Science.gov

Sample records for drug induced parkinsonism

  1. Increased response to visual feedback of drug-induced dyskinetic movements in advanced Parkinson's disease

    E-print Network

    Miall, Chris

    Increased response to visual feedback of drug-induced dyskinetic movements in advanced Parkinson, we have tested six advanced Parkinson's disease (PD) patients with drug-induced dyskinetic movements reserved. Keywords: Visual feedback; Tracking; Drug-induced dyskinesia; Parkinson's disease We have been

  2. Pyridoxine improves drug-induced parkinsonism and psychosis in a schizophrenic patient.

    PubMed

    Sandyk, R; Pardeshi, R

    1990-06-01

    Drug-induced Parkinsonism is a common serious side-effect of neuroleptic therapy. In cases of irreversible drug-induced Parkinsonism, pharmacological management is notoriously difficult. A schizophrenic patient with severe neuroleptic-induced Parkinsonism and Tardive Dyskinesia is presented in whom administration of pyridoxine (vitamin B6) (100 mg/d) resulted in dramatic and persistent attenuation of the movement disorders as well as reduction of psychotic behavior. Since pyridoxine deficiency is associated with marked reduction of cerebral serotonin concentrations and pineal melatonin production in rats, the effects of pyridoxine on the movement disorder and psychosis may have been mediated largely by enhancing serotonin and melatonin functions. An additional effect of excess pyridoxine administration on GABA and dopamine activity cannot be excluded. Pyridoxine has been reported to attenuate the severity of levodopa-induced dyskinesias in patients with Parkinson's disease and it is suggested that pyridoxine supplementation should be considered in psychiatric patients with drug-induced movement disorders including persistent Parkinsonism. An underlying pyridoxine deficiency in these patients may exacerbate the psychotic behavior and additionally, potentially increase the risk of drug-induced movement disorders. PMID:2269609

  3. Drugs for Parkinson's disease.

    PubMed

    2013-11-01

    Levodopa combined with carbidopa is still the most effective treatment for symptoms of Parkinson's disease. Dopamine agonists, the next most effective class of drugs, can be used alone before the introduction of levodopa or as an adjunct to levodopa.Addition of a peripherally-acting COMT inhibitor or an MAO-B inhibitor to levodopa can reduce motor fluctuations in patients with advanced disease.Amantadine may have mild symptomatic benefit and can decrease levodopa-induced dyskinesias.Anticholinergics are rarely used because of their adverse effects, but can be a useful addition to levodopa for control of tremor and drooling.Subcutaneous apomorphine should be available for rescue use in patients with 'off' episodes. Deep brain stimulation is an option for patients with levodopa-induced motor complications and relatively intact cognition. PMID:24165688

  4. Parkinson's Drug Shows Promise Against Macular Degeneration

    MedlinePLUS

    ... nlm.nih.gov/medlineplus/news/fullstory_155695.html Parkinson's Drug Shows Promise Against Macular Degeneration But more ... THURSDAY, Nov. 12, 2015 (HealthDay News) -- A common Parkinson's disease medication might hold potential for preventing or ...

  5. Drugs of abuse and Parkinson's disease.

    PubMed

    Mursaleen, Leah R; Stamford, Jonathan A

    2016-01-01

    The term "drug of abuse" is highly contextual. What constitutes a drug of abuse for one population of patients does not for another. It is therefore important to examine the needs of the patient population to properly assess the status of drugs of abuse. The focus of this article is on the bidirectional relationship between patients and drug abuse. In this paper we will introduce the dopaminergic systems of the brain in Parkinson's and the influence of antiparkinsonian drugs upon them before discussing this synergy of condition and medication as fertile ground for drug abuse. We will then examine the relationship between drugs of abuse and Parkinson's, both beneficial and deleterious. In summary we will draw the different strands together and speculate on the future merit of current drugs of abuse as treatments for Parkinson's disease. PMID:25816790

  6. Anti-dopaminergic and anti-muscarinic effects of dibenzodiazepines: relationship to drug induced Parkinsonism.

    PubMed

    Miller, R J; Hiley, C R

    1976-01-01

    1. The anti-dopaminergic effects of several dibenzodiazepines were examined on the dopamine-stimulated adenylate cyclase in rat striatal homogenates. The "cis" isomer of clozapine, HF-2046, was the most potent in this respect and perlapine, which is devoid of neuroleptic activity, was the weakest. 2. The anti-muscarinic effects of the same compounds were measured by using the muscarinic affinity label 3H-propylbenzilylcholine mustard. HF-2046 was the most potent and loxapine the least potent of the drugs used. 3. The anti-dopaminergic effects of the drugs correlate well with neuroleptic but not with extrapyramidal effects. The anti-dopaminergic/anti-muscarinic ratio, however, correlates well with extrapyramidal rather than neuroleptic effects. PMID:7753

  7. Dopaminergic drug-induced modulation of the expression of the dopamine transporter in peripheral blood lymphocytes in Parkinson's disease.

    PubMed

    Fanciulli, Alessandra; Misasi, Roberta; Campanelli, Dario; Buttarelli, Francesca R; Pontieri, Francesco R

    2011-01-01

    The modulation of expression of the dopamine transporter by dopaminergic drugs was investigated by flow cytometry in peripheral blood lymphocytes from patients suffering Parkinson's disease. An 8-week in vivo exposure to pramipexole (0.7 mg free base, 3 times a day) or ropinirole (12 mg, once daily), but not levodopa/carbidopa (100/25 mg, 3 times a day), significantly reduced the mean fluorescence intensity of the dopamine transporter in peripheral blood lymphocytes. These results demonstrate that levodopa differs from dopamine agonists in its regulation of dopamine transporter expression in peripheral blood lymphocytes. PMID:22001994

  8. Manganese-Induced Parkinsonism and Parkinson’s Disease: Shared and Distinguishable Features

    PubMed Central

    Kwakye, Gunnar F.; Paoliello, Monica M.B.; Mukhopadhyay, Somshuvra; Bowman, Aaron B.; Aschner, Michael

    2015-01-01

    Manganese (Mn) is an essential trace element necessary for physiological processes that support development, growth and neuronal function. Secondary to elevated exposure or decreased excretion, Mn accumulates in the basal ganglia region of the brain and may cause a parkinsonian-like syndrome, referred to as manganism. The present review discusses the advances made in understanding the essentiality and neurotoxicity of Mn. We review occupational Mn-induced parkinsonism and the dynamic modes of Mn transport in biological systems, as well as the detection and pharmacokinetic modeling of Mn trafficking. In addition, we review some of the shared similarities, pathologic and clinical distinctions between Mn-induced parkinsonism and Parkinson’s disease. Where possible, we review the influence of Mn toxicity on dopamine, gamma aminobutyric acid (GABA), and glutamate neurotransmitter levels and function. We conclude with a survey of the preventive and treatment strategies for manganism and idiopathic Parkinson’s disease (PD). PMID:26154659

  9. Effect of new dopamine-blocking agent (oxiperomide) on drug-induced dyskinesias in Parkinson's disease and spontaneous dyskinesias.

    PubMed Central

    Bédard, P; Parkes, J D; Marsden, C D

    1978-01-01

    Oxiperomide, a new dopamine-receptor antagonist, was found to decrease dyskinesias in patients with Parkinson's disease receiving levodopa or other dopamine agonists without necessarily increasing Parkinsonian symptoms. Oxiperomide also decreased spontaneous dyskinesias in those with tics and chorea and to a less extent in those with torsion dystonia, without necessarily causing Parkinsonism. These results provide evidence that more than one population of dopamine receptors exist in the extra pyramidal system, and encourage the search for selective dopamine antagonists. PMID:638546

  10. Levodopa in the treatment of Parkinson’s disease: an old drug still going strong

    PubMed Central

    Poewe, Werner; Antonini, Angelo; Zijlmans, Jan CM; Burkhard, Pierre R; Vingerhoets, François

    2010-01-01

    After more than 40 years of clinical use, levodopa (LD) remains the gold standard of symptomatic efficacy in the drug treatment of Parkinson’s disease (PD). Compared with other available dopaminergic therapies, dopamine replacement with LD is associated with the greatest improvement in motor function. Long-term treatment with LD is, however, often complicated by the development of various types of motor response oscillations over the day, as well as drug-induced dyskinesias. Motor fluctuations can be improved by the addition of drugs such as entacapone or monoamine oxidase inhibitors, which extend the half-life of levodopa or dopamine, respectively. However, dyskinesia control still represents a major challenge. As a result, many neurologists have become cautious when prescribing therapy with LD. This review summarizes the available evidence regarding the use of LD to treat PD and will also address the issue of LD delivery as a critical factor for the drug’s propensity to induce motor complications. PMID:20852670

  11. New Clues to Easing Side Effects from Parkinson's Drug

    MedlinePLUS

    ... nlm.nih.gov/medlineplus/news/fullstory_155796.html New Clues to Easing Side Effects From Parkinson's Drug ... control this side effect, he said. In the new study, an international team of researchers discovered that ...

  12. Pharmacogenetics of Parkinson’s Disease – Through Mechanisms of Drug Actions

    PubMed Central

    Dro?dzik, Marek; Bia?ecka, Monika; Kurzawski, Mateusz

    2013-01-01

    In the last years due to development of molecular methods a substantial progress in understanding of genetic associations with drug effects in many clinical disciplines has been observed. The efforts to define the role of genetic polymorphisms in optimizing pharmacotherapy of Parkinson’s disease (PD) were also undertaken. So far, some promising genetic loci for PD treatment were determined. In the review pharmacogenetic aspects of levodopa, dopamine agonists and COMT inhibitors are discussed. PMID:24532988

  13. Rasagiline induced hypersexuality in Parkinson's disease.

    PubMed

    Reyes, Dennys; Kurako, Kateryna; Galvez-Jimenez, Nestor

    2014-03-01

    Impulse control disorders (ICD) are increasingly recognized in patients with Parkinson's disease (PD), particularly when treated with commonly used dopamine agonists such as pramipexole and ropinirole. Less evident is the possible association between monoamine oxidase inhibitors type B (MAO-B) and the development of ICD. Rasagiline is a second generation MAO-B I inducing moderate symptomatic and possibly disease modifying benefits with apparently good tolerability and safety profile in PD patients. Rasagiline is effective and well tolerated in PD as a monotherapy or in combination with levodopa. Here, we report a patient with PD who developed ICD when treated de novo with MAO-B inhibitors. PMID:24055209

  14. ?6?2* and ?4?2* Nicotinic Acetylcholine Receptors As Drug Targets for Parkinson's Disease

    PubMed Central

    Wonnacott, Susan

    2011-01-01

    Parkinson's disease is a debilitating movement disorder characterized by a generalized dysfunction of the nervous system, with a particularly prominent decline in the nigrostriatal dopaminergic pathway. Although there is currently no cure, drugs targeting the dopaminergic system provide major symptomatic relief. As well, agents directed to other neurotransmitter systems are of therapeutic benefit. Such drugs may act by directly improving functional deficits in these other systems, or they may restore aberrant motor activity that arises as a result of a dopaminergic imbalance. Recent research attention has focused on a role for drugs targeting the nicotinic cholinergic systems. The rationale for such work stems from basic research findings that there is an extensive overlap in the organization and function of the nicotinic cholinergic and dopaminergic systems in the basal ganglia. In addition, nicotinic acetylcholine receptor (nAChR) drugs could have clinical potential for Parkinson's disease. Evidence for this proposition stems from studies with experimental animal models showing that nicotine protects against neurotoxin-induced nigrostriatal damage and improves motor complications associated with l-DOPA, the “gold standard” for Parkinson's disease treatment. Nicotine interacts with multiple central nervous system receptors to generate therapeutic responses but also produces side effects. It is important therefore to identify the nAChR subtypes most beneficial for treating Parkinson's disease. Here we review nAChRs with particular emphasis on the subtypes that contribute to basal ganglia function. Accumulating evidence suggests that drugs targeting ?6?2* and ?4?2* nAChR may prove useful in the management of Parkinson's disease. PMID:21969327

  15. Drug-induced hepatitis

    MedlinePLUS

    Toxic hepatitis ... to get liver damage. Some drugs can cause hepatitis with small doses, even if the liver breakdown ... liver. Many different drugs can cause drug-induced hepatitis. Painkillers and fever reducers that contain acetaminophen are ...

  16. Neuropathy in Parkinson’s Disease Patients with Intestinal Levodopa Infusion versus Oral Drugs

    PubMed Central

    Jugel, Constanze; Ehlen, Felicitas; Taskin, Birol; Marzinzik, Frank; Müller, Thomas; Klostermann, Fabian

    2013-01-01

    Background Severe polyneuropathy has been observed in a number of patients treated for Parkinson’s disease with Levodopa/Carbidopa intestinal gel infusion. This may reflect a rare individual complication or a systematic side effect. Objective To investigate whether peripheral nerve function differed between patients with oral treatment versus Levodopa/Carbidopa intestinal gel infusion. Methods In an observational design, data from median, tibial, and peroneal neurography were prospectively assessed and compared between patients with conventional drug treatment (n?=?15) and with Levodopa/Carbidopa intestinal gel infusion (n?=?15). The groups were matched for age and disease duration. In view of the medical risk profile for polyneuropathy, comorbidity and basic serological parameters were assessed. Results Axonal neuropathy was common in both patient groups. However, although group differences in risk factors for polyneuropathy were not evident, neurographic abnormalities were more severe in the patients treated with Levodopa/Carbidopa intestinal gel infusion than in the orally treated patients. In the group with Levodopa/Carbidopa intestinal gel infusion, the degree of neuropathic change correlated with weight lost since therapy initiation and with the drug dose. In contrast to the axonal abnormalities, conduction velocity was found normal in both groups. Conclusion The results are compatible with the promotion of axonal neuropathy by Levodopa/Carbidopa intestinal gel infusion. This could be due to the intrinsically high levodopa doses associated with the therapy and/or malnutritional effects from intestinal drug application. The results should be corroborated by a larger longitudinal and controlled trial. PMID:23818953

  17. Targeting GTPases in Parkinson’s disease: comparison to the historic path of kinase drug discovery and perspectives

    PubMed Central

    Hong, Lin; Sklar, Larry A.

    2014-01-01

    Neurological diseases have placed heavy social and financial burdens on modern society. As the life expectancy of humans is extended, neurological diseases, such as Parkinson’s disease, have become increasingly common among senior populations. Although the enigmas of Parkinson’s diseases await resolution, more vivid pictures on the cause, progression, and control of the illness are emerging after years of research. On the molecular level, GTPases are implicated in the etiology of Parkinson’s disease and are rational pharmaceutical targets for their control. However, targeting individual GTPases, which belong to a superfamily of proteins containing multiple members with a conserved guanine nucleotide binding domain, has proven to be challenging. In contrast, pharmaceutical pursuit of inhibition of kinases, which constitute another superfamily of proteins with more than 500 members, has been fairly successful. We reviewed the breakthroughs in the history of kinase drug discovery to provide guidance for the GTPase field. We summarize recent progress made in the regulation of GTPase activity. We also present an efficient and cost effective approach to drug screening, which uses multiplex flow cytometry and mixture-based positional scanning libraries. These methods allow simultaneous measurements of both the activity and the selectivity of the screened library. Several GTPase activator clusters were identified which showed selectivity against different GTPase subfamilies. While the clusters need to be further deconvoluted to identify individual active compounds, the method described here and the structure information gathered create a foundation for further developments to build upon. PMID:24926233

  18. Drug-induced dyskinesia in Parkinson's disease. Should success in clinical management be a function of improvement of motor repertoire rather than amplitude of dyskinesia?

    PubMed Central

    2013-01-01

    Background Dyskinesia, a major complication in the treatment of Parkinson's disease (PD), can require prolonged monitoring and complex medical management. Discussion The current paper proposes a new way to view the management of dyskinesia in an integrated fashion. We suggest that dyskinesia be considered as a factor in a signal-to-noise ratio (SNR) equation where the signal is the voluntary movement and the noise is PD symptomatology, including dyskinesia. The goal of clinicians should be to ensure a high SNR in order to maintain or enhance the motor repertoire of patients. To understand why such an approach would be beneficial, we first review mechanisms of dyskinesia, as well as their impact on the quality of life of patients and on the health-care system. Theoretical and practical bases for the SNR approach are then discussed. Summary Clinicians should not only consider the level of motor symptomatology when assessing the efficacy of their treatment strategy, but also breadth of the motor repertoire available to patients. PMID:23514355

  19. Vitiligo, drug induced (image)

    MedlinePLUS

    ... this person's face have resulted from drug-induced vitiligo. Loss of melanin, the primary skin pigment, occasionally ... is the case with this individual. The typical vitiligo lesion is flat (macular) and depigmented, but maintains ...

  20. Levodopa-induced dyskinesias in Parkinson’s disease: emerging treatments

    PubMed Central

    Bargiotas, Panagiotis; Konitsiotis, Spyridon

    2013-01-01

    Parkinson’s disease therapy is still focused on the use of L-3,4-dihydroxyphenylalanine (levodopa or L-dopa) for the symptomatic treatment of the main clinical features of the disease, despite intensive pharmacological research in the last few decades. However, regardless of its effectiveness, the long-term use of levodopa causes, in combination with disease progression, the development of motor complications termed levodopa-induced dyskinesias (LIDs). LIDs are the result of profound modifications in the functional organization of the basal ganglia circuitry, possibly related to the chronic and pulsatile stimulation of striatal dopaminergic receptors by levodopa. Hence, for decades the key feature of a potentially effective agent against LIDs has been its ability to ensure more continuous dopaminergic stimulation in the brain. The growing knowledge regarding the pathophysiology of LIDs and the increasing evidence on involvement of nondopaminergic systems raises the possibility of more promising therapeutic approaches in the future. In the current review, we focus on novel therapies for LIDs in Parkinson’s disease, based mainly on agents that interfere with glutamatergic, serotonergic, adenosine, adrenergic, and cholinergic neurotransmission that are currently in testing or clinical development. PMID:24174877

  1. Drug-induced myopathies.

    PubMed

    Le Quintrec, J S; Le Quintrec, J L

    1991-04-01

    Myopathies are not an unusual complication of drug therapy. The major symptoms in drug-induced myopathies are proximal muscle weakness, increased muscle enzyme levels, electromyographic changes and histological lesions. Some drug-induced myopathies are associated with neuropathy. Drug-induced myopathies can be classified according to the presence or absence of muscular pain and associated neuropathy. Among painless myopathies, we can distinguish myopathies without neuropathy (corticosteroids), myopathies with neuropathy (colchicine, chloroquine and hydroxychloroquine) and myasthenic syndromes (D-penicillamine, antibiotics, beta-blockers). Among painful myopathies, the classification is similar: painful myopathies may or may not be associated with neuropathies. Painful myopathies include polymyositis (D-penicillamine, cimetidine, zidovudine) and other myopathies without polymyositis (clofibrate, statines, cyclosporin). Among the painful neuromyopathies, eosinophilia-myalgia syndrome is a recently described disorder associated with the use of L-tryptophan. Combinations of drugs (for example, a fibrate and a statine or cyclosporin and colchicine) can induce severe myopathies. If such drugs are used together a vigorous surveillance to detect any sign of myopathy is warranted. Instead of classifying drug-induced myopathies according to clinical features, a histological classification can be proposed. Many drugs can induce vacuolar myopathy (colchicine, chloroquine, amiodarone, cyclosporin, drugs causing hypokalaemia and lipid-lowering agents), some others cause a mitochondrial myopathy (zidovudine) or a necrotizing myopathy as seen with vincristine. Overall, several criteria for reporting drug-induced myopathy can be recommended: lack of pre-existent muscular symptoms, a free period between the beginning of the treatment and the appearance of symptoms, lack of another cause accounting for the myopathy, and complete or incomplete resolution after withdrawal of the treatment. Rechallenge of the treatment is not advisable because of the risk of a serious relapse. The exact mechanisms by which drugs cause myopathies are unknown. Some cases may be due to metabolic changes, whereas others may be immune mediated. Nevertheless, the aspect these conditions have in common is the regression of the myopathy with the discontinuation of the drug. PMID:2070426

  2. Drug-induced pulmonary disease

    MedlinePLUS

    ... induced lung disease improves. Anti-inflammatory medicines called steroids are sometimes used to quickly reverse the lung ... you have known drug reactions. Stay away from illegal drugs to prevent many drug-induced lung diseases.

  3. [Drug--induced splenomegaly].

    PubMed

    Petroianu, Andy

    2011-12-01

    The diagnosis of splenomegaly due to drugs is based on a recent history of exposure to a drug before the spleen enlargement. The purpose of this paper is to review studies of the literature on drugs that may induce to splenomegaly. Drugs may provoke the enlargement of spleen by direct effect in splenic cells or as a side effect of disturbances in other organs, mainly liver and haematoimmunologic system. Some drugs provoke severe haemolysis associated with splenomegaly. Another cause of spleen increasing in size is the venous congestion due to liver disturbance with portal vein occlusion. All these drug side effects are usually transitory and splenomegaly disappears when the medication is discontinued. This is a complex problem that must be better studied to be understood in order to prevent its occurrence and to find the best treatment. PMID:22863507

  4. Blood Biomarkers Associated with Cognitive Decline in Early Stage and Drug-Naive Parkinson’s Disease Patients

    PubMed Central

    Santiago, Jose A.; Potashkin, Judith A.

    2015-01-01

    Early diagnosis of Parkinson’s disease (PD) continues to be a major challenge in the field. The lack of a robust biomarker to detect early stage PD patients has considerably slowed the progress toward the development of potential therapeutic agents. We have previously evaluated several RNA biomarkers in whole blood from participants enrolled in two independent clinical studies. In these studies, PD patients were medicated, thus, expression of these biomarkers in de novo patients remains unknown. To this end, we tested ten RNA biomarkers in blood samples from 99 untreated PD patients and 101 HC nested in the cross-sectional Parkinson’s Progression Markers Initiative by quantitative real-time PCR. One biomarker out of ten, COPZ1 trended toward significance (nominal p = 0.009) when adjusting for age, sex, and educational level. Further, COPZ1, EFTUD2 and PTBP1 mRNAs correlated with clinical features in PD patients including the Hoehn and Yahr scale, Movement Disorder Society revision of Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) and Montreal Cognitive Assessment (MoCA) score. Levels of EFTUD2 and PTBP1 were significantly higher in cognitively normal PD patients (PD-CN) compared to cognitively impaired PD patients (PD-MCI). Interestingly, blood glucose levels were significantly higher in PD and PD-MCI patients (? 100 mg/dL, pre-diabetes) compared to HC. Collectively, we report the association of three RNA biomarkers, COPZ1, EFTUD2 and PTBP1 with clinical features including cognitive decline in early drug-naïve PD patients. Further, our results show that drug-naïve PD and PD-MCI patients have glucose levels characteristic of pre-diabetes patients, suggesting that impaired glucose metabolism is an early event in PD. Evaluation of these potential biomarkers in a larger longitudinal study is warranted. PMID:26566043

  5. Drug-induced thrombocytopenic purpura

    PubMed Central

    Sathiasekar, Anisha Cynthia; Deepthi, D. Angeline; Sathia Sekar, G. Suresh

    2015-01-01

    Drug-induced thrombocytopenic purpura is a skin condition result from a low platelet count due to drug-induced anti-platelet antibodies caused by drugs. Drug-induced thrombocytopenic purpura should be suspected when a patient, child or adult, has sudden, severe thrombocytopenia. Drug-induced thrombocytopenic purpura is even more strongly suspected when a patient has repeated episodes of sudden, severe thrombocytopenia PMID:26538982

  6. Protective Effects of Curcumin Against Rotenone and Salsolinol Induced Toxicity: Implications for Parkinson’s Disease

    PubMed Central

    Qualls, Zakiya; Brown, Dwayne; Ramlochansingh, Carlana; Hurley, Laura L.; Tizabi, Yousef

    2013-01-01

    Parkinson’s disease (PD) is a debilitating neurodegenerative disorder that results from the loss of or damage to dopaminergic cells in the substantia nigra. Exposure to either the pesticide rotenone or the endogenous neurotoxin salsolinol has been shown to mimic this dopaminergic cell loss. In this study we first sought to determine whether combination of rotenone and salsolinol would result in an additive or synergistic toxicity. For this purpose we utilized SH-SY5Y cells, a human neuroblastoma cell line that is commonly used to model dopaminergic neurodegeneration. We then tested whether curcumin, a natural plant compound with known health benefits including potential neuroprotective properties, could also protect against rotenone and/or salsolinol induced toxicity. Moreover, since apoptotic mechanism has been implicated in toxicity of these compounds the anti-apoptotic effect of curcumin was also evaluated. Our results indicate a synergistic toxicity of low concentrations of rotenone (1 and 5 uM) and salsolinol (25 and 50 mM) that was associated with apoptosis as determined by cell flow cytometry. There was also an increase in caspase-3 levels. Pretreatment with curcumin (1-10 uM) dose-dependently attenuated rotenone and/or salsolinol induced toxicity and the associated apoptosis. These results suggest that exposure to a combination of rotenone and salsolinol may contribute to the pathology of PD, and that curcumin has a therapeutic potential in this disease. PMID:24122264

  7. Tea and Parkinson's disease: Constituents of tea synergize with antiparkinsonian drugs to provide better therapeutic benefits.

    PubMed

    Dutta, Debashis; Mohanakumar, Kochupurackal P

    2015-10-01

    The major neurodegenerative movement disorder Parkinson's disease (PD) is characterized by rest-tremor, akinesia, rigidity and inability to initiate movements. PD syndromes result from excessive loss of dopamine from the forebrain striatal region, due to dopaminergic neuronal death in the midbrain substantia nigra pars compacta. PD with multifactorial etiology is believed to ideally require a drug or different drugs that act(s) at multiple sites of action for symptomatic relief. Replenishing striatal dopamine by providing L-3,4-dihydroxyphenylalanine (l-DOPA) along with a peripheral aromatic amino acid decarboxylase inhibitor is the mainstay treatment for PD. Such prolonged therapy leads to debilitating effects, often worsening the affection. Interestingly some under-appreciated pharmaceutical compounds, including constituents of plants and nutraceuticals can synergize with l-DOPA to support mitochondrial function, suppress inflammation, ease oxidative stress, and in turn slow the progression of the disease. Tea and other dietary polyphenols are shown to provide relief to the disease syndromes and provide neuroprotection in cellular and animal models of PD. At par with these findings, random epidemiological studies in certain populations of the world support habitual tea drinking to reduce the risk of PD. The present review addresses how these tea constituents work at the cellular level to render effective control of the disease syndromes and suggests that tea synergizes with established drugs, such as l-DOPA to maximize their effects at certain levels in the disease phenotype-inducing canonical pathways of PD. PMID:26271432

  8. [Drug-induced dyspepsia].

    PubMed

    Gross, Manfred; Labenz, Joachim

    2015-05-01

    Gastrointestinal symptoms are among the most common side effects of drugs. There is a broad spectrum of symptoms. Patients often report upper abdominal pain, an early sense of satiety, epigastric discomfort or pain in the upper abdomen or behind the breastbone, flatulence, diarrhoea or constipation. Some of these symptoms are attributed to the stomach or upper abdomen by the patient and/or the physician. "Stomach pain", pain in the epigastric region, occurs in most cases in combination with other symptoms such as a feeling of pressure in the upper abdomen or bloating, early satiety, nausea or vomiting--a combination called dyspepsia. Given the high frequency of these symptoms in the general population and the large number of medications many patients are taking, it can be very difficult in a given patient to differentiate between drug-induced side effects and spontaneously occurring symptoms. PMID:25970411

  9. Sodium salicylate protects against rotenone-induced parkinsonism in rats.

    PubMed

    Madathil, Sindhu K; Karuppagounder, Saravanan S; Mohanakumar, Kochupurackal P

    2013-08-01

    Complex I deficiency culminating in oxidative stress is proposed as one of the upstream mechanisms of nigral neuronal death in Parkinson's disease. We investigated whether sodium salicylate, an active metabolite of aspirin, could afford protection against rotenone-induced oxidative stress, neuronal degeneration, and behavioral dysfunction in rats, because it has the potential to accept a molecule each of hydroxyl radical (•OH) at the third or fifth position of its benzyl ring. Rotenone caused dose-dependent increase in •OH in isolated mitochondria from the cerebral cortex and time- (24-48 h) and dose-dependent (0.1-100 µM) increase in the substantia nigra and the striatum, ipsilateral to the side of rotenone infusion. Administration of sodium salicylate at 12-h intervals for 4 days showed dose-dependent (50-100 mg/kg, i.p) reductions in the levels of •OH in the nigra on the fifth day. These animals showed significant attenuation in rotenone-induced loss in striatal dopamine levels, number of nigral dopaminergic neurons, reduced and oxidized glutathione levels, and complex I activity loss, but superoxide dismutase activity was increased further. Amphetamine- or apomorphine-induced ipsilateral rotations in rotenone-treated rats were significantly reduced in rats treated with sodium salicylate. Our results indicate a direct role of •OH in mediating nigral neuronal death by rotenone and confirm the neuroprotective potential of salicylate in a rodent model of parkinsonism. PMID:23447126

  10. Drug-induced renal disorders

    PubMed Central

    Ghane Shahrbaf, Fatemeh; Assadi, Farahnak

    2015-01-01

    Drug-induced nephrotoxicity are more common among infants and young children and in certain clinical situations such as underlying renal dysfunction and cardiovascular disease. Drugs can cause acute renal injury, intrarenal obstruction, interstitial nephritis, nephrotic syndrome, and acid-base and fluid electrolytes disorders. Certain drugs can cause alteration in intraglomerular hemodynamics, inflammatory changes in renal tubular cells, leading to acute kidney injury (AKI), tubulointerstitial disease and renal scarring. Drug-induced nephrotoxicity tends to occur more frequently in patients with intravascular volume depletion, diabetes, congestive heart failure, chronic kidney disease, and sepsis. Therefore, early detection of drugs adverse effects is important to prevent progression to end-stage renal disease. Preventive measures requires knowledge of mechanisms of drug-induced nephrotoxicity, understanding patients and drug-related risk factors coupled with therapeutic intervention by correcting risk factors, assessing baseline renal function before initiation of therapy, adjusting the drug dosage and avoiding use of nephrotoxic drug combinations PMID:26468475

  11. Drug-induced hepatotoxicity: 2005.

    PubMed

    Maddrey, Willis C

    2005-04-01

    The removal from the marketplace of several widely prescribed drugs due to hepatotoxicity has attracted considerable attention. Now under extensive review are means by which we can better identify hepatic risk prior to federal approval. Assessment of risk-to-benefit ratios regarding a novel agent with hepatotoxicity issues (especially one for a life-threatening condition) requires considerable judgment and education on the part of prescribers and patients. The spectrum of drug-induced liver injury is broad with simulation of almost all unknown liver disorders. Drug-induced liver injuries often have a somewhat characteristic signature, as regards type of injury (hepatocellular vs cholestatic) and time of onset. The diagnosis of drug-induced liver injury is often one of exclusion with initial suspicion based on circumstantial evidence. Factors affecting susceptibility to drug-induced injury include age, sex, concomitant use of other drugs, and genetic polymorphism in metabolic pathways involved in activation or disposition of therapeutic drugs. Drug-drug interactions present particular problems in patients, often elderly, who are receiving several drugs simultaneously. Mechanisms of drug-induced liver injury are many and varied. With many drugs, intermediary products produced during metabolism are highly reactive and toxic. In these situations, the balance between the rate of production of the metabolite and the effectiveness of the drug may determine whether or not hepatic injury occurs. PMID:15758665

  12. Protective effects of PEP-1-Catalase on stress-induced cellular toxicity and MPTP-induced Parkinson’s disease

    PubMed Central

    Eom, Seon Ae; Kim, Dae Won; Shin, Min Jea; Ahn, Eun Hee; Chung, Seok Young; Sohn, Eun Jeong; Jo, Hyo Sang; Jeon, Su-Jeong; Kim, Duk-Soo; Kwon, Hyeok Yil; Cho, Sung-Woo; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2015-01-01

    Parkinson’s disease (PD) is a neurodegenerative disability caused by a decrease of dopaminergic neurons in the substantia nigra (SN). Although the etiology of PD is not clear, oxidative stress is believed to lead to PD. Catalase is antioxidant enzyme which plays an active role in cells as a reactive oxygen species (ROS) scavenger. Thus, we investigated whether PEP-1-Catalase protects against 1-methyl-4-phenylpyridinium (MPP+) induced SH-SY5Y neuronal cell death and in a 1-methyl-4-phenyl-1,2,3,6-trtrahydropyridine (MPTP) induced PD animal model. PEP-1-Catalase transduced into SH-SY5Y cells significantly protecting them against MPP+-induced death by decreasing ROS and regulating cellular survival signals including Akt, Bax, Bcl-2, and p38. Immunohistochemical analysis showed that transduced PEP-1-Catalase markedly protected against neuronal cell death in the SN in the PD animal model. Our results indicate that PEP-1-Catalase may have potential as a therapeutic agent for PD and other oxidative stress related diseases. [BMB Reports 2015; 48(7): 395-400] PMID:25322954

  13. Application of Several Multimedia Approaches to the Teaching of CNS Pharmacology: Parkinson's Disease and Antiparkinsonism Drugs.

    ERIC Educational Resources Information Center

    Faulkner, Thomas P.; Sprague, Jon E.

    1996-01-01

    A multimedia approach to drug therapy for Parkinson's Disease, part of a pharmacy school central nervous system course, integrated use of lecture, textbook, video/graphic technology, the movie "Awakenings," Internet and World Wide Web, and an interactive animated movie. A followup questionnaire found generally positive student attitudes toward the…

  14. Nobiletin treatment improves motor and cognitive deficits seen in MPTP-induced Parkinson model mice.

    PubMed

    Yabuki, Y; Ohizumi, Y; Yokosuka, A; Mimaki, Y; Fukunaga, K

    2014-02-14

    Nobiletin, a polymethoxylated flavonoid found in citrus fruit peel, reportedly improves memory impairment in rodent models. Here we report its effect on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor and cognitive deficits. Nobiletin administration (50mg/kg i.p.) for 2 consecutive weeks improved motor deficits seen in MPTP-induced Parkinson model mice by 2weeks, an effect that continued until 2weeks after drug withdrawal. Drug treatment promoted similar rescue of MPTP-induced cognitive impairment at equivalent time points. Nonetheless, nobiletin treatment did not block loss of dopaminergic neurons seen in the MPTP-treated mouse midbrain, nor did it rescue decreased tyrosine hydroxylase (TH) protein levels seen in the striatum or hippocampal CA1 region of these mice. Interestingly, nobiletin administration (50mg/kg i.p.) rescued reduced levels of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation and phosphorylation at Thr-34 of dopamine- and cAMP-regulated phosphoprotein-32 (DARPP-32) in striatum and hippocampal CA1 to levels seen in sham-operated mice. Likewise, CaMKII- and cAMP kinase-dependent TH phosphorylation was significantly restored by nobiletin treatment. MPTP-induced reduction of dopamine contents in the striatum and hippocampal CA1 region was improved by nobiletin administration (50mg/kg i.p.). Acute intraperitoneal administration of nobiletin also enhanced dopamine release in striatum and hippocampal CA1, an effect partially inhibited by treatment with nifedipine (a L-type Ca(2+) channel inhibitor) or NNC 55-0396 (a T-type Ca(2+) channel inhibitor) and completely abolished by combined treatment with both. Overall, our study describes a novel nobiletin activity in brain and suggests that nobiletin rescues motor and cognitive dysfunction in MPTP-induced Parkinson model mice, in part by enhancing dopamine release. PMID:24316474

  15. Quantitative activation-induced manganese-enhanced MRI reveals severity of Parkinson’s disease in mice

    PubMed Central

    Kikuta, Satomi; Nakamura, Yukiyo; Yamamura, Yukio; Tamura, Atsushi; Homma, Noriyasu; Yanagawa, Yuchio; Tamura, Hajime; Kasahara, Jiro; Osanai, Makoto

    2015-01-01

    We demonstrate that activation-induced manganese-enhanced magnetic resonance imaging with quantitative determination of the longitudinal relaxation time (qAIM-MRI) reveals the severity of Parkinson’s disease (PD) in mice. We first show that manganese ion-accumulation depends on neuronal activity. A highly active region was then observed by qAIM-MRI in the caudate-putamen in PD-model mice that was significantly correlated to the severity of PD, suggesting its involvement in the expression of PD symptoms. PMID:26255701

  16. Effects of treadmill exercise on hippocampal neurogenesis in an MPTP /probenecid-induced Parkinson’s disease mouse model

    PubMed Central

    Sung, Yun-Hee

    2015-01-01

    [Purpose] This study aimed to investigate the effect of treadmill exercise on non-motor function, specifically long-term memory, in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-induced Parkinson’s disease mouse model. [Methods] A mouse model of Parkinson’s disease was developed by injecting 20?mg/kg of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 250?mg/kg of probenecid (P). We divided in into four groups: probenecid group, probenecid-exercise group, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid group, and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-exercise group. Mice in the exercise groups ran on treadmill for 30?min/day, five times per week for 4 weeks. [Results] Latency in the passive avoidance test increased in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-exercise group compared with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid group. In addition, the number of 5-bromo-2-deoxyuridine/NeuN-positive cells and 5-bromo-2-deoxyuridine/doublecortin-positive cells in the hippocampal dentate gyrus was higher in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-exercise group than that in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid group. These changes were associated with the expression of brain-derived neurotrophic factor in the hippocampus. [Conclusion] Our results suggest that treadmill exercise may improve long-term memory in Parkinson’s disease mice by facilitating neurogenesis via increased expression of neurotrophic factors. PMID:26644675

  17. Rotigotine is safe and efficacious in Atypical Parkinsonism Syndromes induced by both ?-synucleinopathy and tauopathy

    PubMed Central

    Moretti, Davide Vito; Binetti, Giuliano; Zanetti, Orazio; Frisoni, Giovanni Battista

    2014-01-01

    Transdermal rotigotine (RTG) is a non-ergot dopamine agonist (D3>D2>D1), and is indicated for use in early and advanced Parkinson’s disease (PD). RTG patch has many potential advantages due to the immediacy of onset of the therapeutic effect. Of note, intestinal absorption is not necessary and drug delivery is constant, thereby avoiding drug peaks and helping patient compliance. In turn, transdermal RTG seems a suitable candidate in the treatment of atypical Parkinsonian disorders (APS). Fifty-one subjects with a diagnosis of APS were treated with transdermal RTG. The diagnoses were: Parkinson’s disease with dementia, multiple system atrophy Parkinsonian type, multiple system atrophy cerebellar type, progressive supranuclear palsy, corticobasal degeneration, Lewy body dementia, and frontotemporal dementia with Parkinsonism. Patients were evaluated by the Unified Parkinson’s Disease Rating Scale (UPDRS; part III), Neuropsychiatric Inventory (NPI), and mini–mental state examination (MMSE) and all adverse events (AEs) were recorded. Patients treated with RTG showed an overall decrease of UPDRS III scores without increasing behavioral disturbances. Main AEs were hypotension, nausea, vomiting, drowsiness, tachycardia, and dystonia. On the whole, 15 patients were affected by AEs and seven patients suspended RTG treatment due to AEs. The results show that transdermal RTG is effective with a good tolerability profile. RTG patch could be a good therapeutic tool in patients with APS. PMID:24940065

  18. Tenofovir induced lichenoid drug eruption

    PubMed Central

    Gupta, Mrinal; Gupta, Heena; Gupta, Anish

    2015-01-01

    Cutaneous adverse reactions are a common complication of anti-retroviral therapy. Tenofovir is a newer anti-retroviral drug belonging to the nucleotide reverse transcriptase inhibitor group. Systemic adverse effects like nausea, vomiting, diarrhea, hepatotoxicity and renal toxicity are common with tenofovir but cutaneous adverse effects are rare. Lichenoid drug eruptions are a common adverse effect seen with a large variety of drugs including antimalarials, antihypertensives, nonsteroidal anti-inflammatory drugs and diuretics. Lichenoid drug eruption is a rare cutaneous adverse effect of tenofovir with only a single case reported till date. Here, we report a case of tenofovir induced lichenoid drug eruption in a 54-year-old human immunodeficiency virus affected male who presented with generalized lichenoid eruption after 6 weeks of initiation of tenofovir and complete clearance on cessation of the drug. PMID:26229762

  19. PGE2 EP1 Receptor Deletion Attenuates 6-OHDA-Induced Parkinsonism in Mice: Old Switch, New Target

    PubMed Central

    Ahmad, Abdullah Shafique; Maruyama, Takayuki; Narumiya, Shuh; Doré, Sylvain

    2015-01-01

    Recent experimental data on Parkinson's disease (PD) predicts the critical role of inflammation in the progression of neurodegeneration and the promising preventive effects of nonsteroidal anti-inflammatory drugs (NSAIDs). Previous studies suggest that NSAIDs minimize cyclooxygenase-2 (COX-2) activity and thereby attenuate free radical generation. Prostaglandin E2 (PGE2) is an important product of COX activity and plays an important role in various physiologic and pathophysiologic conditions through its EP receptors (EP1–EP4). Part of the toxic effect of PGE2 in the central nervous system has been reported to be through the EP1 receptor; however, the effect of the EP1 receptor in PD remains elusive. Therefore, in our pursuit to determine if deletion of the PGE2 EP1 receptor will attenuate 6-hydroxy dopamine (6-OHDA)-induced Parkinsonism, mice were given a unilateral 6-OHDA injection into the medial forebrain bundle. We found that apomorphine-induced contralateral rotations were significantly attenuated in the 6-OHDA-lesioned EP1?/? mice compared with the 6-OHDA-lesioned WT mice. Quantitative analysis showed significant protection of dopaminergic neurons in the substantia nigra pars compacta of the 6-OHDA-lesioned EP1?/? mice. To the best of our knowledge, this is the first in vivo study to implicate the PGE2 EP1 receptor in toxin-induced Parkinsonism. We propose the PGE2 EP1 receptor as a new target to better understand some of the mechanisms leading to PD. PMID:23385625

  20. Drug-induced diarrhea

    MedlinePLUS

    Diarrhea associated with medications ... Nearly all medicines may cause diarrhea as a side effect. The drugs listed below, however, are more likely to cause diarrhea. Laxatives are meant to cause diarrhea. ...

  1. Duration of drug action of dopamine D2 agonists in mice with 6-hydroxydopamine-induced lesions.

    PubMed

    Tsuchioka, Akihiro; Oana, Fumiki; Suzuki, Takayuki; Yamauchi, Yuji; Ijiro, Tomoyuki; Kaidoh, Kouichi; Hiratochi, Masahiro

    2015-12-16

    Although 6-hydroxydopamine-induced (6-OHDA-induced) rats are a well-known Parkinson's disease model, the effects of dopamine D2 agonists in mice with 6-OHDA-induced lesions are not completely understood. We produced mice with 6-OHDA-induced lesions and measured their total locomotion counts following administration of several dopamine D2 agonists (pramipexole, ropinirole, cabergoline, rotigotine, apomorphine, talipexole, and quinelorane). Cabergoline showed the longest duration of drug action, which was in agreement with its long-lived anti-Parkinson effects in rats and humans. In contrast, pramipexole and ropinirole had notably short durations of drug action. We demonstrated that mice with 6-OHDA-induced lesions accompanied with significant lesions in the striatum may be reasonable models to predict the action duration of anti-Parkinson drug candidates in humans. PMID:26559726

  2. Drug induced rhabdomyolysis

    PubMed Central

    Hohenegger, Martin

    2012-01-01

    Rhabdomyolysis is a clinical condition of potential life threatening destruction of skeletal muscle caused by diverse mechanisms including drugs and toxins. Given the fact that structurally not related compounds cause an identical phenotype pinpoints to common targets or pathways, responsible for executing rhabdomyolysis. A drop in myoplasmic ATP paralleled with sustained elevations in cytosolic Ca2+ concentration represents a common signature of rhabdomyolysis. Interestingly, cardiac tissue is hardly affected or only secondary, as a consequence of imbalance in electrolytes or acid–base equilibrium. This dogma is now impaired by compounds, which show up with combined toxicity in heart and skeletal muscle. In this review, cases of rhabdomyolysis with novel recently approved drugs will be explored for new target mechanisms in the light of previously described pathomechanisms. PMID:22560920

  3. Mirtazapine has a therapeutic potency in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice model of Parkinson’s disease

    PubMed Central

    2014-01-01

    Background Mirtazapine, a noradrenergic and specific serotonergic antidepressant (NaSSA), shows multiple pharmacological actions such as inhibiting presynaptic ?2 noradrenaline receptor (NAR) and selectively activating 5-hydroxytriptamine (5-HT) 1A receptor (5-HT1AR). Mirtazapine was also reported to increase dopamine release in the cortical neurons with 5-HT dependent manner. To examine whether mirtazapine has a therapeutic potency in Parkinson’s disease (PD), we examined this compound in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice model of PD. Results Male C57BL/6 mice were subjected to MPTP treatment to establish a PD model. Mirtazapine was administered once a day for 3 days after MPTP treatment. MPTP-induced motor dysfunction, assessed by beam-walking and rota-rod tests, was significantly improved by administration of mirtazapine. Biochemical examinations by high performance liquid chromatography and western blot analysis suggested mirtazapine facilitated utilization of dopamine by increasing turnover and protein expression of transporters, without affecting on neurodegenerative process by MPTP. These therapeutic effects of mirtazapine were reduced by administration of WAY100635, an inhibitor for 5HT1AR, or of clonidine, a selective agonist for ?2-NAR, or of prazosin, an inhibitor for ?1-NAR, respectively. Conclusion Our results showed mirtazapine had a therapeutic potency against PD in a mouse model. Because PD patients sometimes show depression together, it will be a useful drug for a future PD treatment. PMID:24965042

  4. Human alkaloid biosynthesis : chemical inducers of Parkinson's disease?

    E-print Network

    Hatzios, Stavroula K. (Stavroula-Artemis K.)

    2005-01-01

    The occurrence of certain alkaloids in the human brain appears to be associated with the onset of Parkinson's disease (PD). Recently, a human protein bearing homology to an alkaloid synthase in plants was identified. This ...

  5. Drug Induced Interstitial Lung Disease

    PubMed Central

    Schwaiblmair, Martin; Behr, Werner; Haeckel, Thomas; Märkl, Bruno; Foerg, Wolfgang; Berghaus, Thomas

    2012-01-01

    With an increasing number of therapeutic drugs, the list of drugs that is responsible for severe pulmonary disease also grows. Many drugs have been associated with pulmonary complications of various types, including interstitial inflammation and fibrosis, bronchospasm, pulmonary edema, and pleural effusions. Drug-induced interstitial lung disease (DILD) can be caused by chemotherapeutic agents, antibiotics, antiarrhythmic drugs, and immunosuppressive agents. There are no distinct physiologic, radiographic or pathologic patterns of DILD, and the diagnosis is usually made when a patient with interstitial lung disease (ILD) is exposed to a medication known to result in lung disease. Other causes of ILD must be excluded. Treatment is avoidance of further exposure and systemic corticosteroids in patients with progressive or disabling disease. PMID:22896776

  6. Targeting ?-arrestin2 in the treatment of l-DOPA–induced dyskinesia in Parkinson’s disease

    PubMed Central

    Urs, Nikhil M.; Bido, Simone; Peterson, Sean M.; Daigle, Tanya L.; Bass, Caroline E.; Gainetdinov, Raul R.; Bezard, Erwan; Caron, Marc G.

    2015-01-01

    Parkinson’s disease (PD) is characterized by severe locomotor deficits and is commonly treated with the dopamine (DA) precursor l-3,4-dihydroxyphenylalanine (l-DOPA), but its prolonged use causes dyskinesias referred to as l-DOPA–induced dyskinesias (LIDs). Recent studies in animal models of PD have suggested that dyskinesias are associated with the overactivation of G protein-mediated signaling through DA receptors. ?-Arrestins desensitize G protein signaling at DA receptors (D1R and D2R) in addition to activating their own G protein-independent signaling events, which have been shown to mediate locomotion. Therefore, targeting ?-arrestins in PD l-DOPA therapy might prove to be a desirable approach. Here we show in a bilateral DA-depletion mouse model of Parkinson’s symptoms that genetic deletion of ?-arrestin2 significantly limits the beneficial locomotor effects while markedly enhancing the dyskinesia-like effects of acute or chronic l-DOPA treatment. Viral rescue or overexpression of ?-arrestin2 in knockout or control mice either reverses or protects against LIDs and its key biochemical markers. In other more conventional animal models of DA neuron loss and PD, such as 6-hydroxydopamine–treated mice or rats and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine–treated nonhuman primates, ?-arrestin2 overexpression significantly reduced dyskinesias while maintaining the therapeutic effect of l-DOPA. Considerable efforts are being spent in the pharmaceutical industry to identify therapeutic approaches to block LIDs in patients with PD. Our results point to a potential therapeutic approach, whereby development of either a genetic or pharmacological intervention to enhance ?-arrestin2- or limit G protein-dependent D1/D2R signaling could represent a more mechanistically informed strategy. PMID:25918399

  7. Molecular Mechanisms of Pesticide-induced Neurotoxicity: Relevance to Parkinson’s Disease

    PubMed Central

    Franco, Rodrigo; Li, Sumin; Rodriguez-Rocha, Humberto; Burns, Michaela; Panayiotidis, Mihalis I.

    2010-01-01

    Pesticides are widely used in agricultural and other settings, resulting in continued human exposure. Pesticide toxicity has been clearly demonstrated to alter a variety of neurological functions. Particularly, there is strong evidence suggesting that pesticide exposure predisposes to neurodegenerative diseases. Epidemiological data has suggested a relationship between pesticide exposure and brain neurodegeneration. However, an increasing debate has aroused regarding this issue. Paraquat is a highly toxic quaternary nitrogen herbicide which has been largely studied as a model for Parkinson’s disease providing valuable insight into the possible mechanisms involved in the toxic effects of pesticides and their role in the progression of neurodegenerative diseases. In this work, we review the molecular mechanisms involved in the neurotoxic actions of pesticides, with a particular emphasis on the mechanisms associated with the induction neuronal cell death by paraquat as a model for Parkinsonian neurodegeneration. PMID:20542017

  8. Photobiomodulation Suppresses Alpha-Synuclein-Induced Toxicity in an AAV-Based Rat Genetic Model of Parkinson’s Disease

    PubMed Central

    Oueslati, Abid; Lovisa, Blaise; Perrin, John; Wagnières, Georges; van den Bergh, Hubert; Tardy, Yanik; Lashuel, Hilal A.

    2015-01-01

    Converging lines of evidence indicate that near-infrared light treatment, also known as photobiomodulation (PBM), may exert beneficial effects and protect against cellular toxicity and degeneration in several animal models of human pathologies, including neurodegenerative disorders. In the present study, we report that chronic PMB treatment mitigates dopaminergic loss induced by unilateral overexpression of human ?-synuclein (?-syn) in the substantia nigra of an AAV-based rat genetic model of Parkinson’s disease (PD). In this model, daily exposure of both sides of the rat’s head to 808-nm near-infrared light for 28 consecutive days alleviated ?-syn-induced motor impairment, as assessed using the cylinder test. This treatment also significantly reduced dopaminergic neuronal loss in the injected substantia nigra and preserved dopaminergic fibers in the ipsilateral striatum. These beneficial effects were sustained for at least 6 weeks after discontinuing the treatment. Together, our data point to PBM as a possible therapeutic strategy for the treatment of PD and other related synucleinopathies. PMID:26484876

  9. Blood Biomarkers Associated with Cognitive Decline in Early Stage and Drug-Naive Parkinson's Disease Patients.

    PubMed

    Santiago, Jose A; Potashkin, Judith A

    2015-01-01

    Early diagnosis of Parkinson's disease (PD) continues to be a major challenge in the field. The lack of a robust biomarker to detect early stage PD patients has considerably slowed the progress toward the development of potential therapeutic agents. We have previously evaluated several RNA biomarkers in whole blood from participants enrolled in two independent clinical studies. In these studies, PD patients were medicated, thus, expression of these biomarkers in de novo patients remains unknown. To this end, we tested ten RNA biomarkers in blood samples from 99 untreated PD patients and 101 HC nested in the cross-sectional Parkinson's Progression Markers Initiative by quantitative real-time PCR. One biomarker out of ten, COPZ1 trended toward significance (nominal p = 0.009) when adjusting for age, sex, and educational level. Further, COPZ1, EFTUD2 and PTBP1 mRNAs correlated with clinical features in PD patients including the Hoehn and Yahr scale, Movement Disorder Society revision of Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and Montreal Cognitive Assessment (MoCA) score. Levels of EFTUD2 and PTBP1 were significantly higher in cognitively normal PD patients (PD-CN) compared to cognitively impaired PD patients (PD-MCI). Interestingly, blood glucose levels were significantly higher in PD and PD-MCI patients (? 100 mg/dL, pre-diabetes) compared to HC. Collectively, we report the association of three RNA biomarkers, COPZ1, EFTUD2 and PTBP1 with clinical features including cognitive decline in early drug-naïve PD patients. Further, our results show that drug-naïve PD and PD-MCI patients have glucose levels characteristic of pre-diabetes patients, suggesting that impaired glucose metabolism is an early event in PD. Evaluation of these potential biomarkers in a larger longitudinal study is warranted. PMID:26566043

  10. Melatonin levels in Parkinson's disease: drug therapy versus electrical stimulation of the internal globus pallidus.

    PubMed

    Catalá, M D; Cañete-Nicolás, C; Iradi, A; Tarazona, P J; Tormos, J M; Pascual-Leone, A

    1997-01-01

    The objective of our work was to measure plasma melatonin levels in patients with Parkinson's Disease (PD) following electrical stimulation of the internal globus pallidus (GPi), and to compare these levels with groups of PD patients under drug therapy and healthy controls. The levels of melatonin were measured twice daily at 1000 and 1200. The GPi stimulation at 130 Hz lowered melatonin levels, while no changes were observed in the absence of stimulation. The melatonin levels from healthy subjects were lower than those observed in PD patients. The melatonin levels from PD patients under drug therapy were also measured during the night (2000-2400-0400) and at 0800 in order to observe their circadian changes. The Internal Globus Pallidus (GPi) stimulation was effective in lowering the melatonin levels during the day and, therefore returned these levels to those observed in normal subjects. PMID:9315456

  11. Drug-induced esophageal strictures.

    PubMed Central

    Bonavina, L; DeMeester, T R; McChesney, L; Schwizer, W; Albertucci, M; Bailey, R T

    1987-01-01

    A retrospective study of 55 patients with a benign esophageal stricture showed that in 11 patients (20%) the cause was a drug-induced lesion due to potassium chloride (3), tetracyclines (3), aspirin (2), vitamin C (1), phenytoin (1), and quinidine (1). Five of the 11 patients would have been diagnosed as having a reflux etiology of their stricture if 24-hour esophageal pH monitoring was not performed. Six patients responded to dilatation and five patients required resection or bypass. A prospective study of 18 asymptomatic volunteers showed a high incidence of esophageal lodgment of a radiolabeled medicinal capsule, with subsequent dissolution and release of the isotope. This occurred most frequently in elderly subjects and was reduced by increasing the volume of water chaser. The sites of lodgment correspond to the location of the observed strictures in the patient population. An in vitro study showed that, when the causative drugs were mixed with saliva, dissolution occurred within 60 minutes and was associated with significant changes in pH. These investigations show that drug-induced esophageal strictures are more common than previously appreciated, and can be confused with a reflux etiology. Diagnosis is suggested by a history of drug ingestion, location of the stricture, and a normal esophageal acid exposure on 24-hour pH monitoring. The severity of the esophageal injury is variable and requires dilatation to resection for therapy. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:3606243

  12. Ellagic acid improves hyperalgesia and cognitive deficiency in 6-hydroxidopamine induced rat model of Parkinson’s disease

    PubMed Central

    Dolatshahi, Mojtaba; Farbood, Yaghoob; Sarkaki, Alireza; Mansouri, Seyed Mohammad Taqhi; Khodadadi, Ali

    2015-01-01

    Objective(s): Parkinson’s disease (PD) is known for motor impairments. But often, there are non-motor symptoms such as cognitive deficiency and pain misperception, owing to possible role of nigrostriatal pathway. Antioxidants have protective effect on free radical-induced neuronal damage in PD. To further address, we examined the effects of ellagic acid (EA) in a rat model of PD induced by 6-hydroxidopamine (6-OHDA). Materials and Methods: Right medial forebrain bundle (MFB) was lesioned by injecting 6-OHDA (16 µg/2 µl), in PD–animals. Sham operated animals received vehicle instead of 6-OHDA. PD was approved by apomorphine-induced contralateral rotation. EA (50 mg/kg/2 ml, PO, for 10 days) was administered to PD-EA group. Some PD-animals received pramipexole (PPX; 2 mg/kg/2 ml, PO) as a positive control group. Analgesia was measured by tail-flick and hot-plate tests. Passive avoidance task was measured by shuttle box apparatus to record the initial and step-through latency. Spatial cognition task was evaluated by Morris water maze test, measuring the escape latency time, path length, swimming speed and time spent in target quadrant. Results: MFB-lesioned rats showed hyperalgesic responses to the stimulus in tail-flick and hot-plate tests. Also they showed memory and learning deficit in cognitive tests. These effects reversed by EA treatment. Conclusion: 6-OHDA can induce oxidative stress and can disrupt the neural mechanisms underlying proper integration of painful stimuli and cognitive processes in MFB-lesioned rats. Consequently, nigrostriatal pathway can play possible role in nociception and cognition. EA, a natural antioxidant, has neuroprotective effect on this pathway and can ameliorate this defect and be considered in PD management. PMID:25810874

  13. Neurological morphofunctional differentiation induced by REAC technology in PC12. A neuro protective model for Parkinson’s disease

    PubMed Central

    Maioli, Margherita; Rinaldi, Salvatore; Migheli, Rossana; Pigliaru, Gianfranco; Rocchitta, Gaia; Santaniello, Sara; Basoli, Valentina; Castagna, Alessandro; Fontani, Vania; Ventura, Carlo; Serra, Pier Andrea

    2015-01-01

    Research for the use of physical means, in order to induce cell differentiation for new therapeutic strategies, is one of the most interesting challenges in the field of regenerative medicine, and then in the treatment of neurodegenerative diseases, Parkinson’s disease (PD) included. The aim of this work is to verify the effect of the radio electric asymmetric conveyer (REAC) technology on the PC12 rat adrenal pheochromocytoma cell line, as they display metabolic features of PD. PC12 cells were cultured with a REAC regenerative tissue optimization treatment (TO-RGN) for a period ranging between 24 and 192?hours. Gene expression analysis of specific neurogenic genes, as neurogenin-1, beta3-tubulin and Nerve growth factor, together with the immunostaining analysis of the specific neuronal protein beta3-tubulin and tyrosine hydroxylase, shows that the number of cells committed toward the neurogenic phenotype was significantly higher in REAC treated cultures, as compared to control untreated cells. Moreover, MTT and Trypan blue proliferation assays highlighted that cell proliferation was significantly reduced in REAC TO-RGN treated cells. These results open new perspectives in neurodegenerative diseases treatment, particularly in PD. Further studies will be needed to better address the therapeutic potential of the REAC technology. PMID:25976344

  14. Motivational Modulation of Self-Initiated and Externally Triggered Movement Speed Induced by Threat of Shock: Experimental Evidence for Paradoxical Kinesis in Parkinson’s Disease

    PubMed Central

    McDonald, Louise M.; Griffin, Harry J.; Angeli, Aikaterini; Torkamani, Mariam; Georgiev, Dejan; Jahanshahi, Marjan

    2015-01-01

    Background Paradoxical kinesis has been observed in bradykinetic people with Parkinson’s disease. Paradoxical kinesis occurs in situations where an individual is strongly motivated or influenced by relevant external cues. Our aim was to induce paradoxical kinesis in the laboratory. We tested whether the motivation of avoiding a mild electric shock was sufficient to induce paradoxical kinesis in externally-triggered and self-initiated conditions in people with Parkinson’s disease tested on medication and in age-matched controls. Methods Participants completed a shock avoidance behavioural paradigm in which half of the trials could result in a mild electric shock if the participant did not move fast enough. Half of the trials of each type were self-initiated and half were externally-triggered. The criterion for avoiding shock was a maximum movement time, adjusted according to each participant’s performance on previous trials using a staircase tracking procedure. Results On trials with threat of shock, both patients with Parkinson’s disease and controls had faster movement times compared to no potential shock trials, in both self-initiated and externally-triggered conditions. The magnitude of improvement of movement time from no potential shock to potential shock trials was positively correlated with anxiety ratings. Conclusions When motivated to avoid mild electric shock, patients with Parkinson’s disease, similar to healthy controls, showed significant speeding of movement execution. This was observed in both self-initiated and externally-triggered versions of the task. Nevertheless, in the ET condition the improvement of reaction times induced by motivation to avoid shocks was greater for the PD patients than controls, highlighting the value of external cues for movement initiation in PD patients. The magnitude of improvement from the no potential shock to the potential shock trials was associated with the threat-induced anxiety. This demonstration of paradoxical kinesis in the laboratory under both self-initiated and externally-triggered conditions has implications for motivational and attentional enhancement of movement speed in Parkinson’s disease. PMID:26284366

  15. Drug-induced status epilepticus.

    PubMed

    Cock, Hannah R

    2015-08-01

    Drug-induced status epilepticus (SE) is a relatively uncommon phenomenon, probably accounting for less than 5% of all SE cases, although limitations in case ascertainment and establishing causation substantially weaken epidemiological estimates. Some antiepileptic drugs, particularly those with sodium channel or GABA(?-aminobutyric acid)-ergic properties, frequently exacerbate seizures and may lead to SE if used inadvertently in generalized epilepsies or less frequently in other epilepsies. Tiagabine seems to have a particular propensity for triggering nonconvulsive SE sometimes in patients with no prior history of seizures. In therapeutic practice, SE is most commonly seen in association with antibiotics (cephalosporins, quinolones, and some others) and immunotherapies/chemotherapies, the latter often in the context of a reversible encephalopathy syndrome. Status epilepticus following accidental or intentional overdoses, particularly of antidepressants or other psychotropic medications, has also featured prominently in the literature: whilst there are sometimes fatal consequences, this is more commonly because of cardiorespiratory or metabolic complications than as a result of seizure activity. A high index of suspicion is required in identifying those at risk and in recognizing potential clues from the presentation, but even with a careful analysis of patient and drug factors, establishing causation can be difficult. In addition to eliminating the potential trigger, management should be as for SE in any other circumstances, with the exception that phenobarbitone is recommended as a second-line treatment for suspected toxicity-related SE where the risk of cardiovascular complications is higher anyways and may be exacerbated by phenytoin. There are also specific recommendations/antidotes in some situations. The outcome of drug-induced status epilepticus is mostly good when promptly identified and treated, though less so in the context of overdoses. This article is part of a Special Issue entitled "Status Epilepticus". PMID:26210064

  16. Nanotechnology-mediated nose to brain drug delivery for Parkinson's disease: a mini review.

    PubMed

    Kulkarni, Abhijeet D; Vanjari, Yogesh H; Sancheti, Karan H; Belgamwar, Veena S; Surana, Sanjay J; Pardeshi, Chandrakantsing V

    2015-10-01

    Nose to brain delivery of neurotherapeutics have been tried by several researchers to explore the virtues of this route viz. circumvention of BBB, avoidance of hepatic metabolism, practicality, safety, ease of administration and non-invasiveness. Nanoparticle (NP) therapeutics is an emerging modality for the treatment of Parkinson's disease (PD) as it offers targeted delivery and enhances the therapeutic efficacy and/or bioavailability of neurotherapeutics. This review presents a concise incursion into the nanomedicines suitable for PD therapy delivered via naso-brain transport. Clinical signs of PD, its pathophysiology, specific genetic determinants, diagnosis and therapy involved have been hashed out. Properties of brain-targeting NPs, transport efficacy and various nanocarriers developed so far also been furnished. In our opinion, nanotechnology-enabled naso-brain drug delivery is an excellent means of delivering neurotherapeutics and is a promising avenue for researchers to develop new formulations for the effective management of PD. PMID:25758751

  17. Brain aging and Parkinson's disease: New therapeutic approaches using drug delivery systems.

    PubMed

    Rodríguez-Nogales, C; Garbayo, E; Carmona-Abellán, M M; Luquin, M R; Blanco-Prieto, M J

    2016-02-01

    The etiology and pathogenesis of Parkinson's disease (PD) is unknown, aging being the strongest risk factor for brain degeneration. Understanding PD pathogenesis and how aging increases the risk of disease would aid the development of therapies able to slow or prevent the progression of this neurodegenerative disorder. In this review we provide an overview of the most promising therapeutic targets and strategies to delay the loss of dopaminergic neurons observed both in PD and aging. Among them, handling alpha-synuclein toxicity, enhancing proteasome and lysosome clearance, ameliorating mitochondrial disruptions and modifying the glial environment are so far the most promising candidates. These new and conventional drugs may present problems related to their labile nature and to the difficulties in reaching the brain. Thus, we highlight the latest types of drug delivery system (DDS)-based strategies for PD treatment, including DDS for local and systemic drug delivery. Finally, the ongoing challenges for the discovery of new targets and the opportunities for DDS-based therapies to improve and efficacious PD therapy will be discussed. PMID:26653838

  18. Sleep disturbances in drug naïve Parkinson's disease (PD) patients and effect of levodopa on sleep

    PubMed Central

    Ferreira, Teresa; Prabhakar, Sudesh; Kharbanda, Parampreet S.

    2014-01-01

    Context: Parkinson's disease (PD) is associated with sleep disturbances, attributed to the neurodegenerative process and therapeutic drugs. Studies have found levodopa to increase wakefulness in some patients while increasing sleepiness in others. Aims: To confirm sleep disturbances in drug naïve PD patients and understand the impact of levodopa on their sleep. Materials and Methods: Twenty-three drug naïve PD patients and 31 age-gender matched controls were compared using the Parkinson's Disease Sleep Scale (PDSS) and Epworth Sleepiness Scale (ESS). A polysomnogram objectively compared sleep quality. Of the 23 patients, the 12 initiated on levodopa were reassessed subjectively and through polysomnography after 2 months of therapy. Statistical Analysis: Data was expressed as mean ± standard deviation, median, and range. Continuous variables were analyzed by Student's T test for normally distributed data and Mann–Whitney U test for skewed data. Discrete variables were compared by Chi Square tests (Pearson Chi square Test or Fisher's Exact Test). Wilcoxon signed ranks test was applied in the analysis of paired data pre- and post-levodopa. A P value < 0.05 was considered as statistically significant. Statistical analysis of the data was done using the Statistical Package for the Social Sciences (SPSS) version 12. Results: Drug naïve PD patients had lower PDSS scores than controls. The sleep architecture changes observed on polysomnogram were reduced NREM Stage III and REM sleep and increased sleep latency and wake after sleep onset time. Following levodopa, improved sleep efficiency with reduced sleep latency and wake after sleep onset time was noted, coupled with improved PDSS scores. However, NREM Stage III and REM sleep duration did not increase. Discussion: PD patients take longer to fall asleep and have difficulty in sleep maintenance. Sleep maintenance is affected by nocturia, REM behavioral disorder, nocturnal cramps, akinesia, and tremors, as observed in PDSS scores. Levodopa improves sleep efficiency by improving motor scores without altering sleep architecture. Conclusions: Poor sleep quality and sleep architecture changes occur secondary to the neurodegenerative process in PD patients. Though levodopa improves sleep quality by reducing rigidity and tremor, it does not reverse sleep architecture changes. PMID:25506163

  19. Region-Specific Protein Abundance Changes in the Brain of MPTP-induced Parkinson’s Disease Mouse Model

    SciTech Connect

    Zhang, Xu; Zhou, Jianying; Chin, Mark H.; Schepmoes, Athena A.; Petyuk, Vladislav A.; Weitz, Karl K.; Petritis, Brianne O.; Monroe, Matthew E.; Camp, David G.; Wood, Stephen A.; Melega, William P.; Bigelow, Diana J.; Smith, Desmond J.; Qian, Weijun; Smith, Richard D.

    2010-02-15

    Parkinson’s disease (PD) is characterized by dopaminergic neurodegeneration in the nigrostriatal region of the brain; however, the neurodegeneration extends well beyond dopaminergic neurons. To gain a better understanding of the molecular changes relevant to PD, we applied two-dimensional LC-MS/MS to comparatively analyze the proteome changes in four brain regions (striatum, cerebellum, cortex, and the rest of brain) using a MPTP-induced PD mouse model with the objective to identify nigrostriatal-specific and other region-specific protein abundance changes. The combined analyses resulted in the identification of 4,895 non-redundant proteins with at least two unique peptides per protein. The relative abundance changes in each analyzed brain region were estimated based on the spectral count information. A total of 518 proteins were observed with significant MPTP-induced changes across different brain regions. 270 of these proteins were observed with specific changes occurring either only in the striatum and/or in the rest of the brain region that contains substantia nigra, suggesting that these proteins are associated with the underlying nigrostriatal pathways. Many of the proteins that exhibit significant abundance changes were associated with dopamine signaling, mitochondrial dysfunction, the ubiquitin system, calcium signaling, the oxidative stress response, and apoptosis. A set of proteins with either consistent change across all brain regions or with changes specific to the cortex and cerebellum regions were also detected. One of the interesting proteins is ubiquitin specific protease (USP9X), a deubiquination enzyme involved in the protection of proteins from degradation and promotion of the TGF-? pathway, which exhibited altered abundances in all brain regions. Western blot validation showed similar spatial changes, suggesting that USP9X is potentially associated with neurodegeneration. Together, this study for the first time presents an overall picture of proteome changes underlying both nigrostriatal pathways and other brain regions potentially involved in MPTP-induced neurodegeneration. The observed molecular changes provide a valuable reference resource for future hypothesis-driven functional studies of PD.

  20. Human induced pluripotent stem cells in Parkinson's disease: A novel cell source of cell therapy and disease modeling.

    PubMed

    Li, Wen; Chen, Shengdi; Li, Jia-Yi

    2015-11-01

    Human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) are two novel cell sources for studying neurodegenerative diseases. Dopaminergic neurons derived from hiPSCs/hESCs have been implicated to be very useful in Parkinson's disease (PD) research, including cell replacement therapy, disease modeling and drug screening. Recently, great efforts have been made to improve the application of hiPSCs/hESCs in PD research. Considerable advances have been made in recent years, including advanced reprogramming strategies without the use of viruses or using fewer transcriptional factors, optimized methods for generating highly homogeneous neural progenitors with a larger proportion of mature dopaminergic neurons and better survival and integration after transplantation. Here we outline the progress that has been made in these aspects in recent years, particularly during the last year, and also discuss existing issues that need to be addressed. PMID:26408505

  1. Serum Insulin-Like Growth Factor-1 in Patients with De Novo, Drug Naïve Parkinson’s Disease: A Meta-Analysis

    PubMed Central

    Quinn, Thomas J.; Liu, Jun

    2015-01-01

    Objective Insulin-like growth factor-1 (IGF-1) is reported to be neuroprotective in the setting of Parkinson’s disease (PD), and there is increasing interest in the possible association of serum IGF-1 levels with PD patients, but with conflicting results. Therefore, we conducted a meta-analysis to evaluate the association of serum IGF-1 levels in de novo, drug naïve PD patients compared with healthy controls. Methods Pubmed, ISI Web of Science, OVID, EMBASE, and Cochrane library databases from 1966 to October 2014 were utilized to identify candidate studies using Medical Subjective Headings without language restriction. A random-effects model was chosen, with subgroup analysis and sensitivity analysis conducted to reveal underlying heterogeneity among the included studies. Results In this meta-analysis, we found that PD patients had higher serum IGF-1 levels compared with healthy controls (summary mean difference [MD] = 17.75, 95%CI = 6.01, 29.48). Subgroup analysis demonstrated that the source of heterogeneity was population differences within the total group. Sensitivity analysis showed that the combined MD was consistent at any time omitting any one study. Conclusions The results of this meta-analysis demonstrate that serum IGF-1 levels were significantly higher in de novo, drug-naïve PD patients compared with healthy controls. Nevertheless, additional endeavors are required to further explore the association between serum IGF-1 levels and diagnosis, prognosis and early therapy for PD. PMID:26657015

  2. Gender differences in non-motor symptoms in early, drug naïve Parkinson's disease.

    PubMed

    Picillo, Marina; Amboni, Marianna; Erro, Roberto; Longo, Katia; Vitale, Carmine; Moccia, Marcello; Pierro, Angela; Santangelo, Gabriella; De Rosa, Anna; De Michele, Giuseppe; Santoro, Lucio; Orefice, Giuseppe; Barone, Paolo; Pellecchia, Maria Teresa

    2013-11-01

    Gender differences in brain structure and function may lead to differences in the clinical expression of neurological diseases, including Parkinson's disease (PD). Few studies reported gender-related differences in the burden of non-motor symptoms (NMS) in treated PD patients, but this matter has not been previously explored in drug-naïve PD patients. This study is to assess gender differences in the prevalence of NMS in a large sample of early, drug-naïve PD patients compared with age and sex-matched healthy controls. Two hundred early, drug-naïve PD patients and ninety-three age and sex-matched healthy controls were included in the study. Frequency of NMS was evaluated by means of the Non-Motor Symptoms Questionnaire. The difference in gender distribution of NMS was evaluated with the ? (2) exact test; multiple comparisons were corrected with the Benjamini-Hochberg method. Male PD patients complained of problems having sex and taste/smelling difficulties significantly more frequently than female PD patients. Furthermore, men with PD complained more frequently of dribbling, sadness/blues, loss of interest, anxiety, acting during dreams, and taste/smelling difficulties as compared to healthy control men, while female PD patients reported more frequently loss of interest and anxiety as compared with healthy control women. This study shows specific sex-related patterns of NMS in drug-naïve PD. In contrast with previous data, female PD patients did not present higher prevalence of mood symptoms as compared to male PD patients. Comparison with healthy controls showed that some NMS classically present in premotor and early stage of disease (i.e., acting out during dreams, taste/smelling difficulties) are more frequent in male than in female patients. PMID:23989344

  3. Neuroprotective activity of Stereospermum suaveolens DC against 6-OHDA induced Parkinson's disease model

    PubMed Central

    Shalavadi, M. H.; Chandrashekhar, V. M.; Avinash, S. P.; Sowmya, C.; Ramkishan, A.

