene coding SNF4Agamma, the Drosophila homologue of the AMPK (AMP-activated protein kinase) gamma subunit. The ability to form autophagic vesicles (wild-type phenotype) can be restored by remobilization of the P-element in the mutant. Silencing of SNF4Agamma by RNAi suppresses autophagic vesicle formation in wild-type flies. We raised an antibody against SNF4Agamma and showed that this gene product is constitutively present in the wild-type larval tissues during postembryonal development. SNF4Agamma is nearly absent from the cells of homozygous mutants. SNF4Agamma translocates into the nuclei of fat body cells at the onset of the wandering stage concurrently with the beginning of the autophagic process. Our results demonstrate that SNF4Agamma has an essential role in the regulation of autophagy in Drosophila larval fat body cells.

  16. Specialized Cortex Glial Cells Accumulate Lipid Droplets in Drosophila melanogaster.

    PubMed

    Kis, Viktor; Barti, Benjámin; Lippai, Mónika; Sass, Miklós

    2015-01-01

    Lipid droplets (LDs) are common organelles of the majority of eukaryotic cell types. Their biological significance has been extensively studied in mammalian liver cells and white adipose tissue. Although the central nervous system contains the highest relative amount and the largest number of different lipid species, neither the spatial nor the temporal distribution of LDs has been described. In this study, we used the brain of the fruitfly, Drosophila melanogaster, to investigate the neuroanatomy of LDs. We demonstrated that LDs are exclusively localised in glial cells but not in neurons in the larval nervous system. We showed that the brain's LD pool, rather than being constant, changes dynamically during development and reaches its highest value at the beginning of metamorphosis. LDs are particularly enriched in cortex glial cells located close to the brain surface. These specialized superficial cortex glial cells contain the highest amount of LDs among glial cell types and encapsulate neuroblasts and their daughter cells. Superficial cortex glial cells, combined with subperineurial glial cells, express the Drosophila fatty acid binding protein (Dfabp), as we have demonstrated through light- and electron microscopic immunocytochemistry. To the best of our best knowledge this is the first study that describes LD neuroanatomy in the Drosophila larval brain.

  17. Sucrose Improves Insecticide Activity Against Drosophila suzukii (Diptera: Drosophilidae).

    PubMed

    Cowles, Richard S; Rodriguez-Saona, Cesar; Holdcraft, Robert; Loeb, Gregory M; Elsensohn, Johanna E; Hesler, Steven P

    2015-04-01

    The addition of sucrose to insecticides targeting spotted wing drosophila, Drosophila suzukii (Matsumura), enhanced lethality in laboratory, semifield, and field tests. In the laboratory, 0.1% sucrose added to a spray solution enhanced spotted wing drosophila feeding. Flies died 120 min earlier when exposed to spinosad residues at label rates enhanced with sucrose. Added sucrose reduced the LC50 for dried acetamiprid residues from 82 to 41 ppm in the spray solution. Laboratory bioassays of spotted wing drosophila mortality followed exposure to grape and blueberry foliage and/or fruit sprayed and aged in the field. On grape foliage, the addition of 2.4 g/liter of sugar with insecticide sprays resulted in an 11 and 6% increase of spotted wing drosophila mortality at 1 and 2 d exposures to residues, respectively, averaged over seven insecticides with three concentrations. In a separate experiment, spinetoram and cyantraniliprole reduced by 95-100% the larval infestation of blueberries, relative to the untreated control, 7 d after application at labeled rates when applied with 1.2 g/liter sucrose in a spray mixture, irrespective of rainfall; without sucrose infestation was reduced by 46-91%. Adding sugar to the organically acceptable spinosyn, Entrust, reduced larval infestation of strawberries by >50% relative to without sugar for five of the six sample dates during a season-long field trial. In a small-plot field test with blueberries, weekly applications in alternating sprays of sucrose plus reduced-risk insecticides, spinetoram or acetamiprid, reduced larval infestation relative to the untreated control by 76%; alternating bifenthrin and phosmet (without sucrose) reduced infestation by 65%. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes.

    PubMed Central

    Han, Qian; Fang, Jianmin; Ding, Haizhen; Johnson, Jody K; Christensen, Bruce M; Li, Jianyong

    2002-01-01

    This study describes the identification of Drosophila yellow-f and yellow-f2 as dopachrome-conversion enzymes responsible for catalysing the conversion of dopachrome into 5,6-dihydroxyindole in the melanization pathway. Drosophila yellow -y gene and yellow -b, -c, -f and -f2 genes were expressed in an insect cell/baculovirus expression system and their corresponding recombinant proteins were screened for dopachrome-conversion enzyme activity. Among the yellow and yellow -related genes, the yellow -f and yellow -f2 genes were identified as the genes coding for Drosophila dopachrome-conversion enzyme based on the high activity of their recombinant proteins in catalysing the production of 5,6-dihydroxyindole from dopachrome. Both yellow-f and yellow-f2 are capable of mediating a decarboxylative structural rearrangement of dopachrome, as well as an isomerization/tautomerization of dopamine chrome and dopa methyl ester chrome. Northern hybridization revealed the transcription of yellow -f in larvae and pupae, but a high abundance of mRNA was observed in later larval and early pupal stages. In contrast, yellow-f2 transcripts were present at all stages, but high abundance of its mRNA was observed in later-stage pupae and adults. These data indicate that yellow-f and yellow-f2 complement each other during Drosophila development and that the yellow-f is involved in larval and pupal melanization, and yellow-f2 plays a major role in melanization reactions in Drosophila during later pupal and adult development. Results from this study provide the groundwork towards a better understanding of the physiological roles of the Drosophila yellow gene family. PMID:12164780

  19. CLOCK expression identifies developing circadian oscillator neurons in the brains of Drosophila embryos.

    PubMed

    Houl, Jerry H; Ng, Fanny; Taylor, Pete; Hardin, Paul E

    2008-12-18

    The Drosophila circadian oscillator is composed of transcriptional feedback loops in which CLOCK-CYCLE (CLK-CYC) heterodimers activate their feedback regulators period (per) and timeless (tim) via E-box mediated transcription. These feedback loop oscillators are present in distinct clusters of dorsal and lateral neurons in the adult brain, but how this pattern of expression is established during development is not known. Since CLK is required to initiate feedback loop function, defining the pattern of CLK expression in embryos and larvae will shed light on oscillator neuron development. A novel CLK antiserum is used to show that CLK expression in the larval CNS and adult brain is limited to circadian oscillator cells. CLK is initially expressed in presumptive small ventral lateral neurons (s-LNvs), dorsal neurons 2 s (DN2s), and dorsal neuron 1 s (DN1s) at embryonic stage (ES) 16, and this CLK expression pattern persists through larval development. PER then accumulates in all CLK-expressing cells except presumptive DN2s during late ES 16 and ES 17, consistent with the delayed accumulation of PER in adult oscillator neurons and antiphase cycling of PER in larval DN2s. PER is also expressed in non-CLK-expressing cells in the embryonic CNS starting at ES 12. Although PER expression in CLK-negative cells continues in ClkJrk embryos, PER expression in cells that co-express PER and CLK is eliminated. These data demonstrate that brain oscillator neurons begin development during embryogenesis, that PER expression in non-oscillator cells is CLK-independent, and that oscillator phase is an intrinsic characteristic of brain oscillator neurons. These results define the temporal and spatial coordinates of factors that initiate Clk expression, imply that circadian photoreceptors are not activated until the end of embryogenesis, and suggest that PER functions in a different capacity before oscillator cell development is initiated.

  20. MAPK3 at the Autism-Linked Human 16p11.2 Locus Influences Precise Synaptic Target Selection at Drosophila Larval Neuromuscular Junctions.

    PubMed

    Park, Sang Mee; Park, Hae Ryoun; Lee, Ji Hye

    2017-02-01

    Proper synaptic function in neural circuits requires precise pairings between correct pre- and post-synaptic partners. Errors in this process may underlie development of neuropsychiatric disorders, such as autism spectrum disorder (ASD). Development of ASD can be influenced by genetic factors, including copy number variations (CNVs). In this study, we focused on a CNV occurring at the 16p11.2 locus in the human genome and investigated potential defects in synaptic connectivity caused by reduced activities of genes located in this region at Drosophila larval neuromuscular junctions, a well-established model synapse with stereotypic synaptic structures. A mutation of rolled , a Drosophila homolog of human mitogen-activated protein kinase 3 ( MAPK3 ) at the 16p11.2 locus, caused ectopic innervation of axonal branches and their abnormal defasciculation. The specificity of these phenotypes was confirmed by expression of wild-type rolled in the mutant background. Albeit to a lesser extent, we also observed ectopic innervation patterns in mutants defective in Cdk2, Gα q , and Gp93, all of which were expected to interact with Rolled MAPK3. A further genetic analysis in double heterozygous combinations revealed a synergistic interaction between rolled and Gp93 . In addition, results from RT-qPCR analyses indicated consistently reduced rolled mRNA levels in Cdk2 , Gα q , and Gp93 mutants. Taken together, these data suggest a central role of MAPK3 in regulating the precise targeting of presynaptic axons to proper postsynaptic targets, a critical step that may be altered significantly in ASD.

  1. The bHLH Repressor Deadpan Regulates the Self-renewal and Specification of Drosophila Larval Neural Stem Cells Independently of Notch

    PubMed Central

    Younger, Susan; Huang, Yaling; Lee, Tzumin

    2012-01-01

    Neural stem cells (NSCs) are able to self-renew while giving rise to neurons and glia that comprise a functional nervous system. However, how NSC self-renewal is maintained is not well understood. Using the Drosophila larval NSCs called neuroblasts (NBs) as a model, we demonstrate that the Hairy and Enhancer-of-Split (Hes) family protein Deadpan (Dpn) plays important roles in NB self-renewal and specification. The loss of Dpn leads to the premature loss of NBs and truncated NB lineages, a process likely mediated by the homeobox protein Prospero (Pros). Conversely, ectopic/over-expression of Dpn promotes ectopic self-renewing divisions and maintains NB self-renewal into adulthood. In type II NBs, which generate transit amplifying intermediate neural progenitors (INPs) like mammalian NSCs, the loss of Dpn results in ectopic expression of type I NB markers Asense (Ase) and Pros before these type II NBs are lost at early larval stages. Our results also show that knockdown of Notch leads to ectopic Ase expression in type II NBs and the premature loss of type II NBs. Significantly, dpn expression is unchanged in these transformed NBs. Furthermore, the loss of Dpn does not inhibit the over-proliferation of type II NBs and immature INPs caused by over-expression of activated Notch. Our data suggest that Dpn plays important roles in maintaining NB self-renewal and specification of type II NBs in larval brains and that Dpn and Notch function independently in regulating type II NB proliferation and specification. PMID:23056424

  2. Piezo Is Essential for Amiloride-Sensitive Stretch-Activated Mechanotransduction in Larval Drosophila Dorsal Bipolar Dendritic Sensory Neurons

    PubMed Central

    Suslak, Thomas J.; Watson, Sonia; Thompson, Karen J.; Shenton, Fiona C.; Bewick, Guy S.; Armstrong, J. Douglas; Jarman, Andrew P.

    2015-01-01

    Stretch-activated afferent neurons, such as those of mammalian muscle spindles, are essential for proprioception and motor co-ordination, but the underlying mechanisms of mechanotransduction are poorly understood. The dorsal bipolar dendritic (dbd) sensory neurons are putative stretch receptors in the Drosophila larval body wall. We have developed an in vivo protocol to obtain receptor potential recordings from intact dbd neurons in response to stretch. Receptor potential changes in dbd neurons in response to stretch showed a complex, dynamic profile with similar characteristics to those previously observed for mammalian muscle spindles. These profiles were reproduced by a general in silico model of stretch-activated neurons. This in silico model predicts an essential role for a mechanosensory cation channel (MSC) in all aspects of receptor potential generation. Using pharmacological and genetic techniques, we identified the mechanosensory channel, DmPiezo, in this functional role in dbd neurons, with TRPA1 playing a subsidiary role. We also show that rat muscle spindles exhibit a ruthenium red-sensitive current, but found no expression evidence to suggest that this corresponds to Piezo activity. In summary, we show that the dbd neuron is a stretch receptor and demonstrate that this neuron is a tractable model for investigating mechanisms of mechanotransduction. PMID:26186008

  3. Piezo Is Essential for Amiloride-Sensitive Stretch-Activated Mechanotransduction in Larval Drosophila Dorsal Bipolar Dendritic Sensory Neurons.

    PubMed

    Suslak, Thomas J; Watson, Sonia; Thompson, Karen J; Shenton, Fiona C; Bewick, Guy S; Armstrong, J Douglas; Jarman, Andrew P

    2015-01-01

    Stretch-activated afferent neurons, such as those of mammalian muscle spindles, are essential for proprioception and motor co-ordination, but the underlying mechanisms of mechanotransduction are poorly understood. The dorsal bipolar dendritic (dbd) sensory neurons are putative stretch receptors in the Drosophila larval body wall. We have developed an in vivo protocol to obtain receptor potential recordings from intact dbd neurons in response to stretch. Receptor potential changes in dbd neurons in response to stretch showed a complex, dynamic profile with similar characteristics to those previously observed for mammalian muscle spindles. These profiles were reproduced by a general in silico model of stretch-activated neurons. This in silico model predicts an essential role for a mechanosensory cation channel (MSC) in all aspects of receptor potential generation. Using pharmacological and genetic techniques, we identified the mechanosensory channel, DmPiezo, in this functional role in dbd neurons, with TRPA1 playing a subsidiary role. We also show that rat muscle spindles exhibit a ruthenium red-sensitive current, but found no expression evidence to suggest that this corresponds to Piezo activity. In summary, we show that the dbd neuron is a stretch receptor and demonstrate that this neuron is a tractable model for investigating mechanisms of mechanotransduction.

  4. The peripheral nervous system supports blood cell homing and survival in the Drosophila larva

    PubMed Central

    Makhijani, Kalpana; Alexander, Brandy; Tanaka, Tsubasa; Rulifson, Eric; Brückner, Katja

    2011-01-01

    Interactions of hematopoietic cells with their microenvironment control blood cell colonization, homing and hematopoiesis. Here, we introduce larval hematopoiesis as the first Drosophila model for hematopoietic colonization and the role of the peripheral nervous system (PNS) as a microenvironment in hematopoiesis. The Drosophila larval hematopoietic system is founded by differentiated hemocytes of the embryo, which colonize segmentally repeated epidermal-muscular pockets and proliferate in these locations. Importantly, we show that these resident hemocytes tightly colocalize with peripheral neurons and we demonstrate that larval hemocytes depend on the PNS as an attractive and trophic microenvironment. atonal (ato) mutant or genetically ablated larvae, which are deficient for subsets of peripheral neurons, show a progressive apoptotic decline in hemocytes and an incomplete resident hemocyte pattern, whereas supernumerary peripheral neurons induced by ectopic expression of the proneural gene scute (sc) misdirect hemocytes to these ectopic locations. This PNS-hematopoietic connection in Drosophila parallels the emerging role of the PNS in hematopoiesis and immune functions in vertebrates, and provides the basis for the systematic genetic dissection of the PNS-hematopoietic axis in the future. PMID:22071105

  5. Remodeling of peripheral nerve ensheathment during the larval-to-adult transition in Drosophila.

    PubMed

    Subramanian, Aswati; Siefert, Matthew; Banerjee, Soumya; Vishal, Kumar; Bergmann, Kayla A; Curts, Clay C M; Dorr, Meredith; Molina, Camillo; Fernandes, Joyce

    2017-10-01

    Over the course of a 4-day period of metamorphosis, the Drosophila larval nervous system is remodeled to prepare for adult-specific behaviors. One example is the reorganization of peripheral nerves in the abdomen, where five pairs of abdominal nerves (A4-A8) fuse to form the terminal nerve trunk. This reorganization is associated with selective remodeling of four layers that ensheath each peripheral nerve. The neural lamella (NL), is the first to dismantle; its breakdown is initiated by 6 hours after puparium formation, and is completely removed by the end of the first day. This layer begins to re-appear on the third day of metamorphosis. Perineurial glial (PG) cells situated just underneath the NL, undergo significant proliferation on the first day of metamorphosis, and at that stage contribute to 95% of the glial cell population. Cells of the two inner layers, Sub-Perineurial Glia (SPG) and Wrapping Glia (WG) increase in number on the second half of metamorphosis. Induction of cell death in perineurial glia via the cell death gene reaper and the Diptheria toxin (DT-1) gene, results in abnormal bundling of the peripheral nerves, suggesting that perineurial glial cells play a role in the process. A significant number of animals fail to eclose in both reaper and DT-1 targeted animals, suggesting that disruption of PG also impacts eclosion behavior. The studies will help to establish the groundwork for further work on cellular and molecular processes that underlie the co-ordinated remodeling of glia and the peripheral nerves they ensheath. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1144-1160, 2017. © 2017 Wiley Periodicals, Inc.

  6. EGFR Signaling in the Brain Is Necessary for Olfactory Learning in "Drosophila" Larvae

    ERIC Educational Resources Information Center

    Rahn, Tasja; Leippe, Matthias; Roeder, Thomas; Fedders, Henning

    2013-01-01

    Signaling via the epidermal growth factor receptor (EGFR) pathway has emerged as one of the key mechanisms in the development of the central nervous system in "Drosophila melanogaster." By contrast, little is known about the functions of EGFR signaling in the differentiated larval brain. Here, promoter-reporter lines of EGFR and its most prominent…

  7. Drosophila cellular immunity: a story of migration and adhesion.

    PubMed

    Fauvarque, Marie-Odile; Williams, Michael J

    2011-05-01

    Research during the past 15 years has led to significant breakthroughs, providing evidence of a high degree of similarity between insect and mammalian innate immune responses, both humoural and cellular, and highlighting Drosophila melanogaster as a model system for studying the evolution of innate immunity. In a manner similar to cells of the mammalian monocyte and macrophage lineage, Drosophila immunosurveillance cells (haemocytes) have a number of roles. For example, they respond to wound signals, are involved in wound healing and contribute to the coagulation response. Moreover, they participate in the phagocytosis and encapsulation of invading pathogens, are involved in the removal of apoptotic bodies and produce components of the extracellular matrix. There are several reasons for using the Drosophila cellular immune response as a model to understand cell signalling during adhesion and migration in vivo: many genes involved in the regulation of Drosophila haematopoiesis and cellular immunity have been maintained across taxonomic groups ranging from flies to humans, many aspects of Drosophila and mammalian innate immunity seem to be conserved, and Drosophila is a simplified and well-studied genetic model system. In the present Commentary, we will discuss what is known about cellular adhesion and migration in the Drosophila cellular immune response, during both embryonic and larval development, and where possible compare it with related mechanisms in vertebrates.

  8. Label-free imaging of Drosophila in vivo by coherent anti-Stokes Raman scattering and two-photon excitation autofluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Chien, Cheng-Hao; Chen, Wei-Wen; Wu, June-Tai; Chang, Ta-Chau

    2011-01-01

    Drosophila is one of the most valuable model organisms for studying genetics and developmental biology. The fat body in Drosophila, which is analogous to the liver and adipose tissue in human, stores lipids that act as an energy source during its development. At the early stages of metamorphosis, the fat body remodeling occurs involving the dissociation of the fat body into individual fat cells. Here we introduce a combination of coherent anti-Stokes Raman scattering (CARS) and two-photon excitation autofluorescence (TPE-F) microscopy to achieve label-free imaging of Drosophila in vivo at larval and pupal stages. The strong CARS signal from lipids allows direct imaging of the larval fat body and pupal fat cells. In addition, the use of TPE-F microscopy allows the observation of other internal organs in the larva and autofluorescent globules in fat cells. During the dissociation of the fat body, the findings of the degradation of lipid droplets and an increase in autofluorescent globules indicate the consumption of lipids and the recruitment of proteins in fat cells. Through in vivo imaging and direct monitoring, CARS microscopy may help elucidate how metamorphosis is regulated and study the lipid metabolism in Drosophila.

  9. Correlated evolution between mode of larval development and habitat in muricid gastropods.

    PubMed

    Pappalardo, Paula; Rodríguez-Serrano, Enrique; Fernández, Miriam

    2014-01-01

    Larval modes of development affect evolutionary processes and influence the distribution of marine invertebrates in the ocean. The decrease in pelagic development toward higher latitudes is one of the patterns of distribution most frequently discussed in marine organisms (Thorson's rule), which has been related to increased larval mortality associated with long pelagic durations in colder waters. However, the type of substrate occupied by adults has been suggested to influence the generality of the latitudinal patterns in larval development. To help understand how the environment affects the evolution of larval types we evaluated the association between larval development and habitat using gastropods of the Muricidae family as a model group. To achieve this goal, we collected information on latitudinal distribution, sea water temperature, larval development and type of substrate occupied by adults. We constructed a molecular phylogeny for 45 species of muricids to estimate the ancestral character states and to assess the relationship between traits using comparative methods in a Bayesian framework. Our results showed high probability for a common ancestor of the muricids with nonpelagic (and nonfeeding) development, that lived in hard bottoms and cold temperatures. From this ancestor, a pelagic feeding larva evolved three times, and some species shifted to warmer temperatures or sand bottoms. The evolution of larval development was not independent of habitat; the most probable evolutionary route reconstructed in the analysis of correlated evolution showed that type of larval development may change in soft bottoms but in hard bottoms this change is highly unlikely. Lower sea water temperatures were associated with nonpelagic modes of development, supporting Thorson's rule. We show how environmental pressures can favor a particular mode of larval development or transitions between larval modes and discuss the reacquisition of feeding larva in muricids gastropods.

  10. Temporal and spatial expression of Drosophila DLGS97 during neural development.

    PubMed

    Albornoz, Valeria; Mendoza-Topaz, Carolina; Oliva, Carlos; Tello, Judith; Olguín, Patricio; Sierralta, Jimena

    2008-07-01

    The products of the Drosophila discs-large (dlg) gene are members of the MAGUK family of proteins, a group of proteins involved in localization, transport and recycling of receptors and channels in cell junctions, including the synapse. In vertebrates, four genes with multiple splice variants homologous to dlg are described. dlg originates two main proteins, DLGA, similar to the vertebrate neuronal protein PSD95, and DLGS97, similar to the vertebrate neuronal and epithelial protein SAP97. DLGA is expressed in epithelia, neural tissue and muscle. DLGS97 is expressed in neural tissue and muscle but not in epithelia. The distinctive difference between them is the presence in DLGS97 of an L27 domain. The differential expression between these variants makes the study of DLGS97 of key relevance to understand the in vivo role of synaptic MAGUKs in neurons. Here we present the temporal and spatial expression pattern of DLGS97 during embryonic and larval nervous system development, during eye development and in adult brain. Our results show that DLGS97 is expressed zygotically, in neurons in the embryo, larvae and adult, and is absent at all stages in glial cells. During eye development DLGS97 starts to be expressed in photoreceptor cells at early stages of differentiation and localizes basal to the basolateral junctions. In the brain, DLGS97 is expressed in the mushroom bodies and optic lobes at larval and adult stages; and in the antennal lobe in the adult stage. In addition we show that both, dlgS97 and dlgA transcripts, express during development multiple splice variants with differences in the use of exons in two sites.

  11. Lamellipodia-based migrations of larval epithelial cells are required for normal closure of the adult epidermis of Drosophila

    PubMed Central

    Bischoff, Marcus

    2012-01-01

    Cell migrations are an important feature of animal development. They are, furthermore, essential to wound healing and tumour progression. Despite recent progress, it is still mysterious how cell migration is spatially and temporally regulated during morphogenesis and how cell migration is coordinated with other cellular behaviours to shape tissues and organs. The formation of the abdominal epithelium of Drosophila during metamorphosis provides an attractive system to study morphogenesis. Here, the diploid adult histoblasts replace the polyploid larval epithelial cells (LECs). Using in vivo 4D microscopy, I show that, besides apical constriction and apoptosis, the LECs undergo extensive coordinated migrations. The migrations follow a transition from a stationary (epithelial) to a migratory mode. The migratory behaviour is stimulated by autocrine Dpp signalling. Directed apical lamellipodia-like protrusions propel the cells. Initially, planar cell polarity determines the orientation of LEC migration. While LECs are migrating they also constrict apically, and changes in activity of the small GTPase Rho1 can favour one behaviour over the other. This study shows that the LECs play a more active role in morphogenesis than previously thought, with their migrations contributing to abdominal closure. It furthermore provides insights into how the migratory behaviour of cells is regulated during morphogenesis. PMID:22230614

  12. Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae

    PubMed Central

    Widmann, Annekathrin; Artinger, Marc; Biesinger, Lukas; Boepple, Kathrin; Schlechter, Jana; Selcho, Mareike; Thum, Andreas S.

    2016-01-01

    Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes—besides other forms—a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3’5’-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution. PMID:27768692

  13. Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae.

    PubMed

    Widmann, Annekathrin; Artinger, Marc; Biesinger, Lukas; Boepple, Kathrin; Peters, Christina; Schlechter, Jana; Selcho, Mareike; Thum, Andreas S

    2016-10-01

    Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes-besides other forms-a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3'5'-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution.

  14. Experimental evolution in Drosophila melanogaster: interaction of temperature and food quality selection regimes.

    PubMed

    Bochdanovits, Zoltán; de Jong, Gerdien

    2003-08-01

    In Drosophila, both the phenotypic and evolutionary effect of temperature on adult size involves alterations to larval resource processing and affects other life-history traits, that is, development time but most notably, larval survival. Therefore, thermal evolution of adult body size might not be independent of simultaneous adaptation of larval traits to resource availability. Using experimental evolution lines adapted to high and low temperatures at different levels of food, we show that selection pressures interact in shaping larval resource processing. Evolution on poor food invariably leads to lower resource acquisition suggesting a cost to feeding behavior. However, following low temperature selection, lower resource acquisition led to a higher adult body size, probably by more efficient allocation to growth. In contrast, following high temperature selection, low resource acquisition benefited larval survival, possibly by reducing feeding-associated costs. We show that evolved differences to larval resource processing provide a possible proximate mechanism to variation in a suite of correlated life-history traits during adaptation to different climates. The implication for natural populations is that in nature, thermal evolution drives populations to opposite ends of an adult size versus larval survival trade-off by altering resource processing, if resource availability is limited.

  15. Label-free in vivo imaging of Drosophila melanogaster by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Chiao-Ying; Hovhannisyan, Vladimir; Wu, June-Tai; Lin, Sung-Jan; Lin, Chii-Wann; Chen, Jyh-Horng; Dong, Chen-Yuan

    2008-02-01

    The fruit fly Drosophila melanogaster is one of the most valuable organisms in genetic and developmental biology studies. Drosophila is a small organism with a short life cycle, and is inexpensive and easy to maintain. The entire genome of Drosophila has recently been sequenced (cite the reference). These advantages make fruit fly an attractive model organism for biomedical researches. Unlike humans, Drosophila can be subjected to genetic manipulation with relative ease. Originally, Drosophila was mostly used in classical genetics studies. In the model era of molecular biology, the fruit fly has become a model organ for developmental biology researches. In the past, numerous molecularly modified mutants with well defined genetic defects affecting different aspects of the developmental processes have been identified and studied. However, traditionally, the developmental defects of the mutant flies are mostly examined in isolated fixed tissues which preclude the observation of the dynamic interaction of the different cell types and the extracellular matrix. Therefore, the ability to image different organelles of the fruit fly without extrinsic labeling is invaluable for Drosophila biology. In this work, we successfully acquire in vivo images of both developing muscles and axons of motor neurons in the three larval stages by using the minimially invasive imaging modality of multiphoton (SHG) microscopy. We found that while SHG imaging is useful in revealing the muscular architecture of the developing larva, it is the autofluorescence signal that allows label-free imaging of various organelles to be achieved. Our results demonstrate that multiphoton imaging is a powerful technique for investigation the development of Drosophila.

  16. Imaginal Disc Abnormalities in Lethal Mutants of Drosophila

    PubMed Central

    Shearn, Allen; Rice, Thomas; Garen, Alan; Gehring, Walter

    1971-01-01

    Late lethal mutants of Drosophila melanogaster, dying after the larval stage of development, were isolated. The homozygous mutant larvae were examined for abnormal imaginal disc morphology, and the discs were injected into normal larval hosts to test their capacities to differentiate into adult structures. In about half of the mutants analyzed, disc abnormalities were found. Included among the abnormalities were missing discs, small discs incapable of differentiating, morphologically normal discs with limited capacities for differentiation, and discs with homeotic transformations. In some mutants all discs were affected, and in others only certain discs. The most extreme abnormal phenotype is a class of “discless” mutants. The viability of these mutant larvae indicates that the discs are essential only for the development of an adult and not of a larva. The late lethals are therefore a major source of mutants for studying the genetic control of disc formation. Images PMID:5002822

  17. Transcriptome Profiling Identifies Multiplexin as a Target of SAGA Deubiquitinase Activity in Glia Required for Precise Axon Guidance During Drosophila Visual Development.

    PubMed

    Ma, Jingqun; Brennan, Kaelan J; D'Aloia, Mitch R; Pascuzzi, Pete E; Weake, Vikki M

    2016-08-09

    The Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex is a transcriptional coactivator with histone acetylase and deubiquitinase activities that plays an important role in visual development and function. In Drosophila melanogaster, four SAGA subunits are required for the deubiquitination of monoubiquitinated histone H2B (ubH2B): Nonstop, Sgf11, E(y)2, and Ataxin 7. Mutations that disrupt SAGA deubiquitinase activity cause defects in neuronal connectivity in the developing Drosophila visual system. In addition, mutations in SAGA result in the human progressive visual disorder spinocerebellar ataxia type 7 (SCA7). Glial cells play a crucial role in both the neuronal connectivity defect in nonstop and sgf11 flies, and in the retinal degeneration observed in SCA7 patients. Thus, we sought to identify the gene targets of SAGA deubiquitinase activity in glia in the Drosophila larval central nervous system. To do this, we enriched glia from wild-type, nonstop, and sgf11 larval optic lobes using affinity-purification of KASH-GFP tagged nuclei, and then examined each transcriptome using RNA-seq. Our analysis showed that SAGA deubiquitinase activity is required for proper expression of 16% of actively transcribed genes in glia, especially genes involved in proteasome function, protein folding and axon guidance. We further show that the SAGA deubiquitinase-activated gene Multiplexin (Mp) is required in glia for proper photoreceptor axon targeting. Mutations in the human ortholog of Mp, COL18A1, have been identified in a family with a SCA7-like progressive visual disorder, suggesting that defects in the expression of this gene in SCA7 patients could play a role in the retinal degeneration that is unique to this ataxia. Copyright © 2016 Ma et al.

  18. Effects of Synthetic Diets Enriched in Specific Nutrients on Drosophila Development, Body Fat, and Lifespan.

    PubMed

    Reis, Tânia

    2016-01-01

    Gene-diet interactions play a crucial but poorly understood role in susceptibility to obesity. Accordingly, the development of genetically tractable model systems to study the influence of diets in obesity-prone genetic backgrounds is a focus of current research. Here I present a modified synthetic Drosophila diet optimized for timely larval development, a stage dedicated to energy storage. Specifically increasing the levels of individual macronutrients-carbohydrate, lipid, or protein-resulted in markedly different organismal effects. A high-carbohydrate diet adversely affected the timing of development, size, early lifespan and body fat. Strikingly, quadrupling the amount of dietary lipids had none of these effects. Diets rich in protein appeared to be the most beneficial, as larvae developed faster, with no change in size, into long-lived adults. I believe this synthetic diet will significantly facilitate the study of gene-diet interactions in organismal energy balance.

  19. DENSITY-DEPENDENT EVOLUTION OF LIFE-HISTORY TRAITS IN DROSOPHILA MELANOGASTER.

    PubMed

    Bierbaum, Todd J; Mueller, Laurence D; Ayala, Francisco J

    1989-03-01

    Populations of Drosophila melanogaster were maintained for 36 generations in r- and K-selected environments in order to test the life-history predictions of theories on density-dependent selection. In the r-selection environment, populations were reduced to low densities by density-independent adult mortality, whereas populations in the K-selection environment were maintained at their carrying capacity. Some of the experimental results support the predictions or r- and K-selection theory; relative to the r-selected populations, the K-selected populations evolved an increased larval-to-adult viability, larger body size, and longer development time at high larval densities. Mueller and Ayala (1981) found that K-selected populations also have a higher rate of population growth at high densities. Other predictions of the thoery are contradicted by the lack of differences between the r and K populations in adult longevity and fecundity and a slower rate of development for r-selected individuals at low densities. The differences between selected populations in larval survivorship, larval-to-adult development time, and adult body size are strongly dependent on larval density, and there is a significant interaction between populations and larval density for each trait. This manifests an inadequacy of the theory on r- and K-selection, which does not take into account such interactions between genotypes and environments. We describe mechanisms that may explain the evolution of preadult life-history traits in our experiment and discuss the need for changes in theories of density-dependent selection. © 1989 The Society for the Study of Evolution.

  20. Laser ablation of Drosophila embryonic motoneurons causes ectopic innervation of target muscle fibers

    NASA Technical Reports Server (NTRS)

    Chang, T. N.; Keshishian, H.

    1996-01-01

    We have tested the effects of neuromuscular denervation in Drosophila by laser-ablating the RP motoneurons in intact embryos before synaptogenesis. We examined the consequences of this ablation on local synaptic connectivity in both 1st and 3rd instar larvae. We find that the partial or complete loss of native innervation correlates with the appearance of alternate inputs from neighboring motor endings and axons. These collateral inputs are found at ectopic sites on the denervated target muscle fibers. The foreign motor endings are electrophysiologically functional and are observed on the denervated muscle fibers by the 1st instar larval stage. Our data are consistent with the existence of a local signal from the target environment, which is regulated by innervation and influences synaptic connectivity. Our results show that, despite the stereotypy of Drosophila neuromuscular connections, denervation can induce local changes in connectivity in wild-type Drosophila, suggesting that mechanisms of synaptic plasticity may also be involved in normal Drosophila neuromuscular development.

  1. T-Box Genes in Drosophila Mesoderm Development.

    PubMed

    Reim, I; Frasch, M; Schaub, C

    2017-01-01

    In Drosophila there are eight genes encoding transcription factors of the T-box family, which are known to exert a variety of crucial developmental functions during ectodermal patterning processes, neuronal cell specification, mesodermal tissue development, and the development of extraembryonic tissues. In this review, we focus on the prominent roles of Drosophila T-box genes in mesodermal tissues. First, we describe the contributions of brachyenteron (byn) and optomotor-blind-related-gene-1 (org-1) to the development of the visceral mesoderm. Second, we provide an overview on the functions of the three Dorsocross paralogs (Doc1-3) and the two Tbx20-related paralogs (midline and H15) during Drosophila heart development. Third, we portray the roles of org-1 and midline/H15 in the specification of individual body wall and organ-attached muscles, including the function of org-1 in the transdifferentiation of certain heart-attached muscles during metamorphosis. The functional analysis of these evolutionarily conserved T-box genes, along with their interactions with other types of transcription factors and various signaling pathways, has provided key insights into the regulation of Drosophila visceral mesoderm, muscle, and heart development. © 2017 Elsevier Inc. All rights reserved.

  2. Seasonal and regional presence of hymenopteran parasitoids of Drosophila in Switzerland and their ability to parasitize the invasive Drosophila suzukii

    PubMed Central

    Knoll, Valery; Ellenbroek, Thomas; Romeis, Jörg; Collatz, Jana

    2017-01-01

    Since its introduction into Europe the invasive Drosophila suzukii has established and spread widely, thereby entering habitats populated by native Drosophila species and their natural enemies. The highly prolific D. suzukii will likely interact with these species as a competitor, host or prey. To investigate potential interactions of D. suzukii with parasitoids, a field survey was conducted across several fruit-growing regions in Switzerland in two consecutive years. Eight species of hymenopteran parasitoids were collected using D. melanogaster as sentinel hosts in field-traps. Parasitoid capture was much higher in 2015 than in 2014 and varied among regions, time of the growing season, and habitat type. Laboratory no-choice assays with the field-collected species demonstrated that the larval parasitoids Asobara tabida, Leptopilina boulardi, and L. heterotoma could not use D. suzukii for reproduction, although the latter two reduced the number of emerging D. suzukii. In contrast, the pupal parasitoids Pachycrepoideus vindemmiae, Trichopria drosophilae, Vrestovia fidenas and Spalangia erythromera all developed with D. suzukii as hosts. Regional differences between strains were generally not evident, with the exception of two T. drosophilae strains that differed in parasitization rate. Thus, native parasitoids may interact with D. suzukii and should be regarded when implementing pest control measures. PMID:28098183

  3. Superresolution imaging of Drosophila tissues using expansion microscopy.

    PubMed

    Jiang, Nan; Kim, Hyeon-Jin; Chozinski, Tyler J; Azpurua, Jorge E; Eaton, Benjamin A; Vaughan, Joshua C; Parrish, Jay Z

    2018-06-15

    The limited resolving power of conventional diffraction-limited microscopy hinders analysis of small, densely packed structural elements in cells. Expansion microscopy (ExM) provides an elegant solution to this problem, allowing for increased resolution with standard microscopes via physical expansion of the specimen in a swellable polymer hydrogel. Here, we apply, validate, and optimize ExM protocols that enable the study of Drosophila embryos, larval brains, and larval and adult body walls. We achieve a lateral resolution of ∼70 nm in Drosophila tissues using a standard confocal microscope, and we use ExM to analyze fine intracellular structures and intercellular interactions. First, we find that ExM reveals features of presynaptic active zone (AZ) structure that are observable with other superresolution imaging techniques but not with standard confocal microscopy. We further show that synapses known to exhibit age-dependent changes in activity also exhibit age-dependent changes in AZ structure. Finally, we use the significantly improved axial resolution of ExM to show that dendrites of somatosensory neurons are inserted into epithelial cells at a higher frequency than previously reported in confocal microscopy studies. Altogether, our study provides a foundation for the application of ExM to Drosophila tissues and underscores the importance of tissue-specific optimization of ExM procedures.

  4. Gap-Junctional communication between developing Drosophila muscles is essential for their normal development.

    PubMed

    Todman, M G; Baines, R A; Stebbings, L A; Davies, J A; Bacon, J P

    1999-01-01

    Recent experiments have demonstrated that a family of proteins, known as the innexins, are structural components of invertebrate gap junctions. The shaking-B (shak-B) locus of Drosophila encodes two members of this emerging family, Shak-B(lethal) and Shak-B(neural). This study focuses on the role of Shak-B gap junctions in the development of embryonic and larval muscle. During embryogenesis, shak-B transcripts are expressed in a subset of the somatic muscles; expression is strong in ventral oblique muscles (VO4-6) but only weak in ventral longitudinals (VL3 and 4). Carboxyfluorescein injected into VO4 of wild-type early stage 16 embryos spreads, via gap junctions, to label adjacent muscles, including VL3 and 4. In shak-B2 embryos (in which the shak-B(neural) function is disrupted), dye injected into VO4 fails to spread into other muscles. In the first instar larva, when dye coupling between muscles is no longer present, another effect of the shak-B2 mutation is revealed by whole-cell voltage clamp. In a calcium-free saline, only two voltage-activated potassium currents are present in wild-type muscles; a fast IA and a slow IK current. In shak-B2 larvae, these two currents are significantly reduced in magnitude in VO4 and 5, but remain normal in VL3. Expression of shak-B(neural) in a shak-B2 background fully rescues both dye coupling in embryonic muscle and whole-cell currents in first instar VO4 and 5. Our observations show that Shak-B(neural) is one of a set of embryonic gap-junction proteins, and that it is required for the normal temporal development of potassium currents in some larval muscles.

  5. Origin and specification of type II neuroblasts in the Drosophila embryo.

    PubMed

    Álvarez, José-Andrés; Díaz-Benjumea, Fernando J

    2018-04-05

    In Drosophila , neural stem cells or neuroblasts (NBs) acquire different identities according to their site of origin in the embryonic neuroectoderm. Their identity determines the number of times they will divide and the types of daughter cells they will generate. All NBs divide asymmetrically, with type I NBs undergoing self-renewal and generating another cell that will divide only once more. By contrast, a small set of NBs in the larval brain, type II NBs, divides differently, undergoing self-renewal and generating an intermediate neural progenitor (INP) that continues to divide asymmetrically several more times, generating larger lineages. In this study, we have analysed the origin of type II NBs and how they are specified. Our results indicate that these cells originate in three distinct clusters in the dorsal protocerebrum during stage 12 of embryonic development. Moreover, it appears that their specification requires the combined action of EGFR signalling and the activity of the related genes buttonhead and Drosophila Sp1 In addition, we also show that the INPs generated in the embryo enter quiescence at the end of embryogenesis, resuming proliferation during the larval stage. © 2018. Published by The Company of Biologists Ltd.

  6. Decapentaplegic and growth control in the developing Drosophila wing.

    PubMed

    Akiyama, Takuya; Gibson, Matthew C

    2015-11-19

    As a central model for morphogen action during animal development, the bone morphogenetic protein 2/4 (BMP2/4)-like ligand Decapentaplegic (Dpp) is proposed to form a long-range signalling gradient that directs both growth and pattern formation during Drosophila wing disc development. While the patterning role of Dpp secreted from a stripe of cells along the anterior-posterior compartmental boundary is well established, the mechanism by which a Dpp gradient directs uniform cell proliferation remains controversial and poorly understood. Here, to determine the precise spatiotemporal requirements for Dpp during wing disc development, we use CRISPR-Cas9-mediated genome editing to generate a flippase recognition target (FRT)-dependent conditional null allele. By genetically removing Dpp from its endogenous stripe domain, we confirm the requirement of Dpp for the activation of a downstream phospho-Mothers against dpp (p-Mad) gradient and the regulation of the patterning targets spalt (sal), optomotor blind (omb; also known as bifid) and brinker (brk). Surprisingly, however, third-instar wing blade primordia devoid of compartmental dpp expression maintain relatively normal rates of cell proliferation and exhibit only mild defects in growth. These results indicate that during the latter half of larval development, the Dpp morphogen gradient emanating from the anterior-posterior compartment boundary is not directly required for wing disc growth.

  7. UCP4C mediates uncoupled respiration in larvae of Drosophila melanogaster.

    PubMed

    Da-Ré, Caterina; De Pittà, Cristiano; Zordan, Mauro A; Teza, Giordano; Nestola, Fabrizio; Zeviani, Massimo; Costa, Rodolfo; Bernardi, Paolo

    2014-05-01

    Larvae of Drosophila melanogaster reared at 23°C and switched to 14°C for 1 h are 0.5°C warmer than the surrounding medium. In keeping with dissipation of energy, respiration of Drosophila melanogaster larvae cannot be decreased by the F-ATPase inhibitor oligomycin or stimulated by protonophore. Silencing of Ucp4C conferred sensitivity of respiration to oligomycin and uncoupler, and prevented larva-to-adult progression at 15°C but not 23°C. Uncoupled respiration of larval mitochondria required palmitate, was dependent on Ucp4C and was inhibited by guanosine diphosphate. UCP4C is required for development through the prepupal stages at low temperatures and may be an uncoupling protein.

  8. Iron Absorption in Drosophila melanogaster

    PubMed Central

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-01-01

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  9. The Serotonergic Central Nervous System of the Drosophila Larva: Anatomy and Behavioral Function

    PubMed Central

    Apostolopoulou, Anthi A.; Widmann, Annekathrin; Pfitzenmaier, Johanna E.; Maiolo, Elena M.; Selcho, Mareike; Pauls, Dennis; von Essen, Alina; Gupta, Tripti; Sprecher, Simon G.; Birman, Serge; Riemensperger, Thomas; Stocker, Reinhard F.; Thum, Andreas S.

    2012-01-01

    The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naïve odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed. PMID:23082175

  10. The serotonergic central nervous system of the Drosophila larva: anatomy and behavioral function.

    PubMed

    Huser, Annina; Rohwedder, Astrid; Apostolopoulou, Anthi A; Widmann, Annekathrin; Pfitzenmaier, Johanna E; Maiolo, Elena M; Selcho, Mareike; Pauls, Dennis; von Essen, Alina; Gupta, Tripti; Sprecher, Simon G; Birman, Serge; Riemensperger, Thomas; Stocker, Reinhard F; Thum, Andreas S

    2012-01-01

    The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naïve odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed.

  11. Phylogenetic analyses of mode of larval development.

    PubMed

    Hart, M

    2000-12-01

    Phylogenies based on morphological or molecular characters have been used to provide an evolutionary context for analysis of larval evolution. Studies of gastropods, bivalves, tunicates, sea stars, sea urchins, and polychaetes have revealed massive parallel evolution of similar larval forms. Some of these studies were designed to test, and have rejected, the species selection hypothesis for evolutionary trends in the frequency of derived larvae or life history traits. However, the lack of well supported models of larval character evolution leave some doubt about the quality of inferences of larval evolution from phylogenies of living taxa. Better models based on maximum likelihood methods and known prior probabilities of larval character state changes will improve our understanding of the history of larval evolution. Copyright 2000 Academic Press.

  12. Larval diet affects mosquito development and permissiveness to Plasmodium infection.

    PubMed

    Linenberg, Inbar; Christophides, George K; Gendrin, Mathilde

    2016-12-02

    The larval stages of malaria vector mosquitoes develop in water pools, feeding mostly on microorganisms and environmental detritus. Richness in the nutrient supply to larvae influences the development and metabolism of larvae and adults. Here, we investigated the effects of larval diet on the development, microbiota content and permissiveness to Plasmodium of Anopheles coluzzii. We tested three fish diets often used to rear mosquitoes in the laboratory, including two pelleted diets, Dr. Clarke's Pool Pellets and Nishikoi Fish Pellets, and one flaked diet, Tetramin Fish-Flakes. Larvae grow and develop faster and produce bigger adults when feeding on both types of pellets compared with flakes. This correlates with a higher microbiota load in pellet-fed larvae, in agreement with the known positive effect of the microbiota on mosquito development. Larval diet also significantly influences the prevalence and intensity of Plasmodium berghei infection in adults, whereby Nishikoi Fish Pellets-fed larvae develop into adults that are highly permissive to parasites and survive longer after infection. This correlates with a lower amount of Enterobacteriaceae in the midgut microbiota. Together, our results shed light on the influence of larval feeding on mosquito development, microbiota and vector competence; they also provide useful data for mosquito rearing.

  13. A novel interplay between the ubiquitin–proteasome system and serine proteases during Drosophila development.

    PubMed

    Lipinszki, Zoltán; Klement, Eva; Hunyadi-Gulyas, Eva; Medzihradszky, Katalin F; Márkus, Róbert; Pál, Margit; Deák, Péter; Udvardy, Andor

    2013-09-15

    The concentrations of the Drosophila proteasomal and extraproteasomal polyubiquitin receptors fluctuate in a developmentally regulated fashion. This fluctuation is generated by a previously unidentified proteolytic activity. In the present paper, we describe the purification, identification and characterization of this protease (endoproteinase I). Its expression increases sharply at the L1-L2 larval stages, remains high until the second half of the L3 stage, then declines dramatically. This sharp decrease coincides precisely with the increase of polyubiquitin receptor concentrations in late L3 larvae, which suggests a tight developmental co-regulation. RNAi-induced down-regulation of endoproteinase I results in pupal lethality. Interestingly, we found a cross-talk between the 26S proteasome and this larval protease: transgenic overexpression of the in vivo target of endoproteinase I, the C-terminal half of the proteasomal polyubiquitin receptor subunit p54/Rpn10 results in transcriptional down-regulation of endoproteinase I and consequently a lower level of proteolytic elimination of the polyubiquitin receptors. Another larval protease, Jonah65A-IV, which degrades only unfolded proteins and exhibits similar cross-talk with the proteasome has also been purified and characterized. It may prevent the accumulation of polyubiquitylated proteins in larvae contrary to the low polyubiquitin receptor concentration.

  14. Unique patterns of organization and migration of FGF-expressing cells during Drosophila morphogenesis.

    PubMed

    Du, Lijuan; Zhou, Amy; Patel, Akshay; Rao, Mishal; Anderson, Kelsey; Roy, Sougata

    2017-07-01

    Fibroblast growth factors (FGF) are essential signaling proteins that regulate diverse cellular functions in developmental and metabolic processes. In Drosophila, the FGF homolog, branchless (bnl) is expressed in a dynamic and spatiotemporally restricted pattern to induce branching morphogenesis of the trachea, which expresses the Bnl-receptor, breathless (btl). Here we have developed a new strategy to determine bnl- expressing cells and study their interactions with the btl-expressing cells in the range of tissue patterning during Drosophila development. To enable targeted gene expression specifically in the bnl expressing cells, a new LexA based bnl enhancer trap line was generated using CRISPR/Cas9 based genome editing. Analyses of the spatiotemporal expression of the reporter in various embryonic stages, larval or adult tissues and in metabolic hypoxia, confirmed its target specificity and versatility. With this tool, new bnl expressing cells, their unique organization and functional interactions with the btl-expressing cells were uncovered in a larval tracheoblast niche in the leg imaginal discs, in larval photoreceptors of the developing retina, and in the embryonic central nervous system. The targeted expression system also facilitated live imaging of simultaneously labeled Bnl sources and tracheal cells, which revealed a unique morphogenetic movement of the embryonic bnl- source. Migration of bnl- expressing cells may create a dynamic spatiotemporal pattern of the signal source necessary for the directional growth of the tracheal branch. The genetic tool and the comprehensive profile of expression, organization, and activity of various types of bnl-expressing cells described in this study provided us with an important foundation for future research investigating the mechanisms underlying Bnl signaling in tissue morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Adult-specific insulin-producing neurons in Drosophila melanogaster.

    PubMed

    Ohhara, Yuya; Kobayashi, Satoru; Yamakawa-Kobayashi, Kimiko; Yamanaka, Naoki

    2018-06-01

    Holometabolous insects undergo metamorphosis to reorganize their behavioral and morphological features into adult-specific ones. In the central nervous system (CNS), some larval neurons undergo programmed cell death, whereas others go through remodeling of axonal and dendritic arbors to support functions of re-established adult organs. Although there are multiple neuropeptides that have stage-specific roles in holometabolous insects, the reorganization pattern of the entire neuropeptidergic system through metamorphosis still remains largely unclear. In this study, we conducted a mapping and lineage tracing of peptidergic neurons in the larval and adult CNS by using Drosophila genetic tools. We found that Diuretic hormone 44-producing median neurosecretory cells start expressing Insulin-like peptide 2 in the pharate adult stage. This neuronal cluster projects to the corpora cardiaca and dorsal vessel in both larval and adult stages, and also innervates an adult-specific structure in the digestive tract, the crop. We propose that the adult-specific insulin-producing cells may regulate functions of the digestive system in a stage-specific manner. Our study provides a neuroanatomical basis for understanding remodeling of the neuropeptidergic system during insect development and evolution. © 2018 Wiley Periodicals, Inc.

  16. Development of a tissue-specific ribosome profiling approach in Drosophila enables genome-wide evaluation of translational adaptations

    PubMed Central

    2017-01-01

    Recent advances in next-generation sequencing approaches have revolutionized our understanding of transcriptional expression in diverse systems. However, measurements of transcription do not necessarily reflect gene translation, the process of ultimate importance in understanding cellular function. To circumvent this limitation, biochemical tagging of ribosome subunits to isolate ribosome-associated mRNA has been developed. However, this approach, called TRAP, lacks quantitative resolution compared to a superior technology, ribosome profiling. Here, we report the development of an optimized ribosome profiling approach in Drosophila. We first demonstrate successful ribosome profiling from a specific tissue, larval muscle, with enhanced resolution compared to conventional TRAP approaches. We next validate the ability of this technology to define genome-wide translational regulation. This technology is leveraged to test the relative contributions of transcriptional and translational mechanisms in the postsynaptic muscle that orchestrate the retrograde control of presynaptic function at the neuromuscular junction. Surprisingly, we find no evidence that significant changes in the transcription or translation of specific genes are necessary to enable retrograde homeostatic signaling, implying that post-translational mechanisms ultimately gate instructive retrograde communication. Finally, we show that a global increase in translation induces adaptive responses in both transcription and translation of protein chaperones and degradation factors to promote cellular proteostasis. Together, this development and validation of tissue-specific ribosome profiling enables sensitive and specific analysis of translation in Drosophila. PMID:29194454

  17. Gap Junction-Mediated Signaling from Motor Neurons Regulates Motor Generation in the Central Circuits of Larval Drosophila.

    PubMed

    Matsunaga, Teruyuki; Kohsaka, Hiroshi; Nose, Akinao

    2017-02-22

    central pattern-generating circuits in larval Drosophila , providing novel insights into motor circuit control. The experimental system introduced in this study also presents a new approach for studying intersegmentally coordinated locomotion. Unlike traditional electrophysiology methods, this system enables the simultaneous recording and manipulation of populations of neurons that are genetically specified and span multiple segments. Copyright © 2017 the authors 0270-6474/17/372045-16$15.00/0.

  18. An RNAi based screen in Drosophila larvae identifies fascin as a regulator of myoblast fusion and myotendinous junction structure.

    PubMed

    Camuglia, Jaclyn M; Mandigo, Torrey R; Moschella, Richard; Mark, Jenna; Hudson, Christine H; Sheen, Derek; Folker, Eric S

    2018-04-06

    A strength of Drosophila as a model system is its utility as a tool to screen for novel regulators of various functional and developmental processes. However, the utility of Drosophila as a screening tool is dependent on the speed and simplicity of the assay used. Here, we use larval locomotion as an assay to identify novel regulators of skeletal muscle function. We combined this assay with muscle-specific depletion of 82 genes to identify genes that impact muscle function by their expression in muscle cells. The data from the screen were supported with characterization of the muscle pattern in embryos and larvae that had disrupted expression of the strongest hit from the screen. With this assay, we showed that 12/82 tested genes regulate muscle function. Intriguingly, the disruption of five genes caused an increase in muscle function, illustrating that mechanisms that reduce muscle function exist and that the larval locomotion assay is sufficiently quantitative to identify conditions that both increase and decrease muscle function. We extended the data from this screen and tested the mechanism by which the strongest hit, fascin, impacted muscle function. Compared to controls, animals in which fascin expression was disrupted with either a mutant allele or muscle-specific expression of RNAi had fewer muscles, smaller muscles, muscles with fewer nuclei, and muscles with disrupted myotendinous junctions. However, expression of RNAi against fascin only after the muscle had finished embryonic development did not recapitulate any of these phenotypes. These data suggest that muscle function is reduced due to impaired myoblast fusion, muscle growth, and muscle attachment. Together, these data demonstrate the utility of Drosophila larval locomotion as an assay for the identification of novel regulators of muscle development and implicate fascin as necessary for embryonic muscle development.

  19. Receptor Tyrosine Kinases in Drosophila Development

    PubMed Central

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  20. Phormidium animalis (Cyanobacteria: Oscillatoriaceae) supports larval development of Anopheles albimanus.

    PubMed

    Vázquez-Martínez, M Guadalupe; Rodríguez, Mario H; Arredondo-Jiménez, Juan I; Méndez-Sánchez, José D

    2003-06-01

    The capability of Phormidium animalis, a cyanobacterium commonly found in larval habitats of Anopheles albimanus in southern Mexico, to support larval development of this mosquito was investigated. First-stage larvae were reared under insectary conditions with P. animalis ad libitum and their development was compared with larvae fed with wheat germ. The time of pupation and adult mosquito size, assessed by wing length, were similar in both groups, but fewer adult mosquitoes were obtained from larvae fed with the cyanobacteria. Nevertheless, these observations indicate that P. animalis is ingested and assimilated by larval An. albimanus, making this cyanobacterium a good candidate for genetic engineering for the introduction of mosquitocidal toxins for malaria control in the region.

  1. Social coercion of larval development in an ant species

    NASA Astrophysics Data System (ADS)

    Villalta, Irene; Amor, Fernando; Cerdá, Xim; Boulay, Raphaël

    2016-04-01

    Ants provide one of the best examples of the division of labor in animal societies. While the queens reproduce, workers generally refrain from laying eggs and dedicate themselves exclusively to domestic tasks. In many species, the small diploid larvae are bipotent and can develop either into workers or queens depending mostly on environmental cues. This generates a conflicting situation between the adults that tend to rear a majority of larvae into workers and the larvae whose individual interest may be to develop into reproductive queens. We tested the social regulation of larval caste fate in the fission-performing ant Aphaenogaster senilis. We first observed interactions between resident workers and queen- and worker-destined larvae in presence/absence of the queen. The results show that workers tend to specifically eliminate queen-destined larvae when the queen is present but not when she is absent or imprisoned in a small cage allowing for volatile pheromone exchanges. In addition, we found that the presence of already developed queen-destined larvae does not inhibit the development of younger still bipotent larvae into queens. Finally, we analyzed the cuticular hydrocarbon profiles of queen- and worker-destined larvae and found no significant quantitative or qualitative difference. Interestingly, the total amount of hydrocarbons on both larval castes is extremely low, which lends credence on the chemical insignificance hypothesis of larval ants. Overall, our results suggest that workers control larval development and police larvae that would develop into queens instead of workers. Such policing behavior is similar in many aspects to what is known of worker policing among adults.

  2. Social coercion of larval development in an ant species.

    PubMed

    Villalta, Irene; Amor, Fernando; Cerdá, Xim; Boulay, Raphaël

    2016-04-01

    Ants provide one of the best examples of the division of labor in animal societies. While the queens reproduce, workers generally refrain from laying eggs and dedicate themselves exclusively to domestic tasks. In many species, the small diploid larvae are bipotent and can develop either into workers or queens depending mostly on environmental cues. This generates a conflicting situation between the adults that tend to rear a majority of larvae into workers and the larvae whose individual interest may be to develop into reproductive queens. We tested the social regulation of larval caste fate in the fission-performing ant Aphaenogaster senilis. We first observed interactions between resident workers and queen- and worker-destined larvae in presence/absence of the queen. The results show that workers tend to specifically eliminate queen-destined larvae when the queen is present but not when she is absent or imprisoned in a small cage allowing for volatile pheromone exchanges. In addition, we found that the presence of already developed queen-destined larvae does not inhibit the development of younger still bipotent larvae into queens. Finally, we analyzed the cuticular hydrocarbon profiles of queen- and worker-destined larvae and found no significant quantitative or qualitative difference. Interestingly, the total amount of hydrocarbons on both larval castes is extremely low, which lends credence on the chemical insignificance hypothesis of larval ants. Overall, our results suggest that workers control larval development and police larvae that would develop into queens instead of workers. Such policing behavior is similar in many aspects to what is known of worker policing among adults.

  3. A novel role for the Drosophila epsin (lqf): involvement in autophagy.

    PubMed

    Csikós, György; Lippai, Mónika; Lukácsovich, Tamás; Juhász, Gábor; Henn, László; Erdélyi, Miklós; Maróy, Péter; Sass, Miklós

    2009-07-01

    Screening P-element-induced mutant collections, 52 lines were selected as potentially defected ones in endocytosis or autophagy. After excluding those which were rescued by 20-hydroxyecdysone treatment, the exact position of the inserted P-element was determined in the remaining lines. In the case of l(3)S011027 stock, the liquid facets (lqf) gene was affected which codes an epsin-homolog protein in Drosophila. We reveal that Lqf is essential to the receptor-mediated endocytosis of larval serum proteins (LSPs) in the larval fat body cells of Drosophila. In l(3)S011027 line, lack of Lqf fails the formation of autophagosomes thus leading to the arrest of destroying of trophocytes. Transgenic larvae carrying Lqf-RNAi construct were unable to generate endocytic and autophagic vacuoles and led to a prolonged larval stage. On the other hand, Lqf protein showed an exclusive colocalization with the LysoTracker Red- or GFP-Atg8a labeled autophagosomes. By using the antiserum generated against the fifth exon of lqf, we demonstrated that prior to the onset of developmental autophagy the Lqf protein was present in the nucleus of fat body cell, but thereafter the protein was localized in the territory of endocytic and autophagic vacuoles. The fact that the inhibition of the target of rapamycin (TOR) did not restore the autophagic process and the normal development in the case of lqf mutant larvae points to that the Lqf is downstream to the TOR, the central kinase of the autophagy pathway.

  4. The ecology of the Drosophila-yeast mutualism in wineries

    PubMed Central

    2018-01-01

    The fruit fly, Drosophila melanogaster, is preferentially found on fermenting fruits. The yeasts that dominate the microbial communities of these substrates are the primary food source for developing D. melanogaster larvae, and adult flies manifest a strong olfactory system-mediated attraction for the volatile compounds produced by these yeasts during fermentation. Although most work on this interaction has focused on the standard laboratory yeast Saccharomyces cerevisiae, a wide variety of other yeasts naturally ferment fallen fruit. Here we address the open question of whether D. melanogaster preferentially associates with distinct yeasts in different, closely-related environments. We characterized the spatial and temporal dynamics of Drosophila-associated fungi in Northern California wineries that use organic grapes and natural fermentation using high-throughput, short-amplicon sequencing. We found that there is nonrandom structure in the fungal communities that are vectored by flies both between and within vineyards. Within wineries, the fungal communities associated with flies in cellars, fermentation tanks, and pomace piles are distinguished by varying abundances of a small number of yeast species. To investigate the origins of this structure, we assayed Drosophila attraction to, oviposition on, larval development in, and longevity when consuming the yeasts that distinguish vineyard microhabitats from each other. We found that wild fly lines did not respond differentially to the yeast species that distinguish winery habitats in habitat specific manner. Instead, this subset of yeast shares traits that make them attractive to and ensure their close association with Drosophila. PMID:29768432

  5. The ecology of the Drosophila-yeast mutualism in wineries.

    PubMed

    Quan, Allison S; Eisen, Michael B

    2018-01-01

    The fruit fly, Drosophila melanogaster, is preferentially found on fermenting fruits. The yeasts that dominate the microbial communities of these substrates are the primary food source for developing D. melanogaster larvae, and adult flies manifest a strong olfactory system-mediated attraction for the volatile compounds produced by these yeasts during fermentation. Although most work on this interaction has focused on the standard laboratory yeast Saccharomyces cerevisiae, a wide variety of other yeasts naturally ferment fallen fruit. Here we address the open question of whether D. melanogaster preferentially associates with distinct yeasts in different, closely-related environments. We characterized the spatial and temporal dynamics of Drosophila-associated fungi in Northern California wineries that use organic grapes and natural fermentation using high-throughput, short-amplicon sequencing. We found that there is nonrandom structure in the fungal communities that are vectored by flies both between and within vineyards. Within wineries, the fungal communities associated with flies in cellars, fermentation tanks, and pomace piles are distinguished by varying abundances of a small number of yeast species. To investigate the origins of this structure, we assayed Drosophila attraction to, oviposition on, larval development in, and longevity when consuming the yeasts that distinguish vineyard microhabitats from each other. We found that wild fly lines did not respond differentially to the yeast species that distinguish winery habitats in habitat specific manner. Instead, this subset of yeast shares traits that make them attractive to and ensure their close association with Drosophila.