    2012-01-01

    Objectives: To evaluate the neuroprotective effect of Stereospermum suaveolens DC on 6-hydroxy dopamine induced Parkinson's disease model. Materials and Methods: The study was conducted on Sprague-Dawley rats where parkinson's disease was induced by producing the striatal 6-hydroxy dopamine lesions. The test animals received methanolic extract of Stereospermum suaveolens at dose of 125, 250 and 500 mg/kg for 42 days. Behavioral assessment, spontaneous locomotor activity and muscular coordination were studied. Antioxidant levels, striatal infraction area were assessed and histopathological studies were carried out. Results: The Stereospermum suaveolens DC methanolic extract showed significant dose dependent increase in behavioral activity, improved muscular coordination. Significant reduction of lipid peroxidation (LPO), increased antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT) and non-enzymatic activity of glutathione (GSH) and total thiol levels in extract treated groups was observed in test groups as compared to control group. Striatal infarction area was significantly reduced in extract treated groups as compared to control group. Conclusion: The methanolic extract of Stereospermum suaveolens DC showed neuroprotective activity against 6-hydroxy dopamine induced Parkinson's disease in rats. PMID:23248404

  4. Pathogenesis of Mortalin in Manganese-induced Parkinsonism

    NASA Astrophysics Data System (ADS)

    Cook, Travis J.

    Manganese (Mn) is an essential dietary micronutrient for which excessive exposure has long been known to be neurotoxic. Historically, short-term, high-intensity exposure in occupational settings was recognized to cause acute-onset parkinsonism (PS) termed manganism. Although modern day exposures are typically several orders of magnitude lower than those necessary to cause manganism, chronic, low-level exposures are not uncommon among a number of occupations and communities. Recent epidemiologic studies have demonstrated an association between Mn exposure and risk of PS, and in this regard Mn remains a public health concern. The work described here was designed to provide insight toward questions which remain with respect to Mn exposure and its toxic effect on the brain, and includes studies utilizing Mn exposed human populations and in vitro model systems to address these objectives. Blood plasma samples obtained from a cohort of welders, whose work is recognized as generating appreciable amounts of airborne Mn, and post-mortem brain tissue of Mn mine workers were both found to have discernable alterations related to the mitochondrial chaperone protein mortalin. Furthermore, in vitro studies demonstrated that reduced astroglial expression of mortalin confers neuronal susceptibility to toxicity elicited by low levels of Mn, possibly via mechanisms of endoplasmic reticulum and oxidative stress mediated by alpha-synuclein. Taken together, the results of these studies indicate that Mn exposures experienced by modern day populations are sufficient to cause biological alterations in humans that are potentially neurotoxic.

  5. Dopamine-Induced Nonmotor Symptoms of Parkinson's Disease

    PubMed Central

    Park, Ariane; Stacy, Mark

    2011-01-01

    Nonmotor symptoms of Parkinson's disease (PD) may emerge secondary to the underlying pathogenesis of the disease, while others are recognized side effects of treatment. Inevitably, there is an overlap as the disease advances and patients require higher dosages and more complex medical regimens. The non-motor symptoms that emerge secondary to dopaminergic therapy encompass several domains, including neuropsychiatric, autonomic, and sleep. These are detailed in the paper. Neuropsychiatric complications include hallucinations and psychosis. In addition, compulsive behaviors, such as pathological gambling, hypersexuality, shopping, binge eating, and punding, have been shown to have a clear association with dopaminergic medications. Dopamine dysregulation syndrome (DDS) is a compulsive behavior that is typically viewed through the lens of addiction, with patients needing escalating dosages of dopamine replacement therapy. Treatment side effects on the autonomic system include nausea, orthostatic hypotension, and constipation. Sleep disturbances include fragmented sleep, nighttime sleep problems, daytime sleepiness, and sleep attacks. Recognizing the non-motor symptoms that can arise specifically from dopamine therapy is useful to help optimize treatment regimens for this complex disease. PMID:21603184

  6. Dopaminergic induced changes in cognitive and motor processing in Parkinson's disease: an electrophysiological investigation.

    PubMed Central

    Prasher, D; Findley, L

    1991-01-01

    Event-related potentials and reaction time measures to auditory discrimination tasks of graded difficulty were used to separate cognitive from motor processing time in 27 patients with newly diagnosed, previously untreated Parkinson's disease and later on optimal levodopa treatment. Before treatment event-related potential P3 and task performance were normal but the reaction time was prolonged compared with age matched controls. After treatment P3 latency was significantly prolonged and the reaction time reduced suggesting a dopamine induced dissociation between cognitive and motor processing. In early Parkinson's disease cognitive processing time remains normal but the motor processing time is prolonged. Dopamine replacement is followed by significantly reduced motor processing time despite increased cognitive processing time. Motor processing may reflect the dopamine status of the putamen whereas dopaminergic over-stimulation of other regions may adversely affect cognitive processing in patients treated with levodopa. PMID:1895125

  7. Movement disorders induced by antipsychotic drugs: implications of the CATIE schizophrenia trial.

    PubMed

    Caroff, Stanley N; Hurford, Irene; Lybrand, Janice; Campbell, E Cabrina

    2011-02-01

    Drug-induced movement disorders have dramatically declined with the widespread use of second-generation antipsychotics, but remain important in clinical practice and for understanding antipsychotic pharmacology. The diagnosis and management of dystonia, parkinsonism, akathisia, catatonia, neuroleptic malignant syndrome, and tardive dyskinesia are reviewed in relation to the decreased liability of the second-generation antipsychotics contrasted with evidence from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Schizophrenia Trial. Data from the CATIE trial imply that advantages of second-generation antipsychotics in significantly reducing extrapyramidal side effects compared with haloperidol may be diminished when compared with modest doses of lower-potency first-generation drugs. PMID:21172575

  8. Environmental risk factors for Parkinson's disease and parkinsonism: the Geoparkinson study

    PubMed Central

    Dick, F D; De Palma, G; Ahmadi, A; Scott, N W; Prescott, G J; Bennett, J; Semple, S; Dick, S; Counsell, C; Mozzoni, P; Haites, N; Wettinger, S Bezzina; Mutti, A; Otelea, M; Seaton, A; Söderkvist, P; Felice, A

    2007-01-01

    Objective To investigate the associations between Parkinson's disease and other degenerative parkinsonian syndromes and environmental factors in five European countries. Methods A case–control study of 959 prevalent cases of parkinsonism (767 with Parkinson's disease) and 1989 controls in Scotland, Italy, Sweden, Romania and Malta was carried out. Cases were defined using the United Kingdom Parkinson's Disease Society Brain Bank criteria, and those with drug?induced or vascular parkinsonism or dementia were excluded. Subjects completed an interviewer?administered questionnaire about lifetime occupational and hobby exposure to solvents, pesticides, iron, copper and manganese. Lifetime and average annual exposures were estimated blind to disease status using a job?exposure matrix modified by subjective exposure modelling. Results were analysed using multiple logistic regression, adjusting for age, sex, country, tobacco use, ever knocked unconscious and family history of Parkinson's disease. Results Adjusted logistic regression analyses showed significantly increased odds ratios for Parkinson's disease/parkinsonism with an exposure–response relationship for pesticides (low vs no exposure, odds ratio (OR)?=?1.13, 95% CI 0.82 to 1.57, high vs no exposure, OR?=?1.41, 95% CI 1.06 to 1.88) and ever knocked unconscious (once vs never, OR?=?1.35, 95% CI 1.09 to 1.68, more than once vs never, OR?=?2.53, 95% CI 1.78 to 3.59). Hypnotic, anxiolytic or antidepressant drug use for more than 1 year and a family history of Parkinson's disease showed significantly increased odds ratios. Tobacco use was protective (OR?=?0.50, 95% CI 0.42 to 0.60). Analyses confined to subjects with Parkinson's disease gave similar results. Conclusions The association of pesticide exposure with Parkinson's disease suggests a causative role. Repeated traumatic loss of consciousness is associated with increased risk. PMID:17332139

  9. Non-steroidal drug-induced glaucoma.

    PubMed

    Razeghinejad, M R; Pro, M J; Katz, L J

    2011-08-01

    Numerous systemically used drugs are involved in drug-induced glaucoma. Most reported cases of non-steroidal drug-induced glaucoma are closed-angle glaucoma (CAG). Indeed, many routinely used drugs that have sympathomimetic or parasympatholytic properties can cause pupillary block CAG in individuals with narrow iridocorneal angle. The resulting acute glaucoma occurs much more commonly unilaterally and only rarely bilaterally. CAG secondary to sulfa drugs is a bilateral non-pupillary block type and is due to forward movement of iris-lens diaphragm, which occurs in individuals with narrow or open iridocorneal angle. A few agents, including antineoplastics, may induce open-angle glaucoma. In conclusion, the majority of cases with glaucoma secondary to non-steroidal medications are of the pupillary block closed-angle type and preventable if the at-risk patients are recognized and treated prophylactically. PMID:21637303

  10. Attenuation by Nardostachys jatamansi of 6-hydroxydopamine-induced parkinsonism in rats: behavioral, neurochemical, and immunohistochemical studies.

    PubMed

    Ahmad, Muzamil; Yousuf, Seema; Khan, M Badruzzaman; Hoda, Md Nasrul; Ahmad, Abdullah Shafique; Ansari, Mubeen Ahmad; Ishrat, Tauheed; Agrawal, Ashok Kumar; Islam, Fakhrul

    2006-01-01

    Parkinson's disease (PD) is one of the commonest neurodegenerative diseases, and oxidative stress has been evidenced to play a vital role in its causation. In the present study, we evaluated whether ethanolic extract of Nardostachys jatamansi roots (ENj), an antioxidant and enhancer of biogenic amines, can slow the neuronal injury in a 6-OHDA-rat model of Parkinson's. Rats were treated with 200, 400, and 600 mg/kg body weight of ENj for 3 weeks. On day 21, 2 microl of 6-OHDA (12 microg in 0.01% in ascorbic acid-saline) was infused into the right striatum, while the sham-operated group received 2 microl of vehicle. Three weeks after the 6-OHDA injection, the rats were tested for neurobehavioural activity and were sacrificed after 6 weeks for the estimation of lipid peroxidation, reduced glutathione content, the activities of glutathione-S-transferase, glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase, quantification of catecholamines, dopaminergic D2 receptor binding and tyrosine hydroxylase expression. The increase in drug-induced rotations and deficits in locomotor activity and muscular coordination due to 6-OHDA injections were significantly and dose-dependently restored by ENj. Lesioning was followed by an increased lipid peroxidation and significant depletion of reduced glutathione content in the substantia nigra, which was prevented with ENj pretreatment. The activities of glutathione-dependent enzymes, catalase and superoxide dismutase in striatum, which were reduced significantly by lesioning, were dose-dependently restored by ENj. A significant decrease in the level of dopamine and its metabolites and an increase in the number of dopaminergic D2 receptors in striatum were observed after 6-OHDA injection, and both were significantly recovered following ENj treatment. All of these results were exhibited by an increased density of tyrosine hydroxylase immunoreactive (TH-IR) fibers in the ipsilateral striatum of the lesioned rats following treatment with ENj; 6-OHDA injection had induced almost a complete loss of TH-IR fibers. This study indicates that the extract of Jatamansi might be helpful in attenuating Parkinsonism. PMID:16500697

  11. Drug-induced urinary incontinence.

    PubMed

    2015-07-01

    Urinary incontinence can have a significant impact on patients' quality of life. Some causes involve physiologic and structural disorders of the urinary system. Other causes do not directly affect the urinary system but are related to difficulties in reacting to the urge to urinate or getting to the toilet alone, or an increase in urine output. Toxic substances or drugs are sometimes implicated. Drugs that affect one or more of the components of the normal continence mechanism expose patients to the risk of urinary incontinence. Some of these drugs act on the urinary system, particularly the autonomic nervous system; some increase urine output; some impair physical or cognitive function; and others cause urinary retention, leading to overflow incontinence. Drugs known to cause urinary incontinence are often prescribed for older patients, who are already at increased risk: sedatives, neuroleptics, antidepressants, cholinesterase inhibitors used in Alzheimer's disease, diuretics, alpha blockers used in hypertension or benign prostatic hyperplasia, and menopausal hormone replacement therapy. PMID:26240882

  12. Mutation in Drosophila methuselah resists paraquat induced Parkinson-like phenotypes.

    PubMed

    Shukla, Arvind K; Pragya, Prakash; Chaouhan, Hitesh S; Patel, D K; Abdin, M Z; Kar Chowdhuri, Debapratim

    2014-10-01

    Parkinson's disease (PD) is a prevalent and devastating neurodegenerative disorder having limited cure options and strong association with the loss of dopaminergic neurons in the substantia nigra region of the mid brain. Etiology of PD includes both genetic and environmental factors. Paraquat (PQ), a widely used herbicide, is known to be associated with pathogenesis of PD. We report that a mutation in Drosophila methuselah (mth(1)), which is associated with aging, has a role in preventing dopaminergic neuronal cell death in PQ-exposed organism. Exposed mth(1) flies exhibit significant resistance against PQ-induced Parkinson's phenotypes and behavior in terms of oxidative stress, dopaminergic neuronal degeneration, locomotor performance, dopamine content, phosphorylated JNK, pFOXO, Hid, and cleaved caspase-3 levels. Conversely, over-expression of mth in dopaminergic neurons makes the exposed organism more vulnerable to oxidative stress, neuronal cell death, and behavioral deficit. The study suggests that lesser activation of JNK-mediated apoptosis in dopaminergic neurons of exposed mth(1) flies protects the organism from PQ-induced damage, which may be causally linked to a common mechanism for PQ-induced neurodegeneration. PMID:24819147

  13. Melatonin prevents apoptosis induced by 6-hydroxydopamine in neuronal cells: implications for Parkinson's disease.

    PubMed

    Mayo, J C; Sainz, R M; Uria, H; Antolin, I; Esteban, M M; Rodriguez, C

    1998-04-01

    It was recently reported that low doses of 6-hydroxydopamine (6-OHDA) induce apoptosis of naive (undifferentiated) and neuronal (differentiated) PC12 cells, and this system has been proposed as an adequate experimental model for the study of Parkinson's disease. The mechanism by which this neurotoxin damages cells is via the production of free radicals. Given that the neurohormone melatonin has been reported 1) to be a highly effective endogenous free radical scavenger, 2) to increase the mRNA levels and the activity of several antioxidant enzymes, and 3) to inhibit apoptosis in other tissues, we have studied the ability of melatonin to prevent the programmed cell death induced by 6-OHDA in PC12 cells. We found that melatonin prevents the apoptosis caused by 6-OHDA in naive and neuronal PC12 cells as estimated by 1) cell viability assays, 2) counting of the number of apoptotic cells, and 3) analysis and quantification of DNA fragmentation. Exploration of the mechanisms used by melatonin to reduce programmed cell death revealed that this chemical mediator prevents the 6-OHDA induced reduction of mRNAs for several antioxidant enzymes. The possibility that melatonin utilized additional mechanisms to prevent apoptosis of these cells is also discussed. Since this endogenous agent has no known side effects and readily crosses the blood-brain-barrier, we consider melatonin to have a high clinical potential in the treatment of Parkinson's disease and possibly other neurodegenerative diseases, although more research on the mechanisms is yet to be done. PMID:9551855

  14. Parkinson's Disease Foundation

    MedlinePLUS

    ... Research published September 16 in the Journal of Neuroscience finds that the drug rapamycin, an immunosuppressant drug ... to End PD Nov 19 2015 13th Annual Music Concert Supports Parkinson's Research Nov 19 2015 PAN ...

  15. Remission-inducing drugs in rheumatoid arthritis.

    PubMed Central

    Anastassiades, T. P.

    1980-01-01

    The administration of certain drugs to patients with established rheumatoid arthritis frequently results in improvement that is slow to appear but persists for long periods, even after the drug is discontinued. The three main drugs with this effect, whose efficacy and toxicity are reviewed in this paper, are gold salts, D-penicillamine and chloroquine. The cytotoxic agents used to treat rheumatoid arthritis, which likely have nonspecific anti-inflammatory actions and have serious long-term side effects, are also briefly reviewed. A new drug, levamisole, is currently being tested in patients with rheumatoid arthritis. It is suggested that the time for considering the introduction of a remission-inducing drug in patients with progressive rheumatoid arthritis is after an adequate trial of therapy with salicylates or other nonsteroidal anti-inflammatory agents, or both, and before the oral administration of steroids. It is difficult, however, on the basis of rigorous clinical comparisons, to recommend which of the three main remission-inducing drugs should be tried first, although gold salts have been used the most. Patients who have improved with 6 months of chrysotherapy may continue treatment for at least 3 years, during which time the frequency of mucocutaneous and renal toxic effects will steadily decrease. Some aspects of the medical economics of therapy with remission-inducing drugs for rheumatoid arthritis are discussed. PMID:6768438

  16. Drug-induced rash: nuisance or threat?

    PubMed

    Wick, Jeannette Y

    2013-03-01

    Drug-induced rash is the most commonly reported drug reaction and occurs in a dizzying array of presentations. Changes in lean and fat body tissue, gastrointestinal acid and mucosal permeability, cardiac output, and renal and hepatic metabolism can affect drug absorption, distribution, metabolism, and elimination. Elders may develop cutaneous eruptions from drugs or biologics and be more sensitive to topical medications. Almost all medications have been associated with rash to some degree. Consultant pharmacists should be able to distinguish between the rashes that are uncomfortable from those that are potentially life-threatening. Some drug therapies tend to induce or aggravate "companion" rashes. With select medications, rash is a clinical indicator that the medication is working. Extensive or unusually painful drug-induced skin conditions are rare, but often require fast action by health care providers to direct the patient to life-saving help. Many of these rashes are associated with high mortality, severe complications, and potential chronic disability. Awareness of the drugs that are most likely to cause a rash can help consultant pharmacists work with the clinical team to arrange appropriate care. PMID:23462025

  17. Movement Disorders Induced by Antipsychotic Drugs: Implications of the CATIE Schizophrenia Trial

    PubMed Central

    Caroff, Stanley N.; Hurford, Irene; Lybrand, Janice; Campbell, E. Cabrina

    2010-01-01

    Synopsis Drug-induced movement disorders have dramatically declined with the widespread use of second generation antipsychotics but remain important in clinical practice and for understanding antipsychotic pharmacology. The diagnosis and management of dystonia, parkinsonism, akathisia, catatonia, neuroleptic malignant syndrome and tardive dyskinesia are reviewed in relation to the decreased liability of the second generation antipsychotics contrasted with evidence from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Schizophrenia Trial. Data from the CATIE trial imply that advantages of second generation antipsychotics in significantly reducing extrapyramidal side effects compared with haloperidol may be diminished when compared with modest doses of lower-potency first generation drugs, that the dichotomy between first and second generation drugs may be oversimplified, and that antipsychotics could be conceptualized as a single drug class with a spectrum of risk for movement disorders depending upon receptor binding affinities and individual patient susceptibility. PMID:21172575

  18. Drug-Induced Long QT Syndrome

    PubMed Central

    Kannankeril, Prince; Darbar, Dawood

    2010-01-01

    The drug-induced long QT syndrome is a distinct clinical entity that has evolved from an electrophysiologic curiosity to a centerpiece in drug regulation and development. This evolution reflects an increasing recognition that a rare adverse drug effect can profoundly upset the balance between benefit and risk that goes into the prescription of a drug by an individual practitioner as well as the approval of a new drug entity by a regulatory agency. This review will outline how defining the central mechanism, block of the cardiac delayed-rectifier potassium current IKr, has contributed to defining risk in patients and in populations. Models for studying risk, and understanding the way in which clinical risk factors modulate cardiac repolarization at the molecular level are discussed. Finally, the role of genetic variants in modulating risk is described. PMID:21079043

  19. A review of drug-induced hypernatraemia

    PubMed Central

    Liamis, George; Milionis, Haralampos J.; Elisaf, Moses

    2009-01-01

    Drug-induced electrolyte abnormalities have been increasingly reported and may be associated with considerable morbidity and/or mortality. In clinical practice, hypernatraemia (serum sodium higher than 145 mmol/L) is usually of multifactorial aetiology and drug therapy not infrequently is disregarded as a contributing factor for increased serum sodium concentration. Strategies to prevent this adverse drug effect involve careful consideration of risk factors and clinical and laboratory evaluation in the course of treatment. Herein, we review evidence-based information via PubMed and EMBASE and the relevant literature implicating pharmacologic treatment as an established cause of hypernatraemia and discuss its incidence and the underlying pathophysiologic mechanisms. PMID:25949338

  20. Parkinson's Disease

    MedlinePLUS

    ... NINDS NINDS Parkinson's Disease Information Page Clinical Trials Biomarkers of Risk of Parkinson Disease This study determines if people with biomarkers for Parkinson’s disease actually develop the disease during ...

  1. Parkinson's Disease

    MedlinePLUS

    ... picture of how individual cells and complex neural circuits interact. The ultimate goal is to enhance understanding ... Parkinson’s disease (December 2014) Australian researcher outlines an integrated approach for studying Parkinson’s (December 2014) Research on ...

  2. Effect of Subthalamic Deep Brain Stimulation on Levodopa-Induced Dyskinesia in Parkinson's Disease

    PubMed Central

    Kim, Ji Hee; Chang, Won Seok; Jung, Hyun Ho

    2015-01-01

    Purpose To evaluate the effect of bilateral subthalamic nucleus (STN) deep brain stimulation (DBS) on levodopa-induced peak-dose dyskinesia in patients with Parkinson's disease (PD). Materials and Methods A retrospective review was conducted on patients who underwent STN DBS for PD from May 2000 to July 2012. Only patients with levodopa-induced dyskinesia prior to surgery and more than 1 year of available follow-up data after DBS were included. The outcome measures included the dyskinesia subscore of the Unified Parkinson's Disease Rating Scale (UPDRS) part IV (items 32 to 34 of UPDRS part IV) and the levodopa equivalent daily dose (LEDD). The patients were divided into two groups based on preoperative to postoperative LEDD change at 12 months after the surgery: Group 1, LEDD decrease >15%; Group 2, all other patients. Group 2 was further divided by the location of DBS leads. Results Of the 100 patients enrolled, 67 were in Group 1, while those remaining were in Group 2. Twelve months after STN DBS, Groups 1 and 2 showed improvements of 61.90% and 57.14%, respectively, in the dyskinesia subscore. Group 1 was more likely to experience dyskinesia suppression; however, the association between the groups and dyskinesia suppression was not statistically significant (p=0.619). In Group 2, dyskinesia was significantly decreased by stimulation of the area above the STN in 18 patients compared to stimulation of the STN in 15 patients (p=0.048). Conclusion Levodopa-induced dyskinesia is attenuated by STN DBS without reducing the levodopa dosage. PMID:26256974

  3. PACAP27 prevents Parkinson-like neuronal loss and motor deficits but not microglia activation induced by prostaglandin J2

    PubMed Central

    Shivers, Kai-Yvonne; Nikolopoulou, Anastasia; Machlovi, Saima Ishaq; Vallabhajosula, Shankar; Figueiredo-Pereira, Maria E.

    2014-01-01

    Neuroinflammation is a major risk factor in Parkinson disease (PD). Alternative approaches are needed to treat inflammation, as anti-inflammatory drugs such as NSAIDs that inhibit cyclooxygenase-2 (COX-2) can produce devastating side effects, including heart attack and stroke. New therapeutic strategies that target factors downstream of COX-2, such as prostaglandin J2 (PGJ2), hold tremendous promise because they will not alter the homeostatic balance offered by COX-2 derived prostanoids. In the current studies, we report that repeated microinfusion of PGJ2 into the substantia nigra of non-transgenic mice, induces three stages of pathology that mimic the slow-onset cellular and behavioral pathology of PD: mild (one injection) when only motor deficits are detectable, intermediate (two injections) when neuronal and motor deficits as well as microglia activation are detectable, and severe (four injections) when dopaminergic neuronal loss is massive accompanied by microglia activation and motor deficits. Microglia activation was evaluated in vivo by positron emission tomography (PET) with [11C](R)PK11195 to provide a regional estimation of brain inflammation. PACAP27 reduced dopaminergic neuronal loss and motor deficits induced by PGJ2, without preventing microglia activation. The latter could be problematic in that persistent microglia activation can exert long-term deleterious effects on neurons and behavior. In conclusion, this PGJ2-induced mouse model that mimics in part chronic inflammation, exhibits slow-onset PD-like pathology and is optimal for testing diagnostic tools such as PET, as well as therapies designed to target the integrated signaling across neurons and microglia, to fully benefit patients with PD. PMID:24970746

  4. Drug-induced acid-base disorders.

    PubMed

    Kitterer, Daniel; Schwab, Matthias; Alscher, M Dominik; Braun, Niko; Latus, Joerg

    2015-09-01

    The incidence of acid-base disorders (ABDs) is high, especially in hospitalized patients. ABDs are often indicators for severe systemic disorders. In everyday clinical practice, analysis of ABDs must be performed in a standardized manner. Highly sensitive diagnostic tools to distinguish the various ABDs include the anion gap and the serum osmolar gap. Drug-induced ABDs can be classified into five different categories in terms of their pathophysiology: (1) metabolic acidosis caused by acid overload, which may occur through accumulation of acids by endogenous (e.g., lactic acidosis by biguanides, propofol-related syndrome) or exogenous (e.g., glycol-dependant drugs, such as diazepam or salicylates) mechanisms or by decreased renal acid excretion (e.g., distal renal tubular acidosis by amphotericin B, nonsteroidal anti-inflammatory drugs, vitamin D); (2) base loss: proximal renal tubular acidosis by drugs (e.g., ifosfamide, aminoglycosides, carbonic anhydrase inhibitors, antiretrovirals, oxaliplatin or cisplatin) in the context of Fanconi syndrome; (3) alkalosis resulting from acid and/or chloride loss by renal (e.g., diuretics, penicillins, aminoglycosides) or extrarenal (e.g., laxative drugs) mechanisms; (4) exogenous bicarbonate loads: milk-alkali syndrome, overshoot alkalosis after bicarbonate therapy or citrate administration; and (5) respiratory acidosis or alkalosis resulting from drug-induced depression of the respiratory center or neuromuscular impairment (e.g., anesthetics, sedatives) or hyperventilation (e.g., salicylates, epinephrine, nicotine). PMID:25370778

  5. A single-center, cross-sectional prevalence study of impulse control disorders in Parkinson disease: association with dopaminergic drugs.

    PubMed

    Poletti, Michele; Logi, Chiara; Lucetti, Claudio; Del Dotto, Paolo; Baldacci, Filippo; Vergallo, Andrea; Ulivi, Martina; Del Sarto, Simone; Rossi, Giuseppe; Ceravolo, Roberto; Bonuccelli, Ubaldo

    2013-10-01

    The current study aimed at establishing the prevalence of impulse control disorders (ICDs) in patients with Parkinson disease (PD) and their association with demographic, drug-related, and disease-related characteristics. We performed a single-center cross-sectional study of 805 PD patients. Impulse control disorders were investigated with the Questionnaire for Impulsive Compulsive Disorders in Parkinson's Disease; also comorbid neuropsychiatric complications (dementia, delusions, visual hallucinations) were investigated with clinical interviews and ad hoc instruments (Parkinson Psychosis Questionnaire and Neuropsychiatry Inventory). Impulse control disorders were identified in 65 patients (prevalence, 8.1%), with pathological gambling and hypersexuality the most frequent. Impulse control disorders were present in 57 of 593 cognitively preserved patients (prevalence, 9.6%) and in 8 of 212 demented patients (prevalence, 3.8%). Impulse control disorders were significantly associated with dopamine agonists (odds ratio [OR], 5.50; 95% confidence interval [CI], 2.60-12.46; P < 0.0001) and levodopa (OR, 2.43; 95% CI, 1.06-6.35; P = 0.034). Impulse control disorders frequency was similar for pramipexole and ropinirole (16.6% vs 12.5%; OR, 1.45; 95% CI, 0.79-2.74; P = 0.227). Additional variables associated with ICDs were male sex and younger age. These findings suggested that dopaminergic treatments in PD are associated with increased odds of having an ICD, but also other demographic and clinical variables are associated with ICDs, suggesting the multifactorial nature of the ICD phenomenon in PD. PMID:23857310

  6. Anti-apoptotic and anti-inflammatory effect of Piperine on 6-OHDA induced Parkinson's rat model.

    PubMed

    Shrivastava, Pallavi; Vaibhav, Kumar; Tabassum, Rizwana; Khan, Andleeb; Ishrat, Tauheed; Khan, Mohd Moshahid; Ahmad, Ajmal; Islam, Farah; Safhi, Mohammed M; Islam, Fakhrul

    2013-04-01

    In the present study, we examined the molecular mechanism by which Piperine (bioactive compound of Piper nigrum) inhibits neuronal cell apoptosis. We further investigated the anti-inflammatory effect of Piperine on 6-OHDA induced Parkinson's disease. Consistent with its antioxidant properties, Piperine (10 mg/kg bwt) reduced 6-OHDA-induced lipid peroxidation and stimulated glutathione levels in striatum of rats. Furthermore, Piperine treatment diminished cytochrome-c release from mitochondria and reduced caspase-3 and caspase-9 activation induced by 6-OHDA. Treatment with Piperine markedly inhibited poly(ADP-ribose) polymerase activation, pro-apoptotic Bax levels and elevation of Bcl-2 levels. Piperine reduces contralateral rotations induced by apomorphine. Further narrow beam test and rotarod also showed improvement in motor coordination and balance behavior in rats treated with Piperine. In addition Piperine depletes inflammatory markers, TNF-? and IL-1? in 6-OHDA-induced Parkinson's rats. We propose that, in addition to its antioxidant properties Piperine exerts a protective effect via anti-apoptotic and anti-inflammatory mechanism on 6-OHDA induced Parkinson's disease. PMID:22819561

  7. HIV transactivator of transcription enhances methamphetamine-induced Parkinson’s-like behavior in the rats

    PubMed Central

    Liu, Zengxun; Shi, Zhenchun; Liu, Jintong

    2014-01-01

    Abuse of methamphetamine (MA) increases the risk of infection of HIV-1, induces considerable neurotoxicity in several brain regions, and impairs the motor and cognitive function in individuals. HIV-1 transactivator of transcription (Tat) has also shown the potent capability to induce neuronal death and impaired brain function. The present study aims to study the synergistic effect of MA and Tat on cytokine synthesis in substantia nigra, striatal dopamine content, and behavioral performance in the rats. Although increased expression of cytokines (interleukin-1? and tumor necrosis factor-?) was observed in the substantia nigra in the rats receiving either MA or Tat alone, a combination of MA and Tat induced a larger and more sustained upregulation of cytokines. In the rats receiving either MA or Tat alone, significant loss in striatal dopamine content was found, which was further exacerbated in the rats receiving both MA and Tat. In the rats receiving either MA or Tat alone, significantly lower performance in the rotarod test and open-field test was observed, whereas the rats receiving both MA and Tat showed more sustained behavioral impairments. These results suggested that Tat protein synergized with MA to induce central neuroinflammation and impair the dopaminergic transmission, thus leading to sustained Parkinson’s-like behavior. PMID:24911386

  8. Drug induced acute pancreatitis: Does it exist?

    PubMed Central

    Tenner, Scott

    2014-01-01

    As the incidence of acute pancreatitis continues to rise, establishing the etiology in order to prevent recurrence is important. Although the etiology of acute pancreatitis is not difficult in the majority of patients, almost a quarter of patients are initially labeled as having idiopathic acute pancreatitis. When confronted with a patient with acute pancreatitis and no clear etiology defined as an absence alcoholism, gallstones (ultrasound and/or MRI), a normal triglyceride level, and absence of tumor, it often appears reasonable to consider a drug as the cause of acute pancreatitis. Over 100 drugs have been implicated by case reports as causing acute pancreatitis. While some of these case reports are well written, many case reports represent poorly written experiences of the clinician simply implicating a drug without a careful evaluation. Over-reliance on case reports while ignoring randomized clinical trials and large pharmacoepidemiologic surveys has led to confusion about drug induced acute pancreatitis. This review will explain that drug induced acute pancreatitis does occur, but it is rare, and over diagnosis leads to misconceptions about the disease resulting in inappropriate patient care, increased litigation and a failure to address the true entity: idiopathic acute pancreatitis. PMID:25469020

  9. Drug-Induced Hyperglycaemia and Diabetes.

    PubMed

    Fathallah, Neila; Slim, Raoudha; Larif, Sofien; Hmouda, Houssem; Ben Salem, Chaker

    2015-12-01

    Drug-induced hyperglycaemia and diabetes is a global issue. It may be a serious problem, as it increases the risk of microvascular and macrovascular complications, infections, metabolic coma and even death. Drugs may induce hyperglycaemia through a variety of mechanisms, including alterations in insulin secretion and sensitivity, direct cytotoxic effects on pancreatic cells and increases in glucose production. Antihypertensive drugs are not equally implicated in increasing serum glucose levels. Glycaemic adverse events occur more frequently with thiazide diuretics and with certain beta-blocking agents than with calcium-channel blockers and inhibitors of the renin-angiotensin system. Lipid-modifying agents may also induce hyperglycaemia, and the diabetogenic effect seems to differ between the different types and daily doses of statins. Nicotinic acid may also alter glycaemic control. Among the anti-infectives, severe life-threatening events have been reported with fluoroquinolones, especially when high doses are used. Protease inhibitors and, to a lesser extent, nucleoside reverse transcriptase inhibitors have been reported to induce alterations in glucose metabolism. Pentamidine-induced hyperglycaemia seems to be related to direct dysfunction in pancreatic cells. Phenytoin and valproic acid may also induce hyperglycaemia. The mechanisms of second-generation antipsychotic-associated hyperglycaemia, diabetes mellitus and ketoacidosis are complex and are mainly due to insulin resistance. Antidepressant agents with high daily doses seem to be more frequently associated with an increased risk of diabetes. Ketoacidosis may occur in patients receiving beta-adrenergic stimulants, and theophylline may also induce hyperglycaemia. Steroid diabetes is more frequently associated with high doses of glucocorticoids. Some chemotherapeutic agents carry a higher risk of hyperglycaemia, and calcineurin inhibitor-induced hyperglycaemia is mainly due to a decrease in insulin secretion. Hyperglycaemia has been associated with oral contraceptives containing high doses of oestrogen. Growth hormone therapy and somatostatin analogues may also induce hyperglycaemia. Clinicians should be aware of medications that may alter glycaemia. Efforts should be made to identify and closely monitor patients receiving drugs that are known to induce hyperglycaemia. PMID:26370106

  10. Long term exposure to norharman exacerbates 6-hydroxydopamine-induced parkinsonism: possible involvement of L-type Ca2+ channels.

    PubMed

    Haghdoost-Yazdi, Hashem; Hosseini, Sedighe-Sadat; Faraji, Ayda; Nahid, Delaram; Jahanihashemi, Hassan

    2010-12-20

    beta-Carbolines (BCs) are considered as endogenous neurotoxins that may contribute to the pathogenesis of Parkinson's disease (PD). However, several lines of evidences show that these compounds have neuroprotective effect. This study was designed to assess effect of long term exposure to norharman, a BC compound which in mammalian brain occurs at high levels in the substantia nigra, on the progress of parkinsonism induced by 6-hydroxydopamine (6-OHDA). Animals were daily treated by norharman at doses 100, 200 and 1000microg/kg (i.p.) just before to four weeks after the intrastriatal injection of 6-OHDA. Statistical analysis of apomorphine-induced rotation tests demonstrates that treatment by norharman at doses 200 and 1000microg/kg for four weeks exacerbates significantly behavioral symptoms of the parkinsonism. To explore mechanisms by which norharman affects nigral dopaminergic cells, we studied the role of L-type Ca2+ channels. For this purpose, animals were daily treated with either L-type Ca2+ channel blocker of nifedipine at doses 2 and 5mg/kg (i.p.) or nifedipine together with norharman before to four weeks after the 6-OHDA injection. While treatment with nifedipine improved behavioral symptoms of the parkinsonism, treatment with both nifedipine and norharman had no affect on these symptoms. This data indicates that long term exposure to BCs promote nigral dopaminergic cell death possibly through L-type Ca2+ channels. PMID:20638417

  11. Salvianolic Acid B Attenuates Toxin-Induced Neuronal Damage via Nrf2-Dependent Glial Cells-Mediated Protective Activity in Parkinson’s Disease Models

    PubMed Central

    Li, Zhi-Yun; Wei-Ji; Liu, Qi; Ma, Yi-Hui; He, Jiao-Jiang

    2014-01-01

    Salvianolic acid B (SalB), a bioactive compound isolated from the plant-derived medicinal herb Danshen, has been shown to exert various anti-oxidative and anti-inflammatory activities in several neurological disorders. In this study, we sought to investigate the potential protective effects and associated molecular mechanisms of SalB in Parkinson’s disease (PD) models. To determine the neuroprotective effects of SalB in vitro, MPP+- or lipopolysaccharide (LPS)-induced neuronal injury was achieved using primary cultures with different compositions of neurons, microglia and astrocytes. Our results showed that SalB reduced both LPS- and MPP+-induced toxicity of dopamine neurons in a dose-dependent manner. Additionally, SalB treatment inhibited the release of microglial pro-inflammatory cytokines and resulted in an increase in the expression and release of glial cell line-derived neurotrophic factor (GDNF) from astrocytes. Western blot analysis illustrated that SalB increased the expression and nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). The knockdown of Nrf2 using specific small interfering RNA (siRNA) partially reversed the SalB-induced GDNF expression and anti-inflammatory activity. Moreover, SalB treatment significantly attenuated dopaminergic (DA) neuronal loss, inhibited neuroinflammation, increased GDNF expression and improved the neurological function in MPTP-treated mice. Collectively, these findings demonstrated that SalB protects DA neurons by an Nrf-2 -mediated dual action: reducing microglia activation-mediated neuroinflammation and inducing astrocyte activation-dependent GDNF expression. Importantly the present study also highlights critical roles of glial cells as targets for developing new strategies to alter the progression of neurodegenerative disorders. PMID:24991814

  12. Immunomodulatory and neuroprotective effects of ginsenoside Rg1 in the MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) -induced mouse model of Parkinson's disease.

    PubMed

    Zhou, Ting-Ting; Zu, Guo; Wang, Xi; Zhang, Xiao-Gang; Li, Shao; Liang, Zhan-Hua; Zhao, Jie

    2015-12-01

    Ginsenoside Rg1, one of the biologically active ingredients of ginseng, has been considered to be a candidate neuroprotective drug. The objective of the study was to study the protective effects of Rg1 through the peripheral and central inflammation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. Rg1 treatment protected TH-positive cells in the SNpc region from MPTP toxicity measured with immunofluoresence. The protein expression levels of TH in the SNpc region of MPTP-induced mice following treatment with Rg1 were higher than MPTP-induced mice which were tested with Western blot. The ratio of CD3(+)CD4(+) to CD3(+)CD8(+) T cells and CD4(+)CD25(+)Foxp3(+) regulatory T cells in the blood increased in MPTP-induced mice following treatment with Rg1 which were detected by flow cytometry analysis. Moreover, Rg1 reduced the serum concentrations of proinflammatory cytokines TNF-?, IFN-?, IL-1? and IL-6 which were tested with enzyme-linked immunosorbent assay (ELISA). In addition, Rg1 inhibited the activation of microglia and reduced the infiltration of CD3(+) T cells into the SNpc region which were measured by immunofluorescence. Our results indicated that Rg1 may represent a promising drug for the treatment of PD via the regulation of the peripheral and central inflammation. PMID:26548343

  13. Neuroprotective effect of curcumin on hippocampal injury in 6-OHDA-induced Parkinson's disease rat.

    PubMed

    Yang, Jiaqing; Song, Shilei; Li, Jian; Liang, Tao

    2014-06-01

    Clinically, Parkinson's disease (PD)-related neuronal lesions commonly occur. The purpose of this study is to investigate potential therapeutic effect of curcumin against hippocampal damage of 6-hydroxydopamine (6-OHDA)-PD rat model. These results showed that curcumin significantly increased the body weight of 6-OHDA-impaired rats (P<0.01), and reversed the anhedonia in rats induced by 6-OHDA impairment (P<0.01). Meanwhile, behavioral manifestations of curcumin-treated PD rats were effectively ameliorated as shown in open field test (P<0.01). In addition, curcumin increased the contents of monoaminergic neurotransmitters (P<0.01), such as dopamine (DA) and norepinephrine (NE), in hippocampal homogenate through high performance liquid chromatography (HPLC) assay. Curcumin effectively alleviated the 6-OHDA-induced hippocampal damage as observed in hematoxylin-eosin (H&E) staining. Furthermore, curcumin obviously up-regulated hippocampal brain derived neurotrophic factor (BDNF), TrkB, phosphatidylinositide 3-kinases (PI3K) protein expressions, respectively as shown in Western blot analysis. These findings demonstrated that curcumin mediated the neuroprotection against 6-OHDA-induced hippocampus neurons in rats, which the underlying mechanism is involved in activating BDNF/TrkB-dependent pathway for promoting neural regeneration of hippocampal tissue. PMID:24642369

  14. Posttraumatic parkinsonism.

    PubMed

    Formisano, Rita; Zasler, Nathan D

    2014-01-01

    Amantadine hydrochloride is one of the most commonly used drugs in the pharmacotherapeutic treatment of disorders of consciousness (DOCs) following traumatic brain injury (TBI). Indeed, its actions as a pro-dopaminergic drug and as an N-methyl-D-aspartate antagonist makes amantadine an interesting candidate to improve consciousness and responsiveness in individuals with DOC, including vegetative state and minimally conscious state. Giacino et al (N Engl J Med. 2012;366(9):819-826) recently reported that amantadine was able to accelerate the functional recovery course of subjects after TBI with DOC, during a 4-week treatment period. Some patients with DOC following severe TBI have been reported to have parkinsonian symptoms. Severe TBI and posttraumatic parkinsonism may share a common midbrain network dysfunction. In fact, both vegetative state and minimally conscious state following severe TBI can include features of akinetic mutism and parkinsonism. Responsiveness to pro-dopaminergic agents in some patients and to deep brain stimulation in others, might depend, respectively, on the integrity, or lack thereof, of the dopaminergic postsynaptic receptors. We are of the strong opinion that more attention should be given to parkinsonian findings in persons with DOC after severe TBI and would advocate for multicenter, randomized, controlled trials to assess risk factors for parkinsonism following severe TBI. PMID:24695262

  15. Drug-induced mitochondrial dysfunction and cardiotoxicity.

    PubMed

    Varga, Zoltán V; Ferdinandy, Peter; Liaudet, Lucas; Pacher, Pál

    2015-11-01

    Mitochondria has an essential role in myocardial tissue homeostasis; thus deterioration in mitochondrial function eventually leads to cardiomyocyte and endothelial cell death and consequent cardiovascular dysfunction. Several chemical compounds and drugs have been known to directly or indirectly modulate cardiac mitochondrial function, which can account both for the toxicological and pharmacological properties of these substances. In many cases, toxicity problems appear only in the presence of additional cardiovascular disease conditions or develop months/years following the exposure, making the diagnosis difficult. Cardiotoxic agents affecting mitochondria include several widely used anticancer drugs [anthracyclines (Doxorubicin/Adriamycin), cisplatin, trastuzumab (Herceptin), arsenic trioxide (Trisenox), mitoxantrone (Novantrone), imatinib (Gleevec), bevacizumab (Avastin), sunitinib (Sutent), and sorafenib (Nevaxar)], antiviral compound azidothymidine (AZT, Zidovudine) and several oral antidiabetics [e.g., rosiglitazone (Avandia)]. Illicit drugs such as alcohol, cocaine, methamphetamine, ecstasy, and synthetic cannabinoids (spice, K2) may also induce mitochondria-related cardiotoxicity. Mitochondrial toxicity develops due to various mechanisms involving interference with the mitochondrial respiratory chain (e.g., uncoupling) or inhibition of the important mitochondrial enzymes (oxidative phosphorylation, Szent-Györgyi-Krebs cycle, mitochondrial DNA replication, ADP/ATP translocator). The final phase of mitochondrial dysfunction induces loss of mitochondrial membrane potential and an increase in mitochondrial oxidative/nitrative stress, eventually culminating into cell death. This review aims to discuss the mechanisms of mitochondrion-mediated cardiotoxicity of commonly used drugs and some potential cardioprotective strategies to prevent these toxicities. PMID:26386112

  16. [Iatrogenic and drug-induced hypertension].

    PubMed

    Mounier-Vehier, Claire; Boudghène, Fanny; Claisse, Gonzague; Delsart, Pascal

    2015-06-01

    Various toxic or drug agents can induce arterial hypertension, aggravate or limit the efficiency of anti-hypertensive drugs. Iatrogenic and drug-induced hypertension should be well known by the clinicians and the pharmacists, given the impact for driving the management of patients. In the food, an excessive alcohol consumption (more than 30 g per day) and more rarely glycerizine (active ingredient of the licorice) should be systematically looked for in front of a recent hypertension or do not respond to usual treatment. In the list of offending medicines, we must remember ethinyl estradiol contained in the contraception (oral, vaginal ring or transcutaneous patch), non steroidal anti-inflammatory drugs, immunosuppressants (cyclosporine, tacrolimus), vascular endothelial growth factor and its receptor R2 (avastin, inhibitors of receptor tyrosine kinases), recombinant human erythropoietin, sympathomimetics (nasal decongestants), anabolic steroids, bromocriptine (inhibitor of lactation), psychotropes (tricyclics antidepressants, monoamine oxydase inhibitors). The diagnosis of iatrogenic hypertensions should be systematically suspected in front of a suggestive clinical context with a meticulous food questioning because these hypertensions are partially or fully reversible after exposure stops. PMID:26298906

  17. Contrasting gene expression patterns induced by levodopa and pramipexole treatments in the rat model of Parkinson's disease.

    PubMed

    Taravini, Irene R; Larramendy, Celia; Gomez, Gimena; Saborido, Mariano D; Spaans, Floor; Fresno, Cristóbal; González, Germán A; Fernández, Elmer; Murer, Mario G; Gershanik, Oscar S

    2016-02-01

    Whether the treatment of Parkinson's disease has to be initiated with levodopa or a D2 agonist like pramipexole remains debatable. Levodopa is more potent against symptoms than D2 agonists, but D2 agonists are less prone to induce motor complications and may have neuroprotective effects. Although regulation of plastic changes in striatal circuits may be the key to their different therapeutic potential, the gene expression patterns induced by de novo treatments with levodopa or D2 agonists are currently unknown. By studying the whole striatal transcriptome in a rodent model of early stage Parkinson's disease, we have identified the gene expression patterns underlying therapeutically comparable chronic treatments with levodopa or pramipexole. Despite the overall relatively small size of mRNA expression changes at the level of individual transcripts, our data show a robust and complete segregation of the transcript expression patterns induced by both treatments. Moreover, transcripts related to oxidative metabolism and mitochondrial function were enriched in levodopa-treated compared to vehicle-treated and pramipexole-treated animals, whereas transcripts related to olfactory transduction pathways were enriched in both treatment groups compared to vehicle-treated animals. Thus, our data reveal the plasticity of genetic striatal networks possibly contributing to the therapeutic effects of the most common initial treatments for Parkinson's disease, suggesting a role for oxidative stress in the long term complications induced by levodopa and identifying previously overlooked signaling cascades as potentially new therapeutic targets. PMID:25963416

  18. Drug-induced lymphocyte stimulation test in the prediction of drug-induced hypersensitivity to antituberculosis drugs.

    PubMed

    Sun, Qin; Sha, Wei; Gui, Xu-Wei; Xiao, Yang-Jiong; Zeng, Wei-Hong; Sun, Wen-Wen; Xiao, He-Ping; Ye, Wei-Yi

    2015-06-01

    Antituberculosis (TB) chemotherapeutic drugs may cause a variety of adverse drug reactions (ADRs). To assess the potential of drug-induced lymphocyte stimulation test (DLST) in screening ADRs in patients treated with anti-TB drugs, we performed DLST in 272 TB patients (176 cases with ADRs and 96 controls without ADRs) treated with anti-TB drugs isoniazid (INH), rifampicin (RFP), ethambutol (EMB), and pyrazinamide (PZA). The ADRs were diagnosed by drug provocation test based on clinical and laboratory examinations. The sensitivities of DLST in the diagnosis of INH-, RFP-, EMB-, or PZA-induced ADRs were 57.8%, 37.1%, 42.4%, and 23.1%, respectively, with the corresponding specificities being 93.4%, 94.0%, 97.5%, and 98.8%. DLST has high specificity and limited sensitivity in the diagnosis of anti-TB drug-induced ADRs. In combination with clinical observation and drug use history, DLST could have a predictive validity of ADRs, especially when a positive result is obtained. PMID:25863530

  19. BCG Vaccine-Induced Neuroprotection in a Mouse Model of Parkinson's Disease

    PubMed Central

    Yong, Jing; Lacan, Goran; Dang, Hoa; Hsieh, Terry; Middleton, Blake; Wasserfall, Clive; Tian, Jide; Melega, William P.; Kaufman, Daniel L.

    2011-01-01

    There is a growing interest in using vaccination with CNS antigens to induce autoreactive T cell responses that home to damaged areas in the CNS and ameliorate neurodegenerative disease. Neuroprotective vaccine studies have focused on administering oligodendrocyte antigens or Copaxone® in complete Freund's adjuvant (CFA). Theoretical considerations, however, suggest that vaccination with a neuronal antigen may induce more robust neuroprotective immune responses. We assessed the neuroprotective potential of vaccines containing tyrosine hydroxylase (a neuronal protein involved in dopamine synthesis) or Copaxone® in CFA in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Surprisingly, we observed that the main beneficial factor in these vaccines was the CFA. Since the major immunogenic component in CFA is Mycobacterium tuberculosis, which closely related to the bacille Calmette-Guérin (BCG) that is used in human vaccines, we tested BCG vaccination in the MPTP mouse model. We observed that BCG vaccination partially preserved markers of striatal dopamine system integrity and prevented an increase in activated microglia in the substantia nigra of MPTP-treated mice. These results support a new neuroprotective vaccine paradigm in which general (nonself-reactive) immune stimulation in the periphery can limit potentially deleterious microglial responses to a neuronal insult and exert a neurorestorative effect in the CNS. Accordingly, BCG vaccination may provide a new strategy to augment current treatments for a wide range of neuropathological conditions. PMID:21304945

  20. BCG vaccine-induced neuroprotection in a mouse model of Parkinson's disease.

    PubMed

    Yong, Jing; Lacan, Goran; Dang, Hoa; Hsieh, Terry; Middleton, Blake; Wasserfall, Clive; Tian, Jide; Melega, William P; Kaufman, Daniel L

    2011-01-01

    There is a growing interest in using vaccination with CNS antigens to induce autoreactive T cell responses that home to damaged areas in the CNS and ameliorate neurodegenerative disease. Neuroprotective vaccine studies have focused on administering oligodendrocyte antigens or Copaxone® in complete Freund's adjuvant (CFA). Theoretical considerations, however, suggest that vaccination with a neuronal antigen may induce more robust neuroprotective immune responses. We assessed the neuroprotective potential of vaccines containing tyrosine hydroxylase (a neuronal protein involved in dopamine synthesis) or Copaxone® in CFA in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Surprisingly, we observed that the main beneficial factor in these vaccines was the CFA. Since the major immunogenic component in CFA is Mycobacterium tuberculosis, which closely related to the bacille Calmette-Guérin (BCG) that is used in human vaccines, we tested BCG vaccination in the MPTP mouse model. We observed that BCG vaccination partially preserved markers of striatal dopamine system integrity and prevented an increase in activated microglia in the substantia nigra of MPTP-treated mice. These results support a new neuroprotective vaccine paradigm in which general (nonself-reactive) immune stimulation in the periphery can limit potentially deleterious microglial responses to a neuronal insult and exert a neurorestorative effect in the CNS. Accordingly, BCG vaccination may provide a new strategy to augment current treatments for a wide range of neuropathological conditions. PMID:21304945

  1. Solving the puzzle of Parkinson's disease using induced pluripotent stem cells.

    PubMed

    Zhao, Ping; Luo, Zhiwei; Tian, Weihua; Yang, Jiayin; Ibáñez, David P; Huang, Zhijian; Tortorella, Micky D; Esteban, Miguel A; Fan, Wenxia

    2014-11-01

    The prevalence and incidence of Parkinson's disease (PD) is increasing due to a prolonged life expectancy. This highlights the need for a better mechanistic understanding and new therapeutic approaches. However, traditional in vitro and in vivo experimental models to study PD are suboptimal, thus hampering the progress in the field. The epigenetic reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) offers a unique way to overcome this problem, as these cells share many properties of embryonic stem cells (ESCs) including the potential to be transformed into different lineages. PD modeling with iPSCs is nowadays facilitated by the growing availability of high-efficiency neural-specific differentiation protocols and the possibility to correct or induce mutations as well as creating marker cell lines using designer nucleases. These technologies, together with steady advances in human genetics, will likely introduce profound changes in the way we interpret PD and develop new treatments. Here, we summarize the different PD iPSCs reported so far and discuss the challenges for disease modeling using these cell lines. PMID:24939824

  2. Deep brain stimulation induces rapidly reversible transcript changes in Parkinson's leucocytes.

    PubMed

    Soreq, Lilach; Bergman, Hagai; Goll, Yael; Greenberg, David S; Israel, Zvi; Soreq, Hermona

    2012-07-01

    Subthalamic deep brain stimulation (DBS) reversibly modulates Parkinson's disease (PD) motor symptoms, providing an unusual opportunity to compare leucocyte transcripts in the same individuals before and after neurosurgery and 1 hr after stimulus cessation (ON- and OFF-stimulus). Here, we report DBS-induced reversibility and OFF-stimulus restoration in 12 of 16 molecular functions and 3 of 4 biological processes shown in exon microarrays to be differentially expressed between PD patients and controls, post-DBS from pre-DBS and OFF from ON states. Intriguingly, 6 of 18 inflammation and immune-related functions exhibited reversibility, and the extent of stimulus-induced changes correlated with the neurological DBS efficacy, suggesting mechanistic implications. A minimal list of 29 transcripts that changed in all three comparisons between states discriminated pre-surgery and OFF states from post-surgery and controls. Six of these transcripts were found to be able to distinguish between PD patients and both healthy controls and patients with other neurological diseases in a previously published whole blood 3' array data study of early PD patients. Our findings support the future use of this approach for identifying targets for therapeutic intervention and assessing the efficacy of current and new treatments in this and other neurological diseases. PMID:21910823

  3. Adjunctive therapy in Parkinson’s disease: the role of rasagiline

    PubMed Central

    Gaines, Kathryn D; Hinson, Vanessa K

    2012-01-01

    Parkinson’s disease is the second most common neurodegenerative disorder, currently affecting 1.5 million people in the US. In this review, we describe the diagnostic and pathological features of Parkinson’s disease, as well as its clinical course. We then review pharmacologic treatments for the disease, with a particular focus on therapies adjunctive to levodopa and specifically the role of rasagiline. We review the four pivotal rasagiline trials, and discuss rasagiline and its use as adjunctive therapy for Parkinson’s disease. Finally, we discuss potential side effects, drug interactions, and other practical aspects concerning the use of rasagiline in Parkinson’s disease. PMID:22802692

  4. Electroconvulsive Therapy Intervention for Parkinson’s Disease

    PubMed Central

    Glowacki, Anna; Lippmann, Steven

    2015-01-01

    Background: Electroconvulsive therapy is an established means to improve function in a variety of psychiatric and neurologic conditions, particularly for patients who remain treatment-refractory. Parkinson’s disease is a neurodegenerative disorder that sometimes does not respond well to conventional pharmacotherapies. Reports have indicated that electroconvulsive therapy may be an effective and safe treatment for those patients with Parkinson’s disease who are not optimally responding to first-line treatments. Despite these reports, however, electroconvulsive therapy is not often used by clinicians in patients with treatment-resistant Parkinson’s disease, perhaps due to stigma, lack of knowledge regarding its safety and efficacy, and/or inability to predict the duration of therapeutic benefit. Objective: Our objective was to determine if the available literature on ECT supports it as a safe and effective treatment option in patients with treatment-refractory Parkinson’s disease. Conclusion: Motoric improvement induced by electroconvulsive therapy has been documented for decades in persons with Parkinson’s disease. Efficacy and safety are reported following electroconvulsive therapy in people with Parkinson’s disease who have sub-optimal response to medicines or experience the “on/off” phenomenon to L-dopa. Electroconvulsive therapy is an effective option for acute and maintenance treatment of Parkinson’s disease in select patients. Inability to predict how long the beneficial effects of ECT therapy will last in patients with Parkinson’s disease may be a reason why this treatment is underutilized by clinicians. More research is warranted to clarify parameters for application and duration of therapeutic benefit in individuals with difficult-to-treat Parkinson’s disease.

  5. Tauroursodeoxycholic acid prevents MPTP-induced dopaminergic cell death in a mouse model of Parkinson's disease.

    PubMed

    Castro-Caldas, M; Carvalho, A Neves; Rodrigues, E; Henderson, C J; Wolf, C R; Rodrigues, C M P; Gama, M J

    2012-10-01

    Mitochondrial dysfunction and oxidative stress are implicated in the neurodegenerative process in Parkinson's disease (PD). Moreover, c-Jun N-terminal kinase (JNK) plays an important role in dopaminergic neuronal death in substantia nigra pars compacta. Tauroursodeoxycholic acid (TUDCA) acts as a mitochondrial stabilizer and anti-apoptotic agent in several models of neurodegenerative diseases. Here, we investigated the role of TUDCA in preventing 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurodegeneration in a mouse model of PD. We evaluated whether TUDCA modulates MPTP-induced degeneration of dopaminergic neurons in the nigrostriatal axis, and if that can be explained by regulation of JNK phosphorylation, reactive oxygen species (ROS) production, glutathione S-transferase (GST) catalytic activation, and Akt signaling, using C57BL/6 glutathione S-transferase pi (GSTP) null mice. TUDCA efficiently protected against MPTP-induced dopaminergic degeneration. We have previously demonstrated that exacerbated JNK activation in GSTP null mice resulted in increased susceptibility to MPTP neurotoxicity. Interestingly, pre-treatment with TUDCA prevented MPTP-induced JNK phosphorylation in mouse midbrain and striatum. Moreover, the anti-oxidative role of TUDCA was demonstrated in vivo by impairment of ROS production in the presence of MPTP. Finally, results herein suggest that the survival pathway activated by TUDCA involves Akt signaling, including downstream Bad phosphorylation and NF-?B activation. We conclude that TUDCA is neuroprotective in an in vivo model of PD, acting mainly by modulation of JNK activity and cellular redox thresholds, together with activation of the Akt pro-survival pathway. These results open new perspectives for the pharmacological use of TUDCA, as a modulator of neurodegeneration in PD. PMID:22773138

  6. Parkinson's Disease

    MedlinePLUS

    ... Digestive System How the Body Works Main Page Parkinson's Disease KidsHealth > Kids > Health Problems of Grown-Ups > ... symptoms of something called Parkinson's disease. What Is Parkinson's Disease? You may have seen the actor Michael ...

  7. Drug-induced epigenetic changes produce drug tolerance.

    PubMed

    Wang, Yan; Krishnan, Harish R; Ghezzi, Alfredo; Yin, Jerry C P; Atkinson, Nigel S

    2007-10-16

    Tolerance to drugs that affect neural activity is mediated, in part, by adaptive mechanisms that attempt to restore normal neural excitability. Changes in the expression of ion channel genes are thought to play an important role in these neural adaptations. The slo gene encodes the pore-forming subunit of BK-type Ca(2+)-activated K(+) channels, which regulate many aspects of neural activity. Given that induction of slo gene expression plays an important role in the acquisition of tolerance to sedating drugs, we investigated the molecular mechanism of gene induction. Using chromatin immunoprecipitation followed by real-time PCR, we show that a single brief sedation with the anesthetic benzyl alcohol generates a spatiotemporal pattern of histone H4 acetylation across the slo promoter region. Inducing histone acetylation with a histone deacetylase inhibitor yields a similar pattern of changes in histone acetylation, up-regulates slo expression, and phenocopies tolerance in a slo-dependent manner. The cAMP response element binding protein (CREB) is an important transcription factor mediating experience-based neuroadaptations. The slo promoter region contains putative binding sites for the CREB transcription factor. Chromatin immunoprecipitation assays show that benzyl alcohol sedation enhances CREB binding within the slo promoter region. Furthermore, activation of a CREB dominant-negative transgene blocks benzyl alcohol-induced changes in histone acetylation within the slo promoter region, slo induction, and behavioral tolerance caused by benzyl alcohol sedation. These findings provide unique evidence that links molecular epigenetic histone modifications and transcriptional induction of an ion channel gene with a single behavioral event. PMID:17941717

  8. Cyclosporine A and MnTMPyP Alleviate ?-Synuclein Expression and Aggregation in Cypermethrin-Induced Parkinsonism.

    PubMed

    Agrawal, Sonal; Dixit, Anubhuti; Singh, Ashish; Tripathi, Pratibha; Singh, Dhirendra; Patel, Devendra Kumar; Singh, Mahendra Pratap

    2015-12-01

    Cypermethrin induces the mitochondrial dysfunction and oxidative damage to the nigrostriatal dopaminergic neurons leading to Parkinsonism in rats. Despite ?-synuclein aggregation is reported to be critical in Parkinson's disease, its role and alliance with the mitochondrial dysfunction and oxidative damage leading to cypermethrin-induced Parkinsonism have not yet been deciphered. The present study aimed to examine the effect of cypermethrin on the expression and aggregation of ?-synuclein and its subsequent connection with oxidative damage and mitochondrial dysfunction leading to the nigrostriatal dopaminergic neurodegeneration in the presence or absence of a mitochondrial membrane transition pore opening inhibitor, cyclosporine A and a superoxide dismutase/catalase mimetic, manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP). The expression of ?-synuclein, 3-nitrotyrosine (3-NT), 4-hydroxynonenal (4-HNE)-modified proteins, mitochondrial dysfunction-dependent apoptotic proteins, nitrite content, lipid peroxidation (LPO) and number of tyrosine hydroxylase (TH)-positive neurons were estimated in the substantia nigra and dopamine content in the striatum of control and treated rats employing standard procedures. Cypermethrin augmented the expression of ?-synuclein, 3-NT, 4-HNE-modified proteins, caspase-3, mitochondrial Bax and cytosolic cytochrome-c along with nitrite and LPO and reduced the expression of cytosolic Bax, mitochondrial cytochrome-c, dopamine and number of TH-positive neurons. Cyclosporine A or MnTMPyP alleviated the expression and aggregation of ?-synuclein along with indicators of the mitochondrial dysfunction, oxidative damage and dopaminergic neurodegeneration. The results demonstrate that cypermethrin induces ?-synuclein expression and aggregation while cyclosporine A or MnTMPyP rescues from ?-synuclein over-expression and aggregation along with the mitochondrial dysfunction and oxidative damage leading to Parkinsonism in rats. PMID:25370934

  9. Lipoic acid protects dopaminergic neurons in LPS-induced Parkinson's disease model.

    PubMed

    Li, Yan-Hua; He, Qing; Yu, Jie-zhong; Liu, Chun-yun; Feng, Ling; Chai, Zhi; Wang, Qing; Zhang, Hong-zhen; Zhang, Guang-Xian; Xiao, Bao-guo; Ma, Cun-gen

    2015-10-01

    Parkinson's disease (PD) is a chronic neurodegenerative disease of the central nervous system (CNS), characterized by a loss of dopaminergic neurons, which is thought to be caused by both genetic and environmental factors. Recent findings suggest that neuroinflammation may be a pathogenic factor in the onset and progression of sporadic PD. Here we explore the potential therapeutic effect of lipoic acid (LA) on a lipolysaccharide (LPS)-induced inflammatory PD model. Our results for the first time showed that LA administration improved motor dysfunction, protected dopaminergic neurons loss, and decreased ?-synuclein accumulation in the substantia nigra (SN) area of brain. Further, LA inhibited the activation of nuclear factor-?B (NF-?B) and expression of pro-inflammatory molecules in M1 microglia. Taken together, these results suggest that LA may exert a profound neuroprotective effect and is thus a promising anti-neuroinflammatory and anti-oxidative agent for halting the progression of PD. Interventions aimed at either blocking microglia-derived inflammatory mediators or modulating the polarization of microglia may be potentially useful therapies that are worth further investigation. PMID:26084861

  10. Induced pluripotent stem cell-based studies of Parkinson's disease: challenges and promises.

    PubMed

    Sanchez-Danes, Adriana; Benzoni, Patrizia; Memo, Maurizio; Dell'Era, Patrizia; Raya, Angel; Consiglio, Antonella

    2013-12-01

    A critical step in the development of effective therapeutics to treat Parkinson's disease (PD) is the identification of molecular pathogenic mechanisms underlying this chronically progressive neurodegenerative disease. However, while animal models have provided valuable information about the molecular basis of PD, the lack of faithful cellular and animal models that recapitulate human pathophysiology is delaying the development of new therapeutics. The reprogramming of somatic cells to induced pluripotent stem cells (iPSC) using delivery of defined combinations of transcription factors is a groundbreaking discovery that opens great opportunities for modeling human diseases, including PD, since iPSC can be generated from patients and differentiated into disease-relevant cell types, which would capture the patients' genetic complexity. Furthermore, human iPSC-derived neuronal models offer unprecedented access to early stages of the disease, allowing the investigation of the events that initiate the pathologic process in PD. Recently, human iPSC-derived neurons from patients with familial and sporadic PD have been generated and importantly they recapitulate some PD-related cell phenotypes, including abnormal ?-synuclein accumulation in vitro, and alterations in the autophagy machinery. This review highlights the current PD iPSC-based models and discusses the potential future research directions of this field. PMID:24040813

  11. Excessive Sensitivity to Uncertain Visual Input in L-DOPA-Induced Dyskinesias in Parkinson’s Disease: Further Implications for Cerebellar Involvement

    PubMed Central

    Stevenson, James K. R.; Lee, Chonho; Lee, Bu-Sung; TalebiFard, Pouria; Ty, Edna; Aseeva, Kristina; Oishi, Meeko M. K.; McKeown, Martin J.

    2013-01-01

    When faced with visual uncertainty during motor performance, humans rely more on predictive forward models and proprioception and attribute lesser importance to the ambiguous visual feedback. Though disrupted predictive control is typical of patients with cerebellar disease, sensorimotor deficits associated with the involuntary and often unconscious nature of l-DOPA-induced dyskinesias in Parkinson’s disease (PD) suggests dyskinetic subjects may also demonstrate impaired predictive motor control. Methods: We investigated the motor performance of 9 dyskinetic and 10 non-dyskinetic PD subjects on and off l-DOPA, and of 10 age-matched control subjects, during a large-amplitude, overlearned, visually guided tracking task. Ambiguous visual feedback was introduced by adding “jitter” to a moving target that followed a Lissajous pattern. Root mean square (RMS) tracking error was calculated, and ANOVA, robust multivariate linear regression, and linear dynamical system analyses were used to determine the contribution of speed and ambiguity to tracking performance. Results: Increasing target ambiguity and speed contributed significantly more to the RMS error of dyskinetic subjects off medication. l-DOPA improved the RMS tracking performance of both PD groups. At higher speeds, controls and PDs without dyskinesia were able to effectively de-weight ambiguous visual information. Conclusion: PDs’ visually guided motor performance degrades with visual jitter and speed of movement to a greater degree compared to age-matched controls. However, there are fundamental differences in PDs with and without dyskinesia: subjects without dyskinesia are generally slow, and less responsive to dynamic changes in motor task requirements, but in PDs with dyskinesia, there was a trade-off between overall performance and inappropriate reliance on ambiguous visual feedback. This is likely associated with functional changes in posterior parietal–ponto–cerebellar pathways. PMID:24550883

  12. Altered Neuronal Firing Pattern of the Basal Ganglia Nucleus Plays a Role in Levodopa-Induced Dyskinesia in Patients with Parkinson’s Disease

    PubMed Central

    Li, Xiaoyu; Zhuang, Ping; Li, Yongjie

    2015-01-01

    Background: Levodopa therapy alleviates the symptoms of Parkinson’s disease (PD), but long-term treatment often leads to motor complications such as levodopa-induced dyskinesia (LID). Aim: To explore the neuronal activity in the basal ganglia nuclei in patients with PD and LID. Methods: Thirty patients with idiopathic PD (age, 55.1 ± 11.0 years; disease duration, 8.7 ± 5.6 years) were enrolled between August 2006 and August 2013 at the Xuanwu Hospital, Capital Medical University, China. Their Hoehn and Yahr (1967) scores ranged from 2–4 and their UPDRS III scores were 28.5 ± 5.2. Fifteen of them had severe LID (UPDRS IV scores of 6.7 ± 1.6). Microelectrode recording was performed in the globus pallidus internus (GPi) and subthalamic nucleus (STN) during pallidotomy (n = 12) or STN deep brain stimulation (DBS; bilateral, n = 12; unilateral, n = 6). The firing patterns and frequencies of various cell types were analyzed by assessing single cell interspike intervals (ISIs) and the corresponding coefficient of variation (CV). Results: A total of 295 neurons were identified from the GPi (n = 12) and STN (n = 18). These included 26 (8.8%) highly grouped discharge, 30 (10.2%) low frequency firing, 78 (26.4%) rapid tonic discharge, 103 (34.9%) irregular activity, and 58 (19.7%) tremor-related activity. There were significant differences between the two groups (p < 0.05) for neurons with irregular firing, highly irregular cluster-like firing, and low-frequency firing. Conclusion: Altered neuronal activity was observed in the basal ganglia nucleus of GPi and STN, and may play important roles in the pathophysiology of PD and LID. PMID:26635583

  13. Sigma-1 receptor deficiency reduces MPTP-induced parkinsonism and death of dopaminergic neurons

    PubMed Central

    Hong, J; Sha, S; Zhou, L; Wang, C; Yin, J; Chen, L

    2015-01-01

    Sigma-1 receptor (?1R) has been reported to be decreased in nigrostriatal motor system of Parkinson's disease patients. Using heterozygous and homozygous ?1R knockout (?1R+/? and ?1R?/?) mice, we investigated the influence of ?1R deficiency on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-impaired nigrostriatal motor system. The injection of MPTP for 5 weeks in wild-type mice (MPTP-WT mice), but not in ?1R+/? or ?1R?/? mice (MPTP-?1R+/? or MPTP-?1R?/? mice), caused motor deficits and ~40% death of dopaminergic neurons in substantia nigra pars compacta with an elevation of N-methyl-d-aspartate receptor (NMDAr) NR2B phosphorylation. The ?1R antagonist NE100 or the NR2B inhibitor Ro25-6981 could alleviate the motor deficits and the death of dopaminergic neurons in MPTP-WT mice. By contrast, MPTP-?1R+/? mice treated with the ?1R agonist PRE084 or MPTP-?1R?/? mice treated with the NMDAr agonist NMDA appeared to have similar motor deficits and loss of dopaminergic neurons as MPTP-WT mice. The pharmacological or genetic inactivation of ?1R suppressed the expression of dopamine transporter (DAT) in substantia nigra, which was corrected by NMDA. The activation of ?1R by PRE084 enhanced the DAT expression in WT mice or ?1R+/? mice. By contrast, the level of vesicular monoamine transporter 2 (VMAT2) in ?1R+/? mice or ?1R?/? mice had no difference from WT mice. Interestingly, MPTP-WT mice showed the reduction in the levels of DAT and VMAT2, but MPTP-?1R?/? mice did not. The inactivation of ?1R by NE100 could prevent the reduction of VMAT2 in MPTP-WT mice. In addition, the activation of microglia cells in substantia nigra was equally enhanced in MPTP-WT mice and MPTP-?1R?/? mice. The number of activated astrocytes in MPTP-?1R?/? mice was less than that in MPTP-WT mice. The findings indicate that the ?1R deficiency through suppressing NMDAr function and DAT expression can reduce MPTP-induced death of dopaminergic neurons and parkinsonism. PMID:26203861

  14. Selective serotonin reuptake inhibition modulates response inhibition in Parkinson’s disease

    PubMed Central

    Ye, Zheng; Altena, Ellemarije; Nombela, Cristina; Housden, Charlotte R.; Maxwell, Helen; Rittman, Timothy; Huddleston, Chelan; Rae, Charlotte L.; Regenthal, Ralf; Sahakian, Barbara J.; Barker, Roger A.; Robbins, Trevor W.

    2014-01-01

    Impulsivity is common in Parkinson’s disease even in the absence of impulse control disorders. It is likely to be multifactorial, including a dopaminergic ‘overdose’ and structural changes in the frontostriatal circuits for motor control. In addition, we proposed that changes in serotonergic projections to the forebrain also contribute to response inhibition in Parkinson’s disease, based on preclinical animal and human studies. We therefore examined whether the selective serotonin reuptake inhibitor citalopram improves response inhibition, in terms of both behaviour and the efficiency of underlying neural mechanisms. This multimodal magnetic resonance imaging study used a double-blind randomized placebo-controlled crossover design with an integrated Stop-Signal and NoGo paradigm. Twenty-one patients with idiopathic Parkinson’s disease (46–76 years old, 11 male, Hoehn and Yahr stage 1.5–3) received 30 mg citalopram or placebo in addition to their usual dopaminergic medication in two separate sessions. Twenty matched healthy control subjects (54–74 years old, 12 male) were tested without medication. The effects of disease and drug on behavioural performance and regional brain activity were analysed using general linear models. In addition, anatomical connectivity was examined using diffusion tensor imaging and tract-based spatial statistics. We confirmed that Parkinson’s disease caused impairment in response inhibition, with longer Stop-Signal Reaction Time and more NoGo errors under placebo compared with controls, without affecting Go reaction times. This was associated with less stop-specific activation in the right inferior frontal cortex, but no significant difference in NoGo-related activation. Although there was no beneficial main effect of citalopram, it reduced Stop-Signal Reaction Time and NoGo errors, and enhanced inferior frontal activation, in patients with relatively more severe disease (higher Unified Parkinson’s Disease Rating Scale motor score). The behavioural effect correlated with the citalopram-induced enhancement of prefrontal activation and the strength of preserved structural connectivity between the frontal and striatal regions. In conclusion, the behavioural effect of citalopram on response inhibition depends on individual differences in prefrontal cortical activation and frontostriatal connectivity. The correlation between disease severity and the effect of citalopram on response inhibition may be due to the progressive loss of forebrain serotonergic projections. These results contribute to a broader understanding of the critical roles of serotonin in regulating cognitive and behavioural control, as well as new strategies for patient stratification in clinical trials of serotonergic treatments in Parkinson’s disease. PMID:24578545

  15. Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced Parkinsonism

    PubMed Central

    Kosaraju, Jayasankar; Chinni, Santhivardhan; Roy, Partha Deb; Kannan, Elango; Antony, A. Shanish; Kumar, M. N. Satish

    2014-01-01

    Objective: The present study investigates the neuroprotective activity of ethanol extract of Tinospora cordifolia aerial parts against 6-hydroxy dopamine (6-OHDA) lesion rat model of Parkinson's disease (PD). Materials and Methods: T. cordifolia ethanol extract (TCEE) was standardized with high performance thin layer chromatography using berberine. Experimental PD was induced by intracerebral injection of 6-OHDA (8 ?g). Animals were divided into five groups: sham operated, negative control, positive control (levodopa 6 mg/kg) and two experimental groups (n = 6/group). Experimental groups received 200 and 400 mg/kg of TCEE once daily for 30 days by oral gavage. Biochemical parameters including dopamine level, oxidative stress, complex I activity and brain iron asymmetry ratio and locomotor activity including skeletal muscle co-ordination and degree of catatonia were assessed. Results: TCEE exhibited significant neuroprotection by increasing the dopamine levels (1.96 ± 0.20 and 2.45 ± 0.40 ng/mg of protein) and complex I activity (77.14 ± 0.89 and 78.50 ± 0.96 nmol/min/mg of protein) at 200 and 400 mg/kg respectively when compared with negative control group. Iron asymmetry ratio was also significantly attenuated by TCEE at 200 (1.57 ± 0.18) and 400 mg/kg (1.11 ± 0.15) when compared with negative control group. Neuroprotection by TCEE was further supported by reduced oxidative stress and restored locomotor activity in treatment groups. Conclusion: Results show that TCEE possess significant neuroprotection in 6-OHDA induced PD by protecting dopaminergic neurons and reducing the iron accumulation. PMID:24741189

  16. Pramipexole-Induced Increased Probabilistic Discounting: Comparison Between a Rodent Model of Parkinson's Disease and Controls

    PubMed Central

    Rokosik, Sandra L; Napier, T Celeste

    2012-01-01

    The dopamine agonist pramipexole (PPX) can increase impulsiveness, and PPX therapy for neurological diseases (Parkinson's disease (PD) and restless leg syndrome) is associated with impulse control disorders (ICDs) in subpopulations of treated patients. A commonly reported ICD is pathological gambling of which risk taking is a prominent feature. Probability discounting is a measurable aspect of risk taking. We recently developed a probability discounting paradigm wherein intracranial self-stimulation (ICSS) serves as the positive reinforcer. Here we used this paradigm to determine the effects of PPX on discounting. We included assessments of a rodent model of PD, wherein 6-OHDA was injected into the dorsolateral striatum of both hemispheres, which produced persistent PD-like deficits in posture adjustment. Rats were trained to perform ICSS-mediated probability discounting, in which PD-like and control groups exhibited similar profiles. Rats were treated twice daily for 2 weeks with 2?mg/kg (±)PPX (ie, 1?mg/kg of the active form), a dose that improved lesion-induced motor deficits. In both groups, (±)PPX increased discounting; preference for the large reinforcer was enhanced 30–45% at the most uncertain probabilities. Tolerance did not develop with repeated treatments. Increased discounting subsided within 2 weeks of (±)PPX cessation, and re-exposure to (±)PPX reinstated heightened discounting. Such findings emulate the clinical scenario; therefore, ICSS for discounting assessments in rats exhibited high face validity. This model should prove useful in medication development where assessment of the propensity of a putative therapy to induce risk-taking behaviors is of interest. PMID:22257895

  17. Neuroprotective effects of aldehyde dehydrogenase 2 activation in rotenone-induced cellular and animal models of parkinsonism

    PubMed Central

    Chiu, Ching-Chi; Yeh, Tu-Hsueh; Lai, Szu-Chia; Wu-Chou, Yah-Huei; Chen, Che-Hong; Mochly-Rosen, Daria; Huang, Yin-Cheng; Chen, Yu-Jie; Chen, Chao-Lang; Chang, Ya-Ming; Wang, Hung-Li; Lu, Chin-Song

    2015-01-01

    Many studies have shown that mitochondrial aldehyde dehydrogenase 2 (ALDH2) functions as a cellular protector against oxidative stress by detoxification of cytotoxic aldehydes. Within dopaminergic neurons, dopamine is metabolized by monoamine oxidase to yield 3,4-dihydroxyphenylacetaldehyde (DOPAL) then converts to a less toxic acid product by ALDH. The highly toxic and reactive DOPAL has been hypothesized to contribute to the selective neurodegeneration in Parkinson’s disease (PD). In this study, we investigated the neuroprotective mechanism and therapeutic effect of ALDH2 in rotenone models for parkinsonism. Overexpression of wild-type ALDH2 gene, but not the enzymatically deficient mutant ALDH2*2 (E504K), reduced rotenone-induced cell death. Application of a potent activator of ALDH2, Alda-1, was effective in protecting against rotenone-induced apoptotic cell death in both SH-SY5Y cells and primary cultured substantia nigra (SN) dopaminergic neurons. In addition, intraperitoneal administration of Alda-1 significantly reduced rotenone- or MPTP-induced death of SN tyrosine hydroxylase (TH)-positive dopaminergic neurons. The attenuation of rotenone-induced apoptosis by Alda-1 resulted from decreasing ROS accumulation, reversal of mitochondrial membrane potential depolarization, and inhibition of activation of proteins related to mitochondrial apoptotic pathway. The present study demonstrates that ALDH2 plays a crucial role in maintaining normal mitochondrial function to protect against neurotoxicity and that Alda-1 is effective in ameliorating mitochondrial dysfunction and inhibiting mitochondria-mediated apoptotic pathway. These results indicate that ALDH2 activation could be a neuroprotective therapy for PD. PMID:25263579

  18. Overground robot assisted gait trainer for the treatment of drug-resistant freezing of gait in Parkinson disease.

    PubMed

    Pilleri, Manuela; Weis, Luca; Zabeo, Letizia; Koutsikos, Konstantinos; Biundo, Roberta; Facchini, Silvia; Rossi, Simonetta; Masiero, Stefano; Antonini, Angelo

    2015-08-15

    Freezing of Gait (FOG) is a frequent and disabling feature of Parkinson disease (PD). Gait rehabilitation assisted by electromechanical devices, such as training on treadmill associated with sensory cues or assisted by gait orthosis have been shown to improve FOG. Overground robot assisted gait training (RGT) has been recently tested in patients with PD with improvement of several gait parameters. We here evaluated the effectiveness of RGT on FOG severity and gait abnormalities in PD patients. Eighteen patients with FOG resistant to dopaminergic medications were treated with 15 sessions of RGT and underwent an extensive clinical evaluation before and after treatment. The main outcome measures were FOG questionnaire (FOGQ) global score and specific tasks for gait assessment, namely 10 meter walking test (10 MWT), Timed Up and Go test (TUG) and 360° narrow turns (360 NT). Balance was also evaluated through Fear of Falling Efficacy Scale (FFES), assessing self perceived stability and Berg Balance Scale (BBS), for objective examination. After treatment, FOGQ score was significantly reduced (P=0.023). We also found a significant reduction of time needed to complete TUG, 10 MWT, and 360 NT (P=0.009, 0.004 and 0.04, respectively). By contrast the number of steps and the number of freezing episodes recorded at each gait task did not change. FFES and BBS scores also improved, with positive repercussions on performance on daily activity and quality of life. Our results indicate that RGT is a useful strategy for the treatment of drug refractory FOG. PMID:26048047

  19. An update on risk factors for drug-induced arrhythmias.

    PubMed

    Vlachos, Konstantinos; Georgopoulos, Stamatis; Efremidis, Michael; Sideris, Antonios; Letsas, Konstantinos P

    2016-01-01

    A variety of drugs, either anti-arrhythmics or non-antiarrhythmics, have been associated with drug-induced arrhythmias. Drug-induced arrhythmias are usually observed in the presence of long QT interval or Brugada electrocardiographic pattern. Clinical risk factors, such as female gender, structural heart disease, metabolic and electrolyte abnormalities, bradycardia and conduction disease, increased drug bioavailability, and silent channelopathies act as ''effect amplifiers'' which can make an otherwise relatively safe drug dangerous with regard to risk for polymorphic ventricular tachycardia in the setting of QT interval prolongation. A drug-induced type 1 electrocardiographic pattern of Brugada syndrome is considered highly proarrhythmic. Specific electrocardiographic markers including the corrected QT interval, QRS duration, Tpeak-Tend/QT ratio, and others may predict the risk of arrhythmias in both situations. The present review highlights on the current clinical and electrocardiographic risk factors for prediction of drug-induced arrhythmias. PMID:26460585

  20. Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson's disease phenotype in the mouse.

    PubMed

    Singhal, Naveen Kumar; Srivastava, Garima; Patel, Devendra Kumar; Jain, Swatantra Kumar; Singh, Mahendra Pratap

    2011-03-01

    Oxidative stress is reported as one of the most widely accepted mechanisms of maneb (MB)- and paraquat (PQ)-induced nigrostriatal dopaminergic neurodegeneration leading to the Parkinson's disease (PD) phenotype. The study investigated the effects of silymarin, an antioxidant of plant origin, and melatonin, an indoleamine produced in all species, in MB- and PQ-induced mouse model of PD. The mice were treated intraperitoneally daily with silymarin (40mg/kg) or melatonin (30mg/kg) along with respective controls for 9wk. Subsets of these animals were also treated with MB (30mg/kg) and PQ (10mg/kg), twice a week, for 9wk, 2hr after silymarin/melatonin treatment. Locomotor activities along with striatal dopamine content, tyrosine hydroxylase (TH) immunoreactivity, number of degenerating neurons, lipid peroxidation and nitrite content were estimated. Additionally, mRNA expression of vesicular monoamine transporter, cytochrome P-450 2E1 (CYP2E1), and glutathione-S-transferase A4-4 (GSTA4-4), catalytic activities of CYP2E1 and GSTA4-4 and protein expressions of unphosphorylated and phosphorylated p53 (p53 and P-p53), Bax and caspase 9 were measured in control and MB- and PQ-treated mice with either silymarin or melatonin treatments. Silymarin/melatonin significantly offset MB- and PQ-mediated reductions in locomotor activities, dopamine content, TH immunoreactivity, VMAT 2 mRNA expression and the expression of p53 protein. Silymarin/melatonin attenuated the increases in lipid peroxidation, number of degenerating neurons, nitrite content, mRNA expressions of cytochrome P-450 2E1 (CYP2E1) and GSTA4-4, catalytic activities of CYP2E1 and GST and P-p53, Bax and caspase 9 protein expressions. The results demonstrate that silymarin and melatonin offer nigrostriatal dopaminergic neuroprotection against MB- and PQ-induced PD by the modulation of oxidative stress and apoptotic machinery. PMID:20964710

  1. Drug-induced immune hemolytic anemia

    MedlinePLUS

    Immune hemolytic anemia secondary to drugs; Anemia - immune hemolytic - secondary to drugs ... In some cases, a drug can cause the immune system to mistake your own red blood cells for foreign substances. The body responds by making ...

  2. Myalgias and Myopathies: Drug-Induced Myalgias and Myopathies.

    PubMed

    Holder, Kathryn

    2016-01-01

    Drugs can cause myalgias and myopathies through a variety of mechanisms. Most drug-induced myopathies are potentially reversible if recognized early. Prescribers should be familiar with common drug-induced myopathies and drug-drug interactions. Clinical presentations can be subacute or acute, ranging from benign muscle pain with mild elevations of serum creatine kinase to fulminant rhabdomyolysis with high creatine kinase levels and potentially life-threatening acute kidney injury. Myalgias and proximal muscle weakness are typical symptoms; onset can be weeks to months after drug exposure. Endocrine disorders and inflammatory etiologies should be excluded because their management may differ from that of drug-induced myopathies. Statin drugs are prescribed widely, and statin-induced myopathy is one of the most commonly recognized and studied myopathies. Risk factors include dose and type of statin prescribed, older age, female sex, genetic predisposition, and concomitant use of other drugs metabolized by the cytochrome P450 system. Glucocorticoids, immunologic drugs, and antimicrobials, as well as other drugs and alcohol, can cause myopathies. Management typically involves discontinuing the drug and switching to an alternative drug or considering an alternative dosing schedule. Referral to a neuromuscular subspecialist is warranted if symptoms persist. PMID:26734833

  3. [Cytokines level in patients with drug-induced jaw necrosis].

    PubMed

    Ivaniushko, T P; Gankovskaia, L V; Kartashov, D D; Basin, E M; Balykin, R A

    2014-01-01

    The study included 15 patients with purulent inflammatory diseases of maxillofacial area and 25 patients with facial bone necrosis induced by synthetic drugs. Pro- and anti-inflammatory cytokines levels in saliva and wound fluid were analyzed in two groups. The results proved cytokines to play important role in jaw necrosis induced by drugs containing red phosphorus. PMID:24990783

  4. Adverse outcome pathways and drug-induced liver injury testing

    PubMed Central

    Vinken, Mathieu

    2015-01-01

    Drug-induced liver injury is a prominent reason for premarketing and postmarketing drug withdrawal and can be manifested in a number of ways, such as cholestasis, steatosis and fibrosis. The mechanisms driving these toxicological processes have been well characterized and have been emdedded in adverse outcome pathway frameworks in recent years. This paper reviews these constructs and simultaneously illustrates their use in the preclinical testing of drug-induced liver injury. PMID:26119269

  5. Identification of Drugs Inducing Phospholipidosis by Novel in vitro Data

    PubMed Central

    Muehlbacher, Markus; Tripal, Philipp; Roas, Florian; Kornhuber, Johannes

    2012-01-01

    Drug-induced phospholipidosis (PLD) is a lysosomal storage disorder characterized by the accumulation of phospholipids within the lysosome. This adverse drug effect can occur in various tissues and is suspected to impact cellular viability. Therefore, it is important to test chemical compounds for their potential to induce PLD during the drug design process. PLD has been reported to be a side effect of many commonly used drugs, especially those with cationic amphiphilic properties. To predict drug-induced PLD in silico, we established a high-throughput cell-culture-based method to quantitatively determine the induction of PLD by chemical compounds. Using this assay, we tested 297 drug-like compounds at two different concentrations (2.5 ?m and 5.0 ?m). We were able to identify 28 previously unknown PLD-inducing agents. Furthermore, our experimental results enabled the development of a binary classification model to predict PLD-inducing agents based on their molecular properties. This random forest prediction system yields a bootstrapped validated accuracy of 86 %. PLD-inducing agents overlap with those that target similar biological processes; a high degree of concordance with PLD-inducing agents was identified for cationic amphiphilic compounds, small molecules that inhibit acid sphingomyelinase, compounds that cross the blood–brain barrier, and compounds that violate Lipinski’s rule of five. Furthermore, we were able to show that PLD-inducing compounds applied in combination additively induce PLD. PMID:22945602

  6. Clinically silent idiopathic Parkinson's disease unmasked by valproate use: a brief report.

    PubMed

    Athauda, Dilan; Batley, Robert; Ellis, Catherine

    2015-06-01

    Valproate is an important but uncommon cause of drug induced parkinsonism in the elderly. The development of symptoms after valproate onset is unpredictable, and severity of symptoms is unrelated to plasma levels. However, though the majority of cases improve after drug cessation, parkinsonian symptoms can persist and should prompt investigation into underlying degenerative parkinsonism, as valproate can unmask idiopathic Parkinson's disease in susceptible individuals. This case describes a patient on chronic valproate therapy developing a severely disabling akinetic-rigid syndrome, only partially reversed on stopping valproate. We hypothesise that an increase in valproate dosage unmasked clinically silent Parkinson's disease. The patient made an excellent recovery following cessation of valproate and commencement of dopaminergic therapy. PMID:25365950

  7. Differences between Drug-Induced and Contrast Media-Induced Adverse Reactions Based on Spontaneously Reported Adverse Drug Reactions

    PubMed Central

    Suh, JinUk; Yang, MyungSuk; Kang, WonKu; Kim, EunYoung

    2015-01-01

    Objective We analyzed differences between spontaneously reported drug-induced (not including contrast media) and contrast media-induced adverse reactions. Methods Adverse drug reactions reported by an in-hospital pharmacovigilance center (St. Mary’s teaching hospital, Daejeon, Korea) from 2010–2012 were classified as drug-induced or contrast media-induced. Clinical patterns, frequency, causality, severity, Schumock and Thornton’s preventability, and type A/B reactions were recorded. The trends among causality tools measuring drug and contrast-induced adverse reactions were analyzed. Results Of 1,335 reports, 636 drug-induced and contrast media-induced adverse reactions were identified. The prevalence of spontaneously reported adverse drug reaction-related admissions revealed a suspected adverse drug reaction-reporting rate of 20.9/100,000 (inpatient, 0.021%) and 3.9/100,000 (outpatients, 0.004%). The most common adverse drug reaction-associated drug classes included nervous system agents and anti-infectives. Dermatological and gastrointestinal adverse drug reactions were most frequently and similarly reported between drug and contrast media-induced adverse reactions. Compared to contrast media-induced adverse reactions, drug-induced adverse reactions were milder, more likely to be preventable (9.8% vs. 1.1%, p < 0.001), and more likely to be type A reactions (73.5% vs. 18.8%, p < 0.001). Females were over-represented among drug-induced adverse reactions (68.1%, p < 0.001) but not among contrast media-induced adverse reactions (56.6%, p = 0.066). Causality patterns differed between the two adverse reaction classes. The World Health Organization–Uppsala Monitoring Centre causality evaluation and Naranjo algorithm results significantly differed from those of the Korean algorithm version II (p < 0.001). Conclusions We found differences in sex, preventability, severity, and type A/B reactions between spontaneously reported drug and contrast media-induced adverse reactions. The World Health Organization–Uppsala Monitoring Centre and Naranjo algorithm causality evaluation afforded similar results. PMID:26544039

  8. Antitubercular drug-induced violent suicide of a hospitalised patient

    PubMed Central

    Behera, C; Krishna, Karthik; Singh, H R

    2014-01-01

    We present a case where a young adult male, on treatment for multidrug-resistance tuberculosis (MDR-TB), developed drug-induced psychosis. The psychiatric symptoms were ascribed to the anti-TB drug and were duly withdrawn by the treating doctors and supplemented with other drugs. However, the victim continued to have psychiatric symptoms and committed suicide in the hospital. He ended his life in a violent manner by stabbing and cutting himself with a kitchen knife. The case is briefly reported in this paper with a discussion on anti-TB drug-induced psychiatric effects leading to suicide. PMID:24395874

  9. Antitubercular drug-induced violent suicide of a hospitalised patient.

    PubMed

    Behera, C; Krishna, Karthik; Singh, H R

    2014-01-01

    We present a case where a young adult male, on treatment for multidrug-resistance tuberculosis (MDR-TB), developed drug-induced psychosis. The psychiatric symptoms were ascribed to the anti-TB drug and were duly withdrawn by the treating doctors and supplemented with other drugs. However, the victim continued to have psychiatric symptoms and committed suicide in the hospital. He ended his life in a violent manner by stabbing and cutting himself with a kitchen knife. The case is briefly reported in this paper with a discussion on anti-TB drug-induced psychiatric effects leading to suicide. PMID:24395874

  10. Non-toxic concentrations of ?-synuclein exacerbate Parkinson's disease-like cell death by inducing mitochondrial dysfunction 

    E-print Network

    Williamson, Sally Joanne Mary

    2008-01-01

    ?-Synuclein (?-syn), is a self-aggregating protein that has been identified as a pathologically important component in a number of diseases, such as Parkinson’s disease (PD). PD, a progressive neurological disorder ...

  11. Higher iron in the red nucleus marks Parkinson’s dyskinesia

    PubMed Central

    Lewis, Mechelle M.; Du, Guangwei; Kidacki, Michal; Patel, Nisargkumar; Shaffer, Michele L.; Mailman, Richard B.; Huang, Xuemei

    2012-01-01

    Dopamine cell loss and increased iron in the substantia nigra (SN) characterize Parkinson’s disease (PD), with cerebellar involvement increasingly recognized, particularly in motor compensation and levodopa-induced-dyskinesia (LID) development. Because the red nucleus (RN) mediates cerebellar circuitry, we hypothesized that RN iron changes may reflect cerebellum-related compensation, and/or the intrinsic capacity for LID development. We acquired high resolution MRI images from 23 Controls and 38 PD subjects [12 with (PD+DYS) and 26 without (PD?DYS) LID history]. Iron content was estimated from bilateral RN and SN transverse relaxation rates (R2*). PD subjects overall displayed higher R2* values in both the SN and RN. RN R2* values correlated with off-drug Unified Parkinson’s Disease Rating Scale-motor scores, but not disease duration or drug dosage. RN R2* values were significantly higher in PD+DYS subjects compared to Controls and PD?DYS; Controls and PD?DYS did not differ. The association of higher RN iron content with PD-related dyskinesia suggests increased iron content is involved in, or reflects, greater cerebellar compensatory capacity and thus increased likelihood of LID development. PMID:23177595

  12. Parkinson’s Disease

    PubMed Central

    Boyd, James T.; Hamill, Robert W.; Maguire-Zeiss, Kathleen A.

    2015-01-01

    Parkinson’s disease (PD) is the most common age-related motoric neurodegenerative disease initially described in the 1800’s by James Parkinson as the ‘Shaking Palsy’. Loss of the neurotransmitter dopamine was recognized as underlying the pathophysiology of the motor dysfunction; subsequently discovery of dopamine replacement therapies brought substantial symptomatic benefit to PD patients. However, these therapies do not fully treat the clinical syndrome nor do they alter the natural history of this disorder motivating clinicians and researchers to further investigate the clinical phenotype, pathophysiology/pathobiology and etiology of this devastating disease. Although the exact cause of sporadic PD remains enigmatic studies of familial and rare toxicant forms of this disorder have laid the foundation for genome wide explorations and environmental studies. The combination of methodical clinical evaluation, systematic pathological studies and detailed genetic analyses have revealed that PD is a multifaceted disorder with a wide-range of clinical symptoms and pathology that include regions outside the dopamine system. One common thread in PD is the presence of intracytoplasmic inclusions that contain the protein, ?-synuclein. The presence of toxic aggregated forms of ?-synuclein (e.g., amyloid structures) are purported to be a harbinger of subsequent pathology. In fact, PD is both a cerebral amyloid disease and the most common synucleinopathy, that is, diseases that display accumulations of ?-synuclein. Here we present our current understanding of PD etiology, pathology, clinical symptoms and therapeutic approaches with an emphasis on misfolded ?-synuclein. PMID:23225012

  13. Proposed Motor Scoring System in a Porcine Model of Parkinson's Disease induced by Chronic Subcutaneous Injection of MPTP

    PubMed Central

    Moon, Joon Ho; Kim, Ji Ho; Im, Hyung-Jun; Lee, Dong Soo; Park, Eun Jung; Song, Kilyoung; Oh, Hyun Ju; Hyun, Su Bin; Kang, Sang Chul; Kim, Hyunil; Moon, Hyo Eun; Park, Hyung Woo; Lee, Hong Jae; Kim, Eun Ji; Kim, Seokjoong

    2014-01-01

    Destruction of dopaminergic neurons in the substantia nigra pars compacta (SNpc) is a common pathophysiology of Parkinson's disease (PD). Characteristics of PD patients include bradykinesia, muscle rigidity, tremor at rest and disturbances in balance. For about four decades, PD animal models have been produced by toxin-induced or gene-modified techniques. However, in mice, none of the gene-modified models showed all 4 major criteria of PD. Moreover, distinguishing between PD model pigs and normal pigs has not been well established. Therefore, we planned to produce a pig model for PD by chronic subcutaneous administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), neurotoxin. Changes in behavioral patterns of pigs were thoroughly evaluated and a new motor scoring system was established for this porcine model that was based on the Unified Parkinson's Disease Rating Scale (UPDRS) in human PD patients. In summary, this motor scoring system could be helpful to analyze the porcine PD model and to confirm the pathology prior to further examinations, such as positron emission tomography-computed tomography (PET-CT), which is expensive, and invasive immunohistochemistry (IHC) of the brain. PMID:25258574

  14. Neuroprotective and antidepressant-like effects of melatonin in a rotenone-induced Parkinson's disease model in rats.

    PubMed

    Bassani, Taysa B; Gradowski, Raisa W; Zaminelli, Tiago; Barbiero, Janaína K; Santiago, Ronise M; Boschen, Suelen L; da Cunha, Claudio; Lima, Marcelo M S; Andreatini, Roberto; Vital, Maria A B F

    2014-12-17

    Parkinson?s disease (PD) is a neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Systemic and intranigral exposure to rotenone in rodents reproduces many of the pathological and behavioral features of PD in humans and thus has been used as an animal model of the disease. Melatonin is a neurohormone secreted by the pineal gland, which has several important physiological functions. It has been reported to be neuroprotective in some animal models of PD. The present study investigated the effects of prolonged melatonin treatment in rats previously exposed to rotenone. The animals were intraperitoneally treated for 10 days with rotenone (2.5mg/kg) or its vehicle. 24h later, they were intraperitoneally treated with melatonin (10mg/kg) or its vehicle for 28 days. One day after the last rotenone exposure, the animals exhibited hypolocomotion in the open field test, which spontaneously reversed at the last motor evaluation. We verified that prolonged melatonin treatment after dopaminergic lesion did not alter motor function but produced antidepressant-like effects in the forced swim test, prevented the rotenone-induced reduction of striatal dopamine, and partially prevented tyrosine hydroxylase immunoreactivity loss in the SNpc. Our results indicate that melatonin exerts neuroprotective and antidepressant-like effects in the rotenone model of PD. PMID:25301688

  15. An In Vivo Microdialysis Study of FLZ Penetration through the Blood-Brain Barrier in Normal and 6-Hydroxydopamine Induced Parkinson's Disease Model Rats

    PubMed Central

    Hou, Jinfeng; Liu, Qian; Li, Yingfei; Sun, Hua; Zhang, Jinlan

    2014-01-01

    FLZ (N-[2-(4-hydroxy-phenyl)-ethyl]-2-(2,5-dimethoxy-phenyl)-3-(3-methoxy-4-hydroxy-phenyl)-acrylamide) is a novel synthetic squamosamide derivative and a potential anti-Parkinson's disease (PD) agent. The objective of the present study was to investigate the penetration of free FLZ across the BBB and the effects of P-gp inhibition on FLZ transport in normal and 6-hydroxydopamine (6-OHDA) induced PD model rats. In vivo microdialysis was used to collect FLZ containing brain and blood dialysates following intravenous (i.v.) drug administration either with or without pretreatment with the specific P-gp inhibitor, zosuquidar trihydrochloride (zosuquidar·3HCl). A sensitive, rapid, and reliable ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique was developed and validated to quantitate free FLZ levels in the dialysates. No significant differences were observed in the brain/blood FLZ area under the concentration-time curve (AUC) ratio between normal and PD model rats. However, pretreatment with zosuquidar·3HCl markedly increased the AUC ratio in both rat models. In addition, FLZ penetration was similar in zosuquidar·3HCl-pretreated normal and PD rats. These results suggest that P-gp inhibition increases BBB permeability to FLZ, thereby supporting the hypothesis that P-gp normally restricts FLZ transfer to the brain. These findings could provide reference data for future clinical trials and may aid investigation of the BBB permeability of other CNS-active substances. PMID:25045708

  16. Chronic liver injury induced by drugs: a systematic review.

    PubMed

    Stine, Jonathan G; Chalasani, Naga

    2015-11-01

    To examine the available literature and summarize what is known about chronic drug-induced liver injury. We reviewed PubMed/MEDLINE through March 2015. We developed a MEDLINE search strategy using PubMed medical subject heading terms chronic liver injury, hepatotoxicity, drug-induced liver injury, cirrhosis and chronic liver disease. We reviewed the reference list of included articles to identify articles missed in the database search. Chronic liver injury from drugs is more common than once thought with prevalence as high as 18% based on large national registries. Patients with cholestatic injury, age ?65 years, and a long latency period (>365 days) are at increased risk. Of the most common drugs associated with drug-induced liver injury, antibiotics (amoxicillin-clavulanic acid, trimethoprim-sulfamethoxazole, azithromycin) are most likely to cause chronic injury. The presence of autoantibodies is common with chronic DILI, however, it is not diagnostic nor is it specific to autoimmune-like drug-induced liver injury. Immunosuppressive therapy may be necessary for individual cases of autoimmune-like drug-induced liver injury where cessation of the drug alone does not result in resolution of injury, however, the lowest dose should be used for the shortest duration with careful attention to the development of side effects. The effectiveness of treament of cholestatic liver injury with corticosteroids or ursodiol remains unclear. Cases of drug-induced fatty liver, nodular regenerative hyperplasia and peliosis hepatitis are less common subtypes of chronic drug-induced liver injury that deserve special consideration. A high degree of clinical suspicion is required for the diagnosis of chronic drug-induced liver injury and should be suspected in any patient with liver associated enzyme abnormalities that persist out past 6 months of initial presentation. Treatment with drug removal and/or immunosuppressive therapy appears to be effective for the majority of cases. More study into pharmacogenomics and personalized medicine may aid in predicting which patients will go on to develop chronic drug-induced liver injury. PMID:26346512

  17. Cell Reports Fungicidal Drugs Induce a Common

    E-print Network

    Collins, James J.

    different drug classes that can effectively kill planktonic yeast, yet their com- plete fungicidal. albicans is altered by antifungal drug treatment, exhibiting a shift from fermentation to respiration of systemic fungal infec- tions. Despite current treatment options, the morbidity and mor- tality rates

  18. Drug-induced hyperthermic syndromes: part I. Hyperthermia in overdose.

    PubMed

    Hayes, Bryan D; Martinez, Joseph P; Barrueto, Fermin

    2013-11-01

    Drugs and natural compounds that affect the thermoregulatory system can induce or contribute to hyperthermia when used in excess. Hyperthermia associated with drug overdose is dangerous and potentially lethal. This article reviews the body's process of maintaining thermodynamic equilibrium, and describes the mechanisms by which it is influenced by sympathomimetic and anticholinergic drugs, salicylates, and thyroid replacement medications. Appropriate treatment strategies such as cooling and the administration of counteractive medications are discussed. PMID:24176476

  19. Drug-induced impairment of renal function

    PubMed Central

    Pazhayattil, George Sunny; Shirali, Anushree C

    2014-01-01

    Pharmaceutical agents provide diagnostic and therapeutic utility that are central to patient care. However, all agents also carry adverse drug effect profiles. While most of these are clinically insignificant, some drugs may cause unacceptable toxicity that impacts negatively on patient morbidity and mortality. Recognizing adverse effects is important for administering appropriate drug doses, instituting preventive strategies, and withdrawing the offending agent due to toxicity. In the present article, we will review those drugs that are associated with impaired renal function. By focusing on pharmaceutical agents that are currently in clinical practice, we will provide an overview of nephrotoxic drugs that a treating physician is most likely to encounter. In doing so, we will summarize risk factors for nephrotoxicity, describe clinical manifestations, and address preventive and treatment strategies. PMID:25540591

  20. Drug-Induced Ocular Hypertension and Angle-Closure Glaucoma.

    PubMed

    Badhu, Badri P; Bhattarai, Balkrishna; Sangraula, Himal P

    2013-01-01

    The objective of this study was to review the available literature on the drugs causing ocular hypertension and glaucoma. Electronic literature search was carried out using the Web sites www.pubmed.gov and www.google.com published through the year 2011. The search words were "drug induced ocular hypertension" and "drug induced glaucoma" used in combination. The articles published or translated into English were studied. Quite a significant number of drugs commonly prescribed by various physicians of different specialties can induce ocular hypertension or glaucoma. A brief account of various drugs that can induce ocular hypertension has been given in this article. Those drugs are parasympatholytics; steroids; anticholinergics, adrenergics, and antidepressants; cholinomimetics; antineoplastic agents; antipsychotic and antiparkinsonism agents; H1 and H2 receptor blockers; botulinum toxin, cardiac agents, and anticoagulants; silicone oil; sulfa drugs; and anesthetic agents. Rational use of these drugs and knowledge of their potential adverse effects can help prevent the devastating complications resulting in loss of vision and compromised quality of life. PMID:26108110

  1. In silico modeling to predict drug-induced phospholipidosis

    SciTech Connect

    Choi, Sydney S.; Kim, Jae S.; Valerio, Luis G. Sadrieh, Nakissa

    2013-06-01

    Drug-induced phospholipidosis (DIPL) is a preclinical finding during pharmaceutical drug development that has implications on the course of drug development and regulatory safety review. A principal characteristic of drugs inducing DIPL is known to be a cationic amphiphilic structure. This provides evidence for a structure-based explanation and opportunity to analyze properties and structures of drugs with the histopathologic findings for DIPL. In previous work from the FDA, in silico quantitative structure–activity relationship (QSAR) modeling using machine learning approaches has shown promise with a large dataset of drugs but included unconfirmed data as well. In this study, we report the construction and validation of a battery of complementary in silico QSAR models using the FDA's updated database on phospholipidosis, new algorithms and predictive technologies, and in particular, we address high performance with a high-confidence dataset. The results of our modeling for DIPL include rigorous external validation tests showing 80–81% concordance. Furthermore, the predictive performance characteristics include models with high sensitivity and specificity, in most cases above ? 80% leading to desired high negative and positive predictivity. These models are intended to be utilized for regulatory toxicology applied science needs in screening new drugs for DIPL. - Highlights: • New in silico models for predicting drug-induced phospholipidosis (DIPL) are described. • The training set data in the models is derived from the FDA's phospholipidosis database. • We find excellent predictivity values of the models based on external validation. • The models can support drug screening and regulatory decision-making on DIPL.

  2. Symptoms of Parkinson's

    MedlinePLUS

    ... Patient Advocates Sign Up for Funding News npj Parkinson's Disease Scientific Advisory Board Understanding Parkinson's Coping with a Diagnosis What is Parkinson’s Disease? National HelpLine Educational Publications Online Seminars Parkinson's News ...

  3. What Is Parkinson's Disease?

    MedlinePLUS

    ... National HelpLine Educational Publications Online Seminars Parkinson's News Parkinson's HelpLine Learn More Educational Materials Do you want ... resources & more. Order Free Materials Today What is Parkinson’s Disease? Parkinson's disease (PD) is a chronic and ...

  4. Drug-Induced Epigenetic Changes Produce Drug Tolerance

    E-print Network

    Atkinson, Nigel

    sedation with the anesthetic benzyl alcohol generates a spatiotemporal pattern of histone H4 acetylation sites for the CREB transcription factor. Chromatin immunoprecipitation assays show that benzyl alcohol-negative transgene blocks benzyl alcohol­induced changes in histone acetylation within the slo promoter region, slo

  5. Adalimumab-induced lichenoid drug eruption.

    PubMed

    El Habr, Constantin; Meguerian, Zarouwi; Sammour, Rita

    2014-01-01

    Tumor necrosis factor (TNF)-? inhibitors are being widely and increasingly used for the management of a spectrum of rheumatologic diseases that are refractory to conventional disease modifying anti-rheumatic drugs. Various cutaneous side effects have been reported after treatment with TNF-? inhibitors. We present a case report of a 26-year-old male patient who developed a lichenoid drug eruption few months after the initiation of adalimumab for the management of Crohn's disease. We also highlight the clinical and histopathologic differences between lichenoid drug eruptions and idiopathic lichen planus. PMID:25807724

  6. Biochanin A protects dopaminergic neurons against lipopolysaccharide-induced damage and oxidative stress in a rat model of Parkinson's disease.

    PubMed

    Wang, Jun; He, Can; Wu, Wang-Yang; Chen, Feng; Wu, Yang-Yang; Li, Wei-Zu; Chen, Han-Qing; Yin, Yan-Yan

    2015-11-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease, which is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Accumulated evidences have suggested that oxidative stress is closely associated with the dopaminergic neurodegeneration of PD that can be protected by antioxidants. Biochanin A that is an O-methylated isoflavone in chickpea is investigated to explore its protective mechanism on dopaminergic neurons of the unilateral lipopolysaccharide (LPS)-injected rat. The results showed that biochanin A significantly improved the animal model's behavioral symptoms, prevented the loss of dopaminergic neurons and inhibited the deleterious microglia activation in the LPS-induced rats. Moreover, biochanin A inhibited nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) activation and malondialdehyde (MDA) production, increased superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities in the rat brain. These results suggested that biochanin A might be a natural candidate with protective properties on dopaminergic neurons against the PD. PMID:26394281

  7. A single intramuscular injection of rAAV-mediated mutant erythropoietin protects against MPTP-induced parkinsonism

    PubMed Central

    Dhanushkodi, A.; Akano, E. O.; Roguski, E. E.; Xue, Y.; Rao, S. K.; Matta, S. G.; Rex, T. S.; McDonald, M. P.

    2015-01-01

    Erythropoietin (Epo) is neuroprotective in a number of preparations, but can lead to unacceptably high and even lethal hematocrit levels. Recent reports show that modified Epo variants confer neuroprotection in models of glaucoma and retinal degeneration without raising hematocrit. In this study, neuroprotective effects of two Epo variants (EpoR76E and EpoS71E) were assessed in a model of Parkinson’s disease. The constructs were packaged in recombinant adeno-associated viral (rAAV) vectors and injected intramuscularly. After 3 weeks, mice received five daily injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and were killed 5 weeks later. The MPTP-lesioned mice pretreated with rAAV.eGFP (negative control) exhibited a 7- to 9-Hz tremor and slower latencies to move on a grid test (akinesia). Both of these symptomatic features were absent in mice pretreated with either modified Epo construct. The rAAV.eGFP-treated mice lesioned with MPTP exhibited a 41% reduction in tyrosine hydroxylase (TH)-positive neurons in the substantia nigra. The rAAV.EpoS71E construct did not protect nigral neurons, but neuronal loss in mice pretreated with rAAV.EpoR76E was only half that of rAAV.eGFP controls. Although dopamine levels were normal in all groups, 3,4-dihydroxyphenylacetic acid (DOPAC) was significantly reduced only in MPTP-lesioned mice pre-treated with rAAV.eGFP, indicating reduced dopamine turnover. Analysis of TH-positive fibers in the striatum showed normalized density in MPTP-lesioned mice pretreated with rAAV.EpoS71E, suggesting that enhanced sprouting induced by EpoS71E may have been responsible for normal behavior and dopaminergic tone in these mice. These results show that systemically administered rAAV-generated non-erythropoietic Epo may protect against MPTP-induced parkinsonism by a combination of neuroprotection and enhanced axonal sprouting. PMID:23190369

  8. Targeted drug induces responses in aggressive lymphomas

    Cancer.gov

    Preliminary results from clinical trials in a subtype of lymphoma show that for a number of patients whose disease was not cured by other treatments, the drug ibrutinib can provide significant anti-cancer responses with modest side effects.

  9. Research Report Drug-Induced Amnesia Hurts

    E-print Network

    Reder, Lynne

    Sauer3 1 Psychology Department, Carnegie Mellon University; 2 Department of Anesthesia, University of Pittsburgh; and 3 Nurse Anesthesia Program, University of Pittsburgh ABSTRACT--Midazolam is a drug

  10. Ursodeoxycholic acid induced generalized fixed drug eruption.

    PubMed

    Ozkol, Hatice Uce; Calka, Omer; Dulger, Ahmet Cumhur; Bulut, Gulay

    2014-09-01

    Fixed drug eruption (FDE) is a rare form of drug allergies that recur at the same cutaneous or mucosal site in every usage of drug. Single or multiple round, sharply demarcated and dusky red plaques appear soon after drug exposure. Ursodeoxycholic acid (UDCA: 3?,7?-dihydroxy-5?-cholanic acid) is used for the treatment of cholestatic liver diseases. Some side effects may be observed, such as diarrhea, dyspepsia, pruritus and headaches. We encountered only three cases of lichenoid reaction regarding the use of UDCA among previous studies. In this article, we reported a generalized FDE case related to UDCA intake in a 59-year-old male patient with cholestasis for the first time in the literature. PMID:24147950

  11. Systems biology analysis of the proteomic alterations induced by MPP(+), a Parkinson's disease-related mitochondrial toxin.

    PubMed

    Monti, Chiara; Bondi, Heather; Urbani, Andrea; Fasano, Mauro; Alberio, Tiziana

    2015-01-01

    Parkinson's disease (PD) is a complex neurodegenerative disease whose etiology has not been completely characterized. Many cellular processes have been proposed to play a role in the neuronal damage and loss: defects in the proteosomal activity, altered protein processing, increased reactive oxygen species burden. Among them, the involvement of a decreased activity and an altered disposal of mitochondria is becoming more and more evident. The mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP(+)), an inhibitor of complex I, has been widely used to reproduce biochemical alterations linked to PD in vitro and its precursor, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP), to induce a Parkinson-like syndrome in vivo. Therefore, we performed a meta-analysis of the literature of all the proteomic investigations of neuronal alterations due to MPP(+) treatment and compared it with our results obtained with a mitochondrial proteomic analysis of SH-SY5Y cells treated with MPP(+). By using open-source bioinformatics tools, we identified the biochemical pathways and the molecular functions mostly affected by MPP(+), i.e., ATP production, the mitochondrial unfolded stress response, apoptosis, autophagy, and, most importantly, the synapse funcionality. Eventually, we generated protein networks, based on physical or functional interactions, to highlight the relationships among the molecular actors involved. In particular, we identified the mitochondrial protein HSP60 as the central hub in the protein-protein interaction network. As a whole, this analysis clarified the cellular responses to MPP(+), the specific mitochondrial proteome alterations induced and how this toxic model can recapitulate some pathogenetic events of PD. PMID:25698928

  12. Drug Induced Steatohepatitis: An Uncommon Culprit of a Common Disease

    PubMed Central

    Rabinowich, Liane; Shibolet, Oren

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a leading cause of liver disease in developed countries. Its frequency is increasing in the general population mostly due to the widespread occurrence of obesity and the metabolic syndrome. Although drugs and dietary supplements are viewed as a major cause of acute liver injury, drug induced steatosis and steatohepatitis are considered a rare form of drug induced liver injury (DILI). The complex mechanism leading to hepatic steatosis caused by commonly used drugs such as amiodarone, methotrexate, tamoxifen, valproic acid, glucocorticoids, and others is not fully understood. It relates not only to induction of the metabolic syndrome by some drugs but also to their impact on important molecular pathways including increased hepatocytes lipogenesis, decreased secretion of fatty acids, and interruption of mitochondrial ?-oxidation as well as altered expression of genes responsible for drug metabolism. Better familiarity with this type of liver injury is important for early recognition of drug hepatotoxicity and crucial for preventing severe forms of liver injury and cirrhosis. Moreover, understanding the mechanisms leading to drug induced hepatic steatosis may provide much needed clues to the mechanism and potential prevention of the more common form of metabolic steatohepatitis. PMID:26273591

  13. Drug-induced discoloration of teeth: an updated review.

    PubMed

    Kumar, Arun; Kumar, Vijay; Singh, Janardhan; Hooda, Anita; Dutta, Samir

    2012-02-01

    The problem of tooth discoloration is emerging in our society because of the poor oral hygiene, physical agents, environmental chemicals, mouth rinses, some dental procedures, general systemic conditions, and drugs. Other common causes of tooth discoloration include excessive use of tea, coffee, tobacco smoking and chewing, chewing of betel morsel (piper betel, paan), and so on. Drug-induced tooth discoloration can be prevented by avoiding prescriptions of well-known offender drugs known to cause tooth discoloration during pregnancy and in young children. This review describes some important groups of drugs that cause tooth discoloration. PMID:21917545

  14. Contemporary review of drug-induced pancreatitis: A different perspective

    PubMed Central

    Hung, Whitney Y; Abreu Lanfranco, Odaliz

    2014-01-01

    Although gallstone and alcohol use have been considered the most common causes of acute pancreatitis, hundreds of frequently prescribed medications are associated with this disease state. The true incidence is unknown since there are few population based studies available. The knowledge of drug induced acute pancreatitis is limited by the availability and the quality of the evidence as the majority of data is extrapolated from case reports. Establishing a definitive causal relationship between a drug and acute pancreatitis poses a challenge to clinicians. Several causative agent classification systems are often used to identify the suspected agents. They require regular updates since new drug induced acute pancreatitis cases are reported continuously. In addition, infrequently prescribed medications and herbal medications are often omitted. Furthermore, identification of drug induced acute pancreatitis with new medications often requires accumulation of post market case reports. The unrealistic expectation for a comprehensive list of medications and the multifactorial nature of acute pancreatitis call for a different approach. In this article, we review the potential mechanisms of drug induced acute pancreatitis and provide the perspective of deductive reasoning in order to allow clinicians to identify potential drug induced acute pancreatitis with limited data. PMID:25400984

  15. Histopathological and immunohistochemical features of drug-induced exanthems.

    PubMed

    Lisi, P; Pelliccia, S; Bellini, V

    2014-04-01

    Exanthematic eruptions, together with urticaria-angioedema syndrome and fixed drug eruption, are the most frequent cutaneous adverse drug reactions. Among the drug-induced exanthems (DIEs), erythematous maculopapular eruptions are the most common. Their management, especially when retrospective, is often not easy, and it is based on the use of clinical criteria, history, results of some laboratory tests, drug elimination test, skin tests, and oral challenge test. The superficial perivascular and spongiotic dermatitis, which is the prevalent histopathological features of DIEs, is not very useful in the differential diagnosis with virus- and bacteria-induced exanthems (VBIEs). On the contrary, some immune-histochemical findings (interleukin-5 overexpression, concomitant enhancement of perforin, interleukin-5, and granzyme B production, positivity for fatty acid synthase-ligand-L in amoxicillin-induced exanthems) seem to be more important. These data justifie the inclusion of DIEs in the subtypes IVb and IVc of delayed hypersensitivity reactions. PMID:24819645

  16. The Parkinson's disease gene DJ-1 is also a key regulator of stroke-induced damage

    PubMed Central

    Aleyasin, Hossein; Rousseaux, Maxime W. C.; Phillips, Maryam; Kim, Raymond H.; Bland, Ross J.; Callaghan, Steve; Slack, Ruth S.; During, Matthew J.; Mak, Tak W.; Park, David S.

    2007-01-01

    Recent evidence has indicated that common mechanisms play roles among multiple neurological diseases. However, the specifics of these pathways are not completely understood. Stroke is caused by the interruption of blood flow to the brain, and cumulative evidence supports the critical role of oxidative stress in the ensuing neuronal death process. DJ-1 (PARK7) has been identified as the gene linked to early-onset familial Parkinson's disease. Currently, our work also shows that DJ-1 is central to death in both in Vitro and in Vivo models of stroke. Loss of DJ-1 increases the sensitivity to excitotoxicity and ischemia, whereas expression of DJ-1 can reverse this sensitivity and indeed provide further protection. Importantly, DJ-1 expression decreases markers of oxidative stress after stroke insult in Vivo, suggesting that DJ-1 protects through alleviation of oxidative stress. Consistent with this finding, we demonstrate the essential role of the oxidation-sensitive cysteine-106 residue in the neuroprotective activity of DJ-1 after stroke. Our work provides an important example of how a gene seemingly specific for one disease, in this case Parkinson's disease, also appears to be central in other neuropathological conditions such as stroke. It also highlights the important commonalities among differing neuropathologies. PMID:18003894

  17. The 5-HT1A-receptor agonist flibanserin reduces drug-induced dyskinesia in RGS9-deficient mice.

    PubMed

    Strecker, Karl; Adamaszek, Michael; Ohm, Sven; Wegner, Florian; Beck, Jürgen; Schwarz, Johannes

    2012-11-01

    Drug-induced dyskinesia is a major complication of dopamine replacement therapy in advanced Parkinson's disease consisting of dystonia, chorea and athetosis. Agonists at 5-HT1A-receptors attenuate levodopa-induced motor complications in non-human primates. Mice with increased dopamine D2 receptor (DRD2) signalling due to the lack of expression of the regulator of G-protein signalling 9 (RGS9) also develop dyskinesia following levodopa treatment. We investigated whether the 5-HT1A-receptor agonist flibanserin compared with buspirone reduces motor abnormalities induced by levodopa or quinelorane, a selective dopamine D2-receptor agonist. Following dopamine depletion via reserpine, 40 mice (20 wild-type and 20 RGS9 knock-out) were treated with flibanserin or buspirone in combination with levodopa or quinelorane. Motor behaviour was analysed using open field analysis. RGS9 knock-out mice displayed significantly more drug-induced dystonia (p < 0.04; t test) than wild type. In quinelorane-treated wild-type mice flibanserin as well as buspirone significantly reduced dystonia (p < 0.05). In RGS9 knock-out animals again both reduced quinelorane-induced dystonia. However, flibanserin was significantly more effective (p = 0.003). Following reserpine pretreatment and administration of levodopa wild-type and RGS 9 knock-out mice showed mild to moderate dystonia. Surprisingly, 10 mg/kg buspirone increased dystonia in both animal groups, whereas it was decreased by 10 mg/kg flibanserin. However, compared with levodopa alone only the increase of dystonia by buspirone was significant (p < 0.04). Flibanserin showed promising antidyskinetic effects in a model of drug-induced dyskinesia. Our data underline the possible benefit of 5-HT1A agonists in drug-induced dyskinesia. PMID:22569849

  18. Parkinson’s Psychosis

    PubMed Central

    Zahodne, Laura B.

    2011-01-01

    Opinion statement Psychosis is a leading reason for nursing home placement of patients with Parkinson’s disease (PD). It may also be the single greatest stressor for caregivers of PD patients, it is generally persistent, and its presence markedly increases the risk of mortality. For these reasons, it is essential to recognize and appropriately treat psychosis in PD. Treatment of psychotic symptoms should be initiated after potential medical and environmental causes of delirium (eg, infection) have been eliminated or addressed. Initial pharmacologic changes should include limiting the patient’s anti-PD medications to those that are necessary to preserve motor function (ie, eliminating adjunctive agents). Should that fail, an atypical antipsychotic agent is the treatment of choice. Clozapine is presently the gold standard, and quetiapine represents another option because of its ease of use and good tolerability profile. Emerging treatment options include the use of acetylcholinesterase inhibitors, antidepressants, and cognitive behavioral therapy. This article reviews what is currently known about treatment strategies in PD psychosis. PMID:20842582

  19. Drug-Induced Torsade de Pointes and Implications for Drug Development

    PubMed Central

    Fenichel, Robert R.; Malik, Marek; Antzelevitch, Charles; Sanguinetti, Michael; Roden, Dan M.; Priori, Silvia G.; Ruskin, Jeremy N.; Lipicky, Raymond J.; Cantilena, Lou

    2006-01-01

    Torsade de pointes is a potentially lethal arrhythmia that occasionally appears as an adverse effect of pharmacotherapy. Recently-developed understanding of the underlying electrophysiology allows better estimation of the drug-induced risks, and explains the failures of older approaches through the surface electrocardiogram. The article expresses a consensus reached by an independent academic task force on the physiologic understanding of drug-induced repolarisation changes, on their preclinical and clinical evaluation, and on the risk-benefit interpretation of drug-induced torsade de pointes. The consensus of the task force includes suggestions on how to evaluate the risk of torsade within drug development program. Individual sections of the text discuss the techniques and limitations of methods directed at drug-related ion-channel phenomena, investigations aimed at action potentials changes, preclinical studies of phenomena seen only in the whole (or nearly whole) heart, and at interpretation of human electrocardiograms obtained in clinical studies. Final section of the text discusses drug-induced torsade within the larger evaluation of drug-related risks and benefits. PMID:15090000

  20. Myeloid cell leukemia 1 (Mcl(-1)) protects against 1-methyl-4-phenylpyridinium ion (MPP+) induced apoptosis in Parkinson's disease.

    PubMed

    Fan, Lijing; Jiang, Li; Du, Zhongde

    2015-10-01

    The myeloid cell leukemia 1 (Mcl(-1)) is an anti-apoptotic member of the Bcl-2 family, which plays an essential role in protecting cells against apoptosis. The expression pattern and potential roles of Mcl(-1) in Parkinson's diseases (PD) are still unknown. In this study, our results indicated that 1-methyl-4-phenylpyridinium (MPP+) treatment augmented the expression of Mcl(-1) at both messenger RNA (mRNA) and protein levels in a dose-dependent manner in SH-SY5Y cells. Moreover, we observed increased phosphorylation of Elk-1at Ser383 as well as nuclear translocation of Elk-1 in exposure to MPP+ treatment. Importantly, the elevated expression of Mcl(-1) induced by MPP+ was abolished by knockdown of Elk-1. It was also found that inhibition of Mcl(-1) by small RNA transfection exacerbates MPP + -induced LDH release after 48 h incubation. In addition, Hoechst 33,258 nuclear staining results demonstrated that silence of Mcl(-1) induced a significant increase in apoptosis in cells when compared with the control condition. Mechanistically, the levels of cleaved Caspase3 and PARP were elevated in MPP+ treated cells, which was exacerbated by knockdown of Mcl(-1). These findings suggest that Mcl(-1) might be a potential therapeutic target for PD treatment. PMID:26264181

  1. Drug Induced Arousal and Fear Appeals.

    ERIC Educational Resources Information Center

    Deckner, C. William; Rogers, Ronald W.

    It is hypothesized that the drug, epinephrine, used in conjunction with a fear arousing film on the consquences of smoking would be more effective than either alone in increasing fear and negative attitudes toward smoking and, resultantly, in reducing cigarette consumption. The experimenters assigned 119 subjects to the four cells of a 2x2…

  2. Oxicam structure in non-steroidal anti-inflammatory drugs is essential to exhibit Akt-mediated neuroprotection against 1-methyl-4-phenyl pyridinium-induced cytotoxicity.

    PubMed

    Tasaki, Yoshikazu; Yamamoto, Joe; Omura, Tomohiro; Noda, Toshihiro; Kamiyama, Naoya; Yoshida, Koichi; Satomi, Machiko; Sakaguchi, Tomoki; Asari, Masaru; Ohkubo, Tomoko; Shimizu, Keiko; Matsubara, Kazuo

    2012-02-15

    In the treatment of Parkinson's disease, potent disease-modifying drugs are still needed to halt progressive dopaminergic neurodegeneration. We have previously shown that meloxicam, an oxicam non-steroidal anti-inflammatory drug (NSAID), elicits a potent neuroprotective effect against 1-methyl-4-phenyl pyridinium (MPP(+))-induced toxicity in human dopaminergic SH-SY5Y neuroblastoma cells. This cyclooxygenase-independent neuroprotection of meloxicam is mediated via the phosphatidylinositol 3-kinase (PI3K)/Akt pathway; however, the specific chemical structure involved in inducing neuroprotection remains unresolved. In this study, we therefore investigated the structure-specific for eliciting the neuroprotective effect by examining a series of NSAIDs against MPP(+) toxicity in SH-SY5Y cells. Three oxicam-bearing NSAIDs showed potent neuroprotective effects, although none of the other 10 oxicam-nonbearing NSAIDs (3 salicylates, 6 coxibs and 1 polyphenol) or 3 piroxicam analogs (including ampiroxicam, a precursor of piroxicam) exerted any neuroprotection. Tenoxicam and piroxicam prevented MPP(+)-induced reduction of phosphorylated Akt levels in cells: a protective mechanism similar to that of meloxicam. Therefore, the oxicam structure was likely to be responsible for exhibiting the neuroprotection by sustaining survival-signaling in dopaminergic cells. The present results raise the possibility that the oxicam-bearing NSAIDs may serve as potential therapeutic drugs to retard or terminate progression of Parkinson's disease via a novel mechanism. PMID:22182582

  3. Drug-induced skin reactions: a 2-year study

    PubMed Central

    Farshchian, Mahmood; Ansar, Akram; Zamanian, Abbas; Rahmatpour-Rokni, Ghasem; Kimyai-Asadi, Arash; Farshchian, Mehdi

    2015-01-01

    Background The aim of this study was to analyze the clinical characteristics of patients with adverse cutaneous drug reactions, which occur when a medicinal product results in cutaneous morbidity. Methods The study included 308 patients who were diagnosed as having an adverse cutaneous drug reaction during the study period (2007–2009). In 84 cases, histopathologic examination of skin biopsies were also performed. Results Patients with drug reactions were found to be more commonly female (63%) than male (37%). Beta-lactam antibiotics were found to be the most frequent cause of adverse cutaneous drug reactions (42.7%), followed by non-steroidal anti-inflammatory drugs (16.5%). Acute urticaria was the most common clinical presentation (59.2%) followed by fixed drug eruptions (18.5%), and maculopapular eruptions (14.9%). Conclusion Adverse cutaneous drug reactions in our study population were mainly induced by beta-lactam antibiotics and non-steroidal anti-inflammatory drugs. The most common forms of cutaneous adverse drug reactions were found to be acute urticaria, fixed drug eruptions, and maculopapular rashes. PMID:25709487

  4. Drug-induced vasculitis: a clinical and pathological review.

    PubMed

    Radi?, M; Martinovi? Kaliterna, D; Radi?, J

    2012-01-01

    Drug-induced vasculitis is an inflammation of blood vessels caused by the use of various pharmaceutical agents. Vasculitis causes changes in the walls of blood vessels, including thickening, weakening, narrowing and scarring. Inflammation can be short-term (acute) or long-term (chronic) and can be so severe that the tissues and organs supplied by the affected vessels do not get enough blood. The shortage of blood can result in organ and tissue damage, even death. Drug-induced vasculitis is the most common form of vasculitis. The differential diagnosis between drug-induced and idiopathic vasculitic conditions may be difficult in the individual patient. Withdrawal may be helpful to distinguish between these syndromes. Withdrawal of the offending agent alone is often sufficient to induce prompt resolution of clinical manifestations, obviating the need for immunosuppressive and anti-inflammatory drugs. Increasing understanding of the pathophysiological characteristics of all inflammatory vasculitides should lead to better diagnostic and therapeutic approaches to drug-induced vasculitis. PMID:22271809

  5. Atomistic Investigation of Cu-Induced Misfolding in the Onset of Parkinson's Disease

    NASA Astrophysics Data System (ADS)

    Rose, Francis; Hodak, Miroslav; Bernholc, Jerry

    2009-03-01

    A nucleation mechanism for the misfolding of ?-synuclein, the protein implicated in Parkinson's Disease (PD), is investigated using computer simulations. Through a combination of ab initio and classical simulation techniques, the conformational evolution of copper-ion-initiated misfolding of ?-synuclein is determined. Based on these investigations and available experimental evidence, an atomistic model detailing the nucleation-initiated pathogenesis of PD is proposed. Once misfolded, the proteins can assemble into fibrils, the primary structural components of the deleterious PD plaques. Our model identifies a process of structural modifications to an initially unfolded ?-synuclein that results in a partially folded intermediate with a well defined nucleation site as a precursor to the fully misfolded protein. The identified pathway can enable studies of reversal mechanisms and inhibitory agents, potentially leading to the development of effective therapies.

  6. Parkinson's Disease

    MedlinePLUS

    ... inherited, though not always, and some have been linked to specific gene mutations. Juvenile Parkinsonism In very rare cases, parkinsonian ... parkinsonism often runs in families and is sometimes linked to a mutated gene. Some Cases Are Inherited Evidence suggests that, in ...

  7. Vanadium induces dopaminergic neurotoxicity via protein kinase Cdelta dependent oxidative signaling mechanisms: Relevance to etiopathogenesis of Parkinson's disease

    SciTech Connect

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Anantharam, Vellareddy; Song, Chunjuan; Witte, Travis; Houk, Robert; Kanthasamy, Anumantha G.

    2009-10-15

    Environmental exposure to neurotoxic metals through various sources including exposure to welding fumes has been linked to an increased incidence of Parkinson's disease (PD). Welding fumes contain many different metals including vanadium typically present as particulates containing vanadium pentoxide (V{sub 2}O{sub 5}). However, possible neurotoxic effects of this metal oxide on dopaminergic neuronal cells are not well studied. In the present study, we characterized vanadium-induced oxidative stress-dependent cellular events in cell culture models of PD. V{sub 2}O{sub 5} was neurotoxic to dopaminergic neuronal cells including primary nigral dopaminergic neurons and the EC{sub 50} was determined to be 37 {mu}M in N27 dopaminergic neuronal cell model. The neurotoxic effect was accompanied by a time-dependent uptake of vanadium and upregulation of metal transporter proteins Tf and DMT1 in N27 cells. Additionally, vanadium resulted in a threefold increase in reactive oxygen species generation, followed by release of mitochondrial cytochrome c into cytoplasm and subsequent activation of caspase-9 (> fourfold) and caspase-3 (> ninefold). Interestingly, vanadium exposure induced proteolytic cleavage of native protein kinase Cdelta (PKC{delta}, 72-74 kDa) to yield a 41 kDa catalytically active fragment resulting in a persistent increase in PKC{delta} kinase activity. Co-treatment with pan-caspase inhibitor Z-VAD-FMK significantly blocked vanadium-induced PKC{delta} proteolytic activation, indicating that caspases mediate PKC{delta} cleavage. Also, co-treatment with Z-VAD-FMK almost completely inhibited V{sub 2}O{sub 5}-induced DNA fragmentation. Furthermore, PKC{delta} knockdown using siRNA protected N27 cells from V{sub 2}O{sub 5}-induced apoptotic cell death. Collectively, these results demonstrate that vanadium can exert neurotoxic effects in dopaminergic neuronal cells via caspase-3-dependent PKC{delta} cleavage, suggesting that metal exposure may promote nigral dopaminergic degeneration.

  8. Circulating mitochondrial biomarkers for drug-induced liver injury.

    PubMed

    Shi, Qiang; Yang, Xi; Mattes, William B; Mendrick, Donna L; Harrill, Alison H; Beger, Richard D

    2015-11-01

    Liver mitochondria affected by drugs can be released into circulation and serve as biomarkers for drug-induced liver injury (DILI). The tissue specificity of ALT was improved by differentiating cytosolic ALT1 and mitochondrial ALT2 isoforms released in circulation. Prior to ALT elevation, mitochondrial cytochrome c, OCT, GLDH, CPS1 and DNA were increased in circulation following DILI. The baseline expression of mt-Nd6 was predictive of individual DILI susceptibility in animals. As mitochondrial DILI biomarkers appeared to be drug or species dependent, they might have value in clinical scenarios when culprit drugs are established, but may not be ideal tools to assess DILI potentials of new drugs. PMID:26507261

  9. Evidence of an association between sleep and levodopa-induced dyskinesia in an animal model of Parkinson's disease.

    PubMed

    Galati, Salvatore; Salvadè, Agnese; Pace, Marta; Sarasso, Simone; Baracchi, Francesca; Bassetti, Claudio L; Kaelin-Lang, Alain; Städler, Claudio; Stanzione, Paolo; Möller, Jens C

    2015-03-01

    Levodopa-induced dyskinesia (LID) represents a major challenge for clinicians treating patients affected by Parkinson's disease (PD). Although levodopa is the most effective treatment for PD, the remodeling effects induced by disease progression and the pharmacologic treatment itself cause a narrowing of the therapeutic window because of the development of LID. Although animal models of PD provide strong evidence that striatal plasticity underlies the development of dyskinetic movements, the pathogenesis of LID is not entirely understood. In recent years, slow homeostatic adjustment of intrinsic excitability occurring during sleep has been considered fundamental for network stabilization by gradually modifying plasticity thresholds. So far, how sleep affects on LID has not been investigated. Therefore, we measured synaptic downscaling across sleep episodes in a parkinsonian animal model showing dyskinetic movements similar to LID. Our electrophysiological, molecular, and behavioral results are consistent with an impaired synaptic homeostasis during sleep in animals showing dyskinesia. Accordingly, sleep deprivation causes an anticipation and worsening of LID supporting a link between sleep and the development of LID. PMID:25596726

  10. Neuroprotective effect of combined therapy with hyperbaric oxygen and madopar on 6-hydroxydopamine-induced Parkinson's disease in rats.

    PubMed

    Pan, Xiaorong; Chen, Chunxia; Huang, Jianping; Wei, Haiming; Fan, Qiuping

    2015-07-23

    Parkinson's disease (PD) is a common movement disorder in the elderly. In the present study, we examined whether the combination of hyperbaric oxygen (HBO) and madopar therapy provided a neuroprotective effect on dopaminergic neurons in the substantia nigra using a rat model of PD. Rotational assessments revealed that both HBO and combination therapy significantly attenuated apomorphine-induced turning in PD rats. Our results indicated that the combination therapy increased glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities and reduced the malondialdehyde (MDA) content in the SN. Furthermore, the combination therapy resulted in significant protection against the loss of neurons, and specifically tyrosine hydroxylase (TH)-positive neurons, in the SN and also alleviated the production of glial fibrillary acidic protein (GFAP). The levels of Bcl-2 were increased and Bax were decreased following the HBO or combination therapy. In brief, the neuroprotective effect of combined therapy with HBO and madopar against 6-OHDA-induced PD rats may rely on its ability to reduce oxidative stress and protect against Bax/Bcl-2-mediated apoptosis. PMID:26101828

  11. Inferior phrenic artery pseudoaneurysm complicating drug-induced acute pancreatitis

    PubMed Central

    Salem, Jean F; Haydar, Ali; Hallal, Ali

    2014-01-01

    Inferior phrenic artery (IPA) pseudoaneurysm is an extremely rare complication of chronic pancreatitis with only three cases reported in the literature so far. It is a serious condition that can be life-threatening if not diagnosed promptly. Recent advances in endovascular interventions made angiography with embolisation the modality of choice for diagnosis and treatment. We presented the first report of a case of ruptured IPA pseudoaneurysm complicating a drug-induced acute pancreatitis that was successfully treated by transcatheter arterial embolisation. Despite its rarity, rupture of pseudoaneurysm due to drug-induced pancreatitis should be suspected and included in the differential diagnosis when associated with haemodynamic instability. PMID:24385392

  12. Drug-Induced Hypersensitivity Syndrome Followed by Subacute Thyroiditis

    PubMed Central

    Sato, Mika; Mizuno, Yuki; Matsuyama, Kanako; Shu, En; Kanoh, Hiroyuki; Suwa, Tetsuya; Seishima, Mariko

    2015-01-01

    Drug-induced hypersensitivity syndrome (DIHS) is a severe multiorgan system adverse drug reaction with reactivation of human herpesviruses (HHVs) such as HHV-6, HHV-7, cytomegalovirus (CMV) and Epstein-Barr virus. Various complications, including autoimmune diseases, sometimes appear during the course of DIHS. We report a case of salazosulfapyridine-induced DIHS associated with HHV-6 reactivation. Two and a half months after the onset of DIHS, subacute thyroiditis occurred, possibly associated with CMV reactivation. Prednisolone (20 mg/day) was effective for subacute thyroiditis. Long-term follow-up is needed in patients with DIHS because of the possible onset of autoimmune diseases. PMID:26351424

  13. Electroconvulsive therapy in Parkinson´s disease.

    PubMed

    Calderón-Fajardo, Humberto; Cervantes-Arriaga, Amin; Llorens-Arenas, Rodrigo; Ramírez-Bermudez, Jesús; Ruiz-Chow, Ángel; Rodríguez-Violante, Mayela

    2015-10-01

    Purpose To analyze the effectiveness of electroconvulsive therapy for the management of depression and/or psychosis refractory to drug therapy in patients with Parkinson disease.Methods A retrospective study was carried out including patients treated with electroconvulsive therapy during the period between 2002 and 2013. A review of the literature was performed.Results A total of 27 patients were included. In regards to the neuropsychiatric diagnosis, 14 patients had major depression, 12 patients had both psychosis and depression, and only one patient had isolated psychosis. The mean number of electroconvulsive therapy sessions was 12 ± 2.8. After electroconvulsive therapy, all patients showed a statistically significant improvement in the Brief Psychiatric Rating scale (reduction of 52% points) and Hamilton Depression Rating Scale (reduction of 50% points) independent of the presence of psychosis, depression or both.Conclusion Electroconvulsive therapy is effective for the treatment of refractory neuropsychiatric symptoms in Parkinson's disease. PMID:26331387

  14. An Update on Drug-induced Liver Injury

    PubMed Central

    Devarbhavi, Harshad

    2012-01-01

    Idiosyncratic drug-induced liver injury (DILI) is an important cause of morbidity and mortality following drugs taken in therapeutic doses. Hepatotoxicity is a leading cause of attrition in drug development, or withdrawal or restricted use after marketing. No age is exempt although adults and the elderly are at increased risk. DILI spans the entire spectrum ranging from asymptomatic elevation in transaminases to severe disease such as acute hepatitis leading to acute liver failure. The liver specific Roussel Uclaf Causality Assessment Method is the most validated and extensively used for determining the likelihood that an implicated drug caused DILI. Asymptomatic elevation in liver tests must be differentiated from adaptation. Drugs producing DILI have a signature pattern although no single pattern is characteristic. Antimicrobial and central nervous system agents including antiepileptic drugs are the leading causes of DILI worldwide. In the absence of a diagnostic test or a biomarker, the diagnosis rests on the evidence of absence of competing causes such as acute viral hepatitis, autoimmune hepatitis and others. Recent studies show that antituberculosis drugs given for active or latent disease are still a major cause of drug-induced liver injury in India and the West respectively. Presence of jaundice signifies a severe disease and entails a worse outcome. The pathogenesis is unclear and is due to a mix of host, drug metabolite and environmental factors. Research has evolved from incriminating candidate genes to genome wide analysis studies. Immediate cessation of the drug is key to prevent or minimize progressive damage. Treatment is largely supportive. N-acetylcysteine is the antidote for paracetamol toxicity. Carnitine has been tried in valproate injury whereas steroids and ursodeoxycholic acid may be used in DILI associated with hypersensitivity or cholestatic features respectively. This article provides an overview of the epidemiology, the patterns of hepatotoxicity, the pathogenesis and associated risk factors besides its clinical management. PMID:25755441

  15. An Update on Drug-induced Liver Injury.

    PubMed

    Devarbhavi, Harshad

    2012-09-01

    Idiosyncratic drug-induced liver injury (DILI) is an important cause of morbidity and mortality following drugs taken in therapeutic doses. Hepatotoxicity is a leading cause of attrition in drug development, or withdrawal or restricted use after marketing. No age is exempt although adults and the elderly are at increased risk. DILI spans the entire spectrum ranging from asymptomatic elevation in transaminases to severe disease such as acute hepatitis leading to acute liver failure. The liver specific Roussel Uclaf Causality Assessment Method is the most validated and extensively used for determining the likelihood that an implicated drug caused DILI. Asymptomatic elevation in liver tests must be differentiated from adaptation. Drugs producing DILI have a signature pattern although no single pattern is characteristic. Antimicrobial and central nervous system agents including antiepileptic drugs are the leading causes of DILI worldwide. In the absence of a diagnostic test or a biomarker, the diagnosis rests on the evidence of absence of competing causes such as acute viral hepatitis, autoimmune hepatitis and others. Recent studies show that antituberculosis drugs given for active or latent disease are still a major cause of drug-induced liver injury in India and the West respectively. Presence of jaundice signifies a severe disease and entails a worse outcome. The pathogenesis is unclear and is due to a mix of host, drug metabolite and environmental factors. Research has evolved from incriminating candidate genes to genome wide analysis studies. Immediate cessation of the drug is key to prevent or minimize progressive damage. Treatment is largely supportive. N-acetylcysteine is the antidote for paracetamol toxicity. Carnitine has been tried in valproate injury whereas steroids and ursodeoxycholic acid may be used in DILI associated with hypersensitivity or cholestatic features respectively. This article provides an overview of the epidemiology, the patterns of hepatotoxicity, the pathogenesis and associated risk factors besides its clinical management. PMID:25755441

  16. Drug-Induced Nephrotoxicity and Dose Adjustment Recommendations: Agreement Among Four Drug Information Sources

    PubMed Central

    Bicalho, Millena Drumond; Soares, Danielly Botelho; Botoni, Fernando Antonio; Reis, Adriano Max Moreira; Martins, Maria Auxiliadora Parreiras

    2015-01-01

    Hospitalized patients require the use of a variety of drugs, many of which individually or in combination have the potential to cause kidney damage. The use of potentially nephrotoxic drugs is often unavoidable, and the need for dose adjustment should be evaluated. This study is aimed at assessing concordance in information on drug-induced nephrotoxicity and dose adjustment recommendations by comparing four drug information sources (DRUGDEX®, UpToDate®, Medscape® and the Brazilian Therapeutic Formulary) using the formulary of a Brazilian public hospital. A total of 218 drugs were investigated. The global Fleiss’ kappa coefficient was 0.265 for nephrotoxicity (p < 0.001; CI 95%, 0.211–0.319) and 0.346 for recommendations (p < 0.001; CI 95%, 0.292–0.401), indicating fair concordance among the sources. Anti-infectives and anti-hypertensives were the main drugs cited as nephrotoxic by the different sources. There were no clear definitions for qualitative data or quantitative values for dose adjustments among the four information sources. There was no advice for dosing for a large number of the drugs in the international databases. The National Therapeutic Formulary offered imprecise dose adjustment recommendations for many nephrotoxic drugs. Discrepancies among information sources may have a clinical impact on patient care and contribute to drug-related morbidity and mortality. PMID:26371029

  17. Glucuronidation of Drugs and Drug-Induced Toxicity in Humanized UDP-Glucuronosyltransferase 1 Mice

    PubMed Central

    Kutsuno, Yuki; Itoh, Tomoo; Tukey, Robert H.