  6. Protein Equilibration through Somatic Ring Canals in Drosophila

    PubMed Central

    McLean, Peter F.; Cooley, Lynn

    2013-01-01

    Although intercellular bridges resulting from incomplete cytokinesis were discovered in somatic Drosophila tissues decades ago, the impact of these structures on intercellular communication and tissue biology is largely unknown. In this work, we demonstrate that the ~250 nm diameter somatic ring canals permit diffusion of cytoplasmic contents between connected cells and across mitotic clone boundaries, and enable the equilibration of protein between transcriptionally mosaic follicle cells in the Drosophila ovary. We obtained similar, though more restricted, results in the larval imaginal discs. Our work illustrates the lack of cytoplasmic autonomy in these tissues and suggests a role for somatic ring canals in promoting homogeneous protein expression within the tissue. PMID:23704373

  7. Pox neuro control of cell lineages that give rise to larval poly-innervated external sensory organs in Drosophila.

    PubMed

    Jiang, Yanrui; Boll, Werner; Noll, Markus

    2015-01-15

    The Pox neuro (Poxn) gene of Drosophila plays a crucial role in the development of poly-innervated external sensory (p-es) organs. However, how Poxn exerts this role has remained elusive. In this study, we have analyzed the cell lineages of all larval p-es organs, namely of the kölbchen, papilla 6, and hair 3. Surprisingly, these lineages are distinct from any previously reported cell lineages of sensory organs. Unlike the well-established lineage of mono-innervated external sensory (m-es) organs and a previously proposed model of the p-es lineage, we demonstrate that all wild-type p-es lineages exhibit the following features: the secondary precursor, pIIa, gives rise to all three support cells-socket, shaft, and sheath, whereas the other secondary precursor, pIIb, is neuronal and gives rise to all neurons. We further show that in one of the p-es lineages, that of papilla 6, one cell undergoes apoptosis. By contrast in Poxn null mutants, all p-es lineages have a reduced number of cells and their pattern of cell divisions is changed to that of an m-es organ, with the exception of a lineage in a minority of mutant kölbchen that retains a second bipolar neuron. Indeed, the role of Poxn in p-es lineages is consistent with the specification of the developmental potential of secondary precursors and the regulation of cell division but not apoptosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. atonal regulates neurite arborization but does not act as a proneural gene in the Drosophila brain

    NASA Technical Reports Server (NTRS)

    Hassan, B. A.; Bermingham, N. A.; He, Y.; Sun, Y.; Jan, Y. N.; Zoghbi, H. Y.; Bellen, H. J.

    2000-01-01

    Drosophila atonal (ato) is the proneural gene of the chordotonal organs (CHOs) in the peripheral nervous system (PNS) and the larval and adult photoreceptor organs. Here, we show that ato is expressed at multiple stages during the development of a lineage of central brain neurons that innervate the optic lobes and are required for eclosion. A novel fate mapping approach shows that ato is expressed in the embryonic precursors of these neurons and that its expression is reactivated in third instar larvae (L3). In contrast to its function in the PNS, ato does not act as a proneural gene in the embryonic brain. Instead, ato performs a novel function, regulating arborization during larval and pupal development by interacting with Notch.

  9. Drosophila suzukii (Diptera: Drosophilidae) Contributes to the Development of Sour Rot in Grape.

    PubMed

    Ioriatti, Claudio; Guzzon, Raffaele; Anfora, Gianfranco; Ghidoni, Franca; Mazzoni, Valerio; Villegas, Tomas Roman; Dalton, Daniel T; Walton, Vaughn M

    2018-02-09

    This research aimed to more clearly describe the interactions of Drosophila suzukii (Matsumura; Diptera: Drosophilidae) with microorganisms that may contribute to spoilage or quality loss of wine grapes during harvest. Experiments were conducted in controlled laboratory experiments and under field conditions to determine these effects. Laboratory trials determined the role of insect contact and oviposition to vector spoilage bacteria onto wine grapes. In the field, the roles of key organoleptic parameters in grape fruit ripening were assessed to determine their relative contribution to oviposition potential as fruit ripened. Finally, field trials determined the relationships of egg and larval infestation to sour rot levels. Non-ovipositional trials indicated elevated levels of microbiota when D. suzukii was present. D. suzukii oviposition exponentially increased the concentration of acetic acid bacteria. Both incised and sound berries showed a significant increase in concentrations of acetic acid bacteria exposed to D. suzukii. Volatile acidity was higher in treatments infested with D. suzukii. Fruit with only eggs did not develop a significant increase of volatile acidity. Larva-infested grape berries in 9.5% of samples developed higher volatile acidity after 14 d. Sound grape berries were less susceptible to the development of microbiota associated with sour rot and spoilage. D. suzukii oviposition and larval development increase risk of spoilage bacteria vectored by D. suzukii adults. Acetic acid bacteria induced fermentation and produced several volatile compounds contributing to spoilage. Spoilage bacteria may create a positive feedback loop that attracts both D. suzukii and other drosophilids, which may contribute to additional spoilage. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. A sleep state in Drosophila larvae required for neural stem cell proliferation

    PubMed Central

    Szuperak, Milan; Churgin, Matthew A; Borja, Austin J; Raizen, David M; Fang-Yen, Christopher

    2018-01-01

    Sleep during development is involved in refining brain circuitry, but a role for sleep in the earliest periods of nervous system elaboration, when neurons are first being born, has not been explored. Here we identify a sleep state in Drosophila larvae that coincides with a major wave of neurogenesis. Mechanisms controlling larval sleep are partially distinct from adult sleep: octopamine, the Drosophila analog of mammalian norepinephrine, is the major arousal neuromodulator in larvae, but dopamine is not required. Using real-time behavioral monitoring in a closed-loop sleep deprivation system, we find that sleep loss in larvae impairs cell division of neural progenitors. This work establishes a system uniquely suited for studying sleep during nascent periods, and demonstrates that sleep in early life regulates neural stem cell proliferation. PMID:29424688

  11. Exclusion Netting Delays and Reduces Drosophila suzukii (Diptera: Drosophilidae) Infestation in Raspberries.

    PubMed

    Leach, Heather; Van Timmeren, Steven; Isaacs, Rufus

    2016-07-14

    Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is a new frugivorous pest of raspberries and other soft fruits in North America, causing infestation of fruit at harvest time. Control of this pest has primarily been through the application of broad-spectrum insecticides to prevent oviposition and larval development, and there is an urgent need for alternative approaches. Over two growing seasons, we compared D. suzukii control in a research planting with insecticide and exclusion treatments in a factorial design, monitoring first-, second-, and third-instar Drosophila larvae in ripening, ripe, and overripe berries. Each of the two control approaches provided significant reduction of infestation in raspberry fruit, but the combination treatment had the lowest overall abundance of larvae in fruit. This pattern was seen for all larval instars in both years. The combination treatment also delayed the first detected larval infestation by 10 d compared to the untreated plots. Exclusion netting applied to commercial size high tunnels resulted in a significant reduction in overall D. suzukii infestation in raspberries, as well as a 3-wk delay in the average first detectable fruit infestation. Raspberry size and quality were not affected by the exclusion treatments, indicating that this approach can be an important component of growers' response to invasion by D. suzukii in temperate climates. We discuss the opportunities and limitations for implementing exclusion netting in raspberry production. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Two Algorithms for High-throughput and Multi-parametric Quantification of Drosophila Neuromuscular Junction Morphology.

    PubMed

    Castells-Nobau, Anna; Nijhof, Bonnie; Eidhof, Ilse; Wolf, Louis; Scheffer-de Gooyert, Jolanda M; Monedero, Ignacio; Torroja, Laura; van der Laak, Jeroen A W M; Schenck, Annette

    2017-05-03

    Synaptic morphology is tightly related to synaptic efficacy, and in many cases morphological synapse defects ultimately lead to synaptic malfunction. The Drosophila larval neuromuscular junction (NMJ), a well-established model for glutamatergic synapses, has been extensively studied for decades. Identification of mutations causing NMJ morphological defects revealed a repertoire of genes that regulate synapse development and function. Many of these were identified in large-scale studies that focused on qualitative approaches to detect morphological abnormalities of the Drosophila NMJ. A drawback of qualitative analyses is that many subtle players contributing to NMJ morphology likely remain unnoticed. Whereas quantitative analyses are required to detect the subtler morphological differences, such analyses are not yet commonly performed because they are laborious. This protocol describes in detail two image analysis algorithms "Drosophila NMJ Morphometrics" and "Drosophila NMJ Bouton Morphometrics", available as Fiji-compatible macros, for quantitative, accurate and objective morphometric analysis of the Drosophila NMJ. This methodology is developed to analyze NMJ terminals immunolabeled with the commonly used markers Dlg-1 and Brp. Additionally, its wider application to other markers such as Hrp, Csp and Syt is presented in this protocol. The macros are able to assess nine morphological NMJ features: NMJ area, NMJ perimeter, number of boutons, NMJ length, NMJ longest branch length, number of islands, number of branches, number of branching points and number of active zones in the NMJ terminal.

  13. T-Box Genes in Drosophila Limb Development.

    PubMed

    Pflugfelder, G O; Eichinger, F; Shen, J

    2017-01-01

    T-box genes are essential for limb development in vertebrates and arthropods. The Drosophila genome encodes eight T-box genes, six of which are expressed in limb ontogenesis. The Tbx20-related gene pair midline and H15 is essential for dorso-ventral patterning of the Drosophila legs. The three Tbx6-related Dorsocross genes are required for epithelial remodeling during wing development. The Drosophila gene optomotor-blind (omb) is the only member of the Tbx2 subfamily in the fly and is predominantly involved in wing development. Omb is essential for wing development and is sufficient to promote the development of a second wing pair. Targeted manipulations of omb expression have shown that the bulk omb requirement for wing development can be deconstructed into a number of individual functions. Even though omb expression in the wing disc is symmetrical with regard to the anterior/posterior (A/P) compartment boundary, anterior and posterior knockdowns have distinct consequences: Anterior Omb is required for the maintenance of a straight A/P lineage restriction boundary. Posterior Omb suppresses formation of an apical epithelial fold along the A/P boundary. Drosophila T-box gene expression is not confined to the ectoderm-derived epithelia of the imaginal discs. Both Doc and Omb are prominently expressed in leg disc muscle precursor cells. Omb is also strongly expressed in a tracheal branch that invades the extracellular matrix of the wing disc. The function of Doc and Omb in the latter tissues is not known, indicative of the many questions still open in the field. © 2017 Elsevier Inc. All rights reserved.

  14. From Embryo to Adult: Hematopoiesis along the Drosophila Life Cycle.

    PubMed

    Ramond, Elodie; Meister, Marie; Lemaitre, Bruno

    2015-05-26

    Studies on Drosophila hematopoiesis have thus far focused on the embryonic and larval origin of hemocytes, the fly blood cells. In this issue of Developmental Cell, Ghosh et al. (2015) identify adult hematopoietic hubs containing progenitors that can differentiate into different blood cell types. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Circadian Activators Are Expressed Days before They Initiate Clock Function in Late Pacemaker Neurons from Drosophila.

    PubMed

    Liu, Tianxin; Mahesh, Guruswamy; Houl, Jerry H; Hardin, Paul E

    2015-06-03

    Circadian pacemaker neurons in the Drosophila brain control daily rhythms in locomotor activity. These pacemaker neurons can be subdivided into early or late groups depending on whether rhythms in period (per) and timeless (tim) expression are initiated at the first instar (L1) larval stage or during metamorphosis, respectively. Because CLOCK-CYCLE (CLK-CYC) heterodimers initiate circadian oscillator function by activating per and tim transcription, a Clk-GFP transgene was used to mark when late pacemaker neurons begin to develop. We were surprised to see that CLK-GFP was already expressed in four of five clusters of late pacemaker neurons during the third instar (L3) larval stage. CLK-GFP is only detected in postmitotic neurons from L3 larvae, suggesting that these four late pacemaker neuron clusters are formed before the L3 larval stage. A GFP-cyc transgene was used to show that CYC, like CLK, is also expressed exclusively in pacemaker neurons from L3 larval brains, demonstrating that CLK-CYC is not sufficient to activate per and tim in late pacemaker neurons at the L3 larval stage. These results suggest that most late pacemaker neurons develop days before novel factors activate circadian oscillator function during metamorphosis. Copyright © 2015 the authors 0270-6474/15/358662-10$15.00/0.

  16. Associations of Yeasts with Spotted-Wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in Cherries and Raspberries

    PubMed Central

    Hernández, Alejandro; Zalom, Frank G.

    2012-01-01

    A rich history of investigation documents various Drosophila-yeast mutualisms, suggesting that Drosophila suzukii similarly has an association with a specific yeast species or community. To discover candidate yeast species, yeasts were isolated from larval frass, adult midguts, and fruit hosts of D. suzukii. Terminal restriction fragment length polymorphism (TRFLP) technology and decimal dilution plating were used to identify and determine the relative abundance of yeast species present in fruit juice samples that were either infested with D. suzukii or not infested. Yeasts were less abundant in uninfested than infested samples. A total of 126 independent yeast isolates were cultivated from frass, midguts, and fruit hosts of D. suzukii, representing 28 species of yeasts, with Hanseniaspora uvarum predominating. This suggests an association between D. suzukii and H. uvarum that could be utilized for pest management of the highly pestiferous D. suzukii. PMID:22582060

  17. Structure and Development of the Subesophageal Zone of the Drosophila Brain. II. Sensory Compartments

    PubMed Central

    Kendroud, Sarah; Bohra, Ali Asgar; Kuert, Philipp A.; Nguyen, Bao; Guillermin, Oriane; Sprecher, Simon G.; Reichert, Heinrich; VijayRaghavan, Krishnaswamy; Hartenstein, Volker

    2018-01-01

    The subesophageal zone (SEZ) of the Drosophila brain processes mechanosensory and gustatory sensory input from sensilla located on the head, mouth cavity and trunk. Motor output from the SEZ directly controls the movements involved in feeding behavior. In an accompanying paper (Hartenstein et al., 2017) we analyzed the systems of fiber tracts and secondary lineages to establish reliable criteria for defining boundaries between the four neuromeres of the SEZ, as well as discrete longitudinal neuropil domains within each SEZ neuromere. Here we use this anatomical framework to systematically map the sensory projections entering the SEZ throughout development. Our findings show a continuity between larval and adult sensory neuropils. Gustatory axons from internal and external taste sensilla of the larva and adult form two closely related sensory projections, (1) the anterior central sensory center (ACSC) located deep in the ventromedial neuropil of the tritocerebrum and mandibular neuromere, and (2) the anterior ventral sensory center (AVSC), occupying a superficial layer within the ventromedial tritocerebrum. Additional, presumed mechanosensory terminal axons entering via the labial nerve define the ventromedial sensory center (VMSC) in the maxilla and labium. Mechanosensory afferents of the massive array of chordotonal organs (Johnston’s organ) of the adult antenna project into the centrolateral neuropil column of the anterior SEZ, creating the antenno-mechanosensory and motor center (AMMC). Dendritic projections of dye back-filled motor neurons extend throughout a ventral layer of the SEZ, overlapping widely with the AVSC and VMSC. Our findings elucidate fundamental structural aspects of the developing sensory systems in Drosophila. PMID:28875566

  18. Developing a Drosophila Model of Schwannomatosis

    DTIC Science & Technology

    2013-02-01

    Drosophila melanogaster has become an important model system for cancer studies. Reduced redundancy in the Drosophila genome compared with that of...of high-resolution deletion coverage of the Drosophila melanogaster genome . Nat. Genet. 36, 288-292. Pastor-Pareja, J. C., Wu, M. and Xu. T. (2008...microarray analysis of the entire Drosophila melanogaster genome and compared gene expression profiles of wild type, dCap-D3 and rbf1 mutant

  19. Drosophila homolog of the human S6 ribosomal protein is required for tumor suppression in the hematopoietic system.

    PubMed Central

    Watson, K L; Konrad, K D; Woods, D F; Bryant, P J

    1992-01-01

    The tumor suppressor gene lethal(1)aberrant immune response 8 (air8) of Drosophila melanogaster encodes a homolog of the human S6 ribosomal protein. P element insertions that prevent expression of this gene cause overgrowth of the lymph glands (the hematopoietic organs), abnormal blood cell differentiation, and melanotic tumor formation. They also cause delayed development, inhibit growth of most of the larval organs, and lead to larval lethality. Mitotic recombination experiments indicate that the normal S6 gene is required for clone survival in the germ line and imaginal discs. The S6 gene produces a 1.1-kilobase transcript that is abundant throughout development in wild-type animals and in revertants derived from the insertional mutants but is barely detectable in the mutant larvae. cDNAs corresponding to this transcript show a 248-amino acid open reading frame with 75.4% identity and 94.8% similarity to both human and rat S6 ribosomal protein sequences. The results reveal a regulatory function of this ribosomal protein in the hematopoietic system of Drosophila that may be related to its developmentally regulated phosphorylation. Images PMID:1454811

  20. Coordinated metabolic transitions during Drosophila embryogenesis and the onset of aerobic glycolysis.

    PubMed

    Tennessen, Jason M; Bertagnolli, Nicolas M; Evans, Janelle; Sieber, Matt H; Cox, James; Thummel, Carl S

    2014-03-12

    Rapidly proliferating cells such as cancer cells and embryonic stem cells rely on a specialized metabolic program known as aerobic glycolysis, which supports biomass production from carbohydrates. The fruit fly Drosophila melanogaster also utilizes aerobic glycolysis to support the rapid growth that occurs during larval development. Here we use singular value decomposition analysis of modENCODE RNA-seq data combined with GC-MS-based metabolomic analysis to analyze the changes in gene expression and metabolism that occur during Drosophila embryogenesis, spanning the onset of aerobic glycolysis. Unexpectedly, we find that the most common pattern of co-expressed genes in embryos includes the global switch to glycolytic gene expression that occurs midway through embryogenesis. In contrast to the canonical aerobic glycolytic pathway, however, which is accompanied by reduced mitochondrial oxidative metabolism, the expression of genes involved in the tricarboxylic cycle (TCA cycle) and the electron transport chain are also upregulated at this time. Mitochondrial activity, however, appears to be attenuated, as embryos exhibit a block in the TCA cycle that results in elevated levels of citrate, isocitrate, and α-ketoglutarate. We also find that genes involved in lipid breakdown and β-oxidation are upregulated prior to the transcriptional initiation of glycolysis, but are downregulated before the onset of larval development, revealing coordinated use of lipids and carbohydrates during development. These observations demonstrate the efficient use of nutrient stores to support embryonic development, define sequential metabolic transitions during this stage, and demonstrate striking similarities between the metabolic state of late-stage fly embryos and tumor cells. Copyright © 2014 Tennessen et al.

  1. Nematocytes: Discovery and characterization of a novel anculeate hemocyte in Drosophila falleni and Drosophila phalerata.

    PubMed

    Bozler, Julianna; Kacsoh, Balint Z; Bosco, Giovanni

    2017-01-01

    Immune challenges, such as parasitism, can be so pervasive and deleterious that they constitute an existential threat to a species' survival. In response to these ecological pressures, organisms have developed a wide array of novel behavioral, cellular, and molecular adaptations. Research into these immune defenses in model systems has resulted in a revolutionary understanding of evolution and functional biology. As the field has expanded beyond the limited number of model organisms our appreciation of evolutionary innovation and unique biology has widened as well. With this in mind, we have surveyed the hemolymph of several non-model species of Drosophila. Here we identify and describe a novel hemocyte, type-II nematocytes, found in larval stages of numerous Drosophila species. Examined in detail in Drosophila falleni and Drosophila phalerata, we find that these remarkable cells are distinct from previously described hemocytes due to their anucleate state (lacking a nucleus) and unusual morphology. Type-II nematocytes are long, narrow cells with spindle-like projections extending from a cell body with high densities of mitochondria and microtubules, and exhibit the ability to synthesize proteins. These properties are unexpected for enucleated cells, and together with our additional characterization, we demonstrate that these type-II nematocytes represent a biological novelty. Surprisingly, despite the absence of a nucleus, we observe through live cell imaging that these cells remain motile with a highly dynamic cellular shape. Furthermore, these cells demonstrate the ability to form multicellular structures, which we suggest may be a component of the innate immune response to macro-parasites. In addition, live cell imaging points to a large nucleated hemocyte, type-I nematocyte, as the progenitor cell, leading to enucleation through a budding or asymmetrical division process rather than nuclear ejection: This study is the first to report such a process of

  2. FlyAtlas: database of gene expression in the tissues of Drosophila melanogaster

    PubMed Central

    Robinson, Scott W.; Herzyk, Pawel; Dow, Julian A. T.; Leader, David P.

    2013-01-01

    The FlyAtlas resource contains data on the expression of the genes of Drosophila melanogaster in different tissues (currently 25—17 adult and 8 larval) obtained by hybridization of messenger RNA to Affymetrix Drosophila Genome 2 microarrays. The microarray probe sets cover 13 250 Drosophila genes, detecting 12 533 in an unambiguous manner. The data underlying the original web application (http://flyatlas.org) have been restructured into a relational database and a Java servlet written to provide a new web interface, FlyAtlas 2 (http://flyatlas.gla.ac.uk/), which allows several additional queries. Users can retrieve data for individual genes or for groups of genes belonging to the same or related ontological categories. Assistance in selecting valid search terms is provided by an Ajax ‘autosuggest’ facility that polls the database as the user types. Searches can also focus on particular tissues, and data can be retrieved for the most highly expressed genes, for genes of a particular category with above-average expression or for genes with the greatest difference in expression between the larval and adult stages. A novel facility allows the database to be queried with a specific gene to find other genes with a similar pattern of expression across the different tissues. PMID:23203866

  3. FlyAtlas: database of gene expression in the tissues of Drosophila melanogaster.

    PubMed

    Robinson, Scott W; Herzyk, Pawel; Dow, Julian A T; Leader, David P

    2013-01-01

    The FlyAtlas resource contains data on the expression of the genes of Drosophila melanogaster in different tissues (currently 25-17 adult and 8 larval) obtained by hybridization of messenger RNA to Affymetrix Drosophila Genome 2 microarrays. The microarray probe sets cover 13,250 Drosophila genes, detecting 12,533 in an unambiguous manner. The data underlying the original web application (http://flyatlas.org) have been restructured into a relational database and a Java servlet written to provide a new web interface, FlyAtlas 2 (http://flyatlas.gla.ac.uk/), which allows several additional queries. Users can retrieve data for individual genes or for groups of genes belonging to the same or related ontological categories. Assistance in selecting valid search terms is provided by an Ajax 'autosuggest' facility that polls the database as the user types. Searches can also focus on particular tissues, and data can be retrieved for the most highly expressed genes, for genes of a particular category with above-average expression or for genes with the greatest difference in expression between the larval and adult stages. A novel facility allows the database to be queried with a specific gene to find other genes with a similar pattern of expression across the different tissues.

  4. Extensive Use of RNA-Binding Proteins in Drosophila Sensory Neuron Dendrite Morphogenesis

    PubMed Central

    Olesnicky, Eugenia C.; Killian, Darrell J.; Garcia, Evelyn; Morton, Mary C.; Rathjen, Alan R.; Sola, Ismail E.; Gavis, Elizabeth R.

    2013-01-01

    The large number of RNA-binding proteins and translation factors encoded in the Drosophila and other metazoan genomes predicts widespread use of post-transcriptional regulation in cellular and developmental processes. Previous studies identified roles for several RNA-binding proteins in dendrite branching morphogenesis of Drosophila larval sensory neurons. To determine the larger contribution of post-transcriptional gene regulation to neuronal morphogenesis, we conducted an RNA interference screen to identify additional Drosophila proteins annotated as either RNA-binding proteins or translation factors that function in producing the complex dendritic trees of larval class IV dendritic arborization neurons. We identified 88 genes encoding such proteins whose knockdown resulted in aberrant dendritic morphology, including alterations in dendritic branch number, branch length, field size, and patterning of the dendritic tree. In particular, splicing and translation initiation factors were associated with distinct and characteristic phenotypes, suggesting that different morphogenetic events are best controlled at specific steps in post-transcriptional messenger RNA metabolism. Many of the factors identified in the screen have been implicated in controlling the subcellular distributions and translation of maternal messenger RNAs; thus, common post-transcriptional regulatory strategies may be used in neurogenesis and in the generation of asymmetry in the female germline and embryo. PMID:24347626

  5. The two origins of hemocytes in Drosophila.

    PubMed

    Holz, Anne; Bossinger, Barbara; Strasser, Thomas; Janning, Wilfried; Klapper, Robert

    2003-10-01

    As in many other organisms, the blood of Drosophila consists of several types of hemocytes, which originate from the mesoderm. By lineage analyses of transplanted cells, we specified two separate anlagen that give rise to different populations of hemocytes: embryonic hemocytes and lymph gland hemocytes. The anlage of the embryonic hemocytes is restricted to a region within the head mesoderm between 70 and 80% egg length. In contrast to all other mesodermal cells, the cells of this anlage are already determined as hemocytes at the blastoderm stage. Unexpectedly, these hemocytes do not degenerate during late larval stages, but have the capacity to persist through metamorphosis and are still detectable in the adult fly. A second anlage, which gives rise to additional hemocytes at the onset of metamorphosis, is located within the thoracic mesoderm at 50 to 53% egg length. After transplantation within this region, clones were detected in the larval lymph glands. Labeled hemocytes are released by the lymph glands not before the late third larval instar. The anlage of these lymph gland-derived hemocytes is not determined at the blastoderm stage, as indicated by the overlap of clones with other tissues. Our analyses reveal that the hemocytes of pupae and adult flies consist of a mixture of embryonic hemocytes and lymph gland-derived hemocytes, originating from two distinct anlagen that are determined at different stages of development.

  6. Fray, a Drosophila serine/threonine kinase homologous to mammalian PASK, is required for axonal ensheathment

    NASA Technical Reports Server (NTRS)

    Leiserson, W. M.; Harkins, E. W.; Keshishian, H.

    2000-01-01

    Fray is a serine/threonine kinase expressed by the peripheral glia of Drosophila, whose function is required for normal axonal ensheathment. Null fray mutants die early in larval development and have nerves with severe swelling and axonal defasciculation. The phenotype is associated with a failure of the ensheathing glia to correctly wrap peripheral axons. When the fray cDNA is expressed in the ensheathing glia of fray mutants, normal nerve morphology is restored. Fray belongs to a novel family of Ser/Thr kinases, the PF kinases, whose closest relatives are the PAK kinases. Rescue of the Drosophila mutant phenotype with PASK, the rat homolog of Fray, demonstrates a functional homology among these proteins and suggests that the Fray signaling pathway is widely conserved.

  7. Homeobox gene distal-less is required for neuronal differentiation and neurite outgrowth in the Drosophila olfactory system

    PubMed Central

    Plavicki, Jessica; Mader, Sara; Pueschel, Eric; Peebles, Patrick; Boekhoff-Falk, Grace

    2012-01-01

    Vertebrate Dlx genes have been implicated in the differentiation of multiple neuronal subtypes, including cortical GABAergic interneurons, and mutations in Dlx genes have been linked to clinical conditions such as epilepsy and autism. Here we show that the single Drosophila Dlx homolog, distal-less, is required both to specify chemosensory neurons and to regulate the morphologies of their axons and dendrites. We establish that distal-less is necessary for development of the mushroom body, a brain region that processes olfactory information. These are important examples of distal-less function in an invertebrate nervous system and demonstrate that the Drosophila larval olfactory system is a powerful model in which to understand distal-less functions during neurogenesis. PMID:22307614

  8. Biogenesis of Golgi Stacks in Imaginal Discs of Drosophila melanogaster

    PubMed Central

    Kondylis, Vangelis; Goulding, Sarah E.; Dunne, Jonathan C.; Rabouille, Catherine

    2001-01-01

    We provide a detailed description of Golgi stack biogenesis that takes place in vivo during one of the morphogenetic events in the lifespan of Drosophila melanogaster. In early third-instar larvae, small clusters consisting mostly of vesicles and tubules were present in epithelial imaginal disk cells. As larvae progressed through mid- and late-third instar, these larval clusters became larger but also increasingly formed cisternae, some of which were stacked. In white pupae, the typical Golgi stack was observed. We show that larval clusters are Golgi stack precursors by 1) localizing various Golgi-specific markers to the larval clusters by electron and immunofluorescence confocal microscopy, 2) driving this conversion in wild-type larvae incubated at 37°C for 2 h, and 3) showing that this conversion does not take place in an NSF1 mutant (comt 17). The biological significance of this conversion became clear when we found that the steroid hormone 20-hydroxyecdysone (ecdysone) is critically involved in this conversion. In its absence, Golgi stack biogenesis did not occur and the larval clusters remained unaltered. We showed that dGM130 and sec23p expression increases approximately three- and fivefold, respectively, when discs are exposed to ecdysone in vivo and in vitro. Taken together, these results suggest that we have developed an in vivo system to study the ecdysone-triggered Golgi stack biogenesis. PMID:11514618

  9. Modeling glial contributions to seizures and epileptogenesis: cation-chloride cotransporters in Drosophila melanogaster.

    PubMed

    Rusan, Zeid M; Kingsford, Olivia A; Tanouye, Mark A

    2014-01-01

    Flies carrying a kcc loss-of-function mutation are more seizure-susceptible than wild-type flies. The kcc gene is the highly conserved Drosophila melanogaster ortholog of K+/Cl- cotransporter genes thought to be expressed in all animal cell types. Here, we examined the spatial and temporal requirements for kcc loss-of-function to modify seizure-susceptibility in flies. Targeted RNA interference (RNAi) of kcc in various sets of neurons was sufficient to induce severe seizure-sensitivity. Interestingly, kcc RNAi in glia was particularly effective in causing seizure-sensitivity. Knockdown of kcc in glia or neurons during development caused a reduction in seizure induction threshold, cell swelling, and brain volume increase in 24-48 hour old adult flies. Third instar larval peripheral nerves were enlarged when kcc RNAi was expressed in neurons or glia. Results suggest that a threshold of K+/Cl- cotransport dysfunction in the nervous system during development is an important determinant of seizure-susceptibility in Drosophila. The findings presented are the first attributing a causative role for glial cation-chloride cotransporters in seizures and epileptogenesis. The importance of elucidating glial cell contributions to seizure disorders and the utility of Drosophila models is discussed.

  10. Experimental evidence for nutrition regulated stress resistance in Drosophila ananassae.

    PubMed

    Sisodia, Seema; Singh, Bashisth N

    2012-01-01

    The amount and quality of nutrients consumed by organisms have a strong impact on stress resistance, life-history traits and reproduction. The balance between energy acquisition and expenditure is crucial to the survival and reproductive success of animals. The ability of organisms to adjust their development, physiology or behavior in response to environmental conditions, called phenotypic plasticity, is a defining property of life. One of the most familiar and important examples of phenotypic plasticity is the response of stress tolerance and reproduction to changes in developmental nutrition. Larval nutrition may affect a range of different life-history traits as well as responses to environmental stress in adult. Here we investigate the effect of larval nutrition on desiccation, starvation, chill-coma recovery, heat resistance as well as egg to adult viability, egg production and ovariole number in Drosophila ananassae. We raised larvae on either protein rich diet or carbohydrate rich diet. We found that flies consuming protein rich diet have higher desiccation and heat shock resistance whereas flies developed on carbohydrate rich diet have higher starvation and cold resistance. Egg production was higher in females developed on protein rich diet and we also found trade-off between egg production and Egg to adult viability of the flies. Viability was higher in carbohydrate rich diet. However, sex specific viability was found in different nutritional regimes. Higher Egg production might be due to higher ovariole number in females of protein rich diet. Thus, Drosophila ananassae adapts different stress tolerance and life-history strategies according to the quality of the available diet, which are correlated with phenotypic adjustment at anatomical and physiological levels.

  11. Optogenetics in the teaching laboratory: using channelrhodopsin-2 to study the neural basis of behavior and synaptic physiology in Drosophila

    PubMed Central

    Hornstein, Nicholas J.; Land, Bruce L.; Johnson, Bruce R.

    2011-01-01

    Here we incorporate recent advances in Drosophila neurogenetics and “optogenetics” into neuroscience laboratory exercises. We used the light-activated ion channel channelrhodopsin-2 (ChR2) and tissue-specific genetic expression techniques to study the neural basis of behavior in Drosophila larvae. We designed and implemented exercises using inexpensive, easy-to-use systems for delivering blue light pulses with fine temporal control. Students first examined the behavioral effects of activating glutamatergic neurons in Drosophila larvae and then recorded excitatory junctional potentials (EJPs) mediated by ChR2 activation at the larval neuromuscular junction (NMJ). Comparison of electrically and light-evoked EJPs demonstrates that the amplitudes and time courses of light-evoked EJPs are not significantly different from those generated by electrical nerve stimulation. These exercises introduce students to new genetic technology for remotely manipulating neural activity, and they simplify the process of recording EJPs at the Drosophila larval NMJ. Relatively little research work has been done using ChR2 in Drosophila, so students have opportunities to test novel hypotheses and make tangible contributions to the scientific record. Qualitative and quantitative assessment of student experiences suggest that these exercises help convey principles of synaptic transmission while also promoting integrative and inquiry-based studies of genetics, cellular physiology, and animal behavior. PMID:21386006

  12. From Embryo to Adult: piRNA-Mediated Silencing throughout Germline Development in Drosophila

    PubMed Central

    Marie, Pauline P.; Ronsseray, Stéphane; Boivin, Antoine

    2016-01-01

    In metazoan germ cells, transposable element activity is repressed by small noncoding PIWI-associated RNAs (piRNAs). Numerous studies in Drosophila have elucidated the mechanism of this repression in the adult germline. However, when and how transposable element repression is established during germline development has not been addressed. Here, we show that homology-dependent trans silencing is active in female primordial germ cells from late embryogenesis through pupal stages, and that genes related to the adult piRNA pathway are required for silencing during development. In larval gonads, we detect rhino-dependent piRNAs indicating de novo biogenesis of functional piRNAs during development. Those piRNAs exhibit the molecular signature of the “ping-pong” amplification step. Moreover, we show that Heterochromatin Protein 1a is required for the production of piRNAs coming from telomeric transposable elements. Furthermore, as in adult ovaries, incomplete, bimodal, and stochastic repression resembling variegation can occur at all developmental stages. Clonal analysis indicates that the repression status established in embryonic germ cells is maintained until the adult stage, suggesting the implication of a cellular memory mechanism. Taken together, data presented here show that piRNAs and their associated proteins are epigenetic components of a continuous repression system throughout germ cell development. PMID:27932388

  13. Developing a Drosophila Model of Schwannomatosis

    DTIC Science & Technology

    2012-08-01

    the entire Drosophila melanogaster genome and compared...et al., 2009; Hanahan and Weinberg, 2011). Over the last decade, the fruit fly Drosophila melanogaster has become an important model system for cancer...studies. Reduced redundancy in the Drosophila genome compared with that of humans, coupled with the ability to conduct large-scale genetic screens

  14. Gene expression profile change and growth inhibition in Drosophila larvae treated with azadirachtin.

    PubMed

    Lai, Duo; Jin, Xiaoyong; Wang, Hao; Yuan, Mei; Xu, Hanhong

    2014-09-20

    Azadirachtin is a botanical insecticide that affects various biological processes. The effects of azadirachtin on the digital gene expression profile and growth inhibition in Drosophila larvae have not been investigated. In this study, we applied high-throughput sequencing technology to detect the differentially expressed genes of Drosophila larvae regulated by azadirachtin. A total of 15,322 genes were detected, and 28 genes were found to be significantly regulated by azadirachtin. Biological process and pathway analysis showed that azadirachtin affected starch and sucrose metabolism, defense response, signal transduction, instar larval or pupal development, and chemosensory behavior processes. The genes regulated by azadirachtin were mainly enriched in starch and sucrose metabolism. This study provided a general digital gene expression profile of dysregulated genes in response to azadirachtin and showed that azadirachtin provoked potent growth inhibitory effects in Drosophila larvae by regulating the genes of cuticular protein, amylase, and odorant-binding protein. Finally, we propose a potential mechanism underlying the dysregulation of the insulin/insulin-like growth factor signaling pathway by azadirachtin. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Changes in protein expression during honey bee larval development.

    PubMed

    Chan, Queenie W T; Foster, Leonard J

    2008-10-29

    The honey bee (Apis mellifera), besides its role in pollination and honey production, serves as a model for studying the biochemistry of development, metabolism, and immunity in a social organism. Here we use mass spectrometry-based quantitative proteomics to quantify nearly 800 proteins during the 5- to 6-day larval developmental stage, tracking their expression profiles. We report that honey bee larval growth is marked by an age-correlated increase of protein transporters and receptors, as well as protein nutrient stores, while opposite trends in protein translation activity and turnover were observed. Levels of the immunity factors prophenoloxidase and apismin are positively correlated with development, while others surprisingly were not significantly age-regulated, suggesting a molecular explanation for why bees are susceptible to major age-associated bee bacterial infections such as American Foulbrood or fungal diseases such as chalkbrood. Previously unreported findings include the reduction of antioxidant and G proteins in aging larvae. These data have allowed us to integrate disparate findings in previous studies to build a model of metabolism and maturity of the immune system during larval development. This publicly accessible resource for protein expression trends will help generate new hypotheses in the increasingly important field of honey bee research.

  16. Org-1-dependent lineage reprogramming generates the ventral longitudinal musculature of the Drosophila heart.

    PubMed

    Schaub, Christoph; März, Johannes; Reim, Ingolf; Frasch, Manfred

    2015-02-16

    Only few examples of transdifferentiation, which denotes the conversion of one differentiated cell type to another, are known to occur during normal development, and more often, it is associated with regeneration processes. With respect to muscles, dedifferentiation/redifferentiation processes have been documented during post-traumatic muscle regeneration in blastema of newts as well as during myocardial regeneration. As shown herein, the ventral longitudinal muscles of the adult Drosophila heart arise from specific larval alary muscles in a process that represents the first known example of syncytial muscle transdifferentiation via dedifferentiation into mononucleate myoblasts during normal development. We demonstrate that this unique process depends on the reinitiation of a transcriptional program previously employed for embryonic alary muscle development, in which the factors Org-1 (Drosophila Tbx1) and Tailup (Drosophila Islet1) are key components. During metamorphosis, the action of these factors is combined with cell-autonomous inputs from the ecdysone steroid and the Hox gene Ultrabithorax, which provide temporal and spatial specificity to the transdifferentiation events. Following muscle dedifferentiation, inductive cues, particularly from the remodeling heart tube, are required for the redifferentiation of myoblasts into ventral longitudinal muscles. Our results provide new insights into mechanisms of lineage commitment and cell-fate plasticity during development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Retromer Ensures the Degradation of Autophagic Cargo by Maintaining Lysosome Function in Drosophila.

    PubMed

    Maruzs, Tamás; Lőrincz, Péter; Szatmári, Zsuzsanna; Széplaki, Szilvia; Sándor, Zoltán; Lakatos, Zsolt; Puska, Gina; Juhász, Gábor; Sass, Miklós

    2015-10-01

    The retromer is an evolutionarily conserved coat complex that consists of Vps26, Vps29, Vps35 and a heterodimer of sorting nexin (Snx) proteins in yeast. Retromer mediates the recycling of transmembrane proteins from endosomes to the trans-Golgi network, including receptors that are essential for the delivery of hydrolytic enzymes to lysosomes. Besides its function in lysosomal enzyme receptor recycling, involvement of retromer has also been proposed in a variety of vesicular trafficking events, including early steps of autophagy and endocytosis. Here we show that the late stages of autophagy and endocytosis are impaired in Vps26 and Vps35 deficient Drosophila larval fat body cells, but formation of autophagosomes and endosomes is not compromised. Accumulation of aberrant autolysosomes and amphisomes in the absence of retromer function appears to be the consequence of decreased degradative capacity, as they contain undigested cytoplasmic material. Accordingly, we show that retromer is required for proper cathepsin L trafficking mainly independent of LERP, the Drosophila homolog of the cation-independent mannose 6-phosphate receptor. Finally, we find that Snx3 and Snx6 are also required for proper autolysosomal degradation in Drosophila larval fat body cells. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion

    PubMed Central

    Itakura, Yuki; Kohsaka, Hiroshi; Ohyama, Tomoko; Zlatic, Marta

    2015-01-01

    Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs’ wave-like activity lagged behind that of

  19. Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion.

    PubMed

    Itakura, Yuki; Kohsaka, Hiroshi; Ohyama, Tomoko; Zlatic, Marta; Pulver, Stefan R; Nose, Akinao

    2015-01-01

    Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs' wave-like activity lagged behind that of

  20. Ecdysone-Induced Receptor Tyrosine Phosphatase PTP52F Regulates Drosophila Midgut Histolysis by Enhancement of Autophagy and Apoptosis

    PubMed Central

    Santhanam, Abirami; Peng, Wen-Hsin; Yu, Ya-Ting; Sang, Tzu-Kang

    2014-01-01

    The rapid removal of larval midgut is a critical developmental process directed by molting hormone ecdysone during Drosophila metamorphosis. To date, it remains unclear how the stepwise events can link the onset of ecdysone signaling to the destruction of larval midgut. This study investigated whether ecdysone-induced expression of receptor protein tyrosine phosphatase PTP52F regulates this process. The mutation of the Ptp52F gene caused significant delay in larval midgut degradation. Transitional endoplasmic reticulum ATPase (TER94), a regulator of ubiquitin proteasome system, was identified as a substrate and downstream effector of PTP52F in the ecdysone signaling. The inducible expression of PTP52F at the puparium formation stage resulted in dephosphorylation of TER94 on its Y800 residue, ensuring the rapid degradation of ubiquitylated proteins. One of the proteins targeted by dephosphorylated TER94 was found to be Drosophila inhibitor of apoptosis 1 (DIAP1), which was rapidly proteolyzed in cells with significant expression of PTP52F. Importantly, the reduced level of DIAP1 in response to inducible PTP52F was essential not only for the onset of apoptosis but also for the initiation of autophagy. This study demonstrates a novel function of PTP52F in regulating ecdysone-directed metamorphosis via enhancement of autophagic and apoptotic cell death in doomed Drosophila midguts. PMID:24550005

  1. Myoblast fusion in Drosophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haralalka, Shruti; Abmayr, Susan M., E-mail: sma@stowers.org; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO 66160

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral sidemore » of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.« less

  2. Proximal—distal pattern formation in Drosophila: cell autonomous requirement for Distal-less gene activity in limb development

    PubMed Central

    Cohen, Stephen M.; Jürgens, Gerd

    1989-01-01

    Limb development in the Drosophila embryo requires a pattern-forming system to organize positional information along the proximal–distal axis of the limb. This system must function in the context of the well characterized anterior–posterior and dorsal–ventral pattern-forming systems that are required to organize the body plan of the embryo. By genetic criteria the Distal-less gene appears to play a central role in limb development. Lack-of-function Distal-less mutations cause the deletion of a specific subset of embryonic peripheral sense organs that represent the evolutionary remnants of larval limbs. Distal-less activity is also required in the imaginal discs for the development of adult limbs. This requirement is cell autonomous and region specific within the developing limb primordium. Production of genetically mosaic imaginal discs, in which clones of cells lack Distal-less activity, indicates the existence of an organized proximal–distal positional information in very young imaginal disc primordia. We suggest that this graded positional information may depend on the activity of the Distal-less gene. Images PMID:16453891

  3. Embryogenesis, hatching and larval development of Artemia during orbital spaceflight

    NASA Astrophysics Data System (ADS)

    Spooner, B. S.; Debell, L.; Armbrust, L.; Guikema, J. A.; Metcalf, J.; Paulsen, A.

    1994-08-01

    Developmental biology studies, using gastrula-arrested cysts of the brine shrimp Artemia franciscana, were conducted during two flights of the space shuttle Atlantis (missions STS-37 and STS-43) in 1991. Dehydrated cysts were activated, on orbit, by addition of salt water to the cysts, and then development was terminated by the addition of fixative. Development took place in 5 ml syringes, connected by tubing to activation syringes, containing salt water, and termination syringes, containing fixative. Comparison of space results with simultaneous ground control experiments showed that equivalent percentages of naupliar larvae hatched in the syringes (40%). Thus, reactivation of development, completion of embryogenesis, emergence and hatching took place, during spaceflight, without recognizable alteration in numbers of larvae produced. Post-hatching larval development was studied in experiments where development was terminated, by intrduction of fixative, 2 days, 4 days, and 8 days after reinitiation of development. During spaceflight, successive larval instars or stages, interrupted by molts, occurred, generating brine shrimp at appropriate larval instars. Naupliar larvae possessed the single naupliar eye, and development of the lateral pair of adult eyes also took place in space. Transmission electron microscopy revealed extensive differentiation, including skeletal muscle and gut endoderm, as well as the eye tissues. These studies demonstrate the potential value of Artemia for developmental biology studies during spaceflight, and show that extensive degress of development can take place in this microgravity environment.

  4. Development of the Drosophila entero-endocrine lineage and its specification by the Notch signaling pathway

    PubMed Central

    Takashima, Shigeo; Adams, Katrina L.; Ortiz, Paola A.; Ying, Chong T.; Moridzadeh, Rameen; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2013-01-01

    In this paper we have investigated the developmental-genetic steps that shape the entero-endocrine system of Drosophila melanogaster from the embryo to the adult. The process starts in the endoderm of the early embryo where precursors of endocrine cells and enterocytes of the larval midgut, as well as progenitors of the adult midgut, are specified by a Notch signaling-dependent mechanism. In a second step that occurs during the late larval period, enterocytes and endocrine cells of a transient pupal midgut are selected from within the clusters of adult midgut progenitors. As in the embryo, activation of the Notch pathway triggers enterocyte differentiation, and inhibits cells from further proliferation or choosing the endocrine fate. The third step of entero-endocrine cell development takes place at a mid-pupal stage. Before this time point, the epithelial layer destined to become the adult midgut is devoid of endocrine cells. However, precursors of the intestinal midgut stem cells (pISCs) are already present. After an initial phase of symmetric divisions which causes an increase in their own population size, pISCs start to spin off cells that become postmitotic and express the endocrine fate marker, Prospero. Activation of Notch in pISCs forces these cells into an enterocyte fate. Loss of Notch function causes an increase in the proliferatory activity of pISCs, as well as a higher ratio of Prospero-positive cells. PMID:21382366

  5. Bacterial microbiota assemblage in Aedes albopictus mosquitoes and its impacts on larval development.

    PubMed

    Wang, Xiaoming; Liu, Tong; Wu, Yang; Zhong, Daibin; Zhou, Guofa; Su, Xinghua; Xu, Jiabao; Sotero, Charity F; Sadruddin, Adnan A; Wu, Kun; Chen, Xiao-Guang; Yan, Guiyun

    2018-05-30

    Interactions between bacterial microbiota and mosquitoes play an important role in mosquitoes' capacity to transmit pathogens. However, microbiota assemblages within mosquitoes and the impact of microbiota in environments on mosquito development and survival remain unclear. This study examined microbiota assemblages and the effects of aquatic environment microbiota on the larval development of the Aedes albopictus mosquito, an important dengue virus vector. Life table studies have found that reducing bacterial load in natural aquatic habitats through water filtering and treatment with antibiotics significantly reduced the larva-to-adult emergence rate. This finding was consistent in two types of larval habitats examined-discarded tires and flowerpots, suggesting that bacteria play a crucial role in larval development. Pyrosequencing of the bacterial 16S rRNA gene was used to determine the diversity of bacterial communities in larval habitats and the resulting numbers of mosquitoes under both laboratory and field conditions. The microbiota profiling identified common shared bacteria among samples from different years; further studies are needed to determine whether these bacteria represent a core microbiota. The highest microbiota diversity was found in aquatic habitats, followed by mosquito larvae, and the lowest in adult mosquitoes. Mosquito larvae ingested their bacterial microbiota and nutrients from aquatic habitats of high microbiota diversity. Taken together, the results support the observation that Ae. albopictus larvae are able to utilize diverse bacteria from aquatic habitats and that live bacteria from aquatic habitats play an important role in larval mosquito development and survival. These findings provide new insights into bacteria's role in mosquito larval ecology. © 2018 John Wiley & Sons Ltd.

  6. A Novel Ecdysone Receptor Mediates Steroid-Regulated Developmental Events during the Mid-Third Instar of Drosophila

    PubMed Central

    Costantino, Benjamin F. B.; Bricker, Daniel K.; Alexandre, Kelly; Shen, Kate; Merriam, John R.; Antoniewski, Christophe; Callender, Jenna L.; Henrich, Vincent C.; Presente, Asaf; Andres, Andrew J.

    2008-01-01

    The larval salivary gland of Drosophila melanogaster synthesizes and secretes glue glycoproteins that cement developing animals to a solid surface during metamorphosis. The steroid hormone 20-hydroxyecdysone (20E) is an essential signaling molecule that modulates most of the physiological functions of the larval gland. At the end of larval development, it is known that 20E—signaling through a nuclear receptor heterodimer consisting of EcR and USP—induces the early and late puffing cascade of the polytene chromosomes and causes the exocytosis of stored glue granules into the lumen of the gland. It has also been reported that an earlier pulse of hormone induces the temporally and spatially specific transcriptional activation of the glue genes; however, the receptor responsible for triggering this response has not been characterized. Here we show that the coordinated expression of the glue genes midway through the third instar is mediated by 20E acting to induce genes of the Broad Complex (BRC) through a receptor that is not an EcR/USP heterodimer. This result is novel because it demonstrates for the first time that at least some 20E-mediated, mid-larval, developmental responses are controlled by an uncharacterized receptor that does not contain an RXR-like component. PMID:18566664

  7. Suppressed production of methyl farnesoid hormones yields developmental defects and lethality in Drosophila larvae

    USDA-ARS?s Scientific Manuscript database

    A long-unresolved question in the developmental biology of Drosophila melanogaster has been whether methyl farnesoid hormones secreted by the ring gland are necessary for larval maturation and metamorphosis. In this study, we have used RNAi techniques to inhibit 3-Hydroxy-3-Methylglutaryl CoA Reduct...

  8. Effects of arginine vasotocin and mesotocin on the activation and development of amiloride-blockable short-circuit current across larval, adult, and cultured larval bullfrog skins.

    PubMed

    Takada, Makoto; Fujimaki-Aoba, Kayo; Hokari, Shigeru

    2010-03-01

    Amphibian skin has osmoregulatory functions, with Na(+) crossing from outside to inside. Na(+) transport can be measured as the short-circuit current (SCC). We investigated the short-term and long-term effects of arginine vasotocin (AVT) and mesotocin (MT) (which modulate Na(+) transport) on the activation and development of an amiloride-blockable SCC (adult-type feature) in larval, adult, and corticoid-cultured larval bullfrog skins. We found: (1) AVT-receptor (AVT-R) and MT-receptor (MT-R) mRNAs could be detected in both larval and adult skins, (2) in the short term (within 60 min), the larval SCC (amiloride-stimulated SCC) was increased by AVT, forskolin, and MT, suggesting that AVT and MT did not activate the inactive ENaC (epithelial sodium channel) protein thought to be expressed in larval skin, (3) in the short term (within 90 min), AVT, forskolin, and MT stimulated the adult SCC (amiloride-blockable SCC), (4) AVT and MT increased both the larval and adult SCC via receptors insensitive to OPC-21268 (an antagonist of the V(1)-type receptor), OPC-31260 (an antagonist of the V(2)-type receptor), and ([d(CH(2))(5),Tyr(Me)(2),Thr(4),Orn(8),des-Gly-NH (2) (9) ]VT) (an antagonist of the oxytocin receptor), (5) culturing EDTA-treated larval skin with corticoids supplemented with AVT (1 microM) or MT (1 microM) for 2 weeks (long-term effects of AVT and MT) did not alter the corticoid-induced development of an amiloride-blockable SCC (adult-type feature). AVT and MT thus have the potential to stimulate SCC though channels that are already expressed, but they may not influence the development of the amiloride-blockable SCC (an adult-type feature) in larval skin.

  9. The Impact of Odor--Reward Memory on Chemotaxis in Larval "Drosophila"

    ERIC Educational Resources Information Center

    Schleyer, Michael; Reid, Samuel F.; Pamir, Evren; Saumweber, Timo; Paisios, Emmanouil; Davies, Alexander; Gerber, Bertram; Louis, Matthieu

    2015-01-01

    How do animals adaptively integrate innate with learned behavioral tendencies? We tackle this question using chemotaxis as a paradigm. Chemotaxis in the "Drosophila" larva largely results from a sequence of runs and oriented turns. Thus, the larvae minimally need to determine (i) how fast to run, (ii) when to initiate a turn, and (iii)…

  10. Drosophila Importin-α2 Is Involved in Synapse, Axon and Muscle Development

    PubMed Central

    Mosca, Timothy J.; Schwarz, Thomas L.

    2010-01-01

    Nuclear import is required for communication between the cytoplasm and the nucleus and to enact lasting changes in gene transcription following stimuli. Binding to an Importin-α molecule in the cytoplasm is often required to mediate nuclear entry of a signaling protein. As multiple isoforms of Importin-α exist, some may be responsible for the entry of distinct cargoes rather than general nuclear import. Indeed, in neuronal systems, Importin-α isoforms can mediate very specific processes such as axonal tiling and communication of an injury signal. To study nuclear import during development, we examined the expression and function of Importin-α2 in Drosophila melanogaster. We found that Importin-α2 was expressed in the nervous system where it was required for normal active zone density at the NMJ and axonal commissure formation in the central nervous system. Other aspects of synaptic morphology at the NMJ and the localization of other synaptic markers appeared normal in importin-α2 mutants. Importin-α2 also functioned in development of the body wall musculature. Mutants in importin-α2 exhibited errors in muscle patterning and organization that could be alleviated by restoring muscle expression of Importin-α2. Thus, Importin-α2 is needed for some processes in the development of both the nervous system and the larval musculature. PMID:21151903

  11. Experimental studies on the larval development of the shrimps Crangon crangon and C. allmanni

    NASA Astrophysics Data System (ADS)

    Criales, M. M.; Anger, K.

    1986-09-01

    Larvae of the shrimps Crangon crangon L. and C. allmanni Kinahan were reared in the laboratory from hatching through metamorphosis. Effects of rearing methods (larval density, application of streptomycin, food) and of salinity on larval development were tested only in C. crangon, influence of temperature was studied in both species. Best results were obtained when larvae were reared individually, with a mixture of Artemia sp. and the rotifer Brachionus plicatilis as food. Streptomycin had partly negative effects and was thus not adopted for standard rearing techniques. All factors tested in this study influenced not only the rates of larval survival and moulting, but also morphogenesis. In both species, in particular in C. crangon, a high degree of variability in larval morphology and in developmental pathways was observed. Unsuitable conditions, e.g. crowding in mass culture, application of antibiotics, unsuitable food (rotifers, phytoplankton), extreme temperatures and salinities, tend to increase the number of larval instars and of morphological forms. The frequency of moulting is controlled mainly by temperature. Regression equations describing the relations between the durations of larval instars and temperature are given for both Crangon species. The number of moults is a linear function of larval age and a power function of temperature. There is high variation in growth (measured as carapace length), moulting frequency, morphogenesis, and survival among hatches originating from different females. The interrelations between these different measures of larval development in shrimps and prawns are discussed.

  12. Embryogenesis, hatching and larval development of Artemia during orbital spaceflight

    NASA Technical Reports Server (NTRS)

    Spooner, B. S.; Debell, L.; Armbrust, L.; Guikema, J. A.; Metcalf, J.; Paulsen, A.

    1994-01-01

    Developmental biology studies, using gastrula-arrested cysts of the brine shrimp Artemia franciscana, were conducted during two flights of the space shuttle Atlantis (missions STS-37 and STS-43) in 1991. Dehydrated cysts were activated, on orbit, by addition of salt water to the cysts, and then development was terminated by the addition of fixative. Development took place in 5 ml syringes, connected by tubing to activation syringes, containing salt water, and termination syringes, containing fixative. Comparison of space results with simultaneous ground control experiments showed that equivalent percentages of naupliar larvae hatched in the syringes (40%). Thus, reactivation of development, completion of embryogenesis, emergence and hatching took place, during spaceflight, without recognizable alteration in numbers of larvae produced. Post-hatching larval development was studied in experiments where development was terminated, by introduction of fixative, 2 days, 4 days, and 8 days after reinitiation of development. During spaceflight, successive larval instars or stages, interrupted by molts, occurred, generating brine shrimp at appropriate larval instars. Naupliar larvae possessed the single naupliar eye, and development of the lateral pair of adult eyes also took place in space. Transmission electron microscopy revealed extensive differentiation, including skeletal muscle and gut endoderm, as well as the eye tissues. These studies demonstrate the potential value of Artemia for developmental biology studies during spa ceflight, and show that extensive degrees of development can take place in this microgravity environment.

  13. A Drosophila model for fetal alcohol syndrome disorders: role for the insulin pathway

    PubMed Central

    McClure, Kimberly D.; French, Rachael L.; Heberlein, Ulrike

    2011-01-01

    SUMMARY Prenatal exposure to ethanol in humans results in a wide range of developmental abnormalities, including growth deficiency, developmental delay, reduced brain size, permanent neurobehavioral abnormalities and fetal death. Here we describe the use of Drosophila melanogaster as a model for exploring the effects of ethanol exposure on development and behavior. We show that developmental ethanol exposure causes reduced viability, developmental delay and reduced adult body size. We find that flies reared on ethanol-containing food have smaller brains and imaginal discs, which is due to reduced cell division rather than increased apoptosis. Additionally, we show that, as in mammals, flies reared on ethanol have altered responses to ethanol vapor exposure as adults, including increased locomotor activation, resistance to the sedating effects of the drug and reduced tolerance development upon repeated ethanol exposure. We have found that the developmental and behavioral defects are largely due to the effects of ethanol on insulin signaling; specifically, a reduction in Drosophila insulin-like peptide (Dilp) and insulin receptor expression. Transgenic expression of Dilp proteins in the larval brain suppressed both the developmental and behavioral abnormalities displayed by ethanol-reared adult flies. Our results thus establish Drosophila as a useful model system to uncover the complex etiology of fetal alcohol syndrome. PMID:21303840

  14. Gene Regulation Networks for Modeling Drosophila Development

    NASA Technical Reports Server (NTRS)

    Mjolsness, E.

    1999-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila Melanogaster.

  15. An introduction to parasitic wasps of Drosophila and the antiparasite immune response.

    PubMed

    Small, Chiyedza; Paddibhatla, Indira; Rajwani, Roma; Govind, Shubha

    2012-05-07

    Most known parasitoid wasp species attack the larval or pupal stages of Drosophila. While Trichopria drosophilae infect the pupal stages of the host (Fig. 1A-C), females of the genus Leptopilina (Fig. 1D, 1F, 1G) and Ganaspis (Fig. 1E) attack the larval stages. We use these parasites to study the molecular basis of a biological arms race. Parasitic wasps have tremendous value as biocontrol agents. Most of them carry virulence and other factors that modify host physiology and immunity. Analysis of Drosophila wasps is providing insights into how species-specific interactions shape the genetic structures of natural communities. These studies also serve as a model for understanding the hosts' immune physiology and how coordinated immune reactions are thwarted by this class of parasites. The larval/pupal cuticle serves as the first line of defense. The wasp ovipositor is a sharp needle-like structure that efficiently delivers eggs into the host hemocoel. Oviposition is followed by a wound healing reaction at the cuticle (Fig. 1C, arrowheads). Some wasps can insert two or more eggs into the same host, although the development of only one egg succeeds. Supernumerary eggs or developing larvae are eliminated by a process that is not yet understood. These wasps are therefore referred to as solitary parasitoids. Depending on the fly strain and the wasp species, the wasp egg has one of two fates. It is either encapsulated, so that its development is blocked (host emerges; Fig. 2 left); or the wasp egg hatches, develops, molts, and grows into an adult (wasp emerges; Fig. 2 right). L. heterotoma is one of the best-studied species of Drosophila parasitic wasps. It is a "generalist," which means that it can utilize most Drosophila species as hosts. L. heterotoma and L. victoriae are sister species and they produce virus-like particles that actively interfere with the encapsulation response. Unlike L. heterotoma, L. boulardi is a specialist parasite and the range of Drosophila

  16. Thermotaxis, circadian rhythms, and TRP channels in Drosophila

    PubMed Central

    Bellemer, Andrew

    2015-01-01

    The fruit fly Drosophila melanogaster is a poikilothermic organism that must detect and respond to both fine and coarse changes in environmental temperature in order maintain optimal body temperature, synchronize behavior to daily temperature fluctuations, and to avoid potentially injurious environmental hazards. Members of the Transient Receptor Potential (TRP) family of cation channels are well known for their activation by changes in temperature and their essential roles in sensory transduction in both invertebrates and vertebrates. The Drosophila genome encodes 13 TRP channels, and several of these have key sensory transduction and modulatory functions in allowing larval and adult flies to make fine temperature discriminations to attain optimal body temperature, detect and avoid large environmental temperature fluctuations, and make rapid escape responses to acutely noxious stimuli. Drosophila use multiple, redundant signaling pathways and neural circuits to execute these behaviors in response to both increases and decreases in temperature of varying magnitudes and time scales. A plethora of powerful molecular and genetic tools and the fly's simple, well-characterized nervous system have given Drosophila neurobiologists a powerful platform to study the cellular and molecular mechanisms of TRP channel function and how these mechanisms are conserved in vertebrates, as well as how these channels function within sensorimotor circuits to generate both simple and complex thermosensory behaviors. PMID:27227026

  17. Dual role of wingless signaling in stem-like hematopoietic precursor maintenance in Drosophila.

    PubMed

    Sinenko, Sergey A; Mandal, Lolitika; Martinez-Agosto, Julian A; Banerjee, Utpal

    2009-05-01

    In Drosophila, blood development occurs in a specialized larval hematopoietic organ, the lymph gland (LG), within which stem-like hemocyte precursors or prohemocytes differentiate to multiple blood cell types. Here we show that components of the Wingless (Wg) signaling pathway are expressed in prohemocytes. Loss- and gain-of-function analysis indicates that canonical Wg signaling is required for maintenance of prohemocytes and negatively regulates their differentiation. Wg signals locally in a short-range fashion within different compartments of the LG. In addition, Wg signaling positively regulates the proliferation and maintenance of cells that function as a hematopoietic niche in Drosophila, the posterior signaling center (PSC), and in the proliferation of crystal cells. Our studies reveal a conserved function of Wg signaling in the maintenance of stem-like blood progenitors and reveal an involvement of this pathway in the regulation of hemocyte differentiation through its action in the hematopoietic niche.