    2014-01-01

    UDP-glucuronosyltransferases (UGTs) are phase II drug-metabolizing enzymes that catalyze glucuronidation of various drugs. Although experimental rodents are used in preclinical studies to predict glucuronidation and toxicity of drugs in humans, species differences in glucuronidation and drug-induced toxicity have been reported. Humanized UGT1 mice in which the original Ugt1 locus was disrupted and replaced with the human UGT1 locus (hUGT1 mice) were recently developed. In this study, acyl-glucuronidations of etodolac, diclofenac, and ibuprofen in liver microsomes of hUGT1 mice were examined and compared with those of humans and regular mice. The kinetics of etodolac, diclofenac, and ibuprofen acyl-glucuronidation in hUGT1 mice were almost comparable to those in humans, rather than in mice. We further investigated the hepatotoxicity of ibuprofen in hUGT1 mice and regular mice by measuring serum alanine amino transferase (ALT) levels. Because ALT levels were increased at 6 hours after dosing in hUGT1 mice and at 24 hours after dosing in regular mice, the onset pattern of ibuprofen-induced liver toxicity in hUGT1 mice was different from that in regular mice. These data suggest that hUGT1 mice can be valuable tools for understanding glucuronidations of drugs and drug-induced toxicity in humans. PMID:24764149

  18. Improving Response Inhibition in Parkinson’s Disease with Atomoxetine

    PubMed Central

    Ye, Zheng; Altena, Ellemarije; Nombela, Cristina; Housden, Charlotte R.; Maxwell, Helen; Rittman, Timothy; Huddleston, Chelan; Rae, Charlotte L.; Regenthal, Ralf; Sahakian, Barbara J.; Barker, Roger A.; Robbins, Trevor W.; Rowe, James B.

    2015-01-01

    Background Dopaminergic drugs remain the mainstay of Parkinson’s disease therapy but often fail to improve cognitive problems such as impulsivity. This may be due to the loss of other neurotransmitters, including noradrenaline, which is linked to impulsivity and response inhibition. We therefore examined the effect of the selective noradrenaline reuptake inhibitor atomoxetine on response inhibition in a stop-signal paradigm. Methods This pharmacological functional magnetic resonance imaging study used a double-blinded randomized crossover design with low-frequency inhibition trials distributed among frequent Go trials. Twenty-one patients received 40 mg atomoxetine or placebo. Control subjects were tested on no-drug. The effects of disease and drug on behavioral performance, regional brain activity, and functional connectivity were analyzed using general linear models. Anatomical connectivity was examined using diffusion-weighted imaging. Results Patients with Parkinson’s disease had longer stop-signal reaction times, less stop-related activation in the right inferior frontal gyrus (RIFG), and weaker functional connectivity between the RIFG and striatum compared with control subjects. Atomoxetine enhanced stop-related RIFG activation in proportion to disease severity. Although there was no overall behavioral benefit from atomoxetine, analyses of individual differences revealed that enhanced response inhibition by atomoxetine was associated with increased RIFG activation and functional frontostriatal connectivity. Improved performance was more likely in patients with higher structural frontostriatal connectivity. Conclusions This study suggests that enhanced prefrontal cortical activation and frontostriatal connectivity by atomoxetine may improve response inhibition in Parkinson’s disease. These results point the way to new stratified clinical trials of atomoxetine to treat impulsivity in selected patients with Parkinson’s disease. PMID:24655598

  19. Biomarkers to monitor drug-induced phospholipidosis

    SciTech Connect

    Baronas, Elizabeth Tengstrand; Lee, Ju-Whei; Alden, Carl; Hsieh, Frank Y. . E-mail: frank.hsieh@nextcea.com

    2007-01-01

    Di-docosahexaenoyl (C22:6)-bis(monoacylglycerol) phosphate (BMP) was identified as a promising phospholipidosis (PL) biomarker in rats treated with either amiodarone, gentamicin, or azithromycin. Sprague-Dawley rats received either amiodarone (150 mg/kg), gentamicin (100 mg/kg) or azithromycin (30 mg/kg) once daily for ten consecutive days. Histopathological examination of tissues by transmission electron microscopy (TEM) indicated different degrees of accumulation of phospholipidosis in liver, lung, mesenteric lymph node, and kidney of drug-treated rats but not controls. Liquid chromatography coupled to mass spectrometry (LC/MS) was used to identify levels of endogenous biochemical profiles in rat urine. Urinary levels of di-docosahexaenoyl (C22:6)-bis(monoacylglycerol) phosphate (BMP) correlated with induction of phospholipidosis for amiodarone, gentamicin and azithromycin. Rats treated with gentamicin also had increased urinary levels of several phosphatidylinositol (PI), phosphatidylcholine (PC), and phosphatidylethanolamine (PE) species.

  20. Biomarkers to monitor drug-induced phospholipidosis.

    PubMed

    Baronas, Elizabeth Tengstrand; Lee, Ju-Whei; Alden, Carl; Hsieh, Frank Y

    2007-01-01

    Di-docosahexaenoyl (C22:6)-bis(monoacylglycerol) phosphate (BMP) was identified as a promising phospholipidosis (PL) biomarker in rats treated with either amiodarone, gentamicin, or azithromycin. Sprague-Dawley rats received either amiodarone (150 mg/kg), gentamicin (100 mg/kg) or azithromycin (30 mg/kg) once daily for ten consecutive days. Histopathological examination of tissues by transmission electron microscopy (TEM) indicated different degrees of accumulation of phospholipidosis in liver, lung, mesenteric lymph node, and kidney of drug-treated rats but not controls. Liquid chromatography coupled to mass spectrometry (LC/MS) was used to identify levels of endogenous biochemical profiles in rat urine. Urinary levels of di-docosahexaenoyl (C22:6)-bis(monoacylglycerol) phosphate (BMP) correlated with induction of phospholipidosis for amiodarone, gentamicin and azithromycin. Rats treated with gentamicin also had increased urinary levels of several phosphatidylinositol (PI), phosphatidylcholine (PC), and phosphatidylethanolamine (PE) species. PMID:17156806

  1. Role of ?-synuclein in inducing innate and adaptive immunity in Parkinson disease

    PubMed Central

    Allen Reish, Heather E.; Standaert, David G.

    2015-01-01

    Alpha-synuclein (?-syn) is central to the pathogenesis of Parkinson disease (PD). Gene duplications, triplications and point mutations in SNCA1, the gene encoding ?-syn, cause autosomal dominant forms of PD. Aggregated and post-translationally modified forms of ?-syn are present in Lewy bodies and Lewy neurites in both sporadic and familial PD, and recent work has emphasized the prion-like ability of aggregated ?-syn to produce spreading pathology. Accumulation of abnormal forms of ?-syn is a trigger for PD, but recent evidence suggests that much of the downstream neurodegeneration may result from inflammatory responses. Components of both the innate and adaptive immune systems are activated in PD, and influencing interactions between innate and adaptive immune components has been shown to modify the pathological process in animal models of PD. Understanding the relationship between ?-syn and subsequent inflammation may reveal novel targets for neuroprotective interventions. In this review, we examine the role of ?-syn and modified forms of this protein in the initiation of innate and adaptive immune responses. PMID:25588354

  2. Nonimmediate allergic reactions induced by drugs: pathogenesis and diagnostic tests.

    PubMed

    Torres, M J; Mayorga, C; Blanca, M

    2009-01-01

    Nonimmediate allergic reactions (NIRs) to drugs, which are the most common reactions induced by specific immunologic mechanisms, can be induced by all commercially available drugs. NIRs can appear hours, days, or even weeks after drug intake. They elicit a spectrum of manifestations, mostly affecting the skin, ranging from maculopapular exanthema and urticaria to other less common but more severe entities such as acute generalized exanthematic pustulosis, drug rash with eosinophilia and systemic symptoms/drug-induced hypersensitivity syndrome, Stevens-Johnson syndrome, and toxic epidermal necrolysis. The main pathologic event involved in NIRs is a T-cell effector response and the wide heterogeneity of clinical symptoms may reflect differences in the underlying immunologic mechanisms. Despite their clinical heterogeneity, NIRs share certain aspects such as the activation of T cells with increased expression of CD25 and HLA-DR. NIRs are classified as type 1 helper (T(H)1) T-cell responses, characterized by the production of interferon-gamma, tumor necrosis factor-alpha, interleukin 2, T-bet, and the cytotoxic markers perforin and granzyme B. Diagnosis is often complicated because of the difficulty of obtaining a reliable clinical history, the important role played by cofactors such as viral diseases, and the low sensitivity of skin tests and in vitro tests. Further studies are thus required in order to improve our understanding of NIRs and refine our diagnostic criteria. PMID:19476012

  3. Non-Steroidal Anti-Inflammatory Drug-Induced Enteropathy

    PubMed Central

    Lim, Yun Jeong

    2012-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most commonly prescribed drugs in the world. NSAID-induced lower gastrointestinal (GI) complications are increasing while upper GI complications are decreasing. Lower GI events accounted for 40% of all serious GI events in patients on NSAIDs. Capsule endoscopy and device assisted enteroscopy are available for detection of small intestinal lesions. Capsule endoscopy studies have demonstrated that NSAIDs use in healthy volunteers raised the incidence (55% to 75%) of intestinal damage. It appears that selective cyclooxygenase-2 inhibitors (coxibs) improved upper and lower GI safety based on results of clinical trials. Selective coxibs are still capable of triggering GI adverse events and cardiovascular toxicity issues were the main focus of concerns. Unfortunately, definite strategies are not available to prevent or heal NSAID-induced intestinal injuries. Thus, there is still a strong clinical need for effective drugs with improved safety profiles than the existing NSAIDs. PMID:22866254

  4. Drug-induced liver injury: Is it somehow foreseeable?

    PubMed Central

    Tarantino, Giovanni; Di Minno, Matteo Nicola Dario; Capone, Domenico

    2009-01-01

    The classic view on the pathogenesis of drug-induced liver injury is that the so-called parent compounds are made hepatotoxic by metabolism (formation of neo-substances that react abnormally), mainly by cytochromes P-450 (CYP), with further pathways, such as mitochondrial dysfunction and apoptosis, also playing a role. Risk factors for drug-induced liver injury include concomitant hepatic diseases, age and genetic polymorphisms of CYP. However, some susceptibility can today be predicted before drug administration, working on the common substrate, by phenotyping and genotyping studies and by taking in consideration patients’ health status. Physicians should always think of this adverse effect in the absence of other clear hepatic disease. Ethical and legal problems towards operators in the health care system are always matters to consider. PMID:19533803

  5. ACETAMINOPHEN-INDUCED CELLULITIS-LIKE FIXED DRUG ERUPTION

    PubMed Central

    Fathallah, Neila; Salem, Chaker Ben; Slim, Raoudha; Boussofara, Lobna; Ghariani, Najet; Bouraoui, Kamel

    2011-01-01

    Acetaminophen is a widely used analgesic drug. Its adverse reactions are rare but severe. An 89-year-old man developed an indurated edematous and erythematous plaque on his left arm 1 day after acetaminophen ingestion. Cellulitis was suspected and antibiotictherapy was started but there was no improvement of the rash; there was a spectacular extension of the lesion with occurrence of flaccid vesicles and blisters in the affected sites. The diagnosis of generalized-bullous-fixed drug eruption induced by acetaminophen was considered especially with a reported history of a previous milder reaction occurring in the same site. Acetaminophen was withdrawn and the rash improved significantly. According to the Naranjo probability scale, the eruption experienced by the patient was probably due to acetaminophen. Clinicians should be aware of the ability of acetaminophen to induce fixed drug eruption that may clinically take several aspects and may be misdiagnosed. PMID:21716550

  6. Parkinson disease

    MedlinePLUS

    Nerve cells use a brain chemical called dopamine to help control muscle movement. With Parkinson disease, the brain cells that make dopamine slowly die. Without dopamine, the cells that control movement ...

  7. Parkinson's Disease

    MedlinePLUS

    Parkinson's disease (PD) is a type of movement disorder. It happens when nerve cells in the brain don't ... coordination As symptoms get worse, people with the disease may have trouble walking, talking, or doing simple ...

  8. Deep Learning for Drug-Induced Liver Injury.

    PubMed

    Xu, Youjun; Dai, Ziwei; Chen, Fangjin; Gao, Shuaishi; Pei, Jianfeng; Lai, Luhua

    2015-10-26

    Drug-induced liver injury (DILI) has been the single most frequent cause of safety-related drug marketing withdrawals for the past 50 years. Recently, deep learning (DL) has been successfully applied in many fields due to its exceptional and automatic learning ability. In this study, DILI prediction models were developed using DL architectures, and the best model trained on 475 drugs predicted an external validation set of 198 drugs with an accuracy of 86.9%, sensitivity of 82.5%, specificity of 92.9%, and area under the curve of 0.955, which is better than the performance of previously described DILI prediction models. Furthermore, with deep analysis, we also identified important molecular features that are related to DILI. Such DL models could improve the prediction of DILI risk in humans. The DL DILI prediction models are freely available at http://www.repharma.cn/DILIserver/DILI_home.php . PMID:26437739

  9. Homers regulate drug-induced neuroplasticity: Implications for addiction

    PubMed Central

    Szumlinski, Karen K.; Ary, Alexis W.; Lominac, Kevin D.

    2008-01-01

    Drug addiction is a chronic, relapsing disorder, characterized by an uncontrollable motivation to seek and use drugs. Converging clinical and preclinical observations implicate pathologies within the corticolimbic glutamate system in the genetic predisposition to, and the development of, an addicted phenotype. Such observations pose cellular factors regulating glutamate transmission as likely molecular candidates in the etiology of addiction. Members of the Homer family of proteins regulate signal transduction through, and the trafficking of, glutamate receptors, as well as maintain and regulate extracellular glutamate levels in corticolimbic brain regions. This review summarizes the existing data implicating the Homer family of protein in acute behavioral and neurochemical sensitivity to drugs of abuse, the development of drug-induced neuroplasticity, as well as other behavioral and cognitive pathologies associated with an addicted state. PMID:17765204

  10. The Sirtuin-2 Inhibitor AK7 Is Neuroprotective in Models of Parkinson’s Disease but Not Amyotrophic Lateral Sclerosis and Cerebral Ischemia

    PubMed Central

    Chen, Xiqun; Wales, Pauline; Quinti, Luisa; Zuo, Fuxing; Moniot, Sébastien; Herisson, Fanny; Rauf, Nazifa Abdul; Wang, Hua; Silverman, Richard B.; Ayata, Cenk; Maxwell, Michelle M.; Steegborn, Clemens; Schwarzschild, Michael A.; Outeiro, Tiago F.; Kazantsev, Aleksey G.

    2015-01-01

    Sirtuin deacetylases regulate diverse cellular pathways and influence disease processes. Our previous studies identified the brain-enriched sirtuin-2 (SIRT2) deacetylase as a potential drug target to counteract neurodegeneration. In the present study, we characterize SIRT2 inhibition activity of the brain-permeable compound AK7 and examine the efficacy of this small molecule in models of Parkinson’s disease, amyotrophic lateral sclerosis and cerebral ischemia. Our results demonstrate that AK7 is neuroprotective in models of Parkinson’s disease; it ameliorates alpha-synuclein toxicity in vitro and prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopamine depletion and dopaminergic neuron loss in vivo. The compound does not show beneficial effects in mouse models of amyotrophic lateral sclerosis and cerebral ischemia. These findings underscore the specificity of protective effects observed here in models of Parkinson’s disease, and previously in Huntington’s disease, and support the development of SIRT2 inhibitors as potential therapeutics for the two neurodegenerative diseases. PMID:25608039

  11. Circulating KL-6 levels in patients with drug induced pneumonitis

    PubMed Central

    Ohnishi, H; Yokoyama, A; Yasuhara, Y; Watanabe, A; Naka, T; Hamada, H; Abe, M; Nishimura, K; Higaki, J; Ikezoe, J; Kohno, N

    2003-01-01

    Background: The circulating level of KL-6/MUC1 is a sensitive marker for various interstitial lung diseases. Previous case reports have suggested that KL-6 may also be increased in some patients with drug induced pneumonitis. A study was undertaken to determine whether serum KL-6 could be a marker for particular types of drug induced pneumonitis. Methods: The findings of high resolution computed tomographic (HRCT) chest scans of 30 patients with drug induced pneumonitis were reviewed separately by two independent observers. The pneumonitis was classified into four predominant patterns: widespread bilateral consolidation (diffuse alveolar damage, DAD; n=7), fibrosis with or without consolidation (chronic interstitial pneumonia, CIP; n=11), consolidation without fibrosis (bronchiolitis obliterans organising pneumonia or eosinophilic pneumonia, BOOP/EP; n=8), and diffuse ground glass opacities without fibrosis (hypersensitivity pneumonitis, HP; n=4). Serum KL-6 levels were measured by a sandwich enzyme linked immunosorbent assay. Results: The overall sensitivity of serum KL-6 in detecting drug induced lung disease was 53.3%, which was lower than its sensitivity in detecting other interstitial lung diseases. However, the KL-6 level was increased in most patients with a DAD or CIP pattern (16/18; 88.9%) and was closely correlated with their clinical course. In contrast, serum KL-6 levels were within the normal range in all patients with a BOOP/EP or HP pattern. Conclusions: Particular patterns detected by HRCT scanning, such as DAD and CIP but not the BOOP/EP or HP patterns, are associated with increased circulating KL-6 levels in drug induced pneumonitis. Serum KL-6 levels may reflect the clinical activity of the particular disorders. PMID:14514942

  12. Neurological morphofunctional differentiation induced by REAC technology in PC12. A neuro protective model for Parkinson's disease.

    PubMed

    Maioli, Margherita; Rinaldi, Salvatore; Migheli, Rossana; Pigliaru, Gianfranco; Rocchitta, Gaia; Santaniello, Sara; Basoli, Valentina; Castagna, Alessandro; Fontani, Vania; Ventura, Carlo; Serra, Pier Andrea

    2015-01-01

    Research for the use of physical means, in order to induce cell differentiation for new therapeutic strategies, is one of the most interesting challenges in the field of regenerative medicine, and then in the treatment of neurodegenerative diseases, Parkinson's disease (PD) included. The aim of this work is to verify the effect of the radio electric asymmetric conveyer (REAC) technology on the PC12 rat adrenal pheochromocytoma cell line, as they display metabolic features of PD. PC12 cells were cultured with a REAC regenerative tissue optimization treatment (TO-RGN) for a period ranging between 24 and 192?hours. Gene expression analysis of specific neurogenic genes, as neurogenin-1, beta3-tubulin and Nerve growth factor, together with the immunostaining analysis of the specific neuronal protein beta3-tubulin and tyrosine hydroxylase, shows that the number of cells committed toward the neurogenic phenotype was significantly higher in REAC treated cultures, as compared to control untreated cells. Moreover, MTT and Trypan blue proliferation assays highlighted that cell proliferation was significantly reduced in REAC TO-RGN treated cells. These results open new perspectives in neurodegenerative diseases treatment, particularly in PD. Further studies will be needed to better address the therapeutic potential of the REAC technology. PMID:25976344

  13. Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia

    PubMed Central

    Fieblinger, Tim; Graves, Steven M.; Sebel, Luke E.; Alcacer, Cristina; Plotkin, Joshua L.; Gertler, Tracy S.; Chan, C. Savio; Heiman, Myriam; Greengard, Paul; Cenci, M. Angela; Surmeier, D. James

    2015-01-01

    Summary The striatum is widely viewed as the fulcrum of pathophysiology in Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID). In these disease states, the balance in activity of striatal direct pathway spiny projection neurons (dSPNs) and indirect pathway spiny projection neurons (iSPNs) is disrupted, leading to aberrant action selection. However, it is unclear whether countervailing mechanisms are engaged in these states. Here we report that iSPN intrinsic excitability and excitatory corticostriatal synaptic connectivity were lower in PD models than normal; L-DOPA treatment restored these properties. Conversely, dSPN intrinsic excitability was elevated in tissue from PD models and suppressed in LID models. Although the synaptic connectivity of dSPNs did not change in PD models, it fell with L-DOPA treatment. In neither case, however, was the strength of corticostriatal connections globally scaled. Thus, SPNs manifested homeostatic adaptations in intrinsic excitability and in the number but not strength of excitatory corticostriatal synapses. PMID:25360704

  14. Lesion of medullary catecholaminergic neurons is associated with cardiovascular dysfunction in rotenone-induced Parkinson's disease rats.

    PubMed

    Zhang, Zhaoqiang; Du, Xixun; Xu, Huamin; Xie, Junxia; Jiang, Hong

    2015-09-01

    In recent years, non-motor symptoms have been recognised as of vital importance in Parkinson's disease (PD); among these, cardiovascular dysfunctions are commonly seen in PD patients before their motor signs. The role of cardiovascular dysfunction in the progression of PD pathology, and its underlying mechanisms, are largely unknown. In the present study, in rotenone-induced PD rats, there was a gradual reduction in the number of nigral tyrosine hydroxylase-immunoreactive (TH-ir) neurons after 7, 14 and 21 days treatment. With the 56% reduction in striatal dopamine content and 52% loss of TH-ir neurons on the 14th day, the rats showed motor dysfunctions. However, from ECG power spectra, reductions in normalised low-frequency power and in the low-frequency power : high-frequency power ratio, as well as in mean blood pressure, were observed as early as the 3rd day. Plasma norepinephrine (NE) and epinephrine (E) levels were decreased by 39% and 26% respectively at the same time. Pearson's correlation analysis showed that both plasma NE and plasma E levels were positively correlated with MBP. Our results also showed that the loss of catecholaminergic neurons in the rostral ventrolateral medulla (RVLM), but not in the caudal ventrolateral medulla or the nucleus tractus solitarii, emerged earlier than the loss of nigral dopaminergic neurons. This suggests that dysfunction of catecholaminergic neurons in the RVLM might account for the reduced sympathetic activity, MBP and plasma catecholamine levels in the early stages of PD. PMID:26153521

  15. Effects of non-steroidal antiinflammatory drugs on D-serine-induced oxidative stress in vitro.

    PubMed

    Armagan, Guliz; Kanit, Lutfiye; Yalcin, Ayfer

    2012-10-01

    Inflammation is deleterious for organs with reduced capacity of regeneration, such as the brain. Recently, studies have focused on investigating the therapeutic effects of nonsteroidal anti-inflammatory drugs (NSAIDs) in Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. Excitotoxicity is the pathological process when receptors for the excitatory neurotransmitter glutamate, such as the N-methyl-D-aspartate (NMDA), receptors are overactivated. This process may be involved in neurodegenerative diseases. D-serine is one of the coagonist of NMDA receptors, and increased levels of D-serine are associated with excitotoxicity. In our study, the potential neuroprotective effects of mefenamic acid, acetaminophen, and naproxen sodium were investigated against D-serine-induced oxidative stress in the rat brain in vitro. To show their potential neuroprotective properties, NSAIDs were incubated with D-serine and reactive oxygen species (ROS), malondialdehyde, and protein carbonyl content of the brain after different treatments were measured. Our results demostrate that NSAIDs used in the present study significantly reduced ROS production, lipid peroxidation, and protein oxidation against D-serine treatment. PMID:22486999

  16. Induced Pluripotent Stem Cells for Disease Modeling and Drug Discovery in Neurodegenerative Diseases.

    PubMed

    Cao, Lei; Tan, Lan; Jiang, Teng; Zhu, Xi-Chen; Yu, Jin-Tai

    2015-08-01

    Although most neurodegenerative diseases have been closely related to aberrant accumulation of aggregation-prone proteins in neurons, understanding their pathogenesis remains incomplete, and there is no treatment to delay the onset or slow the progression of many neurodegenerative diseases. The availability of induced pluripotent stem cells (iPSCs) in recapitulating the phenotypes of several late-onset neurodegenerative diseases marks the new era in in vitro modeling. The iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in these diseases and provides a novel human stem cell platform for screening new candidate therapeutics. Modeling human diseases using iPSCs has created novel opportunities for both mechanistic studies as well as for the discovery of new disease therapies. In this review, we introduce iPSC-based disease modeling in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. In addition, we discuss the implementation of iPSCs in drug discovery associated with some new techniques. PMID:25146848

  17. Drug-induced proarrhythmia: risk factors and electrophysiological mechanisms.

    PubMed

    Frommeyer, Gerrit; Eckardt, Lars

    2016-01-01

    Drug-induced ventricular tachyarrhythmias can be caused by cardiovascular drugs, noncardiovascular drugs, and even nonprescription agents. They can result in arrhythmic emergencies and sudden cardiac death. If a new arrhythmia or aggravation of an existing arrhythmia develops during therapy with a drug at a concentration usually considered not to be toxic, the situation can be defined as proarrhythmia. Various cardiovascular and noncardiovascular drugs can increase the occurrence of polymorphic ventricular tachycardia of the 'torsade de pointes' type. Antiarrhythmic drugs, antimicrobial agents, and antipsychotic and antidepressant drugs are the most important groups. Age, female sex, and structural heart disease are important risk factors for the occurrence of torsade de pointes. Genetic predisposition and individual pharmacodynamic and pharmacokinetic sensitivity also have important roles in the generation of arrhythmias. An increase in spatial or temporal dispersion of repolarization and a triangular action-potential configuration have been identified as crucial predictors of proarrhythmia in experimental models. These studies emphasized that sole consideration of the QT interval is not sufficient to assess the proarrhythmic risk. In this Review, we focus on important triggers of proarrhythmia and the underlying electrophysiological mechanisms that can enhance or prevent the development of torsade de pointes. PMID:26194552

  18. Multiple Targets for Drug-Induced Mitochondrial Toxicity.

    PubMed

    Wallace, Kendall B

    2015-01-01

    Mitochondrial toxicity is rapidly gaining the interest of researchers and practitioners as a prominent liability in drug discovery and development, accounting for a growing proportion of preclinical drug attrition and post-market withdrawals or black box warnings by the U.S. FDA. To date, the focus of registries of drugs that elicit mitochondrial toxicity has been largely restricted to those that either inhibit the mitochondrial electron transport chain (ETC) or uncouple mitochondrial oxidative phosphorylation. Less appreciated are the toxicities that are secondary to the drug affecting either the molecular regulation, assembly or incorporation of the ETC into the inner mitochondrial membrane or those that limit substrate availability. The current article describes the complexities of molecular events and biochemical pathways required to sustain mitochondrial fidelity and substrate homeostasis with examples of drugs that interfere which the various pathways. The principal objective of this review is to shed light on the broader scope of drug-induced mitochondrial toxicities and how these secondary targets may account for a large portion of drug failures. PMID:25973981

  19. Angioedema induced by cardiovascular drugs: new players join old friends.

    PubMed

    Bas, M; Greve, J; Strassen, U; Khosravani, F; Hoffmann, T K; Kojda, G

    2015-10-01

    During the last years, two new cardiovascular drug classes, namely inhibitors of DPP IV or neprilysin, have been developed. In both cases, there is clinical evidence for their potential to induce angioedema as known already from blockers of the renin-angiotensin-aldosterone system (RAAS). The majority of angioedema induced by DPP IV inhibitors occurs during concomitant treatment with ACEi and is therefore likely mediated by overactivation of bradykinin type 2 receptors (B2). In striking contrast, the molecular pathways causing angioedema induced by neprilysin inhibitors, that is, sacubitril, are unclear, although a contribution of bradykinin appears likely. Nevertheless, there is no clinical evidence suggesting that inhibition of B2 might relieve the symptoms and/or prevent invasive treatment including coniotomy or tracheotomy in angioedema caused by these drugs. Therefore, the risk of angioedema should always be considered, especially in ambulatory care situations where patients have no rapid access to intensive care. PMID:26119220

  20. Light induced cytosolic drug delivery from liposomes with gold nanoparticles.

    PubMed

    Lajunen, Tatu; Viitala, Lauri; Kontturi, Leena-Stiina; Laaksonen, Timo; Liang, Huamin; Vuorimaa-Laukkanen, Elina; Viitala, Tapani; Le Guével, Xavier; Yliperttula, Marjo; Murtomäki, Lasse; Urtti, Arto

    2015-04-10

    Externally triggered drug release at defined targets allows site- and time-controlled drug treatment regimens. We have developed liposomal drug carriers with encapsulated gold nanoparticles for triggered drug release. Light energy is converted to heat in the gold nanoparticles and released to the lipid bilayers. Localized temperature increase renders liposomal bilayers to be leaky and triggers drug release. The aim of this study was to develop a drug releasing system capable of releasing its cargo to cell cytosol upon triggering with visible and near infrared light signals. The liposomes were formulated using either heat-sensitive or heat- and pH-sensitive lipid compositions with star or rod shaped gold nanoparticles. Encapsulated fluorescent probe, calcein, was released from the liposomes after exposure to the light. In addition, the pH-sensitive formulations showed a faster drug release in acidic conditions than in neutral conditions. The liposomes were internalized into human retinal pigment epithelial cells (ARPE-19) and human umbilical vein endothelial cells (HUVECs) and did not show any cellular toxicity. The light induced cytosolic delivery of calcein from the gold nanoparticle containing liposomes was shown, whereas no cytosolic release was seen without light induction or without gold nanoparticles in the liposomes. The light activated liposome formulations showed a controlled content release to the cellular cytosol at a specific location and time. Triggering with visual and near infrared light allows good tissue penetration and safety, and the pH-sensitive liposomes may enable selective drug release in the intracellular acidic compartments (endosomes, lysosomes). Thus, light activated liposomes with gold nanoparticles are an attractive option for time- and site-specific drug delivery into the target cells. PMID:25701610

  1. The Docosanoid Neuroprotectin D1 Induces TH-Positive Neuronal Survival in a Cellular Model of Parkinson's Disease.

    PubMed

    Calandria, Jorgelina M; Sharp, Michelle W; Bazan, Nicolas G

    2015-11-01

    Parkinson's disease (PD) does not manifest clinically until 80 % of striatal dopamine is reduced, thus most neuronal damage takes place before the patient presents clinical symptoms. Therefore, it is important to develop preventive strategies for this disease. In the experimental models of PD, 1-methyl-4-phenylpyridinium ion (MPP+) and rotenone induce toxicity in dopaminergic neurons. Neuroprotectin D1 (NPD1) displays neuroprotection in cells undergoing proteotoxic and oxidative stress. In the present report, we established an in vitro model using a primary neuronal culture from mesencephalic embryonic mouse tissue in which 17-20 % of neurons were TH-positive when differentiated in vitro. NPD1 (100 nM) rescued cells from apoptosis induced by MPP+ and rotenone, and the dendritic arbor of surviving neurons was examined using Sholl analysis. Rotenone, as well as MPP+ and its precursor 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), severely promoted retraction of dendritic arbor distal segments, thus decreasing the maximum branch order reached. On average, NPD1 counteracted the effects of MPP+ on the dendritic arborization, but failed to do so in the rotenone-treated neurons. However, rotenone did decrease the Sholl intersection number from radii 25 to 125 µm, and NPD1 did restore the pattern to control levels. Similarly, NPD1 partially reverted the dendrite retraction caused by MPP+ and MPTP. These results suggest that the apoptosis occurring in mesencephalic TH-positive neurons is not a direct consequence of mitochondrial dysfunction alone and that NPD1 signaling may be counteracting this damage. These findings lay the groundwork for the use of the in vitro model developed for future studies and for the search of specific molecular events that NPD1 targets to prevent early neurodegeneration in PD. PMID:26047923

  2. Drug-induced hepatotoxicity of anti-tuberculosis drugs and their serum levels.

    PubMed

    Jeong, Ina; Park, Jong-Sun; Cho, Young-Jae; Yoon, Ho Il; Song, Junghan; Lee, Choon-Taek; Lee, Jae-Ho

    2015-02-01

    The correlation between serum anti-tuberculosis (TB) drug levels and the drug-induced hepatotoxicity (DIH) remains unclear. The purpose of this study was to investigate whether anti-TB DIH is associated with basal serum drug levels. Serum peak levels of isoniazid (INH), rifampicin (RMP), pyrazinamide (PZA), and ethambutol (EMB) were analyzed in blood samples 2 hr after the administration of anti-TB medication. Anti-TB DIH and mild liver function test abnormality were diagnosed on the basis of laboratory and clinical criteria. Serum anti-TB drug levels and other clinical factors were compared between the hepatotoxicity and non-hepatotoxicity groups. A total of 195 TB patients were included in the study, and the data were analyzed retrospectively. Seventeen (8.7%) of the 195 patients showed hepatotoxicity, and the mean aspartate aminotransferase/alanine aminotransferase levels in the hepatotoxicity group were 249/249 IU/L, respectively. Among the 17 patients with hepatotoxicity, 12 showed anti-TB DIH. Ten patients showed PZA-related hepatotoxicity and 2 showed INH- or RMP-related hepatotoxicity. However, intergroup differences in the serum levels of the 4 anti-TB drugs were not statistically significant. Basal serum drug concentration was not associated with the risk anti-TB DIH in patients being treated with the currently recommended doses of first-line anti-TB treatment drugs. PMID:25653488

  3. Identifying the Basal Ganglia Network Model Markers for Medication-Induced Impulsivity in Parkinson's Disease Patients

    PubMed Central

    Balasubramani, Pragathi Priyadharsini; Chakravarthy, V. Srinivasa; Ali, Manal; Ravindran, Balaraman; Moustafa, Ahmed A.

    2015-01-01

    Impulsivity, i.e. irresistibility in the execution of actions, may be prominent in Parkinson's disease (PD) patients who are treated with dopamine precursors or dopamine receptor agonists. In this study, we combine clinical investigations with computational modeling to explore whether impulsivity in PD patients on medication may arise as a result of abnormalities in risk, reward and punishment learning. In order to empirically assess learning outcomes involving risk, reward and punishment, four subject groups were examined: healthy controls, ON medication PD patients with impulse control disorder (PD-ON ICD) or without ICD (PD-ON non-ICD), and OFF medication PD patients (PD-OFF). A neural network model of the Basal Ganglia (BG) that has the capacity to predict the dysfunction of both the dopaminergic (DA) and the serotonergic (5HT) neuromodulator systems was developed and used to facilitate the interpretation of experimental results. In the model, the BG action selection dynamics were mimicked using a utility function based decision making framework, with DA controlling reward prediction and 5HT controlling punishment and risk predictions. The striatal model included three pools of Medium Spiny Neurons (MSNs), with D1 receptor (R) alone, D2R alone and co-expressing D1R-D2R. Empirical studies showed that reward optimality was increased in PD-ON ICD patients while punishment optimality was increased in PD-OFF patients. Empirical studies also revealed that PD-ON ICD subjects had lower reaction times (RT) compared to that of the PD-ON non-ICD patients. Computational modeling suggested that PD-OFF patients have higher punishment sensitivity, while healthy controls showed comparatively higher risk sensitivity. A significant decrease in sensitivity to punishment and risk was crucial for explaining behavioral changes observed in PD-ON ICD patients. Our results highlight the power of computational modelling for identifying neuronal circuitry implicated in learning, and its impairment in PD. The results presented here not only show that computational modelling can be used as a valuable tool for understanding and interpreting clinical data, but they also show that computational modeling has the potential to become an invaluable tool to predict the onset of behavioral changes during disease progression. PMID:26042675

  4. Parkinson's Disease Patient-Derived Induced Pluripotent Stem Cells Free of Viral Reprogramming Factors

    E-print Network

    Soldner, Frank

    Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients represent a powerful tool for biomedical research and may provide a source for replacement therapies. However, the use of viruses encoding the ...

  5. Suspected drug-induced destructive cholangitis in a young dog.

    PubMed

    Gabriel, A; van den Ingh, T S G A M; Clercx, C; Peeters, D

    2006-06-01

    A nine-month-old miniature doberman was referred for the evaluation of chronic icterus. History and clinical and histopathological findings were supportive of a diagnosis of drug-induced destructive cholangitis. The main histopathological findings were canalicular, centrilobular cholestasis and ductopenia with moderate inflammatory infiltrate. The dog had received three types of treatment for demodicosis before the onset of jaundice. Amoxicillin-clavulanate, amitraz, milbemycin oxime or an interaction between two of the three drugs may have been responsible for the destructive cholangitis. PMID:16761987

  6. Drug-induced hypertension: an unappreciated cause of secondary hypertension.

    PubMed

    Grossman, Ehud; Messerli, Franz H

    2012-01-01

    A myriad variety of therapeutic agents or chemical substances can induce either a transient or persistent increase in blood pressure, or interfere with the blood pressure-lowering effects of antihypertensive drugs. Some agents cause either sodium retention or extracellular volume expansion, or activate directly or indirectly the sympathetic nervous system. Other substances act directly on arteriolar smooth muscle or do not have a defined mechanism of action. Some medications that usually lower blood pressure may paradoxically increase blood pressure, or an increase in pressure may be encountered after their discontinuation. In general, drug-induced pressure increases are small and transient: however, severe hypertension involving encephalopathy, stroke, and irreversible renal failure have been reported. The deleterious effect of therapeutic agents is more pronounced in patients with preexisting hypertension, in those with renal failure, and in the elderly. Careful evaluation of a patient's drug regimen may identify chemically induced hypertension and obviate unnecessary evaluation and facilitate antihypertensive therapy. Once chemical-induced hypertension has been identified, discontinuation of the causative agent is recommended, although hypertension can often be managed by specific therapy and dose adjustment if continued use of the offending agent is mandatory. The present review summarizes the therapeutic agents or chemical substances that elevate blood pressure and their mechanisms of action. PMID:22195528

  7. Blockade of metabotropic glutamate receptor 5 protects against DNA damage in a rotenone-induced Parkinson's disease model.

    PubMed

    Xia, Ning; Zhang, Qian; Wang, Shu Ting; Gu, Li; Yang, Hui Min; Liu, Li; Bakshi, Rachit; Yang, Hui; Zhang, Hong

    2015-12-01

    Glutamate excitotoxicity contributes to the development of Parkinson's disease (PD) and pharmacological blockade of metabotropic glutamate receptor 5 (mGluR5) has beneficial anti-akinetic effects in animal models of PD; however, the mechanism by which these antagonists alleviate PD symptoms is largely unknown. In our study, the effects of mGluR5 inhibition on DNA damage were investigated in a rotenone-induced model of PD. We first found that the selective mGluR5 antagonist, 2-methyl-6- (phenylethynyl) pyridine, prevented rotenone-induced DNA damage in MN9D dopaminergic neurons through a mechanism involving the downregulation of intracellular calcium release which was associated with a reduction in endoplasmic reticulum stress and reactive oxygen species (ROS)-related mitochondrial dysfunction. Interestingly, the ROS-related mitochondrial dysfunction was accompanied by an increase in expression of the antioxidant protein, Trx2. Treatment of cells with the calcium chelating agent 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid or the ROS scavenger N-acetyl-L-cysteine, also reduced rotenone-induced DNA damage, while transfection of a dominant-negative form of Trx2 increased it. In addition, mGluR5 inhibition altered the expression profiles of proteins involved in DNA repair activity. Specifically, the expression of phosphorylated ERK (p-ERK) and CREB, as well as APE1 and Rad51 were elevated after rotenone stimulation and were subsequently downregulated following blockade of mGluR5. These findings were confirmed in vivo in a rotenone-induced rat model of PD. Inhibition of mGluR5 protected against neurotoxicity by mitigating oxidative stress-related DNA damage associated with 8-hydroxy-2'-deoxyguanosine production and also reduced p-ERK activity and Trx2 expression. These findings provide a novel link between mGluR5 and DNA damage in a model of PD, and reveal a potential mechanism by which mGluR5 mediates DNA damage in neurodegenerative diseases. PMID:26454081

  8. 75 FR 14602 - Guidance for Industry on Drug-Induced Liver Injury: Premarketing Clinical Evaluation; Opening of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ...Drug-Induced Liver Injury: Premarketing Clinical Evaluation; Opening of Comment Period...Drug-Induced Liver Injury: Premarketing Clinical Evaluation.'' In addition, FDA...Drug-Induced Liver Injury: Premarketing Clinical Evaluation.'' The guidance...

  9. How to Diagnose and Exclude Drug-Induced Liver Injury.

    PubMed

    Watkins, Paul B

    2015-01-01

    The diagnosis of drug-induced liver injury (DILI) is largely a diagnosis of exclusion because, with the possible exception of protein:drug adducts in paracetamol overdose, there are no laboratory, biopsy or imaging tests that alone are capable of establishing an unequivocal diagnosis of DILI. However, it is increasingly appreciated that drugs that cause DILI typically have characteristic clinical presentations or 'signatures' that can be very useful in the diagnosis of DILI. Indeed, knowing a drug's DILI signature (or sometimes signatures) and the incidence rate of DILI during treatment with that drug are perhaps the most useful pieces of historical information in arriving at the diagnosis of DILI. Components of the signature include the typical latency from the onset of treatment, whether there are extrahepatic manifestations, whether the injury is hepatocellular, cholestatic or mixed, and sometimes characteristic features on biopsy or serological testing (e.g. liver autoantibodies). A major advance has been the establishment of the LiverTox website (http://livertox.nih.gov/) which provides open access to standardized entries for over 600 different drugs, including the characteristic clinical presentations of DILI when known. LiverTox will also calculate the causality score for individual cases using the RUCAM instrument and case-specific data entered by the site user. However, the problem with standard diagnostic instruments such as the RUCAM is that DILI signatures are not incorporated into the scoring system. The person entering data must therefore subjectively weigh the RUCAM score with the characteristic DILI signature(s) of the drug to arrive at a diagnosis. In the future, it should be possible to construct improved diagnostic instruments that objectively incorporate DILI signatures, data-based estimates of the incidence rates of DILI from each implicated drug, and perhaps genetic variants associated with the risk of DILI. PMID:26159261

  10. A case of severe psychosis induced by novel recreational drugs

    PubMed Central

    Dragogna, Filippo; Oldani, Lucio; Buoli, Massimiliano; Altamura, A. Carlo

    2014-01-01

    Introduction:  The use of novel recreational drugs is becoming of public interest, especially after recent international alerts about their cardiovascular and neurological toxicity. Additionally, little is known about the psychiatric consequences of the long-term use of these compounds. Case presentation: We describe a case of severe psychotic episode likely induced by chronic use of a combination of new recreational drugs (methylenedioxypyrovalerone, mephedrone, butylone and alpha-pyrrolidinopentiophenone). The patient had no psychiatric history and showed poor response to conventional antipsychotic treatment (haloperidol). Conclusions: This case illustrates the potential negative effects of recreational drugs that cannot be limited to an acute psychotic episode but might determine a condition of prolonged paranoid psychosis. Although the use of these compounds is currently increasing, such molecules might often pass undetected in patients accessing the emergency room, leading to misdiagnosis (e.g. schizophrenic episode) and lack of appropriate treatment. PMID:25352977

  11. Troponin leak associated with drug-induced methemoglobinemia.

    PubMed

    Cannon, Robert D; Wagner, Michael; Jacoby, Jeanne L

    2014-10-01

    Drug-induced methemoglobinemia is a well-described entity but has not been previously associated with elevated troponins in the absence of cardiac symptoms. We report a case of a patient presenting to the emergency department (ED) with complaints related to an exacerbation of her long-standing cystitis. A low pulse oximetry reading prompted an evaluation, revealing a troponin leak, which peaked at 10 hours. Her methemoglobin level was found to be elevated at 11.4%, but a preexisting anemia apparently prevented the clinical recognition of cyanosis. The methemoglobinemia was determined to be secondary to her ingestion of phenazopyridine and trimethoprim-sulfa methoxizole. Although phenazopyridine and sulfa agents have long been known to cause methemoglobinemia, our patient exhibited an asymptomatic troponin leak that has not been previously reported as a complication of drug-induced methemoglobinemia. Clinicians should be aware of this potential association. PMID:24686024

  12. Antifungal-Associated Drug-Induced Cardiac Disease.

    PubMed

    Cleary, John D; Stover, Kayla R

    2015-12-01

    The etiology of cardiomyopathies are classified into 4 main groupings (dilated, hypertrophic, restrictive, and idiopathic) and can be mechanistically caused by myocarditis, conduction abnormalities, focal direct injury, or nutritional deficiency. Based on our review of this topic, evidence suggests that echinocandin-related cardiac dysfunction is a mitochondrial drug-induced disease caused by focal direct myocyte injury. With caspofungin or anidulafungin administration into the heart via central line, exposure is likely extreme enough to induce the acute toxicity. Chronic or low-dose exposure may lead to hypertrophic cardiomyopathy; however, only acute exposures have been explored to date. PMID:26567285

  13. Drug induced hypertension--An unappreciated cause of secondary hypertension.

    PubMed

    Grossman, Alon; Messerli, Franz H; Grossman, Ehud

    2015-09-15

    Most patients with hypertension have essential hypertension or well-known forms of secondary hypertension, such as renal disease, renal artery stenosis, or common endocrine diseases (hyperaldosteronism or pheochromocytoma). Physicians are less aware of drug induced hypertension. A variety of therapeutic agents or chemical substances may increase blood pressure. When a patient with well controlled hypertension is presented with acute blood pressure elevation, use of drug or chemical substance which increases blood pressure should be suspected. Drug-induced blood pressure increases are usually minor and short-lived, although rare hypertensive emergencies associated with use of certain drugs have been reported. Careful evaluation of prescription and non-prescription medications is crucial in the evaluation of the hypertensive individual and may obviate the need for expensive and unnecessary evaluations. Discontinuation of the offending agent will usually achieve adequate blood pressure control. When use of a chemical agent which increases blood pressure is mandatory, anti-hypertensive therapy may facilitate continued use of this agent. We summarize the therapeutic agents or chemical substances that elevate blood pressure and their mechanisms of action. PMID:26096556

  14. Drug-Induced Liver Injury After Soy Protein Supplement Use

    PubMed Central

    Thapar, Manish

    2015-01-01

    Drug-induced liver injury (DILI) is an important and often elusive cause of iatrogenic hepatic injury which complicates its recognition and treatment. We describe a rare case of severe liver injury in a previously healthy individual associated with a commonly used and reportedly safe soy protein powder supplement. Discontinuation of the supplements and initiation of ursodeoxycholic acid provided symptomatic relief, decreased pruritus, and resulted in a resolution of hepatic panel labs. PMID:26157956

  15. Homogeneous generation of iDA neurons with high similarity to bona fide DA neurons using a drug inducible system.

    PubMed

    Park, Hanseul; Kim, Hongwon; Yoo, Junsang; Lee, Jaekwang; Choi, Hwan; Baek, Soonbong; Lee, C Justin; Kim, Janghwan; Lengner, Christopher J; Sung, Jung-Suk; Kim, Jongpil

    2015-12-01

    Recent work generating induced dopaminergic (iDA) neurons using direct lineage reprogramming potentially provides a novel platform for the study and treatment Parkinson's disease (PD). However, one of the most important issues for iDA-based applications is the degree to which iDA neurons resemble the molecular and functional properties of their endogenous DA neuron counterparts. Here we report that the homogeneity of the reprogramming gene expression system is critical for the generation of iDA neuron cultures that are highly similar to endogenous DA neurons. We employed an inducible system that carries iDA-inducing factors as defined transgenes for direct lineage reprogramming to iDA neurons. This system circumvents the need for viral transduction, enabling a more efficient and reproducible reprogramming process for the generation of genetically homogenous iDA neurons. We showed that this inducible system generates iDA neurons with high similarity to their bona fide in vivo counterparts in comparison to direct infection methods. Thus, our results suggest that homogenous expression of exogenous genes in direct lineage reprogramming is critical for the generation of high quality iDA neuron cultures, making such culture systems a valuable resource for iDA-based drug screening and, ultimately, potential therapeutic intervention in PD. PMID:26370928

  16. Excessive S-Adenosyl-L-Methionine-Dependent Methylation Increases Levels of Methanol, Formaldehyde and Formic Acid in Rat Brain Striatal Homogenates: Possible role in S-adenosyl-L-methionine-induced Parkinson’s disease-like disorders

    PubMed Central

    Lee, Eun-Sook; Chen, Hongtao; Hardman, Chadwick; Simm, Anthony; Charlton, Clivel

    2009-01-01

    Aims Excessive methylation may be a precipitating factor for Parkinson’s disease (PD) since S-adenosylmethionine (SAM), the endogenous methyl donor, induces PD-like changes when injected into the rat brain. The hydrolysis of the methyl ester bond of the methylated proteins produces methanol. Since methanol is oxidized into formaldehyde, and formaldehyde into formic acid in the body, we investigated the effects of SAM on the production of methanol, formaldehyde and formic acid in rat brain striatal homogenates and the toxicity of these products in PC12 cells. Main methods radio-enzymatic and colorimetric assays, cell viability, Western blot. Key findings SAM increased the formation of methanol, formaldehyde and formic acid in a concentration and time-dependent manner. Concentrations of [3H-methyl]-SAM at 0.17, 0.33, 0.67 and 1.34 nM produced 3.8, 8.0, 18.3 and 34.4 fmol/mg protein/h of [3H] methanol in rat striatal homogenates, respectively. SAM also significantly generated formaldehyde and formic acid in striatal homogenates. Formaldehyde was the most toxic metabolite to differentiated PC12 pheochromocytoma cells in cell culture studies, indicating that formaldehyde formed endogenously may contribute to neuronal damage in excessive methylation conditions. Subtoxic concentration of formaldehyde decreased the expression of tyrosine hydroxylase, the limiting factor in dopamine synthesis. Formaldehyde was more toxic to catecholaminergic PC12 cells than C6 glioma cells, indicating that neurons are more vulnerable to formaldehyde than glia cells. Significance We suggest that excessive carboxylmethylation of proteins might be involved in the SAM-induced PD-like changes and in the aging process via the toxic effects of formaldehyde. PMID:18930743

  17. Cardiac lesions induced by neuroleptic drugs in the rabbit.

    PubMed

    Belhani, D; Frassati, D; Mégard, R; Tsibiribi, P; Bui-Xuan, B; Tabib, A; Fanton, L; Malicier, D; Descotes, J; Timour, Q

    2006-01-01

    Sudden death seems to be more frequent following treatment with neuroleptic drugs in patients with pre-existing cardiac lesions, especially dilated and hypertrophic myocardiopathy. The present study was undertaken to confirm the hypothesis that myocardial lesions can be induced by neuroleptic drugs. Eight groups of 6 New-Zealand White rabbits were treated for 3 months: group I: controls (saline); group II: 15 mg/kg/day amisulpride; group III: 0.20 mg/kg/day haloperidol; group IV: 3 mg/kg/day levomepromazine; group V: 0.30 mg/kg/day olanzapine; group VI: 1.0 mg/kg risperidone, every 15 days; group VII: levomepromazine+haloperidol, same dose levels as single treatments; group VIII: levomepromazine+risperidone, same dose levels as single treatments. The hearts were immediately weighted and fixed, and paraffin sections were prepared and examined. Ventricular hypertrophy was observed following treatment with olanzapine and was still more marked with the combinations levomepromazine+haloperidol and levomepromazine+risperidone. Amisulpride and haloperidol induced necrotic lesions and levomepromazine, endocardial fibrosis. There was a lack of severe cardiac lesions following treatment with risperidone. The observed cardiac lesions can be compared to those seen in toxic myocarditis. These findings confirm the hypothesis that some neuroleptic drugs induce myocardial lesions. Further studies are warranted to demonstrate the effects of treatments of longer duration and the influence of pre-existing cardiac lesions. PMID:16410188

  18. Hitler's parkinsonism.

    PubMed

    Boettcher, Lillian B; Bonney, Phillip A; Smitherman, Adam D; Sughrue, Michael E

    2015-07-01

    Of the multitude of medical and psychiatric conditions ascribed to Hitler both in his lifetime and since his suicide in April 1945, few are more substantiated than parkinsonism. While the timeline of the development of this condition, as well as its etiology, are debated, there is clear evidence for classic manifestations of the disease, most prominently a resting tremor but also stooped posture, bradykinesia, micrographia, and masked facial expressions, with progression steadily seen over his final years. Though ultimately speculation, some have suggested that Hitler suffered from progressive cognitive and mood disturbances, possibly due to parkinsonism, that affected the course of events in the war. Here, the authors discuss Hitler's parkinsonism in the context of the Third Reich and its eventual destruction, maintaining that ultimately his disease had little effect on the end result. PMID:26126407

  19. Indirect application of near infrared light induces neuroprotection in a mouse model of parkinsonism - an abscopal neuroprotective effect.

    PubMed

    Johnstone, D M; el Massri, N; Moro, C; Spana, S; Wang, X S; Torres, N; Chabrol, C; De Jaeger, X; Reinhart, F; Purushothuman, S; Benabid, A-L; Stone, J; Mitrofanis, J

    2014-08-22

    We have previously shown near infrared light (NIr), directed transcranially, mitigates the loss of dopaminergic cells in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated mice, a model of parkinsonism. These findings complement others suggesting NIr treatment protects against damage from various insults. However one puzzling feature of NIr treatment is that unilateral exposure can lead to a bilateral healing response, suggesting NIr may have 'indirect' protective effects. We investigated whether remote NIr treatment is neuroprotective by administering different MPTP doses (50-, 75-, 100-mg/kg) to mice and treating with 670-nm light directed specifically at either the head or body. Our results show that, despite no direct irradiation of the damaged tissue, remote NIr treatment produces a significant rescue of tyrosine hydroxylase-positive cells in the substantia nigra pars compacta at the milder MPTP dose of 50-mg/kg (?30% increase vs sham-treated MPTP mice, p<0.05). However this protection did not appear as robust as that achieved by direct irradiation of the head (?50% increase vs sham-treated MPTP mice, p<0.001). There was no quantifiable protective effect of NIr at higher MPTP doses, irrespective of the delivery mode. Astrocyte and microglia cell numbers in substantia nigra pars compacta were not influenced by either mode of NIr treatment. In summary, the findings suggest that treatment of a remote tissue with NIr is sufficient to induce protection of the brain, reminiscent of the 'abscopal effect' sometimes observed in radiation treatment of metastatic cancer. This discovery has implications for the clinical translation of light-based therapies, providing an improved mode of delivery over transcranial irradiation. PMID:24857852

  20. Pregnane X receptor and drug-induced liver injury

    PubMed Central

    Wang, Yue-Ming; Chai, Sergio C.; Brewer, Christopher T; Chen, Taosheng

    2014-01-01

    Introduction The liver plays a central role in transforming and clearing foreign substances. The continuous exposure of the liver to xenobiotics sometimes leads to impaired liver function, referred to as drug-induced liver injury (DILI). The pregnane X receptor (PXR) tightly regulates the expression of genes in the hepatic drug-clearance system and its undesired activation plays a role in DILI. Areas covered This review focuses on the recent progress in understanding PXR-mediated DILI and highlights the efforts made to assess and manage PXR-mediated DILI during drug development. Expert opinion Future efforts are needed to further elucidate the mechanisms of PXR-mediated liver injury, including the epigenetic regulation and polymorphisms of PXR. Novel in vitro models containing functional PXR could improve our ability to predict and assess DILI during drug development. PXR inhibitors may provide chemical tools to validate the potential of PXR as a therapetic target and to develop drugs to be used in the clinic to manage PXR-mediated DILI. PMID:25252616

  1. Acceleration stress-induced Wolff-Parkinson-White Syndrome with marked ST-segment depression.

    PubMed

    Whinnery, J E

    1981-11-01

    Exercise can affect preexcitation in several ways. The possible presence of catecholamine-sensitive bypass, stimulated during periods of high stress, was recently reported. In addition to a direct effect on the preexcitation, when the preexcitation pattern exists, exercise-induced ST-segment changes may occur which preclude stress testing for coronary artery disease detection. Current high-performance fighter pilots, flying new generation aircraft, are under severe stress during aerial combat maneuvering when they are exposed to high sustained +Gz (head-to-foot) acceleration stress. We report the occurrence of a +Gz acceleration-induced episode of preexcitation with marked ST-segment depression in a healthy asymptomatic aircrewman. Autonomic imbalance, with high catecholamine levels developed during +Gz stress, may be the etiology of this preexcitation episode. PMID:7305792

  2. Donepezil Regulates 1-Methyl-4-phenylpyridinium-Induced Microglial Polarization in Parkinson's Disease.

    PubMed

    Chen, Teng; Hou, Ruihua; Xu, Shujun; Wu, Chengyuan

    2015-10-21

    1-Methyl-4-phenylpyridinium (MPP+) induces microglial activation and degeneration of dopaminergic (DAergic) neurons. Donepezil is a well-known acetylcholinesterase inhibitor used clinically to treat cognitive dysfunction in Alzheimer's disease (AD). In the present study, we tested the hypothesis that MPP+ promotes microglial M1 polarization and suppresses M2 polarization and that this can be restored by donepezil. Results indicate that MPP+ treatment in microglial BV2 cells promotes microglial polarization toward the M1 state. However, pretreatment with donepezil inhibited MPP+-induced M1 polarization in microglia by suppressing the release of interleukin (IL)-6, IL-1?, or tumor necrosis factor (TNF)-?. Importantly, we found that MPP+ inhibited microglial M2 polarization by suppressing expression of Arg-1, Fizz1, and Ym1, which was also rescued by pretreatment with donepezil. In addition, IL-4-mediated induction of anti-inflammatory marker genes IL-10, IL-13, and transforming growth factor-?2 (TGF-?2) were significantly attenuated by MPP+ in BV2 cells, which was restored by pretreatment with donepezil in a concentration-dependent manner. Mechanistically, we found that the addition of MPP+ reduced the intensity of phosphorylated signal transducer and activator of transcription 6 (STAT6) but not total STAT6 in IL-4-stimulated BV2 cells. Importantly, pretreatment of microglial BV2 cells with donepezil 3 h prior to administration of MPP+ rescued the reduction of STAT6 phosphorylation induced by MPP+. PMID:26114860

  3. Adenosine A2A receptor-mediated control of pilocarpine-induced tremulous jaw movements is Parkinson's disease-associated GPR37 receptor-dependent.

    PubMed

    Gandía, Jorge; Morató, Xavier; Stagljar, Igor; Fernández-Dueñas, Víctor; Ciruela, Francisco

    2015-07-15

    GPR37, also known as parkin associated endothelin-like receptor (Pael-R), is an orphan GPCR that aggregates intracellularly in a juvenile form of Parkinson's disease. However, little is known about the function of this orphan receptor. Here, using a model for parkisonian tremor, the pilocarpine-induced tremulous jaw movements (TJMs), we show that the deletion of GPR37 attenuated the TJMs in response to this cholinomimetic. Interestingly, the control that adenosine A2A receptor exerted over TJMs was lost in the absence of GPR37, thus pointing to a pivotal role of this orphan receptor in the adenosinergic control of parkinsonian tremor. PMID:25862943

  4. Mechanism of Nanotization-Mediated Improvement in the Efficacy of Caffeine Against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Parkinsonism.

    PubMed

    Singhal, Naveen Kumar; Agarwal, Swati; Bhatnagar, Priyanka; Tiwari, Manindra Nath; Tiwari, Shashi Kant; Srivastava, Garima; Kumar, Pradeep; Brashket, Seth; Patel, Devendra Kumar; Chaturvedi, Rajnish Kumar; Singh, Mahendra Pratap; Gupta, Kailash Chand

    2015-12-01

    The study aimed to measure the neuroprotective efficacy of caffeine-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles over bulk and to delineate the mechanism of improvement in efficacy both in vitro and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of Parkinsonism. Caffeine-encapsulated PLGA nanoparticles exhibited more pronounced increase in the endurance of dopaminergic neurons, fibre outgrowth and expression of tyrosine hydroxylase (TH) and growth-associated protein-43 (GAP-43) against 1-methyl-4-phenylpyridinium (MPP+)-induced alterations in vitro. Caffeine-encapsulated PLGA nanoparticles also inhibited MPP(+)-mediated nuclear translocation of nuclear factor-kappa B (NF-?B) and augmented protein kinase B phosphorylation more potentially than bulk counterpart. Conversely, MPTP reduced the striatal dopamine and its metabolites and nigral TH immunoreactivity whereas augmented the nigral microglial activation and nigrostriatal lipid peroxidation and nitrite content, which were shifted towards normalcy by caffeine. The modulations were more evident in caffeine-encapsulated PLGA nanoparticles treated animals as compared with bulk. Moreover, the striatal caffeine and its metabolites were found to be significantly higher in caffeine-encapsulated PLGA nanoparticles-treated mice as compared with bulk. The results thus suggest that nanotization improves the protective efficacy of caffeine against MPTP-induced Parkinsonism owing to enhanced bioavailability, inhibition of the nuclear translocation of NF-?B and activation of protein kinase B phosphorylation. PMID:26510314

  5. Neuroprotective effects of peroxisome proliferator-activated receptor alpha and gamma agonists in model of parkinsonism induced by intranigral 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine.

    PubMed

    Barbiero, Janaína K; Santiago, Ronise M; Persike, Daniele Suzete; da Silva Fernandes, Maria José; Tonin, Fernanda S; da Cunha, Claudio; Lucio Boschen, Suelen; Lima, Marcelo M S; Vital, Maria A B F

    2014-11-01

    A large body of evidence suggests that peroxisome proliferator-activated receptor (PPAR) agonists may improve some of the pathological features of Parkinson's disease (PD). In the present study, we evaluated the effects of the PPAR-? agonist fenofibrate (100mg/kg) and PPAR-? agonist pioglitazone (30mg/kg) in a rat model of parkinsonism induced by intranigral 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine (MPTP). Male Wistar rats were pretreated with both drugs for 5 days and received an infusion of MPTP. The experiments were divided into two parts. First, 1, 7, 14, and 21 days after surgery, the animals were submitted to the open field test. On days 21 and 22, the rats were subjected to the forced swim test and two-way active avoidance task. In the second part of the study, 24h after neurotoxin administration, immunohistochemistry was performed to assess tyrosine hydroxylase activity. The levels of dopamine and its metabolites in the striatum were determined using high-performance liquid chromatography, and fluorescence detection was used to assess caspase-3 activation in the substantia nigra pars compacta (SNpc). Both fenofibrate as pioglitazone protected against hypolocomotion, depressive-like behavior, impairment of learning and memory, and dopaminergic neurodegeneration caused by MPTP, with dopaminergic neuron loss of approximately 33%. Fenofibrate and pioglitazone also protected against the increased activation of caspase-3, an effector enzyme of the apoptosis cascade that is considered one of the pathological features of PD. Thus, PPAR agonists may contribute to therapeutic strategies in PD. PMID:25127682

  6. A Comparison of the Effectiveness of Three Drug Regimens on Cognitive Performance of Patients with Parkinson's disease

    ERIC Educational Resources Information Center

    Emsaki, Golit; Asgari, Karim; Molavi, Hossein; Chitsaz, Ahmad

    2013-01-01

    In the present study, the effectiveness of 3 drug regimen on cognitive performance of PD patients was compared. 12 patients who had been using pramipexole, levodopa and amantadine for at least 1 month entered the study and compared with those 12 who had been using trihexiphenidyle, levodopa and amantadine. There was also a control group…

  7. MicroRNAs in Drug-induced Liver Injury

    PubMed Central

    Li, Li-Min; Wang, Dong; Zen, Ke

    2014-01-01

    Drug-induced liver injury (DILI) is a leading cause of acute liver failure, and a major reason for the recall of marketed drugs. Detection of potential liver injury is a challenge for clinical management and preclinical drug safety studies, as well as a great obstacle to the development of new, effective and safe drugs. Currently, serum levels of alanine and aspartate aminotransferases are the gold standard for evaluating liver injury. However, these levels are assessed by nonspecific, insensitive, and non-predictive tests, and often result in false-positive results. Therefore, there is an urgent need for better DILI biomarkers to guide risk assessment and patient management. The discovery of microRNAs (miRNAs) as a new class of gene expression regulators has triggered an explosion of research, particularly on the measurement of miRNAs in various body fluids as biomarkers for many human diseases. The properties of miRNA-based biomarkers, such as tissue specificity and high stability and sensitivity, suggest they could be used as novel, minimally invasive and stable DILI biomarkers. In the current review, we summarize recent progress concerning the role of miRNAs in diagnosing and monitoring both clinical and preclinical DILI, and discuss the main advantages and challenges of miRNAs as novel DILI biomarkers. PMID:26357624

  8. Role of Human Orphan Esterases in Drug-induced Toxicity.

    PubMed

    Fukami, Tatsuki

    2015-01-01

      Esterases hydrolyze compounds containing ester, amide, and thioester bonds, causing prodrug activation or detoxification. Among esterases, carboxylesterases have been studied in depth due to their ability to hydrolyze a variety of drugs. However, there are several drugs for which the involved esterase(s) is unknown. We found that flutamide, phenacetin, rifamycins (rifampicin, rifabutin, and rifapentine), and indiplon are hydrolyzed by arylacetamide deacetylase (AADAC), which is highly expressed in human liver and gastrointestinal tissues. Flutamide hydrolysis is considered associated with hepatotoxicity. Phenacetin, a prodrug of acetaminophen, was withdrawn due to side effects such as methemoglobinemia and renal failure. It was demonstrated in vitro and in vivo using mice that AADAC is responsible for phenacetin hydrolysis, which leads to methemoglobinemia. In addition, it was shown that AADAC-mediated hydrolysis attenuates the cytotoxicity of rifamycins. Thus AADAC plays critical roles in drug-induced toxicity. Another orphan esterase, ?/? hydrolase domain containing 10 (ABHD10), was found responsible for deglucuronidation of acyl-glucuronides including mycophenolic acid acyl-glucuronide and probenecid acyl-glucuronide. Because acyl-glucuronides appear associated with toxicity, ABHD10 would function as a detoxification enzyme. The roles of orphan esterases are becoming increasingly understood. Further studies will facilitate our knowledge of the pharmacologic and toxicological significance of orphan esterases in drug therapy. PMID:26521872

  9. Serotonergic and dopaminergic mechanisms in graft-induced dyskinesia in a rat model of Parkinson's disease.

    PubMed

    Shin, Eunju; Garcia, Joanna; Winkler, Christian; Björklund, Anders; Carta, Manolo

    2012-09-01

    Dyskinesia seen in the off-state, referred as graft-induced dyskinesia (GID), has emerged as a serious complication induced by dopamine (DA) cell transplantation in parkinsonian patients. Although the mechanism underlying the appearance of GID is unknown, in a recent clinical study the partial 5-HT(1A) agonist buspirone was found to markedly reduce GID in three grafted patients, who showed significant serotonin (5-HT) hyperinnervation in the grafted striatum in positron emission tomography scanning (Politis et al., 2010, 2011). Prompted by these findings, this study was performed to investigate the involvement of serotonin neurons in the appearance of GID in the rat 6-hydroxydopamine model. L-DOPA-primed rats received transplants of DA neurons only, DA plus 5-HT neurons or 5-HT neurons only into the lesioned striatum. In DA cell-grafted rats, with or without 5-HT neurons, but not in 5-HT grafts, GID was observed consistently after administration of amphetamine (1.5mg/kg, i.p.) indicating that grafted DA neurons are required to induce GID. Strikingly, a low dose of buspirone produced a complete suppression of GID. In addition, activation of 5-HT(1A) and 5-HT(1B) receptors by 8-OH-DPAT and CP 94253, known to inhibit the activity of 5-HT neurons, significantly reduced GID, whereas induction of neurotransmitter release by fenfluramine administration significantly increased GID, indicating an involvement of the 5-HT system in the modulation of GID. To investigate the involvement of the host 5-HT system in GID, the endogenous 5-HT terminals were removed by intracerebral injection of 5,7-dihydroxytryptamine, but this treatment did not affect GID expression. However, 5-HT terminal destruction suppressed the anti-GID effect of 5-HT(1A) and 5-HT(1B) agonists, demonstrating that the 5-HT(1) agonist combination exerted its anti-GID effect through the activation of pre-synaptic host-derived receptors. By contrast, removal of the host 5-HT innervation or pre-treatment with a 5-HT(1A) antagonist did not abolish the anti-GID effect of buspirone, showing that its effect is independent from activation of either pre- or post-synaptic 5-HT(1A) receptors. Since buspirone is known to also act as a DA D(2) receptor antagonist, the selective D(2) receptor antagonist eticlopride was administered to test whether blockade of D(2) receptors could account for the anti-dyskinetic effect of buspirone. In fact, eticlopride produced complete suppression of GID in grafted animals already at very low dose. Together, these results point to a critical role of both 5-HT(1) and D(2) receptors in the modulation of GID, and suggest that 5-HT neurons exert a modulatory role in the development of this side effect of neuronal transplantation. PMID:22579773

  10. What Causes Parkinson's?

    MedlinePLUS

    ... National HelpLine Educational Publications Online Seminars Parkinson's News Parkinson's HelpLine Learn More Educational Materials Do you want ... more. Order Free Materials Today Causes What Causes Parkinson's? To date, despite decades of intensive study, the ...

  11. Drug-Induced Liver Injury: Pattern Recognition and Future Directions.

    PubMed

    Haque, Tanvir; Sasatomi, Eizaburo; Hayashi, Paul H

    2016-01-23

    Drug-induced liver injury (DILI) remains a significant clinical challenge and is the leading cause of acute liver failure in most countries. An aging population that uses more medications, a constant influx of newly developed drugs and a growing risk from unfamiliar herbal and dietary supplements will make DILI an increasing part of clinical practice. Currently, the most effective strategy for disease management is rapid identification, withholding the inciting agents, supportive care and having a firm understanding of the expected natural history. There are resources available to aid the clinician, including a new online "textbook" as well as causality assessment tools, but a heightened awareness of risk and the disease's varying phenotypes and good history-taking remain cornerstones to diagnosis. Looking ahead, growing registries of cases, pharmacoepidemiology studies and translational research into the mechanisms of injury may produce better diagnostic tools, markers for risk and disease, and prevention and therapeutics. PMID:26696029

  12. Fungicidal Drugs Induce a Common Oxidative Damage Cellular Death Pathway

    PubMed Central

    Belenky, Peter; Camacho, Diogo; Collins, James J.

    2013-01-01

    Summary Amphotericin, miconazole and ciclopirox are antifungal agents from three different drug classes that can effectively kill planktonic yeast, yet their complete fungicidal mechanisms are not fully understood. Here we employ a systems biology approach to identify a common oxidative damage cellular death pathway triggered by these representative fungicides in Candida albicans and Saccharomyces cerevisiae. This mechanism utilizes a signaling cascade involving the GTPases Ras1/2 and Protein Kinase A, and culminates in death through the production of toxic ROS in a tricarboxylic acid cycle- and respiratory chain-dependent manner. We also show that the metabolome of C. albicans is altered by antifungal drug treatment, exhibiting a shift from fermentation to respiration, a jump in the AMP/ATP ratio, and elevated production of sugars; this coincides with elevated mitochondrial activity. Lastly, we demonstrate that DNA damage plays a critical role in antifungal-induced cellular death and that blocking DNA repair mechanisms potentiates fungicidal activity. PMID:23416050

  13. Characterizing the modulation of mGluR5 in a 6-OHDA-induced rat model of Parkinson's disease

    E-print Network

    Lamb, Peter (Peter Alexander John)

    2008-01-01

    MicroPET imaging studies were conducted to investigate the role of metabotropic glutamate subtype-5 receptors (mGluR5) in Parkinson's disease (PD). Four analogical PET ligands were used to characterize modulation of mGluR5 ...

  14. Levodopa-Induced Modifications of Prosody and Comprehensibility in Advanced Parkinson's Disease as Perceived by Professional Listeners

    ERIC Educational Resources Information Center

    De Letter, Miet; Santens, Patrick; Estercam, Irina; Van Maele, Georges; De Bodt, Marc; Boon, Paul; Van Borsel, John

    2007-01-01

    The prosodic aspects of hypokinetic dysarthria in Parkinson's disease (PD) have been the focus of numerous reports. Few data on the effects of levodopa on prosody, more specifically on the effects on the variability of prosodic characteristics such as pitch, loudness and speech rate, are available in advanced PD. The relation between these…

  15. Alterations of BDNF and trkB mRNA Expression in the 6-Hydroxydopamine-Induced Model of Preclinical Stages of Parkinson’s Disease: An Influence of Chronic Pramipexole in Rats

    PubMed Central

    Berghauzen-Maciejewska, Klemencja; Wardas, Jadwiga; Kosmowska, Barbara; G?owacka, Urszula; Kuter, Katarzyna; Ossowska, Krystyna

    2015-01-01

    Our recent study has indicated that a moderate lesion of the mesostriatal and mesolimbic pathways in rats, modelling preclinical stages of Parkinson’s disease, induces a depressive-like behaviour which is reversed by chronic treatment with pramipexole. The purpose of the present study was to examine the role of brain derived neurotrophic factor (BDNF) signalling in the aforementioned model of depression. Therefore, we investigated the influence of 6-hydoxydopamine (6-OHDA) administration into the ventral region of the caudate-putamen on mRNA levels of BDNF and tropomyosin-related kinase B (trkB) receptor. The BDNF and trkB mRNA levels were determined in the nigrostriatal and limbic structures by in situ hybridization 2 weeks after the operation. Pramipexole (1 mg/kg sc twice a day) and imipramine (10 mg/kg ip once a day) were injected for 2 weeks. The lesion lowered the BDNF and trkB mRNA levels in the hippocampus [CA1, CA3 and dentate gyrus (DG)] and amygdala (basolateral/lateral) as well as the BDNF mRNA content in the habenula (medial/lateral). The lesion did not influence BDNF and trkB expression in the caudate-putamen, substantia nigra, nucleus accumbens (shell and core) and ventral tegmental area (VTA). Chronic imipramine reversed the lesion-induced decreases in BDNF mRNA in the DG. Chronic pramipexole increased BDNF mRNA, but decreased trkB mRNA in the VTA in lesioned rats. Furthermore, it reduced BDNF and trkB mRNA expression in the shell and core of the nucleus accumbens, BDNF mRNA in the amygdala and trkB mRNA in the caudate-putamen in these animals. The present study indicates that both the 6-OHDA-induced dopaminergic lesion and chronic pramipexole influence BDNF signalling in limbic structures, which may be related to their pro-depressive and antidepressant activity in rats, respectively. PMID:25739024

  16. An Update on Treatment of Drug-Induced Liver Injury

    PubMed Central

    Rivas, John; Zervos, Xaralambos

    2014-01-01

    Drug-induced liver injury (DILI) has been linked to more than 1,000 medications and remains the most common cause of acute liver failure in the United States. Here, we review the most current literature regarding treatment and make recommendations for the management of this relatively common disease. Since treatment of DILI remains largely elusive, recent studies have attempted to define new management strategies for these difficult patients. Early diagnosis and withdrawal of the suspected medication is the mainstay of treatment of DILI. For acetaminophen and Amanita mushroom poisoning, there are specific therapies in use. Finally, there are other possible management modalities for DILI, including corticosteroids and ursodeoxycholic acid. PMID:26356645

  17. An Update on Treatment of Drug-Induced Liver Injury.

    PubMed

    Giordano, Christin; Rivas, John; Zervos, Xaralambos

    2014-06-01

    Drug-induced liver injury (DILI) has been linked to more than 1,000 medications and remains the most common cause of acute liver failure in the United States. Here, we review the most current literature regarding treatment and make recommendations for the management of this relatively common disease. Since treatment of DILI remains largely elusive, recent studies have attempted to define new management strategies for these difficult patients. Early diagnosis and withdrawal of the suspected medication is the mainstay of treatment of DILI. For acetaminophen and Amanita mushroom poisoning, there are specific therapies in use. Finally, there are other possible management modalities for DILI, including corticosteroids and ursodeoxycholic acid. PMID:26356645

  18. DRUG INDUCED PHOSPHOLIPIDOSIS: AN ACQUIRED LYSOSOMAL STORAGE DISORDER

    PubMed Central

    Shayman, James A.; Abe, Akira

    2012-01-01

    There is a strong association between lysosome enzyme deficiencies and monogenic disorders resulting in lysosomal storage disease. Of the more than 75 characterized lysosomal proteins, two thirds are directly linked to inherited diseases of metabolism. Only one lysosomal storage disease, Niemann-Pick disease, is associated with impaired phospholipid metabolism. However, other phospholipases are found in the lysosome but remain poorly characterized. A recent exception is lysosomal phospholipase A2 (group XV phospholipase A2). Although no inherited disorder of lysosomal phospholipid metabolism has yet been associated with a loss of function of this lipase, this enzyme may be a target for an acquired form of lysosomal storage, drug induced phospholipidosis. PMID:22960355

  19. Eculizumab and drug-induced haemolytic–uraemic syndrome

    PubMed Central

    Faguer, Stanislas; Huart, Antoine; Frémeaux-Bacchi, Véronique; Ribes, David; Chauveau, Dominique

    2013-01-01

    The monoclonal anti-C5 antibody eculizumab has been successfully tested in atypical haemolytic-uraemic syndrome (aHUS), with or without mutations in the regulatory proteins of the alternative pathway of the complement, and less convincingly in enterohaemorrhagic Escherichia coli-associated HUS. Here, we report a patient with mitomycin-C-induced HUS unresponsive to plasma exchanges. Eculizumab infusion was followed by a dramatic improvement of haematological parameters and renal function, suggesting a role of complement blockade in the management of refractory, drug-related HUS. PMID:26120441

  20. Drug-induced liver injury: the dawn of biomarkers?

    PubMed Central

    Weiler, Stefan; Merz, Michael

    2015-01-01

    Drug-induced liver injury (DILI) is a potentially fatal adverse event with significant medical and economic impact. Many drugs, especially anti-infective, neurologic or pain-modifying substances, act as hepatotoxins. With cardiovascular toxicity, liver toxicity is one of the two leading causes for drug withdrawal from the market. The liver can be affected directly, in a predictable and dose-dependent manner, or idiosyncratically, independent of the dose and therefore unpredictable. Currently DILI is a diagnosis of exclusion that physicians have to bear in mind in patients with an unexplained increase of liver enzymes. The type of injury is categorized into hepatocellular, cholestatic, or mixed by the respective enzyme pattern of injury. Symptoms of affected patients can mimic any other liver disease. Therefore, new diagnostic and prognostic biomarkers for early liver injury are currently being evaluated in multi-centre clinical trials that are conducted by international consortia and other initiatives. Pharmacogenetic testing, next-generation sequencing, proteomics, metabolomics and mechanistic markers can help to preselect susceptible patient populations and tailor drug therapy to individual patients. Proposed DILI indicators that are under investigation include microRNAs, cytokeratin-18 (CK18), high mobility group box protein 1 (HMGB-1), and several other biomarkers. These developments can change clinical practice, and improve patients' safety and management. However, they have not been translated into clinical practice or approved for routine use yet. Management of DILI usually consists of initial withdrawal of the suspected drug and—if applicable—administration of specific antidotes, such as N-acetylcysteine. However, the overall management of DILI could change in the near future with the advent of novel diagnostic and prognostic DILI markers. PMID:25926985

  1. Parkinson's Disease Dementia

    MedlinePLUS

    ... An Interactive Tour Risk Factors Diagnosis Treatments Myths Clinical ... Parkinson's disease dementia is an impairment in thinking and reasoning that eventually affects many people with Parkinson's disease. ...

  2. 6-OHDA-Induced Changes in Parkinson`s Disease-Related Gene Expression are not Affected by the Overexpression of PGAM5 in In Vitro Differentiated Embryonic Mesencephalic Cells.

    PubMed

    St?pkowski, Tomasz Maciej; Wasyk, Iwona; Grzelak, Agnieszka; Kruszewski, Marcin

    2015-11-01

    LUHMES cells, a recently established line of immortalized embryonic mesencephalic cells, are the novel in vitro model for studying Parkinson's disease (PD) and dopaminergic neuron biology. Phosphoglyceromutase 5 (PGAM5) is a mitochondrial protein involved in mitophagy, mitochondria dynamics, and other processes important for PD pathogenesis. We tested the impact of lentiviral overexpression of PGAM5 protein in LUHMES cells on their differentiation and expression of 84 PD-related genes. LUHMES cells were transduced with PGAM5 or mock and treated with 100 ?M 6-hydroxydopamine (6-OHDA), a model PD neurotoxin. Real-Time PCR analysis revealed that the treatment with 6-OHDA-induced changes in expression of 44 PD-related genes. PGAM5 transduction alone did not cause alternations in PD-related genes expression, nor it affected changes in gene expression mediated by 6-OHDA. The 6-OHDA-induced PD-related gene expression profile of LUHMES cells is presented for the first time and widely discussed. PMID:25986246

  3. Over-Pressure Suppresses Ultrasonic-Induced Drug Uptake

    PubMed Central

    Stringham, S. Briant; Viskovska, Maria A.; Richardson, Eric S.; Ohmine, Seiga; Husseini, Ghaleb A.; Murray, Byron K.; Pitt, William G.

    2012-01-01

    Ultrasound (US) is used to enhance and target delivery of drugs and genes to cancer tissues. The present study further examines the role of acoustic cavitation in US-induced permeabilization of cell membranes and subsequent drug or gene uptake by the cell. Rat colon cancer cells were exposed to ultrasound at various static pressures to examine the hypothesis that oscillating bubbles, also known as cavitating bubbles, permeabilize cells. Increasing pressure suppresses bubble cavitation activity; thus if applied pressure were to reduce drug uptake, cell permeabilization would be strongly linked to bubble cavitation activity. Cells were exposed to 476 kHz pulsed ultrasound at average intensities of 2.75 W/cm2 and 5.5 W/cm2 at various pressures and times in an isothermal chamber. Cell fractions with reversible membrane damage (calcein uptake) and irreversible damage (propidium iodide uptake) were analyzed by flow cytometry. Pressurization to 3 atm nearly eliminated the biological effect of US in promoting calcein uptake. Data also showed a linear increase in membrane permeability based upon increased time and intensity. This research shows that US-mediated cell membrane permeability is likely linked to cavitation bubble activity. PMID:19056161

  4. Glial activation is associated with l-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson's disease.

    PubMed

    Bortolanza, Mariza; Cavalcanti-Kiwiatkoski, Roberta; Padovan-Neto, Fernando E; da-Silva, Célia Aparecida; Mitkovski, Miso; Raisman-Vozari, Rita; Del-Bel, Elaine

    2015-01-01

    l-3, 4-dihydroxyphenylalanine (l-DOPA) is the most effective treatment for Parkinson's disease but can induce debilitating abnormal involuntary movements (dyskinesia). Here we show that the development of l-DOPA-induced dyskinesia in the rat is accompanied by upregulation of an inflammatory cascade involving nitric oxide. Male Wistar rats sustained unilateral injections of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. After three weeks animals started to receive daily treatment with l-DOPA (30mg/kg plus benserazide 7.5mg/kg, for 21days), combined with an inhibitor of neuronal NOS (7-nitroindazole, 7-NI, 30mg/kg/day) or vehicle (saline-PEG 50%). All animals treated with l-DOPA and vehicle developed abnormal involuntary movements, and this effect was prevented by 7-NI. l-DOPA-treated dyskinetic animals exhibited an increased striatal and pallidal expression of glial fibrillary acidic protein (GFAP) in reactive astrocytes, an increased number of CD11b-positive microglial cells with activated morphology, and the rise of cells positive for inducible nitric oxide-synthase immunoreactivity (iNOS). All these indexes of glial activation were prevented by 7-NI co-administration. These findings provide evidence that the development of l-DOPA-induced dyskinesia in the rat is associated with activation of glial cells that promote inflammatory responses. The dramatic effect of 7-NI in preventing this glial response points to an involvement of nitric oxide. Moreover, the results suggest that the NOS inhibitor prevents dyskinesia at least in part via inhibition of glial cell activation and iNOS expression. Our observations indicate nitric oxide synthase inhibitors as a therapeutic strategy for preventing neuroinflammatory and glial components of dyskinesia pathogenesis in Parkinson's disease. PMID:25447229

  5. PGC-1?, A Potential Therapeutic Target for Early Intervention in Parkinson’s Disease

    PubMed Central

    Zheng, Bin; Liao, Zhixiang; Locascio, Joseph J.; Lesniak, Kristen A.; Roderick, Sarah S.; Watt, Marla L.; Eklund, Aron C.; Zhang-James, Yanli; Kim, Peter D.; Hauser, Michael A.; Grünblatt, Edna; Moran, Linda B.; Mandel, Silvia A.; Riederer, Peter; Miller, Renee M.; Federoff, Howard J.; Wüllner, Ullrich; Papapetropoulos, Spyridon; Youdim, Moussa B.; Cantuti-Castelvetri, Ippolita; Young, Anne B.; Vance, Jeffery M.; Davis, Richard L.; Hedreen, John C.; Adler, Charles H.; Beach, Thomas G.; Graeber, Manuel B.; Middleton, Frank A.; Rochet, Jean-Christophe; Scherzer, Clemens R.

    2011-01-01

    Parkinson’s disease affects 5 million people worldwide, but the molecular mechanisms underlying its pathogenesis are still unclear. Here, we report a genome-wide meta-analysis of gene sets (groups of genes that encode the same biological pathway or process) in 410 samples from patients with symptomatic Parkinson’s and subclinical disease and healthy controls. We analyzed 6.8 million raw data points from nine genome-wide expression studies, and 185 laser-captured human dopaminergic neuron and substantia nigra transcriptomes, followed by two-stage replication on three platforms. We found 10 gene sets with previously unknown associations with Parkinson’s disease. These gene sets pinpoint defects in mitochondrial electron transport, glucose utilization, and glucose sensing and reveal that they occur early in disease pathogenesis. Genes controlling cellular bioenergetics that are expressed in response to peroxisome proliferator–activated receptor ? coactivator-1? (PGC-1?) are underexpressed in Parkinson’s disease patients. Activation of PGC-1? results in increased expression of nuclear-encoded subunits of the mitochondrial respiratory chain and blocks the dopaminergic neuron loss induced by mutant ?-synuclein or the pesticide rotenone in cellular disease models. Our systems biology analysis of Parkinson’s disease identifies PGC-1? as a potential therapeutic target for early intervention. PMID:20926834

  6. Programmed cell death-2 isoform1 is ubiquitinated by parkin and increased in the substantia nigra of patients with autosomal recessive Parkinson’s disease

    E-print Network

    Fukae, Jiro

    Mutations in parkin gene are responsible for autosomal recessive Parkinson’s disease (ARPD) and its loss-of-function is assumed to affect parkin ubiquitin ligase activity. Accumulation of its substrate may induce dopaminergic ...

  7. Elevated ?-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells

    PubMed Central

    Oliveira, L M A; Falomir-Lockhart, L J; Botelho, M G; Lin, K-H; Wales, P; Koch, J C; Gerhardt, E; Taschenberger, H; Outeiro, T F; Lingor, P; Schüle, B; Arndt-Jovin, D J; Jovin, T M

    2015-01-01

    We have assessed the impact of ?-synuclein overexpression on the differentiation potential and phenotypic signatures of two neural-committed induced pluripotent stem cell lines derived from a Parkinson's disease patient with a triplication of the human SNCA genomic locus. In parallel, comparative studies were performed on two control lines derived from healthy individuals and lines generated from the patient iPS-derived neuroprogenitor lines infected with a lentivirus incorporating a small hairpin RNA to knock down the SNCA mRNA. The SNCA triplication lines exhibited a reduced capacity to differentiate into dopaminergic or GABAergic neurons and decreased neurite outgrowth and lower neuronal activity compared with control cultures. This delayed maturation phenotype was confirmed by gene expression profiling, which revealed a significant reduction in mRNA for genes implicated in neuronal differentiation such as delta-like homolog 1 (DLK1), gamma-aminobutyric acid type B receptor subunit 2 (GABABR2), nuclear receptor related 1 protein (NURR1), G-protein-regulated inward-rectifier potassium channel 2 (GIRK-2) and tyrosine hydroxylase (TH). The differentiated patient cells also demonstrated increased autophagic flux when stressed with chloroquine. We conclude that a two-fold overexpression of ?-synuclein caused by a triplication of the SNCA gene is sufficient to impair the differentiation of neuronal progenitor cells, a finding with implications for adult neurogenesis and Parkinson's disease progression, particularly in the context of bioenergetic dysfunction. PMID:26610207

  8. Elevated ?-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells.

    PubMed

    Oliveira, L M A; Falomir-Lockhart, L J; Botelho, M G; Lin, K-H; Wales, P; Koch, J C; Gerhardt, E; Taschenberger, H; Outeiro, T F; Lingor, P; Schüle, B; Arndt-Jovin, D J; Jovin, T M

    2015-01-01

    We have assessed the impact of ?-synuclein overexpression on the differentiation potential and phenotypic signatures of two neural-committed induced pluripotent stem cell lines derived from a Parkinson's disease patient with a triplication of the human SNCA genomic locus. In parallel, comparative studies were performed on two control lines derived from healthy individuals and lines generated from the patient iPS-derived neuroprogenitor lines infected with a lentivirus incorporating a small hairpin RNA to knock down the SNCA mRNA. The SNCA triplication lines exhibited a reduced capacity to differentiate into dopaminergic or GABAergic neurons and decreased neurite outgrowth and lower neuronal activity compared with control cultures. This delayed maturation phenotype was confirmed by gene expression profiling, which revealed a significant reduction in mRNA for genes implicated in neuronal differentiation such as delta-like homolog 1 (DLK1), gamma-aminobutyric acid type B receptor subunit 2 (GABABR2), nuclear receptor related 1 protein (NURR1), G-protein-regulated inward-rectifier potassium channel 2 (GIRK-2) and tyrosine hydroxylase (TH). The differentiated patient cells also demonstrated increased autophagic flux when stressed with chloroquine. We conclude that a two-fold overexpression of ?-synuclein caused by a triplication of the SNCA gene is sufficient to impair the differentiation of neuronal progenitor cells, a finding with implications for adult neurogenesis and Parkinson's disease progression, particularly in the context of bioenergetic dysfunction. PMID:26610207

  9. Bee Venom Phospholipase A2, a Novel Foxp3+ Regulatory T Cell Inducer, Protects Dopaminergic Neurons by Modulating Neuroinflammatory Responses in a Mouse Model of Parkinson's Disease.

    PubMed

    Chung, Eun Sook; Lee, Gihyun; Lee, Chanju; Ye, Minsook; Chung, Hwan-Suck; Kim, Hyunseong; Bae, Sung-Joo S; Hwang, Deok-Sang; Bae, Hyunsu

    2015-11-15

    Foxp3-expressing CD4(+) regulatory T cells (Tregs) are vital for maintaining immune tolerance in animal models of various immune diseases. In the present study, we demonstrated that bee venom phospholipase A2 (bvPLA2) is the major BV compound capable of inducing Treg expansion and promotes the survival of dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. We associated this neuroprotective effect of bvPLA2 with microglial deactivation and reduction of CD4(+) T cell infiltration. Interestingly, bvPLA2 had no effect on mice depleted of Tregs by injecting anti-CD25 Ab. This finding indicated that Treg-mediated modulation of peripheral immune tolerance is strongly involved in the neuroprotective effects of bvPLA2. Furthermore, our results showed that bvPLA2 directly bound to CD206 on dendritic cells and consequently promoted the secretion of PGE2, which resulted in Treg differentiation via PGE2 (EP2) receptor signaling in Foxp3(-)CD4(+) T cells. These observations suggest that bvPLA2-CD206-PGE2-EP2 signaling promotes immune tolerance through Treg differentiation and contributes to the prevention of various neurodegenerative diseases, including Parkinson's disease. PMID:26453752

  10. Nicotine as a potential neuroprotective agent for Parkinson’s disease

    PubMed Central

    Quik, Maryka; Perez, Xiomara A.; Bordia, Tanuja

    2012-01-01

    Converging research efforts suggest that nicotine and other drugs that act at nicotinic acetylcholine receptors (nAChRs) may be beneficial in the management of Parkinson’s disease. This idea initially stemmed from the results of epidemiological studies which demonstrate that smoking is associated with a decreased incidence of Parkinson’s disease. The subsequent finding that nicotine administration protected against nigrostriatal damage in parkinsonian animal models led to the idea that nicotine in tobacco products may contribute to this apparent protective action. Nicotine most likely exerts its effects by interacting at nAChRs. Accumulating research indicates that multiple subtypes, including ?4?2, ?6?2 and/or ?7 containing nAChRs, may be involved. Stimulation of nAChRs initially activates various intracellular transduction pathways primarily via alterations in calcium signaling. Consequent adaptations in immune responsiveness and trophic factors may ultimately mediate nicotine’s ability to reduce/halt the neuronal damage that arises in Parkinson’s disease. In addition to a potential neuroprotective action, nicotine also has anti-depressant properties and improves attention/cognition. Altogether, these findings suggest that nicotine and nAChR drugs represent promising therapeutic agents for the management of Parkinson’s disease. PMID:22693036

  11. Screening system for drug-induced arrhythmogenic risk combining a patch clamp and heart simulator

    PubMed Central

    Okada, Jun-ichi; Yoshinaga, Takashi; Kurokawa, Junko; Washio, Takumi; Furukawa, Tetsushi; Sawada, Kohei; Sugiura, Seiryo; Hisada, Toshiaki

    2015-01-01

    To save time and cost for drug discovery, a paradigm shift in cardiotoxicity testing is required. We introduce a novel screening system for drug-induced arrhythmogenic risk that combines in vitro pharmacological assays and a multiscale heart simulator. For 12 drugs reported to have varying cardiotoxicity risks, dose-inhibition curves were determined for six ion channels using automated patch clamp systems. By manipulating the channel models implemented in a heart simulator consisting of more than 20 million myocyte models, we simulated a standard electrocardiogram (ECG) under various doses of drugs. When the drug concentrations were increased from therapeutic levels, each drug induced a concentration-dependent characteristic type of ventricular arrhythmia, whereas no arrhythmias were observed at any dose with drugs known to be safe. We have shown that our system combining in vitro and in silico technologies can predict drug-induced arrhythmogenic risk reliably and efficiently. PMID:26601174

  12. Detection of preclinical Parkinson's disease with PET

    SciTech Connect

    Brooks, D.J. )

    1991-08-01

    Putamen 18F-dopa uptake of patients with Parkinson's disease (PD) is reduced by at least 35% at onset of symptoms; therefore, positron-emission tomography (PET) can be used to detect preclinical disease in clinically unaffected twins and relatives of patients with PD. Three out of 6 monozygotic and 2 out of 3 dizygotic unaffected PD co-twins have shown reduced putamen 18F-dopa uptake to date. In addition, an intact sibling and a daughter of 1 of 4 siblings with PD both had low putamen 18F-dopa uptake. These preliminary findings suggest there may be a familial component to the etiology of PD. PET can also be used to detect underlying nigral pathology in patients with isolated tremor and patients who become rigid taking dopamine-receptor blocking agents (DRBAs). Patients with familial essential tremor have normal, and those with isolated rest tremor have consistently low, putamen 18F-dopa uptake. Drug-induced parkinsonism is infrequently associated with underlying nigral pathology.

  13. Detection of preclinical Parkinson's disease with PET

    SciTech Connect

    Brooks, D.J. )

    1991-05-01

    Putamen 18F-dopa uptake of patients with Parkinson's disease (PD) is reduced by at least 35% at onset of symptoms; therefore, positron-emission tomography (PET) can be used to detect preclinical disease in clinically unaffected twins and relatives of patients with PD. Three out of 6 monozygotic and 2 out of 3 dizygotic unaffected PD co-twins have shown reduced putamen 18F-dopa uptake to date. In addition, an intact sibling and a daughter of 1 of 4 siblings with PD both had low putamen 18F-dopa uptake. These preliminary findings suggest there may be a familial component to the etiology of PD. PET can also be used to detect underlying nigral pathology in patients with isolated tremor and patients who become rigid taking dopamine-receptor blocking agents (DRBAs). Patients with familial essential tremor have normal, and those with isolated rest tremor have consistently low, putamen 18F-dopa uptake. Drug-induced parkinsonism is infrequently associated with underlying nigral pathology.

  14. Polyhydroxylated fullerene derivative C(60)(OH)(24) prevents mitochondrial dysfunction and oxidative damage in an MPP(+) -induced cellular model of Parkinson's disease.

    PubMed

    Cai, Xiaoqing; Jia, Haiqun; Liu, Zhongbo; Hou, Bei; Luo, Cheng; Feng, Zhihui; Li, Wenxin; Liu, Jiankang

    2008-12-01

    To find effective agents for Parkinson's disease (PD) prevention and therapy, we examined the protective effects of the polyhydroxylated fullerene derivative C(60)(OH)(24) in a 1-methyl-4-phenylpyridinium (MPP(+)) -induced acute cellular PD model in human neuroblastoma cells and the free radical scavenging effects in this model with an electron spin resonance (ESR) spectrometer. Pretreatment with C(60)(OH)(24) at concentrations greater than 20 microM showed significant protective effects on MPP(+) -induced loss in cell viability, decreases in mitochondrial function (including mitochondrial membrane potential and activities of complex I and II), and increases in the levels of reactive oxygen species and oxidative damage to DNA and proteins. In addition, C(60)(OH)(24) acts as a phase 2 enzyme inducer to protect cells from MPP(+) -induced decreases in expression of nuclear factor-E2-related factor 2, expression and activity of gamma-glutamyl cysteine ligase and level of glutathione. The ESR study showed that C(60)(OH)(24) is a powerful radical scavenger for superoxide, hydroxyl, and lipid radicals. These data suggest that C(60)(OH)(24) is a mitochondrial protective antioxidant with direct radical scavenging activity and indirect antioxidant inducing activity. PMID:18709653

  15. 78 FR 5817 - Detecting and Evaluating Drug-Induced Liver Injury; What's Normal, What's Not, and What Should We...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ...: Premarketing Clinical Evaluation'' (74 FR 38035; July 30, 2009). This guidance explained that drug-induced... SERVICES Food and Drug Administration Detecting and Evaluating Drug-Induced Liver Injury; What's Normal... Drug-Induced Liver Injury; What's Normal, What's Not, and What Should We Do About It?'' This...

  16. Lupus in a patient with cystinosis: is it drug induced?

    PubMed

    Eroglu, F K; Besbas, N; Ozaltin, F; Topaloglu, R; Ozen, S

    2015-11-01

    A 9-year-old girl with a diagnosis of cystinosis since 2 years of age, on cysteamine therapy, presented with complaints of serositis and arthritis, and laboratory tests revealed high antinuclear antibody titers with hypocomplementemia. Kidney biopsy was not consistent with lupus nephritis. With prednisolone treatment her complaints resolved and creatinine level decreased, but on follow-up, serological features of systemic lupus erythematosus (SLE) continued. Six years after cessation of prednisolone, lupus features were reactivated, with positive antihistone antibodies and ANCA. Coincidence of cystinosis and SLE is very rare, and to the best of our knowledge this is the fourth case reported in the literature. Physicians should be aware that cystinosis patients may have some autoimmune manifestations with features of true or drug-induced lupus. In the light of this case, pathophysiology and treatment are discussed. PMID:26223294

  17. Possibly drug-induced palpable migratory arciform erythema*

    PubMed Central

    Dantas, Fernando Luiz Teixeira; Valente, Neusa Yuriko Sakai; Veronez, Isis Suga; Kakizaki, Priscila; Leitão, Juliana Ribeiro; Fraga, Rafael Cavanellas

    2015-01-01

    Palpable migratory arciform erythema is an entity of unknown etiology, with few published cases in the literature. The clinical and histopathological features of this disease are difficult to be distinguished from those of Jessner’s lymphocytic infiltration of the skin, lupus erythematous tumidus and the deep erythema annulare centrifugum. We describe here the first two Brazilian cases of palpable migratory arciform erythema. The patients presented with infiltrated annular plaques and erythematous arcs without scales. These showed centrifugal growth before disappearing without scarring or residual lesions after a few days. They had a chronic course with repeated episodes for years. In addition, these cases provide evidence of a drug-induced etiology. PMID:26312680

  18. Drug-sensing hydrogels for the inducible release of biopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Ehrbar, Martin; Schoenmakers, Ronald; Christen, Erik H.; Fussenegger, Martin; Weber, Wilfried

    2008-10-01

    Drug-dependent dissociation or association of cellular receptors represents a potent pharmacologic mode of action for regulating cell fate and function. Transferring the knowledge of pharmacologically triggered protein-protein interactions to materials science will enable novel design concepts for stimuli-sensing smart hydrogels. Here, we show the design and validation of an antibiotic-sensing hydrogel for the trigger-inducible release of human vascular endothelial growth factor. Genetically engineered bacterial gyrase subunit B (GyrB) (ref. 4) coupled to polyacrylamide was dimerized by the addition of the aminocoumarin antibiotic coumermycin, resulting in hydrogel formation. Addition of increasing concentrations of clinically validated novobiocin (Albamycin) dissociated the GyrB subunits, thereby resulting in dissociation of the hydrogel and dose- and time-dependent liberation of the entrapped protein pharmaceutical VEGF121 for triggering proliferation of human umbilical vein endothelial cells. Pharmacologically controlled hydrogels have the potential to fulfil the promises of stimuli-sensing materials as smart devices for spatiotemporally controlled delivery of drugs within the patient.

  19. Salivary Secretory Disorders, Inducing Drugs, and Clinical Management

    PubMed Central

    Miranda-Rius, Jaume; Brunet-Llobet, Lluís; Lahor-Soler, Eduard; Farré, Magí

    2015-01-01

    Background: Salivary secretory disorders can be the result of a wide range of factors. Their prevalence and negative effects on the patient's quality of life oblige the clinician to confront the issue. Aim: To review the salivary secretory disorders, inducing drugs and their clinical management. Methods: In this article, a literature search of these dysfunctions was conducted with the assistance of a research librarian in the MEDLINE/PubMed Database. Results: Xerostomia, or dry mouth syndrome, can be caused by medication, systemic diseases such as Sjögren's Syndrome, glandular pathologies, and radiotherapy of the head and neck. Treatment of dry mouth is aimed at both minimizing its symptoms and preventing oral complications with the employment of sialogogues and topical acting substances. Sialorrhea and drooling, are mainly due to medication or neurological systemic disease. There are various therapeutic, pharmacologic, and surgical alternatives for its management. The pharmacology of most of the substances employed for the treatment of salivary disorders is well-known. Nevertheless, in some cases a significant improvement in salivary function has not been observed after their administration. Conclusion: At present, there are numerous frequently prescribed drugs whose unwanted effects include some kind of salivary disorder. In addition, the differing pathologic mechanisms, and the great variety of existing treatments hinder the clinical management of these patients. The authors have designed an algorithm to facilitate the decision making process when physicians, oral surgeons, or dentists face these salivary dysfunctions. PMID:26516310

  20. Round Window Membrane Intracochlear Drug Delivery Enhanced by Induced Advection

    PubMed Central

    Borkholder, David A.; Zhu, Xiaoxia; Frisina, Robert D.

    2014-01-01

    Delivery of therapeutic compounds to the inner ear via absorption through the round window membrane (RWM) has advantages over direct intracochlear infusions; specifically, minimizing impact upon functional hearing measures. However, previous reports show that significant basal-to-apical concentration gradients occur, with the potential to impact treatment efficacy. Here we present a new approach to inner ear drug delivery with induced advection aiding distribution of compounds throughout the inner ear in the murine cochlea. Polyimide microtubing was placed near the RWM niche through a bullaostomy into the middle ear cavity allowing directed delivery of compounds to the RWM. We hypothesized that a posterior semicircular canalostomy would induce apical flow from the patent cochlear aqueduct to the canalostomy due to influx of cerebral spinal fluid. To test this hypothesis, young adult CBA/CaJ mice were divided into two groups: bullaostomy approach only (BA) and bullaostomy + canalostomy (B+C). Cochlear function was evaluated by distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) thresholds during and after middle ear infusion of salicylate in artificial perilymph (AP), applied near the RWM. The mice recovered for 1 week, and were re-tested. The results demonstrate there was no significant impact on auditory function utilizing the RWM surgical procedure with or without the canalostomy, and DPOAE thresholds were elevated reversibly during the salicylate infusion. Comparing the threshold shifts for both methods, the B+C approach had more of a physiological effect than the BA approach, including at lower frequencies representing more apical cochlear locations. Unlike mouse cochleostomies, there was no deleterious auditory functional impact after 1 week recovery from surgery. The B+C approach had more drug efficacy at lower frequencies, underscoring potential benefits for more precise control of delivery of inner ear therapeutic compounds. PMID:24291333

  1. Round window membrane intracochlear drug delivery enhanced by induced advection.

    PubMed

    Borkholder, David A; Zhu, Xiaoxia; Frisina, Robert D

    2014-01-28

    Delivery of therapeutic compounds to the inner ear via absorption through the round window membrane (RWM) has advantages over direct intracochlear infusions; specifically, minimizing impact upon functional hearing measures. However, previous reports show that significant basal-to-apical concentration gradients occur, with the potential to impact treatment efficacy. Here we present a new approach to inner ear drug delivery with induced advection aiding distribution of compounds throughout the inner ear in the murine cochlea. Polyimide microtubing was placed near the RWM niche through a bullaostomy into the middle ear cavity allowing directed delivery of compounds to the RWM. We hypothesized that a posterior semicircular canalostomy would induce apical flow from the patent cochlear aqueduct to the canalostomy due to influx of cerebral spinal fluid. To test this hypothesis, young adult CBA/CaJ mice were divided into two groups: bullaostomy approach only (BA) and bullaostomy+canalostomy (B+C). Cochlear function was evaluated by distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) thresholds during and after middle ear infusion of salicylate in artificial perilymph (AP), applied near the RWM. The mice recovered for 1week, and were re-tested. The results demonstrate there was no significant impact on auditory function utilizing the RWM surgical procedure with or without the canalostomy, and DPOAE thresholds were elevated reversibly during the salicylate infusion. Comparing the threshold shifts for both methods, the B+C approach had more of a physiological effect than the BA approach, including at lower frequencies representing more apical cochlear locations. Unlike mouse cochleostomies, there was no deleterious auditory functional impact after 1week recovery from surgery. The B+C approach had more drug efficacy at lower frequencies, underscoring potential benefits for more precise control of delivery of inner ear therapeutic compounds. PMID:24291333

  2. Prediction of drug-induced immediate hypersensitivity in guinea pigs.

    PubMed

    Chazal, I; Verdier, F; Virat, M; Descotes, J

    1994-10-01

    This study was undertaken to evaluate an assay to assess the risk for drug-induced immediate hypersensitivity reactions. Groups of five to 10 guinea-pigs were given six ip injections of the test compound on days 1, 3, 5, 8, 10 and 12. Aluminium hydroxide was also given in the first injection. At day 33, the animals were given an iv injection of the test compound and the response was recorded by grading the severity of clinical symptoms. Cutaneous passive anaphylaxis was also evaluated in six naive guinea pigs using Evans blue and sera collected from treated animals on day 26. A panel of six positive model compounds (ovalbumin, aprotinin, chymopapain, tetracosactide, cyanocobalamin and procaine), and the negative compound Ribomunyl were tested. Positive systemic and/or cutaneous anaphylactic responses were observed with ovalbumin, aprotinin, chymopapain and tetracosactide whereas no responses were noted with cyanocobalamin, procaine and Ribomunyl. Our results suggest that this protocol can help differentiate positive model compounds (known to induce reactions in man) from negative model compounds, provided that their molecular weight is large enough, but that it is not applicable to substances of low molecular weight. PMID:20693069

  3. Clinical vignettes in Parkinson's disease: a collection of unusual medication-induced hallucinations, delusions, and compulsive behaviours.

    PubMed

    Friedman, Joseph H; Agarwal, P; Alcalay, R; Black, K J; Chou, K L; Cote, L; Dayalu, P; Frank, S; Hartlein, J; Hauser, R A; Lang, A E; Marsh, L; Marshall, F; Moskowitz, C; Ravina, B; Riley, D; Sanchez-Ramos, J; Simon, D K; Simuni, T; Sutton, J; Tuite, P; Weintraub, D; Zesiewicz, T

    2011-08-01

    Hallucinations, delusions, and compulsive behaviors are frequent iatrogenic complications of the treatment of motor dysfunction in Parkinson's disease (PD). Although these have been studied, and the phenomenology described, there are few detailed descriptions of the various psychiatric problems our treated PD patients live with that allow physicians who do not have a great deal of experience with PD patients to appreciate the extent of their altered lives. This report is a compilation of vignettes describing these behavioral problems that the treating neurologist or psychiatrist attributed to the medications used for treating PD. PMID:21663381

  4. Functionalized nanoparticles for AMF-induced gene and drug delivery

    NASA Astrophysics Data System (ADS)

    Biswas, Souvik

    The properties and broad applications of nano-magnetic colloids have generated much interest in recent years. Specially, Fe3O4 nanoparticles have attracted a great deal of attention since their magnetic properties can be used for hyperthermia treatment or drug targeting. For example, enhanced levels of intracellular gene delivery can be achieved using Fe3O4 nano-vectors in the presence of an external magnetic field, a process known as 'magnetofection'. The low cytotoxicity, tunable particle size, ease of surface functionalization, and ability to generate thermal energy using an external alternating magnetic field (AMF) are properties have propelled Fe3O4 research to the forefront of nanoparticle research. The strategy of nanoparticle-mediated, AMF-induced heat generation has been used to effect intracellular hyperthermia. One application of this 'magnetic hyperthermia' is heat activated local delivery of a therapeutic effector (e.g.; drug or polynucleotide). This thesis describes the development of a magnetic nano-vector for AMF-induced, heat-activated pDNA and small molecule delivery. The use of heat-inducible vectors, such as heat shock protein ( hsp) genes, is a promising mode of gene therapy that would restrict gene expression to a local region by focusing a heat stimulus only at a target region. We thus aimed to design an Fe3O4 nanoparticle-mediated gene transfer vehicle for AMF-induced localized gene expression. We opted to use 'click' oximation techniques to assemble the magnetic gene transfer vector. Chapter 2 describes the synthesis, characterization, and transfection studies of the oxime ether lipid-based nano-magnetic vectors MLP and dMLP. The synthesis and characterization of a novel series of quaternary ammonium aminooxy reagents (2.1--2.4) is described. These cationic aminooxy compounds were loaded onto nanoparticles for ligation with carbonyl groups and also to impart a net positive charge on the nanoparticle surface. Our studies indicated that the non-toxic magnetoplexes (magnetic nanoparticle + pDNA complex) derived from dMLP deliver pDNA into mammalian cells even without external magnetic assistance. To date, dMLP is the only polymer-free magnetic gene delivery system that can deliver pDNA without any magnetic assistance. Chapter 3 of this thesis outlines the synthesis and characterization of other oxime ether lipids and details studies using derived-lipoplexes. These lipids were evaluated in pDNA and siRNA transfection studies in various mammalian cell lines. This work constitutes the first use of an oxime ether as the linking domain in cationic transfection lipids. These biocompatible oxime ether lipids can be readily assembled by click chemistry through ligation of hydrophobic aldehydes with quaternary ammonium aminooxy salts. Our studies showed that the oxime ether lipids transfected pDNA and siRNA efficiently in MCF-7, H 1792, and in PAR C10 cells comparable to and in some cases better than commercial transfection lipids. Chapter 4 describes the design and characterization of a nano-magnetic delivery system for AMF-induced drug (doxorubicin) release. In efforts to develop a magnetic formulation free from thermosensitive materials, such as hydrogels, we synthesized three nanoparticle-based doxorubicin formulations using charge interactions as the key associative force. To do so, we synthesized and characterized a novel cationic oxime ether conjugate at C-13 of doxorubicin. Our investigation indicated that the positive charge of the oxime ether drug conjugate tended to bind better to the negatively charged nanoparticle than did the other formulations prepared in stepwise manner. Our findings show that the nano-magnetic formulations remained essestially inactive at body temperature (37.5 °C) and released a majority of the cargo only when exposed to an external AMF. Our designed magnetic drug delivery platform is the first example of an AMF-inducible system that does not depend on the inclusion of thermosensitive materials. Finally, we have developed a bioanalytical application of the highly chemosele

  5. Hedonistic homeostatic dysregulation in patients with Parkinson's disease on dopamine replacement therapies

    PubMed Central

    Giovannoni, G; O'Sullivan, J; Turner, K; Manson, A; Lees, A

    2000-01-01

    Hedonistic homeostatic dysregulation is a neuropsychological behavioural disorder associated with substance misuse and addiction. The disorder has been recognised as a consequence of dopamine replacement therapy (DRT) in 15 patients with Parkinson's disease. The syndrome typically develops in male patients with early onset Parkinson's disease, and can occur with orally and subcutaneously administered DRT. These patients take increasing quantities of their DRT, despite increasingly severe drug induced dyskinesias, and may develop a cyclical mood disorder with hypomania or manic psychosis. There is impairment of social and occupational functioning. Tolerance develops to mood elevating effects of DRT and a negative affective withdrawal state occurs if the drugs are withdrawn or doses decreased. The clinical features and guidelines for managing this syndrome are discussed. A set of diagnostic criteria for further investigating this condition is proposed.?? PMID:10727476

  6. Asian perspectives on the recognition and management of levodopa 'wearing-off' in Parkinson's disease.

    PubMed

    Bhidayasiri, Roongroj; Hattori, Nobutaka; Jeon, Beomseok; Chen, Rou-Shayn; Lee, Moon Keen; Bajwa, Jawad A; Mok, Vincent Ct; Zhang, Baorong; Syamsudin, Thamrin; Tan, Louis Chew Seng; Jamora, Roland Dominic G; Pisarnpong, Apichart; Poewe, Werner

    2015-11-01

    Most Parkinson's disease patients will receive levodopa therapy, and of these, the majority will develop some levodopa-induced complications. For many patients, the first complication to develop is the decline in the duration of therapeutic benefit of each levodopa dose, a phenomenon commonly termed 'wearing-off'. There is already extensive literature documenting the epidemiology and management of wearing-off in Parkinson's disease patients of western descent. However, data derived from these studies might not always apply to patients of Asian descent due to genetic variations, differences in co-morbidities or non-availability of certain drugs. This review summarizes the current literature regarding the epidemiology of wearing-off in Asian (including Arab) patients and discusses the management issues in the context of drug availability in Asia. PMID:26390066

  7. Abnormal Bidirectional Plasticity-Like Effects in Parkinson's Disease

    ERIC Educational Resources Information Center

    Huang, Ying-Zu; Rothwell, John C.; Lu, Chin-Song; Chuang, Wen-Li; Chen, Rou-Shayn

    2011-01-01

    Levodopa-induced dyskinesia is a major complication of long-term dopamine replacement therapy for Parkinson's disease that becomes increasingly problematic in advanced Parkinson's disease. Although the cause of levodopa-induced dyskinesias is still unclear, recent work in animal models of the corticostriatal system has suggested that…

  8. "PINK1"-Linked Parkinsonism Is Associated with Lewy Body Pathology

    ERIC Educational Resources Information Center

    Samaranch, Lluis; Lorenzo-Betancor, Oswaldo; Arbelo, Jose M.; Ferrer, Isidre; Lorenzo, Elena; Irigoyen, Jaione; Pastor, Maria A.; Marrero, Carmen; Isla, Concepcion; Herrera-Henriquez, Joanna; Pastor, Pau

    2010-01-01

    Phosphatase and tensin homolog-induced putative kinase 1 gene mutations have been associated with autosomal recessive early-onset Parkinson's disease. To date, no neuropathological reports have been published from patients with Parkinson's disease with both phosphatase and tensin homolog-induced putative kinase 1 gene copies mutated. We analysed…

  9. Alterations in primary motor cortex neurotransmission and gene expression in hemi-parkinsonian rats with drug-induced dyskinesia.

    PubMed

    Lindenbach, D; Conti, M M; Ostock, C Y; Dupre, K B; Bishop, C

    2015-12-01

    Treatment of Parkinson's disease (PD) with dopamine replacement relieves symptoms of poverty of movement, but often causes drug-induced dyskinesias. Accumulating clinical and pre-clinical evidence suggests that the primary motor cortex (M1) is involved in the pathophysiology of PD and that modulating cortical activity may be a therapeutic target in PD and dyskinesia. However, surprisingly little is known about how M1 neurotransmitter tone or gene expression is altered in PD, dyskinesia or associated animal models. The present study utilized the rat unilateral 6-hydroxydopamine (6-OHDA) model of PD/dyskinesia to characterize structural and functional changes taking place in M1 monoamine innervation and gene expression. 6-OHDA caused dopamine pathology in M1, although the lesion was less severe than in the striatum. Rats with 6-OHDA lesions showed a PD motor impairment and developed dyskinesia when given l-DOPA or the D1 receptor agonist, SKF81297. M1 expression of two immediate-early genes (c-Fos and ARC) was strongly enhanced by either l-DOPA or SKF81297. At the same time, expression of genes specifically involved in glutamate and GABA signaling were either modestly affected or unchanged by lesion and/or treatment. We conclude that M1 neurotransmission and signal transduction in the rat 6-OHDA model of PD/dyskinesia mirror features of human PD, supporting the utility of the model to study M1 dysfunction in PD and the elucidation of novel pathophysiological mechanisms and therapeutic targets. PMID:26363150

  10. [The treatment of Parkinson's disease].

    PubMed

    Baumann, Christian R; Waldvogel, Daniel

    2013-12-11

    Parkinson's disease belongs to the most prevalent neurodegenerative disorders and manifests both with motor and non-motor symptoms. Symptomatic treatment of this disorder became more multifaceted over the past years: besides classical dopaminergic drugs and physiotherapy, novel invasive escalation treatment strategies became gold standard in many countries. On the other hand, non-motor symptoms significantly impacts quality of life in many patients which necessitates initiation of adequate therapy. PMID:24326048

  11. Depression Impairs Learning Whereas Anticholinergics Impair Transfer Generalization in Parkinson Patients

    E-print Network

    Gluck, Mark

    Depression Impairs Learning Whereas Anticholinergics Impair Transfer Generalization in Parkinson. Gluck, PhDw Abstract: In a study of acquired equivalence in Parkinson disease (PD), in which patients that anticholinergic drugs may particularly impair cognitive abilities that depend on the MT lobe. Key Words: Parkinson

  12. [Parkinson's disease and psychoses].

    PubMed

    Bizzarri, Jacopo Vittoriano; Giupponi, Giancarlo; Maniscalco, Ignazio; Schroffenegger, Patrizia; Conca, Andreas; Kapfhammer, Hans Peter

    2015-01-01

    Psychotic symptoms are common in Parkinson's disease (PD) and are associated with increased disability, worsened quality of life, and poor long-term prognosis. In this article, clinical features, hypotheses on pathogenesis, and current treatment strategies for Parkinson's disease psychosis (PDP) are reviewed. According to epidemiological studies, the prevalence of PDP is between 20 to 40 %. Complex visual hallucinations are the most common psychotic symptoms and are present in 17-72 % of the patients. Other sensory disturbances encompass tactile hallucinations and minor hallucinatory phenomena, such as sense of presence and visual illusions. Hallucinations are often accompanied by delusions, whose most frequent themes are persecution and jealousy. The pathophysiology of PDP remains unclear. Different factors have been implicated, including Levo-dopa and dopaminergic medications, neurotransmitter imbalances, neuroanatomic alterations, abnormal visuospatial processes, and genetic predisposition. The first-line strategy in the treatment of persistent and problematic PDP is represented by reduction in anti-PD medications. Second-generation antipsychotics are the treatment of choice, with clozapine being demonstrated as the most effective and tolerable drug for PD patients. PMID:25586068

  13. A novel therapeutic approach to 6-OHDA-induced Parkinson's disease in rats via supplementation of PTD-conjugated tyrosine hydroxylase

    SciTech Connect

    Wu Shaoping; Fu Ailing; Wang Yuxia; Yu Leiping; Jia Peiyuan; Li Qian; Jin Guozhang; Sun Manji . E-mail: Sunmj@nic.bmi.ac.cn

    2006-07-21

    The present study aimed to evaluate whether the protein transduction domain (PTD)-conjugated human tyrosine hydroxylase (TH) fusion protein was effective on the 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD) model rats. An expression vector pET-PTD-TH harbouring the PTD-TH gene was constructed and transformed to the Escherichia coli BL21 cells for expression. The expressed recombinant PTD-TH with a molecular weight of 61 kD was successfully transduced (1 {mu}M) into the dopaminergic SH-sy5y human neuroblastoma cells in vitro and visualized by immunohistochemical assay. An in vivo experiment in rats showed that the iv administered PTD-TH protein (8 mg/kg) permeated across the blood-brain barrier, penetrated into the striatum and midbrain, and peaked at 5-8 h after the injection. The behavioral effects of PTD-TH on the apomorphine-induced rotations in the PD model rats 8 weeks after the 6-OHDA lesion showed that a single bolus of PTD-TH (8 mg/kg) iv injection caused a decrement of 60% of the contralateral turns on day 1 and 40% on days 5-17. The results imply that iv delivery of PTD-TH is therapeutically effective on the 6-OHDA-induced PD in rats, the PTD-mediated human TH treatment opening a promising therapeutic direction in treatment of PD.

  14. Intracerebral administration of ultrasound-induced dissolution of lipid-coated GDNF microbubbles provides neuroprotection in a rat model of Parkinson's disease.

    PubMed

    Wang, Xiaoying; Cui, Guiyun; Yang, Xinxin; Zhang, Zunsheng; Shi, Hongjuan; Zu, Jie; Hua, Fang; Shen, Xia

    2014-04-01

    Parkinson's disease (PD) is a neurodegenerative disease characterized by loss of dopaminergic neurons in the substantia nigra. Neurotrophic factors, such as glial cell derived neurotrophic factor (GDNF), have been shown to provide a neuroprotective effect in PD rats. We have previously reported that ultrasound-induced lipid-coated GDNF microspheres, which release GDNF in a sustained manner after low frequency ultrasound stimulation, can reduce hypoxic-ischemic injury in neonatal rats. In the present study, we investigated whether lipid-coated GDNF microspheres can provide a neuroprotective effect in a rat model of PD. After a rat model of PD was produced by 6-hydroxydompamine (6-OHDA) injections, lipid-coated GDNF microspheres (1.5mg/kg) were injected into the striatum of PD rats. We found that GDNF levels were increased in the striatum of PD rats after lipid-coated GDNF microspheres administration following low frequency ultrasound stimulation (20kHz, 5min per day, daily for 4 weeks). Moreover, GDNF microspheres reduced apomorphine-induced rotations, and increased striatal dopamine and nigral tyrosine hydroxylase (TH) levels in PD rats. Additionally, GDNF microspheres reduced caspase-3, tumor necrosis factor-alpha, matrix metalloproteinase 9 (MMP-9) and OX-6 levels induced by 6-OHDA injections in PD rats. These data indicated that lipid-coated GDNF microspheres can provide a neuroprotective effect in PD rats. PMID:24583079

  15. A partial lesion model of Parkinson's disease in mice--characterization of a 6-OHDA-induced medial forebrain bundle lesion.

    PubMed

    Boix, Jordi; Padel, Thomas; Paul, Gesine

    2015-05-01

    The most frequently used animal models for Parkinson's disease (PD) utilize unilateral injection of 6-hydroxydopamine (6-OHDA) in the medial forebrain bundle (MFB), which results in total denervation of the dopaminergic nigrostriatal pathway. However, neuroprotective interventions in PD require models resembling earlier stages of PD, where some dopaminergic cells and fibres remain. The aim of the present study was therefore to establish a MFB partial lesion model in mice. We tested four different 6-OHDA doses, and our results show a dose-dependent loss of nigral dopaminergic cells and striatal fibres that correlated with behavioural impairment in several behavioural tests. Specifically, doses of 0.7 ?g and 1 ?g of 6-OHDA induced a partial denervation of the nigrostriatal pathway, associated with a mild but quantifiable behavioural impairment. We identified the amphetamine-induced rotation, stepping, corridor and cylinder test to be sensitive enough to select partial lesion animals. Based on our data, we proposed a range of cut-off values for these different behavioural tests to select partial lesion mice. Using a statistical prediction model we identified two behavioural tests (the stepping test and amphetamine-induced rotation test) that with a high sensitivity and specificity predict the extent of nigral dopaminergic cell loss and select mice with a partial nigrostriatal lesion prior to further interventions. This model can serve as an important tool to study neuroprotective therapies for PD in mouse models, especially when the treatment targets the substantia nigra and/or the striatum. PMID:25698603

  16. Glutathione Metabolism and Parkinson’s Disease

    PubMed Central

    Smeyne, Michelle

    2013-01-01

    It has been established that oxidative stress, defined as the condition when the sum of free radicals in a cell exceeds the antioxidant capacity of the cell, contributes to the pathogenesis of Parkinson’s disease. Glutathione is a ubiquitous thiol tripeptide that acts alone, or in concert with enzymes within cells to reduce superoxide radicals, hydroxyl radicals and peroxynitrites. In this review, we examine the synthesis, metabolism and functional interactions of glutathione, and discuss how this relates to protection of dopaminergic neurons from oxidative damage and its therapeutic potential in Parkinson’s disease. PMID:23665395

  17. Stress, Depression and Parkinson’s Disease

    PubMed Central

    Hemmerle, Ann M.; Herman, James P.; Seroogy, Kim B.

    2011-01-01

    In this review, we focus on the relationship among Parkinson’s disease (PD), stress and depression. Parkinson’s disease patients have a high risk of developing depression, and it is possible that stress contributes to the development of both pathologies. Stress dysfunction may have a role in the etiology of preclinical non-motor symptoms of PD (such as depression) and, later in the course of the disease, may worsen motor symptoms. However, relatively few studies have examined stress or depression and the injured nigrostriatal system. This review discusses the effects of stress on neurodegeneration and depression, and their association with the symptoms and progression of PD. PMID:22001159

  18. Knockdown of Hsc70-5/mortalin induces loss of synaptic mitochondria in a Drosophila Parkinson's disease model.

    PubMed

    Zhu, Jun-Yi; Vereshchagina, Natalia; Sreekumar, Vrinda; Burbulla, Lena F; Costa, Ana C; Daub, Katharina J; Woitalla, Dirk; Martins, L Miguel; Krüger, Rejko; Rasse, Tobias M

    2013-01-01

    Mortalin is an essential component of the molecular machinery that imports nuclear-encoded proteins into mitochondria, assists in their folding, and protects against damage upon accumulation of dysfunctional, unfolded proteins in aging mitochondria. Mortalin dysfunction associated with Parkinson's disease (PD) increases the vulnerability of cultured cells to proteolytic stress and leads to changes in mitochondrial function and morphology. To date, Drosophila melanogaster has been successfully used to investigate pathogenesis following the loss of several other PD-associated genes. We generated the first loss-of-Hsc70-5/mortalin-function Drosophila model. The reduction of Mortalin expression recapitulates some of the defects observed in the existing Drosophila PD-models, which include reduced ATP levels, abnormal wing posture, shortened life span, and reduced spontaneous locomotor and climbing ability. Dopaminergic neurons seem to be more sensitive to the loss of mortalin than other neuronal sub-types and non-neuronal tissues. The loss of synaptic mitochondria is an early pathological change that might cause later degenerative events. It precedes both behavioral abnormalities and structural changes at the neuromuscular junction (NMJ) of mortalin-knockdown larvae that exhibit increased mitochondrial fragmentation. Autophagy is concomitantly up-regulated, suggesting that mitochondria are degraded via mitophagy. Ex vivo data from human fibroblasts identifies increased mitophagy as an early pathological change that precedes apoptosis. Given the specificity of the observed defects, we are confident that the loss-of-mortalin model presented in this study will be useful for further dissection of the complex network of pathways that underlie the development of mitochondrial parkinsonism. PMID:24386261

  19. Parkinson's Disease Foundation Newsletter

    MedlinePLUS

    ... Newsletters Latest E-ParkinsonLink Latest News & Review Video Social Media Blog: Perspectives on Parkinson's Financial Information Employment Opportunities Contact Us Newsletters Want the latest in science news, practical advice and community happenings? Check out ...

  20. Learning about Parkinson's Disease

    MedlinePLUS

    ... affect many things about us: our height, eye color, why we respond to some medications better than ... diseases including Parkinson's disease. Top of page What determines who gets Parkinson's disease? In most cases inheriting ...

  1. Depression and Parkinson's Disease

    MedlinePLUS

    ... For More Information on Parkinson's Disease Citations Reprints Depression and Parkinson's Disease Order a free hardcopy En ... difficult, so proper treatment is important. What is depression? Major depressive disorder, or depression, is a serious ...

  2. Parkinson disease - resources

    MedlinePLUS

    Resources - Parkinson disease ... The following organizations are good resources for information on Parkinson disease : The Michael J. Fox Foundation -- www.michaeljfox.org National Institute of Neurological Disorders and Stroke -- www. ...

  3. Parkinson disease - discharge

    MedlinePLUS

    Your doctor has told you that you have Parkinson disease . This disease affects the brain and leads ... have you take different medicines to treat your Parkinson disease and many of the problems that may ...

  4. Young-Onset Parkinson's

    MedlinePLUS

    ... can help make life better for people with Parkinson's General Gift Tribute Gift Moving Day ® Team Hope ... can help make life better for people with Parkinson's General Gift Tribute Gift Moving Day ® Team Hope ...

  5. National Parkinson Foundation, Inc.

    MedlinePLUS

    ... can help make life better for people with Parkinson's General Gift Tribute Gift Moving Day ® Team Hope ... can help make life better for people with Parkinson's General Gift Tribute Gift Moving Day ® Team Hope ...

  6. Unraveling Parkinson's: Three Clues

    MedlinePLUS

    ... Navigation Bar Home Current Issue Past Issues Unraveling Parkinson's: Three Clues Past Issues / Summer 2006 Table of ... or prevent disease progression. Studies have shown that Parkinson's patients have lost 60 to 80 percent of ...

  7. Parkinsonism in Spinocerebellar Ataxia

    PubMed Central

    Park, Hyeyoung; Kim, Han-Joon; Jeon, Beom S.

    2015-01-01

    Spinocerebellar ataxia (SCA) presents heterogeneous clinical phenotypes, and parkinsonism is reported in diverse SCA subtypes. Both levodopa responsive Parkinson disease (PD) like phenotype and atypical parkinsonism have been described especially in SCA2, SCA3, and SCA17 with geographic differences in prevalence. SCA2 is the most frequently reported subtype of SCA related to parkinsonism worldwide. Parkinsonism in SCA2 has unique genetic characteristics, such as low number of expansions and interrupted structures, which may explain the sporadic cases with low penetrance. Parkinsonism in SCA17 is more remarkable in Asian populations especially in Korea. In addition, an unclear cutoff of the pathologic range is the key issue in SCA17 related parkinsonism. SCA3 is more common in western cohorts. SCA6 and SCA8 have also been reported with a PD-like phenotype. Herein, we reviewed the epidemiologic, clinical, genetic, and pathologic features of parkinsonism in SCAs. PMID:25866756

  8. Activin A Protects Midbrain Neurons in the 6-Hydroxydopamine Mouse Model of Parkinson’s Disease

    PubMed Central

    Li, Kong M.; Vissel, Bryce

    2015-01-01

    Parkinson’s disease (PD) is a chronic neurodegenerative disease characterized by a significant loss of dopaminergic neurons within the substantia nigra pars compacta (SNpc) and a subsequent loss of dopamine (DA) within the striatum. Despite advances in the development of pharmacological therapies that are effective at alleviating the symptoms of PD, the search for therapeutic treatments that halt or slow the underlying nigral degeneration remains a particular challenge. Activin A, a member of the transforming growth factor ? superfamily, has been shown to play a role in the neuroprotection of midbrain neurons against 6-hydroxydopamine (6-OHDA) in vitro, suggesting that activin A may offer similar neuroprotective effects in in vivo models of PD. Using robust stereological methods, we found that intrastriatal injections of 6-OHDA results in a significant loss of both TH positive and NeuN positive populations in the SNpc at 1, 2, and 3 weeks post-lesioning in drug naïve mice. Exogenous application of activin A for 7 days, beginning the day prior to 6-OHDA administration, resulted in a significant survival of both dopaminergic and total neuron numbers in the SNpc against 6-OHDA-induced toxicity. However, we found no corresponding protection of striatal DA or dopamine transporter (DAT) expression levels in animals receiving activin A compared to vehicle controls. These results provide the first evidence that activin A exerts potent neuroprotection in a mouse model of PD, however this neuroprotection may be localized to the midbrain. PMID:25902062

  9. Ciprofloxacin induced bullous fixed drug reaction: three case reports

    PubMed Central

    Nair, Pragya A.

    2015-01-01

    Cutaneous adverse drug reactions (ADRs) are seen in about 1–2% cases. Fixed drug reaction (FDR) is responsible for about 10% of all ADRs. It is a delayed type of hypersensitivity reaction that occurs as lesions recurs at the same skin site due to repeated intake of an offending drug. The most common drugs causing fixed drug eruption (FDE) are analgesics, antibiotics, muscle relaxants and anticonvulsants. FDE due to ciprofloxacin has been reported earlier also, but bullous variant of FDR is rare. We hereby report three case reports of bullous FDR caused due to ciprofloxacin. PMID:25949980

  10. A fatal case of cutaneous adverse drug-induced toxic epidermal necrolysis associated with severe rhabdomyolysis.

    PubMed

    Noordally, Sheik Oaleed; Sohawon, Schoeb; Vanderhulst, Julien; Duttmann, Ruth; Corazza, Francis; Devriendt, Jacques

    2012-01-01

    Toxic epidermal necrolysis represents an immunologic reaction to a foreign antigen and is most often caused by drugs. Atorvastatin, a blood cholesterol-lowering agent, is a recognized cause of rhabdomyolysis; while naproxen, a widely used nonsteroidal anti-inflammatory drug, is a known cause of photo-induced skin lesions. We report the first fatal case of drug-induced toxic epidermal necrolysis associated with severe muscle necrosis due to the use of a nonsteroidal anti-inflammatory drug and a statin with very high levels of creatine phosphokinase leading to acute kidney injury, disseminated intravascular coagulation, and complete skin necrosis leading to death. PMID:22588445

  11. 76 FR 4918 - Drug-Induced Liver Injury: Are We Ready to Look?; Public Conference; Request for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ...FDA-2008-D-0128)] Drug-Induced Liver Injury: Are We Ready to Look?; Public...conference entitled ``Drug-Induced Liver Injury: Are We Ready to Look?'' The...issues regarding drug-induced liver injury (DILI). The purpose of...

  12. Dopaminergic modulation of motor coordinaton in Parkinson’s disease

    PubMed Central

    Park, Jaebum; Lewis, Mechelle M.; Huang, Xuemei; Latash, Mark L.

    2013-01-01

    Background We applied the idea of synergies and the framework of the uncontrolled manifold hypothesis to explore the effects of dopamine replacement therapy on finger interaction and coordination in patients with early-stage Parkinson’s disease (PD). Methods Eight patients performed single-finger and multi-finger force production tasks with both the dominant and non-dominant hand before (off-drug) and after (on-drug) taking their dopaminergic medications. Synergy indices were defined as co-varied adjustments of commands to fingers that stabilized the total force produced by the hand. Results PD patients showed significantly lower maximal finger forces off-drug compared to the on-drug condition, while indices of finger individuation (enslaving) were unchanged. The synergy indices were weaker during steady-state force production off-drug compared to on-drug. Anticipatory adjustments of synergies prior to the quick force pulse initiation were delayed and reduced off-drug as compared to the on-drug condition. These drug effects were observed in both the symptomatic and asymptomatic hands of the patients whose symptoms were limited to one side of the body. Conclusions The study demonstrates dopaminergic modulation of motor coordination in PD and supports that the analysis of different components of multi-finger synergies offers a set of indices sensitive to the effects of dopamine replacement therapy in early-stage PD. The results suggest an important role of the basal ganglia in synergy formation and in feed-forward synergy adjustments. Future studies using these methods may yield more objective, quantitative biomarker(s) of motor coordination impairments in PD, and better understanding of subcortical involvement in the neural control of natural actions. PMID:24090949

  13. Parkinson's disease as a result of aging

    PubMed Central

    Rodriguez, Manuel; Rodriguez-Sabate, Clara; Morales, Ingrid; Sanchez, Alberto; Sabate, Magdalena

    2015-01-01

    It is generally considered that Parkinson's disease is induced by specific agents that degenerate a clearly defined population of dopaminergic neurons. Data commented in this review suggest that this assumption is not as clear as is often thought and that aging may be critical for Parkinson's disease. Neurons degenerating in Parkinson's disease also degenerate in normal aging, and the different agents involved in the etiology of this illness are also involved in aging. Senescence is a wider phenomenon affecting cells all over the body, whereas Parkinson's disease seems to be restricted to certain brain centers and cell populations. However, reviewed data suggest that Parkinson's disease may be a local expression of aging on cell populations which, by their characteristics (high number of synaptic terminals and mitochondria, unmyelinated axons, etc.), are highly vulnerable to the agents promoting aging. The development of new knowledge about Parkinson's disease could be accelerated if the research on aging and Parkinson's disease were planned together, and the perspective provided by gerontology gains relevance in this field. PMID:25677794

  14. Prime-, Stress- and Cue-Induced Reinstatement of Extinguished Drug-Reinforced Responding in Rats: Cocaine as the Prototypical Drug of Abuse

    PubMed Central

    Beardsley, Patrick M.; Shelton, Keith L.

    2012-01-01

    This unit describes the testing of rats in prime-, footshock- and cue-induced reinstatement procedures. Evaluating rats in these procedures enables the assessment of treatments on behavior thought to model drug relapse precipitated by re-contact with an abused drug (prime-induced), induced by stress (footshock-induced), or by stimuli previously associated with drug administration (cue-induced). For instance, levels of reinstatement under the effects of test compound administration could be compared to levels under vehicle administration to help identify potential treatments for drug relapse, or reinstatement levels of different rat strains could be compared to identify potential genetic determinants of perseverative drug-seeking behavior. Cocaine is used as a prototypical drug of abuse, and relapse to its use serves as the model in this unit, but other self-administered drugs could readily be substituted with little modification to the procedures. PMID:23093352

  15. A Rare Coexistence: Drug Induced Hepatitis and Meningitis in Association With Ibuprofen

    PubMed Central

    Nayudu, Suresh Kumar; Kavuturu, Shilpa; Niazi, Masooma; Daniel, Myrta; Dev, Anil; Kumbum, Kavitha

    2013-01-01

    Ibuprofen, a commonly used NSAID is reported to be associated with drug induced liver injury. Ibuprofen is also known to be associated with drug-induced meningitis especially in patients with connective tissue disorders. However presentation of hepatitis and meningitis in association with Ibuprofen use in the same individual has never been reported. We present a case of young woman who developed abnormal liver chemistries and neurological symptoms while on Ibuprofen. Her liver biopsy findings were suggestive of drug induced liver injury and cerebrospinal fluid analysis was suggestive of aseptic meningitis. Clinical and biochemical improvement was noted on cessation of Ibuprofen. PMID:23671551

  16. Unusual case of drug-induced cholestasis due to glucosamine and chondroitin sulfate

    PubMed Central

    Ip, Stephen; Jeong, Rachel; Schaeffer, David F; Yoshida, Eric M

    2015-01-01

    Glucosamine (GS) and chondroitin sulfate (CS) are common over-the-counter (OTC) supplements used in the treatment of osteoarthritis. These medications are seemingly safe, but there are increasing reports of hepatotoxicity with these supplements. We reported a unique case of drug-induced cholestasis caused by GS and CS in a combination tablet. The etiology of the jaundice was overlooked despite extensive investigations over a three-month period. Unlike drug-induced hepatocellular injury, drug-induced cholestatic jaundice with GS and CS has only been reported twice before. This case emphasizes the importance of a complete medication history, especially OTC supplements, in the assessment of cholestasis. PMID:26527309

  17. A Mitocentric View of Parkinson’s Disease

    PubMed Central

    Haelterman, Nele A.; Yoon, Wan Hee; Sandoval, Hector; Jaiswal, Manish; Shulman, Joshua M.; Bellen, Hugo J.

    2015-01-01

    Parkinson’s disease (PD) is a common neurodegenerative disease, yet the underlying causative molecular mechanisms are ill defined. Numerous observations based on drug studies and mutations in genes that cause PD point to a complex set of rather subtle mitochondrial defects that may be causative. Indeed, intensive investigation of these genes in model organisms has revealed roles in the electron transport chain, mitochondrial protein homeostasis, mitophagy, and the fusion and fission of mitochondria. Here, we attempt to synthesize results from experimental studies in diverse systems to define the precise function of these PD genes, as well as their interplay with other genes that affect mitochondrial function. We propose that subtle mitochondrial defects in combination with other insults trigger the onset and progression of disease, in both familial and idiopathic PD. PMID:24821430

  18. The Promise of Neuroprotective Agents in Parkinson’s Disease

    PubMed Central

    Seidl, Stacey E.; Potashkin, Judith A.

    2011-01-01

    Parkinson’s disease (PD) is characterized by loss of dopamine neurons in the substantia nigra of the brain. Since there are limited treatment options for PD, neuroprotective agents are currently being tested as a means to slow disease progression. Agents targeting oxidative stress, mitochondrial dysfunction, and inflammation are prime candidates for neuroprotection. This review identifies Rasagiline, Minocycline, and creatine, as the most promising neuroprotective agents for PD, and they are all currently in phase III trials. Other agents possessing protective characteristics in delaying PD include stimulants, vitamins, supplements, and other drugs. Additionally, combination therapies also show benefits in slowing PD progression. The identification of neuroprotective agents for PD provides us with therapeutic opportunities for modifying the course of disease progression and, perhaps, reducing the risk of onset when preclinical biomarkers become available. PMID:22125548

  19. Identification of drug-specific pathways based on gene expression data: application to drug induced lung injury.

    PubMed

    Melas, Ioannis N; Sakellaropoulos, Theodore; Iorio, Francesco; Alexopoulos, Leonidas G; Loh, Wei-Yin; Lauffenburger, Douglas A; Saez-Rodriguez, Julio; Bai, Jane P F

    2015-08-01

    Identification of signaling pathways that are functional in a specific biological context is a major challenge in systems biology, and could be instrumental to the study of complex diseases and various aspects of drug discovery. Recent approaches have attempted to combine gene expression data with prior knowledge of protein connectivity in the form of a PPI network, and employ computational methods to identify subsets of the protein-protein-interaction (PPI) network that are functional, based on the data at hand. However, the use of undirected networks limits the mechanistic insight that can be drawn, since it does not allow for following mechanistically signal transduction from one node to the next. To address this important issue, we used a directed, signaling network as a scaffold to represent protein connectivity, and implemented an Integer Linear Programming (ILP) formulation to model the rules of signal transduction from one node to the next in the network. We then optimized the structure of the network to best fit the gene expression data at hand. We illustrated the utility of ILP modeling with a case study of drug induced lung injury. We identified the modes of action of 200 lung toxic drugs based on their gene expression profiles and, subsequently, merged the drug specific pathways to construct a signaling network that captured the mechanisms underlying Drug Induced Lung Disease (DILD). We further demonstrated the predictive power and biological relevance of the DILD network by applying it to identify drugs with relevant pharmacological mechanisms for treating lung injury. PMID:25932872

  20. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions.