  18. Larval development of the subantarctic king crabs Lithodes santolla and Paralomis granulosa reared in the laboratory

    NASA Astrophysics Data System (ADS)

    Calcagno, J. A.; Anger, K.; Lovrich, G. A.; Thatje, S.; Kaffenberger, A.

    2004-02-01

    The larval development and survival in the two subantarctic lithodid crabs Lithodes santolla (Jaquinot) and Paralomis granulosa (Molina) from the Argentine Beagle Channel were studied in laboratory cultures. In L. santolla, larval development lasted about 70 days, passing through three zoeal stages and the megalopa stage, with a duration of approximately 4, 7, 11 and 48 days, respectively. The larval development in P. granulosa is more abbreviated, comprising only two zoeal stages and the megalopa stage, with 6, 11 and 43 days' duration, respectively. In both species, we tested for effects of presence versus absence of food (Artemia nauplii) on larval development duration and survival rate. In P. granulosa, we also studied effects of different rearing conditions, such as individual versus mass cultures, as well as aerated versus unaerated cultures. No differences in larval development duration and survival were observed between animals subjected to those different rearing conditions. The lack of response to the presence or absence of potential food confirms, in both species, a complete lecithotrophic mode of larval development. Since lithodid crabs are of high economic importance in the artisanal fishery in the southernmost parts of South America, the knowledge of optimal rearing conditions for lithodid larvae is essential for future attempts at repopulating the collapsing natural stocks off Tierra del Fuego.

  19. Exploration of the "larval pool": development and ground-truthing of a larval transport model off leeward Hawai'i.

    PubMed

    Wren, Johanna L K; Kobayashi, Donald R

    2016-01-01

    Most adult reef fish show site fidelity thus dispersal is limited to the mobile larval stage of the fish, and effective management of such species requires an understanding of the patterns of larval dispersal. In this study, we assess larval reef fish distributions in the waters west of the Big Island of Hawai'i using both in situ and model data. Catches from Cobb midwater trawls off west Hawai'i show that reef fish larvae are most numerous in offshore waters deeper than 3,000 m and consist largely of pre-settlement Pomacanthids, Acanthurids and Chaetodontids. Utilizing a Lagrangian larval dispersal model, we were able to replicate the observed shore fish distributions from the trawl data and we identified the 100 m depth strata as the most likely depth of occupancy. Additionally, our model showed that for larval shore fish with a pelagic larval duration longer than 40 days there was no significant change in settlement success in our model. By creating a general additive model (GAM) incorporating lunar phase and angle we were able to explain 67.5% of the variance between modeled and in situ Acanthurid abundances. We took steps towards creating a predictive larval distribution model that will greatly aid in understanding the spatiotemporal nature of the larval pool in west Hawai'i, and the dispersal of larvae throughout the Hawaiian archipelago.

  20. Development of the larval amphibian growth and development ...

    EPA Pesticide Factsheets

    The Larval Amphibian Growth and Development Assay (LAGDA) is a globally harmonized chemical testing guideline developed by the U.S. Environmental Protection Agency in collaboration with Japan’s Ministry of Environment to support risk assessment. The assay is employed as a higher tiered approach to evaluate effects of chronic chemical exposure throughout multiple life stages in model amphibian species Xenopus laevis. To evaluate the utility of the initial LAGDA design, the assay was performed using a mixed mode of action endocrine disrupting chemical, benzophenone-2 (BP-2). X. laevis embryos were exposed in flow-through conditions to 0, 1.5, 3.0 or 6.0 mg/L BP-2 until two months post-metamorphosis. Overt toxicity was evident throughout the exposure period in the 6.0 mg/L treatment due to elevated mortality rates and observed liver and kidney pathologies. Concentration-dependent increases in severity of thyroid follicular cell hypertrophy and hyperplasia occurred in larval tadpoles indicating BP-2-induced impacts on the thyroid axis. Additionally, gonads were impacted in all treatments with some genotypic males showing both testis and ovary tissues (1.5 mg/L) and 100% of the genotypic males in the higher treatments (3.0 and 6.0 mg/L) experiencing complete male-to-female sex reversal. Concentration-dependent vitellogenin (Vtg) induction occurred in both genders with associated accumulations of protein in the livers, kidneys and gonads, which was likely Vtg

  1. The role of reduced oxygen in the developmental physiology of growth and metamorphosis initiation in Drosophila

    USDA-ARS?s Scientific Manuscript database

    Rearing oxygen level is known to affect final body size in a variety of insects, but the physiological mechanisms by which oxygen affects size are incompletely understood. In Manduca and Drosophila, the larval size at which metamorphosis is initiated largely determines adult size, and metamorphosis ...

  2. Real-time analysis of Drosophila post-embryonic haemocyte behaviour.

    PubMed

    Sampson, Christopher J; Williams, Michael J

    2012-01-01

    The larval stage of the model organism Drosophila is frequently used to study host-pathogen interactions. During embryogenesis the cellular arm of the immune response, consisting of macrophage-like cells known as plasmatocytes, is extremely motile and functions to phagocytise pathogens and apoptotic bodies, as well as produce extracellular matrix. The cellular branch of the larval (post-embryonic) innate immune system consists of three cell types--plasmatocytes, crystal cells and lamellocytes--which are involved in the phagocytosis, encapsulation and melanisation of invading pathogens. Post-embryonic haemocyte motility is poorly understood thus further characterisation is required, for the purpose of standardisation. In order to examine post-embryonic haemocyte cytoskeletal dynamics or migration, the most commonly used system is in vitro cell lines. The current study employs an ex vivo system (an adaptation of in vitro cell incubation using primary cells), in which primary larval or pre-pupal haemocytes are isolated for short term analysis, in order to discover various aspects of their behaviour during events requiring cytoskeleton dynamics. The ex vivo method allows for real-time analysis and manipulation of primary post-embryonic haemocytes. This technique was used to characterise, and potentially standardised, larval and pre-pupal haemocyte cytoskeleton dynamics, assayed on different extracellular matrices. Using this method it was determined that, while larval haemocytes are unable to migrate, haemocytes recovered from pre-pupae are capable of migration.

  3. Effects of hypo-O-GlcNAcylation on Drosophila development.

    PubMed

    Mariappa, Daniel; Ferenbach, Andrew T; van Aalten, Daan M F

    2018-05-11

    Post-translational modification of serine/threonine residues in nucleocytoplasmic proteins with GlcNAc ( O -GlcNAcylation) is an essential regulatory mechanism in many cellular processes. In Drosophila , null mutants of the Polycomb gene O -GlcNAc transferase ( OGT ; also known as super sex combs ( sxc )) display homeotic phenotypes. To dissect the requirement for O -GlcNAc signaling in Drosophila development, we used CRISPR/Cas9 gene editing to generate rationally designed sxc catalytically hypomorphic or null point mutants. Of the fertile males derived from embryos injected with the CRISPR/Cas9 reagents, 25% produced progeny carrying precise point mutations with no detectable off-target effects. One of these mutants, the catalytically inactive sxc K872M , was recessive lethal, whereas a second mutant, the hypomorphic sxc H537A , was homozygous viable. We observed that reduced total protein O -GlcNAcylation in the sxc H537A mutant is associated with a wing vein phenotype and temperature-dependent lethality. Genetic interaction between sxc H537A and a null allele of Drosophila host cell factor ( dHcf ), encoding an extensively O -GlcNAcylated transcriptional coactivator, resulted in abnormal scutellar bristle numbers. A similar phenotype was also observed in sxc H537A flies lacking a copy of skuld ( skd ), a Mediator complex gene known to affect scutellar bristle formation. Interestingly, this phenotype was independent of OGT Polycomb function or dHcf downstream targets. In conclusion, the generation of the endogenous OGT hypomorphic mutant sxc H537A enabled us to identify pleiotropic effects of globally reduced protein O -GlcNAc during Drosophila development. The mutants generated and phenotypes observed in this study provide a platform for discovery of OGT substrates that are critical for Drosophila development. © 2018 Mariappa et al.

  4. Upstream paths for Hippo signaling in Drosophila organ development.

    PubMed

    Choi, Kwang-Wook

    2018-03-01

    Organ growth is fundamental to animal development. One of major mechanisms for growth control is mediated by the conserved Hippo signaling pathway initially identified in Drosophila. The core of this pathway in Drosophila consists of a cascade of protein kinases Hippo and Warts that negatively regulate transcriptional coactivator Yorkie (Yki). Activation of Yki promotes cell survival and proliferation to induce organ growth. A key issue in Hippo signaling is to understand how core kinase cascade is activated. Activation of Hippo kinase cascade is regulated in the upstream by at least two transmembrane proteins Crumbs and Fat that act in parallel. These membrane proteins interact with additional factors such as FERM-domain proteins Expanded and Merlin to modulate subcellular localization and function of the Hippo kinase cascade. Hippo signaling is also influenced by cytoskeletal networks and cell tension in epithelia of developing organs. These upstream events in the regulation of Hippo signaling are only partially understood. This review focuses on our current understanding of some upstream processes involved in Hippo signaling in developing Drosophila organs. [BMB Reports 2018; 51(3): 134-142].

  5. Studying tumor growth in Drosophila using the tissue allograft method.

    PubMed

    Rossi, Fabrizio; Gonzalez, Cayetano

    2015-10-01

    This protocol describes a method to allograft Drosophila larval tissue into adult fly hosts that can be used to assay the tumorigenic potential of mutant tissues. The tissue of interest is dissected, loaded into a fine glass needle and implanted into a host. Upon implantation, nontransformed tissues do not overgrow beyond their normal size, but malignant tumors grow without limit, are invasive and kill the host. By using this method, Drosophila malignant tumors can be transplanted repeatedly, for years, and therefore they can be aged beyond the short life span of flies. Because several hosts can be implanted using different pieces from a single tumor, the method also allows the tumor mass to be increased to facilitate further studies that may require large amounts of tissue (i.e., genomics, proteomics and so on). This method also provides an operational definition of hyperplastic, benign and malignant growth. The injection procedure itself requires only ∼1 d. Tumor development can then be monitored until the death of the implanted hosts.

  6. Evidence for transgenerational metabolic programming in Drosophila

    PubMed Central

    Buescher, Jessica L.; Musselman, Laura P.; Wilson, Christina A.; Lang, Tieming; Keleher, Madeline; Baranski, Thomas J.; Duncan, Jennifer G.

    2013-01-01

    SUMMARY Worldwide epidemiologic studies have repeatedly demonstrated an association between prenatal nutritional environment, birth weight and susceptibility to adult diseases including obesity, cardiovascular disease and type 2 diabetes. Despite advances in mammalian model systems, the molecular mechanisms underlying this phenomenon are unclear, but might involve programming mechanisms such as epigenetics. Here we describe a new system for evaluating metabolic programming mechanisms using a simple, genetically tractable Drosophila model. We examined the effect of maternal caloric excess on offspring and found that a high-sugar maternal diet alters body composition of larval offspring for at least two generations, augments an obese-like phenotype under suboptimal (high-calorie) feeding conditions in adult offspring, and modifies expression of metabolic genes. Our data indicate that nutritional programming mechanisms could be highly conserved and support the use of Drosophila as a model for evaluating the underlying genetic and epigenetic contributions to this phenomenon. PMID:23649823

  7. Targeted Lipidomics in Drosophila melanogaster Identifies Novel 2-Monoacylglycerols and N-acyl Amides

    PubMed Central

    Takacs, Sara M.; Stuart, Jordyn M.; Basnet, Arjun; Raboune, Siham; Widlanski, Theodore S.; Doherty, Patrick; Bradshaw, Heather B.

    2013-01-01

    Lipid metabolism is critical to coordinate organ development and physiology in response to tissue-autonomous signals and environmental cues. Changes to the availability and signaling of lipid mediators can limit competitiveness, adaptation to environmental stressors, and augment pathological processes. Two classes of lipids, the N-acyl amides and the 2-acyl glycerols, have emerged as important signaling molecules in a wide range of species with important signaling properties, though most of what is known about their cellular functions is from mammalian models. Therefore, expanding available knowledge on the repertoire of these lipids in invertebrates will provide additional avenues of research aimed at elucidating biosynthetic, metabolic, and signaling properties of these molecules. Drosophila melanogaster is a commonly used organism to study intercellular communication, including the functions of bioactive lipids. However, limited information is available on the molecular identity of lipids with putative biological activities in Drosophila. Here, we used a targeted lipidomics approach to identify putative signaling lipids in third instar Drosophila larvae, possessing particularly large lipid mass in their fat body. We identified 2-linoleoyl glycerol, 2-oleoyl glycerol, and 45 N-acyl amides in larval tissues, and validated our findings by the comparative analysis of Oregon-RS, Canton-S and w1118 strains. Data here suggest that Drosophila represent another model system to use for the study of 2-acyl glycerol and N-acyl amide signaling. PMID:23874457

  8. Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae.

    PubMed

    Huser, Annina; Eschment, Melanie; Güllü, Nazli; Collins, Katharina A N; Böpple, Kathrin; Pankevych, Lyubov; Rolsing, Emilia; Thum, Andreas S

    2017-01-01

    The biogenic amine serotonin (5-HT) is an important neuroactive molecule in the central nervous system of the majority of animal phyla. 5-HT binds to specific G protein-coupled and ligand-gated ion receptors to regulate particular aspects of animal behavior. In Drosophila, as in many other insects this includes the regulation of locomotion and feeding. Due to its genetic amenability and neuronal simplicity the Drosophila larva has turned into a useful model for studying the anatomical and molecular basis of chemosensory behaviors. This is particularly true for the olfactory system, which is mostly described down to the synaptic level over the first three orders of neuronal information processing. Here we focus on the 5-HT receptor system of the Drosophila larva. In a bipartite approach consisting of anatomical and behavioral experiments we describe the distribution and the implications of individual 5-HT receptors on naïve and acquired chemosensory behaviors. Our data suggest that 5-HT1A, 5-HT1B, and 5-HT7 are dispensable for larval naïve olfactory and gustatory choice behaviors as well as for appetitive and aversive associative olfactory learning and memory. In contrast, we show that 5-HT/5-HT2A signaling throughout development, but not as an acute neuronal function, affects associative olfactory learning and memory using high salt concentration as a negative unconditioned stimulus. These findings describe for the first time an involvement of 5-HT signaling in learning and memory in Drosophila larvae. In the longer run these results may uncover developmental, 5-HT dependent principles related to reinforcement processing possibly shared with adult Drosophila and other insects.

  9. Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae

    PubMed Central

    Huser, Annina; Eschment, Melanie; Güllü, Nazli; Collins, Katharina A. N.; Böpple, Kathrin; Pankevych, Lyubov; Rolsing, Emilia; Thum, Andreas S.

    2017-01-01

    The biogenic amine serotonin (5-HT) is an important neuroactive molecule in the central nervous system of the majority of animal phyla. 5-HT binds to specific G protein-coupled and ligand-gated ion receptors to regulate particular aspects of animal behavior. In Drosophila, as in many other insects this includes the regulation of locomotion and feeding. Due to its genetic amenability and neuronal simplicity the Drosophila larva has turned into a useful model for studying the anatomical and molecular basis of chemosensory behaviors. This is particularly true for the olfactory system, which is mostly described down to the synaptic level over the first three orders of neuronal information processing. Here we focus on the 5-HT receptor system of the Drosophila larva. In a bipartite approach consisting of anatomical and behavioral experiments we describe the distribution and the implications of individual 5-HT receptors on naïve and acquired chemosensory behaviors. Our data suggest that 5-HT1A, 5-HT1B, and 5-HT7 are dispensable for larval naïve olfactory and gustatory choice behaviors as well as for appetitive and aversive associative olfactory learning and memory. In contrast, we show that 5-HT/5-HT2A signaling throughout development, but not as an acute neuronal function, affects associative olfactory learning and memory using high salt concentration as a negative unconditioned stimulus. These findings describe for the first time an involvement of 5-HT signaling in learning and memory in Drosophila larvae. In the longer run these results may uncover developmental, 5-HT dependent principles related to reinforcement processing possibly shared with adult Drosophila and other insects. PMID:28777821

  10. Drosophila-Cdh1 (Rap/Fzr) a regulatory subunit of APC/C is required for synaptic morphology, synaptic transmission and locomotion.

    PubMed

    Wise, Alexandria; Schatoff, Emma; Flores, Julian; Hua, Shao-Ying; Ueda, Atsushi; Wu, Chun-Fang; Venkatesh, Tadmiri

    2013-11-01

    The assembly of functional synapses requires the orchestration of the synthesis and degradation of a multitude of proteins. Protein degradation and modification by the conserved ubiquitination pathway has emerged as a key cellular regulatory mechanism during nervous system development and function (Kwabe and Brose, 2011). The anaphase promoting complex/cyclosome (APC/C) is a multi-subunit ubiquitin ligase complex primarily characterized for its role in the regulation of mitosis (Peters, 2002). In recent years, a role for APC/C in nervous system development and function has been rapidly emerging (Stegmuller and Bonni, 2005; Li et al., 2008). In the mammalian central nervous system the activator subunit, APC/C-Cdh1, has been shown to be a regulator of axon growth and dendrite morphogenesis (Konishi et al., 2004). In the Drosophila peripheral nervous system (PNS), APC2, a ligase subunit of the APC/C complex has been shown to regulate synaptic bouton size and activity (van Roessel et al., 2004). To investigate the role of APC/C-Cdh1 at the synapse we examined loss-of-function mutants of Rap/Fzr (Retina aberrant in pattern/Fizzy related), a Drosophila homolog of the mammalian Cdh1 during the development of the larval neuromuscular junction in Drosophila. Our cell biological, ultrastructural, electrophysiological, and behavioral data showed that rap/fzr loss-of-function mutations lead to changes in synaptic structure and function as well as locomotion defects. Data presented here show changes in size and morphology of synaptic boutons, and, muscle tissue organization. Electrophysiological experiments show that loss-of-function mutants exhibit increased frequency of spontaneous miniature synaptic potentials, indicating a higher rate of spontaneous synaptic vesicle fusion events. In addition, larval locomotion and peristaltic movement were also impaired. These findings suggest a role for Drosophila APC/C-Cdh1 mediated ubiquitination in regulating synaptic morphology

  11. Regulation of cellular growth by the Drosophila target of rapamycin dTOR

    PubMed Central

    Zhang, Hongbing; Stallock, James P.; Ng, Joyce C.; Reinhard, Christoph; Neufeld, Thomas P.

    2000-01-01

    The TOR protein kinases (TOR1 and TOR2 in yeast; mTOR/FRAP/RAFT1 in mammals) promote cellular proliferation in response to nutrients and growth factors, but their role in development is poorly understood. Here, we show that the Drosophila TOR homolog dTOR is required cell autonomously for normal growth and proliferation during larval development, and for increases in cellular growth caused by activation of the phosphoinositide 3-kinase (PI3K) signaling pathway. As in mammalian cells, the kinase activity of dTOR is required for growth factor-dependent phosphorylation of p70 S6 kinase (p70S6K) in vitro, and we demonstrate that overexpression of p70S6K in vivo can rescue dTOR mutant animals to viability. Loss of dTOR also results in cellular phenotypes characteristic of amino acid deprivation, including reduced nucleolar size, lipid vesicle aggregation in the larval fat body, and a cell type-specific pattern of cell cycle arrest that can be bypassed by overexpression of the S-phase regulator cyclin E. Our results suggest that dTOR regulates growth during animal development by coupling growth factor signaling to nutrient availability. PMID:11069888

  12. A steroid-controlled global switch in sensitivity to apoptosis during Drosophila development.

    PubMed

    Kang, Yunsik; Bashirullah, Arash

    2014-02-01

    Precise control over activation of the apoptotic machinery is critical for development, tissue homeostasis and disease. In Drosophila, the decision to trigger apoptosis--whether in response to developmental cues or to DNA damage--converges on transcription of inhibitor of apoptosis protein (IAP) antagonists reaper, hid and grim. Here we describe a parallel process that regulates the sensitivity to, rather than the execution of, apoptosis. This process establishes developmental windows that are permissive or restrictive for triggering apoptosis, where the status of cells determines their capacity to die. We characterize one switch in the sensitivity to apoptotic triggers, from restrictive to permissive, that occurs during third-instar larval (L3) development. Early L3 animals are highly resistant to induction of apoptosis by expression of IAP-antagonists, DNA-damaging agents and even knockdown of the IAP diap1. This resistance to apoptosis, however, is lost in wandering L3 animals after acquiring a heightened sensitivity to apoptotic triggers. This switch in sensitivity to death activators is mediated by a change in mechanisms available for activating endogenous caspases, from an apoptosome-independent to an apoptosome-dependent pathway. This switch in apoptotic pathways is regulated in a cell-autonomous manner by the steroid hormone ecdysone, through changes in expression of critical pro-, but not anti-, apoptotic genes. This steroid-controlled switch defines a novel, physiologically-regulated, mechanism for controlling sensitivity to apoptosis and provides new insights into the control of apoptosis during development. © 2013 Published by Elsevier Inc.

  13. Embryo-larval exposure to atrazine reduces viability and alters oxidative stress parameters in Drosophila melanogaster.

    PubMed

    Figueira, Fernanda Hernandes; Aguiar, Lais Mattos de; Rosa, Carlos Eduardo da

    2017-01-01

    The herbicide atrazine has been used worldwide with subsequent residual contamination of water and food, which may cause adverse effects on non-target organisms. Animal exposure to this herbicide may affect development, reproduction and energy metabolism. Here, the effects of atrazine regarding survival and redox metabolism were assessed in the fruit fly D. melanogaster exposed during embryonic and larval development. The embryos (newly fertilized eggs) were exposed to different atrazine concentrations (10μM and 100μM) in the diet until the adult fly emerged. Pupation and emergence rates, developmental time and sex ratio were determined as well as oxidative stress parameters and gene expression of the antioxidant defence system were evaluated in newly emerged male and female flies. Atrazine exposure reduced pupation and emergence rates in fruit flies without alterations to developmental time and sex ratio. Different redox imbalance patterns were observed between males and females exposed to atrazine. Atrazine caused an increase in oxidative damage, reactive oxygen species generation and antioxidant capacity and decreased thiol-containing molecules. Further, atrazine exposure altered the mRNA expression of antioxidant genes (keap1, sod, sod2, cat, irc, gss, gclm, gclc, trxt, trxr-1 and trxr-2). Reductions in fruit fly larval and pupal viability observed here are likely consequences of the oxidative stress induced by atrazine exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Adaptation to Variance of Stimuli in Drosophila Larva Navigation

    NASA Astrophysics Data System (ADS)

    Wolk, Jason; Gepner, Ruben; Gershow, Marc

    In order to respond to stimuli that vary over orders of magnitude while also being capable of sensing very small changes, neural systems must be capable of rapidly adapting to the variance of stimuli. We study this adaptation in Drosophila larvae responding to varying visual signals and optogenetically induced fictitious odors using an infrared illuminated arena and custom computer vision software. Larval navigational decisions (when to turn) are modeled as the output a linear-nonlinear Poisson process. The development of the nonlinear turn rate in response to changes in variance is tracked using an adaptive point process filter determining the rate of adaptation to different stimulus profiles. Supported by NIH Grant 1DP2EB022359 and NSF Grant PHY-1455015.

  15. Soundscapes and Larval Settlement: Characterizing the Stimulus from a Larval Perspective.

    PubMed

    Lillis, Ashlee; Eggleston, David B; Bohnenstiehl, DelWayne R

    2016-01-01

    There is growing evidence that underwater sounds serve as a cue for the larvae of marine organisms to locate suitable settlement habitats; however, the relevant spatiotemporal scales of variability in habitat-related sounds and how this variation scales with larval settlement processes remain largely uncharacterized, particularly in estuarine habitats. Here, we provide an overview of the approaches we have developed to characterize an estuarine soundscape as it relates to larval processes, and a conceptual framework is provided for how habitat-related sounds may influence larval settlement, using oyster reef soundscapes as an example.

  16. Behavioral Teratogenesis in Drosophila melanogaster.

    PubMed

    Mishra, Monalisa; Barik, Bedanta Kumar

    2018-01-01

    Developmental biology is a fascinating branch of science which helps us to understand the mechanism of development, thus the findings are used in various therapeutic approach. Drosophila melanogaster served as a model to find the key molecules that initiate and regulate the mechanism of development. Various genes, transcription factors, and signaling pathways helping in development are identified in Drosophila. Many toxic compounds, which can affect the development, are also recognized using Drosophila model. These compounds, which can affect the development, are named as a teratogen. Many teratogens identified using Drosophila may also act as a teratogen for a human being since 75% of conservation exist between the disease genes present in Drosophila and human. There are certain teratogens, which do not cause developmental defect if exposed during pregnancy, however; behavioral defect appears in later part of development. Such compounds are named as a behavioral teratogen. Thus, it is worthy to identify the potential behavioral teratogen using Drosophila model. Drosophila behavior is well studied in various developmental stages. This chapter describes various methods which can be employed to test behavioral teratogenesis in Drosophila.

  17. Larval development of Brachiopod Coptothyris grayi (Davidson, 1852) (Brachiopoda, Rhynchonelliformea).

    PubMed

    Kuzmina, T V; Temereva, E N; Malakhov, V V

    2016-11-01

    The larval development of the Brachiopod Coptothyris grayi (Davidson, 1852) from the Sea of Japan is described for the first time. Ciliated blastula proved to represent the first free-swimming stage. The blastopore is initially formed as a rounded hole stretching later along the anteroposterior axis. The larva is first divided into two lobes (the apical lobe and the trunk); the mantle lobe is formed later as two lateral folds. Two pairs of seta bundles appear in the late stage larvae. The apical larval lobe in brachiopods is supposed to match the pre-oral lobe and anterior part of the trunk with tentacles in phoronids.

  18. Rapid mounting of adult Drosophila structures in Hoyer's medium.

    PubMed

    Stern, David L; Sucena, Elio

    2012-01-01

    The Drosophila cuticle carries a rich array of morphological details. Thus, cuticle examination has had a central role in the history of genetics. This protocol describes a procedure for mounting adult cuticles in Hoyer's medium, a useful mountant for both larval and adult cuticles. The medium digests soft tissues rapidly, leaving the cuticle cleared for observation. In addition, samples can be transferred directly from water to Hoyer's medium. However, specimens mounted in Hoyer's medium degrade over time. For example, the fine denticles on the larval dorsum are best observed soon after mounting; they begin to fade after 1 week, and can disappear completely after several months. More robust features, such as the ventral denticle belts, will persist for a longer period of time. Because adults cannot profitably be mounted whole in Hoyer's medium, some dissection is necessary.

  19. The ADAR RNA editing enzyme controls neuronal excitability in Drosophila melanogaster

    PubMed Central

    Li, Xianghua; Overton, Ian M.; Baines, Richard A.; Keegan, Liam P.; O’Connell, Mary A.

    2014-01-01

    RNA editing by deamination of specific adenosine bases to inosines during pre-mRNA processing generates edited isoforms of proteins. Recoding RNA editing is more widespread in Drosophila than in vertebrates. Editing levels rise strongly at metamorphosis, and Adar5G1 null mutant flies lack editing events in hundreds of CNS transcripts; mutant flies have reduced viability, severely defective locomotion and age-dependent neurodegeneration. On the other hand, overexpressing an adult dADAR isoform with high enzymatic activity ubiquitously during larval and pupal stages is lethal. Advantage was taken of this to screen for genetic modifiers; Adar overexpression lethality is rescued by reduced dosage of the Rdl (Resistant to dieldrin), gene encoding a subunit of inhibitory GABA receptors. Reduced dosage of the Gad1 gene encoding the GABA synthetase also rescues Adar overexpression lethality. Drosophila Adar5G1 mutant phenotypes are ameliorated by feeding GABA modulators. We demonstrate that neuronal excitability is linked to dADAR expression levels in individual neurons; Adar-overexpressing larval motor neurons show reduced excitability whereas Adar5G1 null mutant or targeted Adar knockdown motor neurons exhibit increased excitability. GABA inhibitory signalling is impaired in human epileptic and autistic conditions, and vertebrate ADARs may have a relevant evolutionarily conserved control over neuronal excitability. PMID:24137011

  20. A novel mode of induction of the humoral innate immune response in Drosophila larvae

    PubMed Central

    Kenmoku, Hiroyuki

    2017-01-01

    ABSTRACT Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer. PMID:28250052

  1. Drosophila as a model of wound healing and tissue regeneration in vertebrates.

    PubMed

    Belacortu, Yaiza; Paricio, Nuria

    2011-11-01

    Understanding the molecular basis of wound healing and regeneration in vertebrates is one of the main challenges in biology and medicine. This understanding will lead to medical advances allowing accelerated tissue repair after wounding, rebuilding new tissues/organs and restoring homeostasis. Drosophila has emerged as a valuable model for studying these processes because the genetic networks and cytoskeletal machinery involved in epithelial movements occurring during embryonic dorsal closure, larval imaginal disc fusion/regeneration, and epithelial repair are similar to those acting during wound healing and regeneration in vertebrates. Recent studies have also focused on the use of Drosophila adult stem cells to maintain tissue homeostasis. Here, we review how Drosophila has contributed to our understanding of these processes, primarily through live-imaging and genetic tools that are impractical in mammals. Furthermore, we highlight future research areas where this insect may provide novel insights and potential therapeutic strategies for wound healing and regeneration. Copyright © 2011 Wiley Periodicals, Inc.

  2. Dynamic genome wide expression profiling of Drosophila head development reveals a novel role of Hunchback in retinal glia cell development and blood-brain barrier integrity

    PubMed Central

    Torres-Oliva, Montserrat; Schneider, Julia; Wiegleb, Gordon

    2018-01-01

    Drosophila melanogaster head development represents a valuable process to study the developmental control of various organs, such as the antennae, the dorsal ocelli and the compound eyes from a common precursor, the eye-antennal imaginal disc. While the gene regulatory network underlying compound eye development has been extensively studied, the key transcription factors regulating the formation of other head structures from the same imaginal disc are largely unknown. We obtained the developmental transcriptome of the eye-antennal discs covering late patterning processes at the late 2nd larval instar stage to the onset and progression of differentiation at the end of larval development. We revealed the expression profiles of all genes expressed during eye-antennal disc development and we determined temporally co-expressed genes by hierarchical clustering. Since co-expressed genes may be regulated by common transcriptional regulators, we combined our transcriptome dataset with publicly available ChIP-seq data to identify central transcription factors that co-regulate genes during head development. Besides the identification of already known and well-described transcription factors, we show that the transcription factor Hunchback (Hb) regulates a significant number of genes that are expressed during late differentiation stages. We confirm that hb is expressed in two polyploid subperineurial glia cells (carpet cells) and a thorough functional analysis shows that loss of Hb function results in a loss of carpet cells in the eye-antennal disc. Additionally, we provide for the first time functional data indicating that carpet cells are an integral part of the blood-brain barrier. Eventually, we combined our expression data with a de novo Hb motif search to reveal stage specific putative target genes of which we find a significant number indeed expressed in carpet cells. PMID:29360820

  3. Small Molecule Suppressors of Drosophila Kinesin Deficiency Rescue Motor Axon Development in a Zebrafish Model of Spinal Muscular Atrophy

    PubMed Central

    Gassman, Andrew; Hao, Le T.; Bhoite, Leena; Bradford, Chad L.; Chien, Chi-Bin; Beattie, Christine E.; Manfredi, John P.

    2013-01-01

    Proximal spinal muscular atrophy (SMA) is the most common inherited motor neuropathy and the leading hereditary cause of infant mortality. Currently there is no effective treatment for the disease, reflecting a need for pharmacologic interventions that restore performance of dysfunctional motor neurons or suppress the consequences of their dysfunction. In a series of assays relevant to motor neuron biology, we explored the activities of a collection of tetrahydroindoles that were reported to alter the metabolism of amyloid precursor protein (APP). In Drosophila larvae the compounds suppressed aberrant larval locomotion due to mutations in the Khc and Klc genes, which respectively encode the heavy and light chains of kinesin-1. A representative compound of this class also suppressed the appearance of axonal swellings (alternatively termed axonal spheroids or neuritic beads) in the segmental nerves of the kinesin-deficient Drosophila larvae. Given the importance of kinesin-dependent transport for extension and maintenance of axons and their growth cones, three members of the class were tested for neurotrophic effects on isolated rat spinal motor neurons. Each compound stimulated neurite outgrowth. In addition, consistent with SMA being an axonopathy of motor neurons, the three axonotrophic compounds rescued motor axon development in a zebrafish model of SMA. The results introduce a collection of small molecules as pharmacologic suppressors of SMA-associated phenotypes and nominate specific members of the collection for development as candidate SMA therapeutics. More generally, the results reinforce the perception of SMA as an axonopathy and suggest novel approaches to treating the disease. PMID:24023935

  4. Cardiac optogenetic pacing in drosophila melanogaster using red-shifted opsins (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Men, Jing; Li, Airong; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2017-02-01

    Electrical pacing is the current gold standard for investigation of mammalian cardiac electrical conduction systems as well as for treatment of certain cardiac pathologies. However, this method requires an invasive surgical procedure to implant the pacing electrodes. Recently, optogenetic pacing has been developed as an alternative, non-invasive method for heartbeat pacing in animals. It induces heartbeats by shining pulsed light on transgene-generated microbial opsins which in turn activate light gated ion channels in animal hearts. However, commonly used opsins, such as channelrhodopsin-2 (ChR2), require short light wavelength stimulation (475 nm), which is strongly absorbed and scattered by tissue. Here, we expressed recently engineered red-shifted opsins, ReaChR and CsChrimson, in the heart of a well-developed animal model, Drosophila melanogaster, for the first time. Optogenetic pacing was successfully conducted in both ReaChR and CsChrimson flies at their larval, pupal, and adult stages using 617 nm excitation light pulse, enabling a much deeper tissue penetration compared to blue stimulation light. A customized high speed and ultrahigh resolution OCM system was used to non-invasively monitor the heartbeat pacing in Drosophila. Compared to previous studies on optogenetic pacing of Drosophila, higher penetration depth of optogenetic excitation light was achieved in opaque late pupal flies. Lower stimulating power density is needed for excitation at each developmental stage of both groups, which improves the safety of this technique for heart rhythm studies.

  5. Biased gene expression in early honeybee larval development

    PubMed Central

    2013-01-01

    Background Female larvae of the honeybee (Apis mellifera) develop into either queens or workers depending on nutrition. This nutritional stimulus triggers different developmental trajectories, resulting in adults that differ from each other in physiology, behaviour and life span. Results To understand how these trajectories are established we have generated a comprehensive atlas of gene expression throughout larval development. We found substantial differences in gene expression between worker and queen-destined larvae at 6 hours after hatching. Some of these early changes in gene expression are maintained throughout larval development, indicating that caste-specific developmental trajectories are established much earlier than previously thought. Within our gene expression data we identified processes that potentially underlie caste differentiation. Queen-destined larvae have higher expression of genes involved in transcription, translation and protein folding early in development with a later switch to genes involved in energy generation. Using RNA interference, we were able to demonstrate that one of these genes, hexamerin 70b, has a role in caste differentiation. Both queen and worker developmental trajectories are associated with the expression of genes that have alternative splice variants, although only a single variant of a gene tends to be differentially expressed in a given caste. Conclusions Our data, based on the biases in gene expression early in development together with published data, supports the idea that caste development in the honeybee consists of two phases; an initial biased phase of development, where larvae can still switch to the other caste by differential feeding, followed by commitment to a particular developmental trajectory. PMID:24350621

  6. Foraging behaviour in Drosophila larvae: mushroom body ablation.

    PubMed

    Osborne, K A; de Belle, J S; Sokolowski, M B

    2001-02-01

    Drosophila larvae and adults exhibit a naturally occurring genetically based behavioural polymorphism in locomotor activity while foraging. Larvae of the rover morph exhibit longer foraging trails than sitters and forage between food patches, while sitters have shorter foraging trails and forage within patches. This behaviour is influenced by levels of cGMP-dependent protein kinase (PGK) encoded by the foraging (for) gene. Rover larvae have higher expression levels and higher PGK activities than do sitters. Here we discuss the importance of the for gene for studies of the mechanistic and evolutionary significance of individual differences in behaviour. We also show how structure-function analysis can be used to investigate a role for mushroom bodies in larval behaviour both in the presence and in the absence of food. Hydroxyurea fed to newly hatched larvae prevents the development of all post-embryonically derived mushroom body (MB) neuropil. This method was used to ablate MBs in rover and sitter genetic variants of foraging to test whether these structures mediate expression of the foraging behavioural polymorphism. We found that locomotor activity levels during foraging of both the rover and sitter larval morphs were not significantly influenced by MB ablation. Alternative hypotheses that may explain how variation in foraging behaviour is generated are discussed.

  7. The metabotropic glutamate receptor activates the lipid kinase PI3K in Drosophila motor neurons through the calcium/calmodulin-dependent protein kinase II and the nonreceptor tyrosine protein kinase DFak.

    PubMed

    Chun-Jen Lin, Curtis; Summerville, James B; Howlett, Eric; Stern, Michael

    2011-07-01

    Ligand activation of the metabotropic glutamate receptor (mGluR) activates the lipid kinase PI3K in both the mammalian central nervous system and Drosophila motor nerve terminal. In several subregions of the mammalian brain, mGluR-mediated PI3K activation is essential for a form of synaptic plasticity termed long-term depression (LTD), which is implicated in neurological diseases such as fragile X and autism. In Drosophila larval motor neurons, ligand activation of DmGluRA, the sole Drosophila mGluR, similarly mediates a PI3K-dependent downregulation of neuronal activity. The mechanism by which mGluR activates PI3K remains incompletely understood in either mammals or Drosophila. Here we identify CaMKII and the nonreceptor tyrosine kinase DFak as critical intermediates in the DmGluRA-dependent activation of PI3K at Drosophila motor nerve terminals. We find that transgene-induced CaMKII inhibition or the DFak(CG1) null mutation each block the ability of glutamate application to activate PI3K in larval motor nerve terminals, whereas transgene-induced CaMKII activation increases PI3K activity in motor nerve terminals in a DFak-dependent manner, even in the absence of glutamate application. We also find that CaMKII activation induces other PI3K-dependent effects, such as increased motor axon diameter and increased synapse number at the larval neuromuscular junction. CaMKII, but not PI3K, requires DFak activity for these increases. We conclude that the activation of PI3K by DmGluRA is mediated by CaMKII and DFak.

  8. Pupation behavior and larval and pupal biocontrol of Drosophila suzukii in the field

    USDA-ARS?s Scientific Manuscript database

    Drosophila suzukii is a worldwide pest of fruit crops. Biological control may play an important role in D. suzukii IPM, and suppressing populations in unmanaged areas. While predation has been observed in the field, nothing is known about the potential for natural enemies to reduce D. suzukii popula...

  9. Dose-dependent effect of silver nanoparticles (AgNPs) on fertility and survival of Drosophila: An in-vivo study

    PubMed Central

    Raj, Akanksha; Shah, Prasanna

    2017-01-01

    Silver nanoparticles (AgNPs) containing consumer products have been proliferating in the market due to its unique antimicrobial property, however, lack of in-depth knowledge about their potential effect on human health in a longer run is of great concern. Therefore, we investigated dose-dependent in vivo effect of AgNPs using Drosophila as a model system. Drosophila, a genetically tractable organism with distinct developmental stages, short life cycle and significant homology with human serves as an ideal organism to study nanomaterial-mediated toxicity. Our studies suggest that ingestion of AgNPs in Drosophila during adult stage for short and long duration significantly affects egg laying capability along with impaired growth of ovary. Additionally, dietary intake of AgNPs from larval stage has more deleterious effects that result in reduced survival, longevity, ovary size and egg laying capability at a further lower dosage. Interestingly, the trans-generational effect of AgNPs was also observed without feeding progeny with AgNPs, thereby suggesting its impact from previous generation. Our results strongly imply that higher doses of AgNPs and its administration early during development is detrimental to the reproductive health and survival of Drosophila that follows in generations to come without feeding them to AgNPs. PMID:28542630

  10. Dose-dependent effect of silver nanoparticles (AgNPs) on fertility and survival of Drosophila: An in-vivo study.

    PubMed

    Raj, Akanksha; Shah, Prasanna; Agrawal, Namita

    2017-01-01

    Silver nanoparticles (AgNPs) containing consumer products have been proliferating in the market due to its unique antimicrobial property, however, lack of in-depth knowledge about their potential effect on human health in a longer run is of great concern. Therefore, we investigated dose-dependent in vivo effect of AgNPs using Drosophila as a model system. Drosophila, a genetically tractable organism with distinct developmental stages, short life cycle and significant homology with human serves as an ideal organism to study nanomaterial-mediated toxicity. Our studies suggest that ingestion of AgNPs in Drosophila during adult stage for short and long duration significantly affects egg laying capability along with impaired growth of ovary. Additionally, dietary intake of AgNPs from larval stage has more deleterious effects that result in reduced survival, longevity, ovary size and egg laying capability at a further lower dosage. Interestingly, the trans-generational effect of AgNPs was also observed without feeding progeny with AgNPs, thereby suggesting its impact from previous generation. Our results strongly imply that higher doses of AgNPs and its administration early during development is detrimental to the reproductive health and survival of Drosophila that follows in generations to come without feeding them to AgNPs.

  11. Volatile organic compounds from fungi isolated after hurricane katrina induce developmental defects and apoptosis in a Drosophila melanogaster model.

    PubMed

    Inamdar, Arati A; Bennett, Joan W

    2015-05-01

    In previous work, our laboratory developed a Drosophila model for studying the adverse effects of fungal volatile organic compounds (VOCs) emitted by growing cultures of molds. In this report, we have extended these studies and compared the toxic effects of fungal VOCs emitted from living cultures of four molds isolated after Hurricane Katrina from a flooded home in New Orleans. Strains of Aspergillus, Mucor, Penicillium, and Trichoderma were grown with wild-type larvae and the toxic effects of volatile products on the developmental stages of Drosophila larvae were evaluated. Furthermore, heterozygous mutants of Drosophila carrying the apoptotic genes, reaper and dronc, were used to assess the role of apoptosis in fungal VOCs mediated toxicity. Third-instar larvae of Drosophila carrying these apoptotic genes were exposed to fungal VOCs emitted from growing mold cultures for 10 days. The larval strains carrying apoptopic genes survived longer than the control wild type larvae; moreover, of those that survived, heterozygous reaper and dronc strains progressed to pupae and adult phases more rapidly, suggesting that fungal VOCs may induce apoptotic changes in flies. These data lend support to the use of Drosophila as an inexpensive and genetically versatile toxicological model to investigate the mechanistic basis for some of the human illnesses/symptoms associated with exposure to mold-contaminated indoor air, especially after hurricanes. © 2013 Wiley Periodicals, Inc.

  12. Modeling larval connectivity of the Atlantic surfclams within the Middle Atlantic Bight: Model development, larval dispersal and metapopulation connectivity

    NASA Astrophysics Data System (ADS)

    Zhang, Xinzhong; Haidvogel, Dale; Munroe, Daphne; Powell, Eric N.; Klinck, John; Mann, Roger; Castruccio, Frederic S.

    2015-02-01

    To study the primary larval transport pathways and inter-population connectivity patterns of the Atlantic surfclam, Spisula solidissima, a coupled modeling system combining a physical circulation model of the Middle Atlantic Bight (MAB), Georges Bank (GBK) and the Gulf of Maine (GoM), and an individual-based surfclam larval model was implemented, validated and applied. Model validation shows that the model can reproduce the observed physical circulation patterns and surface and bottom water temperature, and recreates the observed distributions of surfclam larvae during upwelling and downwelling events. The model results show a typical along-shore connectivity pattern from the northeast to the southwest among the surfclam populations distributed from Georges Bank west and south along the MAB shelf. Continuous surfclam larval input into regions off Delmarva (DMV) and New Jersey (NJ) suggests that insufficient larval supply is unlikely to be the factor causing the failure of the population to recover after the observed decline of the surfclam populations in DMV and NJ from 1997 to 2005. The GBK surfclam population is relatively more isolated than populations to the west and south in the MAB; model results suggest substantial inter-population connectivity from southern New England to the Delmarva region. Simulated surfclam larvae generally drift for over one hundred kilometers along the shelf, but the distance traveled is highly variable in space and over time. Surfclam larval growth and transport are strongly impacted by the physical environment. This suggests the need to further examine how the interaction between environment, behavior, and physiology affects inter-population connectivity. Larval vertical swimming and sinking behaviors have a significant net effect of increasing larval drifting distances when compared with a purely passive model, confirming the need to include larval behavior.

  13. Genomic cloning and chromosomal localization of HRY, the human homolog to the Drosophila segmentation gene, hairy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feder, J.N.; Jan, L.Y.; Jan, Y.N.

    The Drosophila hairy gene encodes a basic helix- loop-helix protein that functions in at least two steps during Drosophila development: (1) during embryogenesis, when it partakes in the establishment of segments, and (2) during the larval stage, when it functions negatively in determining the pattern of sensory bristles on the adult fly. In the rat, a structurally homologous gene (RHL) behaves as an immediate-early gene in its response to growth factors and can, like that in Drosophila, suppress neuronal differentiation events. Here, the authors report the genomic cloning of the human hairy gene homolog (HRY). The coding region of themore » gene is contained within four exons. The predicted amino acid sequence reveals only four amino acid differences between the human and rat genes. Analysis of the DNA sequence 5[prime] to the coding region reveals a putatitve untranslated exon. To increase the value of the HRY gene as a genetic marker and to assess its potential involvement in genetic disorders, they sublocalized the locus to chromosome 3q28-q29 by fluorescence in situ hybridization. 34 refs., 4 figs., 1 tab.« less

  14. Drosophila Protein Kinase CK2: Genetics, Regulatory Complexity and Emerging Roles during Development

    PubMed Central

    Bandyopadhyay, Mohna; Arbet, Scott; Bishop, Clifton P.; Bidwai, Ashok P.

    2016-01-01

    CK2 is a Ser/Thr protein kinase that is highly conserved amongst all eukaryotes. It is a well-known oncogenic kinase that regulates vital cell autonomous functions and animal development. Genetic studies in the fruit fly Drosophila are providing unique insights into the roles of CK2 in cell signaling, embryogenesis, organogenesis, neurogenesis, and the circadian clock, and are revealing hitherto unknown complexities in CK2 functions and regulation. Here, we review Drosophila CK2 with respect to its structure, subunit diversity, potential mechanisms of regulation, developmental abnormalities linked to mutations in the gene encoding CK2 subunits, and emerging roles in multiple aspects of eye development. We examine the Drosophila CK2 “interaction map” and the eye-specific “transcriptome” databases, which raise the prospect that this protein kinase has many additional targets in the developing eye. We discuss the possibility that CK2 functions during early retinal neurogenesis in Drosophila and mammals bear greater similarity than has been recognized, and that this conservation may extend to other developmental programs. Together, these studies underscore the immense power of the Drosophila model organism to provide new insights and avenues to further investigate developmentally relevant targets of this protein kinase. PMID:28036067

  15. Drosophila melanogaster and the development of biology in the 20th century.

    PubMed

    Arias, Alfonso Martinez

    2008-01-01

    The fruit fly Drosophila has played a central role in the development of biology during the 20th century. First chosen as a convenient organism to test evolutionary theories soon became the central element in an elaborate, fruitful, and insightful research program dealing with the nature and function of the gene. Through the activities of TH Morgan and his students, Drosophila did more than any other organism to lay down the foundations of genetics as a discipline and a tool for biology. In the last third of the century, a judicious blend of classical genetics and molecular biology focused on some mutants affecting the pattern of the Drosophila larva and the adult, and unlocked the molecular mechanisms of development. Surprisingly, many of the genes identified in this exercise turned to be conserved across organisms. This observation provided a vista of universality at a fundamental level of biological activity. At the dawn of the 21st century, Drosophila continues to be center stage in the development of biology and to open new ways of seeing cells and to understand the construction and the functioning of organisms.

  16. Role of JAK/STAT signaling in neuroepithelial stem cell maintenance and proliferation in the Drosophila optic lobe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Li, Yonggang; Zhou, Liya

    2011-07-15

    Highlights: {yields} JAK/STAT activity is graded in the Drosophila optic lobe neuroepithelium. {yields} Inactivation of JAK signaling causes disintegration of the optic lobe neuroepithelium and depletion of the neuroepithelial stem cells. {yields} JAK pathway overactivation promotes neuroepithelial overgrowth. {yields} Notch signaling acts downstream of JAK/STAT to promote neuroepithelial growth and expansion. -- Abstract: During Drosophila optic lobe development, proliferation and differentiation must be tightly modulated to reach its normal size for proper functioning. The JAK/STAT pathway plays pleiotropic roles in Drosophila development and in the larval brain, has been shown to inhibit medulla neuroblast formation. In this study, we findmore » that JAK/STAT activity is required for the maintenance and proliferation of the neuroepithelial stem cells in the optic lobe. In loss-of-function JAK/STAT mutant brains, the neuroepithelial cells lose epithelial cell characters and differentiate prematurely while ectopic activation of this pathway is sufficient to induce neuroepithelial overgrowth in the optic lobe. We further show that Notch signaling acts downstream of JAK/STAT to control the maintenance and growth of the optic lobe neuroepithelium. Thus, in addition to its role in suppression of neuroblast formation, the JAK/STAT pathway is necessary and sufficient for optic lobe neuroepithelial growth.« less

  17. Methods to assess Drosophila heart development, function and aging

    PubMed Central

    Ocorr, Karen; Vogler, Georg; Bodmer, Rolf

    2014-01-01

    In recent years the Drosophila heart has become an established model of many different aspects of human cardiac disease. This model has allowed identification of disease-causing mechanisms underlying congenital heart disease and cardiomyopathies and has permitted the study underlying genetic, metabolic and age-related contributions to heart function. In this review we discuss methods currently employed in the analysis of the Drosophila heart structure and function, such as optical methods to infer heart function and performance, electrophysiological and mechanical approaches to characterize cardiac tissue properties, and conclude with histological techniques used in the study of heart development and adult structure. PMID:24727147

  18. Identification of FGF-dependent genes in the Drosophila tracheal system.

    PubMed

    Stahl, Markus; Schuh, Reinhard; Adryan, Boris

    2007-01-01

    The embryonic development of the tracheal system of the fruit fly Drosophila provides a paradigm for genetic studies of branching morphogenesis. Efforts of many laboratories have identified Branchless (Bnl, a fibroblast growth factor homologue) and Breathless (Btl, the receptor homologue) as crucial factors at many stages of tracheal system development. The downstream targets of the Bnl/Btl signalling cascade, however, remain mostly unknown. Misexpression of the bnl gene results in specific tracheal phenotypes that lead to larval death. We characterised the transcriptional profiles of targeted over-expression of bnl in the embryonic trachea and of loss-of-function bnl(P1) mutant embryos. Gene expression data was mapped to high-throughput in situ hybridisation based ImaGO-annotation. Thus, we identified and confirmed by quantitative PCR 13 Bnl-dependent genes that are expressed in cells within and outside of the tracheal system.

  19. Effect of the gene transformer of Anastrepha on the somatic sexual development of Drosophila.

    PubMed

    Ruiz, María-Fernanda; Sánchez, Lucas

    2010-01-01

    The gene transformer (tra) is the key regulatory memory device for sex determination in tephritid insects. The present manuscript addressed the question about the functional conservation of the tephritid Anastrepha Transformer protein to direct somatic sexual development in Drosophila (Drosophilidae). The transformer cDNA of Anastrepha encoding the putative full-length Tra protein was cloned in pUAST and introduced into Drosophila melanogaster. To express this protein, the GAL4-UAS system was used. The Anastrepha Tra protein induced the female-specific splicing of both dsx and fru pre-mRNAs in Drosophila XY male flies, so that these became transformed into females, though this transformation was incomplete (the sexually dimorphic foreleg basitarsus and the external terminalia were monitored). It was found that the degree of female transformation directly depended on the dose of Anastrepha tra and Drosophila transformer-2 (tra-2) genes, and that the Anastrepha Tra-Drosophila Tra2 complex is not as efficient as the Drosophila Tra-Tra2 complex at inducing the female-specific splicing of Drosophila dsx pre-mRNA. This can explain why the Anastrepha Tra protein cannot fully substitute for the endogenous Drosophila Tra protein.

  20. Gene expression patterns during the larval development of European sea bass (dicentrarchus labrax) by microarray analysis.

    PubMed

    Darias, M J; Zambonino-Infante, J L; Hugot, K; Cahu, C L; Mazurais, D

    2008-01-01

    During the larval period, marine teleosts undergo very fast growth and dramatic changes in morphology, metabolism, and behavior to accomplish their metamorphosis into juvenile fish. Regulation of gene expression is widely thought to be a key mechanism underlying the management of the biological processes required for harmonious development over this phase of life. To provide an overall analysis of gene expression in the whole body during sea bass larval development, we monitored the expression of 6,626 distinct genes at 10 different points in time between 7 and 43 days post-hatching (dph) by using heterologous hybridization of a rainbow trout cDNA microarray. The differentially expressed genes (n = 485) could be grouped into two categories: genes that were generally up-expressed early, between 7 and 23 dph, and genes up-expressed between 25 and 43 dph. Interestingly, among the genes regulated during the larval period, those related to organogenesis, energy pathways, biosynthesis, and digestion were over-represented compared with total set of analyzed genes. We discuss the quantitative regulation of whole-body contents of these specific transcripts with regard to the ontogenesis and maturation of essential functions that take place over larval development. Our study is the first utilization of a transcriptomic approach in sea bass and reveals dynamic changes in gene expression patterns in relation to marine finfish larval development.

  1. [BIO-INSECTICIDAL ACTIVITY OF ALPINIA GALANGA (L.) ON LARVAL DEVELOPMENT OF SPODOPTERA LITURA (LEPIDOPTERA: NOCTUIDAE).

    PubMed

    Pumchan, A; Puangsomchit, A; Temyarasilp, P; Pluempanupat, W; Bullangpoti, V

    2015-01-01

    The aim of the study was to assess the bio-efficacy of four Alpinia galanga rhizome crude extracts against the second and third instars of Spodoptera litura, an important field pest. The growth of younger larvae was significantly affected while that of the older larval stage was less influenced. In both stages, the methanol crude extract showed the greatest efficiency which caused the highest number of abnormal adults to occur and produced a large LD₅₀ value (12.816 µg/ larvae) pupicidal percentage after treatment, whereas, hexane extract caused the highest mortality during the larval-pupal stage after treatment with an LD₅₀ value of 6.354 µg/ larvae. However, the larval development was not significantly different among all treated larvae compared to the control. This study suggests that secondary larval instars of S. litura are more susceptible to the larval growth inhibitory action of Alpinia galanga extracts and these extracts could also be applied for use in the management of pests.

  2. Two distinct mechanisms silence chinmo in Drosophila neuroblasts and neuroepithelial cells to limit their self-renewal.

    PubMed

    Dillard, Caroline; Narbonne-Reveau, Karine; Foppolo, Sophie; Lanet, Elodie; Maurange, Cédric

    2018-01-25

    Whether common principles regulate the self-renewing potential of neural stem cells (NSCs) throughout the developing central nervous system is still unclear. In the Drosophila ventral nerve cord and central brain, asymmetrically dividing NSCs, called neuroblasts (NBs), progress through a series of sequentially expressed transcription factors that limits self-renewal by silencing a genetic module involving the transcription factor Chinmo. Here, we find that Chinmo also promotes neuroepithelium growth in the optic lobe during early larval stages by boosting symmetric self-renewing divisions while preventing differentiation. Neuroepithelium differentiation in late larvae requires the transcriptional silencing of chinmo by ecdysone, the main steroid hormone, therefore allowing coordination of neural stem cell self-renewal with organismal growth. In contrast, chinmo silencing in NBs is post-transcriptional and does not require ecdysone. Thus, during Drosophila development, humoral cues or tissue-intrinsic temporal specification programs respectively limit self-renewal in different types of neural progenitors through the transcriptional and post-transcriptional regulation of the same transcription factor. © 2018. Published by The Company of Biologists Ltd.

  3. Hormonal activation of let-7-C microRNAs via EcR is required for adult Drosophila melanogaster morphology and function

    PubMed Central

    Chawla, Geetanjali; Sokol, Nicholas S.

    2012-01-01

    Steroid hormones and their nuclear receptors drive developmental transitions in diverse organisms, including mammals. In this study, we show that the Drosophila steroid hormone 20-hydroxyecdysone (20E) and its nuclear receptor directly activate transcription of the evolutionarily conserved let-7-complex (let-7-C) locus, which encodes the co-transcribed microRNAs miR-100, let-7 and miR-125. These small RNAs post-transcriptionally regulate the expression of target genes, and are required for the remodeling of the Drosophila neuromusculature during the larval-to-adult transition. Deletion of three 20E responsive elements located in the let-7-C locus results in reduced levels of let-7-C microRNAs, leading to neuromuscular and behavioral defects in adults. Given the evolutionary conservation of let-7-C microRNA sequences and temporal expression profiles, these findings indicate that steroid hormone-coupled control of let-7-C microRNAs is part of an ancestral pathway controlling the transition from larval-to-reproductive animal forms. PMID:22510985

  4. Novel isoforms of Dlg are fundamental for neuronal development in Drosophila.

    PubMed

    Mendoza, Carolina; Olguín, Patricio; Lafferte, Gabriela; Thomas, Ulrich; Ebitsch, Susanne; Gundelfinger, Eckart D; Kukuljan, Manuel; Sierralta, Jimena

    2003-03-15

    Drosophila discs-large (dlg) mutants exhibit multiple developmental abnormalities, including severe defects in neuronal differentiation and synaptic structure and function. These defects have been ascribed to the loss of a single gene product, Dlg-A, a scaffold protein thought to be expressed in many cell types. Here, we describe that additional isoforms arise as a consequence of different transcription start points and alternative splicing of dlg. At least five different dlg gene products are predicted. We identified a subset of dlg-derived cDNAs that include novel exons encoding a peptide homologous to the N terminus of the mammalian protein SAP97/hDLG (S97N). Dlg isoforms containing the S97N domain are expressed at larval neuromuscular junctions and within the CNS of both embryos and larvae but are not detectable in epithelial tissues. Strong hypomorphic dlg alleles exhibit decreased expression of S97N, which may account for neural-specific aspects of the pleiomorphic dlg mutant phenotype. Selective inhibition of the expression of S97N-containing proteins in embryos by double-strand RNA leads to severe defects in neuronal differentiation and axon guidance, without overt perturbations in epithelia. These results indicate that the differential expression of dlg products correlates with distinct functions in non-neural and neural cells. During embryonic development, proteins that include the S97N domain are essential for proper neuronal differentiation and organization, acting through mechanisms that may include the adequate localization of cell fate determinants.

  5. A novel mode of induction of the humoral innate immune response in Drosophila larvae.

    PubMed

    Kenmoku, Hiroyuki; Hori, Aki; Kuraishi, Takayuki; Kurata, Shoichiro

    2017-03-01

    Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin ; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer. © 2017. Published by The Company of Biologists Ltd.

  6. Efficiency of three diets for larval development in mass rearing Aedes albopictus (Diptera: Culicidae).

    PubMed

    Puggioli, Arianna; Balestrino, F; Damiens, D; Lees, R S; Soliban, S M; Madakacherry, O; Dindo, M L; Bellini, R; Gilles, J R L

    2013-07-01

    A fundamental step in establishing a mass production system is the development of a larval diet that promotes high adult performance at a reasonable cost. To identify a suitable larval diet for Aedes albopictus (Skuse), three diets were compared: a standard laboratory diet used at the Centro Agricoltura Ambiente, Italy (CAA) and two diets developed specifically for mosquito mass rearing at the FAO/IAEA Laboratory, Austria. The two IAEA diets, without affecting survival to the pupal stage, resulted in a shorter time to pupation and to emergence when compared with the CAA diet. At 24 h from pupation onset, 50 and 90% of the male pupae produced on the CAA and IAEA diets, respectively, had formed and could be collected. The diet received during the larval stage affected the longevity of adult males with access to water only, with best results observed when using the CAA larval diet. However, similar longevity among diet treatments was observed when males were supplied with sucrose solution. No differences were observed in the effects of larval diet on adult male size or female fecundity and fertility. Considering these results, along with the relative costs of the three diets, the IAEA 2 diet is found to be the preferred choice for mass rearing of Aedes albopictus, particularly if a sugar meal can be given to adult males before release, to ensure their teneral reserves are sufficient for survival, dispersal, and mating in the field.