    PubMed

    Hung, Shuen-Iu; Chung, Wen-Hung; Jee, Shiou-Hwa; Chen, Wen-Chieh; Chang, Yun-Ting; Lee, Woan-Ruoh; Hu, Shu-Ling; Wu, Meng-Tse; Chen, Gwo-Shing; Wong, Tak-Wah; Hsiao, Pa-Fan; Chen, Wei-Hsuan; Shih, Han-Yu; Fang, Wu-Hsiang; Wei, Chun-Yu; Lou, Yi-Hui; Huang, Yau-Li; Lin, Juei-Jueng; Chen, Yuan-Tsong

    2006-04-01

    The anticonvulsant carbamazepine (CBZ) frequently causes cutaneous adverse drug reactions (cADRs), including maculopapular eruption (MPE), hypersensitivity syndrome (HSS), Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). We reported that SJS/TEN caused by CBZ is strongly associated with the HLA-B*1502 gene in Han Chinese. Here, we extended our genetic study to different types of CBZ-cADRs (91 patients, including 60 patients with SJS/TEN, 13 patients with hypersensitivity syndrome and 18 with maculopapular exanthema versus 144 tolerant controls). We used MALDI-TOF mass spectrometry to screen the genetic association of 278 single nucleotide polymorphisms (SNPs), which cover the major histocompatibility complex (MHC) region, tumor necrosis factor-alpha, heat shock protein and CBZ-metabolic enzymes, including CYP3A4, 2B6, 2C8, 2C9, 1A2 and epoxide hydrolase 1. In addition, we genotyped 20 microsatellites in the MHC region and performed HLA-typing to construct the recombinant map. We narrowed the susceptibility locus for CBZ-SJS/TEN to within 86 kb flanking the HLA-B gene on the extended B*1502 haplotype, and confirmed the association of B*1502 with SJS/TEN [Pc=1.6x10, odds ratio (OR)=1357; 95% confidence interval (CI)=193.4-8838.3]. By contrast to CBZ-SJS/TEN, HLA-B*1502 association was not observed in the MPE or HSS groups: MPE was associated with SNPs in the HLA-E region and a nearby allele, HLA-A*3101 (Pc=2.2x10, OR=17.5; 95% CI=4.6-66.5), and HSS with SNPs in the motilin gene (Pc=0.0064, OR=7.11; 95% CI=3.1-16.5) located terminal to the MHC class II genes. No SNPs in genes involved in CBZ metabolism were associated with CBZ-induced cADRs. Our data suggest that HLA-B*1502 could contribute to the pathogenesis of CBZ-SJS/TEN, and that genetic susceptibility to CBZ-induced cADRs is phenotype-specific. PMID:16538176

  1. Role of corticostriatal circuits in context-induced reinstatement of drug seeking.

    PubMed

    Marchant, Nathan J; Kaganovsky, Konstantin; Shaham, Yavin; Bossert, Jennifer M

    2015-12-01

    Drug addiction is characterized by persistent relapse vulnerability during abstinence. In abstinent drug users, relapse is often precipitated by re-exposure to environmental contexts that were previously associated with drug use. This clinical scenario is modeled in preclinical studies using the context-induced reinstatement procedure, which is based on the ABA renewal procedure. In these studies, context-induced reinstatement of drug seeking is reliably observed in laboratory animals that were trained to self-administer drugs abused by humans. In this review, we summarize neurobiological findings from preclinical studies that have focused on the role of corticostriatal circuits in context-induced reinstatement of heroin, cocaine, and alcohol seeking. We also discuss neurobiological similarities and differences in the corticostriatal mechanisms of context-induced reinstatement across these drug classes. We conclude by briefly discussing future directions in the study of context-induced relapse to drug seeking in rat models. Our main conclusion from the studies reviewed is that there are both similarities (accumbens shell, ventral hippocampus, and basolateral amygdala) and differences (medial prefrontal cortex and its projections to accumbens) in the neural mechanisms of context-induced reinstatement of cocaine, heroin, and alcohol seeking. This article is part of a Special Issue entitled SI:Addiction circuits. PMID:25199590

  2. Adaptive down-regulation of the serotonin transporter in the 6-hydroxydopamine-induced rat model of preclinical stages of Parkinson's disease and after chronic pramipexole treatment.

    PubMed

    Berghauzen-Maciejewska, K; Wardas, J; Kosmowska, B; Domin, H; ?mia?owska, M; G?owacka, U; Ossowska, K

    2016-02-01

    Our recent study has indicated that a moderate lesion induced by bilateral 6-hydroxydopamine (6-OHDA) injections into the ventrolateral region of the caudate-putamen (CP) in rats, modeling preclinical stages of Parkinson's disease, induces a "depressive-like" behavior which is reversed by chronic treatment with pramipexole (PRA). The aim of the present study was to examine the influence of the above lesion and chronic PRA treatment on binding to the serotonin transporter (SERT) in different brain regions. As before, 6-OHDA (15?g/2.5?l) was administered bilaterally into the CP. PRA (1mg/kg) was injected subcutaneously twice a day for 2weeks. Serotonergic and dopaminergic neurons of the dorsal raphe (DR) were immunostained for tryptophan hydroxylase and tyrosine hydroxylase, respectively, and were counted stereologically. Binding of [(3)H]GBR 12,935 to the dopamine transporter (DAT) and [(3)H]citalopram to SERT was analyzed autoradiographically. Intrastriatal 6-OHDA injections decreased the number of dopaminergic, but not serotonergic neurons in the DR. 6-OHDA reduced the DAT binding in the CP, and SERT binding in the nigrostriatal system (CP, substantia nigra (SN)), limbic system (ventral tegmental area (VTA), nucleus accumbens (NAC), amygdala, prefrontal cortex (PFCX), habenula, hippocampus) and DR. A significant positive correlation was found between DAT and SERT binding in the CP. Chronic PRA did not influence DAT binding but reduced SERT binding in the above structures, and deepened the lesion-induced losses in the core region of the NAC, SN, VTA and PFCX. The present study indicates that both the lesion of dopaminergic neurons and chronic PRA administration induce adaptive down-regulation of SERT binding. Moreover, although involvement of stimulation of dopaminergic transmission by chronic PRA in its "antidepressant" effect seems to be prevalent, additional contribution of SERT inhibition cannot be excluded. PMID:26628402

  3. EFFECT OF OZONE ON DRUG-INDUCED SLEEPING TIME IN MICE PRETREATED WITH MIXED-FUNCTION OXIDASE INDUCERS AND INHIBITORS

    EPA Science Inventory

    Studies were conducted to investigate the effect of ozone in prolonging pentobarbital (PEN)-induced sleeping time (S.T.). Since ozone is a common air pollutant, an ozone-induced alteration of mechanisms of drug action could have public health implications. It was shown that a 5-h...

  4. Drug-induced lesions of the oesophageal mucosa.

    PubMed

    2015-09-01

    Lesions of the oesophageal mucosa are observed in various situations: most often with gastrooesophageal reflux disease, but also with infections, cancer, contact with a toxic substance, etc. When they are symptomatic, these lesions provoke burning sensations, dysphagia, regurgitation and sometimes dorsal pain. The changes to the oesophageal mucosa may take various forms: inflammation, erosion, ulceration or necrosis. Serious or even fatal complications can develop but are rare; they include oesophageal perforation, stricture and haemorrhage. Some oral drugs damage the oesophageal mucosa through direct contact. The symptoms often develop several hours after ingestion. The pain is of sudden onset. The resulting lesions are solitary or multiple ulcers that vary in depth and usually occur in the upper portion of the oesophagus. Various factors prolong contact between a drug and the oesophageal mucosa, in particular: swallowing the drug with insufficient liquid or just before lying down; capsule forms; and oesophageal abnormalities. The drugs most frequently implicated are tetracyclines, particularly doxycycline, bisphosphonates and various nonsteroidal anti-inflammatory drugs (NSAIDs). Many drugs, used in various situations, provoke gastro-oesophageal reflux disease, sometimes causing mucosal lesions in the lower oesophagus: calcium-channel blockers, nitrates, exenatide and liraglutide, drugs with antimuscarinic effects, theophylline, etc. Some drugs affect all mucous membranes in the body, including the oesophageal mucosa, irrespective of their route of administration: cancer drugs, isotretinoin, and nicorandil. PMID:26417631

  5. Dopaminergic neurotoxicant 6-OHDA induces oxidative damage through proteolytic activation of PKC{delta} in cell culture and animal models of Parkinson's disease

    SciTech Connect

    Latchoumycandane, Calivarathan; Anantharam, Vellareddy; Jin, Huajun; Kanthasamy, Anumantha; Kanthasamy, Arthi

    2011-11-15

    The neurotoxicant 6-hydroxydopamine (6-OHDA) is used to investigate the cellular and molecular mechanisms underlying selective degeneration of dopaminergic neurons in Parkinson's disease (PD). Oxidative stress and caspase activation contribute to the 6-OHDA-induced apoptotic cell death of dopaminergic neurons. In the present study, we sought to systematically characterize the key downstream signaling molecule involved in 6-OHDA-induced dopaminergic degeneration in cell culture and animal models of PD. Treatment of mesencephalic dopaminergic neuronal N27 cells with 6-OHDA (100 {mu}M) for 24 h significantly reduced mitochondrial activity and increased cytosolic cytochrome c, followed by sequential activation of caspase-9 and caspase-3. Co-treatment with the free radical scavenger MnTBAP (10 {mu}M) significantly attenuated 6-OHDA-induced caspase activities. Interestingly, 6-OHDA induced proteolytic cleavage and activation of protein kinase C delta (PKC{delta}) was completely suppressed by treatment with a caspase-3-specific inhibitor, Z-DEVD-FMK (50 {mu}M). Furthermore, expression of caspase-3 cleavage site-resistant mutant PKC{delta}{sup D327A} and kinase dead PKC{delta}{sup K376R} or siRNA-mediated knockdown of PKC{delta} protected against 6-OHDA-induced neuronal cell death, suggesting that caspase-3-dependent PKC{delta} promotes oxidative stress-induced dopaminergic degeneration. Suppression of PKC{delta} expression by siRNA also effectively protected N27 cells from 6-OHDA-induced apoptotic cell death. PKC{delta} cleavage was also observed in the substantia nigra of 6-OHDA-injected C57 black mice but not in control animals. Viral-mediated delivery of PKC{delta}{sup D327A} protein protected against 6-OHDA-induced PKC{delta} activation in mouse substantia nigra. Collectively, these results strongly suggest that proteolytic activation of PKC{delta} is a key downstream event in dopaminergic degeneration, and these results may have important translational value for development of novel treatment strategies for PD.

  6. An Overview on the Proposed Mechanisms of Antithyroid Drugs-Induced Liver Injury

    PubMed Central

    Heidari, Reza; Niknahad, Hossein; Jamshidzadeh, Akram; Eghbal, Mohammad Ali; Abdoli, Narges

    2015-01-01

    Drug-induced liver injury (DILI) is a major problem for pharmaceutical industry and drug development. Mechanisms of DILI are many and varied. Elucidating the mechanisms of DILI will allow clinicians to prevent liver failure, need for liver transplantation, and death induced by drugs. Methimazole and propylthiouracil (PTU) are two convenient antithyroid agents which their administration is accompanied by hepatotoxicity as a deleterious side effect. Although several cases of antithyroid drugs-induced liver injury are reported, there is no clear idea about the mechanism(s) of hepatotoxicity induced by these medications. Different mechanisms such as reactive metabolites formation, oxidative stress induction, intracellular targets dysfunction, and immune-mediated toxicity are postulated to be involved in antithyroid agents-induced hepatic damage. Due to the idiosyncratic nature of antithyroid drugs-induced hepatotoxicity, it is impossible to draw a specific conclusion about the mechanisms of liver injury. However, it seems that reactive metabolite formation and immune-mediated toxicity have a great role in antithyroids liver toxicity, especially those caused by methimazole. This review attempted to discuss different mechanisms proposed to be involved in the hepatic injury induced by antithyroid drugs. PMID:25789213

  7. Nongenetic causes of Parkinson's disease.

    PubMed

    Chade, A R; Kasten, M; Tanner, C M

    2006-01-01

    Study of the nongenetic causes of Parkinson's disease (PD) was encouraged by discovery of a cluster of parkinsonism produced by neurotoxic pyridine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the 1980s. Since that time, epidemiologic investigations have suggested risk factors, though their results do not establish causality. Pesticide exposure has been associated with increased risk in many studies. Other proposed risks include rural residence and certain occupations. Cigarette smoking, use of coffee/caffeine, and non-steroidal antiinflammatory drugs (NSAIDs) all appear to lower risk of PD, while dietary lipid and milk consumption, high caloric intake, and head trauma may increase risk. The cause of PD is likely multifactorial. Underlying genetic susceptibility and combinations of risk and protective factors likely all contribute. The combined research effort by epidemiologists, geneticists, and basic scientists will be needed to clarify the cause(s) of PD. PMID:17017522

  8. Alteration of enteric monoamines with monoamine receptors and colonic dysmotility in 6-hydroxydopamine-induced Parkinson's disease rats.

    PubMed

    Zhang, Xiaoli; Li, Yun; Liu, Chenzhe; Fan, Ruifang; Wang, Ping; Zheng, Lifei; Hong, Feng; Feng, Xiaoyan; Zhang, Yue; Li, Lisheng; Zhu, Jinxia

    2015-08-01

    Constipation is common in Parkinson's disease (PD), in which monoamines (dopamine [DA], norepinephrine [NE], and 5-hydroxytryptamine [5-HT]) play an important role. Rats microinjected with 6-hydroxydopamine (6-OHDA) into the bilateral substantia nigra (SN) exhibit constipation, but the role of monoamines and their receptors is not clear. In the present study, colonic motility, monoamine content, and the expression of monoamine receptors were examined using strain gauge force transducers, ultraperformance liquid chromatography tandem mass spectrometry, immunofluorescence, and Western blot. The 6-OHDA rats displayed a significant reduction in dopaminergic neurons in the SN and a decreased time on rota-rod test and a marked decrease in daily fecal production and fecal water content. The amplitude of colonic spontaneous contraction was obviously decreased in 6-OHDA rats. Blocking D1-like receptor and ?3-adrenoceptor (?3-AR) significantly reduced the inhibition of DA and NE on the colonic motility, respectively, whereas the 5-HT and 5-HT4 receptor agonists promoted the colonic motility. Moreover, DA content was increased in the colonic muscularis externa of 6-OHDA rats. The protein expression of ?3-ARs was notably upregulated, but 5-HT4 receptors were significantly decreased in the colonic muscularis externa of 6-OHDA rats. We conclude that enhanced DA and ?3-ARs and decreased 5-HT4 receptors may be contributed to the colonic dysmotility and constipation observed in 6-OHDA rats. PMID:25766133

  9. Nonsteroidal antiinflammatory drug-induced intestinal inflammation in humans

    SciTech Connect

    Bjarnason, I.; Zanelli, G.; Smith, T.; Prouse, P.; Williams, P.; Smethurst, P.; Delacey, G.; Gumpel, M.J.; Levi, A.J.

    1987-09-01

    This study examines the effects of nonsteroidal antiinflammatory drugs on the small intestine in humans. Using an /sup 111/In-leukocyte technique in patients with rheumatoid arthritis (n = 90) and osteoarthritis (n = 7), it appears that nonsteroidal antiinflammatory drugs cause small intestinal inflammation in two-thirds of patients on long-term treatment and on discontinuation, the inflammation may persist for up to 16 mo. The prevalence and magnitude of the intestinal inflammation was unrelated to the type and dose of nonsteroidal drugs and previous or concomitant second-line drug treatment. There was a significant inverse correlation (r = -0.29, p less than 0.05) between fecal /sup 111/In excretion and hemoglobin levels in patients treated with nonsteroidal antiinflammatory drugs. The kinetics of fecal indium 111 excretion in patients treated with nonsteroidal antiinflammatory drugs was almost identical to that of patients with small bowel Crohn's disease. Eighteen patients on nonsteroidal antiinflammatory drugs underwent a radiologic examination of the small bowel and 3 were found to have asymptomatic ileal disease with ulceration and strictures. Nineteen patients on nonsteroidal antiinflammatory drugs, 20 healthy controls, and 13 patients with Crohn's ileitis underwent a dual radioisotopic ileal function test with tauro 23 (/sup 75/Se) selena-25-homocholic acid and cobalt 58-labeled cyanocobalamine. On day 4, more than half of the patients with rheumatoid arthritis had evidence of bile acid malabsorption, but the ileal dysfunction was much milder than seen in patients with Crohn's ileitis.

  10. Poly (ADP-ribose) in the pathogenesis of Parkinson's disease

    PubMed Central

    Lee, Yunjong; Kang, Ho Chul; Lee, Byoung Dae; Lee, Yun-Il; Kim, Young Pil; Shin, Joo-Ho

    2014-01-01

    The defining feature of Parkinson’s disease is a progressive and selective demise of dopaminergic neurons. A recent report on Parkinson’s disease animal model demonstrates that poly (ADP-ribose) (PAR) dependent cell death, also named parthanatos, is accountable for selective dopaminergic neuronal loss. Parthanatos is a programmed necrotic cell death, characterized by PARP1 activation, apoptosis inducing factor (AIF) nuclear translocation, and large scale DNA fragmentation. Besides cell death regulation via interaction with AIF, PAR molecule mediates diverse cellular processes including genomic stability, cell division, transcription, epigenetic regulation, and stress granule formation. In this review, we will discuss the roles of PARP1 activation and PAR molecules in the pathological processes of Parkinson’s disease. Potential interaction between PAR molecule and Parkinson’s disease protein interactome are briefly introduced. Finally, we suggest promising points of therapeutic intervention in the pathological PAR signaling cascade to halt progression in Parkinson’s disease. [BMB Reports 2014; 47(8): 424-432] PMID:24874851

  11. Monastrol, a Prototype Anti-Cancer Drug That Inhibits a Mitotic Kinesin, Induces

    E-print Network

    Baas, Peter W.

    Monastrol, a Prototype Anti-Cancer Drug That Inhibits a Mitotic Kinesin, Induces Rapid Bursts of Medicine, Philadelphia, Pennsylvania Terminally postmitotic neurons continue to express many of the kinesin-related proteins known to configure microtubules during mitosis. Drugs that inhibit these kinesins are being

  12. Acetaldehyde and parkinsonism: role of CYP450 2E1

    PubMed Central

    Vaglini, Francesca; Viaggi, Cristina; Piro, Valentina; Pardini, Carla; Gerace, Claudio; Scarselli, Marco; Corsini, Giovanni Umberto

    2013-01-01

    The present review update the relationship between acetaldehyde (ACE) and parkinsonism with a specific focus on the role of P450 system and CYP 2E1 isozyme particularly. We have indicated that ACE is able to enhance the parkinsonism induced in mice by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a neurotoxin able to damage the nigrostriatal dopaminergic pathway. Similarly diethyldithiocarbamate, the main metabolite of disulfiram, a drug widely used to control alcoholism, diallylsulfide (DAS) and phenylisothiocyanate also markedly enhance the toxin-related parkinsonism. All these compounds are substrate/inhibitors of CYP450 2E1 isozyme. The presence of CYP 2E1 has been detected in the dopamine (DA) neurons of rodent Substantia Nigra (SN), but a precise function of the enzyme has not been elucidated yet. By treating CYP 2E1 knockout (KO) mice with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, the SN induced lesion was significantly reduced when compared with the lesion observed in wild-type animals. Several in vivo and in vitro studies led to the conclusion that CYP 2E1 may enhance the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice by increasing free radical production inside the dopaminergic neurons. ACE is a good substrate for CYP 2E1 enzyme as the other substrate-inhibitors and by this way may facilitate the susceptibility of dopaminergic neurons to toxic events. The literature suggests that ethanol and/or disulfiram may be responsible for toxic parkinsonism in human and it indicates that basal ganglia are the major targets of disulfiram toxicity. A very recent study reports that there are a decreased methylation of the CYP 2E1 gene and increased expression of CYP 2E1 mRNA in Parkinson's disease (PD) patient brains. This study suggests that epigenetic variants of this cytochrome contribute to the susceptibility, thus confirming multiples lines of evidence which indicate a link between environmental toxins and PD. PMID:23801948

  13. The History of Parkinson's Disease: Early Clinical Descriptions and Neurological Therapies

    PubMed Central

    Goetz, Christopher G.

    2011-01-01

    Although components of possible Parkinson's disease can be found in very early documents, the first clear medical description was written in 1817 by James Parkinson. In the mid-1800s, Jean-Martin Charcot was particularly influential in refining and expanding this early description and in disseminating information internationally about Parkinson's disease. He separated Parkinson's disease from multiple sclerosis and other disorders characterized by tremor, and he recognized cases that later would likely be classified among the Parkinsonism-plus syndromes. Early treatments of Parkinson's disease were based on empirical observation, and anticholinergic drugs were used as early as the nineteenth century. The discovery of dopaminergic deficits in Parkinson's disease and the synthetic pathway of dopamine led to the first human trials of levodopa. Further historically important anatomical, biochemical, and physiological studies identified additional pharmacological and neurosurgical targets for Parkinson's disease and allow modern clinicians to offer an array of therapies aimed at improving function in this still incurable disease. PMID:22229124

  14. The history of Parkinson's disease: early clinical descriptions and neurological therapies.

    PubMed

    Goetz, Christopher G

    2011-09-01

    Although components of possible Parkinson's disease can be found in very early documents, the first clear medical description was written in 1817 by James Parkinson. In the mid-1800s, Jean-Martin Charcot was particularly influential in refining and expanding this early description and in disseminating information internationally about Parkinson's disease. He separated Parkinson's disease from multiple sclerosis and other disorders characterized by tremor, and he recognized cases that later would likely be classified among the Parkinsonism-plus syndromes. Early treatments of Parkinson's disease were based on empirical observation, and anticholinergic drugs were used as early as the nineteenth century. The discovery of dopaminergic deficits in Parkinson's disease and the synthetic pathway of dopamine led to the first human trials of levodopa. Further historically important anatomical, biochemical, and physiological studies identified additional pharmacological and neurosurgical targets for Parkinson's disease and allow modern clinicians to offer an array of therapies aimed at improving function in this still incurable disease. PMID:22229124

  15. Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress.

    PubMed

    Mantsch, John R; Baker, David A; Funk, Douglas; Lê, Anh D; Shaham, Yavin

    2016-01-01

    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse. PMID:25976297

  16. [Demand for abortion. Special aspects of drug-induced abortion].

    PubMed

    Champion, J; Cailleux-Kreitmann, J

    1994-03-01

    Since 1990, 180 to 200 abortions annually representing 8 to 9% of the total at the Center for Social Gynecology in Marseilles have been performed with RU-486. Experience with RU-486 since 1986 has led to some reflections concerning the tasks of the physician, the client, and the health team. Because of the need to begin proceedings before the forty-second day of amenorrhea, the physician must attach some urgency to these cases, and must somehow establish priorities among the different pressing medical needs of patients. The physician must diagnose extrauterine pregnancy at very early stages, and must decide whether endovaginal sonography is justified. Evaluation of the uterus ten to twelve days after RU-486 administration to determine the success of the procedure is also difficult. The physician's decisions about needed tests and procedures must take into account the patient's medical condition but also her psychological reactions. The woman must take action within the first 15 days of amenorrhea in order to arrange an RU-486 abortion. The one-week waiting period is probably necessary to allow her to reflect on her reasons for choosing RU-486 and perhaps to change her mind. Among all women who requested drug- induced abortions at the Center for Social Gynecology, 10% had spontaneous abortions, 10% decided to continue their pregnancies, and 25% preferred other types of abortion. The health care team must explain the procedure to the woman, who is often nervous and agitated. The behavior of the health workers can help reduce anxiety and de-dramatize the experience for the woman. During the morning of monitoring after administration of prostaglandins, the patient must be prepared to leave the service. In half of cases, the expulsion will occur after the woman has left the hospital. Information must be provided about expulsion at home, possible method failure, significant bleeding, and other side effects and complications. The necessity for the follow-up appointment must be stressed, and information about contraception must be given. PMID:8009395

  17. Hepatocyte-based in vitro model for assessment of drug-induced cholestasis

    SciTech Connect

    Chatterjee, Sagnik; Richert, Lysiane; Augustijns, Patrick; Annaert, Pieter

    2014-01-01

    Early detection of drug-induced cholestasis remains a challenge during drug development. We have developed and validated a biorelevant sandwich-cultured hepatocytes- (SCH) based model that can identify compounds causing cholestasis by altering bile acid disposition. Human and rat SCH were exposed (24–48 h) to known cholestatic and/or hepatotoxic compounds, in the presence or in the absence of a concentrated mixture of bile acids (BAs). Urea assay was used to assess (compromised) hepatocyte functionality at the end of the incubations. The cholestatic potential of the compounds was expressed by calculating a drug-induced cholestasis index (DICI), reflecting the relative residual urea formation by hepatocytes co-incubated with BAs and test compound as compared to hepatocytes treated with test compound alone. Compounds with clinical reports of cholestasis, including cyclosporin A, troglitazone, chlorpromazine, bosentan, ticlopidine, ritonavir, and midecamycin showed enhanced toxicity in the presence of BAs (DICI ? 0.8) for at least one of the tested concentrations. In contrast, the in vitro toxicity of compounds causing hepatotoxicity by other mechanisms (including diclofenac, valproic acid, amiodarone and acetaminophen), remained unchanged in the presence of BAs. A safety margin (SM) for drug-induced cholestasis was calculated as the ratio of lowest in vitro concentration for which was DICI ? 0.8, to the reported mean peak therapeutic plasma concentration. SM values obtained in human SCH correlated well with reported % incidence of clinical drug-induced cholestasis, while no correlation was observed in rat SCH. This in vitro model enables early identification of drug candidates causing cholestasis by disturbed BA handling. - Highlights: • Novel in vitro assay to detect drug-induced cholestasis • Rat and human sandwich-cultured hepatocytes (SCH) as in vitro models • Cholestatic compounds sensitize SCH to toxic effects of accumulating bile acids • Drug-induced cholestasis index (DICI) as measure of a drug's cholestatic signature • In vitro findings correlate well with clinical reports on cholestasis.

  18. Protective effects of a polysaccharide from Spirulina platensis on dopaminergic neurons in an MPTP-induced Parkinson's disease model in C57BL/6J mice

    PubMed Central

    Zhang, Fang; Lu, Jian; Zhang, Ji-guo; Xie, Jun-xia

    2015-01-01

    The present study aimed to determine whether a polysaccharide obtained from Spirulina platensis shows protective effects on dopaminergic neurons. A Parkinson's disease model was established through the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6J mice. Prior to the MPTP injection, some mice were pretreated with intraperitoneal injections of a polysaccharide derived from Spirulina platensis once daily for 10 days. The results showed that the immunoreactive staining and mRNA expression of the dopamine transporter and tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, in the substantia nigra, were significantly increased in mice pretreated with 800 mg/kg of the polysaccharide compared with those in MPTP-treated mice. The activities of superoxide dismutase and glutathione peroxidase in the serum and midbrain were also increased significantly in mice injected with MPTP after pretreatment with the polysaccharide from Spirulina platensis. By contrast, the activity of monoamine oxidase B in serum and midbrain maintained unchanged. These experimental findings indicate that the polysaccharide obtained from Spirulina platensis plays a protective role against the MPTP-induced loss of dopaminergic neurons in C57BL/6J mice, and that the antioxidative properties of this polysaccharide likely underlie its neuroprotective effect. PMID:25883632

  19. Bacopa monnieri Phytochemicals Mediated Synthesis of Platinum Nanoparticles and Its Neurorescue Effect on 1-Methyl 4-Phenyl 1,2,3,6 Tetrahydropyridine-Induced Experimental Parkinsonism in Zebrafish

    PubMed Central

    Nellore, Jayshree; Pauline, Cynthia; Amarnath, Kanchana

    2013-01-01

    Current discovery demonstrates the rapid formation of platinum nanoparticles using leaf extract of a neurobeneficial plant, Bacopa monnieri (BmE). The nanoparticles (BmE-PtNPs) were stabilized and then coated with varied phytochemicals present within the leaf extract. These nanoparticles demonstrated the same activity of Complex I, as that of oxidizing NADH to NAD+ using a spectrophotometric method. This suggests that BmE-PtNPs are a potential medicinal substance for oxidative stress mediated disease with suppressed mitochondrial complex I, namely, Parkinson's disease (PD). Hence, the neuroprotective potentials of the phytochemical coated nanoparticle were explored in 1-methyl 4-phenyl 1,2,3,6 tetrahydropyridine- (MPTP-)induced experimental Parkinsonism in zebrafish model. BmE-PtNPs pretreatment significantly reversed toxic effects of MPTP by increasing the levels of dopamine, its metabolites, GSH and activities of GPx, catalase, SOD and complex I, and reducing levels of MDA along with enhanced locomotor activity. Taken together, these findings suggest that BmE-PtNPs have protective effect in MPTP-induced neurotoxicity in this model of Parkinson's disease via their dual functions as mitochondrial complex I and antioxidant activity. PMID:26317003

  20. Bacopa monnieri Phytochemicals Mediated Synthesis of Platinum Nanoparticles and Its Neurorescue Effect on 1-Methyl 4-Phenyl 1,2,3,6 Tetrahydropyridine-Induced Experimental Parkinsonism in Zebrafish.

    PubMed

    Nellore, Jayshree; Pauline, Cynthia; Amarnath, Kanchana

    2013-01-01

    Current discovery demonstrates the rapid formation of platinum nanoparticles using leaf extract of a neurobeneficial plant, Bacopa monnieri (BmE). The nanoparticles (BmE-PtNPs) were stabilized and then coated with varied phytochemicals present within the leaf extract. These nanoparticles demonstrated the same activity of Complex I, as that of oxidizing NADH to NAD(+) using a spectrophotometric method. This suggests that BmE-PtNPs are a potential medicinal substance for oxidative stress mediated disease with suppressed mitochondrial complex I, namely, Parkinson's disease (PD). Hence, the neuroprotective potentials of the phytochemical coated nanoparticle were explored in 1-methyl 4-phenyl 1,2,3,6 tetrahydropyridine- (MPTP-)induced experimental Parkinsonism in zebrafish model. BmE-PtNPs pretreatment significantly reversed toxic effects of MPTP by increasing the levels of dopamine, its metabolites, GSH and activities of GPx, catalase, SOD and complex I, and reducing levels of MDA along with enhanced locomotor activity. Taken together, these findings suggest that BmE-PtNPs have protective effect in MPTP-induced neurotoxicity in this model of Parkinson's disease via their dual functions as mitochondrial complex I and antioxidant activity. PMID:26317003

  1. The Difference between Anxiolytic and Anxiogenic Effects Induced by Acute and Chronic Alcohol Exposure and Changes in Associative Learning and Memory Based on Color Preference and the Cause of Parkinson-Like Behaviors in Zebrafish

    PubMed Central

    Zhang, Yuan; Chen, Di; Sun, Ming-Zhu; Zhao, Xin; Chen, Dong-Yan; Feng, Xi-Zeng

    2015-01-01

    We describe an interdisciplinary comparison of the effects of acute and chronic alcohol exposure in terms of their disturbance of light, dark and color preferences and the occurrence of Parkinson-like behavior in zebrafish through computer visual tracking, data mining, and behavioral and physiological analyses. We found that zebrafish in anxiolytic and anxious states, which are induced by acute and chronic repeated alcohol exposure, respectively, display distinct emotional reactions in light/dark preference tests as well as distinct learning and memory abilities in color-enhanced conditional place preference (CPP) tests. Additionally, compared with the chronic alcohol (1.0%) treatment, acute alcohol exposure had a significant, dose-dependent effect on anxiety, learning and memory (color preference) as well as locomotive activities. Acute exposure doses (0.5%, 1.0%, and 1.5%) generated an “inverted V” dose-dependent pattern in all of the behavioral parameters, with 1.0% having the greatest effect, while the chronic treatment had a moderate effect. Furthermore, by measuring locomotive activity, learning and memory performance, the number of dopaminergic neurons, tyrosine hydroxylase expression, and the change in the photoreceptors in the retina, we found that acute and chronic alcohol exposure induced varying degrees of Parkinson-like symptoms in zebrafish. Taken together, these results illuminated the behavioral and physiological mechanisms underlying the changes associated with learning and memory and the cause of potential Parkinson-like behaviors in zebrafish due to acute and chronic alcohol exposure. PMID:26558894

  2. Homotaurine in Parkinson's disease.

    PubMed

    Ricciardi, Lucia; De Nigris, Francesca; Specchia, Alessandro; Fasano, Alfonso

    2015-09-01

    Homotaurine is a natural compound of red algae, which has been demonstrated to have a neuroprotective effect and has been evaluated as a possible therapeutic agent for Alzheimer's disease. This was a single blind, randomized, controlled study to evaluate the safety and efficacy of homotaurine in patients with Parkinson's disease (PD) and cognitive impairment. Patients were evaluated at baseline and 6 months later. Assessments included, the evaluation of: motor and non-motor conditions and complications (Unified Parkinson's Disease Rating Scale, UPDRS); disability and quality of life; depression; excessive daytime sleepiness and fatigue. An extensive neuropsychological tests battery was administered evaluating specific cognitive domains: memory, phonemic verbal fluency, executive functions and selective visual attention. After baseline testing, patients were allocated to one of the two groups: (A) treatment group: patients treated with homotaurine 100 mg; (B) control group: patients not treated with homotaurine. Forty-seven patients were evaluated at baseline, 24 (51 %) completed the study (PD-homotaurine: n = 11; 44 % and PD-controls: n = 13; 59 %); discontinuation rate was similar across subjects (p = 1.0). Intention to treat analyses to evaluate homotaurine safety showed mild side effects (gastrointestinal upsetting) in 3 patients. Per protocol analyses of homotaurine efficacy showed no difference between groups. Within group analyses showed that PD-homotaurine patients had better score at UPDRS-I at the end of the study compared to baseline (p = 0.017) and at Epworth Sleepiness Scale (p = 0.01). No other differences were found. No significant difference arose for the PD-ctrl group. Homotaurine is a safe drug. Our data suggest a beneficial effect of homotaurine on excessive sleepiness. Future studies are encouraged to confirm this promising role of homotaurine in promoting the sleep/awake cycle in patients with PD. PMID:25894843

  3. Computational approaches for understanding the diagnosis and treatment of Parkinson’s disease

    PubMed Central

    Smith, Stephen L.; Lones, Michael A.; Bedder, Matthew; Alty, Jane E.; Cosgrove, Jeremy; Maguire, Richard J.; Pownall, Mary Elizabeth; Ivanoiu, Diana; Lyle, Camille; Cording, Amy; Elliott, Christopher J.H.

    2015-01-01

    This study describes how the application of evolutionary algorithms (EAs) can be used to study motor function in humans with Parkinson’s disease (PD) and in animal models of PD. Human data is obtained using commercially available sensors via a range of non-invasive procedures that follow conventional clinical practice. EAs can then be used to classify human data for a range of uses, including diagnosis and disease monitoring. New results are presented that demonstrate how EAs can also be used to classify fruit flies with and without genetic mutations that cause Parkinson’s by using measurements of the proboscis extension reflex. The case is made for a computational approach that can be applied across human and animal studies of PD and lays the way for evaluation of existing and new drug therapies in a truly objective way. PMID:26577157

  4. Controlled striatal DOPA production from a gene delivery system in a rodent model of Parkinson’s disease

    PubMed Central

    Cederfjäll, Erik; Broom, Lauren; Kirik, Deniz

    2015-01-01

    Conventional symptomatic treatment for Parkinson’s disease (PD) with long term L-DOPA is complicated with development of drug-induced side effects. In vivo viral vector-mediated gene expression encoding tyrosine hydroxylase (TH) and GTP cyclohydrolase 1 (GCH1) provides a drug delivery strategy of DOPA with distinct advantages over pharmacotherapy. Since the brain alterations made with current gene transfer techniques are irreversible, the therapeutic approaches taken to the clinic should preferably be controllable to match the needs of each individual during the course of their disease. We used a recently described tunable gene expression system based on the use of destabilized dihydrofolate reductase (DD) and generated a N-terminally coupled GCH1 enzyme (DD-GCH1) while the TH enzyme was constitutively expressed, packaged in adeno-associated viral (AAV) vectors. Expression of DD-GCH1 was regulated by the activating ligand trimethoprim (TMP) that crosses the blood-brain barrier. We show that the resulting intervention provides a TMP-dose dependent regulation of DOPA synthesis that is closely linked to the magnitude of functional effects. Our data constitutes the first proof of principle for controlled reconstitution of dopamine capacity in the brain and suggests that such next generation gene therapy strategies are now mature for pre-clinical development towards use in patients with PD. PMID:25592335

  5. Investigational targeted drug induces responses in aggressive lymphomas

    Cancer.gov

    Preliminary results from clinical trials in a subtype of lymphoma show that for a number of patients whose disease was not cured by other treatments, the drug ibrutinib can provide significant anti-cancer responses with modest side effects.

  6. Immunogenetics of drug-induced skin blistering disorders. Part II: synthesis.

    PubMed

    Bowman, Clive; Delrieu, Olivier

    2009-05-01

    The overall immunopathogenesis relevant to a large series of disorders caused by a drug or its associated hyperimmune condition is discussed based upon examining the genetics of severe drug-induced bullous skin problems (sporadic idiosyncratic adverse events including Stevens-Johnson syndrome and Toxic epidermal necrolysis). New results from an exemplar study on shared precipitating and perpetuating inner causes with other related disease phenotypes including aphtous stomatitis, Behçets, erythema multiforme, Hashimoto's thyroiditis, pemphigus, periodic fevers, Sweet's syndrome and drug-induced multisystem hypersensitivity are presented. A call for a collaborative, wider demographic profiling and deeper immunotyping in suggested future work is made. PMID:19450129

  7. Levetiracetam induced psoriasiform drug eruption: a rare case report

    PubMed Central

    Gencler, Onur Serdar; Gencler, Bilgen; Altunel, Cemile Tugba; Arslan, Nur

    2015-01-01

    Levetiracetam (LEV) is an established second generation anti-epileptic drug and LEV associated severe cutaneous reactions are rare. Here we report the case of psoriasiform drug eruption in a patient with newly diagnosed epilepsy who had been treated with levetiracetam. To our knowledge this is the first report of a patient with a psoriasiform eruption that appeared after the administration of LEV. PMID:26702269

  8. Non-motor extranigral signs and symptoms in Parkinson's disease.

    PubMed

    Wolters, Erik Ch

    2009-12-01

    Clinical symptoms in Parkinson's disease (PD) comprise both motor and non-motor symptoms. In this disease, synucleinopathic-induced, nigral dopamine deficiency-related dysfunction of the basal ganglia is held responsible for the characteristic levodopa-responsive motor signs and symptoms (bradykinesia, hypokinesia, rigidity), known as parkinsonism and essential for clinical diagnosis in PD, as well as subtle motivational and cognitive dysfunctions. Some motor symptoms, such as tremor and postural instability, and most non-motor symptoms, however, are not fully levodopa-responsive, and suggested to manifest extranigral pathology. These symptoms include autonomic, sleep, sensory and neuropsychiatric symptoms, which in some cases may precede the first signs of motor parkinsonism, closely correlating with the progression of Lewy body pathology in PD. The recognition and treatment of these mostly under-recognized and under-treated symptoms is important, as these symptoms might have more impact on the quality of life in PD patients as compared to motor parkinsonism. On top of this, recognition of these manifestations in the prodromal phase of motor PD is critical to early diagnosis and treatment, as disease-modifying drugs, once identified, should be initiated as soon as possible, preferably in this premotor phase of the disease. On top of this, (non)motor extranigral symptoms in PD might also be of iatrogenic origin, whether directly as indirectly. During conventional, oral, dopaminomimetic treatment, the progressive loss of striatal dopaminergic nerve endings with the loss of cerebral dopamine storage capacity, renders the cerebral dopamine level fully dependent of the plasma levodopa levels, thus changing dopaminergic receptor stimulation from continuous to a more pulsatile pattern. Supposedly due to this process, neuroplastic changes in (sub)cortical dopaminergic pathways might cause therapeutic response fluctuations: motor and nonmotor fluctuations with anxiety- and panic-attacks and/or mood swings, dyskinesias and punding. Finally, dopaminomimetic pharmacotherapy may also induce extranigral non-motor drug-related direct adverse effects, such as impulse control disorders. In this article, non-motor signs and symptoms of extranigral PD-related pathology will be discussed, as well as the (suggested) criteria for diagnosis and treatment. Of course, also the recognition of the signs and symptoms of the prodromal (premotor) phase, suggestive for the presence of the PD, will be discussed. Iatrogenic non-motor symptoms, though, will not be further discussed. PMID:20083010

  9. Dermatomyositis and Paclitaxel-Induced Cutaneous Drug Eruption Associated with Metastatic Breast Cancer

    PubMed Central

    Kim, Youngji; Jung, Woojin

    2015-01-01

    Dermatomyositis (DM) is an idiopathic autoimmune connective disease characterized by muscles and skin inflammation of and a well-recognized association with several human malignancies, especially breast cancer. Paclitaxel is a taxane antineoplastic agent with therapeutic effects against a wide range of cancers including breast cancer. This drug is well known for neurotoxicity and hypersensitivity reactions. However, cutaneous drug eruptions, especially those of grade III or higher, are not frequent. Here, we describe the case of a 55-year-old woman with metastatic breast cancer who developed paraneoplastic DM and a paclitaxel-induced exanthematous drug eruption. This case report emphasizes the importance of evaluating internal malignancies, such as advanced breast cancer, in newly developed DM patients. In addition, it presents a rare case of paclitaxel-induced exanthematous drug eruption. The purpose of this case report highlights the immunological pathogenic mechanism of DM and drug eruption in underlying advanced breast cancer. PMID:26155297

  10. Drug-Induced Morphology Switch in Drug Delivery Systems Based on Poly(2-oxazoline)s

    PubMed Central

    2015-01-01

    Defined aggregates of polymers such as polymeric micelles are of great importance in the development of pharmaceutical formulations. The amount of drug that can be formulated by a drug delivery system is an important issue, and most drug delivery systems suffer from their relatively low drug-loading capacity. However, as the loading capacities increase, i.e., promoted by good drug–polymer interactions, the drug may affect the morphology and stability of the micellar system. We investigated this effect in a prominent system with very high capacity for hydrophobic drugs and found extraordinary stability as well as a profound morphology change upon incorporation of paclitaxel into micelles of amphiphilic ABA poly(2-oxazoline) triblock copolymers. The hydrophilic blocks A comprised poly(2-methyl-2-oxazoline), while the middle blocks B were either just barely hydrophobic poly(2-n-butyl-2-oxazoline) or highly hydrophobic poly(2-n-nonyl-2-oxazoline). The aggregation behavior of both polymers and their formulations with varying paclitaxel contents were investigated by means of dynamic light scattering, atomic force microscopy, (cryogenic) transmission electron microscopy, and small-angle neutron scattering. While without drug, wormlike micelles were present, after incorporation of small amounts of drugs only spherical morphologies remained. Furthermore, the much more hydrophobic poly(2-n-nonyl-2-oxazoline)-containing triblock copolymer exhibited only half the capacity for paclitaxel than the poly(2-n-butyl-2-oxazoline)-containing copolymer along with a lower stability. In the latter, contents of paclitaxel of 8 wt % or higher resulted in a raspberry-like micellar core. PMID:24548260

  11. Drug-induced fatty liver disease: An overview of pathogenesis and management.

    PubMed

    Satapathy, Sanjaya K; Kuwajima, Vanessa; Nadelson, Jeffrey; Atiq, Omair; Sanyal, Arun J

    2015-01-01

    Over the past decades, many drugs have been identified, that can potentially induce steatohepatitis in the predisposed individual. Classically this has been incriminated to amiodarone, perhexiline, and 4,4'-diethylaminoethoxyhexestrol (DH), all of which have been found to independently induce the histologic picture of non-alcoholic steatohepatitis (NASH). Pathogenetic mechanisms of hepatotoxicity although still evolving, demonstrate that mitochondrial dysfunction, deranged ATP production and fatty acid catabolism likely play an important role. Drugs like steroid hormones can exacerbate the pathogenetic mechanisms that lead to NASH, and other drugs like tamoxifen, cisplatin and irenotecan have been shown to precipitate latent fatty liver as well. Further research aiming to elucidate the pathogenesis of drug-induced steatosis and steatohepatitis is needed in order to better design therapeutic targets. PMID:26436351

  12. Drug-induced lupus erythematosus associated with donepezil: a case report.

    PubMed

    Manzo, Ciro; Putignano, Salvatore

    2015-11-01

    The possibility that drug-induced lupus erythematosus (DILE) can be induced by donepezil is presented in this clinical case. Donepezil is an inhibitor of acetylcholinesterase used for the treatment of Alzheimer's disease. It is the first time that donepezil causes DILE. PMID:26420637

  13. Minocycline, levodopa and MnTMPyP induced changes in the mitochondrial proteome profile of MPTP and maneb and paraquat mice models of Parkinson's disease.

    PubMed

    Dixit, Anubhuti; Srivastava, Garima; Verma, Divya; Mishra, Manisha; Singh, Pradhyumna Kumar; Prakash, Om; Singh, Mahendra Pratap

    2013-08-01

    Mitochondrial dysfunction is the foremost perpetrator of the nigrostriatal dopaminergic neurodegeneration leading to Parkinson's disease (PD). However, the roles played by majority of the mitochondrial proteins in PD pathogenesis have not yet been deciphered. The present study investigated the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and combined maneb and paraquat on the mitochondrial proteome of the nigrostriatal tissues in the presence or absence of minocycline, levodopa and manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin (MnTMPyP). The differentially expressed proteins were identified and proteome profiles were correlated with the pathological and biochemical anomalies induced by MPTP and maneb and paraquat. MPTP altered the expression of twelve while combined maneb and paraquat altered the expression of fourteen proteins. Minocycline, levodopa and MnTMPyP, respectively, restored the expression of three, seven and eight proteins in MPTP and seven, eight and eight proteins in maneb- and paraquat-treated groups. Although levodopa and MnTMPyP rescued from MPTP- and maneb- and paraquat-mediated increase in the microglial activation and decrease in manganese-superoxide dismutase expression and complex I activity, dopamine content and number of dopaminergic neurons, minocycline defended mainly against maneb- and paraquat-mediated alterations. The results demonstrate that MPTP and combined maneb and paraquat induce mitochondrial dysfunction and microglial activation and alter the expression of a bunch of mitochondrial proteins leading to the nigrostriatal dopaminergic neurodegeneration and minocycline, levodopa or MnTMPyP variably offset scores of such changes. PMID:23562983

  14. Synergistic effects of ceftriaxone and erythropoietin on neuronal and behavioral deficits in an MPTP-induced animal model of Parkinson's disease dementia.

    PubMed

    Huang, Chiu-Ku; Chang, Yen-Ting; Amstislavskaya, Tamara G; Tikhonova, Maria A; Lin, Chih-Li; Hung, Ching-Sui; Lai, Te-Jen; Ho, Ying-Jui

    2015-11-01

    Both ceftriaxone (CEF) and erythropoietin (EPO) show neuroprotection and cognitive improvement in neurodegenerative disease. The present study was aimed at clarifying whether combined treatment with CEF and EPO (CEF+EPO) had superior neuroprotective and behavioral effects than treatment with CEF or EPO alone in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) rat model. The rats were injected with CEF (5 mg/kg/day), EPO (100 IU/kg/day), or CEF+EPO after MPTP lesioning and underwent the bar-test, T-maze test, and object recognition test, then the brains were taken for histological evaluation. MPTP lesioning resulted in deficits in working memory and in object recognition, but the cognitive deficits were markedly reduced or eliminated in rats treated with CEF or CEF+EPO, with the combination having a greater effect. Lesioning also caused neurodegeneration in the nigrostriatal dopaminergic system and the hippocampal CA1 area and these changes were reduced or eliminated by treatment with CEF, EPO, or CEF+EPO, with the combination having a greater effect than single treatment in the densities of DAergic terminals in the striatum and neurons in the hippocampal CA1 area. Thus, compared to treatment with CEF or EPO alone, combined treatment with CEF+EPO had a greater inhibitory effect on the lesion-induced behavioral and neuronal deficits. To our knowledge, this is the first study showing a synergistic effect of CEF and EPO on neuroprotection and improvement in cognition in a PD rat model. Combined CEF and EPO treatment may have clinical potential for the treatment of the dementia associated with PD. PMID:26296668

  15. L-DOPA-induced behavioral sensitization of motor activity in the MPTP-treated common marmoset as a Parkinson's disease model.

    PubMed

    Ando, Kiyoshi; Inoue, Takashi; Itoh, Toshio

    2014-12-01

    l-DOPA is the gold standard for treatment of Parkinson's disease (PD). However, the drug produces some serious side effects, including dyskinesia, which is characterized by repetitive involuntary movements-including chorea. In the present preclinical study using a nonhuman primate model, dyskinesia caused by repeated l-DOPA administration was investigated in the context of behavioral sensitization by objectively quantifying motor activity in the common marmoset of PD model (the Parkinsonian marmoset). Twelve male Parkinsonian marmosets previously treated with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and six intact male marmosets were used. The motor activity of each marmoset was measured using infrared sensors attached to each individual living cage. Parkinsonian marmosets (n=6) exhibited behavioral sensitization (enhanced motor activity) in 10weeks upon oral administration of l-DOPA (10mg/kg per day on 3days/week). These animals also exhibited dyskinesia characterized by repetitive rapid movements including chorea in 6-10weeks. Neither behavioral sensitization nor dyskinesia was observed in Parkinsonian marmosets given vehicle and in intact marmosets given l-DOPA at the same dose (both n=6 each). Behavioral sensitization was detected sensitively and objectively on motor activity only in Parkinsonian marmosets given repeated l-DOPA at a similar dose used in PD patients. The behavioral feature of the marmosets was dyskinesia similar to that of PD patients but appeared earlier than would be manifested in humans. In spite of statistically significant behavioral sensitization, some marmosets did not exhibit dyskinesia in the present limited l-DOPA administration period. Although both commonalities and differences may exist between behavioral sensitization and dyskinesia, behavioral sensitization is considered to be an objective, quantitative, sensitive and predictive measure of behavioral mechanism underlying dyskinesia in preclinical studies in evaluating compounds. PMID:25449794

  16. Drug-induced osteoporosis: from Fuller Albright to aromatase inhibitors.

    PubMed

    Byreddy, D V; Bouchonville Ii, M F; Lewiecki, E M

    2015-12-01

    Many commonly prescribed medications, such as selective serotonin reuptake inhibitors, proton pump inhibitors, thiazolidinediones, aromatase inhibitors, and androgen deprivation therapy, have been associated with adverse skeletal effects. The levels of evidence in support of a causal relationship between drug use and the development of bone loss and fractures are variable. For some drugs, a causal relationship is suspected (but not proven) based on observational studies, while in others causality is firmly established with randomized, controlled clinical trials. The mechanism of action for skeletal damage is poorly understood for some drugs and well known for others. Guidelines for managing bone health in patients taking some medications with potential skeletal toxicity have been developed using the best available evidence and expert opinion. This is a review of selected medications that have been associated with bone loss and fractures, with recommendations for clinical care. PMID:26488130

  17. [Drug-induced agranulocytosis: clinical study of 19 cases].

    PubMed

    Márquez, J A; Pardo, C; Amutio, E; Cortés, C; Piñán, M A; Alvarez, C

    1998-10-01

    Agranulocytosis is one of the most serious side effects to drugs. From January 1991 to June 1996 were diagnosed 19 cases of agranulocytosis associated with drugs at our hospital (incidence rate: 9.4 over million hab. per year). The average age was 62 and 11 cases were women. The drugs most commonly involved were metamizol and ticlopidine. In 15 of the patients fever blew up and 16 presented some infectious location. In 9 of the cases some positive microbiological culture was obtained, gram-negative bacilli being the commonest. G-CSF was used in 13 of the patients, observing a quicker haematological recovery (5.7 days vs 9.1, p = 0.07), though without any difference in mortality, which was of 0%. All this leads to the following conclusions: a high incidence of agranulocytosis in our environment and the important role of metamizol and ticlopidine in its origin. PMID:9868339

  18. Risk assessment of drug-induced QT prolongation

    PubMed Central

    Isbister, Geoffrey K

    2015-01-01

    SUMMARY Drugs can cause prolongation of the QT interval, alone or in combination, potentially leading to fatal arrhythmias such as torsades de pointes. When prescribing drugs that prolong the QT interval, the balance of benefit versus harm should always be considered. Readouts from automated ECG machines are unreliable. The QT interval should be measured manually. Changes in heart rate influence the absolute QT interval. Heart rate correction formulae are inaccurate, particularly for fast and slow heart rates. The QT nomogram, a plot of QT interval versus heart rate, can be used as a risk assessment tool to detect an abnormal QT interval. PMID:26648606

  19. Pain in Parkinson's Disease

    MedlinePLUS

    ... and Communication Swallowing and Dental Challenges Vision Changes Exercise Nutrition Complementary Therapies Finding Support Staying Independent Caring in Parkinson's Navigating Employment, Insurance, Financial and Legal Matters PD ...

  20. Progression of Parkinson's Disease

    MedlinePLUS

    ... a person’s posture, walking ability or facial expression Parkinson's medications suppress movement symptoms effectively Regular exercise improves and maintains mobility, flexibility, range of motion ...

  1. Managing Your Parkinson's Disease

    MedlinePLUS

    ... Manage Your Medications Coping with Symptoms & Side Effects Exercise Nutrition Complementary Therapies Finding Support Staying Independent Caring in Parkinson's Navigating Employment, Insurance, Financial and Legal Matters PD ...

  2. Antipsychotic drugs rapidly induce dopamine neuron depolarization block in a developmental rat model of schizophrenia

    PubMed Central

    Valenti, Ornella; Cifelli, Pierangelo; Gill, Kathryn M.; Grace, Anthony A.

    2011-01-01

    Repeated administration of antipsychotic drugs to normal rats has been shown to induce a state of dopamine neuron inactivation known as depolarization block, which correlates with the ability of the drugs to exhibit antipsychotic efficacy and extrapyramidal side-effects in schizophrenia patients. Nonetheless, in normal rats depolarization block requires weeks of antipsychotic drug administration, whereas schizophrenia patients exhibit initial effects soon after initiating antipsychotic drug treatment. We now report that, in a developmental disruption rat model of schizophrenia (methyl-azoxymethanol acetate (20 mg/kg i.p.) injected into G17 pregnant female rats, with offspring tested as adults), the extant hyperdopaminergic state combines with the excitatory actions of a first (haloperidol; 0.6 mg/kg, i.p.)- and second (sertindole; 2.5 mg/kg, i.p.)-generation antipsychotic drug to rapidly induce depolarization block in ventral tegmental area dopamine neurons. Acute injection of either antipsychotic drug induced an immediate reduction in the number of spontaneously active dopamine neurons (cells per electrode track; termed population activity). Repeated administration of either antipsychotic drug for 1 day, 3 days, 7 days, 15 days, and 21 days continued to reduce dopamine neuron population activity. Both acute and repeated effects on population activity were reversed by acute apomorphine injections, which is consistent with the reversal of dopamine neuron depolarization block. Although this action may account for the effects of D2 antagonist drugs on alleviating psychosis and the lack of development of tolerance in humans, the drugs appear to do so by inducing an offsetting deficit rather than attacking the primary pathology present in schizophrenia. PMID:21865475

  3. Drug-Induced Reactivation of Apoptosis Abrogates HIV-1 Infection

    PubMed Central

    Hanauske-Abel, Hartmut M.; Saxena, Deepti; Palumbo, Paul E.; Hanauske, Axel-Rainer; Luchessi, Augusto D.; Cambiaghi, Tavane D.; Hoque, Mainul; Spino, Michael; Gandolfi, Darlene D'Alliessi; Heller, Debra S.; Singh, Sukhwinder; Park, Myung Hee; Cracchiolo, Bernadette M.; Tricta, Fernando; Connelly, John; Popowicz, Anthony M.; Cone, Richard A.; Holland, Bart; Pe’ery, Tsafi; Mathews, Michael B.

    2013-01-01

    HIV-1 blocks apoptosis, programmed cell death, an innate defense of cells against viral invasion. However, apoptosis can be selectively reactivated in HIV-infected cells by chemical agents that interfere with HIV-1 gene expression. We studied two globally used medicines, the topical antifungal ciclopirox and the iron chelator deferiprone, for their effect on apoptosis in HIV-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates. Both medicines activated apoptosis preferentially in HIV-infected cells, suggesting that the drugs mediate escape from the viral suppression of defensive apoptosis. In infected H9 cells, ciclopirox and deferiprone enhanced mitochondrial membrane depolarization, initiating the intrinsic pathway of apoptosis to execution, as evidenced by caspase-3 activation, poly(ADP-ribose) polymerase proteolysis, DNA degradation, and apoptotic cell morphology. In isolate-infected peripheral blood mononuclear cells, ciclopirox collapsed HIV-1 production to the limit of viral protein and RNA detection. Despite prolonged monotherapy, ciclopirox did not elicit breakthrough. No viral re-emergence was observed even 12 weeks after drug cessation, suggesting elimination of the proviral reservoir. Tests in mice predictive for cytotoxicity to human epithelia did not detect tissue damage or activation of apoptosis at a ciclopirox concentration that exceeded by orders of magnitude the concentration causing death of infected cells. We infer that ciclopirox and deferiprone act via therapeutic reclamation of apoptotic proficiency (TRAP) in HIV-infected cells and trigger their preferential elimination. Perturbations in viral protein expression suggest that the antiretroviral activity of both drugs stems from their ability to inhibit hydroxylation of cellular proteins essential for apoptosis and for viral infection, exemplified by eIF5A. Our findings identify ciclopirox and deferiprone as prototypes of selectively cytocidal antivirals that eliminate viral infection by destroying infected cells. A drug-based drug discovery program, based on these compounds, is warranted to determine the potential of such agents in clinical trials of HIV-infected patients. PMID:24086341

  4. A case of levocetirizine-induced fixed drug eruption and cross-reaction with piperazine derivatives.

    PubMed

    Kim, Mi-Yeong; Jo, Eun-Jung; Chang, Yoon-Seok; Cho, Sang-Heon; Min, Kyung-Up; Kim, Sae-Hoon

    2013-10-01

    Fixed drug eruption is an uncommon adverse drug reaction caused by delayed cell-mediated hypersensitivity. Levocetirizine is an active (R)-enatiomer of cetirizine and there have been a few reports of fixed drug eruption related to these antihistamines. We experienced a case of levocetirizine-induced fixed drug eruption and cross-reaction with other piperazine derivatives confirmed by patch test. A 73-year-old female patient presented with recurrent generalized itching, cutaneous bullae formation, rash and multiple pigmentation at fixed sites after taking drugs for common cold. She took bepotastine besilate (Talion®) and levocetirizine (Xyzal®) as antihistamine. She took acetaminophen, pseudoephedrine 60 mg / triprolidine 2.5 mg (Actifed®), dihydrocodeinebitartrate 5 mg / di-methylephedrine hydrochloride 17.5 mg / chlorpheniramine maleate 1.5 mg / guaifenesin 50 mg (Codening®) and aluminium hydroxide 200 mg / magnesium carbonate 120 mg (Antad®) at the same time. Patch test was done with suspected drugs and the result was positive with levocetirizine. We additionally performed patch test for other antihistamines such as cetirizine, hydroxyzine, fexofenadine and loratadine. Piperazine derivatives (cetirizine and hydroxyzine) were positive, but piperidine derivatives (fexofenadine and loratadine) were negative to patch test. There was no adverse drug reaction when she was challenged with fexofenadine. We report a case of levocetirizine-induced fixed drug eruption confirmed by patch test. Cross-reactions were only observed in the piperazine derivatives and piperidine antihistamine was tolerant to the patient. PMID:24260733

  5. A case of levocetirizine-induced fixed drug eruption and cross-reaction with piperazine derivatives

    PubMed Central

    Kim, Mi-Yeong; Jo, Eun-Jung; Chang, Yoon-Seok; Cho, Sang-Heon; Min, Kyung-Up

    2013-01-01

    Fixed drug eruption is an uncommon adverse drug reaction caused by delayed cell-mediated hypersensitivity. Levocetirizine is an active (R)-enatiomer of cetirizine and there have been a few reports of fixed drug eruption related to these antihistamines. We experienced a case of levocetirizine-induced fixed drug eruption and cross-reaction with other piperazine derivatives confirmed by patch test. A 73-year-old female patient presented with recurrent generalized itching, cutaneous bullae formation, rash and multiple pigmentation at fixed sites after taking drugs for common cold. She took bepotastine besilate (Talion®) and levocetirizine (Xyzal®) as antihistamine. She took acetaminophen, pseudoephedrine 60 mg / triprolidine 2.5 mg (Actifed®), dihydrocodeinebitartrate 5 mg / di-methylephedrine hydrochloride 17.5 mg / chlorpheniramine maleate 1.5 mg / guaifenesin 50 mg (Codening®) and aluminium hydroxide 200 mg / magnesium carbonate 120 mg (Antad®) at the same time. Patch test was done with suspected drugs and the result was positive with levocetirizine. We additionally performed patch test for other antihistamines such as cetirizine, hydroxyzine, fexofenadine and loratadine. Piperazine derivatives (cetirizine and hydroxyzine) were positive, but piperidine derivatives (fexofenadine and loratadine) were negative to patch test. There was no adverse drug reaction when she was challenged with fexofenadine. We report a case of levocetirizine-induced fixed drug eruption confirmed by patch test. Cross-reactions were only observed in the piperazine derivatives and piperidine antihistamine was tolerant to the patient. PMID:24260733

  6. Antidepressant drugs appear to enhance cocaine-induced toxicity.

    PubMed

    O'Dell, L E; George, F R; Ritz, M C

    2000-02-01

    It has been shown that cocaine-induced convulsions and lethality appear to be mediated by serotonin and dopamine neurotransmission, respectively. However, many antidepressants considered for treatment of cocaine addiction target these monoamine systems and may thus amplify these toxic effects during relapse. In this study, the authors assessed whether pretreatment with antidepressants influences cocaine-induced toxicity in mice as well as the potency of these medications at cocaine-binding sites previously shown to be associated with cocaine toxicity. Overall, selective serotonin reuptake inhibitors (SSRIs) facilitated cocaine-induced convulsions but not lethality. Dopamine uptake inhibition facilitated cocaine-induced lethality, but not convulsion. The SSRI sertraline enhanced neither convulsions nor lethality and may be unique due to its high affinity for sigma receptors. These results have important implications for safe and effective addiction treatments. PMID:10743914

  7. Conditional depletion of intellectual disability and Parkinsonism candidate gene ATP6AP2 in fly and mouse induces cognitive impairment and neurodegeneration.

    PubMed

    Dubos, Aline; Castells-Nobau, Anna; Meziane, Hamid; Oortveld, Merel A W; Houbaert, Xander; Iacono, Giovanni; Martin, Christelle; Mittelhaeuser, Christophe; Lalanne, Valérie; Kramer, Jamie M; Bhukel, Anuradha; Quentin, Christine; Slabbert, Jan; Verstreken, Patrik; Sigrist, Stefan J; Messaddeq, Nadia; Birling, Marie-Christine; Selloum, Mohammed; Stunnenberg, Henk G; Humeau, Yann; Schenck, Annette; Herault, Yann

    2015-12-01

    ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2(Camk2aCre/0) mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2(Camk2aCre/0) mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2(Camk2aCre/0) mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2(Camk2aCre/0) mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system. PMID:26376863

  8. L-DOPA-induced dyskinesia in a rat model of Parkinson's disease is associated with the fluctuational release of norepinephrine in the sensorimotor striatum.

    PubMed

    Wang, Yong; Wang, Hui Sheng; Wang, Tao; Huang, Chen; Liu, Jian

    2014-12-01

    L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) is the most common complication of standard L-DOPA therapy for Parkinson's disease experienced by most parkinsonian patients. LID is associated with disruption of dopaminergic homeostasis in basal ganglia following L-DOPA administration. Norepinephrine (NE) is another important catecholaminergic neurotransmitter that is also believed to be involved in the pathogenesis of LID. This study compared NE release in the ipsilateral sensorimotor striatum of dyskinetic and nondyskinetic 6-hydroxydopamine-lesioned hemiparkinsonian rats treated chronically with L-DOPA. After L-DOPA injection, the time-course curves of NE levels in the sensorimotor striatum were significantly different between dyskinetic and nondyskinetic rats. Several metabolic kinetic parameters of NE levels were also differentially expressed between the two groups. In comparison with nondyskinetic rats, the ?Cmax of NE was significantly higher in dyskinetic rats, whereas Tmax and t1/2 of NE were significantly shorter. Intrastriatal perfusion of NE into the lesioned sensorimotor striatum revealed a moderate dyskinesia in dyskinetic rats, which was similar to the dyskinetic behavior after L-DOPA administration. The L-DOPA-related dyskinetic behavior was inhibited significantly by a further pretreatment of noradrenergic neurotoxin N-?(2-?chloroethyl)?-?N-?ethyl-?2-?bromobenzylamine or intrastriatal administration of the ?2 -adrenoceptor antagonist idazoxan, accompanied by significant changes in metabolic kinetic parameters of NE in the sensorimotor striatum. The results provide evidence to support the correlation between abnormal NE neurotransmission and the induction of LID and suggest that the aberrant change of the quantitative and temporal releasing of NE in the sensorimotor striatum might play an important role in the pathogenesis of LID. PMID:24975553

  9. Conditional depletion of intellectual disability and Parkinsonism candidate gene ATP6AP2 in fly and mouse induces cognitive impairment and neurodegeneration

    PubMed Central

    Dubos, Aline; Castells-Nobau, Anna; Meziane, Hamid; Oortveld, Merel A.W.; Houbaert, Xander; Iacono, Giovanni; Martin, Christelle; Mittelhaeuser, Christophe; Lalanne, Valérie; Kramer, Jamie M.; Bhukel, Anuradha; Quentin, Christine; Slabbert, Jan; Verstreken, Patrik; Sigrist, Stefan J.; Messaddeq, Nadia; Birling, Marie-Christine; Selloum, Mohammed; Stunnenberg, Henk G.; Humeau, Yann; Schenck, Annette; Herault, Yann

    2015-01-01

    ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2Camk2aCre/0 mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2Camk2aCre/0 mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2Camk2aCre/0 mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2Camk2aCre/0 mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system. PMID:26376863

  10. Pharmacogenetics and drug-induced nephrotoxicity in renal transplant recipients

    PubMed Central

    Zununi Vahed, Sepideh; Ardalan, Mohammadreza; Samadi, Nasser; Omidi, Yadollah

    2015-01-01

    Introduction: The advent of calcineurin inhibitors (CNIs), as the leading immunosuppressive agents, not only has revolutionized the transplant medicine but also made it a better therapeutic intervention that guarantees the graft outcome and improves the survival rate of patients. However, genetic polymorphism(s) in the CNIs metabolic substrates genes (CYP3A4, CYP3A5) and their transporter such as P-glycoprotein (P-gp) can influence the CNIs metabolism and elicit some possible systemic and intra-renal exposures to drugs and/or metabolites with differential risk of nephrotoxicity, jeopardizing the transplantation. Methods: In the current study, we review the recent literatures to evaluate the effects of genetic polymorphisms of the genes involved in development of chronic calcineurin nephrotoxicity and progression of chronic allograft dysfunction (CAD) providing an extensive overview on their clinical impacts. Results: Identifying the inherited genetic basis for the inter-individual differences in terms of drug responses and determining the risk of calcineurin-mediated nephrotoxicity and CAD allow optimized personalized administration of these agents whith minimal adverse effects. Conclusion: Pharmacogenetics characteristics of CYP isoforms (CYP3A) and efflux transporters (P-gp and MRP), involved in metabolism and extracellular transportation of the immunosuppressive CNIs, can be of pivotal information in the pharmacotherapy of the renal-transplant recipients. Such information can be used for the successes clinical interventions to attain an improved drug administration strategy with reduced rates of rejection and toxicity. PMID:25901296

  11. Are there deficits in anticipatory postural adjustments in Parkinson's disease?

    PubMed

    Aruin, A S; Neyman, I; Nicholas, J J; Latash, M L

    1996-07-29

    We studied anticipatory postural adjustments in patients with Parkinson's disease who dropped a load from extended arms while standing. Anticipatory postural adjustments were seen when load dropping was induced by a fast, bilateral shoulder abduction but not when it was induced by pressing a trigger with the right thumb. We conclude that anticipatory postural adjustments in patients with Parkinson's disease can change with the magnitude of an action which is used to trigger a predictable postural perturbation. Thus, the described deficits in anticipatory postural adjustments in patients with Parkinson's disease are likely to be of quantitative rather than qualitative nature. PMID:8905667

  12. Drug-Induced Vasculitis: New Insights and a Changing Lineup of Suspects.

    PubMed

    Grau, Rafael G

    2015-12-01

    An increasing number of therapeutic agents have been associated with a vasculitic syndrome. This usually involves small vessels, primarily capillaries, venules, and arterioles in leukocytoclastic vasculitis, small-vessel disease similar to an antineutrophil cytoplasmic antibody-related vasculitis, or mid-sized muscular arteries in a polyarteritis-like picture. Antineutrophil cytoplasmic antibodies are present in many cases of vasculitis regardless of the size of the vessel involved. Monoclonal antibodies used to treat many autoimmune disorders have become the most common agents associated with drug-induced vasculitis. Important advances in epigenetics, genetics, and neutrophil apoptosis are providing new insights into the pathogenesis of both drug-induced vasculitis and idiopathic vasculitis. Although management has not changed significantly in the past few years where withdrawal of the offending agent is the primary intervention, increasing awareness of drug-induced vasculitis can lead to earlier diagnosis and prevention of severe organ damage and fatalities. PMID:26503355

  13. Enhanced vaginal drug delivery through the use of hypotonic formulations that induce fluid uptake

    PubMed Central

    Ensign, Laura M.; Hoen, Timothy; Maisel, Katharina; Cone, Richard; Hanes, Justin

    2013-01-01

    Mucosal epithelia use osmotic gradients for fluid absorption and secretion. We hypothesized that administration of hypotonic solutions would induce fluid uptake that could be advantageous for rapidly delivering drugs through mucus to the vaginal epithelium. We found that hypotonic formulations markedly increased the rate at which small molecule drugs and muco-inert nanoparticles (mucus-penetrating particles, or MPP), but not conventional mucoadhesive nanparticles (CP), reached the vaginal epithelial surface in vivo in mice. Additionally, hypotonic formulations greatly enhanced drug and MPP delivery to the entire epithelial surface, including deep into the vaginal folds (rugae) that drugs or MPP in isotonic formulations failed to reach efficiently. However, hypotonic formulations caused unencapsulated “free” drugs to be drawn through the epithelium, reducing vaginal retention. In contrast, hypotonic formulations caused MPP to accumulate rapidly and uniformly on vaginal surfaces, ideally positioned for localized sustained drug delivery. Using a mouse model of vaginal genital herpes (HSV-2) infection, we found that hypotonic delivery of free drug led to improved immediate protection, but diminished longer-term protection. In contrast, as we previously demonstrated, hypotonic delivery of drug via MPP led to better long-term retention and protection in the vagina. Importantly, we demonstrate that slightly hypotonic formulations provided rapid and uniform delivery of MPP to the entire vaginal surface, thus enabling formulations with minimal risk of epithelial toxicity. Hypotonic formulations for vaginal drug delivery via MPP may significantly improve prevention and treatment of reproductive tract diseases and disorders. PMID:23769419

  14. Enhanced vaginal drug delivery through the use of hypotonic formulations that induce fluid uptake.

    PubMed

    Ensign, Laura M; Hoen, Timothy E; Maisel, Katharina; Cone, Richard A; Hanes, Justin S

    2013-09-01

    Mucosal epithelia use osmotic gradients for fluid absorption and secretion. We hypothesized that administration of hypotonic solutions would induce fluid uptake that could be advantageous for rapidly delivering drugs through mucus to the vaginal epithelium. We found that hypotonic formulations markedly increased the rate at which small molecule drugs and mucoinert nanoparticles (mucus-penetrating particles, or MPP), but not conventional mucoadhesive nanoparticles (CP), reached the vaginal epithelial surface in vivo in mice. Additionally, hypotonic formulations greatly enhanced drug and MPP delivery to the entire epithelial surface, including deep into the vaginal folds (rugae) that drugs or MPP in isotonic formulations failed to reach efficiently. However, hypotonic formulations caused unencapsulated "free" drugs to be drawn through the epithelium, reducing vaginal retention. In contrast, hypotonic formulations caused MPP to accumulate rapidly and uniformly on vaginal surfaces, ideally positioned for localized sustained drug delivery. Using a mouse model of vaginal genital herpes (HSV-2) infection, we found that hypotonic delivery of free drug led to improved immediate protection, but diminished longer-term protection. In contrast, as we previously demonstrated, hypotonic delivery of drug via MPP led to better long-term retention and protection in the vagina. Importantly, we demonstrate that slightly hypotonic formulations provided rapid and uniform delivery of MPP to the entire vaginal surface, thus enabling formulations with minimal risk of epithelial toxicity. Hypotonic formulations for vaginal drug delivery via MPP may significantly improve prevention and treatment of reproductive tract diseases and disorders. PMID:23769419

  15. Elevated thyroid stimulating hormone in a neonate: Drug induced or disease?

    PubMed Central

    Kota, Sunil Kumar; Modi, Kirtikumar; Kumaresan, Karuppiah

    2011-01-01

    Dyshormonogenesis is an uncommon cause of congenital hypothyroidism. The most common abnormality is absent or insufficient thyroid peroxidase enzyme. Maternal intake of antithyroid drug can also lead to elevated thyroid stimulating hormone (TSH) in a neonate, albeit the scenario is temporary. We report one such interesting case where a clinically euthyroid neonate borne to a mother on antithyroid drug presents on 12th day of life with reports of elevated TSH and increased tracer uptake in 99mTc thyroid scan. Disproportionately high TSH in comparison to low maternal antithyroid drug dosage and further elevation of TSH after stopping mother's antithyroid drugs ruled out maternal antithyroid drug-induced congenital hypothyroidism in the baby. Early institution of therapy in these patients can prevent mental retardation and other features of hypothyroidism. PMID:21966652

  16. Carboxymefloquine, the Major Metabolite of the Antimalarial Drug Mefloquine, Induces Drug-Metabolizing Enzyme and Transporter Expression by Activation of Pregnane X Receptor

    PubMed Central

    Piedade, Rita; Traub, Stefanie; Bitter, Andreas; Nüssler, Andreas K.; Gil, José P.; Schwab, Matthias

    2014-01-01

    Malaria patients are frequently coinfected with HIV and mycobacteria causing tuberculosis, which increases the use of coadministered drugs and thereby enhances the risk of pharmacokinetic drug-drug interactions. Activation of the pregnane X receptor (PXR) by xenobiotics, which include many drugs, induces drug metabolism and transport, thereby resulting in possible attenuation or loss of the therapeutic responses to the drugs being coadministered. While several artemisinin-type antimalarial drugs have been shown to activate PXR, data on nonartemisinin-type antimalarials are still missing. Therefore, this study aimed to elucidate the potential of nonartemisinin antimalarial drugs and drug metabolites to activate PXR. We screened 16 clinically used antimalarial drugs and six major drug metabolites for binding to PXR using the two-hybrid PXR ligand binding domain assembly assay; this identified carboxymefloquine, the major and pharmacologically inactive metabolite of the antimalarial drug mefloquine, as a potential PXR ligand. Two-hybrid PXR-coactivator and -corepressor interaction assays and PXR-dependent promoter reporter gene assays confirmed carboxymefloquine to be a novel PXR agonist which specifically activated the human receptor. In the PXR-expressing intestinal LS174T cells and in primary human hepatocytes, carboxymefloquine induced the expression of drug-metabolizing enzymes and transporters on the mRNA and protein levels. The crucial role of PXR for the carboxymefloquine-dependent induction of gene expression was confirmed by small interfering RNA (siRNA)-mediated knockdown of the receptor. Thus, the clinical use of mefloquine may result in pharmacokinetic drug-drug interactions by means of its metabolite carboxymefloquine. Whether these in vitro findings are of in vivo relevance has to be addressed in future clinical drug-drug interaction studies. PMID:25313206

  17. Acute Hepatocellular Drug-Induced Liver Injury From Bupropion and Doxycycline

    PubMed Central

    Koh, Christopher; Twaddell, William S.; von Rosenvinge, Erik C.; Han, Hyosun

    2015-01-01

    The management and diagnosis of drug-induced liver injury (DILI) is often challenging, particularly when patients are taking multiple medications. We present a 29-year-old African American man who presented with jaundice and malaise after starting bupropion and doxycycline 2 weeks prior. He was found to have acute hepatocellular drug-induced liver injury with autoimmune features, and made a complete recovery with prednisone. Although bupropion and doxycycline are both known to cause liver toxicity, a closer inspection of the signature of liver injury and a review of prior related DILI cases assigns causality more to bupropion than doxycycline. PMID:26504884

  18. Acute Hepatocellular Drug-Induced Liver Injury From Bupropion and Doxycycline.

    PubMed

    Tang, Derek M; Koh, Christopher; Twaddell, William S; von Rosenvinge, Erik C; Han, Hyosun

    2015-10-01

    The management and diagnosis of drug-induced liver injury (DILI) is often challenging, particularly when patients are taking multiple medications. We present a 29-year-old African American man who presented with jaundice and malaise after starting bupropion and doxycycline 2 weeks prior. He was found to have acute hepatocellular drug-induced liver injury with autoimmune features, and made a complete recovery with prednisone. Although bupropion and doxycycline are both known to cause liver toxicity, a closer inspection of the signature of liver injury and a review of prior related DILI cases assigns causality more to bupropion than doxycycline. PMID:26504884

  19. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects.

    PubMed

    Florea, Ana-Maria; Büsselberg, Dietrich

    2011-01-01

    Platinum complexes are clinically used as adjuvant therapy of cancers aiming to induce tumor cell death. Depending on cell type and concentration, cisplatin induces cytotoxicity, e.g., by interference with transcription and/or DNA replication mechanisms. Additionally, cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways, including calcium signaling, death receptor signaling, and the activation of mitochondrial pathways. Unfortunately, neither cytotoxicity nor apoptosis are exclusively induced in cancer cells, thus, cisplatin might also lead to diverse side-effects such as neuro- and/or renal-toxicity or bone marrow-suppression. Moreover, the binding of cisplatin to proteins and enzymes may modulate its biochemical mechanism of action. While a combination-chemotherapy with cisplatin is a cornerstone for the treatment of multiple cancers, the challenge is that cancer cells could become cisplatin-resistant. Numerous mechanisms of cisplatin resistance were described including changes in cellular uptake, drug efflux, increased detoxification, inhibition of apoptosis and increased DNA repair. To minimize cisplatin resistance, combinatorial therapies were developed and have proven more effective to defeat cancers. Thus, understanding of the biochemical mechanisms triggered by cisplatin in tumor cells may lead to the design of more efficient platinum derivates (or other drugs) and might provide new therapeutic strategies and reduce side effects. PMID:24212665

  20. Industrial toxicants and Parkinson’s disease

    PubMed Central

    Caudle, W. Michael; Guillot, Thomas S.; Lazo, Carlos R.; Miller, Gary W.

    2012-01-01

    The exposure of the human population to environmental contaminants is recognized as a significant contributing factor for the development of Parkinson’s disease (PD) and other forms of parkinsonism. While pesticides have repeatedly been identified as risk factors for PD, these compounds represent only a subset of environmental toxicants that we are exposed to on a regular basis. Thus, non-pesticide contaminants, such as metals, solvents, and other organohalogen compounds have also been implicated in the clinical and pathological manifestations of these movement disorders and it is these non-pesticide compounds that are the subject of this review. As toxic exposures to these classes of compounds can result in a spectrum of PD or PD-related disorders, it is imperative to appreciate shared clinico-pathological characteristics or mechanisms of action of these compounds in order to further delineate the resultant disorders as well as identify improved preventive strategies or therapeutic interventions. PMID:22309908

  1. Inhibitors of Leucine Rich Repeat Kinase 2 (LRRK2) Protect Against LRRK2-Models of Parkinson’s Disease

    PubMed Central

    Lee, Byoung Dae; Shin, Joo-Ho; VanKampen, Jackalina; Petrucelli, Leonard; West, Andrew B.; Ko, Han Seok; Lee, Yun; Maguire-Zeiss, Kathleen A.; Bowers, William J.; Federoff, Howard J.; Dawson, Valina L.; Dawson, Ted M.

    2010-01-01

    Leucine rich repeat kinase 2 (LRRK2) mutations are a common cause of Parkinson’s disease (PD). Here, we identify inhibitors of LRRK2 kinase, which are protective in in vitro and in vivo models of LRRK2-induced neurodegeneration. These results establish that LRRK2-induced degeneration of neurons in vivo is kinase dependent and that LRRK2 kinase inhibition provides a potential new neuroprotective paradigm for the treatment of PD. PMID:20729864

  2. Temporal Heterogeneity Metrics in Apoptosis Induced by Anticancer Drugs.

    PubMed

    Vorobjev, Ivan; Barteneva, Natasha S

    2015-07-01

    The apoptotic process is highly heterogeneous and asynchronous. A long-standing question is how many parameters define the time and reversibility of the apoptotic response at a single-cell level. We characterized at the single-cell and population levels the time sequence of apoptotic events in response to anti-cancer drugs using extrinsic and intrinsic apoptotic stimuli. We show that the temporal sequence of major apoptotic events is the same in response to all anti-cancer drugs studied: the apoptotic volume decrease and Na+ influx occur rapidly and are tightly coordinated with mitochondrial outer membrane depolarization (MOMP), mitochondrial inner membrane depolarization and a decrease in the production of reactive oxygen species (ROS). Phosphatidylserine externalization usually starts after MOMP and precedes caspase 3/7 activation. Activation of caspases 3/7 is a slow process that always starts after MOMP, with significant delay. Cell-to-cell variability of the MOMP onset is described by Gaussian distribution, whereas the ?-distribution model describes cellular variability in the duration of MOMP-to-caspase activation stages. Cells from the pre-MOMP stage to the after-caspase 3/7 activation stage coexist for many hours. We demonstrated by FACS that cells in the pre-MOMP stage can recover after apoptotic stimuli, rarely recover after MOMP but before caspase 3/7 activation, and are unable to recover after caspase 3/7 activation. We propose a double-stroke model for apoptosis execution. PMID:25838469

  3. Effect of lipid molecule headgroup mismatch on non steroidal anti-inflammatory drugs induced membrane fusion.

    PubMed

    Mondal Roy, Sutapa; Sarkar, Munna

    2011-12-20

    Membrane fusion is an essential process guiding many important biological events, which most commonly requires the aid of proteins and peptides as fusogenic agents. Small drug induced fusion at low drug concentration is a rare event. Only three drugs, namely, meloxicam (Mx), piroxicam (Px), and tenoxicam (Tx), belonging to the oxicam group of non steroidal anti-inflammatory drugs (NSAIDs) have been shown by us to induce membrane fusion successfully at low drug concentration. A better elucidation of the mechanism and the effect of different parameters in modulating the fusion process will allow the use of these common drugs to induce and control membrane fusion in various biochemical processes. In this study, we monitor the effect of lipid headgroup size mismatch in the bilayer on oxicam NSAIDs induced membrane fusion, by introducing dimyristoylphosphatidylethanolamine (DMPE) in dimyristoylphosphatidylcholine (DMPC) small unilamellar vesicles (SUVs). Such headgroup mismatch affects various lipid parameters which includes inhibition of trans-bilayer motion, domain formation, decrease in curvature, etc. Changes in various lipidic parameters introduce defects in the membrane bilayer and thereby modulate membrane fusion. SUVs formed by DMPC with increasing DMPE content (10, 20, and 30 mol %) were used as simple model membranes. Transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) were used to characterize the DMPC-DMPE mixed vesicles. Fluorescence assays were used to probe the time dependence of lipid mixing, content mixing, and leakage and also used to determine the partitioning of the drugs in the membrane bilayer. How the inhibition of trans-bilayer motion, heterogeneous distribution of lipids, decrease in vesicle curvature, etc., arising due to headgroup mismatch affect the fusion process has been isolated and identified here. Mx amplifies these effects maximally followed by Px and Tx. This has been correlated to the enhanced partitioning of the hydrophobic Mx compared to the more hydrophilic Px and Tx in the mixed bilayer. PMID:21999838

  4. Drug-induced autoimmune liver disease: A diagnostic dilemma of an increasingly reported disease

    PubMed Central

    Castiella, Agustin; Zapata, Eva; Lucena, M Isabel; Andrade, Raúl J

    2014-01-01

    The aetiology of autoimmune hepatitis (AIH) is uncertain but the disease can be triggered in susceptible patients by external factors such as viruses or drugs. AIH usually develops in individuals with a genetic background mainly consisting of some risk alleles of the major histocompatibility complex (HLA). Many drugs have been linked to AIH phenotypes, which sometimes persist after drug discontinuation, suggesting that they awaken latent autoimmunity. At least three clinical scenarios have been proposed that refers to drug- induced autoimmune liver disease (DIAILD): AIH with drug-induced liver injury (DILI); drug induced-AIH (DI-AIH); and immune mediated DILI (IM-DILI). In addition, there are instances showing mixed features of DI-AIH and IM-DILI, as well as DILI cases with positive autoantibodies. Histologically distinguishing DILI from AIH remains a challenge. Even more challenging is the differentiation of AIH from DI-AIH mainly relying in histological features; however, a detailed standardised histologic evaluation of large cohorts of AIH and DI-AIH patients would probably render more subtle features that could be of help in the differential diagnosis between both entities. Growing information on the relationship of drugs and AIH is being available, being drugs like statins and biologic agents more frequently involved in cases of DIAILD. In addition, there is some evidence on the fact that patients diagnosed with DIAILD may have had a previous episode of hepatotoxicity. Further collaborative studies in DIAILD will strengthen the knowledge and understanding of this intriguing and complex disorder which might represent different phenotypes across the spectrum of disease PMID:24799984

  5. Bleomycin-induced Flagellate Erythema: A Rare and Unique Drug Rash

    PubMed Central

    Changal, KH; Raina, H; Changal, QH; Raina, M

    2014-01-01

    ABSTRACT Bleomycin-induced flagellate erythema is a rare rash associated with the use of the drug. The rash has a characteristic and intermingled lacy appearance as if it has been whipped. Lack of detoxifying enzymes for bleomycin in the skin makes it a vulnerable site for the adverse effects of bleomycin, along with the lungs. We report the case of young girl with germ cell tumour who developed bleomycin-induced flagellate erythema. PMID:25867573

  6. Integrated systems pharmacology analysis of clinical drug-induced peripheral neuropathy.

    PubMed

    Hur, J; Guo, A Y; Loh, W Y; Feldman, E L; Bai, J P F

    2014-01-01

    A systems pharmacology approach was undertaken to define and identify the proteins/genes significantly associated with clinical incidence and severity of drug-induced peripheral neuropathy (DIPN). Pharmacological networks of 234 DIPN drugs, their known targets (both intended and unintended), and the intermediator proteins/genes interacting with these drugs via their known targets were examined. A permutation test identified 230 DIPN-associated intermediators that were enriched with apoptosis and stress response genes. Neuropathy incidence and severity were curated from drug labels and literature and were used to build a predictive model of DIPN using a regression tree algorithm, based on the drug targets and their intermediators. DIPN drugs whose targets interacted with both v-myc avian myelocytomatosis viral oncogene homolog (MYC) and proliferating cell nuclear antigen-associated factor (PAF15) were associated with a neuropathy incidence of 38.1%, whereas drugs interacting only with MYC had an incidence of 2.9%. These results warrant further investigation in order to develop a predictive tool for the DIPN potential of a new drug. PMID:24827872

  7. Neuroprotective Effects of the Cultivated Chondrus crispus in a C. elegans Model of Parkinson’s Disease

    PubMed Central

    Liu, Jinghua; Banskota, Arjun H.; Critchley, Alan T.; Hafting, Jeff; Prithiviraj, Balakrishnan

    2015-01-01

    Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the elderly people, currently with no cure. Its mechanisms are not well understood, thus studies targeting cause-directed therapy or prevention are needed. This study uses the transgenic Caenorhabditis elegans PD model. We demonstrated that dietary supplementation of the worms with an extract from the cultivated red seaweed Chondrus crispus decreased the accumulation of ?-synulein and protected the worms from the neuronal toxin-, 6-OHDA, induced dopaminergic neurodegeneration. These effects were associated with a corrected slowness of movement. We also showed that the enhancement of oxidative stress tolerance and an up-regulation of the stress response genes, sod-3 and skn-1, may have served as the molecular mechanism for the C. crispus-extract-mediated protection against PD pathology. Altogether, apart from its potential as a functional food, the tested red seaweed, C. crispus, might find promising pharmaceutical applications for the development of potential novel anti-neurodegenerative drugs for humans. PMID:25874922

  8. Bortezomib induces AMPK-dependent autophagosome formation uncoupled from apoptosis in drug resistant cells

    PubMed Central

    Jaganathan, Sajjeev; Malek, Ehsan; Vallabhapurapu, Subrahmanya; Vallabhapurapu, Sivakumar; Driscoll, James J.

    2014-01-01

    The proteasome inhibitor bortezomib is an effective anti-cancer agent for the plasma cell malignancy multiple myeloma but clinical response is hindered by the emergence of drug resistance through unknown mechanisms. Drug sensitive myeloma cells were exposed to bortezomib to generate drug resistant cells that displayed a significant increase in subunits of the energy sensor AMP-activated protein kinase (AMPK). AMPK activity in resistant cells was increased and bortezomib resistant cells contained a ~4-fold greater level of autophagosomes than drug sensitive cells. Real-time measurements indicated that bortezomib reduced the oxygen consumption rate in drug sensitive cells more readily than in resistant cells. Genetic ablation of AMPK activity reduced the bortezomib effect on autophagy. The autophagy-related gene (Atg)5 is required for autophagosome formation and enhances cellular susceptibility to apoptotic stimuli. Atg5 knockout eliminated bortezomib-induced autophagosome formation and reduced susceptibility to bortezomib. Bortezomib treatment of myeloma cells lead to ATG5 cleavage through a calpain-dependent manner while calpain inhibition or a calpain-insensitive Atg5 mutant promoted bortezomib-resistance. In contrast, AICAR, an AMPK activator, enhanced bortezomib-induced cleavage of ATG5 and increased bortezomib-induced killing. Taken together, the results demonstrate that ATG5 cleavage provokes apoptosis and represents a molecular link between autophagy and apoptosis with therapeutic implications. PMID:25481044

  9. Systematic Protein Level Regulation via Degradation Machinery Induced by Genotoxic Drugs.

    PubMed

    Kume, Kohei; Ishida, Kazushige; Ikeda, Miyuki; Takemoto, Kazuhiro; Shimura, Tsutomu; Young, Lynn; Nishizuka, Satoshi S

    2016-01-01

    In this study we monitored protein dynamics in response to cisplatin, 5-fluorouracil, and irinotecan with different concentrations and administration modes using "reverse-phase" protein arrays (RPPAs) in order to gain comprehensive insight into the protein dynamics induced by genotoxic drugs. Among 666 protein time-courses, 38% exhibited an increasing trend, 32% exhibited a steady decrease, and 30% fluctuated within 24 h after drug exposure. We analyzed almost 12,000 time-course pairs of protein levels based on the geometrical similarity by correlation distance (dCor). Twenty-two percent of the pairs showed dCor > 0.8, which indicates that each protein of the pair had similar dynamics. These trends were disrupted by a proteasome inhibitor, MG132, suggesting that the protein degradation system was activated in response to the drugs. Among the pairs with high dCor, the average dCor of pairs with apoptosis-related protein was significantly higher than those without, indicating that regulation of protein levels was induced by the drugs. These results suggest that the levels of numerous functionally distinct proteins may be regulated by common degradation machinery induced by genotoxic drugs. PMID:26625007

  10. Inhibition of chemically induced carcinogenesis by drugs used in homeopathic medicine.

    PubMed

    Kumar, K B Hari; Sunila, E S; Kuttan, Girija; Preethi, K C; Venugopal, C Nimita; Kuttan, Ramadasan

    2007-01-01

    Homeopathy is considered as one modality for cancer therapy. However, there are only very few clinical reports on the activity of the drugs, as well as in experimental animals. Presently we have evaluated the inhibitory effects of potentized homeopathic preparations against N'-nitrosodiethylamine (NDEA) induced hepatocellular carcinoma in rats as well as 3-methylcholanthrene-induced sarcomas in mice. We have used Ruta, Hydrastis, Lycopodium and Thuja, which are commonly employed in homeopathy for treating cancer. Administration of NDEA in rats resulted in tumor induction in the liver and elevated marker enzymes such as gamma-glutamyl transpeptidase, glutamate pyruvate transaminase, glutamate oxaloacetate transaminase and alkaline phosphatase in the serum and in liver. Concomitant administration of homeopathic drugs retarded the tumor growth and significantly reduced the elevated marker enzymes level as revealed by morphological, biochemical and histopathological evaluation. Out of the four drugs studied, Ruta 200c showed maximum inhibition of liver tumor development. Ruta 200c and phosphorus 1M were found to reduce the incidence of 3-methylcholanthrene-induced sarcomas and also increase the life span of mice harboring the tumours. These studies demonstrate that homeopathic drugs, at ultra low doses, may be able to decrease tumor induction by carcinogen administration. At present we do not know the mechanisms of action of these drugs useful against carcinogenesis. PMID:17477781

  11. Analysis of the adverse reactions induced by natural product-derived drugs

    PubMed Central

    Zeng, Zhi-Ping; Jiang, Jian-Guo

    2010-01-01

    Compared with the therapeutic effects of established medicinal drugs, it is often considered that natural product-derived drugs are of a more benign nature in side-effects, which has made natural medicines become a popular form of therapy. Traditional Chinese medicine (TCM) is generally considered as being natural and harmless. TCM has been paid much more attention than before and widely used for the treatment nowadays. However, with the increasing cases of adverse drug reactions (ADRs), the ADRs induced by TCM are becoming more widely recognized. Some ADRs are sometimes even life-threatening. This article reviews literatures on ADRs induced by TCM which was published in the past 10 years. A total of 3122 cases including complete data are selected for the present analysis. From the data of the 3122 cases, statistics is carried out to the distribution of administration routes and time of the occurrence of ADRs, the prognosis of ADRs, sex and age factors, types and clinical symptoms of ADRs, and drugs involved in ADRs. In addition, occurrence and influencing factors of TCM-induced diseases are also analysed, which includes spices confusion, processing drugs improperly, toxic components, long-term medication, improper concerted application, interaction of TCM and Western medicine. It is concluded that the efficacy and toxicity of TCM, often using the compound prescription involving various plants and animals, resulted from a variety of chemical constituents, which lead to a comprehensive response in the human body. The ‘toxicity’ of TCM should be correctly recognized and reasonably utilized. PMID:20233209

  12. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    SciTech Connect

    Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori; Tsuneyama, Koichi; Endo, Shinya; Tsukui, Tohru; Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2012-10-01

    Although estrogen receptor (ER)? agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ER? have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ER? agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ER?-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ER? in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ? Liver injury induced by drugs or chemicals was investigated in mice. ? Liver injury was suppressed by pretreatment with tamoxifen in female mice. ? Mmd2, whose function was unknown, could be a candidate gene for liver protection. ? Tamoxifen up-regulated Mmd2 mRNA expression via ER?.

  13. Metabolic Dysregulation Induced in Plasmodium falciparum by Dihydroartemisinin and Other Front-Line Antimalarial Drugs.

    PubMed

    Cobbold, Simon A; Chua, Hwa H; Nijagal, Brunda; Creek, Darren J; Ralph, Stuart A; McConville, Malcolm J

    2016-01-15

    Detailed information on the mode of action of antimalarial drugs can be used to improve existing drugs, identify new drug targets, and understand the basis of drug resistance. In this study we describe the use of a time-resolved, mass spectrometry (MS)-based metabolite profiling approach to map the metabolic perturbations induced by a panel of clinical antimalarial drugs and inhibitors on Plasmodium falciparum asexual blood stages. Drug-induced changes in metabolite levels in P. falciparum-infected erythrocytes were monitored over time using gas chromatography-MS and liquid chromatography-MS and changes in specific metabolic fluxes confirmed by nonstationary [(13)C]-glucose labeling. Dihydroartemisinin (DHA) was found to disrupt hemoglobin catabolism within 1 hour of exposure, resulting in a transient decrease in hemoglobin-derived peptides. Unexpectedly, it also disrupted pyrimidine biosynthesis, resulting in increased [(13)C]-glucose flux toward malate production, potentially explaining the susceptibility of P. falciparum to DHA during early blood-stage development. Unique metabolic signatures were also found for atovaquone, chloroquine, proguanil, cycloguanil and methylene blue. We also show that this approach can be used to identify the mode of action of novel antimalarials, such as the compound Torin 2, which inhibits hemoglobin catabolism. PMID:26150544

  14. Translating drug-induced hibernation to therapeutic hypothermia.

    PubMed

    Jinka, Tulasi R; Combs, Velva M; Drew, Kelly L

    2015-06-17

    Therapeutic hypothermia (TH) improves prognosis after cardiac arrest; however, thermoregulatory responses such as shivering complicate cooling. Hibernators exhibit a profound and safe reversible hypothermia without any cardiovascular side effects by lowering the shivering threshold at low ambient temperatures (Ta). Activation of adenosine A1 receptors (A1ARs) in the central nervous system (CNS) induces hibernation in hibernating species and a hibernation-like state in rats, principally by attenuating thermogenesis. Thus, we tested the hypothesis that targeted activation of the central A1AR combined with a lower Ta would provide a means of managing core body temperature (Tb) below 37 °C for therapeutic purposes. We targeted the A1AR within the CNS by combining systemic delivery of the A1AR agonist (6)N-cyclohexyladenosine (CHA) with 8-(p-sulfophenyl)theophylline (8-SPT), a nonspecific adenosine receptor antagonist that does not readily cross the blood-brain barrier. Results show that CHA (1 mg/kg) and 8-SPT (25 mg/kg), administered intraperitoneally every 4 h for 20 h at a Ta of 16 °C, induce and maintain the Tb between 29 and 31 °C for 24 h in both naïve rats and rats subjected to asphyxial cardiac arrest for 8 min. Faster and more stable hypothermia was achieved by continuous infusion of CHA delivered subcutaneously via minipumps. Animals subjected to cardiac arrest and cooled by CHA survived better and showed less neuronal cell death than normothermic control animals. Central A1AR activation in combination with a thermal gradient shows promise as a novel and effective pharmacological adjunct for inducing safe and reversible targeted temperature management. PMID:25812681

  15. Circulating microRNAs, potential biomarkers for drug-induced liver injury.

    PubMed

    Wang, Kai; Zhang, Shile; Marzolf, Bruz; Troisch, Pamela; Brightman, Amy; Hu, Zhiyuan; Hood, Leroy E; Galas, David J

    2009-03-17

    Drug-induced liver injury is a frequent side effect of many drugs, constitutes a significant threat to patient health and has an enormous economic impact on health care expenditures. Numerous efforts have been made to identify reliable and predictive markers to detect the early signs of drug-induced injury to the liver, one of the most vulnerable organs in the body. These studies have, however, not delivered any more informative candidates than the serum aminotransferase markers that have been available for approximately 30 years. Using acetaminophen overdose-induced liver injury in the mouse as a model system, we have observed highly significant differences in the spectrum and levels of microRNAs in both liver tissues and in plasma between control and overdosed animals. Based on our survey of microRNA expression among normal tissues, some of the microRNAs, like messenger RNAs, display restricted tissue distributions. A number of elevated circulating microRNAs in plasma collected from acetaminophen-overdosed animals are highly expressed in the liver. We have demonstrated that specific microRNA species, such as mir-122 and mir-192, both are enriched in the liver tissue and exhibit dose- and exposure duration-dependent changes in the plasma that parallel serum aminotransferase levels and the histopathology of liver degeneration, but their changes can be detected significantly earlier. These findings suggest the potential of using specific circulating microRNAs as sensitive and informative biomarkers for drug-induced liver injury. PMID:19246379

  16. Driving When You Have Parkinson's Disease

    MedlinePLUS

    ... affect your ability to drive safely. • Stay active. Exercise regularly to strengthen muscles you need to drive safely. 1 Driving When You Have Parkinson’s Disease DRIVEWELL What Can I Do When Parkinson’s ...

  17. Hereditary Parkinson s Disease Natural History Protocol

    ClinicalTrials.gov

    2015-07-28

    Parkinson Disease 6, Early-Onset; Parkinson Disease (Autosomal Recessive, Early Onset) 7, Human; Parkinson Disease Autosomal Recessive, Early Onset; Parkinson Disease, Autosomal Recessive Early-Onset, Digenic, Pink1/Dj1

  18. Modulatory effect of Decalepis hamiltonii on ethanol-induced toxicity in transgenic Drosophila model of Parkinson's disease.

    PubMed

    Jahromi, Samaneh Reiszadeh; Haddadi, Mohammad; Shivanandappa, T; Ramesh, S R

    2015-01-01

    Overexpression of human ?-synuclein gene in Drosophila can reduce lifespan, and we have performed lifespan assay for A30P and A53T?-synuclein transgenic and control (elav-GAL4, UAS-A30P, UAS-A53T) flies. Our results showed reduced lifespan of transgenic flies compared to controls. We have also investigated behavioral responses, levels of reactive oxygen species (ROS) and lipid peroxidation (LPO) and activities of catalase (CAT) and superoxide dismutase (SOD) in a combined genetic-toxin model (Ethanol-A30P or A53T?-synuclein models) and controls. Our results showed that sedation time (ST50) of A30P or A53T?-synuclein PD model flies was significantly lower while recovery time (RC50) of them was remarkably higher compared to control flies. The levels of oxidative markers (ROS and LPO) were significantly higher and the activities of CAT and SOD were lower in transgenic flies that underwent ethanol exposure compared to control. Based on our earlier studies on antioxidant properties of isolated and characterized molecules from Decalepis hamiltonii (Dh) root extract, its protective effect in this combined toxicity model has been investigated. Surprisingly, Dh treatment increased ST50 and decreased RC50 values of transgenic flies. Moreover, we showed that Dh pre-treatment could decrease the levels of ROS and LPO and increase the activities of CAT and SOD in the ethanol-?-synuclein model. This is the first report on protective effects of natural antioxidants in A30P or A53T?-synuclein PD model flies against oxidative stress induced by ethanol. PMID:25451756

  19. Glucosylceramide and Lysophosphatidylcholines as Potential Blood Biomarkers for Drug-Induced Hepatic Phospholipidosis

    PubMed Central

    Saito, Kosuke; Maekawa, Keiko; Ishikawa, Masaki; Senoo, Yuya; Urata, Masayo; Murayama, Mayumi; Nakatsu, Noriyuki; Yamada, Hiroshi; Saito, Yoshiro

    2014-01-01

    Drug-induced phospholipidosis is one of the major concerns in drug development and clinical treatment. The present study involved the use of a nontargeting lipidomic analysis with liquid chromatography-mass spectrometry to explore noninvasive blood biomarkers for hepatic phospholipidosis from rat plasma. We used three tricyclic antidepressants (clomipramine [CPM], imipramine [IMI], and amitriptyline [AMT]) for the model of phospholipidosis in hepatocytes and ketoconazole (KC) for the model of phospholipidosis in cholangiocytes and administered treatment for 3 and 28 days each. Total plasma lipids were extracted and measured. Lipid molecules contributing to the separation of control and drug-treated rat plasma in a multivariate orthogonal partial least squares discriminant analysis were identified. Four lysophosphatidylcholines (LPCs) (16:1, 18:1, 18:2, and 20:4) and 42:1 hexosylceramide (HexCer) were identified as molecules separating control and drug-treated rats in all models of phospholipidosis in hepatocytes. In addition, 16:1, 18:2, and 20:4 LPCs and 42:1 HexCer were identified in a model of hepatic phospholipidosis in cholangiocytes, although LPCs were identified only in the case of 3-day treatment with KC. The levels of LPCs were decreased by drug-induced phospholipidosis, whereas those of 42:1 HexCer were increased. The increase in 42:1 HexCer was much higher in the case of IMI and AMT than in the case of CPM; moreover, the increase induced by IMI was dose-dependent. Structural characterization determining long-chain base and hexose delineated that 42:1 HexCer was d18:1/24:0 glucosylceramide (GluCer). In summary, our study demonstrated that d18:1/24:0 GluCer and LPCs are potential novel biomarkers for drug-induced hepatic phospholipidosis. PMID:24980264

  20. Drug-induced acute interstitial nephritis: A clinicopathological study and comparative trial of steroid regimens

    PubMed Central

    Ramachandran, R.; Kumar, K.; Nada, R.; Jha, V.; Gupta, K. L.; Kohli, H. S.

    2015-01-01

    Steroids are used in the management of drug-induced acute interstitial nephritis (AIN). The present study was undertaken to compare the efficacy of pulse methyl prednisolone with oral prednisolone in the treatment of drug-induced AIN. Patients with biopsy-proven AIN with a history of drug intake were randomized to oral prednisolone (Group 1) 1 mg/kg for 3 weeks or a pulse methyl prednisolone (Group II) 30 mg/kg for 3 days followed by oral prednisolone 1 mg/kg for 2 weeks, tapered over 3 weeks. Kidney biopsy scoring was done for interstitial edema, infiltration and tubular damage. The response was reported as complete remission (CR) (improvement in estimated glomerular filtration rate [eGFR] to ?60 ml/min/1.73 m2), partial remission (PR) (improvement but eGFR <60 ml/min/1.73 m2) or resistance (no CR/PR). A total of 29 patients, Group I: 16 and Group II: 13 were studied. Offending drugs included nonsteroidal anti-inflammatory drugs, herbal drugs, antibiotics, diuretic, rifampicin and omeprazole. There was no difference in the baseline parameters between the two groups. The biopsy score in Groups I and II was 5.9 ± 1.1 and 5.1 ± 1.2, respectively. At 3 months in Group I, eight patients each (50%) achieved CR and PR. In Group II, 8 (61%) achieved CR and 5 (39%) PR. This was not significantly different. Percentage fall in serum creatinine at 1 week (56%) was higher in CR as compared to (42%) those with PR. (P = 0.14). Patients with neutrophil infiltration had higher CR compared to patients with no neutrophil infiltration (P = 0.01). Early steroid therapy, both oral and pulse steroid, is equally effective in achieving remission in drug-induced AIN.

  1. Caenorhabditis elegans as a Model System for Studying Drug Induced Mitochondrial Toxicity

    PubMed Central

    De Vos, Winnok H.; Manders, Erik M. M.; Brul, Stanley; van der Spek, Hans

    2015-01-01

    Today HIV-1 infection is recognized as a chronic disease with obligatory lifelong treatment to keep viral titers below detectable levels. The continuous intake of antiretroviral drugs however, leads to severe and even life-threatening side effects, supposedly by the deleterious impact of nucleoside-analogue type compounds on the functioning of the mitochondrial DNA polymerase. For detailed investigation of the yet partially understood underlying mechanisms, the availability of a versatile model system is crucial. We therefore set out to develop the use of Caenorhabditis elegans to study drug induced mitochondrial toxicity. Using a combination of molecular-biological and functional assays, combined with a quantitative analysis of mitochondrial network morphology, we conclude that anti-retroviral drugs with similar working mechanisms can be classified into distinct groups based on their effects on mitochondrial morphology and biochemistry. Additionally we show that mitochondrial toxicity of antiretroviral drugs cannot be exclusively attributed to interference with the mitochondrial DNA polymerase. PMID:25970180

  2. Functional and Morphological Correlates in the Drosophila LRRK2 loss-of-function Model of Parkinson's Disease: Drug Effects of Withania somnifera (Dunal) Administration.

    PubMed

    De Rose, Francescaelena; Marotta, Roberto; Poddighe, Simone; Talani, Giuseppe; Catelani, Tiziano; Setzu, Maria Dolores; Solla, Paolo; Marrosu, Francesco; Sanna, Enrico; Kasture, Sanjay; Acquas, Elio; Liscia, Anna

    2016-01-01

    The common fruit fly Drosophila melanogaster (Dm) is a simple animal species that contributed significantly to the development of neurobiology whose leucine-rich repeat kinase 2 mutants (LRRK2) loss-of-function in the WD40 domain represent a very interesting tool to look into physiopathology of Parkinson's disease (PD). Accordingly, LRRK2 Dm have also the potential to contribute to reveal innovative therapeutic approaches to its treatment. Withania somnifera Dunal, a plant that grows spontaneously also in Mediterranean regions, is known in folk medicine for its anti-inflammatory and protective properties against neurodegeneration. The aim of this study was to evaluate the neuroprotective effects of its standardized root methanolic extract (Wse) on the LRRK2 loss-of-function Dm model of PD. To this end mutant and wild type (WT) flies were administered Wse, through diet, at different concentrations as larvae and adults (L+/A+) or as adults (L-/A+) only. LRRK2 mutants have a significantly reduced lifespan and compromised motor function and mitochondrial morphology compared to WT flies 1% Wse-enriched diet, administered to Dm LRRK2 as L-/A+and improved a) locomotor activity b) muscle electrophysiological response to stimuli and also c) protected against mitochondria degeneration. In contrast, the administration of Wse to Dm LRRK2 as L+/A+, no matter at which concentration, worsened lifespan and determined the appearance of increased endosomal activity in the thoracic ganglia. These results, while confirming that the LRRK2 loss-of-function in the WD40 domain represents a valid model of PD, reveal that under appropriate concentrations Wse can be usefully employed to counteract some deficits associated with the disease. However, a careful assessment of the risks, likely related to the impaired endosomal activity, is required. PMID:26727265

  3. Activation and blockade of serotonin7 receptors in the prelimbic cortex regulate depressive-like behaviors in a 6-hydroxydopamine-induced Parkinson's disease rat model.

    PubMed

    Zhang, Q J; Du, C X; Tan, H H; Zhang, L; Li, L B; Zhang, J; Niu, X L; Liu, J

    2015-12-17

    The role of serotonin7 (5-HT7) receptors in the regulation of depression is poorly understood, particularly in Parkinson's disease-associated depression. Here we examined whether 5-HT7 receptors in the prelimbic (PrL) sub-region of the ventral medial prefrontal cortex (mPFC) involve in the regulation of depressive-like behaviors in sham-operated rats and rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. The lesion induced depressive-like responses as measured by the sucrose preference and forced swim tests when compared to sham-operated rats. Intra-PrL injection of 5-HT7 receptor agonist AS19 (0.5, 1 and 2?g/rat) increased sucrose consumption, and decreased immobility time in sham-operated and the lesioned rats, indicating the induction of antidepressant-like effects. Further, intra-PrL injection of 5-HT7 receptor antagonist SB269970 (1.5, 3 and 6?g/rat) decreased sucrose consumption, and increased immobility time, indicating the induction of depressive-like responses. However, the doses producing these effects in the lesioned rats were higher than those in sham-operated rats. Neurochemical results showed that intra-PrL injection of AS19 (2?g/rat) increased dopamine, 5-hydroxytryptamine (5-HT) and noradrenaline (NA) levels in the mPFC, habenula and ventral hippocampus (vHip) in sham-operated and the lesioned rats; whereas SB269970 (6?g/rat) decreased 5-HT levels in the habenula and vHip, and the levels of NA in the mPFC, habenula and vHip in the two groups of rats. The results suggest that 5-HT7 receptors in the PrL play an important role in the regulation of these behaviors, which attribute to changes in monoamine levels in the limbic and limbic-related brain regions after activation and blockade of 5-HT7 receptors. PMID:26470809

  4. The chemical, genetic and immunological basis of idiosyncratic drug-induced liver injury.

    PubMed

    Tailor, A; Faulkner, L; Naisbitt, D J; Park, B K

    2015-12-01

    Idiosyncratic drug reactions can be extremely severe and are not accounted for by the regular pharmacology of a drug. Thus, the mechanism of idiosyncratic drug-induced liver injury (iDILI), a phenomenon that occurs with many drugs including ?-lactams, anti-tuberculosis drugs and non-steroidal anti-inflammatories, has been difficult to determine and remains a pressing issue for patients and drug companies. Evidence has shown that iDILI is multifactorial and multifaceted, which suggests that multiple cellular mechanisms may be involved. However, a common initiating event has been proposed to be the formation of reactive drug metabolites and covalently bound adducts. Although the fate of these metabolites are unclear, recent evidence has shown a possible link between iDILI and the adaptive immune system. This review highlights the role of reactive metabolites, the recent genetic innovations which have provided molecular targets for iDILI, and the current literature which suggests an immunological basis for iDILI. PMID:26614821

  5. Mitochondria: A Therapeutic Target for Parkinson’s Disease?

    PubMed Central

    Luo, Yu; Hoffer, Alan; Hoffer, Barry; Qi, Xin

    2015-01-01

    Parkinson’s disease (PD) is one of the most common neurodegenerative disorders. The exact causes of neuronal damage are unknown, but mounting evidence indicates that mitochondrial-mediated pathways contribute to the underlying mechanisms of dopaminergic neuronal cell death both in PD patients and in PD animal models. Mitochondria are organized in a highly dynamic tubular network that is continuously reshaped by opposing processes of fusion and fission. Defects in either fusion or fission, leading to mitochondrial fragmentation, limit mitochondrial motility, decrease energy production and increase oxidative stress, thereby promoting cell dysfunction and death. Thus, the regulation of mitochondrial dynamics processes, such as fusion, fission and mitophagy, represents important mechanisms controlling neuronal cell fate. In this review, we summarize some of the recent evidence supporting that impairment of mitochondrial dynamics, mitophagy and mitochondrial import occurs in cellular and animal PD models and disruption of these processes is a contributing mechanism to cell death in dopaminergic neurons. We also summarize mitochondria-targeting therapeutics in models of PD, proposing that modulation of mitochondrial impairment might be beneficial for drug development toward treatment of PD. PMID:26340618

  6. Traversing a wormhole to combat Parkinson’s disease

    PubMed Central

    Caldwell, Guy A.; Caldwell, Kim A.

    2008-01-01

    Human movement disorders represent a significant and unresolved societal burden. Among these, the most prevalent is Parkinson’s disease (PD), a disorder afflicting millions worldwide. Despite major advances, stemming primarily from human genetics, there remains a significant gap in our understanding of what factors underlie disease susceptibility, onset, and progression. Innovative strategies to discern specific intracellular targets for subsequent drug development are needed to more rapidly translate basic findings to the clinic. Here we briefly review the recent contributions of research using the nematode roundworm Caenorhabditis elegans as a model system for identifying and characterizing gene products associated with PD. As a microscopic but multicellular and genetically tractable animal with a well-defined nervous system and an experimentally tenable lifespan, C. elegans affords significant advantages to researchers attempting to determine causative and therapeutic factors that influence neuronal dysfunction and age-associated neurodegeneration. The rapidity with which traditional genetic, large-scale genomic, and pharmacological screening can be applied to C. elegans epitomizes the utility of this animal for disease research. Moreover, with mature bioinformatic and functional genomic data readily available, the nematode is well positioned to play an increasingly important role in PD-associated discoveries. PMID:19048050

  7. Drug induced autoimmune hepatitis and TNF-? blocking agents: is there a real relationship?

    PubMed

    Efe, Cumali

    2013-01-01

    Hepatotoxicity is an expected side effect of tumour necrosis factor-? (anti-TNF-?) blocking agents including, infliximab, etanercept and adalimumab. Although mild to moderate elevations of liver enzymes have been recognised after the use of these agents, severe hepatitis is rarely reported. Reactivation of viral hepatitis and drug induced liver injury is two main causes of liver dysfunction in these patients. A broad spectrum, ranging from minor immunological alterations to systemic autoimmune disease, has been reported during treatment with anti-TNF-?. Therefore, in recent studies TNF-? blocking agents have been considered a potential cause of drug induced autoimmune hepatitis. Taking into account the advances in the field of hepatology, this review summarizes the general characteristics of anti-TNF-? induced liver injury and autoimmune hepatitis. PMID:22841985

  8. Flies with Parkinson's disease.

    PubMed

    Vanhauwaert, Roeland; Verstreken, Patrik

    2015-12-01

    Parkinson's disease is an incurable neurodegenerative disease. Most cases of the disease are of sporadic origin, but about 10% of the cases are familial. The genes thus far identified in Parkinson's disease are well conserved. Drosophila is ideally suited to study the molecular neuronal cell biology of these genes and the pathogenic mutations in Parkinson's disease. Flies reproduce quickly, and their elaborate genetic tools in combination with their small size allow researchers to analyze identified cells and neurons in large numbers of animals. Furthermore, fruit flies recapitulate many of the cellular and molecular defects also seen in patients, and these defects often result in clear locomotor and behavioral phenotypes, facilitating genetic modifier screens. Hence, Drosophila has played a prominent role in Parkinson's disease research and has provided invaluable insight into the molecular mechanisms of this disease. PMID:25708988

  9. Living with Parkinson's

    MedlinePLUS

    ... maintain the highest quality of daily living with Parkinson's disease. Performing activities that may benefit you and your symptoms – painting, tai-chi, exercise – to take charge of your life with PD. ...

  10. Comparison of Olfactory Identification Patterns among Parkinson's Disease Patients from Different Countries.

    PubMed

    Millar Vernetti, Patricio; Rossi, Malco; Cerquetti, Daniel; Perez Lloret, Santiago; Merello, Marcelo

    2016-01-01

    Olfactory function assessment is an important screening tool and also may differentiate Parkinson's disease (PD) patients from other parkinsonisms, including nondegenerative ones, such as, normal pressure hydrocephalus, vascular, drug induced, or infectious parkinsonism. Several authors in different countries have reported various sets of odors that best differentiate between these conditions. It is debated if distinctive patterns of "restrictive" or "selective" hyposmia in PD may be affected by cultural aspects. To compare the olfactory identification function in PD across different countries, we analyzed Sniffin' Sticks identification task results between 112 PD patients from Argentina and previously reported data of PD patients from Brazil (106 patients), the Netherlands (400 patients), Germany (40 patients), China (110 patients), and Sri Lanka (89 patients). Categorical principal component analysis (CATPCA) was performed to find components reflecting groups of odors similarly perceived across subjects. CATPCA analysis found 2 components for each group which shared 10 out of 16 odors amongst each other. We found that only the shared items of component 2 (orange, mint, banana, garlic, coffee, cloves, and fish) showed uniform results across all of the included countries, whereas variations in component 1 (licorice, turpentine, and apple) were attributed mostly to differences across control groups. PMID:26512070

  11. [The Parkinson puzzle].

    PubMed

    Guseo, András

    2012-12-30

    Parkinson's disease is one of the most frequent progressive degenerative disorders with unknown origin of the nervous system. The commutation of the disease on Guam led to the discovery of a neurotoxin which was also found in other continents. This neurotoxin was identified in the common cyanobacteria (blue-green algae). Early clinical observations suggested some loose correlations with gastric and duodenal ulcer and Parkinson's disease, while recent studies revealed a toxin, almost identical to that found in cyanobacteria in one strain of Helicobacter pylori, which proved to cause Parkinson like symptoms in animals. Therefore, it cannot be ruled out that there is a slowly progressive poisoning in Parkinson's disease. The disease specific alpha-sinuclein inclusions can be found in nerve cells of the intestinal mucosa far before the appearance of clinical symptoms indicating that the disease may start in the intestines. These results are strengthened by the results of Borody's fecal transplants, after which in Parkinson patients showed a symptomatic improvement. Based on these observations the Parkinson puzzle is getting complete. Although these observations are not evidence based, they may indicate a new way for basic clinical research, as well as a new way of thinking for clinicians. These new observations in psycho-neuro-immunology strengthen the fact that immunological factors may also play a critical factor facilitating local cell necrosis which may be influenced easily. PMID:23261994

  12. Confinement-Induced Drug-Tolerance in Mycobacteria Mediated by an Efflux Mechanism

    PubMed Central

    Luthuli, Brilliant B.; Purdy, Georgiana E.; Balagaddé, Frederick K.

    2015-01-01

    Tuberculosis (TB) is the world’s deadliest curable disease, responsible for an estimated 1.5 million deaths annually. A considerable challenge in controlling this disease is the prolonged multidrug chemotherapy (6 to 9 months) required to overcome drug-tolerant mycobacteria that persist in human tissues, although the same drugs can sterilize genetically identical mycobacteria growing in axenic culture within days. An essential component of TB infection involves intracellular Mycobacterium tuberculosis bacteria that multiply within macrophages and are significantly more tolerant to antibiotics compared to extracellular mycobacteria. To investigate this aspect of human TB, we created a physical cell culture system that mimics confinement of replicating mycobacteria, such as in a macrophage during infection. Using this system, we uncovered an epigenetic drug-tolerance phenotype that appears when mycobacteria are cultured in space-confined bioreactors and disappears in larger volume growth contexts. Efflux mechanisms that are induced in space-confined growth environments contribute to this drug-tolerance phenotype. Therefore, macrophage-induced drug tolerance by mycobacteria may be an effect of confined growth among other macrophage-specific mechanisms. PMID:26295942

  13. Characterization of Endothelial Microparticles Induced by Different Therapeutic Drugs for Infantile Hemangioma.

    PubMed

    Zhu, Jun-Yi; Zhang, Wei; Ren, Jian-Gang; Chen, Gang; Zhao, Yi-Fang

    2015-09-01

    Endothelial microparticles (EMPs) are complex vesicular structures with great significance in vascular pathophysiology. Here, we aimed to determine the impact of therapeutic drugs for infantile hemangioma, a common vascular tumor of infancy, on the biochemical features of EMPs. We exposed human umbilical vein endothelial cells to propranolol (Pro), dexamethasone (Dex), or rapamycin (Rap). Compared with controls, Pro and Rap dramatically augmented EMP release, whereas Dex significantly suppressed EMP generation. Drug-stimulated EMPs could inherit but tended to lose specific endothelial surface antigens from their parental cells. On the one hand, markedly distinct messenger RNA expression patterns were observed within and between drug-stimulated endothelial cells and derived EMPs. On the other hand, Rap-treated endothelial cells and Pro-induced EMPs displayed downregulation of multiple angiogenesis-related molecules at messenger RNA level compared with corresponding controls. Meanwhile, among tested angiogenesis-associated microRNAs, twelve microRNAs were downregulated in drug-induced EMPs, whereas only let-7b and miR-133a were markedly upregulated. Collectively, these data may indicate selective and distinctive package of biomolecules into EMPs depending on specific drugs. Our findings may provide novel insights into the underlying mechanisms of pharmacological therapy for infantile hemangioma. PMID:26348824

  14. The role of eNOS phosphorylation in causing drug-induced vascular injury.

    PubMed

    Tobin, Grainne A McMahon; Zhang, Jun; Goodwin, David; Stewart, Sharron; Xu, Lin; Knapton, Alan; González, Carlos; Bancos, Simona; Zhang, Leshuai; Lawton, Michael P; Enerson, Bradley E; Weaver, James L

    2014-06-01

    Previously we found that regulation of eNOS is an important part of the pathogenic process of Drug-induced vascular injury (DIVI) for PDE4i. The aims of the current study were to examine the phosphorylation of eNOS in mesentery versus aorta at known regulatory sites across DIVI-inducing drug classes and to compare changes across species. We found that phosphorylation at S615 in rats was elevated 35-fold 2 hr after the last dose of CI-1044 in mesentery versus 3-fold in aorta. Immunoprecipitation studies revealed that many of the upstream regulators of eNOS activation were associated with eNOS in 1 or more signalosome complexes. Next rats were treated with drugs from 4 other classes known to cause DIVI. Each drug was given alone and in combination with SIN-1 (NO donor) or L-NAME (eNOS inhibitor), and the level of eNOS phosphorylation in mesentery and aorta tissue was correlated with the extent of vascular injury and measured serum nitrite. Drugs or combinations produced altered serum nitrite levels as well as vascular injury score in the mesentery. The results suggested that phosphorylation of S615 may be associated with DIVI activity. Studies with the species-specific A2A adenosine agonist CI-947 in rats versus primates showed a similar pattern. PMID:24705881

  15. Translation strategy for the qualification of drug-induced vascular injury biomarkers.

    PubMed

    Bendjama, Kaïdre; Guionaud, Silvia; Aras, Gulfidan; Arber, Nadir; Badimon, Lina; Bamberger, Uwe; Bratfalean, Dorina; Brott, David; David, Maayan; Doessegger, Lucette; Firat, Hüseyin; Gallas, Jean-François; Gautier, Jean-Charles; Hoffmann, Peter; Kraus, Sarah; Padro, Teresa; Saadoun, David; Szczesny, Piotr; Thomann, Peter; Vilahur, Gemma; Lawton, Michael; Cacoub, Patrice

    2014-06-01

    Drug-induced vascular injury (DIVI) is a common preclinical toxicity usually characterized by hemorrhage, vascular endothelial and smooth muscle damage, and inflammation. DIVI findings can cause delays or termination of drug candidates due to low safety margins. The situation is complicated by the absence of sensitive, noninvasive biomarkers for monitoring vascular injury and the uncertain relevance to humans. The Safer And Faster Evidence-based Translation (SAFE-T) consortium is a public-private partnership funded within the European Commission's Innovative Medicines Initiative (IMI) aiming to accelerate drug development by qualifying biomarkers for drug-induced organ injuries, including DIVI. The group is using patients with vascular diseases that have key histomorphologic features (endothelial damage, smooth muscle damage, and inflammation) in common with those observed in DIVI, and has selected candidate biomarkers associated with these features. Studied populations include healthy volunteers, patients with spontaneous vasculitides and other vascular disorders. Initial results from studies with healthy volunteers and patients with vasculitides show that a panel of biomarkers can successfully discriminate the population groups. The SAFE-T group plans to seek endorsement from health authorities (European Medicines Agency and Food and Drug Administration) to qualify the biomarkers for use in regulatory decision-making processes. PMID:24771082

  16. Assessment of temperature-induced hERG channel blockade variation by drugs.

    PubMed

    Kauthale, Rahul R; Dadarkar, Shruta S; Husain, Raghib; Karande, Vikas V; Gatne, Madhumanjiri M

    2015-07-01

    Drug-induced QT prolongation has been reported in humans and animals. This potentially lethal effect can be induced by drugs interacting with a cardiac potassium channel, namely hERG (human ether-a go-go-related gene) leading to arrhythmia or torsade de pointes (TdP). Hence, in vitro evaluation of therapeutics for their effects on the rapid delayed rectifier current (IKr) mediated by the K(+) ion channel encoded by hERG is a valuable tool for identifying potential arrhythmic side effects during drug safety testing. Our objective was to evaluate the temperature-induced hERG channel blockade variation by human and veterinary drugs using the IonFlux 16 system. A panel of eight drugs was tested for IKr inhibition at both ambient (23?°C) and physiological (37?°C) temperatures at various concentrations using IonFlux 16, an automated patch clamp system. Our results established that both amiodarone (IC(50) ?=?0.56??M at 23?°C and 0.30??M at 37?°C) and ?-estradiol (IC(50) ?=?24.72??M at 23?°C and 8.17??M at 37?°C) showed a dose-dependent IKr blockade with a higher blockade at 37?°C. Whereas, blockade of IKr by both ivermectin (IC(50) ?=?12.52??M at 23?°C and 24.41??M at 37?°C) and frusemide (IC(50) ?=?12.58??M at 23?°C and 25.55??M at 37?°C) showed a dose-dependent IKr blockade with a lower blockade at 37?°C. Gentamicin, enrofloxacin, xylazine and albendazole did not block IKr at both the assessed temperatures. Collectively, these results demonstrate that the effect of temperature variation should be taken into consideration during the evaluation of test drugs for their hERG channel blockade potential. PMID:25348819

  17. Neuroprotective effects of geniposide in the MPTP mouse model of Parkinson's disease.

    PubMed

    Chen, YiMei; Zhang, Yanfang; Li, Lin; Hölscher, Christian

    2015-12-01

    Parkinson's disease (PD) is a chronic neurodegenerative disease, and there is no cure for it at present. We tested the drug Geniposide, an active component of Gardenia jasminoides Ellis which is used in traditional Chinese medicine. Geniposide has shown neuroprotective and growth-factor like effects in several in vivo and in vitro studies. In the present study, Geniposide had been tested in an acute PD mouse model induced by four 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intraperitoneal injections. Geniposide treatment (100mg/kg ip.) for 8 days after MPTP treatment (30mg/kg ip.) improved the locomotor and exploratory activity of mice (open field), and improved bradykinesia and movement balance of mice (rotarod, swim test). Geniposide treatment also restored tyrosine hydroxylase (TH) positive dopaminergic neuron numbers in the substantia nigra pars compacta. Drug treatment also increased levels of growth factor signaling molecule Bax and reduced the apoptosis signaling molecule Bcl-2. Caspase 3 activation was also reduced in the substantia nigra. We conclude that Geniposide exerted its neuroprotective effect by enhancing growth factor signaling and the reduction of apoptosis. Geniposide is an ingredient in Chinese traditional medicine with few known side effects and shows potential as a drug treatment for Parkinson's disease. PMID:26409043

  18. Melatonin enhances L-DOPA therapeutic effects, helps to reduce its dose, and protects dopaminergic neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice.

    PubMed

    Naskar, Amit; Prabhakar, Visakh; Singh, Raghavendra; Dutta, Debashis; Mohanakumar, Kochupurackal P

    2015-04-01

    L-3,4-dihydroxyphenylalanine (L-DOPA) reduces symptoms of Parkinson's disease (PD), but suffers from serious side effects on long-term use. Melatonin (10-30 mg/kg, 6 doses at 10 hr intervals) was investigated to potentiate L-DOPA therapeutic effects in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in mice. Striatal tyrosine hydroxylase (TH) immunoreactivity, TH, and phosphorylated ser 40 TH (p-TH) protein levels were assayed on 7th day. Nigral TH-positive neurons stereology was conducted on serial sections 2.8 mm from bregma rostrally to 3.74 mm caudally. MPTP caused 39% and 58% decrease, respectively, in striatal fibers and TH protein levels, but 2.5-fold increase in p-TH levels. About 35% TH neurons were lost between 360 and 600 ?m from 940 ?m of the entire nigra analyzed, but no neurons were lost between 250 ?m rostrally and 220 ?m caudally. When L-DOPA in small doses (5-8 mg/kg) failed to affect MPTP-induced akinesia or catalepsy, co-administration of melatonin with L-DOPA attenuated these behaviors. Melatonin administration significantly attenuated MPTP-induced loss in striatal TH fibers (82%), TH (62%) and p-TH protein (100%) levels, and nigral neurons (87-100%). Melatonin failed to attenuate MPTP-induced striatal dopamine depletion. L-DOPA administration (5 mg/kg, once 40 min prior to sacrifice, p.o.) in MPTP- and melatonin-treated mice caused significant increase in striatal dopamine (31%), as compared to L-DOPA and MPTP-treated mice. This was equivalent to 8 mg/kg L-DOPA administration in parkinsonian mouse. Therefore, prolonged, effective use of L-DOPA in PD with lesser side effects could be achieved by treating with 60% lower doses of L-DOPA along with melatonin. PMID:25626558

  19. Drug Induced Liver Injury: Review with a Focus on Genetic Factors, Tissue Diagnosis, and Treatment Options

    PubMed Central

    Khoury, Tawfik; Rmeileh, Ayman Abu; Yosha, Liron; Benson, Ariel A.; Daher, Saleh; Mizrahi, Meir

    2015-01-01

    Drug-induced liver injury (DILI) is a rare but potentially life threatening adverse drug reaction. DILI may mimic any morphologic characteristic of acute or chronic liver disease, and the histopathologic features of DILI may be indistinguishable from those of other causes of liver injury, such as acute viral hepatitis. In this review article, we provide an update on causative agents, clinical features, pathogenesis, diagnosis modalities, and outcomes of DILI. In addition, we review results of recently reported genetic studies and updates on pharmacological and invasive treatments. PMID:26356634

  20. Drug-induced anaphylactic reactions in Indian population: A systematic review

    PubMed Central

    Patel, Tejas K.; Patel, Parvati B.; Barvaliya, Manish J.; Tripathi, C. B.

    2014-01-01

    Background: Epidemiological data on drug-induced anaphylactic reactions are limited in India and are largely depending on studies from developed countries. Aim: The aim was to analyze the published studies of drug-induced anaphylaxis reported from India in relation with causative drugs and other clinical characteristics. Materials and Methods: The electronic databases were searched for Indian publications from 1998 to 2013 describing anaphylactic reactions. The information was collected for demographics, set up in which anaphylaxis occurred, causative drugs, incubation period, clinical features, associated allergic conditions, past reactions, co-morbid conditions, skin testing, IgE assays, therapeutic intervention and mortality. Reactions were analyzed for severity, causality, and preventability. Data were extracted and summarized by absolute numbers, mean (95% confidence interval [CI]), percentages and odds ratio (OR) (95% CI). Results: From 3839 retrieved references, 52 references describing 54 reactions were included. The mean age was 35.31 (95% CI: 30.52–40.10) years. Total female patients were 61.11%. Majority reactions were developed in perioperative conditions (53.70%), ward (20.37%) and home (11.11%). The major incriminated groups were antimicrobials (18.52%), nonsteroidal antiinflammatory drugs-(NSAIDs) (12.96%) and neuromuscular blockers (12.96%). Common causative drugs were diclofenac (11.11%), atracurium (7.41%) and ?-lactams (5.96%). Cardiovascular (98.15%) and respiratory (81.48%) symptoms dominated the presentation. Skin tests and IgE assays were performed in 37.03% and 18.52% cases, respectively. The fatal cases were associated with complications (OR =5.04; 95% CI: 1.41–17.92), cerebral hypoxic damage (OR =6.80; 95% CI: 2.14–21.58) and preventable reactions (OR =14.33; 95% CI: 2.33–87.97). Conclusion: Antimicrobials, NSAIDs, and neuromuscular blockers are common causative groups. The most fatal cases can be prevented by avoiding allergen drugs. PMID:25538414

  1. Non-steroidal anti-inflammatory drug induced membrane fusion: concentration and temperature effects.

    PubMed

    Mondal, Sutapa; Sarkar, Munna

    2009-12-24

    Membrane fusion is a critical step in many biological events. The fusion process is always induced by different fusogenic agents of which proteins and peptides form the largest group. The mechanistic details of the fusion process vary depending on the nature of the fusogenic agents. However, membrane fusion induced by small drug molecules at physiologically relevant concentration has not been observed. Only recently our group has shown that three painkillers, namely, meloxicam, piroxicam, and tenoxicam, belonging to the oxicam group of non-steroidal anti-inflammatory drugs (NSAIDs) share this property. In this work, we present the effect of drug concentration and temperature on the kinetics of the fusion process. Small unilameller vesicles (SUVs) formed by dimyristoylphosphatidylcholine (DMPC) with an average diameter of 50-60 nm were used as model membranes. Fluorescence assays were used to probe the time dependence of lipid mixing, content mixing, and leakage whereas transmission electron microscopy (TEM) was used to image the fusion process and to calculate the average diameter of the vesicles. The results show that, in this fusion process, lipid mixing and content mixing are two sequential events and can occur even at a very low drug to lipid ratio (D/L) of 0.018. For a D/L ratio greater than 0.045, leakage of the vesicles leading to rupture compete with the fusion thereby inhibiting it. Temperature variation in the presence of drugs gives linear Arrhenius plots and is used to calculate the activation energies for the lipid mixing and content mixing, which are less compared to that seen in SUVs with a smaller diameter of 45 nm. Thermodynamic parameters of the transition state are calculated. The fusogenic property of the drugs has been interpreted in terms of the ability of the drugs to introduce membrane perturbation even at such low D/L ratios as studied here. PMID:19954169

  2. Morphologic categorization of cell death induced by mild hyperthermia and comparison with death induced by ionizing radiation and cytotoxic drugs

    SciTech Connect

    Allan, D.J.; Harmon, B.V.

    1986-01-01

    This paper presents a summary of the morphological categorization of cell death, results of two in vivo studies on the cell death induced by mild hyperthermia in rat small intestine and mouse mastocytoma, and a comparison of the cell death induced by hyperthermia, radiation and cytotoxic drugs. Two distinct forms of cell death, apoptosis and necrosis, can be recognized on morphologic grounds. Apoptosis appears to be a process of active cellular self-destruction to which a biologically meaningful role can usually be attributed, whereas necrosis is a passive degenerative phenomenon that results from irreversible cellular injury. Light and transmission electron microscopic studies showed that lower body hyperthermia (43 degrees C for 30 min) induced only apoptosis of intestinal epithelial cells, and of lymphocytes, plasma cells, and eosinophils. In the mastocytoma, hyperthermia (43 degrees C for 15 min) produced widespread tumor necrosis and also enhanced apoptosis of tumor cells. Ionizing radiation and cytotoxic drugs are also known to induce apoptosis in a variety of tissues. It is attractive to speculate that DNA damage by each agent is the common event which triggers the same process of active cellular self-destruction that characteristically effects selective cell deletion in normal tissue homeostasis.

  3. Parkinson's disease: A risk factor for osteoporosis.

    PubMed

    Malochet-Guinamand, Sandrine; Durif, Franck; Thomas, Thierry

    2015-12-01

    Parkinson's disease is the most common neurodegenerative disease after Alzheimer's disease. On the long term, it may be complicated by various musculoskeletal problems, such as osteoporotic fractures, that have significant socioeconomic consequences. Indeed, patients suffering from Parkinson's disease have a higher fracture risk, particularly hip fracture risk, than other subjects of the same age because of both a higher risk of falls and lower bone mineral density. Bone loss in Parkinson's disease may be associated with the severity and duration of the disease. We review here the different suspected mechanisms of accelerated bone loss in Parkinson's disease, amongst which weight loss and reduced mobility appear to play key roles. Antiparkinsonian drugs, particularly levodopa, may also be associated with decreased bone mineral density as a result of hyperhomocysteinaemia. We discuss the role of other nutritional deficiencies, such as vitamin B12, folate or vitamin K. In conclusion, it seems necessary to screen for and treat osteoporosis in this at-risk population, while actions to prevent falls are still disappointing. A better understanding of the factors explaining bone loss in this population would help implementing preventive actions. PMID:26453100

  4. Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro.

    PubMed

    Leite, Sofia B; Roosens, Tiffany; El Taghdouini, Adil; Mannaerts, Inge; Smout, Ayla J; Najimi, Mustapha; Sokal, Etienne; Noor, Fozia; Chesne, Christophe; van Grunsven, Leo A

    2016-02-01

    Current models for in vitro fibrosis consist of simple mono-layer cultures of rodent hepatic stellate cells (HSC), ignoring the role of hepatocyte injury. We aimed to develop a method allowing the detection of hepatocyte-mediated and drug-induced liver fibrosis. We used HepaRG (Hep) and primary human HSCs cultured as 3D spheroids in 96-well plates. These resulting scaffold-free organoids were characterized for CYP induction, albumin secretion, and hepatocyte and HSC-specific gene expression by qPCR. The metabolic competence of the organoid over 21 days allows activation of HSCs in the organoid in a drug- and hepatocyte-dependent manner. After a single dose or repeated exposure for 14 days to the pro-fibrotic compounds Allyl alcohol and Methotrexate, hepatic organoids display fibrotic features such as HSC activation, collagen secretion and deposition. Acetaminophen was identified by these organoids as an inducer of hepatotoxic-mediated HSC activation which was confirmed in vivo in mice. This novel hepatic organoid culture model is the first that can detect hepatocyte-dependent and compound-induced HSC activation, thereby representing an important step forward towards in vitro compound testing for drug-induced liver fibrosis. PMID:26618472

  5. Measurement of caspase-2 activation during different anti-tumor drugs induced apoptosis by FRET technique

    NASA Astrophysics Data System (ADS)

    Lin, Juqiang; Zeng, Shaoqun; Luo, Qingming; Rong, Chen; Zhang, Zhihong

    2007-11-01

    Caspase-2 is important for the engagement of the mitochondrial apoptotic pathway, in the presence of DNA-damaging agents, such as cisplatin; however, the mechanism by which caspase-2 executes apoptosis remains obscure. In this study, we carried out the measurements of the dynamics of caspase-2 activation in a single living cell by a FRET (fluorescence resonance energy transfer) probe. A FRET probe was constructed that encoded a CRS (caspase-2 recognition site) fused with a cyan fluorescent protein (CFP) and a red fluorescent protein (DsRed) (CFP-CRS-DsRed). Using this probe, we found that during TRAIL-induced apoptosis, caspase-2 was not activated, and caspase-2 activation occurred in etoposide and cisplatin treated cells. However, during cisplatin-induced apoptosis caspase-2 activation was initiated much earlier than that of etoposide. Cisplatin and etoposide is one of the most broadly used drugs in the Clinical applications of cancer chemotherapy, and TRAIL, which belongs to the TNF family proteins, can selectively induce apoptosis in many transformed cells but not in normal cells. Most of anticancer drugs can induce apoptosis mediated by the activation of caspase pathway. Thus, the perfect synergistic effect group of multi-drug can be selected by using our FRET probe.

  6. Using Salivary Nitrite and Nitrate Levels as a Biomarker for Drug-Induced Gingival Overgrowth

    PubMed Central

    Sukuroglu, Erkan; Güncü, Güliz N.; Kilinc, Kamer; Caglayan, Feriha

    2015-01-01

    Aim: Drug-induced gingival overgrowth has a multifactorial nature and the pathogenesis is still uncertain. It has been suggested that Nitric Oxide (NO) might play a role in the pathogenesis of drug-induced gingival overgrowth due to the contribution of NO to immune response and matrix degradation. NO levels in biological fluids have been used as a diagnostic biomarker in many diseases. The aim of this study is to determine whether NO levels in plasma, saliva, and gingival crevicular fluid (GCF) can serve as a potential biomarker for the evaluation of drug-induced gingival overgrowth risk. Materials and Methods: A total of 104 patients, receiving cyclosporine A (n = 35), phenytoin (n = 25), nifedipine (n = 26), or diltiazem (n = 18) participated in the study. The amount of gingival overgrowth was evaluated with two indices and was given as percentage. Periodontal clinical parameters including plaque index (PI), gingival index (GI), gingival bleeding time index (GBTI), and probing depth (PD) were also assessed. Saliva, GCF, and plasma samples were obtained from each participants. Nitrite and nitrate levels in saliva, GCF, and plasma were analyzed by Griess reagent. Results: Salivary nitrite and nitrate levels in responders were significantly higher than those in non-responders in only phenytoin group (p < 0.05). Nitrite and nitrate levels of gingival crevicular fluid and plasma did not significantly differ between responders and non-responders in all study groups (p > 0.05). Salivary nitrite levels exhibited a significant correlation with PD, GBTI, severity of gingival overgrowth (%GO), and GCF volume (p < 0.05). Additionally, a strong positive correlation was detected between saliva and plasma nitrate levels (p < 0.005). However, both nitrite and nitrate levels in GCF and plasma demonstrated no significant correlation with clinical parameters, GO severity, and GCF volume (p > 0.05). Conclusion: Salivary nitrite and nitrate levels could be used as periodontal disease biomarkers in phenytoin induced gingival overgrowth, and that saliva seems to have a better diagnostic potential than GCF and plasma for the evaluation of drug-induced gingival overgrowth risk. However, when all drug groups were considered, saliva nitrite and nitrate levels could not be used as a biomarker for drug-induced gingival overgrowth. PMID:26649282

  7. Drug-induced diseases (DIDs): An experience of a tertiary care teaching hospital from India

    PubMed Central

    Tandon, Vishal R.; Khajuria, Vijay; Mahajan, Vivek; Sharma, Aman; Gillani, Zahid; Mahajan, Annil

    2015-01-01

    Background & objectives: Drug-induced diseases (DIDs) are well known but least studied. Data on DIDs from India are not available. Hence, this retrospective cross-sectional study was undertaken using suspected adverse drug reaction (ADR) data collected form Pharmacovigilance Programme of India (PvPI) to evaluate profile of DIDs over two years, in a tertiary care teaching hospital from north India. Methods: The suspected ADRs in the form of DID were evaluated for drug and disease related variables and were classified in terms of causality. Results: DID rate was 38.80 per cent. Mean duration of developing DIDs was 26.05 ± 9.6 days; 25.16 per cent had more than one co-morbid condition. Geriatric population (53.99%) accounted for maximum DIDs followed by adult (37.79%) and paediatric (8.21%). Maximum events were probable (93.98%) followed by possible (6.04%). All DIDs required intervention. Gastritis (7.43%), diarrhoea (5.92%), anaemia (4.79%), hypotension (2.77%), hepatic dysfunction (2.69%), hypertension (1.51%), myalgia (1.05%), and renal dysfunction (1.01%) were some of the DIDs. Anti tubercular treatment (ATT), anti retroviral treatment (ART), ceftriaxone injection, steroids, non-steroidal anti-inflammatory drugs, antimicrobials and anticancer drugs were found as commonly offending drugs. Interpretation & conclusions: Our findings show that DIDs are a significant health problem in our country, which need more attention. PMID:26261164

  8. Drug "supersaturation" states induced by polymeric micelles and liposomes: a mechanistic investigation into permeability enhancements.

    PubMed

    di Cagno, Massimiliano; Luppi, Barbara

    2013-03-12

    The objective of this study was to investigate if the increase in apparent solubility induced by liposomalization or micellization of the poorly soluble drug hydrocortisone (HC) would lead to an enhancement of its permeability through biological membranes. For this purpose phosphatidylcholine liposome formulations as well as d-?-tocopheryl polyethylene glycol 1000 succinate (TPGS) micelle dispersions and polyvinylpyrrolidone (PVP) supersaturated solutions were prepared in order to increase the apparent solubility of HC. Both the apparent solubility of hydrocortisone (i.e. amount of drug entrapped plus non-entrapped in the carriers) as well as the concentration of molecularly dissolved drug (i.e. fraction non-entrapped into carriers, truly molecularly dissolved fraction) were characterized. Subsequently, the permeability of hydrocortisone was assessed for each type of formulation using the in vitro sheep nasal mucosa permeability assay. In all formulations where solubilizing agents are present, an enhanced flux of HC (compared to the pure drug powder suspension) is observed. The expected linear correlation between apparent solubilities and fluxes was not found, whereas, the concentrations of molecularly dissolved HC were found to be directly proportional to the respective fluxes. This is an experimental proof for the hypothesis that, of all the strategies to increase the apparent solubility of poorly soluble drugs, enhancement of the molecularly dissolved drug concentration (induction of true supersaturation) would lead to better permeation though membranes. PMID:23354151

  9. Sex differences in Parkinson’s disease

    PubMed Central

    Gillies, Glenda E.; Pienaar, Ilse S.; Vohra, Shiv; Qamhawi, Zahi

    2014-01-01

    Parkinson’s disease (PD) displays a greater prevalence and earlier age at onset in men. This review addresses the concept that sex differences in PD are determined, largely, by biological sex differences in the NSDA system which, in turn, arise from hormonal, genetic and environmental influences. Current therapies for PD rely on dopamine replacement strategies to treat symptoms, and there is an urgent, unmet need for disease modifying agents. As a significant degree of neuroprotection against the early stages of clinical or experimental PD is seen, respectively, in human and rodent females compared with males, a better understanding of brain sex dimorphisms in the intact and injured NSDA system will shed light on mechanisms which have the potential to delay, or even halt, the progression of PD. Available evidence suggests that sex-specific, hormone-based therapeutic agents hold particular promise for developing treatments with optimal efficacy in men and women. PMID:24607323

  10. Parkinson’s disease dementia: a neural networks perspective

    PubMed Central

    Jahanshahi, Marjan; Foltynie, Thomas

    2015-01-01

    In the long-term, with progression of the illness, Parkinson’s disease dementia affects up to 90% of patients with Parkinson’s disease. With increasing life expectancy in western countries, Parkinson’s disease dementia is set to become even more prevalent in the future. However, current treatments only give modest symptomatic benefit at best. New treatments are slow in development because unlike the pathological processes underlying the motor deficits of Parkinson’s disease, the neural mechanisms underlying the dementing process and its associated cognitive deficits are still poorly understood. Recent insights from neuroscience research have begun to unravel the heterogeneous involvement of several distinct neural networks underlying the cognitive deficits in Parkinson’s disease dementia, and their modulation by both dopaminergic and non-dopaminergic transmitter systems in the brain. In this review we collate emerging evidence regarding these distinct brain networks to give a novel perspective on the pathological mechanisms underlying Parkinson’s disease dementia, and discuss how this may offer new therapeutic opportunities. PMID:25888551

  11. Genetics Home Reference: Parkinson disease

    MedlinePLUS

    ... Work? National Institute of Neurological Disorders and Stroke: Deep Brain Stimulation for Parkinson's Disease Parkinson's Disease Foundation: ... a page outside Genetics Home Reference. Links to web sites outside the Federal Government do not constitute ...