  7. Preparation of Drosophila central neurons for in situ patch clamping.

    PubMed

    Ryglewski, Stefanie; Duch, Carsten

    2012-10-15

    Short generation times and facile genetic techniques make the fruit fly Drosophila melanogaster an excellent genetic model in fundamental neuroscience research. Ion channels are the basis of all behavior since they mediate neuronal excitability. The first voltage gated ion channel cloned was the Drosophila voltage gated potassium channel Shaker(1,2). Toward understanding the role of ion channels and membrane excitability for nervous system function it is useful to combine powerful genetic tools available in Drosophila with in situ patch clamp recordings. For many years such recordings have been hampered by the small size of the Drosophila CNS. Furthermore, a robust sheath made of glia and collagen constituted obstacles for patch pipette access to central neurons. Removal of this sheath is a necessary precondition for patch clamp recordings from any neuron in the adult Drosophila CNS. In recent years scientists have been able to conduct in situ patch clamp recordings from neurons in the adult brain(3,4) and ventral nerve cord of embryonic(5,6), larval(7,8,9,10), and adult Drosophila(11,12,13,14). A stable giga-seal is the main precondition for a good patch and depends on clean contact of the patch pipette with the cell membrane to avoid leak currents. Therefore, for whole cell in situ patch clamp recordings from adult Drosophila neurons must be cleaned thoroughly. In the first step, the ganglionic sheath has to be treated enzymatically and mechanically removed to make the target cells accessible. In the second step, the cell membrane has to be polished so that no layer of glia, collagen or other material may disturb giga-seal formation. This article describes how to prepare an identified central neuron in the Drosophila ventral nerve cord, the flight motoneuron 5 (MN5(15)), for somatic whole cell patch clamp recordings. Identification and visibility of the neuron is achieved by targeted expression of GFP in MN5. We do not aim to explain the patch clamp technique

  8. Development of the Acoustically Evoked Behavioral Response in Larval Plainfin Midshipman Fish, Porichthys notatus

    PubMed Central

    Alderks, Peter W.; Sisneros, Joseph A.

    2013-01-01

    The ontogeny of hearing in fishes has become a major interest among bioacoustics researchers studying fish behavior and sensory ecology. Most fish begin to detect acoustic stimuli during the larval stage which can be important for navigation, predator avoidance and settlement, however relatively little is known about the hearing capabilities of larval fishes. We characterized the acoustically evoked behavioral response (AEBR) in the plainfin midshipman fish, Porichthys notatus, and used this innate startle-like response to characterize this species' auditory capability during larval development. Age and size of larval midshipman were highly correlated (r2 = 0.92). The AEBR was first observed in larvae at 1.4 cm TL. At a size ≥1.8 cm TL, all larvae responded to a broadband stimulus of 154 dB re1 µPa or −15.2 dB re 1 g (z-axis). Lowest AEBR thresholds were 140–150 dB re 1 µPa or −33 to −23 dB re 1 g for frequencies below 225 Hz. Larval fish with size ranges of 1.9–2.4 cm TL had significantly lower best evoked frequencies than the other tested size groups. We also investigated the development of the lateral line organ and its function in mediating the AEBR. The lateral line organ is likely involved in mediating the AEBR but not necessary to evoke the startle-like response. The midshipman auditory and lateral line systems are functional during early development when the larvae are in the nest and the auditory system appears to have similar tuning characteristics throughout all life history stages. PMID:24340003

  9. Development of the acoustically evoked behavioral response in larval plainfin midshipman fish, Porichthys notatus.

    PubMed

    Alderks, Peter W; Sisneros, Joseph A

    2013-01-01

    The ontogeny of hearing in fishes has become a major interest among bioacoustics researchers studying fish behavior and sensory ecology. Most fish begin to detect acoustic stimuli during the larval stage which can be important for navigation, predator avoidance and settlement, however relatively little is known about the hearing capabilities of larval fishes. We characterized the acoustically evoked behavioral response (AEBR) in the plainfin midshipman fish, Porichthys notatus, and used this innate startle-like response to characterize this species' auditory capability during larval development. Age and size of larval midshipman were highly correlated (r(2) = 0.92). The AEBR was first observed in larvae at 1.4 cm TL. At a size ≥ 1.8 cm TL, all larvae responded to a broadband stimulus of 154 dB re1 µPa or -15.2 dB re 1 g (z-axis). Lowest AEBR thresholds were 140-150 dB re 1 µPa or -33 to -23 dB re 1 g for frequencies below 225 Hz. Larval fish with size ranges of 1.9-2.4 cm TL had significantly lower best evoked frequencies than the other tested size groups. We also investigated the development of the lateral line organ and its function in mediating the AEBR. The lateral line organ is likely involved in mediating the AEBR but not necessary to evoke the startle-like response. The midshipman auditory and lateral line systems are functional during early development when the larvae are in the nest and the auditory system appears to have similar tuning characteristics throughout all life history stages.

  10. Combinatorial action of Grainyhead, Extradenticle and Notch in regulating Hox mediated apoptosis in Drosophila larval CNS

    PubMed Central

    Khandelwal, Risha; Govinda Rajan, Sriivatsan; Kumar, Raviranjan

    2017-01-01

    Hox mediated neuroblast apoptosis is a prevalent way to pattern larval central nervous system (CNS) by different Hox genes, but the mechanism of this apoptosis is not understood. Our studies with Abdominal-A (Abd-A) mediated larval neuroblast (pNB) apoptosis suggests that AbdA, its cofactor Extradenticle (Exd), a helix-loop-helix transcription factor Grainyhead (Grh), and Notch signaling transcriptionally contribute to expression of RHG family of apoptotic genes. We find that Grh, AbdA, and Exd function together at multiple motifs on the apoptotic enhancer. In vivo mutagenesis of these motifs suggest that they are important for the maintenance of the activity of the enhancer rather than its initiation. We also find that Exd function is independent of its known partner homothorax in this apoptosis. We extend some of our findings to Deformed expressing region of sub-esophageal ganglia where pNBs undergo a similar Hox dependent apoptosis. We propose a mechanism where common players like Exd-Grh-Notch work with different Hox genes through region specific enhancers to pattern respective segments of larval central nervous system. PMID:29023471

  11. Combinatorial action of Grainyhead, Extradenticle and Notch in regulating Hox mediated apoptosis in Drosophila larval CNS.

    PubMed

    Khandelwal, Risha; Sipani, Rashmi; Govinda Rajan, Sriivatsan; Kumar, Raviranjan; Joshi, Rohit

    2017-10-01

    Hox mediated neuroblast apoptosis is a prevalent way to pattern larval central nervous system (CNS) by different Hox genes, but the mechanism of this apoptosis is not understood. Our studies with Abdominal-A (Abd-A) mediated larval neuroblast (pNB) apoptosis suggests that AbdA, its cofactor Extradenticle (Exd), a helix-loop-helix transcription factor Grainyhead (Grh), and Notch signaling transcriptionally contribute to expression of RHG family of apoptotic genes. We find that Grh, AbdA, and Exd function together at multiple motifs on the apoptotic enhancer. In vivo mutagenesis of these motifs suggest that they are important for the maintenance of the activity of the enhancer rather than its initiation. We also find that Exd function is independent of its known partner homothorax in this apoptosis. We extend some of our findings to Deformed expressing region of sub-esophageal ganglia where pNBs undergo a similar Hox dependent apoptosis. We propose a mechanism where common players like Exd-Grh-Notch work with different Hox genes through region specific enhancers to pattern respective segments of larval central nervous system.

  12. The Drosophila Sp8 transcription factor Buttonhead prevents premature differentiation of intermediate neural progenitors

    PubMed Central

    Xie, Yonggang; Li, Xiaosu; Zhang, Xian; Mei, Shaolin; Li, Hongyu; Urso, Andreacarola; Zhu, Sijun

    2014-01-01

    Intermediate neural progenitor cells (INPs) need to avoid differentiation and cell cycle exit while maintaining restricted developmental potential, but mechanisms preventing differentiation and cell cycle exit of INPs are not well understood. In this study, we report that the Drosophila homolog of mammalian Sp8 transcription factor Buttonhead (Btd) prevents premature differentiation and cell cycle exit of INPs in Drosophila larval type II neuroblast (NB) lineages. We show that the loss of Btd leads to elimination of mature INPs due to premature differentiation of INPs into terminally dividing ganglion mother cells. We provide evidence to demonstrate that Btd prevents the premature differentiation by suppressing the expression of the homeodomain protein Prospero in immature INPs. We further show that Btd functions cooperatively with the Ets transcription factor Pointed P1 to promote the generation of INPs. Thus, our work reveals a critical mechanism that prevents premature differentiation and cell cycle exit of Drosophila INPs. DOI: http://dx.doi.org/10.7554/eLife.03596.001 PMID:25285448

  13. Drosophila small heat shock protein CryAB ensures structural integrity of developing muscles, and proper muscle and heart performance.

    PubMed

    Wójtowicz, Inga; Jabłońska, Jadwiga; Zmojdzian, Monika; Taghli-Lamallem, Ouarda; Renaud, Yoan; Junion, Guillaume; Daczewska, Malgorzata; Huelsmann, Sven; Jagla, Krzysztof; Jagla, Teresa

    2015-03-01

    Molecular chaperones, such as the small heat shock proteins (sHsps), maintain normal cellular function by controlling protein homeostasis in stress conditions. However, sHsps are not only activated in response to environmental insults, but also exert developmental and tissue-specific functions that are much less known. Here, we show that during normal development the Drosophila sHsp CryAB [L(2)efl] is specifically expressed in larval body wall muscles and accumulates at the level of Z-bands and around myonuclei. CryAB features a conserved actin-binding domain and, when attenuated, leads to clustering of myonuclei and an altered pattern of sarcomeric actin and the Z-band-associated actin crosslinker Cheerio (filamin). Our data suggest that CryAB and Cheerio form a complex essential for muscle integrity: CryAB colocalizes with Cheerio and, as revealed by mass spectrometry and co-immunoprecipitation experiments, binds to Cheerio, and the muscle-specific attenuation of cheerio leads to CryAB-like sarcomeric phenotypes. Furthermore, muscle-targeted expression of CryAB(R120G), which carries a mutation associated with desmin-related myopathy (DRM), results in an altered sarcomeric actin pattern, in affected myofibrillar integrity and in Z-band breaks, leading to reduced muscle performance and to marked cardiac arrhythmia. Taken together, we demonstrate that CryAB ensures myofibrillar integrity in Drosophila muscles during development and propose that it does so by interacting with the actin crosslinker Cheerio. The evidence that a DRM-causing mutation affects CryAB muscle function and leads to DRM-like phenotypes in the fly reveals a conserved stress-independent role of CryAB in maintaining muscle cell cytoarchitecture. © 2015. Published by The Company of Biologists Ltd.

  14. An Integrated Micro- and Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted Serial Section Electron Microscopy

    PubMed Central

    Cardona, Albert; Saalfeld, Stephan; Preibisch, Stephan; Schmid, Benjamin; Cheng, Anchi; Pulokas, Jim; Tomancak, Pavel; Hartenstein, Volker

    2010-01-01

    The analysis of microcircuitry (the connectivity at the level of individual neuronal processes and synapses), which is indispensable for our understanding of brain function, is based on serial transmission electron microscopy (TEM) or one of its modern variants. Due to technical limitations, most previous studies that used serial TEM recorded relatively small stacks of individual neurons. As a result, our knowledge of microcircuitry in any nervous system is very limited. We applied the software package TrakEM2 to reconstruct neuronal microcircuitry from TEM sections of a small brain, the early larval brain of Drosophila melanogaster. TrakEM2 enables us to embed the analysis of the TEM image volumes at the microcircuit level into a light microscopically derived neuro-anatomical framework, by registering confocal stacks containing sparsely labeled neural structures with the TEM image volume. We imaged two sets of serial TEM sections of the Drosophila first instar larval brain neuropile and one ventral nerve cord segment, and here report our first results pertaining to Drosophila brain microcircuitry. Terminal neurites fall into a small number of generic classes termed globular, varicose, axiform, and dendritiform. Globular and varicose neurites have large diameter segments that carry almost exclusively presynaptic sites. Dendritiform neurites are thin, highly branched processes that are almost exclusively postsynaptic. Due to the high branching density of dendritiform fibers and the fact that synapses are polyadic, neurites are highly interconnected even within small neuropile volumes. We describe the network motifs most frequently encountered in the Drosophila neuropile. Our study introduces an approach towards a comprehensive anatomical reconstruction of neuronal microcircuitry and delivers microcircuitry comparisons between vertebrate and insect neuropile. PMID:20957184

  15. Crucial roles of Pox neuro in the developing ellipsoid body and antennal lobes of the Drosophila brain

    PubMed Central

    Minocha, Shilpi; Boll, Werner

    2017-01-01

    The paired box gene Pox neuro (Poxn) is expressed in two bilaterally symmetric neuronal clusters of the developing adult Drosophila brain, a protocerebral dorsal cluster (DC) and a deutocerebral ventral cluster (VC). We show that all cells that express Poxn in the developing brain are postmitotic neurons. During embryogenesis, the DC and VC consist of only 20 and 12 neurons that express Poxn, designated embryonic Poxn-neurons. The number of Poxn-neurons increases only during the third larval instar, when the DC and VC increase dramatically to about 242 and 109 Poxn-neurons, respectively, virtually all of which survive to the adult stage, while no new Poxn-neurons are added during metamorphosis. Although the vast majority of Poxn-neurons express Poxn only during third instar, about half of them are born by the end of embryogenesis, as demonstrated by the absence of BrdU incorporation during larval stages. At late third instar, embryonic Poxn-neurons, which begin to express Poxn during embryogenesis, can be easily distinguished from embryonic-born and larval-born Poxn-neurons, which begin to express Poxn only during third instar, (i) by the absence of Pros, (ii) their overt differentiation of axons and neurites, and (iii) the strikingly larger diameter of their cell bodies still apparent in the adult brain. The embryonic Poxn-neurons are primary neurons that lay out the pioneering tracts for the secondary Poxn-neurons, which differentiate projections and axons that follow those of the primary neurons during metamorphosis. The DC and the VC participate only in two neuropils of the adult brain. The DC forms most, if not all, of the neurons that connect the bulb (lateral triangle) with the ellipsoid body, a prominent neuropil of the central complex, while the VC forms most of the ventral projection neurons of the antennal lobe, which connect it ipsilaterally to the lateral horn, bypassing the mushroom bodies. In addition, Poxn-neurons of the VC are ventral local

  16. Function of Lipid Storage Droplet 1 (Lsd1) in Wing Development of Drosophila melanogaster.

    PubMed

    Men, Tran Thanh; Binh, Tran Duy; Yamaguchi, Masamitsu; Huy, Nguyen Tien; Kamei, Kaeko

    2016-04-29

    Perilipins are evolutionarily conserved from Drosophila to humans, the lipid storage droplet 1 (Lsd1) is a Drosophila homolog of human perilipin 1. The function of Lsd1 as a regulator of lipolysis in Drosophila has been demonstrated, as the Lsd1 mutant causes an increase of lipid droplet size. However, the functions of this gene during development are still under investigation. In order to determine the function of Lsd1 during development, Lsd1 was knocked down in Drosophila using the GAL4-UAS system. Selective knockdown of Lsd1 in the dorsal wing disc caused an atrophied wing phenotype. The generation of reactive oxygen species in the wing pouch compartment of the Lsd1-knockdown flies was significantly higher than in the control. Immunostaining with caspase-3 antibody revealed a greater number of apoptotic cells in Lsd1-knockdown wing discs than in the control. Cell death by autophagy was also induced in the knockdown flies. Moreover, cells deprived of Lsd1 showed mitochondrial expansion and decreased ATP levels. These results strongly suggest that knockdown of Lsd1 induces mitochondrial stress and the production of reactive oxygen species that result in cell death, via apoptosis and the autophagy pathway. These results highlight the roles of Drosophila Lsd1 during wing development.

  17. The Immune Phenotype of Three Drosophila Leukemia Models.

    PubMed

    Arefin, Badrul; Kunc, Martin; Krautz, Robert; Theopold, Ulrich

    2017-07-05

    Many leukemia patients suffer from dysregulation of their immune system, making them more susceptible to infections and leading to general weakening (cachexia). Both adaptive and innate immunity are affected. The fruit fly Drosophila melanogaster has an innate immune system, including cells of the myeloid lineage (hemocytes). To study Drosophila immunity and physiology during leukemia, we established three models by driving expression of a dominant-active version of the Ras oncogene ( Ras V12 ) alone or combined with knockdowns of tumor suppressors in Drosophila hemocytes. Our results show that phagocytosis, hemocyte migration to wound sites, wound sealing, and survival upon bacterial infection of leukemic lines are similar to wild type. We find that in all leukemic models the two major immune pathways (Toll and Imd) are dysregulated. Toll-dependent signaling is activated to comparable extents as after wounding wild-type larvae, leading to a proinflammatory status. In contrast, Imd signaling is suppressed. Finally, we notice that adult tissue formation is blocked and degradation of cell masses during metamorphosis of leukemic lines, which is akin to the state of cancer-dependent cachexia. To further analyze the immune competence of leukemic lines, we used a natural infection model that involves insect-pathogenic nematodes. We identified two leukemic lines that were sensitive to nematode infections. Further characterization demonstrates that despite the absence of behavioral abnormalities at the larval stage, leukemic larvae show reduced locomotion in the presence of nematodes. Taken together, this work establishes new Drosophila models to study the physiological, immunological, and behavioral consequences of various forms of leukemia. Copyright © 2017 Arefin et al.

  18. Cloning of aquaporin-1 of the blue crab, Callinectes sapidus: its expression during the larval development in hyposalinity.

    PubMed

    Chung, J Sook; Maurer, Leah; Bratcher, Meagan; Pitula, Joseph S; Ogburn, Matthew B

    2012-09-03

    Ontogenetic variation in salinity adaptation has been noted for the blue crab, Callinectes sapidus, which uses the export strategy for larval development: females migrate from the estuaries to the coast to spawn, larvae develop in the ocean, and postlarvae (megalopae) colonize estuarine areas. We hypothesized that C. sapidus larvae may be stenohaline and have limited osmoregulatory capacity which compromises their ability to survive in lower salinity waters. We tested this hypothesis using hatchery-raised larvae that were traceable to specific life stages. In addition, we aimed to understand the possible involvement of AQP-1 in salinity adaptation during larval development and during exposure to hyposalinity. A full-length cDNA sequence of aquaporin (GenBank JQ970426) was isolated from the hypodermis of the blue crab, C. sapidus, using PCR with degenerate primers and 5' and 3' RACE. The open reading frame of CasAQP-1 consists of 238 amino acids containing six helical structures and two NPA motifs for the water pore. The expression pattern of CasAQP-1 was ubiquitous in cDNAs from all tissues examined, although higher in the hepatopancreas, thoracic ganglia, abdominal muscle, and hypodermis and lower in the antennal gland, heart, hemocytes, ovary, eyestalk, brain, hindgut, Y-organs, and gill. Callinectes larvae differed in their capacity to molt in hyposalinity, as those at earlier stages from Zoea (Z) 1 to Z4 had lower molting rates than those from Z5 onwards, as compared to controls kept in 30 ppt water. No difference was found in the survival of larvae held at 15 and 30 ppt. CasAQP-1 expression differed with ontogeny during larval development, with significantly higher expression at Z1-2, compared to other larval stages. The exposure to 15 ppt affected larval-stage dependent CasAQP-1 expression which was significantly higher in Z2- 6 stages than the other larval stages. We report the ontogenetic variation in CasAQP-1 expression during the larval development

  19. The sterile insect technique for the management of the spotted wing drosophila, Drosophila suzukii: Establishing the optimum irradiation dose

    PubMed Central

    Brodeur, Jacques; Fournier, François; Martel, Véronique; Vreysen, Marc; Cáceres, Carlos; Firlej, Annabelle

    2017-01-01

    The spotted wing drosophila Drosophila suzukii Matsumura (Diptera: Drosophilidae), a pest of berries stone fruits, invaded North America and Europe in 2008. Current control methods rely mainly on insecticides. The sterile insect technique (SIT) has potential as an additional control tactic for the integrated management of D. suzukii. As a step towards the development of the SIT, this study aimed at finding the optimum irradiation dose to sterilize D. suzukii under controlled laboratory conditions. Four-day-old D. suzukii pupae were irradiated 12 to 24 hours prior to adult emergence in a 60Co Gamma Cell 220 and in a 137Cs Gamma Cell 3000 with doses of 30, 50, 70, 80, 90, 100 or 120 Gy. Emergence rate (88.1%), percent of deformed flies (4.0%) and survival curves were not affected by the tested irradiation doses. However, some reproductive parameters of the flies were affected by irradiation. Females irradiated with a dose of 50 Gy or more had almost no fecundity. When non-irradiated females were mated with irradiated males, egg hatch decreased exponentially with irradiation dose from 82.6% for the untreated control males to 4.0% for males irradiated with 120 Gy. Mortality of F1 individuals from the irradiated treatment also occurred during larval and pupal stages, with an egg to adult survival of 0.2%. However, descendants produced by the irradiated generation were fertile. These results are an encouraging first experimental step towards the development of the SIT for the management of D. suzukii populations. PMID:28957331

  20. Transcriptomic Response of Drosophila Melanogaster Pupae Developed in Hypergravity

    NASA Technical Reports Server (NTRS)

    Hosamani, Ravikumar; Hateley, Shannon; Bhardwaj, Shilpa R.; Pachter, Lior; Bhattacharya, Sharmila

    2016-01-01

    The metamorphosis of Drosophila is evolutionarily adapted to Earth's gravity, and is a tightly regulated process. Deviation from 1g to microgravity or hypergravity can influence metamorphosis, and alter associated gene expression. Understanding the relationship between an altered gravity environment and developmental processes is important for NASA's space travel goals. In the present study, 20 female and 20 male synchronized (Canton S, 2 to 3day old) flies were allowed to lay eggs while being maintained in a hypergravity environment (3g). Centrifugation was briefly stopped to discard the parent flies after 24hrs of egg laying, and then immediately continued until the eggs developed into P6-staged pupae (25 - 43 hours after pupation initiation). Post hypergravity exposure, P6-staged pupae were collected, total RNA was extracted using Qiagen RNeasy mini kits. We used RNA-Seq and qRT-PCR techniques to profile global transcriptomic changes in early pupae exposed to chronic hypergravity. During the pupal stage, Drosophila relies upon gravitational cues for proper development. Assessing gene expression changes in the pupa under altered gravity conditions helps highlight gravity dependent genetic pathways. A robust transcriptional response was observed in hypergravity-exposed pupae compared to controls, with 1,513 genes showing a significant (q < 0.05) difference in gene expression. Five major biological processes were affected: ion transport, redox homeostasis, immune response, proteolysis, and cuticle development. This outlines the underlying molecular changes occurring in Drosophila pupae in response to hypergravity.

  1. The glial investment of the adult and developing antennal lobe of Drosophila

    PubMed Central

    Oland, Lynne A.; Biebelhausen, John P.; Tolbert, Leslie P.

    2009-01-01

    In recent years, the Drosophila olfactory system, with its unparalleled opportunities for genetic dissection of development and functional organization, has been used to study the development of central olfactory neurons and the molecular basis of olfactory coding. The results of these studies have been interpreted in the absence of a detailed understanding of the steps in maturation of glial cells in the antennal lobe. Here, we present a high-resolution study of the glia associated with olfactory glomeruli in adult and developing antennal lobes. The study provides a basis for comparison of findings in Drosophila with those in the moth Manduca sexta that indicate a critical role for glia in antennal lobe development. Using flies expressing GFP under a Nervana2 driver to visualize glia for confocal microscopy, and probing at higher resolution with the electron microscope, we find that glial development in Drosophila differs markedly from that in moths: glial cell bodies remain in a rind around the glomerular neuropil; glial processes ensheathe axon bundles in the nerve layer but likely contribute little to axonal sorting; their processes insinuate between glomeruli only very late and then form only a sparse, open network around each glomerulus; and glial processes invade the synaptic neuropil. Taking our results in the context of previous studies, we conclude that glial cells in the developing Drosophila antennal lobe are unlikely to play a strong role in either axonal sorting or glomerulus stabilization and that in the adult, glial processes do not electrically isolate glomeruli from their neighbors. PMID:18537134

  2. Larval crowding accelerates C. elegans development and reduces lifespan.

    PubMed

    Ludewig, Andreas H; Gimond, Clotilde; Judkins, Joshua C; Thornton, Staci; Pulido, Dania C; Micikas, Robert J; Döring, Frank; Antebi, Adam; Braendle, Christian; Schroeder, Frank C

    2017-04-01

    Environmental conditions experienced during animal development are thought to have sustained impact on maturation and adult lifespan. Here we show that in the model organism C. elegans developmental rate and adult lifespan depend on larval population density, and that this effect is mediated by excreted small molecules. By using the time point of first egg laying as a marker for full maturity, we found that wildtype hermaphrodites raised under high density conditions developed significantly faster than animals raised in isolation. Population density-dependent acceleration of development (Pdda) was dramatically enhanced in fatty acid β-oxidation mutants that are defective in the biosynthesis of ascarosides, small-molecule signals that induce developmental diapause. In contrast, Pdda is abolished by synthetic ascarosides and steroidal ligands of the nuclear hormone receptor DAF-12. We show that neither ascarosides nor any known steroid hormones are required for Pdda and that another chemical signal mediates this phenotype, in part via the nuclear hormone receptor NHR-8. Our results demonstrate that C. elegans development is regulated by a push-pull mechanism, based on two antagonistic chemical signals: chemosensation of ascarosides slows down development, whereas population-density dependent accumulation of a different chemical signal accelerates development. We further show that the effects of high larval population density persist through adulthood, as C. elegans larvae raised at high densities exhibit significantly reduced adult lifespan and respond differently to exogenous chemical signals compared to larvae raised at low densities, independent of density during adulthood. Our results demonstrate how inter-organismal signaling during development regulates reproductive maturation and longevity.

  3. Larval crowding accelerates C. elegans development and reduces lifespan

    PubMed Central

    Ludewig, Andreas H.; Gimond, Clotilde; Judkins, Joshua C.; Thornton, Staci; Pulido, Dania C.; Micikas, Robert J.; Döring, Frank; Antebi, Adam; Braendle, Christian; Schroeder, Frank C.

    2017-01-01

    Environmental conditions experienced during animal development are thought to have sustained impact on maturation and adult lifespan. Here we show that in the model organism C. elegans developmental rate and adult lifespan depend on larval population density, and that this effect is mediated by excreted small molecules. By using the time point of first egg laying as a marker for full maturity, we found that wildtype hermaphrodites raised under high density conditions developed significantly faster than animals raised in isolation. Population density-dependent acceleration of development (Pdda) was dramatically enhanced in fatty acid β-oxidation mutants that are defective in the biosynthesis of ascarosides, small-molecule signals that induce developmental diapause. In contrast, Pdda is abolished by synthetic ascarosides and steroidal ligands of the nuclear hormone receptor DAF-12. We show that neither ascarosides nor any known steroid hormones are required for Pdda and that another chemical signal mediates this phenotype, in part via the nuclear hormone receptor NHR-8. Our results demonstrate that C. elegans development is regulated by a push-pull mechanism, based on two antagonistic chemical signals: chemosensation of ascarosides slows down development, whereas population-density dependent accumulation of a different chemical signal accelerates development. We further show that the effects of high larval population density persist through adulthood, as C. elegans larvae raised at high densities exhibit significantly reduced adult lifespan and respond differently to exogenous chemical signals compared to larvae raised at low densities, independent of density during adulthood. Our results demonstrate how inter-organismal signaling during development regulates reproductive maturation and longevity. PMID:28394895

  4. Transcriptomic response of Drosophila melanogaster pupae developed in hypergravity.

    PubMed

    Hateley, Shannon; Hosamani, Ravikumar; Bhardwaj, Shilpa R; Pachter, Lior; Bhattacharya, Sharmila

    2016-10-01

    Altered gravity can perturb normal development and induce corresponding changes in gene expression. Understanding this relationship between the physical environment and a biological response is important for NASA's space travel goals. We use RNA-Seq and qRT-PCR techniques to profile changes in early Drosophila melanogaster pupae exposed to chronic hypergravity (3g, or three times Earth's gravity). During the pupal stage, D. melanogaster rely upon gravitational cues for proper development. Assessing gene expression changes in the pupae under altered gravity conditions helps highlight gravity-dependent genetic pathways. A robust transcriptional response was observed in hypergravity-treated pupae compared to controls, with 1513 genes showing a significant (q<0.05) difference in gene expression. Five major biological processes were affected: ion transport, redox homeostasis, immune response, proteolysis, and cuticle development. This outlines the underlying molecular and biological changes occurring in Drosophila pupae in response to hypergravity; gravity is important for many biological processes on Earth. Published by Elsevier Inc.

  5. The Drosophila TIPE family member Sigmar interacts with the Ste20-like kinase Misshapen and modulates JNK signaling, cytoskeletal remodeling and autophagy

    PubMed Central

    Chittaranjan, Suganthi; Xu, Jing; Kuzyk, Michael; Dullat, Harpreet K.; Wilton, James; DeVorkin, Lindsay; Lebovitz, Chandra; Morin, Gregg B.; Marra, Marco A.; Gorski, Sharon M.

    2015-01-01

    TNFAIP8 and other mammalian TIPE family proteins have attracted increased interest due to their associations with disease-related processes including oncogenic transformation, metastasis, and inflammation. The molecular and cellular functions of TIPE family proteins are still not well understood. Here we report the molecular and genetic characterization of the Drosophila TNFAIP8 homolog, CG4091/sigmar. Previous gene expression studies revealed dynamic expression of sigmar in larval salivary glands prior to histolysis. Here we demonstrate that in sigmar loss-of-function mutants, the salivary glands are morphologically abnormal with defects in the tubulin network and decreased autophagic flux. Sigmar localizes subcellularly to microtubule-containing projections in Drosophila S2 cells, and co-immunoprecipitates with the Ste20-like kinase Misshapen, a regulator of the JNK pathway. Further, the Drosophila TNF ligand Eiger can induce sigmar expression, and sigmar loss-of-function leads to altered localization of pDJNK in salivary glands. Together, these findings link Sigmar to the JNK pathway, cytoskeletal remodeling and autophagy activity during salivary gland development, and provide new insights into TIPE family member function. PMID:25836674

  6. The Interaction of Two Complex Loci, Zeste and Bithorax in DROSOPHILA MELANOGASTER

    PubMed Central

    Kaufman, T. C.; Tasaka, S. E.; Suzuki, D. T.

    1973-01-01

    It has been found that certain alleles of the zeste locus (za 1-1.0) have no phenotype of their own, but interact with certain alleles at the bithorax locus (bx 3-58.8). This interaction takes the form of an enhancement of the homeotic bx phenotype to a more extreme form—i.e., the metathorax is transformed into mesothorax in varying degrees depending on the bx allele used. This enhancement is somewhat reminiscent of the transvection effect described by Lewis (1954). The characterization of the interaction thus far has shown that the enhancement only effects bx alleles which arise spontaneously, whereas the origin of the za allele is unimportant. The gene claret nondisjunctional was used for the production of gynandromorphs which showed that the enhancing ability of za, like the eye pigment change caused by z, is autonomous. The enhancement of one specific allele (bx34e), which is temperature-sensitive, has allowed a delineation of the temperature-sensitive period of the bithorax locus to a period extending from the middle of the second larval instar to the middle of the third larval instar. These results, as well as those of other enhancer and suppressor systems in Drosophila, have revealed the possibility of the involvement of heterocyclic compounds in the control of cell determination and fate in Drosophila melanogaster. PMID:4203579

  7. Stable Binding of the Conserved Transcription Factor Grainy Head to its Target Genes Throughout Drosophila melanogaster Development

    PubMed Central

    Nevil, Markus; Bondra, Eliana R.; Schulz, Katharine N.; Kaplan, Tommy; Harrison, Melissa M.

    2017-01-01

    It has been suggested that transcription factor binding is temporally dynamic, and that changes in binding determine transcriptional output. Nonetheless, this model is based on relatively few examples in which transcription factor binding has been assayed at multiple developmental stages. The essential transcription factor Grainy head (Grh) is conserved from fungi to humans, and controls epithelial development and barrier formation in numerous tissues. Drosophila melanogaster, which possess a single grainy head (grh) gene, provide an excellent system to study this conserved factor. To determine whether temporally distinct binding events allow Grh to control cell fate specification in different tissue types, we used a combination of ChIP-seq and RNA-seq to elucidate the gene regulatory network controlled by Grh during four stages of embryonic development (spanning stages 5–17) and in larval tissue. Contrary to expectations, we discovered that Grh remains bound to at least 1146 genomic loci over days of development. In contrast to this stable DNA occupancy, the subset of genes whose expression is regulated by Grh varies. Grh transitions from functioning primarily as a transcriptional repressor early in development to functioning predominantly as an activator later. Our data reveal that Grh binds to target genes well before the Grh-dependent transcriptional program commences, suggesting it sets the stage for subsequent recruitment of additional factors that execute stage-specific Grh functions. PMID:28007888

  8. The Implications of Temperature-Mediated Plasticity in Larval Instar Number for Development within a Marine Invertebrate, the Shrimp Palaemonetes varians

    PubMed Central

    Oliphant, Andrew; Hauton, Chris; Thatje, Sven

    2013-01-01

    Variations in larval instar number are common among arthropods. Here, we assess the implications of temperature-mediated variations in larval instar number for larval development time, larval growth rates, and juvenile dry weight within the palaemonid shrimp, Palaemonetes varians. In contrast with previous literature, which focuses on terrestrial arthropods, particularly model and pest species often of laboratory lines, we use wild shrimp, which differ in their life history from previous models. Newly-hatched P. varians larvae were first reared at 5, 10, 17, 25, and 30°C to assess their thermal scope for development. Larvae developed at 17, 25, and 30°C. At higher temperatures, larvae developed through fewer larval instars. Two dominant developmental pathways were observed; a short pathway of four instars and a long pathway of five instars. Longer developmental pathways of six to seven instars were rarely observed (mostly at lower temperatures) and consisted of additional instars as ‘repeat’ instars; i.e. little developmental advance over the preceding instar. To assess the implications of temperature-mediated variation in larval instar number, newly-hatched larvae were then reared at 15, 20, and 25°C. Again, the proportion of larvae developing through four instars increased with temperature. At all temperatures, larval development time and juvenile dry weight were greater for larvae developing through five instars. Importantly, because of the increasing proportion of larvae developing through four instars with increasing temperature, larval traits associated with this pathway (reduced development time and juvenile dry weight) became more dominant. As a consequence of increasing growth rate with temperature, and the shift in the proportion of larvae developing through four instars, juvenile dry weight was greatest at intermediate temperatures (20°C). We conclude that at settlement P. varians juveniles do not follow the temperature-size rule; this is of

  9. The implications of temperature-mediated plasticity in larval instar number for development within a marine invertebrate, the shrimp Palaemonetes varians.

    PubMed

    Oliphant, Andrew; Hauton, Chris; Thatje, Sven

    2013-01-01

    Variations in larval instar number are common among arthropods. Here, we assess the implications of temperature-mediated variations in larval instar number for larval development time, larval growth rates, and juvenile dry weight within the palaemonid shrimp, Palaemonetes varians. In contrast with previous literature, which focuses on terrestrial arthropods, particularly model and pest species often of laboratory lines, we use wild shrimp, which differ in their life history from previous models. Newly-hatched P. varians larvae were first reared at 5, 10, 17, 25, and 30 °C to assess their thermal scope for development. Larvae developed at 17, 25, and 30 °C. At higher temperatures, larvae developed through fewer larval instars. Two dominant developmental pathways were observed; a short pathway of four instars and a long pathway of five instars. Longer developmental pathways of six to seven instars were rarely observed (mostly at lower temperatures) and consisted of additional instars as 'repeat' instars; i.e. little developmental advance over the preceding instar. To assess the implications of temperature-mediated variation in larval instar number, newly-hatched larvae were then reared at 15, 20, and 25 °C. Again, the proportion of larvae developing through four instars increased with temperature. At all temperatures, larval development time and juvenile dry weight were greater for larvae developing through five instars. Importantly, because of the increasing proportion of larvae developing through four instars with increasing temperature, larval traits associated with this pathway (reduced development time and juvenile dry weight) became more dominant. As a consequence of increasing growth rate with temperature, and the shift in the proportion of larvae developing through four instars, juvenile dry weight was greatest at intermediate temperatures (20 °C). We conclude that at settlement P. varians juveniles do not follow the temperature-size rule; this is of

  10. Dispensable, Redundant, Complementary, and Cooperative Roles of Dopamine, Octopamine, and Serotonin in Drosophila melanogaster

    PubMed Central

    Chen, Audrey; Ng, Fanny; Lebestky, Tim; Grygoruk, Anna; Djapri, Christine; Lawal, Hakeem O.; Zaveri, Harshul A.; Mehanzel, Filmon; Najibi, Rod; Seidman, Gabriel; Murphy, Niall P.; Kelly, Rachel L.; Ackerson, Larry C.; Maidment, Nigel T.; Jackson, F. Rob; Krantz, David E.

    2013-01-01

    To investigate the regulation of Drosophila melanogaster behavior by biogenic amines, we have exploited the broad requirement of the vesicular monoamine transporter (VMAT) for the vesicular storage and exocytotic release of all monoamine neurotransmitters. We used the Drosophila VMAT (dVMAT) null mutant to globally ablate exocytotic amine release and then restored DVMAT activity in either individual or multiple aminergic systems, using transgenic rescue techniques. We find that larval survival, larval locomotion, and female fertility rely predominantly on octopaminergic circuits with little apparent input from the vesicular release of serotonin or dopamine. In contrast, male courtship and fertility can be rescued by expressing DVMAT in octopaminergic or dopaminergic neurons, suggesting potentially redundant circuits. Rescue of major aspects of adult locomotion and startle behavior required octopamine, but a complementary role was observed for serotonin. Interestingly, adult circadian behavior could not be rescued by expression of DVMAT in a single subtype of aminergic neurons, but required at least two systems, suggesting the possibility of unexpected cooperative interactions. Further experiments using this model will help determine how multiple aminergic systems may contribute to the regulation of other behaviors. Our data also highlight potential differences between behaviors regulated by standard exocytotic release and those regulated by other mechanisms. PMID:23086220

  11. Clonal development and organization of the adult Drosophila central brain.

    PubMed

    Yu, Hung-Hsiang; Awasaki, Takeshi; Schroeder, Mark David; Long, Fuhui; Yang, Jacob S; He, Yisheng; Ding, Peng; Kao, Jui-Chun; Wu, Gloria Yueh-Yi; Peng, Hanchuan; Myers, Gene; Lee, Tzumin

    2013-04-22

    The insect brain can be divided into neuropils that are formed by neurites of both local and remote origin. The complexity of the interconnections obscures how these neuropils are established and interconnected through development. The Drosophila central brain develops from a fixed number of neuroblasts (NBs) that deposit neurons in regional clusters. By determining individual NB clones and pursuing their projections into specific neuropils, we unravel the regional development of the brain neural network. Exhaustive clonal analysis revealed 95 stereotyped neuronal lineages with characteristic cell-body locations and neurite trajectories. Most clones show complex projection patterns, but despite the complexity, neighboring clones often coinnervate the same local neuropil or neuropils and further target a restricted set of distant neuropils. These observations argue for regional clonal development of both neuropils and neuropil connectivity throughout the Drosophila central brain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The speed–curvature power law in Drosophila larval locomotion

    PubMed Central

    2016-01-01

    We report the discovery that the locomotor trajectories of Drosophila larvae follow the power-law relationship between speed and curvature previously found in the movements of human and non-human primates. Using high-resolution behavioural tracking in controlled but naturalistic sensory environments, we tested the law in maggots tracing different trajectory types, from reaching-like movements to scribbles. For most but not all flies, we found that the law holds robustly, with an exponent close to three-quarters rather than to the usual two-thirds found in almost all human situations, suggesting dynamic effects adding on purely kinematic constraints. There are different hypotheses for the origin of the law in primates, one invoking cortical computations, another viscoelastic muscle properties coupled with central pattern generators. Our findings are consistent with the latter view and demonstrate that the law is possible in animals with nervous systems orders of magnitude simpler than in primates. Scaling laws might exist because natural selection favours processes that remain behaviourally efficient across a wide range of neural and body architectures in distantly related species. PMID:28120807

  13. The speed-curvature power law in Drosophila larval locomotion.

    PubMed

    Zago, Myrka; Lacquaniti, Francesco; Gomez-Marin, Alex

    2016-10-01

    We report the discovery that the locomotor trajectories of Drosophila larvae follow the power-law relationship between speed and curvature previously found in the movements of human and non-human primates. Using high-resolution behavioural tracking in controlled but naturalistic sensory environments, we tested the law in maggots tracing different trajectory types, from reaching-like movements to scribbles. For most but not all flies, we found that the law holds robustly, with an exponent close to three-quarters rather than to the usual two-thirds found in almost all human situations, suggesting dynamic effects adding on purely kinematic constraints. There are different hypotheses for the origin of the law in primates, one invoking cortical computations, another viscoelastic muscle properties coupled with central pattern generators. Our findings are consistent with the latter view and demonstrate that the law is possible in animals with nervous systems orders of magnitude simpler than in primates. Scaling laws might exist because natural selection favours processes that remain behaviourally efficient across a wide range of neural and body architectures in distantly related species. © 2016 The Authors.

  14. Brillouin spectroscopy reveals changes in muscular viscoelasticity in Drosophila POMT mutants

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Baker, Ryan; Panin, Vladislav M.; Yakovlev, Vladislav V.

    2015-03-01

    Muscular dystrophy (MD) is a group of muscle diseases that induce weakness in skeletal muscle and cause progressive muscle degeneration. The muscular mechanical properties (i.e., viscoelasticity), however, have not been thoroughly examined before and after MD. On the other hand, Brillouin spectroscopy (BS) provides a non-invasive approach to probing the local sound speed within a small volume. Moreover, recent advances in background-free Brillouin spectroscopy enable investigators to imaging not only transparent samples, but also turbid ones. In this study, we investigated the mechanical properties of muscles while employing Drosophila model of dystroglycanopathies, human congenital muscular dystrophies resulting from abnormal glycosylation of alphadystroglycan. Specifically, we analyzed larval abdominal muscles of Drosophila with mutations in protein Omannosyltransferase (POMT) genes. As a comparison, we have also examined muscular tissues dissected from wildtype Drosophila. The Brillouin spectra were obtained by a background free VIPA (virtually imaged phased array) spectrometer described in the previous report. As a reference, the Raman spectra were also acquired for each test. Our current results indicated that POMT defects cause changes in muscle elasticity, which suggests that muscular dystrophy conditions may be also associated with abnormalities in muscle elastic properties.

  15. Evidence for postsynaptic modulation of muscle contraction by a Drosophila neuropeptide.

    PubMed

    Clark, Julie; Milakovic, Maja; Cull, Amanda; Klose, Markus K; Mercier, A Joffre

    2008-07-01

    DPKQDFMRFamide, the most abundant FMRFamide-like peptide in Drosophila melanogaster, has been shown previously to enhance contractions of larval body wall muscles elicited by nerve stimulation and to increase excitatory junction potentials (EJPs). The present work investigated the possibility that this peptide can also stimulate muscle contraction by a direct action on muscle fibers. DPKQDFMRFamide induced slow contractions and increased tonus in body wall muscles of Drosophila larvae from which the central nervous system had been removed. The threshold for this effect was approximately 10(-8)M. The increase in tonus persisted in the presence of 7x10(-3)M glutamate, which desensitized postsynaptic glutamate receptors. Thus, the effect on tonus could not be explained by enhanced release of glutamate from synaptic terminals and, thus, may represent a postsynaptic effect. The effect on tonus was abolished in calcium-free saline and by treatment with L-type calcium channel blockers, nifedipine and nicardipine, but not by T-type blockers, amiloride and flunarizine. The present results provide evidence that this Drosophila peptide can act postsynaptically in addition to its apparent presynaptic effects, and that the postsynaptic effect requires influx through L-type calcium channels.

  16. Postembryonic lineages of the Drosophila ventral nervous system: Neuroglian expression reveals the adult hemilineage associated fiber tracts in the adult thoracic neuromeres.

    PubMed

    Shepherd, David; Harris, Robin; Williams, Darren W; Truman, James W

    2016-09-01

    During larval life most of the thoracic neuroblasts (NBs) in Drosophila undergo a second phase of neurogenesis to generate adult-specific neurons that remain in an immature, developmentally stalled state until pupation. Using a combination of MARCM and immunostaining with a neurotactin antibody, Truman et al. (2004; Development 131:5167-5184) identified 24 adult-specific NB lineages within each thoracic hemineuromere of the larval ventral nervous system (VNS), but because of the neurotactin labeling of lineage tracts disappearing early in metamorphosis, they were unable extend the identification of these lineages into the adult. Here we show that immunostaining with an antibody against the cell adhesion molecule neuroglian reveals the same larval secondary lineage projections through metamorphosis and bfy identifying each neuroglian-positive tract at selected stages we have traced the larval hemilineage tracts for all three thoracic neuromeres through metamorphosis into the adult. To validate tract identifications we used the genetic toolkit developed by Harris et al. (2015; Elife 4) to preserve hemilineage-specific GAL4 expression patterns from larval into the adult stage. The immortalized expression proved a powerful confirmation of the analysis of the neuroglian scaffold. This work has enabled us to directly link the secondary, larval NB lineages to their adult counterparts. The data provide an anatomical framework that 1) makes it possible to assign most neurons to their parent lineage and 2) allows more precise definitions of the neuronal organization of the adult VNS based in developmental units/rules. J. Comp. Neurol. 524:2677-2695, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  17. Postembryonic lineages of the Drosophila ventral nervous system: Neuroglian expression reveals the adult hemilineage associated fiber tracts in the adult thoracic neuromeres

    PubMed Central

    Harris, Robin; Williams, Darren W.; Truman, James W.

    2016-01-01

    During larval life most of the thoracic neuroblasts (NBs) in Drosophila undergo a second phase of neurogenesis to generate adult‐specific neurons that remain in an immature, developmentally stalled state until pupation. Using a combination of MARCM and immunostaining with a neurotactin antibody, Truman et al. (2004; Development 131:5167–5184) identified 24 adult‐specific NB lineages within each thoracic hemineuromere of the larval ventral nervous system (VNS), but because of the neurotactin labeling of lineage tracts disappearing early in metamorphosis, they were unable extend the identification of these lineages into the adult. Here we show that immunostaining with an antibody against the cell adhesion molecule neuroglian reveals the same larval secondary lineage projections through metamorphosis and bfy identifying each neuroglian‐positive tract at selected stages we have traced the larval hemilineage tracts for all three thoracic neuromeres through metamorphosis into the adult. To validate tract identifications we used the genetic toolkit developed by Harris et al. (2015; Elife 4) to preserve hemilineage‐specific GAL4 expression patterns from larval into the adult stage. The immortalized expression proved a powerful confirmation of the analysis of the neuroglian scaffold. This work has enabled us to directly link the secondary, larval NB lineages to their adult counterparts. The data provide an anatomical framework that 1) makes it possible to assign most neurons to their parent lineage and 2) allows more precise definitions of the neuronal organization of the adult VNS based in developmental units/rules. J. Comp. Neurol. 524:2677–2695, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26878258

  18. A role for Lin-28 in growth and metamorphosis in Drosophila melanogaster.

    PubMed

    González-Itier, Sergio; Contreras, Esteban G; Larraín, Juan; Glavic, Álvaro; Faunes, Fernando

    2018-06-13

    Insect metamorphosis has been a classic model to understand the role of hormones in growth and timing of developmental transitions. In addition to hormones, transitions in some species are regulated by genetic programs, such as the heterochronic gene network discovered in C. elegans. However, the functional link between hormones and heterochronic genes is not clear. The heterochronic gene lin-28 is involved in the maintenance of stem cells, growth and developmental timing in vertebrates. In this work, we used gain-of-function and loss-of-function experiments to study the role of Lin-28 in larval growth and the timing of metamorphosis of Drosophila melanogaster. During the late third instar stage, Lin-28 is mainly expressed in neurons of the central nervous system and in the intestine. Loss-of-function lin-28 mutant larvae are smaller and the larval-to-pupal transition is accelerated. This faster transition correlates with increased levels of ecdysone direct target genes such as Broad-Complex (BR-C) and Ecdysone Receptor (EcR). Overexpression of Lin-28 does not affect the timing of pupariation but most animals are not able to eclose, suggesting defects in metamorphosis. Overexpression of human Lin-28 results in delayed pupariation and the death of animals during metamorphosis. Altogether, these results suggest that Lin-28 is involved in the control of growth during larval development and in the timing and progression of metamorphosis. Copyright © 2017. Published by Elsevier B.V.

  19. [Effects of temperature on the embryonic development and larval growth of Sepia lycidas].

    PubMed

    Jiang, Xia-Min; Peng, Rui-Bing; Luo, Jiang; Tang, Feng

    2013-05-01

    A single-factor experiment was conducted to study the effects of different temperature (15, 18, 21, 24, 27, 30, and 33 degrees C) on the embryonic development and larval growth of Sepia lycidas, aimed to search for the optimum temperature for the development and growth of S. lycidas. The results showed that temperature had significant effects on the embryonic development and larval growth of S. lycidas (P < 0.05). The suitable temperature for hatching ranged from 21 degrees C to 30 degrees C, and the optimum temperature was 24 degrees C. At the optimum temperature, the hatching rate was (93.3 +/- 2.9)%, incubation period was (24.33 +/- 0.58) d, hatching period was (6.00 +/- 1.00) d, completely absorked rate of yolk sac was (96.4 +/- 3.1)%, and newly hatched larvae mass was (0.258 +/- 0.007) g. The effective accumulated temperature model was N = 284.42/(T-12.57). The suitable temperature for the larval survival and growth ranged from 21 degrees C to 30 degrees C, and the optimum temperature was from 24 degrees C to 27 degrees C. At the optimum temperature, the survival rate ranged from 70.0% to 73.3%, and the specific growth rate was from 2.4% to 3.8%.

  20. Extracellular matrix and its receptors in Drosophila neural development

    PubMed Central

    Broadie, Kendal; Baumgartner, Stefan; Prokop, Andreas

    2011-01-01

    Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: 1) neural progenitor proliferation, 2) axonal growth and pathfinding and 3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions. PMID:21688401

  1. Neural Circuits Underlying Fly Larval Locomotion

    PubMed Central

    Kohsaka, Hiroshi; Guertin, Pierre A.; Nose, Akinao

    2017-01-01

    Locomotion is a complex motor behavior that may be expressed in different ways using a variety of strategies depending upon species and pathological or environmental conditions. Quadrupedal or bipedal walking, running, swimming, flying and gliding constitute some of the locomotor modes enabling the body, in all cases, to move from one place to another. Despite these apparent differences in modes of locomotion, both vertebrate and invertebrate species share, at least in part, comparable neural control mechanisms for locomotor rhythm and pattern generation and modulation. Significant advances have been made in recent years in studies of the genetic aspects of these control systems. Findings made specifically using Drosophila (fruit fly) models and preparations have contributed to further understanding of the key role of genes in locomotion. This review focuses on some of the main findings made in larval fruit flies while briefly summarizing the basic advantages of using this powerful animal model for studying the neural locomotor system. PMID:27928962

  2. Long Term Ex Vivo Culture and Live Imaging of Drosophila Larval Imaginal Discs.

    PubMed

    Tsao, Chia-Kang; Ku, Hui-Yu; Lee, Yuan-Ming; Huang, Yu-Fen; Sun, Yi Henry

    Continuous imaging of live tissues provides clear temporal sequence of biological events. The Drosophila imaginal discs have been popular experimental subjects for the study of a wide variety of biological phenomena, but long term culture that allows normal development has not been satisfactory. Here we report a culture method that can sustain normal development for 18 hours and allows live imaging. The method is validated in multiple discs and for cell proliferation, differentiation and migration. However, it does not support disc growth and cannot support cell proliferation for more than 7 to 12 hr. We monitored the cellular behavior of retinal basal glia in the developing eye disc and found that distinct glia type has distinct properties of proliferation and migration. The live imaging provided direct proof that wrapping glia differentiated from existing glia after migrating to the anterior front, and unexpectedly found that they undergo endoreplication before wrapping axons, and their nuclei migrate up and down along the axons. UV-induced specific labeling of a single carpet glia also showed that the two carpet glia membrane do not overlap and suggests a tiling or repulsion mechanism between the two cells. These findings demonstrated the usefulness of an ex vivo culture method and live imaging.

  3. Autophagy in Drosophila melanogaster.

    PubMed

    McPhee, Christina K; Baehrecke, Eric H

    2009-09-01

    Macroautophagy (autophagy) is a bulk cytoplasmic degradation process that is conserved from yeast to mammals. Autophagy is an important cellular response to starvation and stress, and plays critical roles in development, cell death, aging, immunity, and cancer. The fruit fly Drosophila melanogaster provides an excellent model system to study autophagy in vivo, in the context of a developing organism. Autophagy (atg) genes and their regulators are conserved in Drosophila, and autophagy is induced in response to nutrient starvation and hormones during development. In this review we provide an overview of how Drosophila research has contributed to our understanding of the role and regulation of autophagy in cell survival, growth, nutrient utilization, and cell death. Recent Drosophila research has also provided important mechanistic information about the role of autophagy in protein aggregation disorders, neurodegeneration, aging, and innate immunity. Differences in the role of autophagy in specific contexts and/or cell types suggest that there may be cell-context-specific regulators of autophagy, and studies in Drosophila are well-suited to yield discoveries about this specificity.

  4. Modeling congenital disease and inborn errors of development in Drosophila melanogaster

    PubMed Central

    Moulton, Matthew J.; Letsou, Anthea

    2016-01-01

    ABSTRACT Fly models that faithfully recapitulate various aspects of human disease and human health-related biology are being used for research into disease diagnosis and prevention. Established and new genetic strategies in Drosophila have yielded numerous substantial successes in modeling congenital disorders or inborn errors of human development, as well as neurodegenerative disease and cancer. Moreover, although our ability to generate sequence datasets continues to outpace our ability to analyze these datasets, the development of high-throughput analysis platforms in Drosophila has provided access through the bottleneck in the identification of disease gene candidates. In this Review, we describe both the traditional and newer methods that are facilitating the incorporation of Drosophila into the human disease discovery process, with a focus on the models that have enhanced our understanding of human developmental disorders and congenital disease. Enviable features of the Drosophila experimental system, which make it particularly useful in facilitating the much anticipated move from genotype to phenotype (understanding and predicting phenotypes directly from the primary DNA sequence), include its genetic tractability, the low cost for high-throughput discovery, and a genome and underlying biology that are highly evolutionarily conserved. In embracing the fly in the human disease-gene discovery process, we can expect to speed up and reduce the cost of this process, allowing experimental scales that are not feasible and/or would be too costly in higher eukaryotes. PMID:26935104

  5. Coordinated Development of Muscles and Tendon-Like Structures: Early Interactions in the Drosophila Leg.

    PubMed

    Soler, Cedric; Laddada, Lilia; Jagla, Krzysztof

    2016-01-01

    The formation of the musculoskeletal system is a remarkable example of tissue assembly. In both vertebrates and invertebrates, precise connectivity between muscles and skeleton (or exoskeleton) via tendons or equivalent structures is fundamental for movement and stability of the body. The molecular and cellular processes underpinning muscle formation are well-established and significant advances have been made in understanding tendon development. However, the mechanisms contributing to proper connection between these two tissues have received less attention. Observations of coordinated development of tendons and muscles suggest these tissues may interact during the different steps in their development. There is growing evidence that, depending on animal model and muscle type, these interactions can take place from progenitor induction to the final step of the formation of the musculoskeletal system. Here, we briefly review and compare the mechanisms behind muscle and tendon interaction throughout the development of vertebrates and Drosophila before going on to discuss our recent findings on the coordinated development of muscles and tendon-like structures in Drosophila leg. By altering apodeme formation (the functional Drosophila equivalent of tendons in vertebrates) during the early steps of leg development, we affect the spatial localization of subsequent myoblasts. These findings provide the first evidence of the developmental impact of early interactions between muscle and tendon-like precursors, and confirm the appendicular Drosophila muscle system as a valuable model for studying these processes.

  6. Coordinated Development of Muscles and Tendon-Like Structures: Early Interactions in the Drosophila Leg

    PubMed Central

    Soler, Cedric; Laddada, Lilia; Jagla, Krzysztof

    2016-01-01

    The formation of the musculoskeletal system is a remarkable example of tissue assembly. In both vertebrates and invertebrates, precise connectivity between muscles and skeleton (or exoskeleton) via tendons or equivalent structures is fundamental for movement and stability of the body. The molecular and cellular processes underpinning muscle formation are well-established and significant advances have been made in understanding tendon development. However, the mechanisms contributing to proper connection between these two tissues have received less attention. Observations of coordinated development of tendons and muscles suggest these tissues may interact during the different steps in their development. There is growing evidence that, depending on animal model and muscle type, these interactions can take place from progenitor induction to the final step of the formation of the musculoskeletal system. Here, we briefly review and compare the mechanisms behind muscle and tendon interaction throughout the development of vertebrates and Drosophila before going on to discuss our recent findings on the coordinated development of muscles and tendon-like structures in Drosophila leg. By altering apodeme formation (the functional Drosophila equivalent of tendons in vertebrates) during the early steps of leg development, we affect the spatial localization of subsequent myoblasts. These findings provide the first evidence of the developmental impact of early interactions between muscle and tendon-like precursors, and confirm the appendicular Drosophila muscle system as a valuable model for studying these processes. PMID:26869938

  7. Oral magnetite nanoparticles disturb the development of Drosophila melanogaster from oogenesis to adult emergence.

    PubMed

    Chen, Hanqing; Wang, Bing; Feng, Weiyue; Du, Wei; Ouyang, Hong; Chai, Zhifang; Bi, Xiaolin

    2015-05-01

    The potential impacts of nanomaterials (NMs) on fetal development have attracted great concerns because of the increased potential exposure to NMs during pregnancy. Drosophila melanogaster oogenesis and developmental transitions may provide an attractive system to study the biological and environmental effects of NMs on the embryonic development. In this study, the effects of three types of magnetite (Fe3O4) nanoparticles (MNPs): UN-MNPs (pristine), CA-MNPs (citric acid modified) and APTS-MNPs (3-aminopropyltriethoxylsilane coated) on the development of Drosophila at 300 and 600 μg/g dosage were studied. The uptake of MNPs by female and male flies caused obvious reduction in the female fecundity, and the developmental delay at the egg-pupae and pupae-adult transitions, especially in those treated by the positive APTS-MNPs. Further investigation demonstrates that the parental uptake of MNPs disturbs the oogenesis period, induces ovarian defect, reduces the length of eggs, decreases the number of nurse cells and delays egg chamber development, which may contribute to the decrease of fecundity of female Drosophila and the development delay of their offspring. Using the synchrotron radiation-based micro-X-ray fluorescence (SR-μXRF), the dyshomeostasis of trace elements such as Fe, Ca and Cu along the anterior-posterior axis of the fertilized eggs was found, which may be an important reason for the development delay of Drosophila.

  8. Notch signalling coordinates tissue growth and wing fate specification in Drosophila.

    PubMed

    Rafel, Neus; Milán, Marco

    2008-12-01

    During the development of a given organ, tissue growth and fate specification are simultaneously controlled by the activity of a discrete number of signalling molecules. Here, we report that these two processes are extraordinarily coordinated in the Drosophila wing primordium, which extensively proliferates during larval development to give rise to the dorsal thoracic body wall and the adult wing. The developmental decision between wing and body wall is defined by the opposing activities of two secreted signalling molecules, Wingless and the EGF receptor ligand Vein. Notch signalling is involved in the determination of a variety of cell fates, including growth and cell survival. We present evidence that growth of the wing primordium mediated by the activity of Notch is required for wing fate specification. Our data indicate that tissue size modulates the activity range of the signalling molecules Wingless and Vein. These results highlight a crucial role of Notch in linking proliferation and fate specification in the developing wing primordium.

  9. Reverse osmosis and ultrafiltration for recovery and reuse of larval rearing water in Anopheles arabiensis mass production: Effect of water quality on larval development and fitness of emerging adults.

    PubMed

    Mamai, Wadaka; Hood-Nowotny, Rebecca; Maiga, Hamidou; Ali, Adel Barakat; Bimbile-Somda, Nanwintoun S; Soma, Diloma Dieudonné; Yamada, Hanano; Lees, Rosemary Susan; Gilles, Jeremie R L

    2017-06-01

    Countries around the world are showing increased interest in applying the sterile insect technique against mosquito disease vectors. Many countries in which mosquitoes are endemic, and so where vector control using the sterile insect technique may be considered, are located in arid zones where water provision can be costly or unreliable. Water reuse provides an alternate form of water supply. In order to reduce the cost of mass rearing of Anopheles arabiensis mosquitoes, the possibility of recycling and reusing larval rearing water was explored. The used rearing water ('dirty water') was collected after the tilting of rearing trays for collection of larvae/pupae, and larvae/pupae separation events and underwent treatment processes consisting of ultrafiltration and reverse osmosis. First-instar An. arabiensis larvae were randomly assigned to different water-type treatments, 500 larvae per laboratory rearing tray: 'clean' dechlorinated water, routinely used in rearing; dirty water; and 'recycled' dirty water treated using reverse osmosis and ultrafiltration. Several parameters of insect quality were then compared: larval development, pupation rate, adult emergence, body size and longevity. Water quality of the samples was analyzed in terms of ammonia, nitrite, nitrate, sulphate, dissolved oxygen, chloride, and phosphate concentrations after the larvae had all pupated or died. Surface water temperatures were also recorded continuously during larval development. Pupation rates and adult emergence were similar in all water treatments. Adult body sizes of larvae reared in recycled water were similar to those reared in clean water, but larger than those reared in the dirty larval water treatment, whereas the adult longevity of larvae reared in recycled water was significantly increased relative to both 'clean' and 'dirty' water. Dirty larval water contained significantly higher concentrations of ammonium, sulfate, phosphate and chloride and lower levels of dissolved

  10. Artificial Induction of Associative Olfactory Memory by Optogenetic and Thermogenetic Activation of Olfactory Sensory Neurons and Octopaminergic Neurons in Drosophila Larvae

    PubMed Central

    Honda, Takato; Lee, Chi-Yu; Honjo, Ken; Furukubo-Tokunaga, Katsuo

    2016-01-01

    The larval brain of Drosophila melanogaster provides an excellent system for the study of the neurocircuitry mechanism of memory. Recent development of neurogenetic techniques in fruit flies enables manipulations of neuronal activities in freely behaving animals. This protocol describes detailed steps for artificial induction of olfactory associative memory in Drosophila larvae. In this protocol, the natural reward signal is substituted by thermogenetic activation of octopaminergic neurons in the brain. In parallel, the odor signal is substituted by optogenetic activation of a specific class of olfactory receptor neurons. Association of reward and odor stimuli is achieved with the concomitant application of blue light and heat that leads to activation of both sets of neurons in living transgenic larvae. Given its operational simplicity and robustness, this method could be utilized to further our knowledge on the neurocircuitry mechanism of memory in the fly brain. PMID:27445732

  11. Evidence for the Involvement of p38 MAPK Activation in Barnacle Larval Settlement

    PubMed Central

    He, Li-Sheng; Xu, Ying; Matsumura, Kiyotaka; Zhang, Yu; Zhang, Gen; Qi, Shu-Hua; Qian, Pei-Yuan

    2012-01-01

    The barnacle Balanus ( = Amphibalanus) amphitrite is a major marine fouling animal. Understanding the molecular mechanism of larval settlement in this species is critical for anti-fouling research. In this study, we cloned one isoform of p38 MAPK (Bar-p38 MAPK) from this species, which shares the significant characteristic of containing a TGY motif with other species such as yeast, Drosophila and humans. The activation of p38 MAPK was detected by an antibody that recognizes the conserved dual phosphorylation sites of TGY. The results showed that phospho-p38 MAPK (pp38 MAPK) was more highly expressed at the cyprid stage, particularly in aged cyprids, in comparison to other stages, including the nauplius and juvenile stages. Immunostaining showed that Bar-p38 MAPK and pp38 MAPK were mainly located at the cyprid antennules, and especially the third and fourth segments, which are responsible for substratum exploration during settlement. The expression and localization patterns of Bar-p38 MAPK suggest its involvement in larval settlement. This postulation was also supported by the larval settlement bioassay with the p38 MAPK inhibitor SB203580. Behavioral analysis by live imaging revealed that the larvae were still capable of exploring the surface of the substratum after SB203580 treatment. This shows that the effect of p38 MAPK on larval settlement might be by regulating the secretion of permanent proteinaceous substances. Furthermore, the level of pp38 MAPK dramatically decreased after full settlement, suggesting that Bar-p38 MAPK maybe plays a role in larval settlement rather than metamorphosis. Finally, we found that Bar-p38 MAPK was highly activated when larvae confronted extracts of adult barnacle containing settlement cues, whereas larvae pre-treated with SB203580 failed to respond to the crude adult extracts. PMID:23115639

  12. High amylose starch consumption induces obesity in Drosophila melanogaster and metformin partially prevents accumulation of storage lipids and shortens lifespan of the insects.

    PubMed

    Abrat, Oleksandra B; Storey, Janet M; Storey, Kenneth B; Lushchak, Volodymyr I

    2018-01-01

    There are very few studies that have directly analyzed the effects of dietary intake of slowly digestible starches on metabolic parameters of animals. The present study examined the effects of slowly digestible starch with high amylose content (referred also as amylose starch) either alone, or in combination with metformin on the development, lifespan, and levels of glucose and storage lipids in the fruit fly Drosophila melanogaster. Consumption of amylose starch in concentrations 0.25-10% did not affect D. melanogaster development, whereas 20% starch delayed pupation and reduced the number of larvae that reached the pupal stage. Starch levels in larval food, but not in adult food, determined levels of triacylglycerides in eight-day-old adult flies. Rearing on diet with 20% starch led to shorter lifespan and a higher content of triacylglycerides in the bodies of adult flies as compared with the same parameters in flies fed on 4% starch diet. Food supplementation with 10mM metformin partly attenuated the negative effects of high starch concentrations on larval pupation and decreased triacylglyceride levels in adult flies fed on 20% starch. Long-term consumption of diets supplemented with metformin and starch decreased lifespan of the insects, compared with the diet supplemented with starch only. The data show that in Drosophila high starch consumption may induce a fat fly phenotype and metformin may partially prevent it. Copyright © 2017. Published by Elsevier Inc.

  13. Grass Pollen Affects Survival and Development of Larval Anopheles arabiensis (Diptera: Culicidae).

    PubMed

    Asmare, Yelfwagash; Hopkins, Richard J; Tekie, Habte; Hill, Sharon R; Ignell, Rickard

    2017-09-01

    Nutrients in breeding sites are critical for the survival and development of malaria mosquitoes, having a direct impact on vectorial capacity. Yet, there is a limited understanding about the natural larval diet and its impact on the individual fitness of mosquitoes. Recent studies have shown that gravid Anopheles arabiensis Patton (Diptera: Culicidae) are attracted by and oviposit in grass-associated habitats. The pollen provided by these grasses is a potential source of nutrients for the larvae. Here, we assess the effect of Typha latifolia L. (Poales: Typhaceae), Echinochloa pyramidalis Lamarck, Pennisetum setaceum Forsskål, and Zea mays L. pollen on larval survival and rate of development in An. arabiensis under laboratory conditions. In addition, we characterize the carbon to nitrogen ratio and the size of pollen grains as a measure of diet quality. Carbon-rich pollen with a small grain size (T. latifolia and P. setaceum; 9.7 ± 0.3 × 103 and 5.5 ± 0.2 × 104 µm3, respectively) resulted in enhanced rates of development of An. arabiensis. In contrast, the larva fed on the nitrogen-rich control diet (TetraMin) was slower to develop, but demonstrated the highest larval survival. Larvae fed on carbon-rich and large-grained Z. mays pollen (4.1 ± 0.2 × 105 µm3) survived at similar levels as those fed on the control diet and also took a longer time to develop compared with larvae fed on the other pollens. While males and females did not appear to develop differently on the different pollen diets, males consistently emerged faster than their female counterparts. These results are discussed in relation to integrated vector management. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  14. Modeling Human Cancers in Drosophila.

    PubMed

    Sonoshita, M; Cagan, R L

    2017-01-01

    Cancer is a complex disease that affects multiple organs. Whole-body animal models provide important insights into oncology that can lead to clinical impact. Here, we review novel concepts that Drosophila studies have established for cancer biology, drug discovery, and patient therapy. Genetic studies using Drosophila have explored the roles of oncogenes and tumor-suppressor genes that when dysregulated promote cancer formation, making Drosophila a useful model to study multiple aspects of transformation. Not limited to mechanism analyses, Drosophila has recently been showing its value in facilitating drug development. Flies offer rapid, efficient platforms by which novel classes of drugs can be identified as candidate anticancer leads. Further, we discuss the use of Drosophila as a platform to develop therapies for individual patients by modeling the tumor's genetic complexity. Drosophila provides both a classical and a novel tool to identify new therapeutics, complementing other more traditional cancer tools. © 2017 Elsevier Inc. All rights reserved.

  15. Exploring Larval Development and Applications in Marine Fish Aquaculture Using Pink Snapper Embryos

    ERIC Educational Resources Information Center

    Tamaru, Clyde; Haverkort-Yeh, Roxanne D.; Gorospe, Kelvin D.; Rivera, Malia Ana J.

    2014-01-01

    This biology investigation on "Pristipomoides filamentosus" larval development, survival, and aquaculture research was developed with three educational objectives: to provide high school students with (1) a scientific background on the biology and science of fisheries as well as overfishing, its consequences, and possible mitigations;…

  16. Transcriptional Signatures in Response to Wheat Germ Agglutinin and Starvation in Drosophila melanogaster Larval Midgut

    USDA-ARS?s Scientific Manuscript database

    One function of plant lectins such as wheat germ agglutinin (WGA) is to serve as defenses against herbivorous insects. The midgut is one critical site affected by dietary lectins. We observed marked cellular, structural, and gene expression changes in the midguts of Drosophila melanogaster third-i...

  17. Muscle segmentation in time series images of Drosophila metamorphosis.

    PubMed

    Yadav, Kuleesha; Lin, Feng; Wasser, Martin

    2015-01-01

    In order to study genes associated with muscular disorders, we characterize the phenotypic changes in Drosophila muscle cells during metamorphosis caused by genetic perturbations. We collect in vivo images of muscle fibers during remodeling of larval to adult muscles. In this paper, we focus on the new image processing pipeline designed to quantify the changes in shape and size of muscles. We propose a new two-step approach to muscle segmentation in time series images. First, we implement a watershed algorithm to divide the image into edge-preserving regions, and then, we classify these regions into muscle and non-muscle classes on the basis of shape and intensity. The advantage of our method is two-fold: First, better results are obtained because classification of regions is constrained by the shape of muscle cell from previous time point; and secondly, minimal user intervention results in faster processing time. The segmentation results are used to compare the changes in cell size between controls and reduction of the autophagy related gene Atg 9 during Drosophila metamorphosis.

  18. Dietary glucose regulates yeast consumption in adult Drosophila males.

    PubMed

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.

  19. Temperature during larval development and adult maintenance influences the survival of Anopheles gambiae s.s.

    PubMed

    Christiansen-Jucht, Céline; Parham, Paul E; Saddler, Adam; Koella, Jacob C; Basáñez, María-Gloria

    2014-11-05

    °C to 31°C depended on the adult environmental temperature. The data also suggest that differences between the temperatures of the larval and adult environments affects adult mosquito survival. Environmental temperature affects Anopheles survival directly during the juvenile and adult stages, and indirectly, since temperature during larval development significantly influences adult survival. These results will help to parameterise more reliable mathematical models investigating the potential impact of temperature and global warming on malaria transmission.

  20. Kinesin Mutations Cause Motor Neuron Disease Phenotypes by Disrupting Fast Axonal Transport in Drosophila

    PubMed Central

    Hurd, D. D.; Saxton, W. M.

    1996-01-01

    Previous work has shown that mutation of the gene that encodes the microtubule motor subunit kinesin heavy chain (Khc) in Drosophila inhibits neuronal sodium channel activity, action potentials and neurotransmitter secretion. These physiological defects cause progressive distal paralysis in larvae. To identify the cellular defects that cause these phenotypes, larval nerves were studied by light and electron microscopy. The axons of Khc mutants develop dramatic focal swellings along their lengths. The swellings are packed with fast axonal transport cargoes including vesicles, synaptic membrane proteins, mitochondria and prelysosomal organelles, but not with slow axonal transport cargoes such as cytoskeletal elements. Khc mutations also impair the development of larval motor axon terminals, causing dystrophic morphology and marked reductions in synaptic bouton numbers. These observations suggest that as the concentration of maternally provided wild-type KHC decreases, axonal organelles transported by kinesin periodically stall. This causes organelle jams that disrupt retrograde as well as anterograde fast axonal transport, leading to defective action potentials, dystrophic terminals, reduced transmitter secretion and progressive distal paralysis. These phenotypes parallel the pathologies of some vertebrate motor neuron diseases, including some forms of amyotrophic lateral sclerosis (ALS), and suggest that impaired fast axonal transport is a key element in those diseases. PMID:8913751

  1. Edin Expression in the Fat Body Is Required in the Defense Against Parasitic Wasps in Drosophila melanogaster.

    PubMed

    Vanha-Aho, Leena-Maija; Anderl, Ines; Vesala, Laura; Hultmark, Dan; Valanne, Susanna; Rämet, Mika

    2015-05-01

    The cellular immune response against parasitoid wasps in Drosophila involves the activation, mobilization, proliferation and differentiation of different blood cell types. Here, we have assessed the role of Edin (elevated during infection) in the immune response against the parasitoid wasp Leptopilina boulardi in Drosophila melanogaster larvae. The expression of edin was induced within hours after a wasp infection in larval fat bodies. Using tissue-specific RNAi, we show that Edin is an important determinant of the encapsulation response. Although edin expression in the fat body was required for the larvae to mount a normal encapsulation response, it was dispensable in hemocytes. Edin expression in the fat body was not required for lamellocyte differentiation, but it was needed for the increase in plasmatocyte numbers and for the release of sessile hemocytes into the hemolymph. We conclude that edin expression in the fat body affects the outcome of a wasp infection by regulating the increase of plasmatocyte numbers and the mobilization of sessile hemocytes in Drosophila larvae.

  2. Larval spicules, cilia, and symmetry as remnants of indirect development in the direct developing sea urchin Heliocidaris erythrogramma.

    PubMed

    Emlet, R B

    1995-02-01

    Nonfeeding larvae of the echinoid Heliocidaris erythrogramma were raised in culture and examined for expression of a larval skeleton and for the arrangement of the ciliated band. Opaque larvae were fixed, cleared, and examined under polarized light for evidence of calcification. By 35 hr after fertilization (at 22 degrees C), a pair of triradiate spicules was present at the posterior end of the larvae. Each member of this pair formed a fenestrated spicule as it grew laterally. This pair and another pair which formed subsequently, were arranged across a plane of bilateral symmetry orthagonal to the juvenile oral aboral axis. These paired larval spicules can be identified as reduced expressions of postoral and posterodorsal rods found in plutei, and their expression indicates that the juvenile rudiment of H. erythrogramma forms on the left side and that larval body axes are conserved in this modified larva. By 44 hr the ciliated band formed as an incomplete transverse loop of three segments at the posterior end and on the dorsal surface of the ovoid larva. Cilia in these segments grew to lengths of 45-50 microns, longer than other swimming and feeding cilia reported for echinoderm larvae. Band segments are interpreted as expressions of epaulettes (specialized swimming bands) rather than the feeding ciliated band of the pluteus. The ciliated band segments and the larval spicules are both bilaterally symmetrical with respect to the same plane and indicate conserved larval bilateral symmetry despite the major asymmetry of the fates of cells on either side of this plane in their contribution to juvenile development.

  3. Fitness variation in response to artificial selection for reduced cell area, cell number and wing area in natural populations of Drosophila melanogaster.

    PubMed

    Trotta, Vincenzo; Calboli, Federico C F; Ziosi, Marcello; Cavicchi, Sandro

    2007-08-16

    Genetically based body size differences are naturally occurring in populations of Drosophila melanogaster, with bigger flies in the cold. Despite the cosmopolitan nature of body size clines in more than one Drosophila species, the actual selective mechanisms controlling the genetic basis of body size variation are not fully understood. In particular, it is not clear what the selective value of cell size and cell area variation exactly is. In the present work we determined variation in viability, developmental time and larval competitive ability in response to crowding at two temperatures after artificial selection for reduced cell area, cell number and wing area in four different natural populations of D. melanogaster. No correlated effect of selection on viability or developmental time was observed among all selected populations. An increase in competitive ability in one thermal environment (18 degrees C) under high larval crowding was observed as a correlated response to artificial selection for cell size. Viability and developmental time are not affected by selection for the cellular component of body size, suggesting that these traits only depend on the contingent genetic makeup of a population. The higher larval competitive ability shown by populations selected for reduced cell area seems to confirm the hypothesis that cell area mediated changes have a relationship with fitness, and might be the preferential way to change body size under specific circumstances.

  4. Arrested larval development in cattle nematodes.

    PubMed

    Armour, J; Duncan, M

    1987-06-01

    Most economically important cattle nematodes are able to arrest their larval development within the host - entering a period of dormancy or hypobiosis. Arrested larvae have a low death rate, and large numbers can accumulate in infected cattle during the grazing season. Because of this, outbreaks of disease caused by such nematodes can occur at times when recent infection with the parasites could not have occurred, for example during winter in temperature northern climates when cattle are normally housed. The capacity to arrest is a heritable trait. It is seen as an adaptation by the parasite to avoid further development to its free-living stages during times when the climate is unsuitable for free-living survival. But levels of arrestment can vary markedly in different regions, in different cattle, and under different management regimes. Climatic factors, previous conditioning, host immune status, and farm management all seem to affect arrestment levels. In this article, James Armour and Mary Duncan review the biological basis of the phenomenon, and discuss the apparently conflicting views on how it is controlled.

  5. Adaptation to Chronic Nutritional Stress Leads to Reduced Dependence on Microbiota in Drosophila melanogaster

    PubMed Central

    Kolly, Sylvain; van der Meer, Jan R.; Kawecki, Tadeusz J.

    2017-01-01

    ABSTRACT Numerous studies have shown that animal nutrition is tightly linked to gut microbiota, especially under nutritional stress. In Drosophila melanogaster, microbiota are known to promote juvenile growth, development, and survival on poor diets, mainly through enhanced digestion leading to changes in hormonal signaling. Here, we show that this reliance on microbiota is greatly reduced in replicated Drosophila populations that became genetically adapted to a poor larval diet in the course of over 170 generations of experimental evolution. Protein and polysaccharide digestion in these poor-diet-adapted populations became much less dependent on colonization with microbiota. This was accompanied by changes in expression levels of dFOXO transcription factor, a key regulator of cell growth and survival, and many of its targets. These evolutionary changes in the expression of dFOXO targets to a large degree mimic the response of the same genes to microbiota, suggesting that the evolutionary adaptation to poor diet acted on mechanisms that normally mediate the response to microbiota. Our study suggests that some metazoans have retained the evolutionary potential to adapt their physiology such that association with microbiota may become optional rather than essential. PMID:29066546

  6. A Behavior-Based Circuit Model of How Outcome Expectations Organize Learned Behavior in Larval "Drosophila"

    ERIC Educational Resources Information Center

    Schleyer, Michael; Saumweber, Timo; Nahrendorf, Wiebke; Fischer, Benjamin; von Alpen, Desiree; Pauls, Dennis; Thum, Andreas; Gerber, Bertram

    2011-01-01

    Drosophila larvae combine a numerically simple brain, a correspondingly moderate behavioral complexity, and the availability of a rich toolbox for transgenic manipulation. This makes them attractive as a study case when trying to achieve a circuit-level understanding of behavior organization. From a series of behavioral experiments, we suggest a…

  7. The Drosophila TIPE family member Sigmar interacts with the Ste20-like kinase Misshapen and modulates JNK signaling, cytoskeletal remodeling and autophagy.

    PubMed

    Chittaranjan, Suganthi; Xu, Jing; Kuzyk, Michael; Dullat, Harpreet K; Wilton, James; DeVorkin, Lindsay; Lebovitz, Chandra; Morin, Gregg B; Marra, Marco A; Gorski, Sharon M

    2015-04-02

    TNFAIP8 and other mammalian TIPE family proteins have attracted increased interest due to their associations with disease-related processes including oncogenic transformation, metastasis, and inflammation. The molecular and cellular functions of TIPE family proteins are still not well understood. Here we report the molecular and genetic characterization of the Drosophila TNFAIP8 homolog, CG4091/sigmar. Previous gene expression studies revealed dynamic expression of sigmar in larval salivary glands prior to histolysis. Here we demonstrate that in sigmar loss-of-function mutants, the salivary glands are morphologically abnormal with defects in the tubulin network and decreased autophagic flux. Sigmar localizes subcellularly to microtubule-containing projections in Drosophila S2 cells, and co-immunoprecipitates with the Ste20-like kinase Misshapen, a regulator of the JNK pathway. Further, the Drosophila TNF ligand Eiger can induce sigmar expression, and sigmar loss-of-function leads to altered localization of pDJNK in salivary glands. Together, these findings link Sigmar to the JNK pathway, cytoskeletal remodeling and autophagy activity during salivary gland development, and provide new insights into TIPE family member function. © 2015. Published by The Company of Biologists Ltd.

  8. Semi-automated quantitative Drosophila wings measurements.

    PubMed

    Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan

    2017-06-28

    Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

  9. Detection of Genetically Altered Copper Levels in Drosophila Tissues by Synchrotron X-Ray Fluorescence Microscopy

    PubMed Central

    Lye, Jessica C.; Hwang, Joab E. C.; Paterson, David; de Jonge, Martin D.; Howard, Daryl L.; Burke, Richard

    2011-01-01

    Tissue-specific manipulation of known copper transport genes in Drosophila tissues results in phenotypes that are presumably due to an alteration in copper levels in the targeted cells. However direct confirmation of this has to date been technically challenging. Measures of cellular copper content such as expression levels of copper-responsive genes or cuproenzyme activity levels, while useful, are indirect. First-generation copper-sensitive fluorophores show promise but currently lack the sensitivity required to detect subtle changes in copper levels. Moreover such techniques do not provide information regarding other relevant biometals such as zinc or iron. Traditional techniques for measuring elemental composition such as inductively coupled plasma mass spectroscopy are not sensitive enough for use with the small tissue amounts available in Drosophila research. Here we present synchrotron x-ray fluorescence microscopy analysis of two different Drosophila tissues, the larval wing imaginal disc, and sectioned adult fly heads and show that this technique can be used to detect changes in tissue copper levels caused by targeted manipulation of known copper homeostasis genes. PMID:22053217

  10. Monitoring the effects of a lepidopteran insecticide, Flubendiamide, on the biology of a non-target dipteran insect, Drosophila melanogaster.

    PubMed

    Sarkar, Saurabh; Roy, Sumedha

    2017-10-13

    Various organisms are adversely affected when subjected to chronic fluoride exposure. This highly electronegative ion present in several insecticide formulations is found to be lethal to target pests. In the present study, Drosophila melanogaster is treated with sub-lethal concentrations of a diamide insecticide formulation, Flubendiamide. Chronic exposure to the diamide (0.5-100 μg/mL) was found to be responsible for increase in fluoride ion concentration in larval as well as adult body fluid. Interestingly, 100 μg/mL Flubendiamide exposure resulted in 107 and 298% increase in fluoride ion concentration whereas only 23 and 52% of Flubendiamide concentration increase in larval and adult body fluid, respectively. Further, in this study, selected life cycle parameters like larval duration, pupal duration and emergence time showed minimal changes, whereas percentage of emergence and fecundity revealed significant treatment-associated variation. It can be noted that nearly 79% reduction in fecundity was observed with 100 μg/mL Flubendiamide exposure. The variations in these parameters indicate probable involvement of fluoride ion in detectable alterations in the biology of the non-target model insect, D. melanogaster. Furthermore, the outcomes of life cycle study suggest change in resource allocation pattern in the treated flies. The altered resource allocation might have been sufficient to resist changes in selective life cycle parameters, but it could not defend the changes in fecundity. The significant alterations indicate a definite trade-off pattern, where the treated individuals happen to compromise. Thus, survival is apparently taking an upper hand in comparison to reproductive ability in response to Flubendiamide exposure. Graphical abstract The figure demonstrates increase in Fluoride and Flubendiamide concentrations in Drosophila melanogaster after chronic sub-lethal exposure to Flubendiamide. Treatment-induced alterations in larval and pupal duration

  11. The Drosophila DOCK family protein Sponge is required for development of the air sac primordium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morishita, Kazushge; Anh Suong, Dang Ngoc; Yoshida, Hideki

    Dedicator of cytokinesis (DOCK) family genes are known as DOCK1-DOCK11 in mammals. DOCK family proteins mainly regulate actin filament polymerization and/or depolymerization and are GEF proteins, which contribute to cellular signaling events by activating small G proteins. Sponge (Spg) is a Drosophila counterpart to mammalian DOCK3/DOCK4, and plays a role in embryonic central nervous system development, R7 photoreceptor cell differentiation, and adult thorax development. In order to conduct further functional analyses on Spg in vivo, we examined its localization in third instar larval wing imaginal discs. Immunostaining with purified anti-Spg IgG revealed that Spg mainly localized in the air sacmore » primordium (ASP) in wing imaginal discs. Spg is therefore predicted to play an important role in the ASP. The specific knockdown of Spg by the breathless-GAL4 driver in tracheal cells induced lethality accompanied with a defect in ASP development and the induction of apoptosis. The monitoring of ERK signaling activity in wing imaginal discs by immunostaining with anti-diphospho-ERK IgG revealed reductions in the ERK signal cascade in Spg knockdown clones. Furthermore, the overexpression of D-raf suppressed defects in survival and the proliferation of cells in the ASP induced by the knockdown of Spg. Collectively, these results indicate that Spg plays a critical role in ASP development and tracheal cell viability that is mediated by the ERK signaling pathway. - Highlights: • Spg mainly localizes in the air sac primordium in wing imaginal discs. • Spg plays a critical role in air sac primordium development. • Spg positively regulates the ERK signal cascade.« less

  12. Neuropeptide F neurons modulate sugar reward during associative olfactory learning of Drosophila larvae.

    PubMed

    Rohwedder, Astrid; Selcho, Mareike; Chassot, Bérénice; Thum, Andreas S

    2015-12-15

    All organisms continuously have to adapt their behavior according to changes in the environment in order to survive. Experience-driven changes in behavior are usually mediated and maintained by modifications in signaling within defined brain circuits. Given the simplicity of the larval brain of Drosophila and its experimental accessibility on the genetic and behavioral level, we analyzed if Drosophila neuropeptide F (dNPF) neurons are involved in classical olfactory conditioning. dNPF is an ortholog of the mammalian neuropeptide Y, a highly conserved neuromodulator that stimulates food-seeking behavior. We provide a comprehensive anatomical analysis of the dNPF neurons on the single-cell level. We demonstrate that artificial activation of dNPF neurons inhibits appetitive olfactory learning by modulating the sugar reward signal during acquisition. No effect is detectable for the retrieval of an established appetitive olfactory memory. The modulatory effect is based on the joint action of three distinct cell types that, if tested on the single-cell level, inhibit and invert the conditioned behavior. Taken together, our work describes anatomically and functionally a new part of the sugar reinforcement signaling pathway for classical olfactory conditioning in Drosophila larvae. © 2015 Wiley Periodicals, Inc.

  13. A Matrix Metalloproteinase Mediates Airway Remodeling in Drosophila

    PubMed Central

    Glasheen, Bernadette M.; Robbins, Renée M.; Piette, Caitlin; Beitel, Greg J.; Page-McCaw, Andrea

    2010-01-01

    Organ size typically increases dramatically during juvenile growth. This growth presents a fundamental tension, as organs need resiliency to resist stresses while still maintaining plasticity to accommodate growth. Extracellular matrix (ECM) is central to providing resiliency, but how ECM is remodeled to accommodate growth is poorly understood. We investigated remodeling of Drosophila respiratory tubes (tracheae) that elongate continually during larval growth, despite being lined with a rigid cuticular ECM. Cuticle is initially deposited with a characteristic pattern of repeating ridges and valleys known as taenidia. We find that for tubes to elongate, the extracellular protease Mmp1 is required for expansion of ECM between the taenidial ridges during each inter-molt period. Mmp1 protein localizes in periodically-spaced puncta that are in register with the taenidial spacing. Mmp1 also degrades old cuticle at molts, promotes apical membrane expansion in larval tracheae, and promotes tube elongation in embryonic tracheae. Whereas work in other developmental systems has demonstrated that MMPs are required for axial elongation occurring in localized growth zones, this study demonstrates that MMPs can also mediate interstitial matrix remodeling during growth of an organ system. PMID:20513443

  14. Strawberry Accessions with Reduced Drosophila suzukii Emergence From Fruits

    PubMed Central

    Gong, Xiaoyun; Bräcker, Lasse; Bölke, Nadine; Plata, Camila; Zeitlmayr, Sarah; Metzler, Dirk; Olbricht, Klaus; Gompel, Nicolas; Parniske, Martin

    2016-01-01

    Drosophila suzukii is threatening soft fruit production worldwide due to the females’ ability to pierce through the intact skin of ripe fruits and lay eggs inside. Larval consumption and the associated microbial infection cause rapid fruit degradation, thus drastic yield and economic loss. Cultivars that limit the proliferation of flies may be ideal to counter this pest; however, they have not yet been developed or identified. To search for potential breeding material, we investigated the rate of adult D. suzukii emergence from individual fruits (fly emergence) of 107 accessions of Fragaria species that had been exposed to egg-laying D. suzukii females. We found significant variation in fly emergence across strawberries, which correlated with accession and fruit diameter, and to a lesser extent with the strawberry species background. We identified accessions with significantly reduced fly emergence, not explained by their fruit diameter. These accessions constitute valuable breeding material for strawberry cultivars that limit D. suzukii spread. PMID:28066452

  15. Macrophages and cellular immunity in Drosophila melanogaster

    PubMed Central

    Gold, Katrina S.; Brückner, Katja

    2016-01-01

    The invertebrate Drosophila melanogaster has been a powerful model for understanding blood cell development and immunity. Drosophila is a holometabolous insect, which transitions through a series of life stages from embryo, larva and pupa to adulthood. In spite of this, remarkable parallels exist between Drosophila and vertebrate macrophages, both in terms of development and function. More than 90% of Drosophila blood cells (hemocytes) are macrophages (plasmatocytes), making this highly tractable genetic system attractive for studying a variety of questions in macrophage biology. In vertebrates, recent findings revealed that macrophages have two independent origins: self-renewing macrophages, which reside and proliferate in local microenvironments in a variety of tissues, and macrophages of the monocyte lineage, which derive from hematopoietic stem or progenitor cells. Like vertebrates, Drosophila possesses two macrophage lineages with a conserved dual ontogeny. These parallels allow us to take advantage of the Drosophila model when investigating macrophage lineage specification, maintenance and amplification, and the induction of macrophages and their progenitors by local microenvironments and systemic cues. Beyond macrophage development, Drosophila further serves as a paradigm for understanding the mechanisms underlying macrophage function and cellular immunity in infection, tissue homeostasis and cancer, throughout development and adult life. PMID:27117654

  16. Determination of the efficiency of diets for larval development in mass rearing Aedes aegypti (Diptera: Culicidae).

    PubMed

    Gunathilaka, P A D H N; Uduwawala, U M H U; Udayanga, N W B A L; Ranathunge, R M T B; Amarasinghe, L D; Abeyewickreme, W

    2017-11-23

    Larval diet quality and rearing conditions have a direct and irreversible effect on adult traits. Therefore, the current study was carried out to optimize the larval diet for mass rearing of Aedes aegypti, for Sterile Insect Technique (SIT)-based applications in Sri Lanka. Five batches of 750 first instar larvae (L 1) of Ae. aegypti were exposed to five different concentrations (2-10%) of International Atomic Energy Agency (IAEA) recommended the larval diet. Morphological development parameters of larva, pupa, and adult were detected at 24 h intervals along with selected growth parameters. Each experiment was replicated five times. General Linear Modeling along with Pearson's correlation analysis were used for statistical treatments. Significant differences (P < 0.05) among the larvae treated with different concentrations were found using General Linear Modeling in all the stages namely: total body length and the thoracic length of larvae; cephalothoracic length and width of pupae; thoracic length, thoracic width, abdominal length and the wing length of adults; along with pupation rate and success, sex ratio, adult success, fecundity and hatching rate of Ae. aegypti. The best quality adults can be produced at larval diet concentration of 10%. However, the 8% larval diet concentration was most suitable for adult male survival.

  17. Regulation of neuromuscular junction organization by Rab2 and its effector ICA69 in Drosophila.

    PubMed

    Mallik, Bhagaban; Dwivedi, Manish Kumar; Mushtaq, Zeeshan; Kumari, Manisha; Verma, Praveen Kumar; Kumar, Vimlesh

    2017-06-01

    The mechanisms underlying synaptic differentiation, which involves neuronal membrane and cytoskeletal remodeling, are not completely understood. We performed a targeted RNAi-mediated screen of Drosophila BAR-domain proteins and identified islet cell autoantigen 69 kDa (ICA69) as one of the key regulators of morphological differentiation of the larval neuromuscular junction (NMJ). We show that Drosophila ICA69 colocalizes with α-Spectrin at the NMJ. The conserved N-BAR domain of ICA69 deforms liposomes in vitro Full-length ICA69 and the ICAC but not the N-BAR domain of ICA69 induce filopodia in cultured cells. Consistent with its cytoskeleton regulatory role, ICA69 mutants show reduced α-Spectrin immunoreactivity at the larval NMJ. Manipulating levels of ICA69 or its interactor PICK1 alters the synaptic level of ionotropic glutamate receptors (iGluRs). Moreover, reducing PICK1 or Rab2 levels phenocopies ICA69 mutation. Interestingly, Rab2 regulates not only synaptic iGluR but also ICA69 levels. Thus, our data suggest that: (1) ICA69 regulates NMJ organization through a pathway that involves PICK1 and Rab2, and (2) Rab2 functions genetically upstream of ICA69 and regulates NMJ organization and targeting/retention of iGluRs by regulating ICA69 levels. © 2017. Published by The Company of Biologists Ltd.

  18. Report of the Insect Development Group

    NASA Technical Reports Server (NTRS)

    Rockstein, M.

    1985-01-01

    Drosophila metanogaster was chosen as the insect species of choice, in regard to gravity response experiments involving normal reproduction and develop different strains. The specific gravity responses which might be affected by microgravity and are exhibited in normal reproduction and development include normal flight for courtship, mating and oviposition, tropisms for pupating or emergency of the adult, and crawling for gettering food by the larval instars at the organismic level. At the suborganismic elevel, it is believed that maturation of developing eggs in the virgin female and embryonic development of the developing egg could be affected by microgravity and warrant study.

  19. Linking ocean acidification and warming to the larval development of the American lobster (Homarus americanus)

    NASA Astrophysics Data System (ADS)

    Waller, J. D.; Fields, D.; Wahle, R.; Mcveigh, H.; Greenwood, S.

    2016-02-01

    The American lobster upholds the most culturally and economically iconic fishery in New England. Over the past three decades lobster landings have risen steadily in northern New England as lobster populations have shifted northward, leaving policy makers and coastal communities wondering what the future of this fishery may hold. The underlying causes of this population shift are likely due to a suite of environmental stressors including increasing temperature and ocean acidification. In this study we investigated the interactive effects of IPCC predicted temperature and pH on key aspects of larval lobster development (size, survival, development time, respiration rate, swimming speed, prey consumption and gene expression). Our experiments showed that larvae raised in the high temperature treatments (19 °C) experienced significantly higher mortality than larvae in our control treatments (16 °C) with 50% mortality occurring in the high temperature treatment one week after hatching. The larvae in these high temperature treatments developed twice as fast and experienced respiration rates that were three times higher in the third and fourth larval stages. While temperature had a distinct effect, pH treatment had few significant effects on any of our measured parameters. These data suggest that projected end-century warming will have greater adverse effects than acidification on early larval survival, despite the hurrying effect of higher temperatures on lobster larval development and increase in physiological activity. There were no significant treatment effects on carapace length, dry weight, or carbon and nitrogen content. Analysis of swimming speed and gene expression (through RNA sequencing) are in progress. Understanding how the most vulnerable life stages of the lobster life cycle responds to climate change is essential in connecting the northward geographic shifts projected by habitat quality models, and the underlying physiological and genetic mechanisms that

  20. Macrophages and cellular immunity in Drosophila melanogaster.

    PubMed

    Gold, Katrina S; Brückner, Katja

    2015-12-01

    The invertebrate Drosophila melanogaster has been a powerful model for understanding blood cell development and immunity. Drosophila is a holometabolous insect, which transitions through a series of life stages from embryo, larva and pupa to adulthood. In spite of this, remarkable parallels exist between Drosophila and vertebrate macrophages, both in terms of development and function. More than 90% of Drosophila blood cells (hemocytes) are macrophages (plasmatocytes), making this highly tractable genetic system attractive for studying a variety of questions in macrophage biology. In vertebrates, recent findings revealed that macrophages have two independent origins: self-renewing macrophages, which reside and proliferate in local microenvironments in a variety of tissues, and macrophages of the monocyte lineage, which derive from hematopoietic stem or progenitor cells. Like vertebrates, Drosophila possesses two macrophage lineages with a conserved dual ontogeny. These parallels allow us to take advantage of the Drosophila model when investigating macrophage lineage specification, maintenance and amplification, and the induction of macrophages and their progenitors by local microenvironments and systemic cues. Beyond macrophage development, Drosophila further serves as a paradigm for understanding the mechanisms underlying macrophage function and cellular immunity in infection, tissue homeostasis and cancer, throughout development and adult life. Copyright © 2016. Published by Elsevier Ltd.

  1. Evidence for a Complex Class of Nonadenylated mRNA in Drosophila

    PubMed Central

    Zimmerman, J. Lynn; Fouts, David L.; Manning, Jerry E.

    1980-01-01

    The amount, by mass, of poly(A+) mRNA present in the polyribosomes of third-instar larvae of Drosophila melanogaster, and the relative contribution of the poly(A+) mRNA to the sequence complexity of total polysomal RNA, has been determined. Selective removal of poly(A+) mRNA from total polysomal RNA by use of either oligo-dT-cellulose, or poly(U)-sepharose affinity chromatography, revealed that only 0.15% of the mass of the polysomal RNA was present as poly(A+) mRNA. The present study shows that this RNA hybridized at saturation with 3.3% of the single-copy DNA in the Drosophila genome. After correction for asymmetric transcription and reactability of the DNA, 7.4% of the single-copy DNA in the Drosophila genome is represented in larval poly(A+) mRNA. This corresponds to 6.73 x 106 nucleotides of mRNA coding sequences, or approximately 5,384 diverse RNA sequences of average size 1,250 nucleotides. However, total polysomal RNA hybridizes at saturation to 10.9% of the single-copy DNA sequences. After correcting this value for asymmetric transcription and tracer DNA reactability, 24% of the single-copy DNA in Drosophila is represented in total polysomal RNA. This corresponds to 2.18 x 107 nucleotides of RNA coding sequences or 17,440 diverse RNA molecules of size 1,250 nucleotides. This value is 3.2 times greater than that observed for poly(A+) mRNA, and indicates that ≃69% of the polysomal RNA sequence complexity is contributed by nonadenylated RNA. Furthermore, if the number of different structural genes represented in total polysomal RNA is ≃1.7 x 104, then the number of genes expressed in third-instar larvae exceeds the number of chromomeres in Drosophila by about a factor of three. This numerology indicates that the number of chromomeres observed in polytene chromosomes does not reflect the number of structural gene sequences in the Drosophila genome. PMID:6777246

  2. Regulation of Drosophila hematopoietic sites by Activin-β from active sensory neurons

    PubMed Central

    Makhijani, Kalpana; Alexander, Brandy; Rao, Deepti; Petraki, Sophia; Herboso, Leire; Kukar, Katelyn; Batool, Itrat; Wachner, Stephanie; Gold, Katrina S.; Wong, Corinna; O’Connor, Michael B.; Brückner, Katja

    2017-01-01

    An outstanding question in animal development, tissue homeostasis and disease is how cell populations adapt to sensory inputs. During Drosophila larval development, hematopoietic sites are in direct contact with sensory neuron clusters of the peripheral nervous system (PNS), and blood cells (hemocytes) require the PNS for their survival and recruitment to these microenvironments, known as Hematopoietic Pockets. Here we report that Activin-β, a TGF-β family ligand, is expressed by sensory neurons of the PNS and regulates the proliferation and adhesion of hemocytes. These hemocyte responses depend on PNS activity, as shown by agonist treatment and transient silencing of sensory neurons. Activin-β has a key role in this regulation, which is apparent from reporter expression and mutant analyses. This mechanism of local sensory neurons controlling blood cell adaptation invites evolutionary parallels with vertebrate hematopoietic progenitors and the independent myeloid system of tissue macrophages, whose regulation by local microenvironments remain undefined. PMID:28748922

  3. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster.

    PubMed

    Koštál, Vladimír; Korbelová, Jaroslava; Poupardin, Rodolphe; Moos, Martin; Šimek, Petr

    2016-08-01

    The fruit fly Drosophila melanogaster is an insect of tropical origin. Its larval stage is evolutionarily adapted for rapid growth and development under warm conditions and shows high sensitivity to cold. In this study, we further developed an optimal acclimation and freezing protocol that significantly improves larval freeze tolerance (an ability to survive at -5°C when most of the freezable fraction of water is converted to ice). Using the optimal protocol, freeze survival to adult stage increased from 0.7% to 12.6% in the larvae fed standard diet (agar, sugar, yeast, cornmeal). Next, we fed the larvae diets augmented with 31 different amino compounds, administered in different concentrations, and observed their effects on larval metabolomic composition, viability, rate of development and freeze tolerance. While some diet additives were toxic, others showed positive effects on freeze tolerance. Statistical correlation revealed tight association between high freeze tolerance and high levels of amino compounds involved in arginine and proline metabolism. Proline- and arginine-augmented diets showed the highest potential, improving freeze survival to 42.1% and 50.6%, respectively. Two plausible mechanisms by which high concentrations of proline and arginine might stimulate high freeze tolerance are discussed: (i) proline, probably in combination with trehalose, could reduce partial unfolding of proteins and prevent membrane fusions in the larvae exposed to thermal stress (prior to freezing) or during freeze dehydration; (ii) both arginine and proline are exceptional among amino compounds in their ability to form supramolecular aggregates which probably bind partially unfolded proteins and inhibit their aggregation under increasing freeze dehydration. © 2016. Published by The Company of Biologists Ltd.

  4. Trade-offs between larval survival and adult ornament development depend on predator regime in a territorial dragonfly.

    PubMed

    Moore, Michael P; Martin, Ryan A

    2018-05-28

    Trade-offs between juvenile survival and the development of sexually selected traits can cause ontogenetic conflict between life stages that constrains adaptive evolution. However, the potential for ecological interactions to alter the presence or strength of these trade-offs remains largely unexplored. Antagonistic selection over the accumulation and storage of resources could be one common cause of environment-specific trade-offs between life stages: higher condition may simultaneously enhance adult ornament development and increase juvenile vulnerability to predators. We tested this hypothesis in an ornamented dragonfly (Pachydiplax longipennis). Higher larval body condition indeed enhanced the initial development of its intrasexually selected wing coloration, but was opposed by viability selection in the presence of large aeshnid predators. In contrast, viability selection did not oppose larval body condition in pools when aeshnids were absent, and was not affected when we manipulated cannibalism risk. Trade-offs between larval survival and ornament development, mediated through the conflicting effects of body condition, therefore occurred only under high predation risk. We additionally characterized how body condition influences several traits associated with predator avoidance. Although body condition did not affect burst distance, it did increase larval abdomen size, potentially making larvae easier targets for aeshnid predators. As high body condition similarly increases vulnerability to predators in many other animals, predator-mediated costs of juvenile resource accumulation could be a common, environment-specific limitation on the elaboration of sexually selected traits.

  5. Sodium fluoride adversely affects ovarian development and reproduction in Drosophila melanogaster.

    PubMed

    Khatun, Salma; Rajak, Prem; Dutta, Moumita; Roy, Sumedha

    2017-11-01

    The study demonstrates the effects of chronic sub-lethal exposure of sodium fluoride (NaF) on reproductive structure and function of female Drosophila melanogaster. As a part of treatment, flies were maintained in food supplemented with sub-lethal concentrations of NaF (10-100 μg/mL). Fecundity, ovarian morphology, presence and profusion of viable cells from ovary and fat body were taken into consideration for evaluating changes in reproductive homeostasis. Wing length (a factor demonstrating body size and reproductive fitness) was also monitored after NaF exposure. Significant reduction in fecundity, alteration in ovarian morphology along with an increase in apoptosis was observed in treated females. Simultaneous decline in viable cell number and larval weight validates the result of MTT assay. Furthermore, altered ovarian Glucose-6-phosphate dehydrogenase and catalase activities together with increased rate of lipid peroxidation after 20 and 40 μg/mL NaF exposure confirmed the changes in reproduction related metabolism. Enhanced lipid peroxidation known for ROS generation might have induced genotoxicity which is confirmed through Comet assay. The enzyme activities were not dose dependent, rather manifested a bimodal response, which suggests a well-knit interaction among the players inducing stress and the ones that help establish physiological homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of temperature on embryonic and early larval growth and development in the rough-skinned newt (Taricha granulosa).

    PubMed

    Smith, Geoffrey D; Hopkins, Gareth R; Mohammadi, Shabnam; M Skinner, Heather; Hansen, Tyler; Brodie, Edmund D; French, Susannah S

    2015-07-01

    We investigated the effects of temperature on the growth and development of embryonic and early larval stages of a western North American amphibian, the rough-skinned newt (Taricha granulosa). We assigned newt eggs to different temperatures (7, 14, or 21°C); after hatching, we re-assigned the newt larvae into the three different temperatures. Over the course of three to four weeks, we measured total length and developmental stage of the larvae. Our results indicated a strong positive relationship over time between temperature and both length and developmental stage. Importantly, individuals assigned to cooler embryonic temperatures did not achieve the larval sizes of individuals from the warmer embryonic treatments, regardless of larval temperature. Our investigation of growth and development at different temperatures demonstrates carry-over effects and provides a more comprehensive understanding of how organisms respond to temperature changes during early development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The L1-CAM, Neuroglian, functions in glial cells for Drosophila antennal lobe development.

    PubMed

    Chen, Weitao; Hing, Huey

    2008-07-01

    Although considerable progress has been made in understanding the roles of olfactory receptor neurons (ORNs) and projection neurons (PNs) in Drosophila antennal lobe (AL) development, the roles of glia have remained largely mysterious. Here, we show that during Drosophila metamorphosis, a population of midline glial cells in the brain undergoes extensive cellular remodeling and is closely associated with the collateral branches of ORN axons. These glial cells are required for ORN axons to project across the midline and establish the contralateral wiring in the ALs. We find that Neuroglian (Nrg), the Drosophila homolog of the vertebrate cell adhesion molecule, L1, is expressed and functions in the midline glial cells to regulate their proper development. Loss of Nrg causes the disruption in glial morphology and the agenesis of the antennal commissural tract. Our genetic analysis further demonstrates that the functions of Nrg in the midline glia require its ankyrin-binding motif. We propose that Nrg is an important regulator of glial morphogenesis and axon guidance in AL development. (Copyright) 2008 Wiley Periodicals, Inc.

  8. Development of the larval amphibian growth and development ...

    EPA Pesticide Factsheets

    The Larval Amphibian Growth and Development Assay (LAGDA) is a Tier II test guideline being developed by the US Environmental Protection Agency under the Endocrine Disruptor Screening Program. The LAGDA was designed to evaluate effects of chronic chemical exposure on growth, thyroid-mediated amphibian metamorphosis and reproductive development. To evaluate the assay’s performance, two model chemicals targeting the hypothalamic-pituitary-gonadal (HPG) axis were tested; a weak estrogen receptor agonist, 4-tert-octylphenol (tOP), and an androgen receptor agonist, 17β-trenbolone (TB). Xenopus laevis embryos were constantly exposed in flow-through conditions to various test concentrations of tOP (nominal: 6.25, 12.5, 25, 50 μg/L) or TB (nominal: 12.5, 25, 50, 100 ng/L) and clean water controls until 8 weeks post-metamorphosis, at which time growth measurements were taken and histopathology assessments were made on gonads, reproductive ducts, liver and kidneys. There were no effects on growth in either study and no signs of overt toxicity, sex reversal or gonad dysgenesis at the concentrations tested. Exposure to tOP caused a treatment-related decrease in circulating thyroxine and an increase in thyroid follicular cell hypertrophy and hyperplasia (25, 50 μg/L). Müllerian duct development was clearly affected following exposure to both chemicals; tOP exposure caused dose-dependent maturation of oviducts in both male and female frogs, whereas TB exposure ca

  9. Candidate ionotropic taste receptors in the Drosophila larva.

    PubMed

    Stewart, Shannon; Koh, Tong-Wey; Ghosh, Arpan C; Carlson, John R

    2015-04-07

    We examine in Drosophila a group of ∼35 ionotropic receptors (IRs), the IR20a clade, about which remarkably little is known. Of 28 genes analyzed, GAL4 drivers representing 11 showed expression in the larva. Eight drivers labeled neurons of the pharynx, a taste organ, and three labeled neurons of the body wall that may be chemosensory. Expression was not observed in neurons of one taste organ, the terminal organ, although these neurons express many drivers of the Gr (Gustatory receptor) family. For most drivers of the IR20a clade, we observed expression in a single pair of cells in the animal, with limited coexpression, and only a fraction of pharyngeal neurons are labeled. The organization of IR20a clade expression thus appears different from the organization of the Gr family or the Odor receptor (Or) family in the larva. A remarkable feature of the larval pharynx is that some of its organs are incorporated into the adult pharynx, and several drivers of this clade are expressed in the pharynx of both larvae and adults. Different IR drivers show different developmental dynamics across the larval stages, either increasing or decreasing. Among neurons expressing drivers in the pharynx, two projection patterns can be distinguished in the CNS. Neurons exhibiting these two kinds of projection patterns may activate different circuits, possibly signaling the presence of cues with different valence. Taken together, the simplest interpretation of our results is that the IR20a clade encodes a class of larval taste receptors.

  10. Dietary glucose regulates yeast consumption in adult Drosophila males

    PubMed Central

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G.

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males. PMID:25566097

  11. Hold on: females modulate sperm depletion from storage sites in the fly Drosophila melanogaster.

    PubMed

    Bloch Qazi, Margaret C; Hogdal, Leah

    2010-09-01

    Among many species of insects, females gain fitness benefits by producing numerous offspring. Yet actions related to producing numerous offspring such as mating with multiple males, producing oocytes and placing offspring in sub-optimal environments incur costs. Females can decrease the magnitude of these costs by retaining gametes when suitable oviposition sites are absent. We used the pomace fly, Drosophila melanogaster, to explore how the availability of fresh feeding/oviposition medium influenced female fitness via changes in offspring survivorship and the modulation of gamete release. Availability of fresh medium affected the absolute number and temporal production of offspring. This outcome was attributable to both decreased larval survival under crowded conditions and to female modulation of gamete release. Direct examination of the number of sperm retained among the different female storage organs revealed that females 'hold on' to sperm, retaining more sperm in storage, disproportionately within the spermathecae, when exposed infrequently to fresh medium. Despite this retention, females with lower rates of storage depletion exhibited decreased sperm use efficiency shortly after mating. This study provides direct evidence that females influence the rate of sperm depletion from specific storage sites in a way that can affect both female and male fitness. The possible adaptive significance of selective gamete utilization by female Drosophila includes lowering costs associated with frequent remating and larval overcrowding when oviposition sites are limiting, as well as potentially influencing paternity when females store sperm from multiple males.

  12. Local requirement of the Drosophila insulin binding protein imp-L2 in coordinating developmental progression with nutritional conditions.

    PubMed

    Sarraf-Zadeh, Ladan; Christen, Stefan; Sauer, Uwe; Cognigni, Paola; Miguel-Aliaga, Irene; Stocker, Hugo; Köhler, Katja; Hafen, Ernst

    2013-09-01

    In Drosophila, growth takes place during the larval stages until the formation of the pupa. Starvation delays pupariation to allow prolonged feeding, ensuring that the animal reaches an appropriate size to form a fertile adult. Pupariation is induced by a peak of the steroid hormone ecdysone produced by the prothoracic gland (PG) after larvae have reached a certain body mass. Local downregulation of the insulin/insulin-like growth factor signaling (IIS) activity in the PG interferes with ecdysone production, indicating that IIS activity in the PG couples the nutritional state to development. However, the underlying mechanism is not well understood. In this study we show that the secreted Imaginal morphogenesis protein-Late 2 (Imp-L2), a growth inhibitor in Drosophila, is involved in this process. Imp-L2 inhibits the activity of the Drosophila insulin-like peptides by direct binding and is expressed by specific cells in the brain, the ring gland, the gut and the fat body. We demonstrate that Imp-L2 is required to regulate and adapt developmental timing to nutritional conditions by regulating IIS activity in the PG. Increasing Imp-L2 expression at its endogenous sites using an Imp-L2-Gal4 driver delays pupariation, while Imp-L2 mutants exhibit a slight acceleration of development. These effects are strongly enhanced by starvation and are accompanied by massive alterations of ecdysone production resulting most likely from increased Imp-L2 production by neurons directly contacting the PG and not from elevated Imp-L2 levels in the hemolymph. Taken together our results suggest that Imp-L2-expressing neurons sense the nutritional state of Drosophila larvae and coordinate dietary information and ecdysone production to adjust developmental timing under starvation conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Mutations in the Circadian Gene period Alter Behavioral and Biochemical Responses to Ethanol in Drosophila

    PubMed Central

    Liao, Jennifer; Seggio, Joseph A.; Ahmad, S. Tariq

    2016-01-01

    Clock genes, such as period, which maintain an organism’s circadian rhythm, can have profound effects on metabolic activity, including ethanol metabolism. In turn, ethanol exposure has been shown in Drosophila and mammals to cause disruptions of the circadian rhythm. Previous studies from our labs have shown that larval ethanol exposure disrupted the free-running period and period expression of Drosophila. In addition, a recent study has shown that arrhythmic flies show no tolerance to ethanol exposure. As such, Drosophila period mutants, which have either a shorter than wild-type free-running period (perS) or a longer one (perL), may also exhibit altered responses to ethanol due to their intrinsic circadian differences. In this study, we tested the initial sensitivity and tolerance of ethanol exposure on Canton-S, perS, and perL, and then measured their Alcohol Dehydrogenase (ADH) and body ethanol levels. We showed that perL flies had slower sedation rate, longer recovery from ethanol sedation, and generated higher tolerance for sedation upon repeated ethanol exposure compared to Canton-S wild-type flies. Furthermore, perL flies had lower ADH activity and had a slower ethanol clearance compared to wild-type flies. The findings of this study suggest that period mutations influence ethanol induced behavior and ethanol metabolism in Drosophila and that flies with longer circadian periods are more sensitive to ethanol exposure. PMID:26802726

  14. Development of three Drosophila melanogaster strains with different sensitivity to volatile anesthetics.

    PubMed

    Liu, Jin; Hu, Zhao-yang; Ye, Qi-quan; Dai, Shuo-hua

    2009-03-05

    The mechanisms of action for volatile anesthetics remain unknown for centuries partly owing to the insufficient or ineffective research models. We designed this study to develop three strains derived from a wild-type Drosophila melanogaster with different sensitivities to volatile anesthetics, which may ultimately facilitate molecular and genetic studies of the mechanism involved. Median effective doses (ED(50)) of sevoflurane in seven-day-old virgin female and male wild-type Drosophila melanogaster were determined. The sensitive males and females of percentile 6 - 10 were cultured for breeding sensitive offspring (S(1)). So did median ones of percentile 48 - 52 for breeding median offspring (M(1)), resistant ones of percentile 91 - 95 for breeding resistant offspring (R(1)). Process was repeated through 31 generations, in the 37th generation, S(37), M(37) and R(37) were used to determine ED(50) for enflurane, isoflurane, sevoflurane, desflurane, halothane, methoxyflurane, chloroform and trichloroethylene, then ED(50) values were correlated with minimum alveolar concentration (MAC) values in human. From a wild-type Drosophila melanogaster we were able to breed three strains with high, median and low sevoflurane requirements. The ratio of sevoflurane requirements of three strains were 1.20:1.00:0.53 for females and 1.22:1.00:0.72 for males. Strains sensitive, median and resistant to sevoflurane were also sensitive, median and resistant to other volatile anesthetics. For eight anesthetics, ED(50) values in three strains correlated directly with MAC values in human. Three Drosophila melanogaster strains with high, median and low sensitivity to volatile anesthetics, but with same hereditary background were developed. The ED(50) are directly correlated with MAC in human for eight volatile anesthetics.

  15. Drosophila Regulate Yeast Density and Increase Yeast Community Similarity in a Natural Substrate

    PubMed Central

    Stamps, Judy A.; Yang, Louie H.; Morales, Vanessa M.; Boundy-Mills, Kyria L.

    2012-01-01

    Drosophila melanogaster adults and larvae, but especially larvae, had profound effects on the densities and community structure of yeasts that developed in banana fruits. Pieces of fruit exposed to adult female flies previously fed fly-conditioned bananas developed higher yeast densities than pieces of the same fruits that were not exposed to flies, supporting previous suggestions that adult Drosophila vector yeasts to new substrates. However, larvae alone had dramatic effects on yeast density and species composition. When yeast densities were compared in pieces of the same fruits assigned to different treatments, fruits that developed low yeast densities in the absence of flies developed significantly higher yeast densities when exposed to larvae. Across all of the fruits, larvae regulated yeast densities within narrow limits, as compared to a much wider range of yeast densities that developed in pieces of the same fruits not exposed to flies. Larvae also affected yeast species composition, dramatically reducing species diversity across fruits, reducing variation in yeast communities from one fruit to the next (beta diversity), and encouraging the consistent development of a yeast community composed of three species of yeast (Candida californica, C. zemplinina, and Pichia kluvyeri), all of which were palatable to larvae. Larvae excreted viable cells of these three yeast species in their fecal pools, and discouraged the growth of filamentous fungi, processes which may have contributed to their effects on the yeast communities in banana fruits. These and other findings suggest that D. melanogaster adults and their larval offspring together engage in ‘niche construction’, facilitating a predictable microbial environment in the fruit substrates in which the larvae live and develop. PMID:22860093

  16. L(3)mbt and the LINT complex safeguard cellular identity in the Drosophila ovary.

    PubMed

    Coux, Rémi-Xavier; Teixeira, Felipe Karam; Lehmann, Ruth

    2018-04-04

    Maintenance of cellular identity is essential for tissue development and homeostasis. At the molecular level, cell identity is determined by the coordinated activation and repression of defined sets of genes. The tumor suppressor L(3)mbt has been shown to secure cellular identity in Drosophila larval brains by repressing germline-specific genes. Here, we interrogate the temporal and spatial requirements for L(3)mbt in the Drosophila ovary, and show that it safeguards the integrity of both somatic and germline tissues. l(3)mbt mutant ovaries exhibit multiple developmental defects, which we find to be largely caused by the inappropriate expression of a single gene, nanos , a key regulator of germline fate, in the somatic ovarian cells. In the female germline, we find that L(3)mbt represses testis-specific and neuronal genes. At the molecular level, we show that L(3)mbt function in the ovary is mediated through its co-factor Lint-1 but independently of the dREAM complex. Together, our work uncovers a more complex role for L(3)mbt than previously understood and demonstrates that L(3)mbt secures tissue identity by preventing the simultaneous expression of original identity markers and tissue-specific misexpression signatures. © 2018. Published by The Company of Biologists Ltd.

  17. VARIATIONS AT A QUANTITATIVE TRAIT LOCUS (QTL) AFFECT DEVELOPMENT OF BEHAVIOR IN LEAD-EXPOSED DROSOPHILA MELANOGASTER

    PubMed Central

    Hirsch, Helmut V. B.; Possidente, Debra; Averill, Sarah; Despain, Tamira Palmetto; Buytkins, Joel; Thomas, Valerie; Goebel, W. Paul; Shipp-Hilts, Asante; Wilson, Diane; Hollocher, Kurt; Possidente, Bernard; Lnenicka, Greg; Ruden, Douglas M.

    2009-01-01

    We developed Drosophila melanogaster as a model to study correlated behavioral, neuronal and genetic effects of the neurotoxin lead, known to affect cognitive and behavioral development in children. We showed that, as in vertebrates, lead affects both synaptic development and complex behaviors (courtship, fecundity, locomotor activity) in Drosophila. By assessing differential behavioral responses to developmental lead exposure among recombinant inbred Drosophila lines (RI), derived from parental lines Oregon R and Russian 2b, we have now identified a genotype by environment interaction (GEI) for a behavioral trait affected by lead. Drosophila Activity Monitors (TriKinetics, Waltham, MA), which measure activity by counting the number of times a single fly in a small glass tube walks through an infrared beam aimed at the middle of the tube, were used to measure activity of flies, reared from eggs to 4 days of adult age on either control or lead-contaminated medium, from each of 75 RI lines. We observed a significant statistical association between the effect of lead on average daytime activity across lines and one marker locus, 30AB, on chromosome 2; we define this as a Quantitative Trait Locus (QTL) associated with behavioral effects of developmental lead exposure. When 30AB was from Russian 2b, lead significantly increased locomotor activity, whereas, when 30AB was from Oregon R, lead decreased it. 30AB contains about 125 genes among which are likely “candidate genes” for the observed lead-dependent behavioral changes. Drosophila are thus a useful, underutilized model for studying behavioral, synaptic and genetic changes following chronic exposure to lead or other neurotoxins during development. PMID:19428504

  18. Neto-Mediated Intracellular Interactions Shape Postsynaptic Composition at the Drosophila Neuromuscular Junction

    PubMed Central

    Ramos, Cathy I.; Igiesuorobo, Oghomwen; Wang, Qi; Serpe, Mihaela

    2015-01-01

    The molecular mechanisms controlling the subunit composition of glutamate receptors are crucial for the formation of neural circuits and for the long-term plasticity underlying learning and memory. Here we use the Drosophila neuromuscular junction (NMJ) to examine how specific receptor subtypes are recruited and stabilized at synaptic locations. In flies, clustering of ionotropic glutamate receptors (iGluRs) requires Neto (Neuropillin and Tolloid-like), a highly conserved auxiliary subunit that is essential for NMJ assembly and development. Drosophila neto encodes two isoforms, Neto-α and Neto-β, with common extracellular parts and distinct cytoplasmic domains. Mutations that specifically eliminate Neto-β or its intracellular domain were generated. When Neto-β is missing or is truncated, the larval NMJs show profound changes in the subtype composition of iGluRs due to reduced synaptic accumulation of the GluRIIA subunit. Furthermore, neto-β mutant NMJs fail to accumulate p21-activated kinase (PAK), a critical postsynaptic component implicated in the synaptic stabilization of GluRIIA. Muscle expression of either Neto-α or Neto-β rescued the synaptic transmission at neto null NMJs, indicating that Neto conserved domains mediate iGluRs clustering. However, only Neto-β restored PAK synaptic accumulation at neto null NMJs. Thus, Neto engages in intracellular interactions that regulate the iGluR subtype composition by preferentially recruiting and/or stabilizing selective receptor subtypes. PMID:25905467

  19. DEAF-1 regulates immunity gene expression in Drosophila.

    PubMed

    Reed, Darien E; Huang, Xinhua M; Wohlschlegel, James A; Levine, Michael S; Senger, Kate

    2008-06-17

    Immunity genes are activated in the Drosophila fat body by Rel and GATA transcription factors. Here, we present evidence that an additional regulatory factor, deformed epidermal autoregulatory factor-1 (DEAF-1), also contributes to the immune response and is specifically important for the induction of two genes encoding antimicrobial peptides, Metchnikowin (Mtk) and Drosomycin (Drs). The systematic mutagenesis of a minimal Mtk 5' enhancer identified a sequence motif essential for both a response to LPS preparations in S2 cells and activation in the larval fat body in response to bacterial infection. Using affinity chromatography coupled to multidimensional protein identification technology (MudPIT), we identified DEAF-1 as a candidate regulator. DEAF-1 activates the expression of Mtk and Drs promoter-luciferase fusion genes in S2 cells. SELEX assays and footprinting data indicate that DEAF-1 binds to and activates Mtk and Drs regulatory DNAs via a TTCGGBT motif. The insertion of this motif into the Diptericin (Dpt) regulatory region confers DEAF-1 responsiveness to this normally DEAF-1-independent enhancer. The coexpression of DEAF-1 with Dorsal, Dif, and Relish results in the synergistic activation of transcription. We propose that DEAF-1 is a regulator of Drosophila immunity.

  20. Developmental Environment Effects on Sexual Selection in Male and Female Drosophila melanogaster

    PubMed Central

    Morimoto, Juliano; Pizzari, Tommaso; Wigby, Stuart

    2016-01-01

    The developmental environment can potentially alter the adult social environment and influence traits targeted by sexual selection such as body size. In this study, we manipulated larval density in male and female Drosophila melanogaster, which results in distinct adult size phenotypes–high (low) densities for small (large) adults–and measured sexual selection in experimental groups consisting of adult males and females from high, low, or a mixture of low and high larval densities. Overall, large adult females (those reared at low larval density) had more matings, more mates and produced more offspring than small females (those reared at high larval density). The number of offspring produced by females was positively associated with their number of mates (i.e. there was a positive female Bateman gradient) in social groups where female size was experimentally varied, likely due to the covariance between female productivity and mating rate. For males, we found evidence that the larval environment affected the relative importance of sexual selection via mate number (Bateman gradients), mate productivity, paternity share, and their covariances. Mate number and mate productivity were significantly reduced for small males in social environments where males were of mixed sizes, versus social environments where all males were small, suggesting that social heterogeneity altered selection on this subset of males. Males are commonly assumed to benefit from mating with large females, but in contrast to expectations we found that in groups where both the male and female size varied, males did not gain more offspring per mating with large females. Collectively, our results indicate sex-specific effects of the developmental environment on the operation of sexual selection, via both the phenotype of individuals, and the phenotype of their competitors and mates. PMID:27167120

  1. STAT, Wingless, and Nurf-38 determine the accuracy of regeneration after radiation damage in Drosophila.

    PubMed

    Verghese, Shilpi; Su, Tin Tin

    2017-10-01

    We report here a study of regeneration in Drosophila larval wing imaginal discs after damage by ionizing radiation. We detected faithful regeneration that restored a wing disc and abnormal regeneration that produced an extra wing disc. We describe a sequence of changes in cell number, location and fate that occur to produce an ectopic disc. We identified a group of cells that not only participate in ectopic disc formation but also recruit others to do so. STAT92E (Drosophila STAT3/5) and Nurf-38, which encodes a member of the Nucleosome Remodeling Factor complex, oppose each other in these cells to modulate the frequency of ectopic disc growth. The picture that emerges is one in which activities like STAT increase after radiation damage and fulfill essential roles in rebuilding the tissue. But such activities must be kept in check so that one and only one wing disc is regenerated.

  2. A Drosophila model for developmental nicotine exposure

    PubMed Central

    2017-01-01

    Despite the known health risks of tobacco smoking, many people including pregnant women continue smoking. The effects of developmental nicotine exposure are known, but the underlying mechanisms are not well understood. Drosophila melanogaster is a model organism that can be used for uncovering genetic and molecular mechanisms for drugs of abuse. Here I show that Drosophila can be a model to elucidate the mechanisms for nicotine’s effects on a developing organism. Drosophila reared on nicotine food display developmental and behavioral effects similar to those in mammals including decreased survival and weight, increased developmental time, and decreased sensitivity to acute nicotine and ethanol. The Drosophila nicotinic acetylcholine receptor subunit alpha 7 (Dα7) mediates some of these effects. A novel role for Dα7 on ethanol sedation in Drosophila is also shown. Future research taking advantage of the genetic and molecular tools for Drosophila will allow additional discovery of the mechanisms behind the effects of nicotine during development. PMID:28498868

  3. Aging Studies in Drosophila melanogaster

    PubMed Central

    Sun, Yaning; Yolitz, Jason; Wang, Cecilia; Spangler, Edward; Zhan, Ming; Zou, Sige

    2015-01-01

    Summary Drosophila is a genetically tractable system ideal for investigating the mechanisms of aging and developing interventions for promoting healthy aging. Here we describe methods commonly used in Drosophila aging research. These include basic approaches for preparation of diets and measurements of lifespan, food intake and reproductive output. We also describe some commonly used assays to measure changes in physiological and behavioral functions of Drosophila in aging, such as stress resistance and locomotor activity. PMID:23929099

  4. Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions.

    PubMed

    Araújo, Maisa da-Silva; Gil, Luiz Herman S; e-Silva, Alexandre de-Almeida

    2012-08-02

    The incidence of malaria in the Amazon is seasonal and mosquito vectorial capacity parameters, including abundance and longevity, depend on quantitative and qualitative aspects of the larval diet. Anopheles darlingi is a major malaria vector in the Amazon, representing >95% of total Anopheles population present in the Porto Velho region. Despite its importance in the transmission of the Plasmodium parasite, knowledge of the larval biology and ecology is limited. Studies regarding aspects of adult population ecology are more common than studies on larval ecology. However, in order develop effective control strategies and laboratory breeding conditions for this species, more data on the factors affecting vector biology is needed. The aim of the present study is to assess the effects of larval food quantity on the vectorial capacity of An. darling under laboratory conditions. Anopheles darlingi was maintained at 28°C, 80% humidity and exposed to a daily photoperiod of 12 h. Larvae were divided into three experimental groups that were fed either a low, medium, or high food supply (based on the food amounts consumed by other species of culicids). Each experiment was replicated for six times. A cohort of adults were also exposed to each type of diet and assessed for several biological characteristics (e.g. longevity, bite frequency and survivorship), which were used to estimate the vectorial capacity of each experimental group. The group supplied with higher food amounts observed a reduction in development time while larval survival increased. In addition to enhanced longevity, increasing larval food quantity was positively correlated with increasing frequency of bites, longer blood meal duration and wing length, resulting in greater vectorial capacity. However, females had greater longevity than males despite having smaller wings. Overall, several larval and adult biological traits were significantly affected by larval food availability. Greater larval food supply

  5. Silencing of the Drosophila ortholog of SOX5 leads to abnormal neuronal development and behavioral impairment.

    PubMed

    Li, Airong; Hooli, Basavaraj; Mullin, Kristina; Tate, Rebecca E; Bubnys, Adele; Kirchner, Rory; Chapman, Brad; Hofmann, Oliver; Hide, Winston; Tanzi, Rudolph E

    2017-04-15

    SOX5 encodes a transcription factor that is expressed in multiple tissues including heart, lung and brain. Mutations in SOX5 have been previously found in patients with amyotrophic lateral sclerosis (ALS) and developmental delay, intellectual disability and dysmorphic features. To characterize the neuronal role of SOX5, we silenced the Drosophila ortholog of SOX5, Sox102F, by RNAi in various neuronal subtypes in Drosophila. Silencing of Sox102F led to misorientated and disorganized michrochaetes, neurons with shorter dendritic arborization (DA) and reduced complexity, diminished larval peristaltic contractions, loss of neuromuscular junction bouton structures, impaired olfactory perception, and severe neurodegeneration in brain. Silencing of SOX5 in human SH-SY5Y neuroblastoma cells resulted in a significant repression of WNT signaling activity and altered expression of WNT-related genes. Genetic association and meta-analyses of the results in several large family-based and case-control late-onset familial Alzheimer's disease (LOAD) samples of SOX5 variants revealed several variants that show significant association with AD disease status. In addition, analysis for rare and highly penetrate functional variants revealed four novel variants/mutations in SOX5, which taken together with functional prediction analysis, suggests a strong role of SOX5 causing AD in the carrier families. Collectively, these findings indicate that SOX5 is a novel candidate gene for LOAD with an important role in neuronal function. The genetic findings warrant further studies to identify and characterize SOX5 variants that confer risk for AD, ALS and intellectual disability. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Soundscapes and Larval Settlement: Larval Bivalve Responses to Habitat-Associated Underwater Sounds.

    PubMed

    Eggleston, David B; Lillis, Ashlee; Bohnenstiehl, DelWayne R

    2016-01-01

    We quantified the effects of habitat-associated sounds on the settlement response of two species of bivalves with contrasting habitat preferences: (1) Crassostrea virginicia (oyster), which prefers to settle on other oysters, and (2) Mercenaria mercenaria (clam), which settles on unstructured habitats. Oyster larval settlement in the laboratory was significantly higher when exposed to oyster reef sound compared with either off-reef or no-sound treatments. Clam larval settlement did not vary according to sound treatments. Similar to laboratory results, field experiments showed that oyster larval settlement in "larval housings" suspended above oyster reefs was significantly higher compared with off-reef sites.

  7. FMAj: a tool for high content analysis of muscle dynamics in Drosophila metamorphosis.

    PubMed

    Kuleesha, Yadav; Puah, Wee Choo; Lin, Feng; Wasser, Martin

    2014-01-01

    During metamorphosis in Drosophila melanogaster, larval muscles undergo two different developmental fates; one population is removed by cell death, while the other persistent subset undergoes morphological remodeling and survives to adulthood. Thanks to the ability to perform live imaging of muscle development in transparent pupae and the power of genetics, metamorphosis in Drosophila can be used as a model to study the regulation of skeletal muscle mass. However, time-lapse microscopy generates sizeable image data that require new tools for high throughput image analysis. We performed targeted gene perturbation in muscles and acquired 3D time-series images of muscles in metamorphosis using laser scanning confocal microscopy. To quantify the phenotypic effects of gene perturbations, we designed the Fly Muscle Analysis tool (FMAj) which is based on the ImageJ and MySQL frameworks for image processing and data storage, respectively. The image analysis pipeline of FMAj contains three modules. The first module assists in adding annotations to time-lapse datasets, such as genotypes, experimental parameters and temporal reference points, which are used to compare different datasets. The second module performs segmentation and feature extraction of muscle cells and nuclei. Users can provide annotations to the detected objects, such as muscle identities and anatomical information. The third module performs comparative quantitative analysis of muscle phenotypes. We applied our tool to the phenotypic characterization of two atrophy related genes that were silenced by RNA interference. Reduction of Drosophila Tor (Target of Rapamycin) expression resulted in enhanced atrophy compared to control, while inhibition of the autophagy factor Atg9 caused suppression of atrophy and enlarged muscle fibers of abnormal morphology. FMAj enabled us to monitor the progression of atrophic and hypertrophic phenotypes of individual muscles throughout metamorphosis. We designed a new tool to

  8. FMAj: a tool for high content analysis of muscle dynamics in Drosophila metamorphosis

    PubMed Central

    2014-01-01

    Background During metamorphosis in Drosophila melanogaster, larval muscles undergo two different developmental fates; one population is removed by cell death, while the other persistent subset undergoes morphological remodeling and survives to adulthood. Thanks to the ability to perform live imaging of muscle development in transparent pupae and the power of genetics, metamorphosis in Drosophila can be used as a model to study the regulation of skeletal muscle mass. However, time-lapse microscopy generates sizeable image data that require new tools for high throughput image analysis. Results We performed targeted gene perturbation in muscles and acquired 3D time-series images of muscles in metamorphosis using laser scanning confocal microscopy. To quantify the phenotypic effects of gene perturbations, we designed the Fly Muscle Analysis tool (FMAj) which is based on the ImageJ and MySQL frameworks for image processing and data storage, respectively. The image analysis pipeline of FMAj contains three modules. The first module assists in adding annotations to time-lapse datasets, such as genotypes, experimental parameters and temporal reference points, which are used to compare different datasets. The second module performs segmentation and feature extraction of muscle cells and nuclei. Users can provide annotations to the detected objects, such as muscle identities and anatomical information. The third module performs comparative quantitative analysis of muscle phenotypes. We applied our tool to the phenotypic characterization of two atrophy related genes that were silenced by RNA interference. Reduction of Drosophila Tor (Target of Rapamycin) expression resulted in enhanced atrophy compared to control, while inhibition of the autophagy factor Atg9 caused suppression of atrophy and enlarged muscle fibers of abnormal morphology. FMAj enabled us to monitor the progression of atrophic and hypertrophic phenotypes of individual muscles throughout metamorphosis

  9. Individual and mixture effects of selected pharmaceuticals on larval development of the estuarine shrimp Palaemon longirostris.

    PubMed

    González-Ortegón, Enrique; Blasco, Julian; Nieto, Elena; Hampel, Miriam; Le Vay, Lewis; Giménez, Luis

    2016-01-01

    Few ecotoxicological studies incorporate within the experimental design environmental variability and mixture effects when assessing the impact of pollutants on organisms. We have studied the combined effects of selected pharmaceutical compounds and environmental variability in terms of salinity and temperature on survival, development and body mass of larvae of the estuarine shrimp Palaemon longirostris. Drug residues found in coastal waters occur as mixture, and the evaluation of combined effects of simultaneously occurring compounds is indispensable for their environmental risk assessment. All larval stages of P. longirostris were exposed to the nonsteroidal anti-inflammatory drug (NSAID) diclofenac sodium (DS: 40 and 750 μg L(-1)), the lipid regulator clofibric acid (CA: 17 and 361 μg L(-1)) and the fungicide clotrimazole (CLZ: 0.14 and 4 μg L(-1)). We observed no effect on larval survival of P. longirostris with the tested pharmaceuticals. However, and in contrast to previous studies on larvae of the related marine species Palaemon serratus, CA affected development through an increase in intermoult duration and reduced growth without affecting larval body mass. These developmental effects in P. longirostris larvae were similar to those observed in the mixture of DS and CA confirming the toxic effects of CA. In the case of CLZ, its effects were similar to those observed previously in P. serratus: high doses affected development altering intermoult duration, tended to reduce the number of larval instars and decreased significantly the growth rate. This study suggests that an inter-specific life histories approach should be taken into account to assess the effect of emergent compounds in coastal waters. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Metabolome analysis of Drosophila melanogaster during embryogenesis.

    PubMed

    An, Phan Nguyen Thuy; Yamaguchi, Masamitsu; Bamba, Takeshi; Fukusaki, Eiichiro

    2014-01-01

    The Drosophila melanogaster embryo has been widely utilized as a model for genetics and developmental biology due to its small size, short generation time, and large brood size. Information on embryonic metabolism during developmental progression is important for further understanding the mechanisms of Drosophila embryogenesis. Therefore, the aim of this study is to assess the changes in embryos' metabolome that occur at different stages of the Drosophila embryonic development. Time course samples of Drosophila embryos were subjected to GC/MS-based metabolome analysis for profiling of low molecular weight hydrophilic metabolites, including sugars, amino acids, and organic acids. The results showed that the metabolic profiles of Drosophila embryo varied during the course of development and there was a strong correlation between the metabolome and different embryonic stages. Using the metabolome information, we were able to establish a prediction model for developmental stages of embryos starting from their high-resolution quantitative metabolite composition. Among the important metabolites revealed from our model, we suggest that different amino acids appear to play distinct roles in different developmental stages and an appropriate balance in trehalose-glucose ratio is crucial to supply the carbohydrate source for the development of Drosophila embryo.

  11. Metabolome Analysis of Drosophila melanogaster during Embryogenesis

    PubMed Central

    An, Phan Nguyen Thuy; Yamaguchi, Masamitsu; Bamba, Takeshi; Fukusaki, Eiichiro

    2014-01-01

    The Drosophila melanogaster embryo has been widely utilized as a model for genetics and developmental biology due to its small size, short generation time, and large brood size. Information on embryonic metabolism during developmental progression is important for further understanding the mechanisms of Drosophila embryogenesis. Therefore, the aim of this study is to assess the changes in embryos’ metabolome that occur at different stages of the Drosophila embryonic development. Time course samples of Drosophila embryos were subjected to GC/MS-based metabolome analysis for profiling of low molecular weight hydrophilic metabolites, including sugars, amino acids, and organic acids. The results showed that the metabolic profiles of Drosophila embryo varied during the course of development and there was a strong correlation between the metabolome and different embryonic stages. Using the metabolome information, we were able to establish a prediction model for developmental stages of embryos starting from their high-resolution quantitative metabolite composition. Among the important metabolites revealed from our model, we suggest that different amino acids appear to play distinct roles in different developmental stages and an appropriate balance in trehalose-glucose ratio is crucial to supply the carbohydrate source for the development of Drosophila embryo. PMID:25121768

  12. Drosophila as an unconventional substrate for microfabrication

    NASA Astrophysics Data System (ADS)

    Shum, Angela J.; Parviz, Babak A.

    2007-02-01

    We present the application of Drosophila fruit flies as an unconventional substrate for microfabrication. Drosophila by itself represents a complex system capable of many functions not attainable with current microfabrication technology. By using Drosophila as a substrate, we are able to capitalize on these natural functions while incorporating additional functionality into a superior hybrid system. In the following, development of microfabrication processes for Drosophila substrates is discussed. In particular, results of a study on Drosophila tolerance to vacuum pressure during multiple stages of development are given. A remarkable finding that adult Drosophila may withstand up to 3 hours of exposure to vacuum with measurable survival is noted. This finding opens a number of new opportunities for performing fabrication processes, similar to the ones performed on a silicon wafer, on a fruit fly as a live substrate. As a model microfabrication process, it is shown how a collection of Drosophila can be made to self-assemble into an array of microfabricated recesses on a silicon wafer and how a shadow mask can be used to thermally evaporate 100 nm of indium on flies. The procedure resulted in the production of a number of live flies with a pre-designed metal micropattern on their wings. This demonstration of vacuum microfabrication on a live organism provides the first step towards the development of a hybrid biological/solid-state manufacturing process for complex microsystems.

  13. Partial venom gland transcriptome of a Drosophila parasitoid wasp, Leptopilina heterotoma, reveals novel and shared bioactive profiles with stinging Hymenoptera

    PubMed Central

    Heavner, Mary E.; Gueguen, Gwenaelle; Rajwani, Roma; Pagan, Pedro E.; Small, Chiyedza; Govind, Shubha

    2013-01-01

    Analysis of natural host-parasite relationships reveals the evolutionary forces that shape the delicate and unique specificity characteristic of such interactions. The accessory long gland-reservoir complex of the wasp Leptopilina heterotoma (Figitidae) produces venom with virus-like particles. Upon delivery, venom components delay host larval development and completely block host immune responses. The host range of this Drosophila endoparasitoid notably includes the highly-studied model organism, Drosophila melanogaster. Categorization of 827 unigenes, using similarity as an indicator of putative homology, reveals that approximately 25% are novel or classified as hypothetical proteins. Most of the remaining unigenes are related to processes involved in signaling, cell cycle, and cell physiology including detoxification, protein biogenesis, and hormone production. Analysis of L. heterotoma’s predicted venom gland proteins demonstrates conservation among endo- and ectoparasitoids within the Apocrita (e.g., this wasp and the jewel wasp Nasonia vitripennis) and stinging aculeates (e.g., the honey bee and ants). Enzyme and KEGG pathway profiling predicts that kinases, esterases, and hydrolases may contribute to venom activity in this unique wasp. To our knowledge, this investigation marks the first functional genomic study for a natural parasitic wasp of Drosophila. Our findings will help explain how L. heterotoma shuts down its hosts’ immunity and shed light on the molecular basis of a natural arms race between these insects. PMID:23688557

  14. Development of the larval amphibian growth and development assay: Effects of benzophenone-2 exposure in Xenopus laevis from embryo to juvenile

    EPA Science Inventory

    The Larval Amphibian Growth and Development Assay (LAGDA) is a globally harmonized chemical testing guideline developed by the U.S. Environmental Protection Agency in collaboration with Japan’s Ministry of Environment to support risk assessment. The assay is employed as a ...

  15. Polymorphism at the ref(2)P locus in Drosophila melanogaster: preliminary experiments concerning the selection mechanisms involved in its maintenance.

    PubMed

    Fleuriet, A

    1981-02-01

    It has been shown previously that a polymorphism for two alleles of the ref(2)P locus is a regular feature of French natural populations of Drosophila melanogaster and that this is maintained in laboratory populations raised in cages. In this paper, an experimental population and egg-collection experiments are reported. Differential survival of the three genotypes would be the main factor leading to the equilibrium frequencies, working only in drastic conditions of larval competition.

  16. An assay of behavioral plasticity in Drosophila larvae

    PubMed Central

    Min, Virginia A.; Condron, Barry G.

    2010-01-01

    Stress, or threats to homeostasis, is a universal part of life. Organisms face changing and challenging situations everyday, and the ability to respond to such stress is essential for survival. When subjected to acute stress, the body responds molecularly and behaviorally in order to recover a steady state. We developed a simple and robust assay of behavioral plasticity for Drosophila larvae in which well-defined behavioral responses and recovery can be observed and quantified. After experiencing different control and bright light treatments, populations of photophobic fly larvae were placed a defined distance from a food source to which they crawled. Half-times (t½), or times at which half the total number of larvae reached the food, were used to compare different treatments and larval populations. Repeated control treatments with a main experimental strain gave tight, reproducible t½ ranges. Control treatments with the wild type strains Oregon R and Canton S, the “rover” and “sitter” alleles of the forager locus, and eyeless mutants gave comparable results to those of the experimental strain. Exposure to bright light for a defined time period resulted in a reproducible slowing of locomotion. However, given a defined recovery period, the larvae recover full, normal locomotion. In addition, bright light treatments with Canton S gave comparable results to those of the experimental strain. Eyeless mutants, which are partially blind, do not show a response to bright light treatment. Thus, our assay measures the behavioral responses to bright light in Drosophila larvae and therefore might be useful as a general assay for studying behavioral plasticity and, potentially, adaptation to a stressful stimulus. PMID:15922026

  17. The potential of ocean acidification on suppressing larval development in the Pacific oyster Crassostrea gigas and blood cockle Arca inflata Reeve

    NASA Astrophysics Data System (ADS)

    Li, Jiaqi; Jiang, Zengjie; Zhang, Jihong; Mao, Yuze; Bian, Dapeng; Fang, Jianguang

    2014-11-01

    We evaluated the effect of pH on larval development in larval Pacific oyster ( Crassostrea gigas) and blood cockle ( Arca inflata Reeve). The larvae were reared at pH 8.2 (control), 7.9, 7.6, or 7.3 beginning 30 min or 24 h post fertilization. Exposure to lower pH during early embryonic development inhibited larval shell formation in both species. Compared with the control, larvae took longer to reach the D-veliger stage when reared under pH 7.6 and 7.3. Exposure to lower pH immediately after fertilization resulted in significantly delayed shell formation in the Pacific oyster larvae at pH 7.3 and blood cockle larvae at pH 7.6 and 7.3. However, when exposure was delayed until 24 h post fertilization, shell formation was only inhibited in blood cockle larvae reared at pH 7.3. Thus, the early embryonic stages were more sensitive to acidified conditions. Our results suggest that ocean acidification will have an adverse effect on embryonic development in bivalves. Although the effects appear subtle, they may accumulate and lead to subsequent issues during later larval development.

  18. Nervous system development in lecithotrophic larval and juvenile stages of the annelid Capitella teleta.

    PubMed

    Meyer, Néva P; Carrillo-Baltodano, Allan; Moore, Richard E; Seaver, Elaine C

    2015-01-01

    Reconstructing the evolutionary history of nervous systems requires an understanding of their architecture and development across diverse taxa. The spiralians encompass diverse body plans and organ systems, and within the spiralians, annelids exhibit a variety of morphologies, life histories, feeding modes and associated nervous systems, making them an ideal group for studying evolution of nervous systems. We describe nervous system development in the annelid Capitella teleta (Blake JA, Grassle JP, Eckelbarger KJ. Capitella teleta, a new species designation for the opportunistic and experimental Capitella sp. I, with a review of the literature for confirmed records. Zoosymposia. 2009;2:25-53) using whole-mount in situ hybridization for a synaptotagmin 1 homolog, nuclear stains, and cross-reactive antibodies against acetylated α-tubulin, 5-HT and FMRFamide. Capitella teleta is member of the Sedentaria (Struck TH, Paul C, Hill N, Hartmann S, Hosel C, Kube M, et al. Phylogenomic analyses unravel annelid evolution. Nature. 2011;471:95-8) and has an indirectly-developing, lecithotrophic larva. The nervous system of C. teleta shares many features with other annelids, including a brain and a ladder-like ventral nerve cord with five connectives, reiterated commissures, and pairs of peripheral nerves. Development of the nervous system begins with the first neurons differentiating in the brain, and follows a temporal order from central to peripheral and from anterior to posterior. Similar to other annelids, neurons with serotonin-like-immunoreactivity (5HT-LIR) and FMRFamide-like-immunoreactivity (FMRF-LIR) are found throughout the brain and ventral nerve cord. A small number of larval-specific neurons and neurites are present, but are visible only after the central nervous system begins to form. These larval neurons are not visible after metamorphosis while the rest of the nervous system is largely unchanged in juveniles. Most of the nervous system that forms during

  19. CCDC-55 is required for larval development and distal tip cell migration in Caenorhabditis elegans.

    PubMed

    Kovacevic, Ismar; Ho, Richard; Cram, Erin J

    2012-01-01

    The Caenorhabditis elegans distal tip cells (DTCs) are an in vivo model for the study of developmentally regulated cell migration. In this study, we characterize a novel role for CCDC-55, a conserved coiled-coil domain containing protein, in DTC migration and larval development in C. elegans. Although animals homozygous for a probable null allele, ccdc-55(ok2851), display an early larval arrest, RNAi depletion experiments allow the analysis of later phenotypes and suggest that CCDC-55 is needed within the DTC for migration to cease at the end of larval morphogenesis. The ccdc-55 gene is found in an operon with rnf-121 and rnf-5, E3 ubiquitin ligases that target cell migration genes such as the β-integrin PAT-3. Genetic interaction studies using RNAi depletion and the deletion alleles rnf-121(ok848) and rnf-5(tm794) indicate that CCDC-55 and the RNF genes act at least partially in parallel to promote termination of cell migration in the adult DTC. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. CCDC-55 is required for larval development and distal tip cell migration in C. elegans

    PubMed Central

    Kovacevic, Ismar; Ho, Richard; Cram, Erin J.

    2012-01-01

    The C. elegans distal tip cells (DTCs) are an in vivo model for the study of developmentally regulated cell migration. In this study we characterize a novel role for CCDC-55, a conserved coiled-coil domain containing protein, in DTC migration and larval development in C. elegans. Although animals homozygous for a probable null allele, ccdc-55(ok2851), display an early larval arrest, RNAi depletion experiments allow the analysis of later phenotypes and suggest that CCDC-55 is needed within the DTC for migration to cease at the end of larval morphogenesis. The ccdc-55 gene is found in an operon with rnf-121 and rnf-5, E3 ubiquitin ligases that target cell migration genes such as the β-integrin PAT-3. Genetic interaction studies using RNAi depletion and the deletion alleles rnf-121(ok848) and rnf-5(tm794) indicate that CCDC-55 and the RNF genes act at least partially in parallel to promote termination of cell migration in the adult DTC. PMID:22285439

  1. Metamorphosis of the Drosophila visceral musculature and its role in intestinal morphogenesis and stem cell formation.

    PubMed

    Aghajanian, Patrick; Takashima, Shigeo; Paul, Manash; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2016-12-01

    The visceral musculature of the Drosophila intestine plays important roles in digestion as well as development. Detailed studies investigating the embryonic development of the visceral muscle exist; comparatively little is known about postembryonic development and metamorphosis of this tissue. In this study we have combined the use of specific markers with electron microscopy to follow the formation of the adult visceral musculature and its involvement in gut development during metamorphosis. Unlike the adult somatic musculature, which is derived from a pool of undifferentiated myoblasts, the visceral musculature of the adult is a direct descendant of the larval fibers, as shown by activating a lineage tracing construct in the larval muscle and obtaining labeled visceral fibers in the adult. However, visceral muscles undergo a phase of remodeling that coincides with the metamorphosis of the intestinal epithelium. During the first day following puparium formation, both circular and longitudinal syncytial fibers dedifferentiate, losing their myofibrils and extracellular matrix, and dissociating into mononuclear cells ("secondary myoblasts"). Towards the end of the second day, this process is reversed, and between 48 and 72h after puparium formation, a structurally fully differentiated adult muscle layer has formed. We could not obtain evidence that cells apart from the dedifferentiated larval visceral muscle contributed to the adult muscle, nor does it appear that the number of adult fibers (or nuclei per fiber) is increased over that of the larva by proliferation. In contrast to the musculature, the intestinal epithelium is completely renewed during metamorphosis. The adult midgut epithelium rapidly expands over the larval layer during the first few hours after puparium formation; in case of the hindgut, replacement takes longer, and proceeds by the gradual caudad extension of a proliferating growth zone, the hindgut proliferation zone (HPZ). The subsequent

  2. Drosophila's contribution to stem cell research.

    PubMed

    Singh, Gyanesh

    2015-01-01

    The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. Recent developments in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs) are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub). Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd) proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila.

  3. Drosophila Mgr, a Prefoldin subunit cooperating with von Hippel Lindau to regulate tubulin stability

    PubMed Central

    Delgehyr, Nathalie; Wieland, Uta; Rangone, Hélène; Pinson, Xavier; Mao, Guojie; Dzhindzhev, Nikola S.; McLean, Doris; Riparbelli, Maria G.; Llamazares, Salud; Callaini, Giuliano; Gonzalez, Cayetano; Glover, David M.

    2012-01-01

    Mutations in Drosophila merry-go-round (mgr) have been known for over two decades to lead to circular mitotic figures and loss of meiotic spindle integrity. However, the identity of its gene product has remained undiscovered. We now show that mgr encodes the Prefoldin subunit counterpart of human von Hippel Lindau binding-protein 1. Depletion of Mgr from cultured cells also leads to formation of monopolar and abnormal spindles and centrosome loss. These phenotypes are associated with reductions of tubulin levels in both mgr flies and mgr RNAi-treated cultured cells. Moreover, mgr spindle defects can be phenocopied by depleting β-tubulin, suggesting Mgr function is required for tubulin stability. Instability of β-tubulin in the mgr larval brain is less pronounced than in either mgr testes or in cultured cells. However, expression of transgenic β-tubulin in the larval brain leads to increased tubulin instability, indicating that Prefoldin might only be required when tubulins are synthesized at high levels. Mgr interacts with Drosophila von Hippel Lindau protein (Vhl). Both proteins interact with unpolymerized tubulins, suggesting they cooperate in regulating tubulin functions. Accordingly, codepletion of Vhl with Mgr gives partial rescue of tubulin instability, monopolar spindle formation, and loss of centrosomes, leading us to propose a requirement for Vhl to promote degradation of incorrectly folded tubulin in the absence of functional Prefoldin. Thus, Vhl may play a pivotal role: promoting microtubule stabilization when tubulins are correctly folded by Prefoldin and tubulin destruction when they are not. PMID:22451918

  4. [Experimental study of the larval development of Hymenolepis stylosa (Rudolphi, 1809), Raillet, 1899 (Cestoda : cyelophyllidea) (author's transl)].

    PubMed

    Gabrion, C

    1977-01-01

    Comparative studies of the larval development of Hymenolepis stylosa Rudolphi, 1809 (Cestoda : Cyclophyllidea), a parasite of Corvid birds are undertaken from three insect species. The development in the beetle, Tenebrio molitor shows that the scolex differenciation occurs before the invagination of the metacestode in the cystic vesicle. The cercomer is long, narrow and flexuous. In the grasshopper, Lousta migratoria, the development is the same one but the scolex invaganation begins early. In another beetle, Dermestes frischi, the oncosphere is stopped in the gut-wall. The morphology and development of the cysticercoids of avian species of Hymenolepis, which have a well known life cycle, are similar. Studies on the structure of the larval stages of avian and mammal species of Hymenolepis seem necessary to find the relations between the different species of this genus.

  5. Yolk-sac larval development of the substrate-brooding cichlid Archocentrus nigrofasciatus in relation to temperature.

    PubMed

    Vlahos, Nikolaos; Vasilopoulos, Michael; Mente, Eleni; Hotos, George; Katselis, George; Vidalis, Kosmas

    2015-09-01

    In order to conserve and culture the cichlid fish Archocentrus nigrofasciatus, more information about its reproductive biology and its larval behavior and morphogenesis is necessary. Currently, temperatures ranging from 21 to 27 °C are used in ornamental aquaculture hatcheries. Lower temperatures are preferred to reduce the costs of water heating, and 23 °C is usually the selected temperature. However, there is limited information on culturing protocols for ornamental species and most of the information generated on this topic remains scarce. Thus, the present study examines the morphological development of Archocentrus nigrofasciatus during the yolk-sac period up to the age of 100 h post-hatching in relation to 2 temperature regimes used in ornamental aquaculture: a temperature of 27 °C (thermal optimum) and a decreased temperature of 23 °C (thermal tolerance). The results of this study suggest that the 27 °C temperature generates intense morphological changes in yolk-sac development in a shorter period. This has advantages as it reduces the time of yolk-sac larval development, and, thus, minimizes the transition phase to exogenous feeding and maximizes the efficiency at which yolk is converted into body tissues. The present paper provides necessary information to produce freshwater ornamental fish with better practices so as to increase larval survival and capitalize on time for growth. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  6. Apo-14 is required for digestive system organogenesis during fish embryogenesis and larval development.

    PubMed

    Xia, Jian-Hong; Liu, Jing-Xia; Zhou, Li; Li, Zhi; Gui, Jian-Fang

    2008-01-01

    Apo-14 is a fish-specific apolipoprotein and its biological function remains unknown. In this study, CagApo-14 was cloned from gibel carp (Carassius auratus gibelio) and its expression pattern was investigated during embryogenesis and early larval development. The CagApo-14 transcript and its protein product were firstly localized in the yolk syncytial layer at a high level during embryogenesis, and then found to be restricted to the digestive system including liver and intestine in later embryos and early larvae. Immunofluorescence staining in larvae and adults indicated that Cag Apo-14 protein was predominantly synthesized in and excreted from sinusoidal endothelial cells of liver tissue. Morpholino knockdown of Cag Apo-14 resulted in severe disruption of digestive organs including liver, intestine, pancreas and swim bladder. Moreover, yolk lipid transportation and utilization were severely affected in the Cag Apo-14 morphants. Overall, this data indicates that Cag Apo-14 is required for digestive system organogenesis during fish embryogenesis and larval development.

  7. MAPK Target Sites of Eyes Absent Are Not Required for Eye Development or Survival in Drosophila

    PubMed Central

    Jusiak, Barbara; Abulimiti, Abuduaini; Haelterman, Nele; Chen, Rui; Mardon, Graeme

    2012-01-01

    Eyes absent (Eya) is a highly conserved transcription cofactor and protein phosphatase that plays an essential role in eye development and survival in Drosophila. Ectopic eye induction assays using cDNA transgenes have suggested that mitogen activated protein kinase (MAPK) activates Eya by phosphorylating it on two consensus target sites, S402 and S407, and that this activation potentiates the ability of Eya to drive eye formation. However, this mechanism has never been tested in normal eye development. In the current study, we generated a series of genomic rescue transgenes to investigate how loss- and gain-of-function mutations at these two MAPK target sites within Eya affect Drosophila survival and normal eye formation: eya+GR, the wild-type control; eyaSAGR, which lacks phosphorylation at the two target residues; and eyaSDEGR, which contains phosphomimetic amino acids at the same two residues. Contrary to the previous studies in ectopic eye development, all eya genomic transgenes tested rescue both eye formation and survival equally effectively. We conclude that, in contrast to ectopic eye formation, MAPK-mediated phosphorylation of Eya on S402 and S407 does not play a role in normal development. This is the first study in Drosophila to evaluate the difference in outcomes between genomic rescue and ectopic cDNA-based overexpression of the same gene. These findings indicate similar genomic rescue strategies may prove useful for re-evaluating other long-standing Drosophila developmental models. PMID:23251383

  8. Drosophila Spidey/Kar Regulates Oenocyte Growth via PI3-Kinase Signaling

    PubMed Central

    Cinnamon, Einat; Sawala, Annick; Tittiger, Claus; Paroush, Ze'ev

    2016-01-01

    Cell growth and proliferation depend upon many different aspects of lipid metabolism. One key signaling pathway that is utilized in many different anabolic contexts involves Phosphatidylinositide 3-kinase (PI3K) and its membrane lipid products, the Phosphatidylinositol (3,4,5)-trisphosphates. It remains unclear, however, which other branches of lipid metabolism interact with the PI3K signaling pathway. Here, we focus on specialized fat metabolizing cells in Drosophila called larval oenocytes. In the presence of dietary nutrients, oenocytes undergo PI3K-dependent cell growth and contain very few lipid droplets. In contrast, during starvation, oenocytes decrease PI3K signaling, shut down cell growth and accumulate abundant lipid droplets. We now show that PI3K in larval oenocytes, but not in fat body cells, functions to suppress lipid droplet accumulation. Several enzymes of fatty acid, triglyceride and hydrocarbon metabolism are required in oenocytes primarily for lipid droplet induction rather than for cell growth. In contrast, a very long chain fatty-acyl-CoA reductase (FarO) and a putative lipid dehydrogenase/reductase (Spidey, also known as Kar) not only promote lipid droplet induction but also inhibit oenocyte growth. In the case of Spidey/Kar, we show that the growth suppression mechanism involves inhibition of the PI3K signaling pathway upstream of Akt activity. Together, the findings in this study show how Spidey/Kar and FarO regulate the balance between the cell growth and lipid storage of larval oenocytes. PMID:27500738

  9. Resources for Biological Annotation of the Drosophila Genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald M. Rubin

    2005-08-08

    This project supported seed money for the development of cDNA and genetic resources to support studies of the Drosophila melanogaster genome. Key publications supported by this work that provide additional detail: (1) ''The Drosophila gene collection: identification of putative full-length cDNAs for 70% of D. melanogaster genes''; and (2) ''The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes''.

  10. Larval descriptions of the family Porcellanidae: A worldwide annotated compilation of the literature (Crustacea, Decapoda)

    PubMed Central

    Vela, María José; González-Gordillo, Juan Ignacio

    2016-01-01

    Abstract For most of the family Porcellanidae, which comprises 283 species, larval development remains to be described. Full development has been only described for 52 species, while part of the larval cycle has been described for 45 species. The importance of knowing the complete larval development of a species goes beyond allowing the identification of larval specimens collected in the plankton. Morphological larval data also constitute a support to cladistic techniques used in the establishment of the phylogenetic status (see Hiller et al. 2006, Marco-Herrero et al. 2013). Nevertheless, the literature on the larval development of this family is old and widely dispersed and in many cases it is difficult to collect the available information on a particular taxon. Towards the aim of facilitating future research, all information available on the larval development of porcellanids has been compiled. Following the taxonomic checklist of Porcellanidae proposed by Osawa and McLaughlin (2010), a checklist has been prepared that reflects the current knowledge about larval development of the group including larval stages and the method used to obtain the larvae, together with references. Those species for which the recognised names have been changed according to Osawa and McLaughlin (2010) are indicated. PMID:27081332

  11. Effects of larvicidal and larval nutritional stresses on Anopheles gambiae development, survival and competence for Plasmodium falciparum.

    PubMed

    Vantaux, Amélie; Ouattarra, Issiaka; Lefèvre, Thierry; Dabiré, Kounbobr Roch

    2016-04-23

    Many studies have shown that the environment in which larvae develop can influence adult characteristics with consequences for the transmission of pathogens. We investigated how two environmental stresses (larviciding and nutritional stress) interact to affect Anopheles gambiae (previously An. gambiae S molecular form) life history traits and its susceptibility for field isolates of its natural malaria agent Plasmodium falciparum. Larvae were reared in the presence or not of a sub-lethal concentration of larvicide and under a high and low food regimen. Development time, individual size, adult survival and competence for P. falciparum were assessed. Individuals under low food regimen took more time to develop, had a lower development success and were smaller while there was no main effect of larvicide exposure on these traits. However, larvicide exposure impacted individual size in interaction with nutritional stress. Female survival was affected by the interaction between gametocytemia, parasite exposure and larval diet, as well as the interaction between gametocytemia, parasite exposure and larvicidal stress, and the interaction between gametocytemia, larvicidal exposure and larval diet. Among the 951 females dissected 7 days post-infection, 559 (58.78%) harboured parasites. Parasite prevalence was significantly affected by the interaction between larvicidal stress and larval diet. Indeed, females under low food regimen had a higher prevalence than females under high food regimen and this difference was greater under larvicidal stress. The two stresses did not impact parasite intensity. We found that larval nutritional and larvicidal stresses affect mosquito life history traits in complex ways, which could greatly affect P. falciparum transmission. Further studies combining field-based trials on larvicide use and mosquito experimental infections would give a more accurate understanding of the effects of this vector control tool on malaria transmission.

  12. Toward an Understanding of Divergent Compound Eye Development in Drones and Workers of the Honeybee (Apis mellifera L.): A Correlative Analysis of Morphology and Gene Expression.

    PubMed

    Marco Antonio, David S; Hartfelder, Klaus

    2017-01-01

    Eye development in insects is best understood in Drosophila melanogaster, but little is known for other holometabolous insects. Combining a morphological with a gene expression analysis, we investigated eye development in the honeybee, putting emphasis on the sex-specific differences in eye size. Optic lobe development starts from an optic lobe anlage in the larval brain, which sequentially gives rise to the lobula, medulla, and lamina. The lamina differentiates in the last larval instar, when it receives optic nerve projections from the developing retina. The expression analysis focused on seven genes important for Drosophila eye development: eyes absent, sine oculis, embryonic lethal abnormal vision, minibrain, small optic lobes, epidermal growth factor receptor, and roughest. All except small optic lobes were more highly expressed in third-instar drone larvae, but then, in the fourth and fifth instar, their expression was sex-specifically modulated, showing shifts in temporal dynamics. The clearest differences were seen for small optic lobes, which is highly expressed in the developing eye of workers, and minibrain and roughest, which showed a strong expression peak coinciding with retina differentiation. A microarray analysis for optic lobe/retina complexes revealed the differential expression of several metabolism-related genes, as well as of two micro-RNAs. While we could not see major morphological differences in the developing eye structures before the pupal stage, the expression differences observed for the seven candidate genes and in the transcriptional microarray profiles indicate that molecular signatures underlying sex-specific optic lobe and retina development become established throughout the larval stages. © 2016 Wiley Periodicals, Inc.

  13. Drosophila's contribution to stem cell research

    PubMed Central

    Singh, Gyanesh

    2016-01-01

    The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. Recent developments in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs) are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub). Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd) proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila. PMID:26180635

  14. Nutrient-Dependent Impact of Microbes on Drosophila suzukii Development

    PubMed Central

    Bing, XiaoLi; Gerlach, Joseph; Loeb, Gregory

    2018-01-01

    ABSTRACT Drosophila suzukii Matsumura is an invasive species of vinegar fly that has become a prominent pest of berries and other soft-skinned fruits. Unlike most other Drosophila species, female D. suzukii flies lay their eggs in ripening and ripe fruits and larvae develop within the fruit. To understand how D. suzukii larvae utilize ripe and ripening fruits, which usually have low levels of protein, we investigated the microbiota of field-captured and laboratory-reared D. suzukii flies and further examined the combined influence of diet and microbes on host fitness. Field-captured flies were associated with diverse microbiota, which varied significantly with sampling location and season. In contrast, laboratory-reared flies possessed strikingly lower bacterial abundance and diversity. A comparison of conventionally reared (CR) and germ-free (GF) flies revealed that the microbiota of D. suzukii does not alter its development significantly but decreases its life span under conditions of a nutrient-sufficient diet. However, the microbiota is essential for D. suzukii development on strawberry-based or blueberry-based fruit diets. This developmental failure could be rescued by reassociation with single bacterial or fungal species or by the addition of a high quantity of heat-killed microbes. In addition, we found that proteins are limiting with respect to fly development on fruit-based diets and that GF flies show signs of protein starvation. Taken together, our study results demonstrate that the microbiota provides key proteins required for the development of D. suzukii reared on fresh fruit. Our work shows that the impact of microbes on fly fitness depends strongly on nutritional conditions. PMID:29559576

  15. Polymorphism at the REF(2)P Locus in DROSOPHILA MELANOGASTER: Preliminary Experiments concerning the Selection Mechanisms Involved in Its Maintenance

    PubMed Central

    Fleuriet, Annie

    1981-01-01

    It has been shown previously that a polymorphism for two alleles of the ref(2)P locus is a regular feature of French natural populations of Drosophila melanogaster and that this is maintained in laboratory populations raised in cages. In this paper, an experimental population and egg-collection experiments are reported. Differential survival of the three genotypes would be the main factor leading to the equilibrium frequencies, working only in drastic conditions of larval competition. PMID:6791986

  16. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes.

    PubMed

    Kweka, Eliningaya J; Zhou, Guofa; Munga, Stephen; Lee, Ming-Chieh; Atieli, Harrysone E; Nyindo, Mramba; Githeko, Andrew K; Yan, Guiyun

    2012-01-01

    Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya. A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60%) and An.arabiensis (18.34%), the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024) and An. arabiensis (P = 0.002) larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001), grass cover (P≤0.001), while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001). The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001) when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002). When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines. These findings suggest that implementation of effective larval control programme should be targeted with larval habitats

  17. A Common Suite of Coagulation Proteins Function in Drosophila Muscle Attachment.

    PubMed

    Green, Nicole; Odell, Nadia; Zych, Molly; Clark, Cheryl; Wang, Zong-Heng; Biersmith, Bridget; Bajzek, Clara; Cook, Kevin R; Dushay, Mitchell S; Geisbrecht, Erika R

    2016-11-01

    The organization and stability of higher order structures that form in the extracellular matrix (ECM) to mediate the attachment of muscles are poorly understood. We have made the surprising discovery that a subset of clotting factor proteins are also essential for muscle attachment in the model organism Drosophila melanogaster One such coagulation protein, Fondue (Fon), was identified as a novel muscle mutant in a pupal lethal genetic screen. Fon accumulates at muscle attachment sites and removal of this protein results in decreased locomotor behavior and detached larval muscles. A sensitized genetic background assay reveals that fon functions with the known muscle attachment genes Thrombospondin (Tsp) and Tiggrin (Tig). Interestingly, Tig is also a component of the hemolymph clot. We further demonstrate that an additional clotting protein, Larval serum protein 1γ (Lsp1γ), is also required for muscle attachment stability and accumulates where muscles attach to tendons. While the local biomechanical and organizational properties of the ECM vary greatly depending on the tissue microenvironment, we propose that shared extracellular protein-protein interactions influence the strength and elasticity of ECM proteins in both coagulation and muscle attachment. Copyright © 2016 by the Genetics Society of America.

  18. A Common Suite of Coagulation Proteins Function in Drosophila Muscle Attachment

    PubMed Central

    Green, Nicole; Odell, Nadia; Zych, Molly; Clark, Cheryl; Wang, Zong-Heng; Biersmith, Bridget; Bajzek, Clara; Cook, Kevin R.; Dushay, Mitchell S.; Geisbrecht, Erika R.

    2016-01-01

    The organization and stability of higher order structures that form in the extracellular matrix (ECM) to mediate the attachment of muscles are poorly understood. We have made the surprising discovery that a subset of clotting factor proteins are also essential for muscle attachment in the model organism Drosophila melanogaster. One such coagulation protein, Fondue (Fon), was identified as a novel muscle mutant in a pupal lethal genetic screen. Fon accumulates at muscle attachment sites and removal of this protein results in decreased locomotor behavior and detached larval muscles. A sensitized genetic background assay reveals that fon functions with the known muscle attachment genes Thrombospondin (Tsp) and Tiggrin (Tig). Interestingly, Tig is also a component of the hemolymph clot. We further demonstrate that an additional clotting protein, Larval serum protein 1γ (Lsp1γ), is also required for muscle attachment stability and accumulates where muscles attach to tendons. While the local biomechanical and organizational properties of the ECM vary greatly depending on the tissue microenvironment, we propose that shared extracellular protein–protein interactions influence the strength and elasticity of ECM proteins in both coagulation and muscle attachment. PMID:27585844

  19. An Allele of Sequoia Dominantly Enhances a Trio Mutant Phenotype to Influence Drosophila Larval Behavior

    PubMed Central

    Liebl, Eric C.

    2013-01-01

    The transition of Drosophila third instar larvae from feeding, photo-phobic foragers to non-feeding, photo-neutral wanderers is a classic behavioral switch that precedes pupariation. The neuronal network responsible for this behavior has recently begun to be defined. Previous genetic analyses have identified signaling components for food and light sensory inputs and neuropeptide hormonal outputs as being critical for the forager to wanderer transition. Trio is a Rho-Guanine Nucleotide Exchange Factor integrated into a variety of signaling networks including those governing axon pathfinding in early development. Sequoia is a pan-neuronally expressed zinc-finger transcription factor that governs dendrite and axon outgrowth. Using pre-pupal lethality as an endpoint, we have screened for dominant second-site enhancers of a weakly lethal trio mutant background. In these screens, an allele of sequoia has been identified. While these mutants have no obvious disruption of embryonic central nervous system architecture and survive to third instar larvae similar to controls, they retain forager behavior and thus fail to pupariate at high frequency. PMID:24376789

  20. An allele of sequoia dominantly enhances a trio mutant phenotype to influence Drosophila larval behavior.

    PubMed

    Dean, Kathryn E; Fields, April; Geer, Marcus J; King, Eric C; Lynch, Brian T; Manohar, Rohan R; McCall, Julianne R; Palozola, Katherine C; Zhang, Yan; Liebl, Eric C

    2013-01-01

    The transition of Drosophila third instar larvae from feeding, photo-phobic foragers to non-feeding, photo-neutral wanderers is a classic behavioral switch that precedes pupariation. The neuronal network responsible for this behavior has recently begun to be defined. Previous genetic analyses have identified signaling components for food and light sensory inputs and neuropeptide hormonal outputs as being critical for the forager to wanderer transition. Trio is a Rho-Guanine Nucleotide Exchange Factor integrated into a variety of signaling networks including those governing axon pathfinding in early development. Sequoia is a pan-neuronally expressed zinc-finger transcription factor that governs dendrite and axon outgrowth. Using pre-pupal lethality as an endpoint, we have screened for dominant second-site enhancers of a weakly lethal trio mutant background. In these screens, an allele of sequoia has been identified. While these mutants have no obvious disruption of embryonic central nervous system architecture and survive to third instar larvae similar to controls, they retain forager behavior and thus fail to pupariate at high frequency.

  1. Prior activity of olfactory receptor neurons is required for proper sensory processing and behavior in Drosophila larvae.

    PubMed

    Utashiro, Nao; Williams, Claire R; Parrish, Jay Z; Emoto, Kazuo

    2018-06-05

    Animal responses to their environment rely on activation of sensory neurons by external stimuli. In many sensory systems, however, neurons display basal activity prior to the external stimuli. This prior activity is thought to modulate neural functions, yet its impact on animal behavior remains elusive. Here, we reveal a potential role for prior activity in olfactory receptor neurons (ORNs) in shaping larval olfactory behavior. We show that prior activity in larval ORNs is mediated by the olfactory receptor complex (OR complex). Mutations of Orco, an odorant co-receptor required for OR complex function, cause reduced attractive behavior in response to optogenetic activation of ORNs. Calcium imaging reveals that Orco mutant ORNs fully respond to optogenetic stimulation but exhibit altered temporal patterns of neural responses. These findings together suggest a critical role for prior activity in information processing upon ORN activation in Drosophila larvae, which in turn contributes to olfactory behavior control.

  2. Reduction in the cumulative effect of stress-induced inbreeding depression due to intragenerational purging in Drosophila melanogaster.

    PubMed

    Enders, L S; Nunney, L

    2016-03-01

    Environmental stress generally exacerbates the harmful effects of inbreeding and it has been proposed that this could be exploited in purging deleterious alleles from threatened inbred populations. However, understanding what factors contribute to variability in the strength of inbreeding depression (ID) observed across adverse environmental conditions remains a challenge. Here, we examined how the nature and timing of stress affects ID and the potential for purging using inbred and outbred Drosophila melanogaster larvae exposed to biotic (larval competition, bacteria infection) and abiotic (ethanol, heat) stressors compared with unstressed controls. ID was measured during (larval survival) and after (male mating success) stress exposure. The level of stress imposed by each stressor was approximately equal, averaging a 42% reduction in outbred larval survival relative to controls. All stressors induced on average the same ID, causing a threefold increase in lethal equivalents for larval survival relative to controls. However, stress-induced ID in larval success was followed by a 30% reduction in ID in mating success of surviving males. We propose that this fitness recovery is due to 'intragenerational purging' whereby fitness correlations facilitate stress-induced purging that increases the average fitness of survivors in later life history stages. For biotic stressors, post-stress reductions in ID are consistent with intragenerational purging, whereas for abiotic stressors, there appeared to be an interaction between purging and stress-induced physiological damage. For all stressors, there was no net effect of stress on lifetime ID compared with unstressed controls, undermining the prediction that stress enhances the effectiveness of population-level purging across generations.

  3. Reduction in the cumulative effect of stress-induced inbreeding depression due to intragenerational purging in Drosophila melanogaster

    PubMed Central

    Enders, L S; Nunney, L

    2016-01-01

    Environmental stress generally exacerbates the harmful effects of inbreeding and it has been proposed that this could be exploited in purging deleterious alleles from threatened inbred populations. However, understanding what factors contribute to variability in the strength of inbreeding depression (ID) observed across adverse environmental conditions remains a challenge. Here, we examined how the nature and timing of stress affects ID and the potential for purging using inbred and outbred Drosophila melanogaster larvae exposed to biotic (larval competition, bacteria infection) and abiotic (ethanol, heat) stressors compared with unstressed controls. ID was measured during (larval survival) and after (male mating success) stress exposure. The level of stress imposed by each stressor was approximately equal, averaging a 42% reduction in outbred larval survival relative to controls. All stressors induced on average the same ID, causing a threefold increase in lethal equivalents for larval survival relative to controls. However, stress-induced ID in larval success was followed by a 30% reduction in ID in mating success of surviving males. We propose that this fitness recovery is due to ‘intragenerational purging' whereby fitness correlations facilitate stress-induced purging that increases the average fitness of survivors in later life history stages. For biotic stressors, post-stress reductions in ID are consistent with intragenerational purging, whereas for abiotic stressors, there appeared to be an interaction between purging and stress-induced physiological damage. For all stressors, there was no net effect of stress on lifetime ID compared with unstressed controls, undermining the prediction that stress enhances the effectiveness of population-level purging across generations. PMID:26604190

  4. Reproduction and development in Halocaridina rubra Holthuis, 1963 (Crustacea: Atyidae) clarifies larval ecology in the Hawaiian anchialine ecosystem.

    PubMed

    Havird, Justin C; Vaught, Rebecca C; Weese, David A; Santos, Scott R

    2015-10-01

    Larvae in aquatic habitats often develop in environments different from those they inhabit as adults. Shrimp in the Atyidae exemplify this trend, as larvae of many species require salt or brackish water for development, while adults are freshwater-adapted. An exception within the Atyidae family is the "anchialine clade," which are euryhaline as adults and endemic to habitats with subterranean fresh and marine water influences. Although the Hawaiian anchialine atyid Halocaridina rubra is a strong osmoregulator, its larvae have never been observed in nature. Moreover, larval development in anchialine species is poorly studied. Here, reproductive trends in laboratory colonies over a 5-y period are presented from seven genetic lineages and one mixed population of H. rubra; larval survivorship under varying salinities is also discussed. The presence and number of larvae differed significantly among lineages, with the mixed population being the most prolific. Statistical differences in reproduction attributable to seasonality also were identified. Larval survivorship was lowest (12% settlement rate) at a salinity approaching fresh water and significantly higher in brackish and seawater (88% and 72%, respectively). Correlated with this finding, identifiable gills capable of ion transport did not develop until metamorphosis into juveniles. Thus, early life stages of H. rubra are apparently excluded from surface waters, which are characterized by lower and fluctuating salinities. Instead, these stages are restricted to the subterranean (where there is higher and more stable salinity) portion of Hawaii's anchialine habitats due to their inability to tolerate low salinities. Taken together, these data contribute to the understudied area of larval ecology in the anchialine ecosystem. © 2015 Marine Biological Laboratory.

  5. Postharvest irradiation treatment for quarantine control of Drosophila suzukii (Diptera: Drosophilidae) in fresh commodities.

    PubMed

    Follett, Peter A; Swedman, Allison; Prices, Donald K

    2014-06-01

    Irradiation is a postharvest quarantine treatment option for exported commodities such as stone fruits and small fruits to prevent movement of the new invasive pest spotted wing drosophila, Drosophila suzukii (Walker) (Diptera: Drosophilidae). The effects of irradiation on larval and pupal development and adult reproduction in D. suzukii were examined. Larvae (first, second, and third instars) and pupae (1-2-d-old, 3-5-d-old, and 7-8-d-old) on diet were irradiated at target doses of 20, 30, 40, and 50 Gy in replicated factorial experiments and survival to the adult stage was recorded. Tolerance to radiation increased with increasing age and developmental stage. Males and females were equally susceptible. A radiation dose of 40 Gy applied to first- and second-instar larvae prevented adult emergence. The late-stage pupa was the most radiation-tolerant stage that occurs in fruit, and individuals irradiated at this stage readily emerged as adults; therefore, prevention of F1 adults was the desired treatment response for large-scale validation tests with naturally infested fruit. In large-scale tests, a radiation dose of 80 Gy applied to late-stage pupae in sweet cherries or grapes resulted in no production of F1 adults in > 33,000 treated individuals, which meets the zero tolerance requirement for market access. A minimum absorbed dose of 80 Gy is recommended for quarantine control of D. suzukii.

  6. Characterization of Autophagic Responses in Drosophila melanogaster.

    PubMed

    Xu, T; Kumar, S; Denton, D

    2017-01-01

    Drosophila is an excellent model system for studying autophagy during animal development due to the availability of genetic reagents and opportunity for in vivo cell biological analysis. The regulation and mechanism of autophagy are highly evolutionarily conserved and the role of autophagy has been characterized during various stages of Drosophila development as well as following starvation. Studies in Drosophila have revealed novel insights into the role of distinct components of the autophagy machinery. This chapter describes protocols for examining autophagy during Drosophila development. A crucial step in the induction of autophagy is the incorporation of Atg8a into the autophagosome. This can be measured as autophagic puncta using live fluorescent imaging, immunostaining, or immunoblot analysis of LC3/Atg8a processing. The level of autophagy can also be examined using other specific components of the autophagy pathway as markers detected by immunofluorescent imaging. Based on the distinct morphology of autophagy, it can also be examined by transmission electron microscopy. In addition, one of the advantages of using Drosophila as a model is the ability to undertake genetic analysis of individual components of the autophagy machinery. Current approaches that can be used to monitor autophagy, including the overall flux and individual steps in Drosophila melanogaster, will be discussed. © 2017 Elsevier Inc. All rights reserved.

  7. Genetic control of Drosophila nerve cord development

    NASA Technical Reports Server (NTRS)

    Skeath, James B.; Thor, Stefan

    2003-01-01

    The Drosophila ventral nerve cord has been a central model system for studying the molecular genetic mechanisms that control CNS development. Studies show that the generation of neural diversity is a multistep process initiated by the patterning and segmentation of the neuroectoderm. These events act together with the process of lateral inhibition to generate precursor cells (neuroblasts) with specific identities, distinguished by the expression of unique combinations of regulatory genes. The expression of these genes in a given neuroblast restricts the fate of its progeny, by activating specific combinations of downstream genes. These genes in turn specify the identity of any given postmitotic cell, which is evident by its cellular morphology and choice of neurotransmitter.

  8. Development of a larval diet for the South American fruit fly Anastrepha fraterculus (Diptera:Tephritidae)

    USDA-ARS?s Scientific Manuscript database

    Mass-rearing protocols must be developed. In particular, a cost-effective larval diet, to implement the sterile insect technique against Anastrepha fratercculus (Wiedemann). The key elements of this diet are the optimal nutrients and their concentrations, diet supports or bulking agents, and the pH ...

  9. Evaluating the Autonomy of the Drosophila Circadian Clock in Dissociated Neuronal Culture.

    PubMed

    Sabado, Virginie; Vienne, Ludovic; Nagoshi, Emi

    2017-01-01

    Circadian behavioral rhythms offer an excellent model to study intricate interactions between the molecular and neuronal mechanisms of behavior. In mammals, pacemaker neurons in the suprachiasmatic nucleus (SCN) generate rhythms cell-autonomously, which are synchronized by the network interactions within the circadian circuit to drive behavioral rhythms. However, whether this principle is universal to circadian systems in animals remains unanswered. Here, we examined the autonomy of the Drosophila circadian clock by monitoring transcriptional and post-transcriptional rhythms of individual clock neurons in dispersed culture with time-lapse microscopy. Expression patterns of the transcriptional reporter show that CLOCK/CYCLE (CLK/CYC)-mediated transcription is constantly active in dissociated clock neurons. In contrast, the expression profile of the post-transcriptional reporter indicates that PERIOD (PER) protein levels fluctuate and ~10% of cells display rhythms in PER levels with periods in the circadian range. Nevertheless, PER and TIM are enriched in the cytoplasm and no periodic PER nuclear accumulation was observed. These results suggest that repression of CLK/CYC-mediated transcription by nuclear PER is impaired, and thus the negative feedback loop of the molecular clock is incomplete in isolated clock neurons. We further demonstrate that, by pharmacological assays using the non-amidated form of neuropeptide pigment-dispersing factor (PDF), which could be specifically secreted from larval LNvs and adult s-LNvs, downstream events of the PDF signaling are partly impaired in dissociated larval clock neurons. Although non-amidated PDF is likely to be less active than the amidated one, these results point out the possibility that alteration in PDF downstream signaling may play a role in dampening of molecular rhythms in isolated clock neurons. Taken together, our results suggest that Drosophila clocks are weak oscillators that need to be in the intact circadian

  10. Evaluating the Autonomy of the Drosophila Circadian Clock in Dissociated Neuronal Culture

    PubMed Central

    Sabado, Virginie; Vienne, Ludovic; Nagoshi, Emi

    2017-01-01

    Circadian behavioral rhythms offer an excellent model to study intricate interactions between the molecular and neuronal mechanisms of behavior. In mammals, pacemaker neurons in the suprachiasmatic nucleus (SCN) generate rhythms cell-autonomously, which are synchronized by the network interactions within the circadian circuit to drive behavioral rhythms. However, whether this principle is universal to circadian systems in animals remains unanswered. Here, we examined the autonomy of the Drosophila circadian clock by monitoring transcriptional and post-transcriptional rhythms of individual clock neurons in dispersed culture with time-lapse microscopy. Expression patterns of the transcriptional reporter show that CLOCK/CYCLE (CLK/CYC)-mediated transcription is constantly active in dissociated clock neurons. In contrast, the expression profile of the post-transcriptional reporter indicates that PERIOD (PER) protein levels fluctuate and ~10% of cells display rhythms in PER levels with periods in the circadian range. Nevertheless, PER and TIM are enriched in the cytoplasm and no periodic PER nuclear accumulation was observed. These results suggest that repression of CLK/CYC-mediated transcription by nuclear PER is impaired, and thus the negative feedback loop of the molecular clock is incomplete in isolated clock neurons. We further demonstrate that, by pharmacological assays using the non-amidated form of neuropeptide pigment-dispersing factor (PDF), which could be specifically secreted from larval LNvs and adult s-LNvs, downstream events of the PDF signaling are partly impaired in dissociated larval clock neurons. Although non-amidated PDF is likely to be less active than the amidated one, these results point out the possibility that alteration in PDF downstream signaling may play a role in dampening of molecular rhythms in isolated clock neurons. Taken together, our results suggest that Drosophila clocks are weak oscillators that need to be in the intact circadian

  11. A perisynaptic ménage à trois between Dlg, DLin-7, and Metro controls proper organization of Drosophila synaptic junctions.

    PubMed

    Bachmann, André; Kobler, Oliver; Kittel, Robert J; Wichmann, Carolin; Sierralta, Jimena; Sigrist, Stephan J; Gundelfinger, Eckart D; Knust, Elisabeth; Thomas, Ulrich

    2010-04-28

    Structural plasticity of synaptic junctions is a prerequisite to achieve and modulate connectivity within nervous systems, e.g., during learning and memory formation. It demands adequate backup systems that allow remodeling while retaining sufficient stability to prevent unwanted synaptic disintegration. The strength of submembranous scaffold complexes, which are fundamental to the architecture of synaptic junctions, likely constitutes a crucial determinant of synaptic stability. Postsynaptic density protein-95 (PSD-95)/ Discs-large (Dlg)-like membrane-associated guanylate kinases (DLG-MAGUKs) are principal scaffold proteins at both vertebrate and invertebrate synapses. At Drosophila larval glutamatergic neuromuscular junctions (NMJs) DlgA and DlgS97 exert pleiotropic functions, probably reflecting a few known and a number of yet-unknown binding partners. In this study we have identified Metro, a novel p55/MPP-like Drosophila MAGUK as a major binding partner of perisynaptic DlgS97 at larval NMJs. Based on homotypic LIN-2,-7 (L27) domain interactions, Metro stabilizes junctional DlgS97 in a complex with the highly conserved adaptor protein DLin-7. In a remarkably interdependent manner, Metro and DLin-7 act downstream of DlgS97 to control NMJ expansion and proper establishment of synaptic boutons. Using quantitative 3D-imaging we further demonstrate that the complex controls the size of postsynaptic glutamate receptor fields. Our findings accentuate the importance of perisynaptic scaffold complexes for synaptic stabilization and organization.

  12. Molecular characterization of larval development from fertilization to metamorphosis in a reef-building coral.

    PubMed

    Strader, Marie E; Aglyamova, Galina V; Matz, Mikhail V

    2018-01-04

    Molecular mechanisms underlying coral larval competence, the ability of larvae to respond to settlement cues, determine their dispersal potential and are potential targets of natural selection. Here, we profiled competence, fluorescence and genome-wide gene expression in embryos and larvae of the reef-building coral Acropora millepora daily throughout 12 days post-fertilization. Gene expression associated with competence was positively correlated with transcriptomic response to the natural settlement cue, confirming that mature coral larvae are "primed" for settlement. Rise of competence through development was accompanied by up-regulation of sensory and signal transduction genes such as ion channels, genes involved in neuropeptide signaling, and G-protein coupled receptor (GPCRs). A drug screen targeting components of GPCR signaling pathways confirmed a role in larval settlement behavior and metamorphosis. These results gives insight into the molecular complexity underlying these transitions and reveals receptors and pathways that, if altered by changing environments, could affect dispersal capabilities of reef-building corals. In addition, this dataset provides a toolkit for asking broad questions about sensory capacity in multicellular animals and the evolution of development.

  13. Effect of Two Oil Dispersants on Larval Grass Shrimp (Palaemonetes pugio) Development.

    NASA Astrophysics Data System (ADS)

    Betancourt, P.; Key, P. B.; Chung, K. W.; DeLorenzo, M. E.

    2015-12-01

    The study focused on the effects that two oil dispersants, Corexit® EC9500A and Finasol® OSR52, have on the development of larval grass shrimp, (Palaemonetes pugio). The hypothesis was that Finasol would have a greater effect on larval grass shrimp development than Corexit. The experiment was conducted using 300 grass shrimp larvae that were 24 hours old. Each larva was exposed individually. In total, five sub-lethal concentrations were tested for each dispersant (control, 1.25, 2.50, 5.0,10.0 mg/L). The larvae were exposed for five days then transferred to clean seawater until metamorphosis into the juvenile stage. Key data measurements recorded included number of days to become juveniles, number of instars, length, dry weight, and mortality. Data from exposed shrimp was compared to the results of the control for each dispersant concentration. Corexit and Finasol exposure treatments of 5 mg/L and 10 mg/L showed significantly higher values for number of days and number of instars to reach juvenile status than values obtained from unexposed, control shrimp. Overall, mortality was higher in the Finasol treatments but the two dispersants did not respond significantly different from one another. Future studies are needed to determine the long term effects of dispersant exposure on all grass shrimp life stages and how any dispersant exposure impacts grass shrimp populations. Grass shrimp serve as excellent toxicity indicators of estuaries, and further studies will help to develop better oil spill mitigation techniques.

  14. Ecdysone mediates the development of immunity in the Drosophila embryo.

    PubMed

    Tan, Kiri Louise; Vlisidou, Isabella; Wood, Will

    2014-05-19

    Beyond their role in cell metabolism, development, and reproduction, hormones are also important modulators of the immune system. In the context of inflammatory disorders, systemic administration of pharmacological doses of synthetic glucocorticoids (GCs) is widely used as an anti-inflammatory treatment [1, 2]. However, not all actions of GCs are immunosuppressive, and many studies have suggested that physiological concentrations of GCs can have immunoenhancing effects [3-7]. For a more comprehensive understanding of how steroid hormones regulate immunity and inflammation, a simple in vivo system is required. The Drosophila embryo has recently emerged as a powerful model system to study the recruitment of immune cells to sterile wounds [8] and host-pathogen dynamics [9]. Here we investigate the immune response of the fly embryo to bacterial infections and find that the steroid hormone 20-hydroxyecdysone (20-HE) can regulate the quality of the immune response and influence the resolution of infection in Drosophila embryos. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Nutrient-Dependent Endocycling in Steroidogenic Tissue Dictates Timing of Metamorphosis in Drosophila melanogaster

    PubMed Central

    Ohhara, Yuya; Kobayashi, Satoru

    2017-01-01

    Many animals have an intrinsic growth checkpoint during juvenile development, after which an irreversible decision is made to upregulate steroidogenesis, triggering the metamorphic juvenile-to-adult transition. However, a molecular process underlying such a critical developmental decision remains obscure. Here we show that nutrient-dependent endocycling in steroidogenic cells provides the machinery necessary for irreversible activation of metamorphosis in Drosophila melanogaster. Endocycle progression in cells of the prothoracic gland (PG) is tightly coupled with the growth checkpoint, and block of endocycle in PG cells causes larval developmental arrest due to reduction in biosynthesis of the steroid hormone ecdysone. Moreover, inhibition of the nutrient sensor target of rapamycin (TOR) in the PG during the checkpoint period causes endocycle inhibition and developmental arrest, which can be rescued by inducing additional rounds of endocycles by Cyclin E. We propose that a TOR-mediated cell cycle checkpoint in steroidogenic tissue provides a systemic growth checkpoint for reproductive maturation. PMID:28121986

  16. Downregulation of dTps1 in Drosophila melanogaster larvae confirms involvement of trehalose in redox regulation following desiccation.

    PubMed

    Thorat, Leena; Mani, Krishna-Priya; Thangaraj, Pradeep; Chatterjee, Suvro; Nath, Bimalendu B

    2016-03-01

    As a survival strategy to environmental water deficits, desiccation-tolerant organisms are commonly known for their ability to recruit stress-protective biomolecules such as trehalose. We have previously reported the pivotal role of trehalose in larval desiccation tolerance in Drosophila melanogaster. Trehalose has emerged as a versatile molecule, serving mainly as energy source in insects and also being a stress protectant. While several recent reports have revealed the unconventional role of trehalose in scavenging reactive oxygen species in yeast and plants, this aspect has not received much attention in animals. We examined the status of desiccation-induced generation of reactive oxygen species in D. melanogaster larvae and the possible involvement of trehalose in ameliorating the harmful consequences thereof. Insect trehalose synthesis is governed by the enzyme trehalose 6-phosphate synthase 1 (TPS1). Using the ubiquitous da-GAL4-driven expression of the dTps1-RNAi transgene, we generated dTps1-downregulated Drosophila larvae possessing depleted levels of dTps1 transcripts. This resulted in the inability of the larvae for trehalose synthesis, thereby allowing us to elucidate the significance of trehalose in the regulation of desiccation-responsive redox homeostasis. Furthermore, the results from molecular genetics studies, biochemical assays, electron spin resonance analyses and a simple, non-invasive method of whole larval live imaging suggested that trehalose in collaboration with superoxide dismutase (SOD) is involved in the maintenance of redox state in D. melanogaster.

  17. A New Fiji-Based Algorithm That Systematically Quantifies Nine Synaptic Parameters Provides Insights into Drosophila NMJ Morphometry

    PubMed Central

    Wolf, Louis; Scheffer-de Gooyert, Jolanda M.; Monedero, Ignacio; Torroja, Laura; Coromina, Lluis; van der Laak, Jeroen A. W. M.; Schenck, Annette

    2016-01-01

    The morphology of synapses is of central interest in neuroscience because of the intimate relation with synaptic efficacy. Two decades of gene manipulation studies in different animal models have revealed a repertoire of molecules that contribute to synapse development. However, since such studies often assessed only one, or at best a few, morphological features at a given synapse, it remained unaddressed how different structural aspects relate to one another. Furthermore, such focused and sometimes only qualitative approaches likely left many of the more subtle players unnoticed. Here, we present the image analysis algorithm ‘Drosophila_NMJ_Morphometrics’, available as a Fiji-compatible macro, for quantitative, accurate and objective synapse morphometry of the Drosophila larval neuromuscular junction (NMJ), a well-established glutamatergic model synapse. We developed this methodology for semi-automated multiparametric analyses of NMJ terminals immunolabeled for the commonly used markers Dlg1 and Brp and showed that it also works for Hrp, Csp and Syt. We demonstrate that gender, genetic background and identity of abdominal body segment consistently and significantly contribute to variability in our data, suggesting that controlling for these parameters is important to minimize variability in quantitative analyses. Correlation and principal component analyses (PCA) were performed to investigate which morphometric parameters are inter-dependent and which ones are regulated rather independently. Based on nine acquired parameters, we identified five morphometric groups: NMJ size, geometry, muscle size, number of NMJ islands and number of active zones. Based on our finding that the parameters of the first two principal components hardly correlated with each other, we suggest that different molecular processes underlie these two morphometric groups. Our study sets the stage for systems morphometry approaches at the well-studied Drosophila NMJ. PMID:26998933

  18. A role for the Drosophila zinc transporter Zip88E in protecting against dietary zinc toxicity.

    PubMed

    Richards, Christopher D; Warr, Coral G; Burke, Richard

    2017-01-01

    Zinc absorption in animals is thought to be regulated in a local, cell autonomous manner with intestinal cells responding to dietary zinc content. The Drosophila zinc transporter Zip88E shows strong sequence similarity to Zips 42C.1, 42C.2 and 89B as well as mammalian Zips 1, 2 and 3, suggesting that it may act in concert with the apically-localised Drosophila zinc uptake transporters to facilitate dietary zinc absorption by importing ions into the midgut enterocytes. However, the functional characterisation of Zip88E presented here indicates that Zip88E may instead play a role in detecting and responding to zinc toxicity. Larvae homozygous for a null Zip88E allele are viable yet display heightened sensitivity to elevated levels of dietary zinc. This decreased zinc tolerance is accompanied by an overall decrease in Metallothionein B transcription throughout the larval midgut. A Zip88E reporter gene is expressed only in the salivary glands, a handful of enteroendocrine cells at the boundary between the anterior and middle midgut regions, and in two parallel strips of sensory cell projections connecting to the larval ventral ganglion. Zip88E expression solely in this restricted subset of cells is sufficient to rescue the Zip88E mutant phenotype. Together, our data suggest that Zip88E may be functioning in a small subset of cells to detect excessive zinc levels and induce a systemic response to reduce dietary zinc absorption and hence protect against toxicity.

  19. Novel methodologies in marine fish larval nutrition.

    PubMed

    Conceição, Luis E C; Aragão, Cláudia; Richard, Nadège; Engrola, Sofia; Gavaia, Paulo; Mira, Sara; Dias, Jorge

    2010-03-01

    Major gaps in knowledge on fish larval nutritional requirements still remain. Small larval size, and difficulties in acceptance of inert microdiets, makes progress slow and cumbersome. This lack of knowledge in fish larval nutritional requirements is one of the causes of high mortalities and quality problems commonly observed in marine larviculture. In recent years, several novel methodologies have contributed to significant progress in fish larval nutrition. Others are emerging and are likely to bring further insight into larval nutritional physiology and requirements. This paper reviews a range of new tools and some examples of their present use, as well as potential future applications in the study of fish larvae nutrition. Tube-feeding and incorporation into Artemia of (14)C-amino acids and lipids allowed studying Artemia intake, digestion and absorption and utilisation of these nutrients. Diet selection by fish larvae has been studied with diets containing different natural stable isotope signatures or diets where different rare metal oxides were added. Mechanistic modelling has been used as a tool to integrate existing knowledge and reveal gaps, and also to better understand results obtained in tracer studies. Population genomics may assist in assessing genotype effects on nutritional requirements, by using progeny testing in fish reared in the same tanks, and also in identifying QTLs for larval stages. Functional genomics and proteomics enable the study of gene and protein expression under various dietary conditions, and thereby identify the metabolic pathways which are affected by a given nutrient. Promising results were obtained using the metabolic programming concept in early life to facilitate utilisation of certain nutrients at later stages. All together, these methodologies have made decisive contributions, and are expected to do even more in the near future, to build a knowledge basis for development of optimised diets and feeding regimes for

  20. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla.

    PubMed

    Sheppard Brennand, Hannah; Soars, Natalie; Dworjanyn, Symon A; Davis, Andrew R; Byrne, Maria

    2010-06-29

    As the oceans simultaneously warm, acidify and increase in P(CO2), prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming. We examined the interactive effects of near-future ocean warming and increased acidification/P(CO2) on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial experiments in flow-through conditions in all combinations of three temperature and three pH/P(CO2) treatments. Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot. Increased acidity/P(CO2) and decreased carbonate mineral saturation significantly reduced larval growth resulting in decreased skeletal length. Increased temperature (+3 degrees C) stimulated growth, producing significantly bigger larvae across all pH/P(CO2) treatments up to a thermal threshold (+6 degrees C). Increased acidity (-0.3-0.5 pH units) and hypercapnia significantly reduced larval calcification. A +3 degrees C warming diminished the negative effects of acidification and hypercapnia on larval growth. This study of the effects of ocean warming and CO(2) driven acidification on development and calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization) shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of acidification were dominant. Reduction in size of sea urchin larvae in a high P(CO2) ocean would likely impair their performance with negative consequent effects for benthic adult populations.

  1. Drosophila Torsin Protein Regulates Motor Control and Stress Sensitivity and Forms a Complex with Fragile-X Mental Retardation Protein

    PubMed Central

    Ahn, Hyo-Min; Koh, Young Ho

    2016-01-01

    We investigated unknown in vivo functions of Torsin by using Drosophila as a model. Downregulation of Drosophila Torsin (DTor) by DTor-specific inhibitory double-stranded RNA (RNAi) induced abnormal locomotor behavior and increased susceptibility to H2O2. In addition, altered expression of DTor significantly increased the numbers of synaptic boutons. One important biochemical consequence of DTor-RNAi expression in fly brains was upregulation of alcohol dehydrogenase (ADH). Altered expression of ADH has also been reported in Drosophila Fragile-X mental retardation protein (DFMRP) mutant flies. Interestingly, expression of DFMRP was altered in DTor mutant flies, and DTor and DFMRP were present in the same protein complexes. In addition, DTor and DFMRP immunoreactivities were partially colocalized in several cellular organelles in larval muscles. Furthermore, there were no significant differences between synaptic morphologies of dfmrp null mutants and dfmrp mutants expressing DTor-RNAi. Taken together, our evidences suggested that DTor and DFMRP might be present in the same signaling pathway regulating synaptic plasticity. In addition, we also found that human Torsin1A and human FMRP were present in the same protein complexes, suggesting that this phenomenon is evolutionarily conserved. PMID:27313903

  2. The gene transformer-2 of Sciara (Diptera, Nematocera) and its effect on Drosophila sexual development.

    PubMed

    Martín, Iker; Ruiz, María F; Sánchez, Lucas

    2011-03-15

    The gene transformer-2, which is involved in sex determination, has been studied in Drosophila, Musca, Ceratitis, Anastrepha and Lucilia. All these members of Diptera belong to the suborder Brachycera. In this work, it is reported the isolation and characterisation of genes transformer-2 of the dipterans Sciara ocellaris and Bradysia coprophila (formerly Sciara coprophila), which belong to the much less extensively analysed Sciaridae Family of the Suborder Nematocera, which is paraphyletic with respect to Suborder Brachycera. The transformer-2 genes of the studied Sciara species were found to be transcribed in both sexes during development and adult life, in both the soma and germ lines. They produced a single primary transcript, which follows the same alternative splicing in both sexes, giving rise to different mRNAs isoforms. In S. ocellaris the most abundant mRNA isoform encoded a full-length protein of 251 amino acids, while that of B. coprophila encoded a protein of 246 amino acids. Both showed the features of the SR protein family. The less significant mRNA isoforms of both species encoded truncated, presumably non-functional Transformer-2 proteins. The comparison of the functional Sciara Transformer-2 proteins among themselves and those of other insects revealed the greatest degree of conservation in the RRM domain and linker region. In contrast, the RS1 and RS2 domains showed extensive variation with respect to their number of amino acids and their arginine-serine (RS) dipeptide content. The expression of S. ocellaris Transformer-2 protein in Drosophila XX pseudomales lacking the endogenous transformer-2 function caused their partial feminisation. The transformer-2 genes of both Sciaridae species encode a single protein in both sexes that shares the characteristics of the Transformer-2 proteins of other insects. These proteins showed conserved sex-determination function in Drosophila; i.e., they were able to form a complex with the endogenous Drosophila

  3. The gene transformer-2 of Sciara (Diptera, Nematocera) and its effect on Drosophila sexual development

    PubMed Central

    2011-01-01

    Background The gene transformer-2, which is involved in sex determination, has been studied in Drosophila, Musca, Ceratitis, Anastrepha and Lucilia. All these members of Diptera belong to the suborder Brachycera. In this work, it is reported the isolation and characterisation of genes transformer-2 of the dipterans Sciara ocellaris and Bradysia coprophila (formerly Sciara coprophila), which belong to the much less extensively analysed Sciaridae Family of the Suborder Nematocera, which is paraphyletic with respect to Suborder Brachycera. Results The transformer-2 genes of the studied Sciara species were found to be transcribed in both sexes during development and adult life, in both the soma and germ lines. They produced a single primary transcript, which follows the same alternative splicing in both sexes, giving rise to different mRNAs isoforms. In S. ocellaris the most abundant mRNA isoform encoded a full-length protein of 251 amino acids, while that of B. coprophila encoded a protein of 246 amino acids. Both showed the features of the SR protein family. The less significant mRNA isoforms of both species encoded truncated, presumably non-functional Transformer-2 proteins. The comparison of the functional Sciara Transformer-2 proteins among themselves and those of other insects revealed the greatest degree of conservation in the RRM domain and linker region. In contrast, the RS1 and RS2 domains showed extensive variation with respect to their number of amino acids and their arginine-serine (RS) dipeptide content. The expression of S. ocellaris Transformer-2 protein in Drosophila XX pseudomales lacking the endogenous transformer-2 function caused their partial feminisation. Conclusions The transformer-2 genes of both Sciaridae species encode a single protein in both sexes that shares the characteristics of the Transformer-2 proteins of other insects. These proteins showed conserved sex-determination function in Drosophila; i.e., they were able to form a complex

  4. An extensive allelic series of Drosophila kae1 mutants reveals diverse and tissue-specific requirements for t6A biogenesis

    PubMed Central

    Lin, Ching-Jung; Smibert, Peter; Zhao, Xiaoyu; Hu, Jennifer F.; Ramroop, Johnny; Kellner, Stefanie M.; Benton, Matthew A.; Govind, Shubha; Dedon, Peter C.; Sternglanz, Rolf; Lai, Eric C.

    2015-01-01

    N6-threonylcarbamoyl-adenosine (t6A) is one of the few RNA modifications that is universally present in life. This modification occurs at high frequency at position 37 of most tRNAs that decode ANN codons, and stabilizes cognate anticodon–codon interactions. Nearly all genetic studies of the t6A pathway have focused on single-celled organisms. In this study, we report the isolation of an extensive allelic series in the Drosophila ortholog of the core t6A biosynthesis factor Kae1. kae1 hemizygous larvae exhibit decreases in t6A that correlate with allele strength; however, we still detect substantial t6A-modified tRNAs even during the extended larval phase of null alleles. Nevertheless, complementation of Drosophila Kae1 and other t6A factors in corresponding yeast null mutants demonstrates that these metazoan genes execute t6A synthesis. Turning to the biological consequences of t6A loss, we characterize prominent kae1 melanotic masses and show that they are associated with lymph gland overgrowth and ectopic generation of lamellocytes. On the other hand, kae1 mutants exhibit other phenotypes that reflect insufficient tissue growth. Interestingly, whole-tissue and clonal analyses show that strongly mitotic tissues such as imaginal discs are exquisitely sensitive to loss of kae1, whereas nonproliferating tissues are less affected. Indeed, despite overt requirements of t6A for growth of many tissues, certain strong kae1 alleles achieve and sustain enlarged body size during their extended larval phase. Our studies highlight tissue-specific requirements of the t6A pathway in a metazoan context and provide insights into the diverse biological roles of this fundamental RNA modification during animal development and disease. PMID:26516084

  5. Live imaging of muscle histolysis in Drosophila metamorphosis.

    PubMed

    Kuleesha, Yadav; Puah, Wee Choo; Wasser, Martin

    2016-05-04

    The contribution of programmed cell death (PCD) to muscle wasting disorders remains a matter of debate. Drosophila melanogaster metamorphosis offers the opportunity to study muscle cell death in the context of development. Using live cell imaging of the abdomen, two groups of larval muscles can be observed, doomed muscles that undergo histolysis and persistent muscles that are remodelled and survive into adulthood. To identify and characterize genes that control the decision between survival and cell death of muscles, we developed a method comprising in vivo imaging, targeted gene perturbation and time-lapse image analysis. Our approach enabled us to study the cytological and temporal aspects of abnormal cell death phenotypes. In a previous genetic screen for genes controlling muscle size and cell death in metamorphosis, we identified gene perturbations that induced cell death of persistent or inhibit histolysis of doomed larval muscles. RNA interference (RNAi) of the genes encoding the helicase Rm62 and the lysosomal Cathepsin-L homolog Cysteine proteinase 1 (Cp1) caused premature cell death of persistent muscle in early and mid-pupation, respectively. Silencing of the transcriptional co-repressor Atrophin inhibited histolysis of doomed muscles. Overexpression of dominant-negative Target of Rapamycin (TOR) delayed the histolysis of a subset of doomed and induced ablation of all persistent muscles. RNAi of AMPKα, which encodes a subunit of the AMPK protein complex that senses AMP and promotes ATP formation, led to loss of attachment and a spherical morphology. None of the perturbations affected the survival of newly formed adult muscles, suggesting that the method is useful to find genes that are crucial for the survival of metabolically challenged muscles, like those undergoing atrophy. The ablation of persistent muscles did not affect eclosion of adult flies. Live imaging is a versatile approach to uncover gene functions that are required for the survival of

  6. Larval development to the first eighth zoeal stages in the deep-sea caridean shrimp Plesionika grandis Doflein, 1902 (Crustacea, Decapoda, Pandalidae).

    PubMed

    Jiang, Guo-Chen; Chan, Tin-Yam; Shih, Tung-Wei

    2017-01-01

    The larvae of the deep-sea pandalid shrimp Plesionika grandis Doflein, 1902 were successfully reared in the laboratory for the first time. The larvae reached the eighth zoeal stage in 36 days, both of which are longest records for the genus. Early larval stages of P. grandis bear the general characters of pandalid shrimps and differ from the other two species of Plesionika with larval morphology known in the number of spines on the anteroventral margin of carapace, number of tubercles on antennule, endopod segmentation in antenna, and third maxilliped setation. Although members in Plesionika are often separated into species groups, members of the same species group do not necessarily have similar early larval morphology. Since the zoea VIII of P. grandis still lacks pleopods and fifth pereiopod, this shrimp likely has at least 12 zoeal stages and a larval development of 120 days.

  7. The Drosophila blood-brain barrier: development and function of a glial endothelium.

    PubMed

    Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian

    2014-01-01

    The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

  8. In vivo measurement of muscle output in intact Drosophila.

    PubMed

    Elliott, Christopher J H; Sparrow, John C

    2012-01-01

    We describe our methods for analysing muscle function in a whole intact small insect, taking advantage of a simple flexible optical beam to produce an inexpensive transducer with wide application. We review our previous data measuring the response to a single action potential driven muscle twitch to explore jumping behaviour in Drosophila melanogaster. In the fruitfly, where the sophisticated and powerful genetic toolbox is being widely employed to investigate neuromuscular function, we further demonstrate the use of the apparatus to analyse in detail, within whole flies, neuronal and muscle mutations affecting activation of muscle contraction in the jump muscle. We have now extended the use of the apparatus to record the muscle forces during larval and other aspects of adult locomotion. The robustness, simplicity and versatility of the apparatus are key to these measurements. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Activation of Drosophila hemocyte motility by the ecdysone hormone

    PubMed Central

    Sampson, Christopher J.; Amin, Unum; Couso, Juan-Pablo

    2013-01-01

    Summary Drosophila hemocytes compose the cellular arm of the fly's innate immune system. Plasmatocytes, putative homologues to mammalian macrophages, represent ∼95% of the migratory hemocyte population in circulation and are responsible for the phagocytosis of bacteria and apoptotic tissues that arise during metamorphosis. It is not known as to how hemocytes become activated from a sessile state in response to such infectious and developmental cues, although the hormone ecdysone has been suggested as the signal that shifts hemocyte behaviour from quiescent to migratory at metamorphosis. Here, we corroborate this hypothesis by showing the activation of hemocyte motility by ecdysone. We induce motile behaviour in larval hemocytes by culturing them with 20-hydroxyecdysone ex vivo. Moreover, we also determine that motile cell behaviour requires the ecdysone receptor complex and leads to asymmetrical redistribution of both actin and tubulin cytoskeleton. PMID:24285708

  10. Delimiting regulatory sequences of the Drosophila melanogaster Ddc gene.

    PubMed Central

    Hirsh, J; Morgan, B A; Scholnick, S B

    1986-01-01

    We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity. Images PMID:3099170

  11. Developing a new bait for spotted wing Drosophila in organic cherry production

    USDA-ARS?s Scientific Manuscript database

    Studies conducted at the USDA Laboratory in Wapato, WA and at Oregon State University were initiated in 2011 to improve the efficacy of an organically-certified formulation of the insecticide spinosad (Entrust®) for control of the spotted wing drosophila, Drosophila suzukii. Our initial approach was...

  12. Identification and partial characterization of the enzyme of omega: one of five putative DPP IV genes in Drosophila melanogaster

    PubMed Central

    Chihara, Carol J.; Song, Chunyan; LaMonte, Greg; Fetalvero, Kristina; Hinchman, Kristy; Phan, Helen; Pineda, Mario; Robinson, Kelly; Schneider, Gregory P.

    2005-01-01

    The omega (ome) gene product is a modifier of larval cuticle protein 5 and its alleles (and duplicates) in the third instar of Drosophila melanogaster. Using deletion mapping the locus mapped to 70F-71A on the left arm of chromosome 3. A homozygote null mutant (ome 1) shows a pleiotropic phenotype that affected the size, developmental time of the flies, and the fertility (or perhaps the behavior) of homozygous mutant males. The omega gene was verified as producing a dipeptidyl peptidase IV (DPPIV) by genetic analysis, substrate specificity and pH optimum. The identity of the gene was confirmed as CG32145 (cytology 70F4) in the Celera Database (Berkeley Drosophila Genome Project), which is consistent with its deletion map position. The genomic structure of the gene is described and the decrease in DPPIV activity in the mutant ome1 is shown to be due to the gene CG32145 (omega). The D. melanogaster omega DPPIV enzyme was partially purified and characterized. The exons of the ome1 mutant were sequenced and a base substitution mutation in exon 4 was identified that would yield a truncated protein caused by a stop codon. A preliminary study of the compartmentalization of the omega DPPIV enzyme in several organs is also reported. Abbreviations: DPPIV dipeptidyl peptidase IV LCP5 & LCP6 third instar larval cuticle proteins 5 & 6 ome & ome1 omega locus name (CG32145) and mutant allele in D. melanogaster pNA paranotroanilide PMID:17119608

  13. Bioinsecticidal activity of Talisia esculenta reserve protein on growth and serine digestive enzymes during larval development of Anticarsia gemmatalis.

    PubMed

    Macedo, Maria Lígia R; Freire, Maria das Graças M; Kubo, Carlos Eduardo G; Parra, José Roberto P

    2011-01-01

    Plants synthesize a variety of molecules to defend themselves against an attack by insects. Talisin is a reserve protein from Talisia esculenta seeds, the first to be characterized from the family Sapindaceae. In this study, the insecticidal activity of Talisin was tested by incorporating the reserve protein into an artificial diet fed to the velvetbean caterpillar Anticarsia gemmatalis, the major pest of soybean crops in Brazil. At 1.5% (w/w) of the dietary protein, Talisin affected larval growth, pupal weight, development and mortality, adult fertility and longevity, and produced malformations in pupae and adult insects. Talisin inhibited the trypsin-like activity of larval midgut homogenates. The trypsin activity in Talisin-fed larvae was sensitive to Talisin, indicating that no novel protease-resistant to Talisin was induced in Talisin-fed larvae. Affinity chromatography showed that Talisin bound to midgut proteinases of the insect A. gemmatalis, but was resistant to enzymatic digestion by these larval proteinases. The transformation of genes coding for this reserve protein could be useful for developing insect resistant crops. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Effects of temperature and salinity on larval survival and development in the invasive shrimp Palaemon macrodactylus (Caridea: Palaemonidae) along the reproductive season

    NASA Astrophysics Data System (ADS)

    Guadalupe Vázquez, M.; Bas, Claudia C.; Kittlein, Marcelo; Spivak, Eduardo D.

    2015-05-01

    The invasive shrimp Palaemon macrodactylus is associated mainly with brackish waters. Previous studies raised the question if tolerance to low salinities differs between larvae and adults. To answer this question, the combined effects of two temperatures (20 and 25 °C) and four salinities (5, 12, 23 and 34 psu) on survival and development of larvae that hatched at the beginning, in the midpoint and near the end of a reproductive season (denoted early, middle season and late larvae respectively) were examined. The three types of larvae were able to survive and reach juvenile phase at salinities between 12 and 34 psu and at both temperatures. At 5 psu all larvae died, but 45% molted at least once. Temperature and salinity to a lesser extent, had effects on the duration of development and on the number of larval stages in all larval types. Development was longer at the lower temperature, especially in middle season and late larvae. Most early larvae reached the juvenile phase through 5 larval stages; the number of larval stages of middle season and late larvae was higher at 20 °C and in late larvae also low salinity produced extra stages. Low salinity (12 psu) and, in early and middle season larvae, low temperature produced lighter and smaller individuals. Response of larvae to environmental factors seems to be related in part to the previous conditions (maternal effects and/or embryo development conditions). The narrower salinity tolerance of larvae compared to adults and the ability of zoea I to survive at least some days at 5 psu may be related with an export larval strategy.

  15. Nutrient/TOR-dependent regulation of RNA polymerase III controls tissue and organismal growth in Drosophila

    PubMed Central

    Marshall, Lynne; Rideout, Elizabeth J; Grewal, Savraj S

    2012-01-01

    The nutrient/target-of-rapamycin (TOR) pathway has emerged as a key regulator of tissue and organismal growth in metazoans. The signalling components of the nutrient/TOR pathway are well defined; however, the downstream effectors are less understood. Here, we show that the control of RNA polymerase (Pol) III-dependent transcription is an essential target of TOR in Drosophila. We find that TOR activity controls Pol III in growing larvae via inhibition of the repressor Maf1 and, in part, via the transcription factor Drosophila Myc (dMyc). Moreover, we show that loss of the Pol III factor, Brf, leads to reduced tissue and organismal growth and prevents TOR-induced cellular growth. TOR activity in the larval fat body, a tissue equivalent to vertebrate fat or liver, couples nutrition to insulin release from the brain. Accordingly, we find that fat-specific loss of Brf phenocopies nutrient limitation and TOR inhibition, leading to decreased systemic insulin signalling and reduced organismal growth. Thus, stimulation of Pol III is a key downstream effector of TOR in the control of cellular and systemic growth. PMID:22367393

  16. Neuron-specific knockdown of Drosophila PDHB induces reduction of lifespan, deficient locomotive ability, abnormal morphology of motor neuron terminals and photoreceptor axon targeting.

    PubMed

    Dung, Vuu My; Suong, Dang Ngoc Anh; Okamaoto, Yuji; Hiramatsu, Yu; Thao, Dang Thi Phuong; Yoshida, Hideki; Takashima, Hiroshi; Yamaguchi, Masamitsu

    2018-05-15

    Pyruvate dehydrogenase complex deficiency (PDCD) is a common primary cause of defects in mitochondrial function and also can lead to peripheral neuropathy. Pyruvate dehydrogenase E1 component subunit beta (PDHB) is a subunit of pyruvate dehydrogenase E1, which is a well-known component of PDC. In Drosophila melanogaster, the CG11876 (dPDHB) gene is a homolog of human PDHB. In this study, we established a Drosophila model with neuron-specific knockdown of dPDHB to investigate its role in neuropathy pathogenesis. Knockdown of dPDHB in pan-neurons induced locomotor defects in both larval and adult stages, which were consistent with abnormal morphology of the motor neuron terminals at neuromuscular junctions and mitochondrial fragmentation in brains. Moreover, neuron-specific knockdown of dPDHB also shortened the lifespan of adult flies. In addition, flies with knockdown of dPDHB manifested a rough eye phenotype and aberrant photoreceptor axon targeting. These results with the Drosophila model suggest the involvement of PDHB in peripheral neuropathy. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. The Identification of Congeners and Aliens by Drosophila Larvae.

    PubMed

    Del Pino, Francisco; Jara, Claudia; Pino, Luis; Medina-Muñoz, María Cristina; Alvarez, Eduardo; Godoy-Herrera, Raúl

    2015-01-01

    We investigated the role of Drosophila larva olfactory system in identification of congeners and aliens. We discuss the importance of these activities in larva navigation across substrates, and the implications for allocation of space and food among species of similar ecologies. Wild type larvae of cosmopolitan D. melanogaster and endemic D. pavani, which cohabit the same breeding sites, used species-specific volatiles to identify conspecifics and aliens moving toward larvae of their species. D. gaucha larvae, a sibling species of D. pavani that is ecologically isolated from D. melanogaster, did not respond to melanogaster odor cues. Similar to D. pavani larvae, the navigation of pavani female x gaucha male hybrids was influenced by conspecific and alien odors, whereas gaucha female x pavani male hybrid larvae exhibited behavior similar to the D. gaucha parent. The two sibling species exhibited substantial evolutionary divergence in processing the odor inputs necessary to identify conspecifics. Orco (Or83b) mutant larvae of D. melanogaster, which exhibit a loss of sense of smell, did not distinguish conspecific from alien larvae, instead moving across the substrate. Syn97CS and rut larvae of D. melanogaster, which are unable to learn but can smell, moved across the substrate as well. The Orco (Or83b), Syn97CS and rut loci are necessary to orient navigation by D. melanogaster larvae. Individuals of the Trana strain of D. melanogaster did not respond to conspecific and alien larval volatiles and therefore navigated randomly across the substrate. By contrast, larvae of the Til-Til strain used larval volatiles to orient their movement. Natural populations of D. melanogaster may exhibit differences in identification of conspecific and alien larvae. Larval locomotion was not affected by the volatiles.

  18. Investigating the effects of nanoparticles on reproduction and development in Drosophila melanogaster and CD-1 mice

    NASA Astrophysics Data System (ADS)

    Philbrook, Nicola Anne

    Manufactured nanoparticles (NPs) are a class of small (≤ 100 nm) materials that are being used for a variety of purposes, including industrial lubricants, food additives, antibacterial agents, as well as delivery systems for drug and gene therapies. Their unique characteristics due to their small size as well as their parent materials allow them to be exploited in convenience applications; however, some of these properties also allow them to interact with and invade biological systems. Few studies have been performed to determine the potential harm that NPs can inflict on reproductive and developmental processes in organisms. In this study, Drosophila melanogaster and CD-1 mice were orally exposed to varying doses of titanium dioxide (TiO 2) NPs, silver (Ag) NPs, or hydroxyl-functionalized carbon nanotubes (fCNTs) and Drosophila were also exposed to microparticles (MPs) as a control for particle size. The subsequent effect of these materials on reproduction and development were evaluated. Strikingly, each type of NP studied negatively affected either reproduction or development in one or both of the two model systems. TiO2 NPs significantly negative effected both CD-1 mouse development (100 mg/kg or 1000 mg/kg) as well as Drosophila female fecundity (0.005%-0.5% w/v). Ag NPs significantly reduced mouse fetus viability after prenatal exposure to10 mg/kg. Ag NPs also significantly decreased the developmental success of Drosophila when they were directly exposed to these NPs (0.05% - 0.5% w/v) compared to both the vehicle and MP controls. fCNTs significantly increased the presence of morphological defects, resorptions and skeletal abnormalities in CD-1 mice, but had little effect on Drosophila. We speculate that the differences seen in the effects of NP types may be partially due to differences in reproductive physiology as well as each organism's ability to internalize these NPs. Whereas the differing response of each organism to a NP type was likely due in part to

  19. Spawning, fertilization, and larval development of Potamocorbula amurensis (Mollusca: Bivalvia) from San Francisco Bay, California

    USGS Publications Warehouse

    Nicolini, M.H.; Penry, D.L.

    2000-01-01

    In Potamocorbula amurensis time for development to the straight-hinge larval stage is 48 hr at 15??C. Potamocorbula amurensis settles at a shell length of approximately 135 ??m 17 to 19 days after fertilization. Our observations of timing of larval devdlopment in P. amurensis support the hypothesis of earlier workers that its route of initial introduction to San Francisco Bay was as veliger larvae transported in ballast water by trans-Pacific cargo ships. The length of the larval period of P. amurensis relative to water mass residence times in San Francisco Bay suggests that it is sufficient to allow substantial dispersal from North Bay to South Bay populations in concordance with previous observations that genetic differentiation among populations of P. amurensis in San Francisco Bay is low. Potamocorbula amurensis is markedly euryhaline at all stages of development. Spawning and fertilization can occur at salinities from 5 to 25 psu, and eggs and sperms can each tolerance at least a 10-psu step increase or decrease in salinity. Embryos that are 2 hr old can tolerate the same range of salinities from (10 to 30 psu), and by the time they are 24 hr old they can tolerate the same range of salinities (2 to 30 psu) that adult clams can. The ability of P. amurensis larvae to tolerate substantial step changes in salinity suggests a strong potential to survive incomplete oceanic exchanges of ballast water and subsequent discharge into receiving waters across a broad range of salinities.

  20. Ferritin Is Required in Multiple Tissues during Drosophila melanogaster Development.

    PubMed

    González-Morales, Nicanor; Mendoza-Ortíz, Miguel Ángel; Blowes, Liisa M; Missirlis, Fanis; Riesgo-Escovar, Juan R

    2015-01-01

    In Drosophila melanogaster, iron is stored in the cellular endomembrane system inside a protein cage formed by 24 ferritin subunits of two types (Fer1HCH and Fer2LCH) in a 1:1 stoichiometry. In larvae, ferritin accumulates in the midgut, hemolymph, garland, pericardial cells and in the nervous system. Here we present analyses of embryonic phenotypes for mutations in Fer1HCH, Fer2LCH and in both genes simultaneously. Mutations in either gene or deletion of both genes results in a similar set of cuticular embryonic phenotypes, ranging from non-deposition of cuticle to defects associated with germ band retraction, dorsal closure and head involution. A fraction of ferritin mutants have embryonic nervous systems with ventral nerve cord disruptions, misguided axonal projections and brain malformations. Ferritin mutants die with ectopic apoptotic events. Furthermore, we show that ferritin maternal contribution, which varies reflecting the mother's iron stores, is used in early development. We also evaluated phenotypes arising from the blockage of COPII transport from the endoplasmic reticulum to the Golgi apparatus, feeding the secretory pathway, plus analysis of ectopically expressed and fluorescently marked Fer1HCH and Fer2LCH. Overall, our results are consistent with insect ferritin combining three functions: iron storage, intercellular iron transport, and protection from iron-induced oxidative stress. These functions are required in multiple tissues during Drosophila embryonic development.

  1. The complete larval development of the mud shrimp Upogebia vasquezi (Gebiidea: Upogebiidae) reared in the laboratory.

    PubMed

    De Oliveira, Danielly Brito; Martinelli-Lemos, Jussara Moretto; Abrunhosa, Fernando Araújo

    2014-07-01

    The larval development of Upogebia vasquezi consists of four zoeal stages and a megalopa. In the present study, each larval stage was described and illustrated in detail. The first two stages are re-described in order to provide a detailed comparison with the data available for this species recorded in a previous study. The morphological features of all the stages are compared with those of the larvae of other Upogebia species reported previously in the literature. Broad morphological similarities and distinctions were found among most Upogebia species. The main interspecific variations in the morphology of the zoeal stages are the segmentation pattern of the antennular endopod and number of aesthetascs, the number of setae on the scaphognathite and the presence or absence of a mandibular palp.

  2. Drosophila larvae synthesize the putative oncometabolite L-2-hydroxyglutarate during normal developmental growth

    PubMed Central

    Li, Hongde; Chawla, Geetanjali; Hurlburt, Alexander J.; Sterrett, Maria C.; Zaslaver, Olga; Cox, James; Karty, Jonathan A.; Rosebrock, Adam P.; Caudy, Amy A.

    2017-01-01

    L-2-hydroxyglutarate (L-2HG) has emerged as a putative oncometabolite that is capable of inhibiting enzymes involved in metabolism, chromatin modification, and cell differentiation. However, despite the ability of L-2HG to interfere with a broad range of cellular processes, this molecule is often characterized as a metabolic waste product. Here, we demonstrate that Drosophila larvae use the metabolic conditions established by aerobic glycolysis to both synthesize and accumulate high concentrations of L-2HG during normal developmental growth. A majority of the larval L-2HG pool is derived from glucose and dependent on the Drosophila estrogen-related receptor (dERR), which promotes L-2HG synthesis by up-regulating expression of the Drosophila homolog of lactate dehydrogenase (dLdh). We also show that dLDH is both necessary and sufficient for directly synthesizing L-2HG and the Drosophila homolog of L-2-hydroxyglutarate dehydrogenase (dL2HGDH), which encodes the enzyme that breaks down L-2HG, is required for stage-specific degradation of the L-2HG pool. In addition, dLDH also indirectly promotes L-2HG accumulation via synthesis of lactate, which activates a metabolic feed-forward mechanism that inhibits dL2HGDH activity and stabilizes L-2HG levels. Finally, we use a genetic approach to demonstrate that dLDH and L-2HG influence position effect variegation and DNA methylation, suggesting that this compound serves to coordinate glycolytic flux with epigenetic modifications. Overall, our studies demonstrate that growing animal tissues synthesize L-2HG in a controlled manner, reveal a mechanism that coordinates glucose catabolism with L-2HG synthesis, and establish the fly as a unique model system for studying the endogenous functions of L-2HG during cell growth and proliferation. PMID:28115720

  3. Drosophila larvae synthesize the putative oncometabolite L-2-hydroxyglutarate during normal developmental growth.

    PubMed

    Li, Hongde; Chawla, Geetanjali; Hurlburt, Alexander J; Sterrett, Maria C; Zaslaver, Olga; Cox, James; Karty, Jonathan A; Rosebrock, Adam P; Caudy, Amy A; Tennessen, Jason M

    2017-02-07

    L-2-hydroxyglutarate (L-2HG) has emerged as a putative oncometabolite that is capable of inhibiting enzymes involved in metabolism, chromatin modification, and cell differentiation. However, despite the ability of L-2HG to interfere with a broad range of cellular processes, this molecule is often characterized as a metabolic waste product. Here, we demonstrate that Drosophila larvae use the metabolic conditions established by aerobic glycolysis to both synthesize and accumulate high concentrations of L-2HG during normal developmental growth. A majority of the larval L-2HG pool is derived from glucose and dependent on the Drosophila estrogen-related receptor (dERR), which promotes L-2HG synthesis by up-regulating expression of the Drosophila homolog of lactate dehydrogenase (dLdh). We also show that dLDH is both necessary and sufficient for directly synthesizing L-2HG and the Drosophila homolog of L-2-hydroxyglutarate dehydrogenase (dL2HGDH), which encodes the enzyme that breaks down L-2HG, is required for stage-specific degradation of the L-2HG pool. In addition, dLDH also indirectly promotes L-2HG accumulation via synthesis of lactate, which activates a metabolic feed-forward mechanism that inhibits dL2HGDH activity and stabilizes L-2HG levels. Finally, we use a genetic approach to demonstrate that dLDH and L-2HG influence position effect variegation and DNA methylation, suggesting that this compound serves to coordinate glycolytic flux with epigenetic modifications. Overall, our studies demonstrate that growing animal tissues synthesize L-2HG in a controlled manner, reveal a mechanism that coordinates glucose catabolism with L-2HG synthesis, and establish the fly as a unique model system for studying the endogenous functions of L-2HG during cell growth and proliferation.

  4. Impact of Ocean Warming and Ocean Acidification on Larval Development and Calcification in the Sea Urchin Tripneustes gratilla

    PubMed Central

    Sheppard Brennand, Hannah; Soars, Natalie; Dworjanyn, Symon A.; Davis, Andrew R.; Byrne, Maria

    2010-01-01

    Background As the oceans simultaneously warm, acidify and increase in P CO2, prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming. Methodology/Principal Findings We examined the interactive effects of near-future ocean warming and increased acidification/P CO2 on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial experiments in flow-through conditions in all combinations of three temperature and three pH/P CO2 treatments. Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot. Increased acidity/P CO2 and decreased carbonate mineral saturation significantly reduced larval growth resulting in decreased skeletal length. Increased temperature (+3°C) stimulated growth, producing significantly bigger larvae across all pH/P CO2 treatments up to a thermal threshold (+6°C). Increased acidity (-0.3-0.5 pH units) and hypercapnia significantly reduced larval calcification. A +3°C warming diminished the negative effects of acidification and hypercapnia on larval growth. Conclusions and Significance This study of the effects of ocean warming and CO2 driven acidification on development and calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization) shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of acidification were dominant. Reduction in size of sea urchin larvae in a high P CO2 ocean would likely impair their performance with negative consequent effects for benthic adult populations. PMID:20613879

  5. Microbial composition affects the performance of an artificial Tephritid larval diet.

    PubMed

    Rempoulakis, P; Sela Saldinger, S; Nemny-Lavy, E; Pinto, R; Birke, A; Nestel, D

    2017-09-20

    The present study investigated the patterns of microorganisms in an artificial larval diet during Dacus ciliatus (Diptera; Tephritidae) larval development. Microbial population contents in the diet of total heterotrophic bacteria, yeast and molds, coliform and lactobacilli, and their dynamics during development, were monitored. Initially, the microbial composition in diet trays failing to produce viable pupae and in trays successfully producing pupae and adult flies was characterized. The failing diet trays contained large populations of lactobacilli that increased during larval development, and low populations of coliforms. In contrast, the successful diet showed an increasing population of coliforms and a low, or undetected, population of lactobacilli. To study the hypothesis that lactobacilli affect D. ciliatus larval development, we conducted controlled inoculation experiments in which Lactobacillus plantarum was added into fresh diet at the time of egg seeding. L. plantarum inoculated trays showed no production of D. ciliatus. Control trays without lactobacilli inoculation showed variable results. One tray successfully produced viable pupae and adults, and showed a slight and slow increase in the indigenous populations of lactobacilli. The second tray, however, failed to produce pupae and showed a fast increase of the indigenous lactobacilli to very high levels. Monitored pH trends in L. plantarum-inoculated diet showed a sharp pH decrease during the first 4 days of larval development from 5 to less than 4 units, while successful diet, producing viable D. ciliatus pupae and adults, showed a moderate pH drop during most of the larval development period. The paper discusses the possible ecological interactions between D. ciliatus larvae, the microbial content of the diet and the physical properties of the diet. The discussion also points out at the usefulness of this approach in understanding and managing mass production parameters of tephritid fruit flies

  6. Rearing Tenebrio molitor in BLSS: Dietary fiber affects larval growth, development, and respiration characteristics

    NASA Astrophysics Data System (ADS)

    Li, Leyuan; Stasiak, Michael; Li, Liang; Xie, Beizhen; Fu, Yuming; Gidzinski, Danuta; Dixon, Mike; Liu, Hong

    2016-01-01

    Rearing of yellow mealworm (Tenebrio molitor L.) will provide good animal nutrition for astronauts in a bioregenerative life support system. In this study, growth and biomass conversion data of T. molitor larvae were tested for calculating the stoichiometric equation of its growth. Result of a respiratory quotient test proved the validity of the equation. Fiber had the most reduction in mass during T. molitor‧s consumption, and thus it is speculated that fiber is an important factor affecting larval growth of T. molitor. In order to further confirm this hypothesis and find out a proper feed fiber content, T. molitor larvae were fed on diets with 4 levels of fiber. Larval growth, development and respiration in each group were compared and analyzed. Results showed that crude-fiber content of 5% had a significant promoting effect on larvae in early instars, and is beneficial for pupa eclosion. When fed on feed of 5-10% crude-fiber, larvae in later instars reached optimal levels in growth, development and respiration. Therefore, we suggest that crude fiber content in feed can be controlled within 5-10%, and with the consideration of food palatability, a crude fiber of 5% is advisable.

  7. Foraging characteristics of larval bluegill sunfish and larval longear sunfish in the Kanawha River, West Virginia

    USGS Publications Warehouse

    Rider, S.J.; Margraf, F.J.

    1998-01-01

    We determined spatial and temporal foraging characteristics of larval bluegill sunfish (Lepomis macrochirus) and longear sunfish (Lepomis megalotis) in the upper Kanawha River, West Virginia during the summer of 1989. Stomach contents were examined among habitat types (i.e., main channel, main-channel border, and shoreline habitats) and depth (surface, middle, and bottom). Diet of larval bluegill sunfish was dominated by Chironomidae, temporally and spatially. Chironomidae dominated larval longear sunfish diet in main channel and main-channel border collections from all three depths. However, along the shoreline, larval longear sunfish diet was dominated by Cladocera.

  8. Location Isn’t Everything: Timing of Spawning Aggregations Optimizes Larval Replenishment

    PubMed Central

    Donahue, Megan J.; Karnauskas, Mandy; Toews, Carl; Paris, Claire B.

    2015-01-01

    Many species of reef fishes form large spawning aggregations that are highly predictable in space and time. Prior research has suggested that aggregating fish derive fitness benefits not just from mating at high density but, also, from oceanographic features of the spatial locations where aggregations occur. Using a probabilistic biophysical model of larval dispersal coupled to a fine resolution hydrodynamic model of the Florida Straits, we develop a stochastic landscape of larval fitness. Tracking virtual larvae from release to settlement and incorporating changes in larval behavior through ontogeny, we found that larval success was sensitive to the timing of spawning. Indeed, propagules released during the observed spawning period had higher larval success rates than those released outside the observed spawning period. In contrast, larval success rates were relatively insensitive to the spatial position of the release site. In addition, minimum (rather than mean) larval survival was maximized during the observed spawning period, indicating a reproductive strategy that minimizes the probability of recruitment failure. Given this landscape of larval fitness, we take an inverse optimization approach to define a biological objective function that reflects a tradeoff between the mean and variance of larval success in a temporally variable environment. Using this objective function, we suggest that the length of the spawning period can provide insight into the tradeoff between reproductive risk and reward. PMID:26103162

  9. The effect of space environment on the development and aging of Drosophila Melanogaster (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Marco, Roberto

    1992-01-01

    This experiment involves the study of the development of eggs of the fly, Drosophila, exposed to microgravity. It is presumed that oogenesis, rather than further states of embryonic development, is sensitive to gravity. This hypothesis will be tested by collecting eggs layered at specific times inflight and postflight from flies exposed to 0 and 1 g. This portion of the experiment is a repetition of an earlier experiment flown in Biorack during the Spacelab D1 Mission. An added feature of the experiment for the First International Microgravity Laboratory (IML-1) Mission is to study the effect of microgravity on the life span of Drosophila male flies. Various aspects of the investigation are discussed.

  10. Acamprosate rescues neuronal defects in the Drosophila model of Fragile X Syndrome.

    PubMed

    Hutson, Russell L; Thompson, Rachel L; Bantel, Andrew P; Tessier, Charles R

    2018-02-15

    Several off-label studies have shown that acamprosate can provide some clinical benefits in youth with Fragile X Syndrome (FXS), an autism spectrum disorder caused by loss of function of the highly conserved FMR1 gene. This study investigated the ability of acamprosate to rescue cellular, molecular and behavioral defects in the Drosophila model of FXS. A high (100μM) and low (10μM) dose of acamprosate was fed to Drosophila FXS (dfmr1 null) or genetic control (w 1118 ) larvae and then analyzed in multiple paradigms. A larval crawling assay was used to monitor aberrant FXS behavior, overgrowth of the neuromuscular junction (NMJ) was quantified to assess neuronal development, and quantitative RT-PCR was used to evaluate expression of deregulated cbp53E mRNA. Acamprosate treatment partially or completely rescued all of the FXS phenotypes analyzed, according to dose. High doses rescued cellular overgrowth and dysregulated cbp53E mRNA expression, but aberrant crawling behavior was not affected. Low doses of acamprosate, however, did not affect synapse number at the NMJ, but could rescue NMJ overgrowth, locomotor defects, and cbp53E mRNA expression. This dual nature of acamprosate suggests multiple molecular mechanisms may be involved in acamprosate function depending on the dosage used. Acamprosate may be a useful therapy for FXS and potentially other autism spectrum disorders. However, understanding the molecular mechanisms involved with different doses of this drug will likely be necessary to obtain optimal results. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Drosophila and Beer: An Experimental Laboratory Exercise

    ERIC Educational Resources Information Center

    Kurvink, Karen

    2004-01-01

    Drosophila melanogaster is a popular organism for studying genetics and development. Maintaining Drosophila on medium prepared with varying concentrations of beer and evaluating the effects on reproduction, life cycle stages and other factors is one of the exercises that is versatile and applicable to many student levels.

  12. Chronic low-dose γ-irradiation of Drosophila melanogaster larvae induces gene expression changes and enhances locomotive behavior

    PubMed Central

    Kim, Cha Soon; Seong, Ki Moon; Lee, Byung Sub; Lee, In Kyung; Yang, Kwang Hee; Kim, Ji-Young; Nam, Seon Young

    2015-01-01

    Although radiation effects have been extensively studied, the biological effects of low-dose radiation (LDR) are controversial. This study investigates LDR-induced alterations in locomotive behavior and gene expression profiles of Drosophila melanogaster. We measured locomotive behavior using larval pupation height and the rapid iterative negative geotaxis (RING) assay after exposure to 0.1 Gy γ-radiation (dose rate of 16.7 mGy/h). We also observed chronic LDR effects on development (pupation and eclosion rates) and longevity (life span). To identify chronic LDR effects on gene expression, we performed whole-genome expression analysis using gene-expression microarrays, and confirmed the results using quantitative real-time PCR. The pupation height of the LDR-treated group at the first larval instar was significantly higher (∼2-fold increase in PHI value, P < 0.05). The locomotive behavior of LDR-treated male flies (∼3 − 5 weeks of age) was significantly increased by 7.7%, 29% and 138%, respectively (P < 0.01), but pupation and eclosion rates and life spans were not significantly altered. Genome-wide expression analysis identified 344 genes that were differentially expressed in irradiated larvae compared with in control larvae. We identified several genes belonging to larval behavior functional groups such as locomotion (1.1%), oxidation reduction (8.0%), and genes involved in conventional functional groups modulated by irradiation such as defense response (4.9%), and sensory and perception (2.5%). Four candidate genes were confirmed as differentially expressed genes in irradiated larvae using qRT-PCR (>2-fold change). These data suggest that LDR stimulates locomotion-related genes, and these genes can be used as potential markers for LDR. PMID:25792464

  13. Spatial pattern analysis of nuclear migration in remodelled muscles during Drosophila metamorphosis.

    PubMed

    Kuleesha; Feng, Lin; Wasser, Martin

    2017-07-10

    Many human muscle wasting diseases are associated with abnormal nuclear localization. During metamorphosis in Drosophila melanogaster, multi-nucleated larval dorsal abdominal muscles either undergo cell death or are remodeled to temporary adult muscles. Muscle remodeling is associated with anti-polar nuclear migration and atrophy during early pupation followed by polar migration and muscle growth during late pupation. Muscle remodeling is a useful model to study genes involved in myonuclear migration. Previously, we showed that loss of Cathepsin-L inhibited anti-polar movements, while knockdown of autophagy-related genes affected nuclear positioning along the medial axis in late metamorphosis. To compare the phenotypic effects of gene perturbations on nuclear migration more objectively, we developed new descriptors of myonuclear distribution. To obtain nuclear pattern features, we designed an algorithm to detect and track nuclear regions inside live muscles. Nuclear tracks were used to distinguish between fast moving nuclei associated with fragments of dead muscles (sarcolytes) and slow-moving nuclei inside remodelled muscles. Nuclear spatial pattern features, such as longitudinal (lonNS) and lateral nuclear spread (latNS), allowed us to compare nuclear migration during muscle remodelling in different genetic backgrounds. Anti-polar migration leads to a lonNS decrease. As expected, lack of myonuclear migration caused by the loss of Cp1 was correlated with a significantly lower lonNS decrease. Unexpectedly, the decrease in lonNS was significantly enhanced by Atg9, Atg5 and Atg18 silencing, indicating that the loss of autophagy promotes the migration and clustering of nuclei. Loss of autophagy also caused a scattering of nuclei along the lateral axis, leading to a two-row as opposed to single row distribution in control muscles. Increased latNS resulting from knockdown of Atg9 and Atg18 was correlated with increased muscle diameter, suggesting that the wider muscle

  14. Phylogeny of the Genus Drosophila

    PubMed Central

    O’Grady, Patrick M.; DeSalle, Rob

    2018-01-01

    Understanding phylogenetic relationships among taxa is key to designing and implementing comparative analyses. The genus Drosophila, which contains over 1600 species, is one of the most important model systems in the biological sciences. For over a century, one species in this group, Drosophila melanogaster, has been key to studies of animal development and genetics, genome organization and evolution, and human disease. As whole-genome sequencing becomes more cost-effective, there is increasing interest in other members of this morphologically, ecologically, and behaviorally diverse genus. Phylogenetic relationships within Drosophila are complicated, and the goal of this paper is to provide a review of the recent taxonomic changes and phylogenetic relationships in this genus to aid in further comparative studies. PMID:29716983

  15. Morphological development of larval cobia Rachycentron canadum and the influence of dietary taurine supplementation.

    PubMed

    Salze, G; Craig, S R; Smith, B H; Smith, E P; McLean, E

    2011-05-01

    The morphological development of larval cobia Rachycentron canadum from 3 days post hatch (dph) until weaning (27 dph) was examined using S.E.M. Two groups of fish were studied: a control group (CF), reared under standard feeding protocol, and a group in which prey items were enriched with supplemental taurine (4 g l(-1) day(-1) ; TF). TF fish grew faster (P < 0·001), attained greater size (mean ±s.e. 55·1 ± 1·5 v. 33·9 ± 1·0 mm total length) and had better survival (mean ±s.e. 29·3 ± 0·4 v. 7·1 ± 1·2 %) than CF fish. Canonical variance analysis confirmed findings with respect to differences in growth between the treatment groups with separation being explained by two cranial measurements. S.E.M. revealed that 3 dph larvae of R. canadum (in both groups) possess preopercular spines, superficial neuromasts on the head and body, taste buds in the mouth, an olfactory epithelium which takes the form of simple concave depressions, and primordial gill arches. Gill filaments start to form as early as 6 dph and lamellae buds are visible at 8 dph in both groups. In CF fish, the cephalic lateral line system continues its development at 12-14 dph with invagination of both supra- and infraorbital canals. At the same time, a thorn-like or acanthoid crest forms above the eye. At 14 dph, invaginations of the mandibular and preopercular canals are visible and around 22 dph enclosure of all cranial canals nears completion. In CF larvae, however, completely enclosed cranial canals were not observed within the course of the trial, i.e. 27 dph. In TF larvae, grooves of the cephalic lateral line system form 4 days earlier than observed in CF larvae of R. canadum (i.e. at 8 dph), with enclosure commencing at 16 dph, and completed by 27 dph. Along the flanks of 6 dph larvae of either treatment, four to five equally spaced neuromasts delineate the future position of the trunk lateral line. As myomeres are added to the growing larvae, new neuromasts appear such that at 16 dph

  16. Identification of mosquito larval habitats in high resolution satellite data

    NASA Astrophysics Data System (ADS)

    Kiang, Richard K.; Hulina, Stephanie M.; Masuoka, Penny M.; Claborn, David M.

    2003-09-01

    Mosquito-born infectious diseases are a serious public health concern, not only for the less developed countries, but also for developed countries like the U.S. Larviciding is an effective method for vector control and adverse effects to non-target species are minimized when mosquito larval habitats are properly surveyed and treated. Remote sensing has proven to be a useful technique for large-area ground cover mapping, and hence, is an ideal tool for identifying potential larval habitats. Locating small larval habitats, however, requires data with very high spatial resolution. Textural and contextual characteristics become increasingly evident at higher spatial resolution. Per-pixel classification often leads to suboptimal results. In this study, we use pan-sharpened Ikonos data, with a spatial resolution approaching 1 meter, to classify potential mosquito larval habitats for a test site in South Korea. The test site is in a predominantly agricultural region. When spatial characteristics were used in conjunction with spectral data, reasonably good classification accuracy was obtained for the test site. In particular, irrigation and drainage ditches are important larval habitats but their footprints are too small to be detected with the original spectral data at 4-meter resolution. We show that the ditches are detectable using automated classification on pan-sharpened data.

  17. Ecdysone-dependent and ecdysone-independent programmed cell death in the developing optic lobe of Drosophila.

    PubMed

    Hara, Yusuke; Hirai, Keiichiro; Togane, Yu; Akagawa, Hiromi; Iwabuchi, Kikuo; Tsujimura, Hidenobu

    2013-02-01

    The adult optic lobe of Drosophila develops from the primordium during metamorphosis from mid-3rd larval stage to adult. Many cells die during development of the optic lobe with a peak of the number of dying cells at 24 h after puparium formation (h APF). Dying cells were observed in spatio-temporal specific clusters. Here, we analyzed the function of a component of the insect steroid hormone receptor, EcR, in this cell death. We examined expression patterns of two EcR isoforms, EcR-A and EcR-B1, in the optic lobe. Expression of each isoform altered during development in isoform-specific manner. EcR-B1 was not expressed in optic lobe neurons from 0 to 6h APF, but was expressed between 9 and 48 h APF and then disappeared by 60 h APF. In each cortex, its expression was stronger in older glia-ensheathed neurons than in younger ones. EcR-B1 was also expressed in some types of glia. EcR-A was expressed in optic lobe neurons and many types of glia from 0 to 60 h APF in a different pattern from EcR-B1. Then, we genetically analyzed EcR function in the optic lobe cell death. At 0 h APF, the optic lobe cell death was independent of any EcR isoforms. In contrast, EcR-B1 was required for most optic lobe cell death after 24 h APF. It was suggested that cell death cell-autonomously required EcR-B1 expressed after puparium formation. βFTZ-F1 was also involved in cell death in many dying-cell clusters, but not in some of them at 24 h APF. Altogether, the optic lobe cell death occurred in ecdysone-independent manner at prepupal stage and ecdysone-dependent manner after 24 h APF. The acquisition of ecdysone-dependence was not directly correlated with the initiation or increase of EcR-B1 expression. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Changes in digestive enzyme activities during larval development of leopard grouper (Mycteroperca rosacea).

    PubMed

    Martínez-Lagos, R; Tovar-Ramírez, D; Gracia-López, V; Lazo, J P

    2014-06-01

    The leopard grouper is an endemic species of the Mexican Pacific with an important commercial fishery and good aquaculture potential. In order to assess the digestive capacity of this species during the larval period and aid in the formulation of adequate weaning diets, this study aimed to characterize the ontogeny of digestive enzymes during development of the digestive system. Digestive enzymes trypsin, chymotrypsin, acid protease, leucine-alanine peptidase, alkaline phosphatase, aminopeptidase N, lipase, amylase and maltase were quantified in larvae fed live prey and weaned onto a formulated microdiet at 31 days after hatching (DAH) and compared with fasting larvae. Enzyme activity for trypsin, lipase and amylase were detected before the opening of the mouth and the onset of exogenous feeding, indicating a precocious development of the digestive system that has been described in many fish species. The intracellular enzyme activity of leucine-alanine peptidase was high during the first days of development, with a tendency to decrease as larvae developed, reaching undetectable levels at the end of the experimental period. In contrast, activities of enzymes located in the intestinal brush border (i.e., aminopeptidase and alkaline phosphatase) were low at the start of exogenous feeding but progressively increased with larval development, indicating the gradual maturation of the digestive system. Based on our results, we conclude that leopard grouper larvae possess a functional digestive system at hatching and before the onset of exogenous feeding. The significant increase in the activity of trypsin, lipase, amylase and acid protease between 30 and 40 DAH suggests that larvae of this species can be successfully weaned onto microdiets during this period.

  19. Genetic Architecture of Natural Variation Underlying Adult Foraging Behavior That Is Essential for Survival of Drosophila melanogaster.

    PubMed

    Lee, Yuh Chwen G; Yang, Qian; Chi, Wanhao; Turkson, Susie A; Du, Wei A; Kemkemer, Claus; Zeng, Zhao-Bang; Long, Manyuan; Zhuang, Xiaoxi

    2017-05-01

    Foraging behavior is critical for the fitness of individuals. However, the genetic basis of variation in foraging behavior and the evolutionary forces underlying such natural variation have rarely been investigated. We developed a systematic approach to assay the variation in survival rate in a foraging environment for adult flies derived from a wild Drosophila melanogaster population. Despite being such an essential trait, there is substantial variation of foraging behavior among D. melanogaster strains. Importantly, we provided the first evaluation of the potential caveats of using inbred Drosophila strains to perform genome-wide association studies on life-history traits, and concluded that inbreeding depression is unlikely a major contributor for the observed large variation in adult foraging behavior. We found that adult foraging behavior has a strong genetic component and, unlike larval foraging behavior, depends on multiple loci. Identified candidate genes are enriched in those with high expression in adult heads and, demonstrated by expression knock down assay, are involved in maintaining normal functions of the nervous system. Our study not only identified candidate genes for foraging behavior that is relevant to individual fitness, but also shed light on the initial stage underlying the evolution of the behavior. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Calmodulin point mutations affect Drosophila development and behavior.

    PubMed

    Nelson, H B; Heiman, R G; Bolduc, C; Kovalick, G E; Whitley, P; Stern, M; Beckingham, K

    1997-12-01

    Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations.

  1. Calmodulin Point Mutations Affect Drosophila Development and Behavior

    PubMed Central

    Nelson, H. B.; Heiman, R. G.; Bolduc, C.; Kovalick, G. E.; Whitley, P.; Stern, M.; Beckingham, K.

    1997-01-01

    Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations. PMID:9409836

  2. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    PubMed Central

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  3. Incorporation of habitat information in the development of indices of larval bluefin tuna (Thunnus thynnus) in the Western Mediterranean Sea (2001-2005 and 2012-2013)

    NASA Astrophysics Data System (ADS)

    Ingram, G. Walter; Alvarez-Berastegui, Diego; Reglero, Patricia; Balbín, Rosa; García, Alberto; Alemany, Francisco

    2017-06-01

    Fishery independent indices of bluefin tuna larvae in the Western Mediterranean Sea are presented utilizing ichthyoplankton survey data collected from 2001 through 2005 and 2012 through 2013. Indices were developed using larval catch rates collected using two different types of bongo sampling, by first standardizing catch rates by gear/fishing-style and then employing a delta-lognormal modeling approach. The delta-lognormal models were developed three ways: 1) a basic larval index including the following covariates: time of day, a systematic geographic area variable, month and year; 2) a standard environmental larval index including the following covariates: mean water temperature over the mixed layer depth, mean salinity over the mixed layer depth, geostrophic velocity, time of day, a systematic geographic area variable, month and year; and 3) a habitat-adjusted larval index including the following covariates: a potential habitat variable, time of day, a systematic geographic area variable, month and year. Results indicated that all three model-types had similar precision in index values. However, the habitat-adjusted larval index demonstrated a high correlation with estimates of spawning stock biomass from the previous stock assessment model, and, therefore, is recommended as a tuning index in future stock assessment models.

  4. Glue protein production can be triggered by steroid hormone signaling independent of the developmental program in Drosophila melanogaster

    PubMed Central

    Kaieda, Yuya; Masuda, Ryota; Nishida, Ritsuo; Shimell, MaryJane; O’Connor, Michael B.; Ono, Hajime

    2018-01-01

    Steroid hormones regulate life stage transitions, allowing animals to appropriately follow a developmental timeline. During insect development, the steroid hormone ecdysone is synthesized and released in a regulated manner by the prothoracic gland (PG) and then hydroxylated to the active molting hormone, 20-hydroxyecdysone (20E), in peripheral tissues. We manipulated ecdysteroid titers, through temporally controlled over-expression of the ecdysteroid-inactivating enzyme, CYP18A1, in the PG using the GeneSwitch-GAL4 system in the fruit fly Drosophila melanogaster. We monitored expression of a 20E-inducible glue protein gene, Salivary gland secretion 3 (Sgs3), using a Sgs3:GFP fusion transgene. In wild type larvae, Sgs3-GFP expression is activated at the midpoint of the third larval instar stage in response to the rising endogenous level of 20E. By first knocking down endogenous 20E levels during larval development and then feeding 20E to these larvae at various stages, we found that Sgs3-GFP expression could be triggered at an inappropriate developmental stage after a certain time lag. This stage-precocious activation of Sgs3 required expression of the Broad-complex, similar to normal Sgs3 developmental regulation, and a small level of nutritional input. We suggest that these studies provide evidence for a tissue-autonomic regulatory system for a metamorphic event independent from the primary 20E driven developmental progression. PMID:28782527

  5. Glue protein production can be triggered by steroid hormone signaling independent of the developmental program in Drosophila melanogaster.

    PubMed

    Kaieda, Yuya; Masuda, Ryota; Nishida, Ritsuo; Shimell, MaryJane; O'Connor, Michael B; Ono, Hajime

    2017-10-01

    Steroid hormones regulate life stage transitions, allowing animals to appropriately follow a developmental timeline. During insect development, the steroid hormone ecdysone is synthesized and released in a regulated manner by the prothoracic gland (PG) and then hydroxylated to the active molting hormone, 20-hydroxyecdysone (20E), in peripheral tissues. We manipulated ecdysteroid titers, through temporally controlled over-expression of the ecdysteroid-inactivating enzyme, CYP18A1, in the PG using the GeneSwitch-GAL4 system in the fruit fly Drosophila melanogaster. We monitored expression of a 20E-inducible glue protein gene, Salivary gland secretion 3 (Sgs3), using a Sgs3:GFP fusion transgene. In wild type larvae, Sgs3-GFP expression is activated at the midpoint of the third larval instar stage in response to the rising endogenous level of 20E. By first knocking down endogenous 20E levels during larval development and then feeding 20E to these larvae at various stages, we found that Sgs3-GFP expression could be triggered at an inappropriate developmental stage after a certain time lag. This stage-precocious activation of Sgs3 required expression of the Broad-complex, similar to normal Sgs3 developmental regulation, and a small level of nutritional input. We suggest that these studies provide evidence for a tissue-autonomic regulatory system for a metamorphic event independent from the primary 20E driven developmental progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Bar represses dPax2 and decapentaplegic to regulate cell fate and morphogenetic cell death in Drosophila eye.

    PubMed

    Kang, Jongkyun; Yeom, Eunbyul; Lim, Janghoo; Choi, Kwang-Wook

    2014-01-01

    The coordinated regulation of cell fate and cell survival is crucial for normal pattern formation in developing organisms. In Drosophila compound eye development, crystalline arrays of hexagonal ommatidia are established by precise assembly of diverse cell types, including the photoreceptor cells, cone cells and interommatidial (IOM) pigment cells. The molecular basis for controlling the number of cone and IOM pigment cells during ommatidial pattern formation is not well understood. Here we present evidence that BarH1 and BarH2 homeobox genes are essential for eye patterning by inhibiting excess cone cell differentiation and promoting programmed death of IOM cells. Specifically, we show that loss of Bar from the undifferentiated retinal precursor cells leads to ectopic expression of Prospero and dPax2, two transcription factors essential for cone cell specification, resulting in excess cone cell differentiation. We also show that loss of Bar causes ectopic expression of the TGFβ homolog Decapentaplegic (Dpp) posterior to the morphogenetic furrow in the larval eye imaginal disc. The ectopic Dpp expression is not responsible for the formation of excess cone cells in Bar loss-of-function mutant eyes. Instead, it causes reduction in IOM cell death in the pupal stage by antagonizing the function of pro-apoptotic gene reaper. Taken together, this study suggests a novel regulatory mechanism in the control of developmental cell death in which the repression of Dpp by Bar in larval eye disc is essential for IOM cell death in pupal retina.

  7. Juvenile hormone counteracts the bHLH-PAS transcription factors MET and GCE to prevent caspase-dependent programmed cell death in Drosophila.

    PubMed

    Liu, Ying; Sheng, Zhentao; Liu, Hanhan; Wen, Di; He, Qianyu; Wang, Sheng; Shao, Wei; Jiang, Rong-Jing; An, Shiheng; Sun, Yaning; Bendena, William G; Wang, Jian; Gilbert, Lawrence I; Wilson, Thomas G; Song, Qisheng; Li, Sheng

    2009-06-01

    Juvenile hormone (JH) regulates many developmental and physiological events in insects, but its molecular mechanism remains conjectural. Here we report that genetic ablation of the corpus allatum cells of the Drosophila ring gland (the JH source) resulted in JH deficiency, pupal lethality and precocious and enhanced programmed cell death (PCD) of the larval fat body. In the fat body of the JH-deficient animals, Dronc and Drice, two caspase genes that are crucial for PCD induced by the molting hormone 20-hydroxyecdysone (20E), were significantly upregulated. These results demonstrated that JH antagonizes 20E-induced PCD by restricting the mRNA levels of Dronc and Drice. The antagonizing effect of JH on 20E-induced PCD in the fat body was further confirmed in the JH-deficient animals by 20E treatment and RNA interference of the 20E receptor EcR. Moreover, MET and GCE, the bHLH-PAS transcription factors involved in JH action, were shown to induce PCD by upregulating Dronc and Drice. In the Met- and gce-deficient animals, Dronc and Drice were downregulated, whereas in the Met-overexpression fat body, Dronc and Drice were significantly upregulated leading to precocious and enhanced PCD, and this upregulation could be suppressed by application of the JH agonist methoprene. For the first time, we demonstrate that JH counteracts MET and GCE to prevent caspase-dependent PCD in controlling fat body remodeling and larval-pupal metamorphosis in Drosophila.

  8. Heritable Endosymbionts of Drosophila

    PubMed Central

    Mateos, Mariana; Castrezana, Sergio J.; Nankivell, Becky J.; Estes, Anne M.; Markow, Therese A.; Moran, Nancy A.

    2006-01-01

    Although heritable microorganisms are increasingly recognized as widespread in insects, no systematic screens for such symbionts have been conducted in Drosophila species (the primary insect genetic models for studies of evolution, development, and innate immunity). Previous efforts screened relatively few Drosophila lineages, mainly for Wolbachia. We conducted an extensive survey of potentially heritable endosymbionts from any bacterial lineage via PCR screens of mature ovaries in 181 recently collected fly strains representing 35 species from 11 species groups. Due to our fly sampling methods, however, we are likely to have missed fly strains infected with sex ratio-distorting endosymbionts. Only Wolbachia and Spiroplasma, both widespread in insects, were confirmed as symbionts. These findings indicate that in contrast to some other insect groups, other heritable symbionts are uncommon in Drosophila species, possibly reflecting a robust innate immune response that eliminates many bacteria. A more extensive survey targeted these two symbiont types through diagnostic PCR in 1225 strains representing 225 species from 32 species groups. Of these, 19 species were infected by Wolbachia while only 3 species had Spiroplasma. Several new strains of Wolbachia and Spiroplasma were discovered, including ones divergent from any reported to date. The phylogenetic distribution of Wolbachia and Spiroplasma in Drosophila is discussed. PMID:16783009

  9. How Metamorphosis Is Different in Plethodontids: Larval Life History Perspectives on Life-Cycle Evolution

    PubMed Central

    Beachy, Christopher K.; Ryan, Travis J.; Bonett, Ronald M.

    2017-01-01

    Plethodontid salamanders exhibit biphasic, larval form paedomorphic, and direct developing life cycles. This diversity of developmental strategies exceeds that of any other family of terrestrial vertebrate. Here we compare patterns of larval development among the three divergent lineages of biphasic plethodontids and other salamanders. We discuss how patterns of life-cycle evolution and larval ecology might have produced a wide array of larval life histories. Compared with many other salamanders, most larval plethodontids have relatively slow growth rates and sometimes exceptionally long larval periods (up to 60 mo). Recent phylogenetic analyses of life-cycle evolution indicate that ancestral plethodontids were likely direct developers. If true, then biphasic and paedomorphic lineages might have been independently derived through different developmental mechanisms. Furthermore, biphasic plethodontids largely colonized stream habitats, which tend to have lower productivity than seasonally ephemeral ponds. Consistent with this, plethodontid larvae grow very slowly, and metamorphic timing does not appear to be strongly affected by growth history. On the basis of this, we speculate that feeding schedules and stress hormones might play a comparatively reduced role in governing the timing of metamorphosis of stream-dwelling salamanders, particularly plethodontids. PMID:29269959

  10. Development of a two photon microscope for tracking Drosophila larvae

    NASA Astrophysics Data System (ADS)

    Karagyozov, Doycho; Mihovilovic Skanata, Mirna; Gershow, Marc

    Current in vivo methods for measuring neural activity in Drosophila larva require immobilization of the animal. Although we can record neural signals while stimulating the sensory organs, we cannot read the behavioral output because we have prevented the animal from moving. Many research questions cannot be answered without observation of neural activity in behaving (freely-moving) animals. Our project aims to develop a tracking microscope that maintains the neurons of interest in the field of view and in focus during the rapid three dimensional motion of a free larva.

  11. Kinesin Khc-73/KIF13B modulates retrograde BMP signaling by influencing endosomal dynamics at the Drosophila neuromuscular junction

    PubMed Central

    Gray, Lindsay; Tsurudome, Kazuya; El-Mounzer, Wassim; Elazzouzi, Fatima; Baim, Christopher; Calderon, Mario R.; Kauwe, Grant

    2018-01-01

    Retrograde signaling is essential for neuronal growth, function and survival; however, we know little about how signaling endosomes might be directed from synaptic terminals onto retrograde axonal pathways. We have identified Khc-73, a plus-end directed microtubule motor protein, as a regulator of sorting of endosomes in Drosophila larval motor neurons. The number of synaptic boutons and the amount of neurotransmitter release at the Khc-73 mutant larval neuromuscular junction (NMJ) are normal, but we find a significant decrease in the number of presynaptic release sites. This defect in Khc-73 mutant larvae can be genetically enhanced by a partial genetic loss of Bone Morphogenic Protein (BMP) signaling or suppressed by activation of BMP signaling in motoneurons. Consistently, activation of BMP signaling that normally enhances the accumulation of phosphorylated form of BMP transcription factor Mad in the nuclei, can be suppressed by genetic removal of Khc-73. Using a number of assays including live imaging in larval motor neurons, we show that loss of Khc-73 curbs the ability of retrograde-bound endosomes to leave the synaptic area and join the retrograde axonal pathway. Our findings identify Khc-73 as a regulator of endosomal traffic at the synapse and modulator of retrograde BMP signaling in motoneurons. PMID:29373576

  12. Effect of corticosterone on larval growth, antipredator behaviour and metamorphosis of Hylarana indica.

    PubMed

    Kulkarni, P S; Gramapurohit, N P

    2017-09-15

    Corticosterone (CORT), a principal glucocorticoid in amphibians, is known to regulate diverse physiological processes including growth and metamorphosis of anuran tadpoles. Environmental stressors activate the neuroendocrine stress axis (hypothalamus-pituitary-interrenal axis, HPI) leading to an acute increase in CORT, which in turn, helps in coping with particular stress. However, chronic increase in CORT can negatively affect other physiological processes such as growth and metamorphosis. Herein, we studied the effect of exogenous CORT on larval growth, antipredator behaviour and metamorphic traits of Hylarana indica. Embryonic exposure to 5 or 20μg/L CORT did not affect their development, hatching duration as well as larval growth and metamorphosis. Exposure of tadpoles to 10 or 20μg/L CORT throughout larval development caused slower growth and development leading to increased body mass at stage 37. However, body and tail morphology of tadpoles was not affected. Interestingly, larval exposure to 5, 10 or 20μg/L CORT enhanced their antipredator response against kairomones in a concentration-dependent manner. Further, larval exposure to increasing concentrations of CORT resulted in the emergence of heavier froglets at 10 and 20μg/L while, delaying metamorphosis at all concentrations. Interestingly, the heavier froglets had shorter hindlimbs and consequently shorter jump distances. Tadpoles exposed to 20μg/L CORT during early, mid or late larval stages grew and developed slowly but tadpole morphology was not altered. Interestingly, exposure during early or mid-larval stages resulted in an enhanced antipredator response. These individuals metamorphosed later but at higher body mass while SVL was unaffected. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The larval development of the partner shrimp Periclimenes sagittifer (Norman, 1861) (Decapoda: Caridea: Palaemonidae: Pontoniinae) described from laboratory-reared material, with a note on chemical settlement cues

    NASA Astrophysics Data System (ADS)

    dos Santos, Antonina; Calado, Ricardo; Bartilotti, Cátia; Narciso, Luís

    2004-04-01

    The complete larval development (eight zoeae and megalopa) of Periclimenes sagittifer (Norman, 1861) (Decapoda: Palaemonidae: Pontoniinae) from laboratory-reared material is described and illustrated. The morphology of the first larval stage is compared with previous larval descriptions of other species in the genus (P. agag, P. americanus, P. calmani, P. diversipes, P. grandis and P. pandionis). The importance of chemical settlement cues for late stage Periclimenes larvae is discussed.

  14. An Org-1-Tup transcriptional cascade reveals different types of alary muscles connecting internal organs in Drosophila.

    PubMed

    Boukhatmi, Hadi; Schaub, Christoph; Bataillé, Laetitia; Reim, Ingolf; Frendo, Jean-Louis; Frasch, Manfred; Vincent, Alain

    2014-10-01

    The T-box transcription factor Tbx1 and the LIM-homeodomain transcription factor Islet1 are key components in regulatory circuits that generate myogenic and cardiogenic lineage diversity in chordates. We show here that Org-1 and Tup, the Drosophila orthologs of Tbx1 and Islet1, are co-expressed and required for formation of the heart-associated alary muscles (AMs) in the abdomen. The same holds true for lineage-related muscles in the thorax that have not been described previously, which we name thoracic alary-related muscles (TARMs). Lineage analyses identified the progenitor cell for each AM and TARM. Three-dimensional high-resolution analyses indicate that AMs and TARMs connect the exoskeleton to the aorta/heart and to different regions of the midgut, respectively, and surround-specific tracheal branches, pointing to an architectural role in the internal anatomy of the larva. Org-1 controls tup expression in the AM/TARM lineage by direct binding to two regulatory sites within an AM/TARM-specific cis-regulatory module, tupAME. The contributions of Org-1 and Tup to the specification of Drosophila AMs and TARMs provide new insights into the transcriptional control of Drosophila larval muscle diversification and highlight new parallels with gene regulatory networks involved in the specification of cardiopharyngeal mesodermal derivatives in chordates. © 2014. Published by The Company of Biologists Ltd.

  15. Premature remodeling of fat body and fat mobilization triggered by platelet-derived growth factor/VEGF receptor in Drosophila.

    PubMed

    Zheng, Huimei; Wang, Xuexiang; Guo, Pengfei; Ge, Wanzhong; Yan, Qinfeng; Gao, Weiqiang; Xi, Yongmei; Yang, Xiaohang

    2017-05-01

    In Drosophila, fat-body remodeling accompanied with fat mobilization is an ecdysone-induced dynamic process that only occurs during metamorphosis. Here, we show that the activated Drosophila platelet-derived growth factor/VEGF receptor (PVR) is sufficient to induce shape changes in the fat body, from thin layers of tightly conjugated polygonal cells to clusters of disaggregated round-shaped cells. These morphologic changes are reminiscent of those seen during early pupation upon initiation of fat-body remodeling. Activation of PVR also triggers an early onset of lipolysis and mobilization of internal storage, as revealed by the appearance of small lipid droplets and up-regulated lipolysis-related genes. We found that PVR displays a dynamic expression pattern in the fat body and peaks at the larval-prepupal transition under the control of ecdysone signaling. Removal of PVR, although it does not prevent ecdysone-induced fat-body remodeling, causes ecdysone signaling to be up-regulated. Our data reveal that PVR is active in a dual-secured mechanism that involves an ecdysone-induced fat-body remodeling pathway and a reinforced PVR pathway for effective lipid mobilization. Ectopic expression of activated c-kit-the mouse homolog of PVR in the Drosophila fat body-also results in a similar phenotype. This may suggest a novel function of c-kit as it relates to lipid metabolism in mammals.-Zheng, H., Wang, X., Guo, P., Ge, W., Yan, Q., Gao, W., Xi, Y., Yang, X. Premature remodeling of fat body and fat mobilization triggered by platelet-derived growth factor/VEGF receptor in Drosophila . © FASEB.

  16. The digestive tract of Drosophila melanogaster.

    PubMed

    Lemaitre, Bruno; Miguel-Aliaga, Irene

    2013-01-01

    The digestive tract plays a central role in the digestion and absorption of nutrients. Far from being a passive tube, it provides the first line of defense against pathogens and maintains energy homeostasis by exchanging neuronal and endocrine signals with other organs. Historically neglected, the gut of the fruit fly Drosophila melanogaster has recently come to the forefront of Drosophila research. Areas as diverse as stem cell biology, neurobiology, metabolism, and immunity are benefitting from the ability to study the genetics of development, growth regulation, and physiology in the same organ. In this review, we summarize our knowledge of the Drosophila digestive tract, with an emphasis on the adult midgut and its functional underpinnings.

  17. Physiological and biochemical changes during the larval development of a brachyuran crab reared under constant conditions in the laboratory

    NASA Astrophysics Data System (ADS)

    Anger, K.; Harms, J.; Püschel, C.; Seeger, B.

    1989-06-01

    Larvae of the spider crab Hyas araneus were reared in the laboratory at constant conditions (12°C; 32‰S), and their feeding rate ( F), oxygen consumption ( R), nitrogen excretion ( U), and growth were measured in regular intervals of time during development from hatching to metamorphosis. Growth was measured as dry weight ( W), carbon ( C), nitrogen ( N), hydrogen ( H) protein, and lipid. All these physiological and biochemical traits revealed significant changes both from instar to instar and during individual larval moult cycles. Average F was low in the zoea I, reached a maximum in the zoea II, and decreased again in the megalopa. In the zoeal instars, it showed a bell-shaped pattern, with a maximum in the middle (zoea I) or during the first half of the moult cycle (zoea II). Maximum F in the megalopa was observed still earlier, during postmoult. Respiration ( R) increased in the zoeal instars as a linear function of time, whereas it showed a sinusoidal pattern in the megalopa. These findings on variation in F and R during larval development confirm results obtained in previous studies on H. araneus and other decapod species. Excretion ( U) was measured for the first time with a high temporal resolution in crab larvae. It showed in all three larval instars a bell-shaped variation pattern, with a maximum near the middle of the moult cycle, and significantly increasing average values from instar to instar. The atomic O/N ratio followed an inverse pattern, suggesting a maximum utilization of protein as a metabolic substrate during intermoult. Growth data from the present study and from a number of previous studies were compiled, showing consistency of growth patterns, but a considerable degree of variability between larvae from different hatches reared under identical conditions. The data show the following consistent tendencies: during the first part of each larval moult cycle (in postmoult, partly in intermoult), lipids are accumulated at a higher rate than

  18. Growth and development of larval green frogs (Rana clamitans) exposed to multiple doses of an insecticide

    USGS Publications Warehouse

    Boone, M.D.; Bridges, C.M.; Rothermel, B.B.

    2001-01-01

    Our objective was to determine how green frogs (Rana clamitans) are affected by multiple exposures to a sublethal level of the carbamate insecticide, carbaryl, in outdoor ponds. Tadpoles were added to 1,000-1 ponds at a low or high density which were exposed to carbaryl 0, 1, 2, or 3 times. Length of the larval period, mass, developmental stage, tadpole survival, and proportion metamorphosed were used to determine treatment effects. The frequency of dosing affected the proportion of green frogs that reached metamorphosis and the developmental stage of tadpoles. Generally, exposure to carbaryl increased rates of metamorphosis and development. The effect of the frequency of carbaryl exposure on development varied with the density treatment; the majority of metamorphs and the most developed tadpoles came from high-density ponds exposed to carbaryl 3 times. This interaction suggests that exposure to carbaryl later in the larval period stimulated metamorphosis, directly or indirectly, under high-density conditions. Our study indicates that exposure to a contaminant can lead to early initiation of metamorphosis and that natural biotic factors can mediate the effects of a contaminant in the environment.

  19. Overcrowding-mediated stress alters cell proliferation in key neuroendocrine areas during larval development in Rhinella arenarum.

    PubMed

    Distler, Mijal J; Jungblut, Lucas D; Ceballos, Nora R; Paz, Dante A; Pozzi, Andrea G

    2016-02-01

    Exposure to adverse environmental conditions can elicit a stress response, which results in an increase in endogenous corticosterone levels. In early life stages, it has been thoroughly demonstrated that amphibian larval growth and development is altered as a consequence of chronic stress by interfering with the metamorphic process, however, the underlying mechanisms involved have only been partially disentangled. We examined the effect of intraspecific competition on corticosterone levels during larval development of the toad Rhinella arenarum and its ultimate effects on cell proliferation in particular brain areas as well as the pituitary gland. While overcrowding altered the number of proliferating cells in the pituitary gland, hypothalamus, and third ventricle of the brain, no differences were observed in areas which are less associated with neuroendocrine processes, such as the first ventricle of the brain. Apoptosis was increased in hypothalamic regions but not in the pituitary. With regards to pituitary cell populations, thyrotrophs but not somatoatrophs and corticotrophs showed a decrease in the cell number in overcrowded larvae. Our study shows that alterations in growth and development, produced by stress, results from an imbalance in the neuroendocrine systems implicated in orchestrating the timing of metamorphosis. © 2016 Wiley Periodicals, Inc.

  20. Combined endosulfan and cypermethrin-induced toxicity to embryo-larval development of Rhinella arenarum.

    PubMed

    Svartz, Gabriela V; Aronzon, Carolina M; Pérez Coll, Cristina S

    2016-01-01

    The combined effects of two widely used pesticides, endosulfan and cypermethrin, on survival of embryo-larval development of the South American toad (Rhinella arenarum) were examined. The toxicity bioassays were performed according to the AMPHITOX test. Embryos and larvae were exposed to mixtures of these pesticides at equitoxic ratios from acute or chronic exposure to evaluate interaction effects. The results were analyzed using both Marking's additive index and combination index (CI)-isobologram methods. Acute (96-h) and intermediate (168-h) toxicity of endosulfan-cypermethrin mixtures remained almost constant for larvae and embryos, but when exposure duration was increased, there was a significant elevation in toxicity, obtaining chronic (240-h) no-observed-effect concentrations (NOEC) values of 0.045 and 0.16 mg/L for embryos and larvae, respectively. These are environmentally relevant concentrations that reflect a realistic risk of this pesticide mixture to this native amphibian species. The toxicity increment with the exposure duration was coincident with the central nervous system development on embryos reaching the larval period, the main target organ of these pesticides. The interactions of the pesticide mixtures at acute and chronic exposure were antagonistic for embryo development (CI > 1), and additive (CI = 1) for larvae, while chronic exposure interactions were synergistic (CI < 1) for both developmental periods. Data indicated that endosulfan-cypermethrin mixtures resulted in different interaction types depending on duration and developmental stage exposed. As a general pattern and considering conditions of overall developmental period and chronic exposure, this pesticide mixture usually applied in Argentine crop fields is synergistic with respect to toxicity for this native amphibian species.

  1. A novel, tissue-specific, Drosophila homeobox gene.

    PubMed

    Barad, M; Jack, T; Chadwick, R; McGinnis, W

    1988-07-01

    The homeobox gene family of Drosophila appears to control a variety of position-specific patterning decisions during embryonic and imaginal development. Most of these patterning decisions determine groups of cells on the anterior-posterior axis of the Drosophila germ band. We have isolated a novel homeobox gene from Drosophila, designated H2.0. H2.0 has the most diverged homeobox so far characterized in metazoa, and, in contrast to all previously isolated homeobox genes, H2.0 exhibits a tissue-specific pattern of expression. The cells that accumulate transcripts for this novel gene correspond to the visceral musculature and its anlagen.

  2. Same but different: Larval development and gall-inducing process of a non-pollinating fig wasp compared to that of pollinating fig-wasps

    NASA Astrophysics Data System (ADS)

    Jansen-González, Sergio; Teixeira, Simone de Padua; Kjellberg, Finn; Pereira, Rodrigo A. Santinelo

    2014-05-01

    The receptacles of fig trees (Ficus spp.) can harbor a highly diversified and complex community of chalcid wasps. Functional groups of fig wasps (e.g. gallers, cleptoparasites and parasitoids) oviposit into the fig at different developmental stages, reflecting different feeding regimes for these insect larvae. There are few direct data available on larval feeding regimes and access to resources. We studied the gall induction and larval feeding strategy of an Idarnes (group flavicollis) species, a non-pollinating fig wasp (NPFW) associated to Ficus citrifolia P. Miller in Brazil. This Idarnes species shares with the pollinator characteristics such as time of oviposition, ovipositor insertion through flower and location of the egg inside plant ovaries. Nevertheless, we show that the gall induction differs considerably from that of the pollinating species. This Idarnes species relies on the induction of nucellus cell proliferation for gall formation and as the main larval resource. This strategy enables it to develop in both pollinated and unpollinated figs. The large differences between this NPFW and other fig wasps in how ovules are galled suggest that there are different ways to be a galler. A functional analysis of NPFW community structure may require descriptions of the histological processes associated with larval development.

  3. Yif1 associates with Yip1 on Golgi and regulates dendrite pruning in sensory neurons during Drosophila metamorphosis.

    PubMed

    Wang, Qiwei; Wang, Yan; Yu, Fengwei

    2018-05-16

    Pruning that selectively removes unnecessary neurites without causing neuronal death is essential for sculpting the mature nervous system during development. In Drosophila , ddaC sensory neurons specifically prune their larval dendrites with intact axons during metamorphosis. However, it remains unknown about an important role of ER-to-Golgi transport in dendrite pruning. Here, in a clonal screen we identified Yif1, an uncharacterized Drosophila homologue of Yif1p that is known as a regulator of ER-to-Golgi transport in yeast. We show that Yif1 is required for dendrite pruning of ddaC neurons but not for apoptosis of ddaF neurons. We further identified the Yif1-binding partner Yip1 which is also crucial for dendrite pruning. Yif1 forms a protein complex with Yip1 in S2 cells and ddaC neurons. Yip1 and Yif1 colocalize on ER/Golgi and are required for the integrity of Golgi apparatus and outposts. Moreover, we show that two GTPases Rab1 and Sar1, known to regulate ER-to-Golgi transport, are essential for dendrite pruning of ddaC neurons. Finally, our data reveal that ER-to-Golgi transport promotes endocytosis and downregulation of cell adhesion molecule Neuroglian and thereby dendrite pruning. © 2018. Published by The Company of Biologists Ltd.

  4. A Drosophila LexA Enhancer-Trap Resource for Developmental Biology and Neuroendocrine Research

    PubMed Central

    Kockel, Lutz; Huq, Lutfi M.; Ayyar, Anika; Herold, Emma; MacAlpine, Elle; Logan, Madeline; Savvides, Christina; Kim, Grace E. S.; Chen, Jiapei; Clark, Theresa; Duong, Trang; Fazel-Rezai, Vahid; Havey, Deanna; Han, Samuel; Jagadeesan, Ravi; Kim, Eun Soo Jackie; Lee, Diane; Lombardo, Kaelina; Piyale, Ida; Shi, Hansen; Stahr, Lydia; Tung, Dana; Tayvah, Uriel; Wang, Flora; Wang, Ja-Hon; Xiao, Sarah; Topper, Sydni M.; Park, Sangbin; Rotondo, Cheryl; Rankin, Anne E.; Chisholm, Townley W.; Kim, Seung K.

    2016-01-01

    Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila. However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The initial collection provides a source of novel LexA-based elements that permit targeted gene expression in the corpora cardiaca, cells central for metabolic homeostasis, and other neuroendocrine cell types. The collection further contains specific LexA drivers for stem cells and other enteric cells in the gut, and other developmentally relevant tissue types. We provide detailed analysis of nearly 100 new LexA lines, including molecular mapping of insertions, description of enhancer-driven reporter expression in larval tissues, and adult neuroendocrine cells, comparison with established enhancer trap collections and tissue specific RNAseq. Generation of this open-resource LexA collection facilitates neuroendocrine and developmental biology investigations, and shows how empowering secondary school science can achieve research and educational goals. PMID:27527793

  5. Fermitins, the Orthologs of Mammalian Kindlins, Regulate the Development of a Functional Cardiac Syncytium in Drosophila melanogaster

    PubMed Central

    Catterson, James H.; Heck, Margarete M. S.; Hartley, Paul S.

    2013-01-01

    The vertebrate Kindlins are an evolutionarily conserved family of proteins critical for integrin signalling and cell adhesion. Kindlin-2 (KIND2) is associated with intercalated discs in mice, suggesting a role in cardiac syncytium development; however, deficiency of Kind2 leads to embryonic lethality. Morpholino knock-down of Kind2 in zebrafish has a pleiotropic effect on development that includes the heart. It therefore remains unclear whether cardiomyocyte Kind2 expression is required for cardiomyocyte junction formation and the development of normal cardiac function. To address this question, the expression of Fermitin 1 and Fermitin 2 (Fit1, Fit2), the two Drosophila orthologs of Kind2, was silenced in Drosophila cardiomyocytes. Heart development was assessed in adult flies by immunological methods and videomicroscopy. Silencing both Fit1 and Fit2 led to a severe cardiomyopathy characterised by the failure of cardiomyocytes to develop as a functional syncytium and loss of synchrony between cardiomyocytes. A null allele of Fit1 was generated but this had no impact on the heart. Similarly, the silencing of Fit2 failed to affect heart function. In contrast, the silencing of Fit2 in the cardiomyocytes of Fit1 null flies disrupted syncytium development, leading to severe cardiomyopathy. The data definitively demonstrate a role for Fermitins in the development of a functional cardiac syncytium in Drosophila. The findings also show that the Fermitins can functionally compensate for each other in order to control syncytium development. These findings support the concept that abnormalities in cardiomyocyte KIND2 expression or function may contribute to cardiomyopathies in humans. PMID:23690969

  6. Stage-Specific Changes in Physiological and Life-History Responses to Elevated Temperature and Pco2 during the Larval Development of the European Lobster Homarus gammarus (L.).

    PubMed

    Small, Daniel P; Calosi, Piero; Boothroyd, Dominic; Widdicombe, Steve; Spicer, John I

    2015-01-01

    An organism's physiological processes form the link between its life-history traits and the prevailing environmental conditions, especially in species with complex life cycles. Understanding how these processes respond to changing environmental conditions, thereby affecting organismal development, is critical if we are to predict the biological implications of current and future global climate change. However, much of our knowledge is derived from adults or single developmental stages. Consequently, we investigated the metabolic rate, organic content, carapace mineralization, growth, and survival across each larval stage of the European lobster Homarus gammarus, reared under current and predicted future ocean warming and acidification scenarios. Larvae exhibited stage-specific changes in the temperature sensitivity of their metabolic rate. Elevated Pco2 increased C∶N ratios and interacted with elevated temperature to affect carapace mineralization. These changes were linked to concomitant changes in survivorship and growth, from which it was concluded that bottlenecks were evident during H. gammarus larval development in stages I and IV, the transition phases between the embryonic and pelagic larval stages and between the larval and megalopa stages, respectively. We therefore suggest that natural changes in optimum temperature during ontogeny will be key to larvae survival in a future warmer ocean. The interactions of these natural changes with elevated temperature and Pco2 significantly alter physiological condition and body size of the last larval stage before the transition from a planktonic to a benthic life style. Thus, living and growing in warm, hypercapnic waters could compromise larval lobster growth, development, and recruitment.

  7. Temporal changes in the bacterial community of animal feces and their correlation with stable fly oviposition, larval development, and adult fitness

    PubMed Central

    Albuquerque, Thais A.; Zurek, Ludek

    2014-01-01

    Stable flies are blood-feeding insects with a great negative impact on animals world wide. Larvae develop primarily in animal manure and bacteria are essential for larval development; however, the principle of this dependence is not understood. We hypothesized that as the microbial community of animal manure changes over time, it plays an important role in stable fly fitness. Two-choice bioassays were conducted using 2 week old horse manure (control) and aging horse manure (fresh to 5 week old) to evaluate the effect of manure age on stable fly oviposition. Our data showed that fresh feces did not stimulate oviposition and that the attractiveness increased as manure aged but started to decline after 3 weeks. Bioassays assessing the effect of manure age at the time of oviposition on larval development demonstrated that 1–3 week old manure supported larval development significantly better than fresh, 4, and 5 week old manure. In addition, adult fitness (body size) was significantly higher in flies from 1 and 2 week old manure comparing to that of all other treatments. Analysis of the bacterial community of aging horse manure by 454-pyrosequencing of 16S rDNA revealed a great reduction in bacterial diversity and richness from fresh to 1–5 week old manure and a major shift from strict anaerobes in fresh manure to facultative anaerobes and strict aerobes in aged manure. Overall, the microbial community of 2 and 3 week old horse manure with its dominant bacterial taxa Rhizobium, Devosia, and Brevundimonas stimulated stable fly oviposition the most and provided a suitable habitat for larval development. These bacteria represent the candidates for studies focused on better understanding of stable fly – microbial interactions. PMID:25426108

  8. Remotely Sensing Larval Population Dynamics of Rice Field Anophelines

    NASA Technical Reports Server (NTRS)

    Beck, Louisa R.; Dister, Sheri W.; Wood, Byron L.; Washino, Robert K.

    1997-01-01

    The primary objective of both studies was to determine if RS and GIS techniques could be used to distinguish between high and low larval-producing rice fields in California. Results of the first study suggested that early-season green-up and proximity to livestock pastures were positively correlated with high larval abundance. Based on the early-season spectral differences between high and low larval-producing fields, it appeared that canopy development and tillering influenced mosquito habitat quality. At that time, rice fields consisted of a mixture of plants and water, a combination that allowed An. freeborni females to lay eggs in partial sunlight, protected from both predators and wind. This established a population earlier in the season than in other, 'less-green' fields where tillering and plant emergence was too minimal for ovipositioning. The study also indicated the importance of the distance that a mosquito would have to fly in order to take a bloodmeal prior to ovipositing. These associations were fully explored in an expanded study two years later. The second study confirmed the positive relationship between early season canopy development and larval abundance, and also demonstrated the relationship between abundance and distance-to-pasture. The association between greenness (as measured using NDVI), distance-to-pasture, and abundance is illustrated. The second study also indicated the siginificance of the landscape context of rice fields for larval production. Fields that included opportunities for feeding and resting within the flight range of the mosquito had higher abundances than did fields that were in a homogeneous rice area.

  9. The effects of mercury on developing larvae of Rhithropanopeus harrisii (Gould) . I. Interactions of temperature, salinity and mercuryon larval development

    NASA Astrophysics Data System (ADS)

    McKenney, C. L.; Costlow, J. D.

    1982-02-01

    Larvae of the estuarine xanthid crab Rhithropanopeus harrisii were reared inthe laboratory from hatch through completion of metamorphosis to postlarva in 64 combinations of temperature (20-35°C), salinity (10-40‰) and mercury (0-20 parts 10 -9 Hg 2+). Multiple linear regression analysis and response surface methodology were used to determine and visually display the individual and interactive effects of the various constant temperature-salinity-mercury combinations on both survival and developmental rates of developing larvae throughout total larval development and for zoeae and megalopae separately, to distinguish any differential sensitivity between the two larval forms. Survival capacity of larvae under a broad range of salinities and temperatures characteristic of temperate estuarine conditions was progressively reduced upon continual exposure to mercury ranging from 5 to 20 parts 10 -9 Hg 2+. Exposure concentrations as low as 5 parts 10 -9 Hg 2+ reduced the salinity and temperature plasciticity of the normally euryhalinic and eurythermal larvae. Larval survival from hatch to postlarva was affected by both mercury-salinity and mercury-temperature interactions with mercury toxicity increasing under suboptimal temperatures and salinities. Viability of early zoeal stages proved more sensitive to mercury exposure than the final megalopa stage. Exposure to mercury concentrations from 5-20 parts 10 -9, Hg 2+ prolonged complete developmental duration by 3 to 4 days with zoeal developmental rates retarded more than megalopal rates. Developmental rates of the megalopa were more reduced by mercury at higher salinities, and both zoeal and megalopal developmental rates were more retarded by mercury at lower temperatures. The reduced plasticity of larvae to estuarine conditions, and retarded developmental rates by low mercury concentrations may reduce recruitment into adult benthic populations and alter the distributional patterns of pelagic R. harrisii larvae.

  10. Prostaglandin-mediated recovery from bacteremia delays larval development in fall armyworm, Spodoptera frugiperda.

    PubMed

    Zhang, Lei; Ringbauer, Joseph A; Goodman, Cynthia L; Reall, Tamra; Jiang, Xing-Fu; Stanley, David

    2018-04-01

    Insect immunity includes a surveillance system that detects and signals infections, coupled with hemocytic and humoral immune functions. These functions are signaled and coordinated by several biochemicals, including biogenic amines, insect cytokines, peptides, and prostaglandins (PGs). The actions of these mediators are coordinated within cells by various forms of cross-talk among the signaling systems and they result in effective reactions to infection. While this is well understood, we lack information on how immune-mediated recovery influences subsequent juvenile development in surviving insects. We investigated this point by posing the hypothesis that PG signaling is necessary for larval recovery, although the recovery imposes biological costs, registered in developmental delays and failures in surviving individuals. Here, we report that nodulation responses to infections by the bacterium, Serratia marcescens, increased over time up to 5 h postinfection, with no further nodulation; it increased in a linear manner with increasing bacterial dosages. Larval survivorship decreased with increasing bacterial doses. Treating larvae with the PG-biosynthesis inhibitor, indomethacin, led to sharply decreased nodulation reactions to infection, which were rescued in larvae cotreated with indomethacin and the PG-precursor, arachidonic acid. Although nodulation was fully rescued, all bacterial challenged larvae suffered reduced survivorship compared to controls. Bacterial infection led to reduced developmental rates in larvae, but not pupae. Adult emergence from pupae that developed from experimental larvae was also decreased. Taken together, our data potently bolster our hypothesis. © 2018 Wiley Periodicals, Inc.

  11. Effects of Spaceflight on Drosophila Neural Development

    NASA Technical Reports Server (NTRS)

    Keshishian, Haig S.

    1997-01-01

    The major goal from the animal side, however, has been achieved, namely to develop Drosophila lines where we can assay individual neuromuscular endings directly without dissection. This was achieved by means of using the GAL4-UAS system, where we have succeeded in establishing stocks of flies where the key neuromuscular connections can be assayed directly in undissected larvae by means of the expression of endogenously fluorescent reporters in the specific motor endings. The green fluorescent protein (GFP) as a reporter allows scoring of neural anatomy en-masse in whole mount using fluorescent microscopy without the need for either dissection or specific labeling. Two stocks have been developed. The first, which we developed first, uses the S65T mutant form, which has a dramatically brighter expression than the native protein. This animal will use GAL4 drivers with expression under the control of the elav gene, and which will ensure expression in all neurons of the embryo and larva. The second transgenic animal we have developed is of a novel kind, and makes use of dicistronic design, so that two copies of the protein will be expressed per insert. We have also developed a tricistronic form, but this has not yet been transformed into flies, and we do not imagine that this third line will be ready in time for the flight.

  12. Embryogenesis and Larval Biology of the Cold-Water Coral Lophelia pertusa

    PubMed Central

    Strömberg, Susanna M.; Dahl, Mikael P.; Lundälv, Tomas; Brooke, Sandra

    2014-01-01

    Cold-water coral reefs form spectacular and highly diverse ecosystems in the deep sea but little is known about reproduction, and virtually nothing about the larval biology in these corals. This study is based on data from two locations of the North East Atlantic and documents the first observations of embryogenesis and larval development in Lophelia pertusa, the most common framework-building cold-water scleractinian. Embryos developed in a more or less organized radial cleavage pattern from ∼160 µm large neutral or negatively buoyant eggs, to 120–270 µm long ciliated planulae. Embryogenesis was slow with cleavage occurring at intervals of 6–8 hours up to the 64-cell stage. Genetically characterized larvae were sexually derived, with maternal and paternal alleles present. Larvae were active swimmers (0.5 mm s−1) initially residing in the upper part of the water column, with bottom probing behavior starting 3–5 weeks after fertilization. Nematocysts had developed by day 30, coinciding with peak bottom-probing behavior, and possibly an indication that larvae are fully competent to settle at this time. Planulae survived for eight weeks under laboratory conditions, and preliminary results indicate that these planulae are planktotrophic. The late onset of competency and larval longevity suggests a high dispersal potential. Understanding larval biology and behavior is of paramount importance for biophysical modeling of larval dispersal, which forms the basis for predictions of connectivity among populations. PMID:25028936

  13. Volatile organic compounds emitted by filamentous fungi isolated from flooded homes after Hurricane Sandy show toxicity in a Drosophila bioassay.

    PubMed

    Zhao, G; Yin, G; Inamdar, A A; Luo, J; Zhang, N; Yang, I; Buckley, B; Bennett, J W

    2017-05-01

    Superstorm Sandy provided an opportunity to study filamentous fungi (molds) associated with winter storm damage. We collected 36 morphologically distinct fungal isolates from flooded buildings. By combining traditional morphological and cultural characters with an analysis of ITS sequences (the fungal DNA barcode), we identified 24 fungal species that belong to eight genera: Penicillium (11 species), Fusarium (four species), Aspergillus (three species), Trichoderma (two species), and one species each of Metarhizium, Mucor, Pestalotiopsis, and Umbelopsis. Then, we used a Drosophila larval assay to assess possible toxicity of volatile organic compounds (VOCs) emitted by these molds. When cultured in a shared atmosphere with growing cultures of molds isolated after Hurricane Sandy, larval toxicity ranged from 15 to 80%. VOCs from Aspergillus niger 129B were the most toxic yielding 80% mortality to Drosophila after 12 days. The VOCs from Trichoderma longibrachiatum 117, Mucor racemosus 138a, and Metarhizium anisopliae 124 were relatively non-toxigenic. A preliminary analysis of VOCs was conducted using solid-phase microextraction-gas chromatography-mass spectrometry from two of the most toxic, two of the least toxic, and two species of intermediate toxicity. The more toxic molds produced higher concentrations of 1-octen-3-ol, 3-octanone, 3-octanol, 2-octen-1-ol, and 2-nonanone; while the less toxic molds produced more 3-methyl-1-butanol and 2-methyl-1-propanol, or an overall lower amount of volatiles. Our data support the hypothesis that at certain concentrations, some VOCs emitted by indoor molds are toxigenic. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Swimming behavior of larval Medaka fish under microgravity

    NASA Astrophysics Data System (ADS)

    Furukawa, R.; Ijiri, K.

    Fish exhibit looping and rolling behaviors when subjected to short periods of microgravity during parabolic flight. Strain-differences in the behavioral response of adult Medaka fish ( Oryzias latipes) were reported previously, however, there have been few studies of larval fish behavior under microgravity. In the present study, we investigated whether microgravity affects the swimming behavior of larvae at various ages (0 to 20 days after hatching), using different strains: HNI-II, HO5, ha strain, and variety of different strains (variety). The preliminary experiments were done in the ground laboratory: the development of eyesight was examined using optokinetic response for the different strains. The visual acuity of larvae improved drastically during 20 days after hatching. Strain differences of response were noted for the development of their visual acuity. In microgravity, the results were significantly different from those of adult Medaka. The larval fish appeared to maintain their orientation, except that a few of them exhibited looping and rolling behavior. Further, most larvae swam normally with their backs turning toward the light source (dorsal light response, DLR), and the rest of them stayed with their abdomen touching the surface of the container (ventral substrate response, VSR). For larval stages, strain-differences and age-differences in behavior were observed, but less pronounced than with adult fish under microgravity. Our observations suggest that adaptability of larval fish to the gravitational change and the mechanism of their postural control in microgravity are more variable than in adult fish.

  15. Intestinal stem cells in the adult Drosophila midgut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaqi, E-mail: Huaqi.Jiang@UTSouthwestern.edu; Edgar, Bruce A., E-mail: b.edgar@dkfz.de; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights:more » Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.« less

  16. High-Throughput Analysis of Stimulus-Evoked Behaviors in Drosophila Larva Reveals Multiple Modality-Specific Escape Strategies

    PubMed Central

    Ohyama, Tomoko; Jovanic, Tihana; Denisov, Gennady; Dang, Tam C.; Hoffmann, Dominik; Kerr, Rex A.; Zlatic, Marta

    2013-01-01

    All organisms react to noxious and mechanical stimuli but we still lack a complete understanding of cellular and molecular mechanisms by which somatosensory information is transformed into appropriate motor outputs. The small number of neurons and excellent genetic tools make Drosophila larva an especially tractable model system in which to address this problem. We developed high throughput assays with which we can simultaneously expose more than 1,000 larvae per man-hour to precisely timed noxious heat, vibration, air current, or optogenetic stimuli. Using this hardware in combination with custom software we characterized larval reactions to somatosensory stimuli in far greater detail than possible previously. Each stimulus evoked a distinctive escape strategy that consisted of multiple actions. The escape strategy was context-dependent. Using our system we confirmed that the nociceptive class IV multidendritic neurons were involved in the reactions to noxious heat. Chordotonal (ch) neurons were necessary for normal modulation of head casting, crawling and hunching, in response to mechanical stimuli. Consistent with this we observed increases in calcium transients in response to vibration in ch neurons. Optogenetic activation of ch neurons was sufficient to evoke head casting and crawling. These studies significantly increase our understanding of the functional roles of larval ch neurons. More generally, our system and the detailed description of wild type reactions to somatosensory stimuli provide a basis for systematic identification of neurons and genes underlying these behaviors. PMID:23977118

  17. Nanos-mediated repression of hid protects larval sensory neurons after a global switch in sensitivity to apoptotic signals

    PubMed Central

    Bhogal, Balpreet; Plaza-Jennings, Amara

    2016-01-01

    Dendritic arbor morphology is a key determinant of neuronal function. Once established, dendrite branching patterns must be maintained as the animal develops to ensure receptive field coverage. The translational repressors Nanos (Nos) and Pumilio (Pum) are required to maintain dendrite growth and branching of Drosophila larval class IV dendritic arborization (da) neurons, but their specific regulatory role remains unknown. We show that Nos-Pum-mediated repression of the pro-apoptotic gene head involution defective (hid) is required to maintain a balance of dendritic growth and retraction in class IV da neurons and that upregulation of hid results in decreased branching because of an increase in caspase activity. The temporal requirement for nos correlates with an ecdysone-triggered switch in sensitivity to apoptotic stimuli that occurs during the mid-L3 transition. We find that hid is required during pupariation for caspase-dependent pruning of class IV da neurons and that Nos and Pum delay pruning. Together, these results suggest that Nos and Pum provide a crucial neuroprotective regulatory layer to ensure that neurons behave appropriately in response to developmental cues. PMID:27256879

  18. Conditional knockout of retinal determination genes in differentiating cells in Drosophila.

    PubMed

    Jin, Meng; Eblimit, Aiden; Pulikkathara, Merlyn; Corr, Stuart; Chen, Rui; Mardon, Graeme

    2016-08-01

    Conditional gene knockout in postmitotic cells is a valuable technique which allows the study of gene function with spatiotemporal control. Surprisingly, in contrast to its long-term and extensive use in mouse studies, this technology is lacking in Drosophila. Here, we use a novel method for generating complete loss of eyes absent (eya) or sine oculis (so) function in postmitotic cells posterior to the morphogenetic furrow (MF). Specifically, genomic rescue constructs with flippase recognition target (FRT) sequences flanking essential exons are used to generate conditional null alleles. By removing gene function in differentiating cells, we show that eya and so are dispensable for larval photoreceptor differentiation, but are required for differentiation during pupal development. Both eya and so are necessary for photoreceptor survival and the apoptosis caused by loss of eya or so function is likely a secondary consequence of inappropriate differentiation. We also confirm their requirement for cone cell development and reveal a novel role in interommatidial bristle (IOB) formation. In addition, so is required for normal eye disc morphology. This is the first report of a knockout method to study eya and so function in postmitotic cells. This technology will open the door to a large array of new functional studies in virtually any tissue and at any stage of development or in adults. © 2016 Federation of European Biochemical Societies.

  19. A rho-binding protein kinase C-like activity is required for the function of protein kinase N in Drosophila development.

    PubMed

    Betson, Martha; Settleman, Jeffrey

    2007-08-01

    The Rho GTPases interact with multiple downstream effectors to exert their biological functions, which include important roles in tissue morphogenesis during the development of multicellular organisms. Among the Rho effectors are the protein kinase N (PKN) proteins, which are protein kinase C (PKC)-like kinases that bind activated Rho GTPases. The PKN proteins are well conserved evolutionarily, but their biological role in any organism is poorly understood. We previously determined that the single Drosophila ortholog of mammalian PKN proteins, Pkn, is a Rho/Rac-binding kinase essential for Drosophila development. By performing "rescue" studies with various Pkn mutant constructs, we have defined the domains of Pkn required for its role during Drosophila development. These studies suggested that Rho, but not Rac binding is important for Pkn function in development. In addition, we determined that the kinase domain of PKC53E, a PKC family kinase, can functionally substitute for the kinase domain of Pkn during development, thereby exemplifying the evolutionary strategy of "combining" functional domains to produce proteins with distinct biological activities. Interestingly, we also identified a requirement for Pkn in wing morphogenesis, thereby revealing the first postembryonic function for Pkn.

  20. Gene–environment interplay in Drosophila melanogaster: Chronic food deprivation in early life affects adult exploratory and fitness traits

    PubMed Central

    Burns, James Geoffrey; Svetec, Nicolas; Rowe, Locke; Mery, Frederic; Dolan, Michael J.; Boyce, W. Thomas; Sokolowski, Marla B.

    2012-01-01

    Early life adversity has known impacts on adult health and behavior, yet little is known about the gene–environment interactions (GEIs) that underlie these consequences. We used the fruit fly Drosophila melanogaster to show that chronic early nutritional adversity interacts with rover and sitter allelic variants of foraging (for) to affect adult exploratory behavior, a phenotype that is critical for foraging, and reproductive fitness. Chronic nutritional adversity during adulthood did not affect rover or sitter adult exploratory behavior; however, early nutritional adversity in the larval period increased sitter but not rover adult exploratory behavior. Increasing for gene expression in the mushroom bodies, an important center of integration in the fly brain, changed the amount of exploratory behavior exhibited by sitter adults when they did not experience early nutritional adversity but had no effect in sitters that experienced early nutritional adversity. Manipulation of the larval nutritional environment also affected adult reproductive output of sitters but not rovers, indicating GEIs on fitness itself. The natural for variants are an excellent model to examine how GEIs underlie the biological embedding of early experience. PMID:23045644