  12. Wolff-Parkinson-White syndrome

    MedlinePLUS

    Wolff-Parkinson-White syndrome is a condition in which there is an extra electrical pathway of the heart. The ... to periods of rapid heart rate ( tachycardia ). Wolff-Parkinson-White syndrome is one of the most common ...

  13. Maladaptive Reward-Learning and Impulse Control Disorders in Patients with Parkinson’s Disease: A Clinical Overview and Pathophysiology Update

    PubMed Central

    Lee, Jee-Young; Jeon, Beom Seok

    2014-01-01

    Impulse control disorders (ICD) in Parkinson’s disease (PD) are a disabling non-motor symptom with frequencies of 13–35% among patients receiving dopamine replacement therapy. ICD in PD is strongly associated with dopaminergic drug use, especially non-ergot dopamine agonists (DA). However, individual susceptibility and disease-related neural changes are also important contributors to the development of ICD. Discrepancies between nigrostriatal and mesolimbic dopaminergic degeneration and non-physiological administration of dopaminergic drugs may induce abnormal ’hyperstimulation’ of the mesolimbic system, which alters reward-learning behaviors in PD patients. In addition, DA can make patients more impulsive during decision-making and seek risk-taking behaviors. DA intake is also related to the biased representation of rewards. Ultimately, loss of negative feedback control due to dysfunctional frontostriatal connections is necessary for the establishment of ICD in PD. The subsequent behavioral and neural changes are affected by PD treatment and disease progression; thus, proper treatment guidelines for physicians are needed to prevent the development of ICD. Future studies aimed at producing novel therapeutics to control the risk factors for ICD or treat ICD behaviors in PD are warranted. This review summarizes recent advances from epidemiological and pathophysiological studies on ICD in PD. Management principles and limitations of current therapeutics are briefly discussed. PMID:25360230

  14. Induction of apoptosis in catecholaminergic PC12 cells by L-DOPA. Implications for the treatment of Parkinson's disease.

    PubMed Central

    Walkinshaw, G; Waters, C M

    1995-01-01

    The hypothesis that L-DOPA therapy in Parkinson's disease may augment neuronal damage and thus accelerate the progression of the disease remains controversial. In this study, we demonstrate that L-DOPA induces death of catecholaminergic cells in vitro via an active program of apoptosis. Treatment of PC12 cells with clinically applicable concentrations of L-DOPA (25-100 microM) induced cell death via a mechanism which exhibited morphological and biochemical characteristics of apoptosis, including chromatin condensation, membrane blebbing, and internucleosomal DNA fragmentation. L-DOPA-induced apoptosis was cell and drug-type specific. Toxicity is an intrinsic property of the drug molecule since it was not suppressed by inhibiting conversion of L-DOPA to dopamine. However, L-DOPA toxicity was inhibited by antioxidants, suggesting that activation of apoptosis is mediated by oxygen radicals. Our finding that L-DOPA-induced cell death in vitro occurs via apoptosis explains the lack of evidence supporting its toxicity in vivo, since apoptotic neurons are rapidly phagocytosed in vivo without causing damage to surrounding tissue. Furthermore, since apoptosis is an active cellular program which can be modulated, we suggest clinical approaches for decreasing L-DOPA toxicity, thus preventing acceleration of neuronal damage in Parkinson's disease. Images PMID:7769091

  15. Using iPS Cells toward the Understanding of Parkinson’s Disease

    PubMed Central

    Torrent, Roger; De Angelis Rigotti, Francesca; Dell’Era, Patrizia; Memo, Maurizio; Raya, Angel; Consiglio, Antonella

    2015-01-01

    Cellular reprogramming of somatic cells to human pluripotent stem cells (iPSC) represents an efficient tool for in vitro modeling of human brain diseases and provides an innovative opportunity in the identification of new therapeutic drugs. Patient-specific iPSC can be differentiated into disease-relevant cell types, including neurons, carrying the genetic background of the donor and enabling de novo generation of human models of genetically complex disorders. Parkinson’s disease (PD) is the second most common age-related progressive neurodegenerative disease, which is mainly characterized by nigrostriatal dopaminergic (DA) neuron degeneration and synaptic dysfunction. Recently, the generation of disease-specific iPSC from patients suffering from PD has unveiled a recapitulation of disease-related cell phenotypes, such as abnormal ?-synuclein accumulation and alterations in autophagy machinery. The use of patient-specific iPSC has a remarkable potential to uncover novel insights of the disease pathogenesis, which in turn will open new avenues for clinical intervention. This review explores the current Parkinson’s disease iPSC-based models highlighting their role in the discovery of new drugs, as well as discussing the most challenging limitations iPSC-models face today. PMID:26239346

  16. Rational Pharmacological Approaches for Cognitive Dysfunction and Depression in Parkinson’s Disease

    PubMed Central

    Sandoval-Rincón, Maritza; Sáenz-Farret, Michel; Miguel-Puga, Adán; Micheli, Federico; Arias-Carrión, Oscar

    2015-01-01

    Parkinson’s disease (PD) is not a single entity but rather a heterogeneous neurodegenerative disorder. The present study aims to conduct a critical systematic review of the literature to describe the main pharmacological strategies to treat cognitive dysfunction and major depressive disorder in PD patients. We performed a search of articles cited in PubMed from 2004 to 2014 using the following MeSH terms (Medical subject headings) “Parkinson disease”; “Delirium,” “Dementia,” “Amnestic,” “Cognitive disorders,” and “Parkinson disease”; “depression,” “major depressive disorder,” “drug therapy.” We found a total of 71 studies related to pharmacological treatment in cognitive dysfunction and 279 studies for pharmacological treatment in major depressive disorder. After fulfillment of all the inclusion and exclusion criteria, 13 articles remained for cognitive dysfunction and 11 for major depressive disorder, which are presented and discussed in this study. Further research into non-motor symptoms of PD may provide insights into mechanisms of neurodegeneration, and provide better quality of life by using rational drugs. PMID:25873910

  17. Enhancing Neuroplasticity in the Basal Ganglia: The Role of Exercise in Parkinson’s Disease

    PubMed Central

    Petzinger, Giselle M.; Fisher, Beth E.; Van Leeuwen, Jon-Eric; Vukovic, Marta; Akopian, Garnik; Meshul, Charlie K.; Holschneider, Daniel P.; Nacca, Angelo; Walsh, John P.; Jakowec, Michael W.

    2014-01-01

    Epidemiological and clinical trials have suggested that exercise is beneficial for patients with Parkinson’s disease (PD). However, the underlying mechanisms and potential for disease modification are currently unknown. This review presents current findings from our laboratories in patients with PD and animal models. The data indicate that alterations in both dopaminergic and glutamatergic neurotransmission, induced by activity-dependent (exercise) processes, may mitigate the cortically driven hyper-excitability in the basal ganglia normally observed in the parkinsonian state. These insights have potential to identify novel therapeutic treatments capable of reversing or delaying disease progression in PD. PMID:20187247

  18. Isoniazid-induced Drug Rash with Eosinophilia and Systemic Symptoms (DRESS) Syndrome Presenting as Acute Eosinophilic Myocarditis.

    PubMed

    Zhang, Sai-Nan; He, Qiu-Xiang; Yang, Nai-Bin; Ni, Shun-Lan; Lu, Ming-Qin

    2015-01-01

    It has been reported that hypereosinophilic syndrome may be induced by antituberculosis drugs. We herein report the case of a 43-year-old man who had been on antituberculosis drugs for two months to treat tuberculous meningitis. During therapy, he suffered from drug rash with eosinophilia and systemic symptoms (DRESS) presenting as acute eosinophilic myocarditis, as confirmed on a histopathologic examination. According to the patient's medication history, clinical features and accessory examination findings, the eosinophilic myocarditis was thought to be possibly induced by isoniazid. Although further investigations are needed to confirm causality, isoniazid may be added to the list of drugs with the potential to cause DRESS syndrome. PMID:25986261

  19. Methotrimeprazine-induced Corneal Deposits and Cataract Revealed by Urine Drug Profiling Test

    PubMed Central

    Kim, Seong Taeck; Kim, Joon Mo; Kim, Won Young; Choi, Gwang Ju

    2010-01-01

    Two schizophrenic patients who had been taking medication for a long period presented with visual disturbance of 6-month duration. Slit-lamp examination revealed fine, discrete, and brownish deposits on the posterior cornea. In addition, bilateral star-shaped anterior subcapsular lens opacities, which were dense, dust-like granular deposits, were noted. Although we strongly suspected that the patient might have taken one of the drugs of the phenothiazine family, we were unable to obtain a history of medications other than haloperidol and risperidone, which were taken for 3 yr. We performed a drug profiling test using urine samples and detected methotrimeprazine. The patient underwent surgery for anterior subcapsular lens opacities. Visual acuity improved in both eyes, but the corneal deposits remained. We report an unusual case of methotrimeprazine-induced corneal deposits and cataract in a patient with psychosis, identified by using the urine drug profiling test. PMID:21060765

  20. Potential candidate genomic biomarkers of drug induced vascular injury in the rat

    SciTech Connect

    Dalmas, Deidre A.; Scicchitano, Marshall S.; Mullins, David; Hughes-Earle, Angela; Tatsuoka, Kay; Magid-Slav, Michal; Frazier, Kendall S.; Thomas, Heath C.

    2011-12-15

    Drug-induced vascular injury is frequently observed in rats but the relevance and translation to humans present a hurdle for drug development. Numerous structurally diverse pharmacologic agents have been shown to induce mesenteric arterial medial necrosis in rats, but no consistent biomarkers have been identified. To address this need, a novel strategy was developed in rats to identify genes associated with the development of drug-induced mesenteric arterial medial necrosis. Separate groups (n = 6/group) of male rats were given 28 different toxicants (30 different treatments) for 1 or 4 days with each toxicant given at 3 different doses (low, mid and high) plus corresponding vehicle (912 total rats). Mesentery was collected, frozen and endothelial and vascular smooth muscle cells were microdissected from each artery. RNA was isolated, amplified and Affymetrix GeneChip Registered-Sign analysis was performed on selectively enriched samples and a novel panel of genes representing those which showed a dose responsive pattern for all treatments in which mesenteric arterial medial necrosis was histologically observed, was developed and verified in individual endothelial cell- and vascular smooth muscle cell-enriched samples. Data were confirmed in samples containing mesentery using quantitative real-time RT-PCR (TaqMan Trade-Mark-Sign ) gene expression profiling. In addition, the performance of the panel was also confirmed using similarly collected samples obtained from a timecourse study in rats given a well established vascular toxicant (Fenoldopam). Although further validation is still required, a novel gene panel has been developed that represents a strategic opportunity that can potentially be used to help predict the occurrence of drug-induced mesenteric arterial medial necrosis in rats at an early stage in drug development. -- Highlights: Black-Right-Pointing-Pointer A gene panel was developed to help predict rat drug-induced mesenteric MAN. Black-Right-Pointing-Pointer A gene panel was identified following treatment of rats with 28 different toxicants. Black-Right-Pointing-Pointer There was a strong correlation of genes and histologic evidence of mesenteric MAN. Black-Right-Pointing-Pointer Many genes were also regulated prior to histologic evidence of arterial effects.

  1. Drug-induced immune-mediated thrombocytopenia in the intensive care unit.

    PubMed

    Bose, Somnath; Wurm, Ellen; Popovich, Marc J; Silver, Bernard J

    2015-11-01

    A 62-year-old woman with prosthetic mitral valve was admitted for explant of an infected prosthetic knee. Perioperatively, she was bridged with heparin and started on empiric vancomycin and piperacillin-tazobactam. Platelet counts dropped precipitously within 2 days reaching a nadir of 6000/?L, without any bleeding. Decline persisted despite substituting heparin with bivalirudin. Antiplatelet factor 4 and anti-PLA1 antigen were negative. Schistocytes were absent. Antibiotics were substituted with daptomycin for suspected drug-induced thrombocytopenia. Pulse dose of intravenous immunoglobulin was initiated with rapid normalization of platelet count. She tested positive for IgG antiplatelet antibodies to vancomycin and piperacillin-tazobactam thereby confirming the diagnosis. Drug-induced immune-mediated thrombocytopenia is an underrecognized cause of thrombocytopenia in the intensive care units. Clinicians should be cognizant of this entity, and a definitive diagnosis should be sought if feasible. PMID:26260647

  2. Update on Advances in Research on Idiosyncratic Drug-Induced Liver Injury

    PubMed Central

    Kim, Seung-Hyun

    2016-01-01

    Drug-induced liver injury (DILI) is a major concern for public health, as well as for drug development in the pharmaceutical industry, since it can cause liver failure and lead to drug withdrawal from the market and black box warnings. Thus, it is important to identify biomarkers for early prediction to increase our understanding of mechanisms underlying DILI that will ultimately aid in the exploration of novel therapeutic strategies to prevent or manage DILI. DILI can be subdivided into 'intrinsic' and 'idiosyncratic' categories, although the validity of this classification remains controversial. Idiosyncratic DILI occurs in a minority of susceptible individuals with a prolonged latency, while intrinsic DILI results from drug-induced direct hepatotoxicity over the course of a few days. The rare occurrence of idiosyncratic DILI requires multicenter collaborative investigations and phenotype standardization. Recent progress in research on idiosyncratic DILI is based on key developments in 3 areas: (1) newly developed high-throughput genotyping across the whole genome allowing for the identification of genetic susceptibility markers, (2) new mechanistic concepts on the pathogenesis of DILI revealing a key role of drug-responsive T lymphocytes in the immunological response, and (3) broad multidisciplinary approaches using different platform "-omics" technologies that have identified novel biomarkers for the prediction of DILI. An association of a specific human leukocyte antigen (HLA) allele with DILI has been reported for several drugs. HLA-restricted T-cell immune responses have also been investigated using lymphocytes and T-cell clones isolated from patients. A microRNA, miR-122, has been discovered as a promising biomarker for the early prediction of DILI. In this review, we summarize recent advances in research on idiosyncratic DILI with an understanding of the key role of adaptive immune systems. PMID:26540496

  3. A population based case-cohort study of drug-induced anaphylaxis.

    PubMed Central

    van der Klauw, M M; Stricker, B H; Herings, R M; Cost, W S; Valkenburg, H A; Wilson, J H

    1993-01-01

    1. In order to determine the risk of anaphylaxis as an adverse reaction to drugs, a case-cohort study was performed. Cases consisted of all admissions in 1987 and 1988 to all Dutch hospitals with anaphylaxis as the principal diagnosis, and a random sample of admissions with related symptoms. Hospital discharge summaries were classified according to probability to anaphylaxis by a blinded Audit Committee. Of admissions classified as probable or possible anaphylaxis, the causative agent was assessed. The reference cohort consisted of all persons in the catchment area of a sample of pharmacies in The Netherlands, in the period between January 1, 1987 and December 31, 1988. 2. Out of 934 admissions, discharge summaries on 811 admissions were received, of which 727 contained enough clinical details. Out of 727, 391 were classified as probable or possible anaphylaxis. In 336 of these 391, anaphylaxis was reason for admission. This group consisted of 158 men and 178 women. Drug-induced anaphylaxis occurred in 107 patients. 3. Drug-induced anaphylaxis was most frequently caused by penicillins, analgesics and non-steroidal antiinflammatory drugs (NSAID) with the highest point estimate of the risk relative to all other drugs of 10.7, 6.9 and 3.7 respectively. 4. In the cases of probable anaphylaxis, the risk of anaphylaxis to glafenine relative to all other drugs was 167.7 in 1987 (95%-CI: 63.0-446.4) and 128.6 in 1988 (95%-CI: 50.4-328.5), to amoxycillin 15.2 in 1987 (95%-CI: 5.0-46.0) and 4.4 in 1988 (95%-CI: 1.03-18.9) and to diclofenac 6.1 in 1988 (95%-CI: 1.4-26.1).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8097922

  4. Update on Advances in Research on Idiosyncratic Drug-Induced Liver Injury.

    PubMed

    Kim, Seung Hyun; Naisbitt, Dean J

    2016-01-01

    Drug-induced liver injury (DILI) is a major concern for public health, as well as for drug development in the pharmaceutical industry, since it can cause liver failure and lead to drug withdrawal from the market and black box warnings. Thus, it is important to identify biomarkers for early prediction to increase our understanding of mechanisms underlying DILI that will ultimately aid in the exploration of novel therapeutic strategies to prevent or manage DILI. DILI can be subdivided into 'intrinsic' and 'idiosyncratic' categories, although the validity of this classification remains controversial. Idiosyncratic DILI occurs in a minority of susceptible individuals with a prolonged latency, while intrinsic DILI results from drug-induced direct hepatotoxicity over the course of a few days. The rare occurrence of idiosyncratic DILI requires multicenter collaborative investigations and phenotype standardization. Recent progress in research on idiosyncratic DILI is based on key developments in 3 areas: (1) newly developed high-throughput genotyping across the whole genome allowing for the identification of genetic susceptibility markers, (2) new mechanistic concepts on the pathogenesis of DILI revealing a key role of drug-responsive T lymphocytes in the immunological response, and (3) broad multidisciplinary approaches using different platform "-omics" technologies that have identified novel biomarkers for the prediction of DILI. An association of a specific human leukocyte antigen (HLA) allele with DILI has been reported for several drugs. HLA-restricted T-cell immune responses have also been investigated using lymphocytes and T-cell clones isolated from patients. A microRNA, miR-122, has been discovered as a promising biomarker for the early prediction of DILI. In this review, we summarize recent advances in research on idiosyncratic DILI with an understanding of the key role of adaptive immune systems. PMID:26540496

  5. Professor Bradford Parkinson Stanford University

    E-print Network

    Boneh, Dan

    Professor Bradford Parkinson Stanford University GPS for Humanity (1962 ­ 2012) Many Applications. Parkinson A Tribute to the many Aerospace Engineers and supporters who labored and sacrificed to make and timing Service GPS for Humanity © Bradford W. Parkinson 5/22/2012 2 #12;Dr. Ivan Getting 5/22/2012 GPS

  6. In vitro detection of drug-induced phospholipidosis using gene expression and fluorescent phospholipid based methodologies.

    PubMed

    Nioi, Paul; Perry, Brad K; Wang, Er-Jia; Gu, Yi-Zhong; Snyder, Ronald D

    2007-09-01

    Phospholipidosis (PLD) is characterized by the excessive intracellular accumulation of phospholipids. It is well established that a large number of cationic amphiphilic drugs have the potential to induce PLD. In the present study, we describe two facile in vitro methods to determine the PLD-inducing potential of a molecule. The first approach is based on a recent study by (Sawada et al., 2005, Toxicol. Sci. 83, 282-292) in which 17 genes were identified as potential biomarkers of PLD in HepG2 cells. To confirm the utility of this gene panel, we treated HepG2 cells with PLD-positive and -negative compounds and then analyzed gene expression using real-time PCR. Our initial analysis, which used a single dose of each drug, correctly identified five of eight positive compounds and four of four negative compounds. We then increased the doses of the three false negatives (amiodarone, tamoxifen, and loratadine) and found that the changes in gene expression became large enough to correctly identify them as PLD-inducing drugs. Our results suggest that a range of concentrations should be used to increase the accuracy of prediction in this assay. Our second approach utilized a fluorescently labeled phospholipid (LipidTox) which was added to the media of growing HepG2 cells along with compounds positive and negative for PLD. Phospholipid accumulation was determined using confocal microscopy and, more quantitatively, using a 96-well plate assay and a fluorescent plate reader. Using an expanded set of compounds, we show that this assay correctly identified 100% of PLD-positive and -negative compounds. Dose-dependent increases in intracellular fluorescent phospholipid accumulation were observed. We found that this assay was less time consuming, more sensitive, and higher throughput than gene expression analysis. To our knowledge, this study represents the first validation of the use of LipidTox in identifying drugs that can induce PLD. PMID:17567588

  7. Acute generalized exanthematous pustulosis induced by iodixanol (Visipaque): a serious reaction to a commonly used drug.

    PubMed

    Ozturk, Unal; Sungur, Mustafa Azmi; Karakas, Tugba; Mulayim, Kamil; Ozturk, Perihan

    2015-12-01

    Acute generalized exanthematous pustulosis (AGEP) is an acute sterile pustular eruption most commonly induced by medications. Although antibiotics are the most commonly accused drugs in AGEP, non-antibiotic agents may also cause this disease. We present a case of AGEP following use of iodixanol for coronary angiography in a 61-year-old woman. Given the wide use of this substance in cardiology, clinicians should be aware of this potential complication. PMID:25363067

  8. The effect of various drugs on experimentally induced ulcers in immobilized rats

    NASA Technical Reports Server (NTRS)

    Schramm, H.

    1978-01-01

    Experiments related to the importance of functional disorders in the central nervous system in connection with stomach diseases were performed on Wistar rats. Assuming that severe mental strains may be triggering factors for such disorders, testing of the effects of different drugs on experimentally induced ulcers in these rats was done. The immobilization method described by Bonfils was used. Particular importance was placed on the sex related difference which appeared.

  9. Protection of testicular dysfunctions by MTEC, a formulated herbal drug, in streptozotocin induced diabetic rat.

    PubMed

    Mallick, Chhanda; Mandal, Suvra; Barik, Bikashranjan; Bhattacharya, Atanu; Ghosh, Debidas

    2007-01-01

    Single injection of streptozotocin (STZ) resulted diabetes mellitus which was reflected here by the levels of fasting blood glucose and serum insulin. Moreover, this experimental diabetes also resulted testicular dysfunctions evaluated by count, viability and motility of sperm as well as by the activities of key enzymes for androgen synthesis. Diabetes induced testicular oxidative stress has been indicated here by the monitoring of testicular peroxidase and catalase activities as well as by quantification of TBARS and CD of testis. Testicular glucose was increased and leydig cell nuclear area was decreased in STZ induced diabetes. Treatment of herbal formulated drug named as MTEC consist of aqueous-methanol extract of Musa paradisiaca, Tamarindus indica, Eugenia jambolana and Coccinia indica to streptozotocin induced diabetic rat at the ratio of 2:2:1:1 at the dose of 60 mg/d for two times a day for 14 d resulted a significant protection in fasting blood glucose and serum insulin levels (p<0.05) along with correction of testicular above parameters towards the control level (p<0.05). This herbal formulated drug has no general toxic effects on the body weight, as well as on the activities of serum glutamate and pyruvate transaminases in serum. The results support the validity of this herbal drug for the management of testicular disorders noted in diabetic state. PMID:17202665

  10. Myogenic differentiation of Drosophila Schneider cells by DNA double-strand break-inducing drugs.

    PubMed

    Hossain, Muktadir S; Akimitsu, Nobuyoshi; Kurokawa, Kenji; Sekimizu, Kazuhisa

    2003-06-01

    Drosophila melanogaster has been widely used as a model organism to study various aspects of development. Apart from the whole Drosophila embryo, there are a number of cultured cell lines derived from Drosophila embryo that have also been used for elucidating various aspects of development. Drosophila Schneider line 2 cells were derived from the late stages of the embryo (Schneider, 1972). We found that the Schneider cells undergo myogenic differentiation upon treatment with neocarzinostatin (NCS), DNA double-strand break (DSB)-inducing drug, as indicated by elongated morphology, myosin heavy chain protein expression, multinucleation and exit from the cell cycle. No induction of differentiation was observed when cell proliferation was inhibited with drugs that do not cause DNA DSBs. Pre-treatment of Schneider cells with inhibitors of PKC, PP 1/2A, p38 MAPK, JNK and proteasomes resulted in the inhibition of morphological differentiation induced by NCS. These results indicate that DNA DSBs can turn on the myogenic program in Drosophila Schneider cells and the process is dependent on PK C-, PP 1/2A-, p38 MAPK-, and JNK- mediated signaling and proteasomal activity. The molting hormone, 20-hydroxyecdysone (20-HE), also showed an anti-myogenic effect on the process. This is the first report of insect cells undergoing differentiation by DNA DSB-inducing drugs as far as we know, and it provides a very useful and convenient in vitro system to study various aspects of Drosophila myogenesis. PMID:12823228

  11. Ventricular fibrillation development following atrial fibrillation after the ingestion of sildenaphil in a patient with Wolff-Parkinson-White syndrome

    PubMed Central

    Inci, Sinan; Izgu, Ibrahim; Aktas, Halil; Dogan, Pinar; Dogan, Ali

    2015-01-01

    Summary Complications in the accessory pathway in Wolff-Parkinson-White (WPW) syndrome could cause different clinical conditions by inducing different arrhythmias. Atrial fibrillation (AF) is one of these arrhythmias and is important as it causes life-threatening arrhythmias. It is known that some drugs, underlying cardiac diseases, and the number of accessory pathways, cause a predisposition to this condition. In the current report, we presented a patient with WPW who was admitted to the emergency department with AF, wide QRS and a rapid ventricular response that progressed to ventricular fibrillation. PMID:26361569

  12. Solvent exchange-induced in situ forming gel comprising ethyl cellulose-antimicrobial drugs.

    PubMed

    Phaechamud, Thawatchai; Mahadlek, Jongjan

    2015-10-15

    Solvent-exchanged in situ forming gel is a drug delivery system which is in sol form before administration. When it contacts with the body fluid, then the water miscible organic solvent dissipates and water penetrates into the system, leading the polymer precipitation as in situ gel at the site of injection. The aim of this research was to study the parameters affecting the gel properties, drug release and antimicrobial activities of the in situ forming gels prepared from ethyl cellulose (EC) dissolved in N-methyl pyrrolidone (NMP) to deliver the antimicrobial agents (doxycycline hyclate, metronidazole and benzyl peroxide) for periodontitis treatment. The gel appearance, pH, viscosity, rheology, syringeability, gel formation, rate of water diffusion into the gels, in vitro degradation, drug release behavior and antimicrobial activities against Staphylococcus aureus, Escherichia coli, Candida albicans, Streptococcus mutans and Porphyrommonas gingivalis were determined. Increasing the amount of EC increased the viscosity of system while still exhibiting Newtonian flow and increased the work of syringeability whereas decreased the releasing of drug. The system transformed into the rigid gel formation after being injected into the simulated gingival crevicular fluid. The developed systems containing 5% w/w antimicrobial agent showed the antimicrobial activities against all test bacteria. Thus the developed solvent exchange-induced in situ forming gels comprising EC-antimicrobial drugs exhibited potential use for periodontitis treatment. PMID:26302862

  13. Drug Fever Induced by Piperacillin/Tazobactam in a Scoliosis Patient: A Case Report.

    PubMed

    Li, Zheng; Shen, Jianxiong; Li, Qiyi; Chan, Matthew Tak Vai; Wu, William Ka Kei

    2015-11-01

    Drug fever is frequently underrecognized by clinicians despite its common occurrence. Fever induced by piperacillin/tazobactam has not been reported in scoliosis correction surgery.Drug fever caused by piperacillin/tazobactam in a scoliosis patient was described.A 36-year-old woman with adult scoliosis undergoing correction surgery was reported. She developed a fever after an intake of piperacillin/tazobactam for 3 days. Eosinophil count, erythrocyte sedimentation rate, and C-reactive proteins were increased in her blood examination. Thorough history, chest radiography, blood cultures, physical examination, and urinalysis revealed no evidences of fever. A drug fever is therefore considered. The fever lasted for 2 weeks and her body temperature come back to normal 4 days after piperacillin/tazobactam cessation.Fever could be caused by piperacillin/tazobactam. The drug fever's diagnosis is easily confounded by a co-occurring infection. Therefore, it is crucial for clinicians to doubt drugs as a reason when no other origin of fever could be identified in a patient. PMID:26579799

  14. Concise Review: Drug Discovery in the Age of the Induced Pluripotent Stem Cell

    PubMed Central

    Ko, Huaising C.

    2014-01-01

    For decades, the paradigm of drug discovery and development has relied on immortalized cell lines, animal models of human disease, and clinical trials. With the discovery of induced pluripotent stem cell (iPSC) technology in 2007, a new human in vitro drug testing platform has potentially augmented this set of tools by providing additional ways to screen compounds for safety and efficacy. The growing number of human disease models made with patient-specific iPSCs has made it possible to conduct research on a wide range of disorders, including rare diseases and those with multifactorial origin, as well as to simulate drug effects on difficult-to-obtain tissues such as brain and cardiac muscle. Toxicity and teratogenicity assays developed with iPSC-derived cells can also provide an additional layer of safety before advancing drugs to clinical trials. The incorporation of iPSC technology into drug therapy development holds promise as a more powerful and nuanced approach to personalized medicine. PMID:24493856

  15. Drug Fever Induced by Piperacillin/Tazobactam in a Scoliosis Patient

    PubMed Central

    Li, Zheng; Shen, Jianxiong; Li, Qiyi; Chan, Matthew Tak Vai; Wu, William Ka Kei

    2015-01-01

    Abstract Drug fever is frequently underrecognized by clinicians despite its common occurrence. Fever induced by piperacillin/tazobactam has not been reported in scoliosis correction surgery. Drug fever caused by piperacillin/tazobactam in a scoliosis patient was described. A 36-year-old woman with adult scoliosis undergoing correction surgery was reported. She developed a fever after an intake of piperacillin/tazobactam for 3 days. Eosinophil count, erythrocyte sedimentation rate, and C-reactive proteins were increased in her blood examination. Thorough history, chest radiography, blood cultures, physical examination, and urinalysis revealed no evidences of fever. A drug fever is therefore considered. The fever lasted for 2 weeks and her body temperature come back to normal 4 days after piperacillin/tazobactam cessation. Fever could be caused by piperacillin/tazobactam. The drug fever's diagnosis is easily confounded by a co-occurring infection. Therefore, it is crucial for clinicians to doubt drugs as a reason when no other origin of fever could be identified in a patient. PMID:26579799

  16. MicroRNAs as Signaling Mediators and Biomarkers of Drug- and Chemical-Induced Liver Injury

    PubMed Central

    McGill, Mitchell R.; Jaeschke, Hartmut

    2015-01-01

    Drug-induced liver injury (DILI) is major problem for both the drug industry and for clinicians. There are two basic categories of DILI: intrinsic and idiosyncratic. The former is the chief cause of acute liver failure in several developed countries, while the latter is the most common reason for post-marketing drug withdrawal and a major reason for failure to approve new drugs in the U.S. Although considerably more progress has been made in the study of intrinsic DILI, our understanding of both forms of drug hepatotoxicity remains incomplete. Recent work involving microRNAs (miRNAs) has advanced our knowledge of DILI in two ways: (1) possible roles of miRNAs in the pathophysiological mechanisms of DILI have been identified, and (2) circulating miRNA profiles have shown promise for the detection and diagnosis of DILI in clinical settings. The purpose of this review is to summarize major findings in these two areas of research. Taken together, exciting progress has been made in the study of miRNAs in DILI. Possible mechanisms through which miRNA species contribute to the basic mechanisms of DILI are beginning to emerge, and new miRNA-based biomarkers have the potential to greatly improve diagnosis of liver injury and prediction of patient outcomes. PMID:26167291

  17. mTOR Complex 1: A Key Player in Neuroadaptations Induced by Drugs of Abuse

    PubMed Central

    Neasta, Jeremie; Barak, Segev; Ben Hamida, Sami; Ron, Dorit

    2014-01-01

    The mammalian (or mechanistic) target of rapamycin (mTOR) complex 1 (mTORC1) is a serine and threonine kinase that regulates cell growth, survival and proliferation. mTORC1 is a master controller of the translation of a subset of mRNAs. In the central nervous system (CNS), mTORC1 plays a crucial role in mechanisms underlying learning and memory by controlling synaptic protein synthesis. Here, we review recent evidence suggesting that the mTORC1 signaling pathway promotes neuroadaptations following exposure to a diverse group of drugs of abuse including stimulants, cannabinoids, opiates and alcohol. We further describe potential molecular mechanisms by which drug-induced mTORC1 activation may alter brain functions. Finally, we propose that mTORC1 is a focal point shared by drugs of abuse to mediate drug-related behaviors such as reward seeking and excessive drug intake, and offer future directions to decipher the contribution of the kinase to mechanisms underlying addiction. PMID:24666346

  18. Drug-induced QT interval prolongation: does ethnicity of the thorough QT study population matter?

    PubMed Central

    Shah, Rashmi R

    2013-01-01

    Inter-ethnic differences in drug responses have been well documented. Drug-induced QT interval prolongation is a major safety concern and therefore, regulatory authorities recommend a clinical thorough QT study (TQT) to investigate new drugs for their QT-prolonging potential. A positive study, determined by breach of a preset regulatory threshold, significantly influences late phase clinical trials by requiring intense ECG monitoring. A few studies that are currently available, although not statistically conclusive at present, question the assumption that ethnicity of the study population may not influence the outcome of a TQT study. Collective consideration of available pharmacogenetic and clinical information suggests that there may be inter-ethnic differences in QT-prolonging effects of drugs and that Caucasians may be more sensitive than other populations. The information also suggest s that (a) these differences may depend on the QT-prolonging potency of the drug and (b) exposure–response (E–R) analysis may be more sensitive than simple changes in QTc interval in unmasking this difference. If the QT response in Caucasians is generally found to be more intense than in non-Caucasians, there may be significant regulatory implications for domestic acceptance of data from a TQT study conducted in foreign populations. However, each drug will warrant an individual consideration when extrapolating the results of a TQT studyfrom one ethnic population to another and the ultimate clinical relevance of any difference. Further adequately designed and powered studies, investigating the pharmacologic properties and E–R relationships of additional drugs with different potencies, are needed in Caucasians, Oriental/Asian and African populations before firm conclusions can be drawn. PMID:22882246

  19. Role of Biotransformation in Drug-Induced Toxicity: Influence of Intra- and Inter-Species Differences in Drug Metabolism

    PubMed Central

    Baillie, Thomas A.; Rettie, Allan E.

    2015-01-01

    It is now widely appreciated that drug metabolites, in addition to the parent drugs themselves, can mediate the serious adverse effects of new therapeutic agents, as a result of which there has been heightened interest in the field of drug metabolism from researchers in academia, the pharmaceutical industry, and regulatory agencies. Much progress has been made in recent years in understanding mechanisms of toxicities caused by drug metabolites, and the numerous factors that influence individual exposure to products of drug biotransformation. This review addresses some of these factors, including the role of drug-drug interactions, reactive metabolite formation, individual susceptibility, and species differences in drug disposition caused by genetic polymorphisms in drug metabolizing enzymes. Examples are provided of adverse reactions that are linked to drug metabolism, and the mechanisms underlying variability in toxic response are discussed. Finally, some future directions for research in this field are highlighted in the context of the discovery and development of new therapeutic agents. PMID:20978360

  20. Protagonists with Parkinson's disease.

    PubMed

    Haan, Joost

    2013-01-01

    Parkinson's disease is a complex disorder with many fascinating features. Its onset is creeping, the progression is slow but inevitable. There are motor symptoms, such as a tremor, rigidity, bradykinesia, mask-like facial expression, and postural abnormalities, but also hallucinations, cognitive deterioration, and depression. In many novels, fictive patients with Parkinson's disease play a role. It seems that authors have used many aspects of the disease to emphasize their messages. Their narratives include themes such as rigidity, petrifaction, confusion, dementia, and hallucinations. In this chapter, as examples, several protagonists with Parkinson's disease will be described from works of John Updike, Jonathan Franzen, Sue Miller, J.M. Coetzee, and John Harding, among others. PMID:23485900

  1. Segmenting the substantia nigra in ultrasound images for early diagnosis of Parkinson`s disease

    E-print Network

    Lübeck, Universität zu

    Segmenting the substantia nigra in ultrasound images for early diagnosis of Parkinson`s disease C diagnosis of Parkinson's disease (PD) is of immense importance, since clinical symptoms do not occur until; Investigator Independence; Parkinson's Disease; Substantia Nigra; Segmentation; Transcranial

  2. 76 FR 44595 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ...of patients with idiopathic (of unknown cause) Parkinson's disease to slow clinical progression and treat the signs and symptoms of Parkinson's disease as initial monotherapy (the single drug used...

  3. 76 FR 4918 - Drug-Induced Liver Injury: Are We Ready to Look?; Public Conference; Request for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... for industry entitled ``Drug-Induced Liver Injury: Premarketing Clinical Evaluation'' (see 74 FR 38035... such as: Liver injury and dysfunction in patients, Liver reaction to injury, Biomarkers and...

  4. Effects of acute levodopa challenge on resting cerebral blood flow in Parkinson’s Disease patients assessed using pseudo-continuous arterial spin labeling

    PubMed Central

    Pressman, Peter; Simuni, Tanya; Parrish, Todd B.; Gitelman, Darren R.

    2015-01-01

    Introduction. Levodopa is the gold-standard for treatment of Parkinson’s disease (PD) related motor symptoms. In this study, we used pseudo-continuous arterial spin labeling (pCASL) to quantify changes in cerebral blood flow (CBF) after acute oral administration of levodopa in PD patients. Materials and Methods. Thirteen patients (3 females, age 66.2 ± 8.7 years) with moderately advanced PD (Hoehn and Yahr stage >2 (median 2.5), disease duration >3 years) were scanned on a 3T Siemens MR scanner before and after oral levodopa administration. Statistical parametric mapping was used to detect drug-induced changes in CBF and its correlation to clinical severity scales. Images were normalized and flipped in order to examine effects on the more affected (left) and less affected (right) cerebral hemispheres across the cohort. Results. Levodopa did not change global CBF but increased regional CBF in dorsal midbrain, precuneus/cuneus, more affected inferior frontal pars opercularis and triangularis, bilateral pre- and postcentral gyri, more affected inferior parietal areas, as well as less affected putamen/globus pallidus by 27–74% (p < 0.05, FWE corrected for multiple comparisons). CBF change was negatively correlated with improvement in bradykinesia UPDRS-III subscore in the more affected precentral gyrus, and total predrug UPDRS-III score in the mid-cingulate region. Drug-induced CBF change in a widespread network of regions including parietal and postcentral areas was also negatively correlated with the predrug rigidity UPDRS-III subscore. Conclusion. These findings are in line with prior reports of abnormal activity in the nigrostriatal pathway of PD patients and demonstrate the feasibility of pCASL as a neuroimaging tool for investigating in vivo physiological effects of acute drug administration in PD.

  5. Oxytocinergic regulation of endogenous as well as drug-induced mood.

    PubMed

    Broadbear, J H; Kabel, D; Tracy, L; Mak, P

    2014-04-01

    The interconnections between the serotonin and oxytocin pathways in the brain suggest that changes in oxytocin levels - arising from natural or drug-induced stimuli - lead to measureable changes in mood. In this paper, we review our findings in the context of what is known about the roles of oxytocin and vasopressin in the expression of a range of behaviours. In our first set of studies we investigated whether stimulation of oxytocin and vasopressin receptors, via central or systemic drug administration, would produce behavioural changes indicative of anti-depressant or anxiolytic activity. In our second study we investigated whether oxytocin receptor activation might be implicated in the interoceptive effects experienced with the popular party drug, MDMA ('ecstasy'). Our first study demonstrated that carbetocin, an oxytocin analogue, had anti-depressant actions following systemic and central administration, effects which were blocked by the oxytocin and vasopressin 1A receptor antagonist, atosiban. Carbetocin also had anxiolytic effects in the elevated plus maze. In an evaluation of the complementary nature of oxytocin and vasopressin, we found that systemic administration of desmopressin, a vasopressin analogue, was anxiogenic; its effects blocked by atosiban which on its own produced robust anxiolytic behavioural changes. In our second study, we evaluated MDMA's interoceptive effects using a drug discrimination paradigm. Carbetocin partially substituted for MDMA, while atosiban interfered with MDMA discrimination, suggesting that oxytocin receptor activation contributes to MDMA-related interoceptive cues. The results of these and other clinical and preclinical studies suggest that oxytocin, as well as its closely related counterpart vasopressin, may provide alternative therapeutic targets for the treatment of mood disorders such as anxiety and depression. The possibility that oxytocin release may contribute to the perception of and processes underlying natural and drug-induced behavioural reinforcement offers exciting prospects for future study. PMID:23872370

  6. Tempol Treatment Reduces Anxiety-Like Behaviors Induced by Multiple Anxiogenic Drugs in Rats

    PubMed Central

    Patki, Gaurav; Salvi, Ankita; Liu, Hesong; Atrooz, Fatin; Alkadhi, Isam; Kelly, Matthew; Salim, Samina

    2015-01-01

    We have published that pharmacological induction of oxidative stress (OS) causes anxiety-like behavior in rats. Using animal models, we also have established that psychological stress induces OS and leads to anxiety-like behaviors. All evidence points towards the causal role of OS in anxiety-like behaviors. To fully ascertain the role of OS in anxiety-like behaviors, it is reasonable to test whether the pro-anxiety effects of anxiogenic drugs caffeine or N-methyl-beta-carboline-3-carboxamide (FG-7142) can be mitigated using agents that minimize OS. In this study, osmotic pumps were either filled with antioxidant tempol or saline. The pumps were attached to the catheter leading to the brain cannula and inserted into the subcutaneous pocket in the back pocket of the rat. Continuous i.c.v. infusion of saline or tempol in the lateral ventricle of the brain (4.3mmol/day) was maintained for 1 week. Rats were intraperitoneally injected either with saline or an anxiogenic drug one at a time. Two hours later all groups were subjected to behavioral assessments. Anxiety-like behavior tests (open-field, light-dark and elevated plus maze) suggested that tempol prevented anxiogenic drug-induced anxiety-like behavior in rats. Furthermore, anxiogenic drug-induced increase in stress examined via plasma corticosterone and increased oxidative stress levels assessed via plasma 8-isoprostane were prevented with tempol treatment. Protein carbonylation assay also suggested preventive effect of tempol in the prefrontal cortex brain region of rats. Antioxidant protein expression and pro-inflammatory cytokine levels indicate compromised antioxidant defense as well as an imbalance of inflammatory response. PMID:25793256

  7. Intense pseudotransport of a cationic drug mediated by vacuolar ATPase: Procainamide-induced autophagic cell vacuolization

    SciTech Connect

    Morissette, Guillaume; Lodge, Robert; Marceau, Francois

    2008-05-01

    Cationic drugs frequently exhibit large apparent volumes of distribution, consistent with various forms of cellular sequestration. The contributions of organelles and metabolic processes that may mimic drug transport were defined in human vascular smooth muscle cells. We hypothesized that procainamide-induced vacuolar cytopathology is driven by intense pseudotransport mediated by the vacuolar (V)-ATPase and pursued the characterization of vesicular trafficking alterations in this model. Large amounts of procainamide were taken up by intact cells (maximal in 2 h, reversible upon washout, apparent K{sub M} 4.69 mM; fluorometric determination of cell-associated drug). Procainamide uptake was extensively prevented or reversed by pharmacological inhibition of the V-ATPase with bafilomycin A1 or FR 167356, decreased at low extracellular pH and preceded vacuolar cell morphology. However, the uptake of procainamide was unaffected by mitochondrial poisons that reduced the uptake of rhodamine 6G. Large vacuoles induced by millimolar procainamide were labeled with the late endosome/lysosome markers Rab7 and CD63 and the autophagy effector LC3; their osmotic formation (but not procainamide uptake) was reduced by extracellular mannitol and parallel to LC3 II formation. Procainamide-induced vacuolization is associated with defective endocytosis of fluorophore-labeled bovine serum albumin, but not with induction of the unfolded protein response. The contents of a vacuole subset slowly ({>=} 24 h) become positive for Nile red staining (phospholipidosis-like response). V-ATPase-driven ion trapping is a form of intense cation pseudotransport that concerns the uncharged form of the drugs, and is associated with a vacuolar, autophagic and evolutive cytopathology and profound effects on vesicular trafficking.

  8. Modelling of drug-induced QT-interval prolongation: estimation approaches and translational opportunities.

    PubMed

    Marostica, Eleonora; Van Ammel, Karel; Teisman, Ard; Boussery, Koen; Van Bocxlaer, Jan; De Ridder, Filip; Gallacher, David; Vermeulen, An

    2015-12-01

    Safety pharmacology studies are performed to assess whether compounds may provoke severe arrhythmias (e.g. Torsades de Pointes, TdP) and sudden death in man. Although there is strong evidence that drugs inducing TdP in man prolong the QT interval in vivo and block the human ether-a-go-go-related gene (hERG) ion channel in vitro, not all drugs affecting the QT interval or the hERG will induce TdP. Nevertheless, QT-interval prolongation and hERG blockade currently represent the most accepted early risk biomarkers to deselect drugs. An extensive pharmacokinetic/pharmacodynamic (PK/PD) analysis is developed to understand moxifloxacin's-induced effects on the QT interval by comparing the relationship between results of an in vitro patch-clamp model to in vivo models. The frequentist and the fully Bayesian estimation procedures were compared and provided similar performances when the best model selected in NONMEM is subsequently implemented in WinBUGS, which guarantees a straightforward calculation of the probability of QT-interval prolongation greater than 2.5 % (10 ms). The use of the percent threshold to account for the intrinsic differences between species and a new calculation of the probability curve are introduced. The concentration providing the 50 % probability indicates that dogs are more sensitive than humans to QT-interval prolongation. However, based on the drug effect, a clear distinction between species cannot be made. An operational PK/PD model of agonism was used to investigate the relationship between effects on the hERG and QT-interval prolongation in dogs. The proposed analysis contributes to establish a translational relationship that could potentially reduce the need for thorough QT studies. PMID:26259721

  9. In-Stent Restenosis Exacerbated by Drug-Induced Severe Eosinophilia after Second-Generation Drug-Eluting Stent Implantation

    PubMed Central

    Yagi, Hiroki; Amiya, Eisuke; Ando, Jiro; Watanabe, Masafumi; Yanaba, Koichi; Ikemura, Masako; Fukayama, Masashi; Komuro, Issei

    2014-01-01

    Patient: Male, 83 Final Diagnosis: In-stent restenosis Symptoms: Chest discomfort Medication: — Clinical Procedure: Cardiac catheterization Specialty: Cardiology Objective: Unusual clinical course Background: In-stent restenosis (ISR) is still a recognized clinical problem in the era of drug-eluting stent (DES). Some previous studies have suggested that circulating eosinophils play an important role in both restenosis and thrombosis after DES implantation. However, the contribution of eosinophils to the pathogenesis of ISR has not yet been concisely clarified. Case Report: We present the case of an 83-year-old male Japanese patient with ISR exacerbated by drug-induced severe eosinophilia. He had previous histories of coronary stent implantations by DES and was referred to our hospital because of erythema with severe eosinophilia (maximum was 6500/?l [48% of total white blood cell count]). Around the same time, the patient developed ISR, for which a stent was deployed 2 years earlier. Arterial wall injury due to the increase in circulating eosinophils was verified in several findings, such as the increase of D-dimer and brain natriuretic peptide. In addition, the histology of the resected tissue from erythema demonstrated that the nuclei of endothelial cells were swollen where eosinophils and lymphocytes heavily infiltrated into the extravascular space, suggesting the presence of vascular injury. This injury due to the increase in circulating eosinophils may have a marked impact on the pathologic process of ISR in DES implantation. Conclusions: Just a few anecdotal reports are available of ISR occurring in the setting of hypereosinophilia. The clarification of the mechanism in this patient provides a new effective therapeutic strategy against ISR in the setting of DES implantation. PMID:25227966

  10. Detecting drug-induced prolongation of the QRS complex: New insights for cardiac safety assessment

    SciTech Connect

    Cros, C.; Skinner, M.; Moors, J.; Lainee, P.; Valentin, J.P.

    2012-12-01

    Background: Drugs slowing the conduction of the cardiac action potential and prolonging QRS complex duration by blocking the sodium current (I{sub Na}) may carry pro-arrhythmic risks. Due to the frequency-dependent block of I{sub Na}, this study assesses whether activity-related spontaneous increases in heart rate (HR) occurring during standard dog telemetry studies can be used to optimise the detection of class I antiarrhythmic-induced QRS prolongation. Methods: Telemetered dogs were orally dosed with quinidine (class Ia), mexiletine (class Ib) or flecainide (class Ic). QRS duration was determined standardly (5 beats averaged at rest) but also prior to and at the plateau of each acute increase in HR (3 beats averaged at steady state), and averaged over 1 h period from 1 h pre-dose to 5 h post-dose. Results: Compared to time-matched vehicle, at rest, only quinidine and flecainide induced increases in QRS duration (E{sub max} 13% and 20% respectively, P < 0.01–0.001) whereas mexiletine had no effect. Importantly, the increase in QRS duration was enhanced at peak HR with an additional effect of + 0.7 ± 0.5 ms (quinidine, NS), + 1.8 ± 0.8 ms (mexiletine, P < 0.05) and + 2.8 ± 0.8 ms (flecainide, P < 0.01) (calculated as QRS at basal HR-QRS at high HR). Conclusion: Electrocardiogram recordings during elevated HR, not considered during routine analysis optimised for detecting QT prolongation, can be used to sensitise the detection of QRS prolongation. This could prove useful when borderline QRS effects are detected. Analysing during acute increases in HR could also be useful for detecting drug-induced effects on other aspects of cardiac function. -- Highlights: ? We aimed to improve detection of drug-induced QRS prolongation in safety screening. ? We used telemetered dogs to test class I antiarrhythmics at low and high heart rate. ? At low heart rate only quinidine and flecainide induced an increase in QRS duration. ? At high heart rate the effects of two out of three antiarrhythmics were enhanced. ? Detection of a drug-induced prolongation of QRS was improved at high heart rate.

  11. Cancer-drug induced insulin resistance: innocent bystander or unusual suspect.

    PubMed

    Ariaans, G; de Jong, S; Gietema, J A; Lefrandt, J D; de Vries, E G E; Jalving, M

    2015-04-01

    Epidemiological and experimental evidence strongly suggests an association between type 2 diabetes mellitus and cancer. Insulin resistance, causing hyperinsulinaemia and eventually hyperglycaemia, appears to increase cancer incidence and disease progression. In addition, insulin resistance seems to reduce the efficacy of cancer therapy. Treatment with cancer therapeutics such as glucocorticoids, chemotherapy, hormonal therapies and targeted drugs can actually induce insulin resistance. The question arises whether cancer-therapy induced insulin resistance impairs anticancer treatment efficacy and disease outcome. Here, we review current literature regarding the incidence of cancer-therapy induced insulin resistance and describe the systemic and extra- and intracellular changes that occur in insulin signalling pathways and glucose metabolism. Subsequently, clinical and preclinical evidence for consequences of insulin resistance in terms of cancer progression and survival is presented. Finally, potential interventions including diabetes medication and limiting energy availability through diets and exercise are discussed. PMID:25724262

  12. Cannabis cue-induced brain activation correlates with drug craving in limbic and visual salience regions: Preliminary results

    E-print Network

    Park, Sohee

    Cannabis cue-induced brain activation correlates with drug craving in limbic and visual salience motivator underlying drug use and relapse but the neural correlates of cannabis craving are not well understood. This study sought to determine whether visual cannabis cues increase cannabis craving and whether

  13. Marine Drugs Regulating Apoptosis Induced by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL).

    PubMed

    Elmallah, Mohammed I Y; Micheau, Olivier

    2015-01-01

    Marine biomass diversity is a tremendous source of potential anticancer compounds. Several natural marine products have been described to restore tumor cell sensitivity to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death. TRAIL is involved during tumor immune surveillance. Its selectivity for cancer cells has attracted much attention in oncology. This review aims at discussing the main mechanisms by which TRAIL signaling is regulated and presenting how marine bioactive compounds have been found, so far, to overcome TRAIL resistance in tumor cells. PMID:26580630

  14. Marine Drugs Regulating Apoptosis Induced by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)

    PubMed Central

    Elmallah, Mohammed I. Y.; Micheau, Olivier

    2015-01-01

    Marine biomass diversity is a tremendous source of potential anticancer compounds. Several natural marine products have been described to restore tumor cell sensitivity to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death. TRAIL is involved during tumor immune surveillance. Its selectivity for cancer cells has attracted much attention in oncology. This review aims at discussing the main mechanisms by which TRAIL signaling is regulated and presenting how marine bioactive compounds have been found, so far, to overcome TRAIL resistance in tumor cells. PMID:26580630

  15. Ambulatory Motor Assessment in Parkinson's Disease Noel L.W. Keijsers, PhD,1* Martin W.I.M. Horstink, MD, PhD,2

    E-print Network

    Gielen, C.C.A.M.

    Ambulatory Motor Assessment in Parkinson's Disease Noe¨l L.W. Keijsers, PhD,1* Martin W an algorithm that distinguishes between on and off states in patients with Parkinson's disease during daily-induced dyskinesia, can au- tomatically assess the motor state of Parkinson's disease patients and can operate

  16. Nuclear microscopy in Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Watt, F.; Lee, T.; Thong, P. S. P.; Tang, S. M.

    1995-09-01

    Rats have been subjected to unilateral lesioning with the selective neurotoxin 6-OHDA in order to induce Parkinsonism. Analysis using the NUS Nuclear Microscope facility have shown that iron levels are raised by an average of 26% in the lesioned subtantia nigra region of the brain compared with the non-lesioned side. In addition the background tissue level of iron is also elevated by 31% in the lesioned side, indicating that there is a general increase in iron levels as a result of the lesioning. This result is consistent with the other observations that other diseases of the brain are frequently associated with altered iron levels (eg. progressive nuclear palsy, multiple system atrophy, Alzheimers disease, multiple sclerosis).

  17. Balance Dysfunction in Parkinson's Disease

    PubMed Central

    Rinalduzzi, Steno; Missori, Paolo; Fattapposta, Francesco; Currà, Antonio

    2015-01-01

    Stability and mobility in functional motor activities depend on a precise regulation of phasic and tonic muscular activity that is carried out automatically, without conscious awareness. The sensorimotor control of posture involves a complex integration of multisensory inputs that results in a final motor adjustment process. All or some of the components of this system may be dysfunctional in Parkinsonian patients, rendering postural instability one of the most disabling features of Parkinson's disease (PD). Balance control is critical for moving safely in and adapting to the environment. PD induces a multilevel impairment of this function, therefore worsening the patients' physical and psychosocial disability. In this review, we describe the complex ways in which PD impairs posture and balance, collecting and reviewing the available experimental evidence. PMID:25654100

  18. Tolcapone addition improves Parkinson’s disease associated nonmotor symptoms

    PubMed Central

    2014-01-01

    Background: Addition of catechol-O-methyltransferase inhibitors to a conventional levodopa/dopadecarboxylase inhibitor regimen improves motor symptoms in patients with Parkinson’s disease. Optimizing dopamine substitution is also beneficial for nonmotor features. Objectives: To investigate the efficacy of supplemental tolcapone intake on nonmotor symptoms. Design/methods: A total of 125 levodopa-treated patients additionally took tolcapone in this observational trial. Initially and following 4 weeks of tolcapone intake, the neurologist scored with Unified Parkinson’s Disease Rating Scale parts I, II, IV, the nonmotor symptoms scale for Parkinson’s disease and recorded the off time. The patients rated themselves with the EuroQuol, its visual analogue scale and the nonmotor screening questionnaire. Caregivers reported the daily duration of care giving. Results: All scores improved except for Unified Parkinson’s Disease Rating Scale part IV and domains 4, 5 and 8 of the nonmotor symptoms scale for Parkinson’s disease. Conclusion: This trial demonstrates that tolcapone addition may improve nonmotor features. PMID:24587824

  19. Cellular thiols and reactive oxygen species in drug-induced apoptosis.

    PubMed

    Davis, W; Ronai, Z; Tew, K D

    2001-01-01

    In higher eukaryotes, reactive oxygen species (ROS) are generated during respiration in mitochondria in the course of reduction of molecular oxygen as well as by distinct enzyme systems. ROS have been implicated in the regulation of diverse cellular functions including defense against pathogens, intracellular signaling, transcriptional activation, proliferation, and apoptosis. The reduction-oxidation (redox) state of the cell is primarily a consequence of the precise balance between the levels of ROS and endogenous thiol buffers present in the cell, such as glutathione and thioredoxin, which protect cells from oxidative damage. Dramatic elevation of ROS, exceeding compensatory changes in the level of the endogenous thiol buffers, may result in the sustained activation of signaling pathways and expression of genes that induce apoptosis in affected cells. Many cytotoxic drugs function selectively to kill cancer cells by the abrogation of proliferative signals, leading to cell death, and numerous reports have demonstrated that ROS are generated following treatment with these drugs. In this review, we will summarize recent contributions to our understanding of the importance of cytotoxic drug-induced modulation of cellular redox status for signaling and transcription leading to activation of apoptotic effector mechanisms. PMID:11123355

  20. FXR antagonism of NSAIDs contributes to drug-induced liver injury identified by systems pharmacology approach

    PubMed Central

    Lu, Weiqiang; Cheng, Feixiong; Jiang, Jing; Zhang, Chen; Deng, Xiaokang; Xu, Zhongyu; Zou, Shien; Shen, Xu; Tang, Yun; Huang, Jin

    2015-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are worldwide used drugs for analgesic, antipyretic, and anti-inflammatory therapeutics. However, NSAIDs often cause several serious liver injuries, such as drug-induced liver injury (DILI), and the molecular mechanisms of DILI have not been clearly elucidated. In this study, we developed a systems pharmacology approach to explore the mechanism-of-action of NSAIDs. We found that the Farnesoid X Receptor (FXR) antagonism of NSAIDs is a potential molecular mechanism of DILI through systematic network analysis and in vitro assays. Specially, the quantitative real-time PCR assay reveals that indomethacin and ibuprofen regulate FXR downstream target gene expression in HepG2 cells. Furthermore, the western blot shows that FXR antagonism by indomethacin induces the phosphorylation of STAT3 (signal transducer and activator of transcription 3), promotes the activation of caspase9, and finally causes DILI. In summary, our systems pharmacology approach provided novel insights into molecular mechanisms of DILI for NSAIDs, which may propel the ways toward the design of novel anti-inflammatory pharmacotherapeutics. PMID:25631039

  1. Dynamic in vivo analysis of drug induced actin cytoskeleton degradation by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Schnekenburger, Juergen; Bredebusch, Ilona; Langehanenberg, Patrik; Domschke, Wolfram; von Bally, Gert; Kemper, Björn

    2007-07-01

    The actin cytoskeleton mediates a variety of crucial cellular functions as migration, intracellular transport, exocytosis, endocytosis and force generation. The highly dynamic actin fibers are therefore targets for several drugs and toxins. However the study of actin interfering processes by standard microscopy techniques fails in the detailed resolution of dynamic spatial alterations required for a deeper understanding of toxic effects. Here we applied digital holographic microscopy in the online functional analysis of the actin cytoskeleton disrupting marine toxin Latrunculin B. SEM and fluorescence microscopy showed rapid Latrunculin B induced alterations in cell morphology and actin fiber degradation in pancreas tumor cells. The dynamic digital holographic in vivo analysis of the drug dependent cellular processes demonstrated differences in the actin cytoskeleton stability of highly differentiated and dedifferentiated pancreas tumor cell lines. The spatial resolution of the morphological alterations revealed unequal changes in cell morphology. While cells with a low metastatic potential showed Latrunculin B induced cell collapse within 4 h the metastatic tumor cells were increased in cell volume indicating Latrunculin B effects also on cell water content. These data demonstrate that marker free, non-destructive online analysis of cellular morphology and dynamic spatial processes in living cells by digital holography offers new insights in actin dependent cellular mechanisms. Digital holographic microscopy was shown to be a versatile tool in the screening of toxic drug effects and cancer cell biology.

  2. Preclinical Evidence for a Role of the Nicotinic Cholinergic System in Parkinson's Disease.

    PubMed

    Perez, Xiomara A

    2015-12-01

    One of the primary deficits in Parkinson's disease (PD) is the loss of dopaminergic neurons in the substantia nigra pars compacta which leads to striatal dopaminergic deficits that underlie the motor symptoms associated with the disease. A plethora of animal models have been developed over the years to uncover the molecular alterations that lead to PD development. These models have provided valuable information on neurotransmitter pathways and mechanisms involved. One such a system is the nicotinic cholinergic system. Numerous studies show that nigrostriatal damage affects nicotinic receptor-mediated dopaminergic signaling; therefore therapeutic modulation of the nicotinic cholinergic system may offer a novel approach to manage PD. In fact, there is evidence showing that nicotinic receptor drugs may be useful as neuroprotective agents to prevent Parkinson's disease progression. Additional preclinical studies also show that nicotinic receptor drugs may be beneficial for the treatment of L-dopa induced dyskinesias. Here, we review preclinical findings supporting the idea that nicotinic receptors are valuable therapeutic targets for PD. PMID:26553323

  3. Parkinson’s Disease: No Milk Today?

    PubMed Central

    Kistner, Andrea; Krack, Paul

    2014-01-01

    Several prospective epidemiological studies on large cohorts have consistently reported an association between milk intake and a higher incidence of Parkinson’s disease (PD). Pesticide contamination of milk and milk’s urate-lowering effects have been put forward as risk factors to explain epidemiological data. This has led to considerable uncertainty among physicians and avoidance of dairy products by PD patients. However, neither factor stands up to the rational and detailed examination of the literature carried out in this mini-review. We suggest that changes in eating behavior related to pre-motor PD are an alternative potential explanation of correlations observed between milk intake and PD occurrence. Despite clear-cut associations between milk intake and PD incidence, there is no rational explanation for milk being a risk factor for PD. Based on current knowledge, limiting the consumption of dairy products does not seem to be a reasonable strategy in the prevention of the development and progression of PD. PMID:25250013

  4. Taste performance in Parkinson’s disease.

    PubMed

    Cecchini, Maria Paola; Osculati, Francesco; Ottaviani, Sarah; Boschi, Federico; Fasano, Alfonso; Tinazzi, Michele

    2014-02-01

    While olfactory deficit is already known to be associated with early-stage Parkinson’s disease (PD), taste perception has not fully clarified so far. In this study, we investigated the taste performance in 61 patients with PD and 66 healthy controls (HC) using the Whole Mouth (WMT) and Taste Strip Tests (TST). In addition, we evaluated their olfactory function by means of the Sniffin’ Sticks Test (SST). TST score was significantly lower in PD patients than in HC (TST score 11.0 ± 2.8 vs. 12.2 ± 2.1; p<0.018) while WMT showed no difference. The olfactory evaluation confirmed the results reported in the literature with a significant reduction of the SST score in PD patients than in HC (SST score 7.0 ± 2.8 vs. 11.3 ± 2.8; p<0.0001). The conflicting results revealed by TST and WMT could rely on a taste impairment not detectable at supra-threshold concentration of tastes, typical of the daily life. Possible biological correlates of taste impairment in PD are discussed. PMID:24078166

  5. Vesicular Integrity in Parkinson’s Disease

    PubMed Central

    Alter, Shawn P.; Lenzi, Gina M.; Bernstein, Alison I.

    2014-01-01

    The defining motor characteristics of Parkinson’s disease (PD) are mediated by the neurotransmitter dopamine (DA). Dopamine molecules spend most of their lifespan stored in intracellular vesicles awaiting release and very little time in the extracellular space or the cytosol. Without proper packaging of transmitter and trafficking of vesicles to the active zone, dopamine neurotransmission cannot occur. In the cytosol, dopamine is readily oxidized; excessive cytosolic dopamine oxidation may be pathogenic to nigral neurons in PD. Thus, factors that disrupt vesicular function may impair signaling and increase the vulnerability of dopamine neurons. This review outlines the many mechanisms by which disruption of vesicular function may contribute to the pathogenesis of PD. From direct inhibition of dopamine transport into vesicles by pharmacological or toxicological agents to alterations in vesicle trafficking by PD-related gene products, variations in the proper compartmentalization of dopamine can wreak havoc on a functional dopamine pathway. Findings from patient populations, imaging studies, transgenic models, and mechanistic studies will be presented to document the relationship between impaired vesicular function and vulnerability of the nigrostriatal dopamine system. Given the deleterious effects of impaired vesicular function, strategies aimed at enhancing vesicular function may be beneficial in the treatment of PD. PMID:23690026

  6. Parkinson’s Disease: Genetics and Beyond

    PubMed Central

    Inamdar, NN; Arulmozhi, DK; Tandon, A; Bodhankar, SL

    2007-01-01

    Parkinson’s disease (PD) is characterized clinically by resting tremor, rigidity, bradykinesia and postural instability due to progressive and selective loss of dopamine neurons in the ventral substantia nigra, with the presence of ubiquitinated protein deposits called Lewy bodies in the neurons. The pathoetiology of cell death in PD is incompletely understood and evidence implicates impaired mitochondrial complex I function, altered intracellular redox state, activation of proapoptotic factors and dysfunction of ubiquitinproteasome pathway. Now it is believed that genetic aberration, an environmental toxin or combination of both leads to a cascade of events culminating in the destruction of myelinated brainstem catecholaminergic neurons. Also the role of production of significant levels of abnormal proteins, which may misfold, aggregate and interfere with intracellular processes causing cytotoxicity has recently been hypothesized. In this article, the diverse pieces of evidence that have linked the various factors responsible for the pathophysiology of PD are reviewed with special emphasis to various candidate genes and proteins. Furthermore, the present therapeutic strategies and futuristic approaches for the pharmacotherapy of PD are critically discussed. PMID:18615181

  7. Zebrafish as model organisms for studying drug-induced liver injury

    PubMed Central

    Vliegenthart, A D Bastiaan; Tucker, Carl S; Del Pozo, Jorge; Dear, James W

    2014-01-01

    Drug-induced liver injury (DILI) is a major challenge in clinical medicine and drug development. New models are needed for predicting which potential therapeutic compounds will cause DILI in humans, and new markers and mediators of DILI still need to be identified. This review highlights the strengths and weaknesses of using zebrafish as a high-throughput in vivo model for studying DILI. Although the zebrafish liver architecture is different from that of the mammalian liver, the main physiological processes remain similar. Zebrafish metabolize drugs using similar pathways to those in humans; they possess a wide range of cytochrome P450 enzymes that enable metabolic reactions including hydroxylation, conjugation, oxidation, demethylation and de-ethylation. Following exposure to a range of hepatotoxic drugs, the zebrafish liver develops histological patterns of injury comparable to those of mammalian liver, and biomarkers for liver injury can be quantified in the zebrafish circulation. The zebrafish immune system is similar to that of mammals, but the zebrafish inflammatory response to DILI is not yet defined. In order to quantify DILI in zebrafish, a wide variety of methods can be used, including visual assessment, quantification of serum enzymes and experimental serum biomarkers and scoring of histopathology. With further development, the zebrafish may be a model that complements rodents and may have value for the discovery of new disease pathways and translational biomarkers. PMID:24773296

  8. Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity

    SciTech Connect

    Beger, Richard D.; Sun, Jinchun; Schnackenberg, Laura K.

    2010-03-01

    Hepatotoxicity and nephrotoxicity are two major reasons that drugs are withdrawn post-market, and hence it is of major concern to both the FDA and pharmaceutical companies. The number of cases of serious adverse effects (SAEs) in marketed drugs has climbed faster than the number of total drug prescriptions issued. In some cases, preclinical animal studies fail to identify the potential toxicity of a new chemical entity (NCE) under development. The current clinical chemistry biomarkers of liver and kidney injury are inadequate in terms of sensitivity and/or specificity, prompting the need to discover new translational specific biomarkers of organ injury. Metabolomics along with genomics and proteomics technologies have the capability of providing translational diagnostic and prognostic biomarkers specific for early stages of liver and kidney injury. Metabolomics has several advantages over the other omics platforms such as ease of sample preparation, data acquisition and use of biofluids collected through minimally invasive procedures in preclinical and clinical studies. The metabolomics platform is reviewed with particular emphasis on applications involving drug-induced hepatotoxicity and nephrotoxicity. Analytical platforms for metabolomics, chemometrics for mining metabolomics data and the applications of the metabolomics technologies are covered in detail with emphasis on recent work in the field.

  9. Non-Darwinian dynamics in therapy-induced cancer drug resistance

    PubMed Central

    Zhou, Joseph; Moor, Andreas; Mojtahedi, Mitra; Jackson, Dean; Huang, Sui

    2015-01-01

    Development of drug resistance, the prime cause of failure in cancer therapy, is commonly explained by the selection of resistant mutant cancer cells. However, dynamic non-genetic heterogeneity of clonal cell populations continuously produces meta-stable phenotypic variants (persisters), some of which represent stem-like states that confer resistance. Even without genetic mutations, Darwinian selection can expand these resistant variants, which would explain the invariably rapid emergence of stem-like resistant cells. Here, using quantitative measurements and modeling we show that appearance of multi-drug resistance in HL60 leukemic cells following treatment with vincristine is not explained by Darwinian selection but by Lamarckian induction. Single-cell longitudinal monitoring confirms the induction of multi-drug resistance in individual cells. Associated transcriptome changes indicate a lasting stress-response consistent with a drug-induced switch between high-dimensional cancer attractors. Resistance-induction correlates with Wnt-pathway up-regulation and is suppressed by ?-catenin knock-down, revealing a new opportunity for early therapeutic intervention against resistance development. PMID:24045430

  10. ANTI-CANCER DRUG INDUCED NEUROTOXICITY AND IDENTIFICATION OF RHO PATHWAY SIGNALING MODULATORS AS POTENTIAL NEUROPROTECTANTS

    PubMed Central

    James, Sarah E.; Burden, Hubert; Burgess, Russell; Xie, Youmei; Yang, Tao; Massa, Stephen M.; Longo, Frank M.; Lu, Qun

    2008-01-01

    Many chemotherapy drugs are known to cause significant clinical neurotoxicity, which can result in the early cessation of treatment. To identify and develop more effective means of neuroprotection it is important to understand the toxicity of these drugs at the molecular and cellular levels. In the present study, we examine the effects of paclitaxel (taxol), cisplatin, and methotrexate on primary rat neurons including hippocampal, cortical, and dorsal horn/dorsal root ganglion neuronal cultures. We found that all of these anti-cancer drugs induce substantial neurotoxicity evidenced by neurite degeneration. The neurons are capable of recovering after treatment withdrawal, but taxol exerts a biphasic effect that results in the collapse of processes days after treatment is withdrawn. After cisplatin and methotrexate treatment, we observed the degeneration of neuronal processes including the reduction of dendritic branching, length, and altered growth cone formation, indicating an abnormal arrangement of the actin cytoskeleton consistent with the involvement of Rho family small GTPases. Inhibiting RhoA downstream effector p160ROCK/Rho kinase using Y-27632, or activating p75 neurotrophin receptor (p75NTR) using non-peptide mimetic LM11A-31, were able to reverse the degeneration caused by cisplatin and methotrexate. Therefore, the neurotoxicity resulting from exposure to the anti-cancer drugs cisplatin and methotrexate can be alleviated by inhibiting Rho signaling pathway. PMID:18539332

  11. STEM CELLS 2014;00:0000 www.StemCells.com AlphaMed Press 2014 EMBRYONIC STEM CELLS/INDUCED PLURIPOTENT STEM CELLS

    E-print Network

    Feng, Jian

    symptoms of Parkinson's disease are linked to the relatively selective degeneration of nigral DA words. induced pluripotent stem cells · Parkinson's disease · parkin · dopamine · microtubule ABSTRACT Parkinson's disease (PD) is characterized by the degeneration of nigral do paminergic (DA

  12. Measles virus-induced mononuclear leukocyte adherence inhibition: effect of some drugs influencing arachidonic acid metabolic pathways.

    PubMed

    Mayer, M

    1986-11-01

    Effect of some drugs influencing arachidonic acid metabolic pathways upon the measles virus-induced leukocyte adherence inhibition was investigated in multiple sclerosis patients and in the control group. The drugs used were natrium salicylate, ethanol, and phenidon(1-phenyl-3-pyrazolidon). Statistically significant differences were proved between multiple sclerosis patients and controls using phenidon, a drug inhibiting both cyclooxygenase and lipoxygenase pathways of the arachidonic acid metabolism. The results obtained provide suggestion on participation of arachidonic acid metabolism in the measles virus-induced leukocyte adherence inhibition phenomenon and in its alterations in multiple sclerosis. PMID:2881471

  13. Drug-induced DNA repair: X-ray structure of a DNA-ditercalinium complex

    SciTech Connect

    Gao, Qi; Williams, L.D.; Egli, M.; Rabinovich, D.; Rich, A. ); Chen, Shunle; Quigley, G.J. )

    1991-03-15

    Ditercalinium is a synthetic anticancer drug that binds to DNA by bis-intercalation and activates DNA repair processes. In prokaryotes, noncovalent DNA-ditercalinium complexes are incorrectly recognized by the uvrABC repair system as covalent lesions on DNA. In eukaryotes, mitochondrial DNA is degraded by excess and futile DNA repair. Using x-ray crystallography, the authors have determined, to 1.7 {angstrom} resolution, the three-dimensional structure of a complex of ditercalinium bound to the double-stranded DNA fragment (d(CGCG)){sub 2}. The DNA in the complex with ditercalinium is kinked (by 15{degrees}) and severely unsound (by 36{degrees}) with exceptionally wide major and minor grooves. Recognition of the DNA-ditercalinium complex by uvrABC in prokaryotes, and by mitochondrial DNA repair systems in eukaryotes, might be related to drug-induced distortion of the DNA helix.

  14. Parkinson's Disease Research Web - Information for Patients and Caregivers

    MedlinePLUS

    ... Scientists Find People About NINDS Parkinson's Disease Research Web - Information for Patients & Caregivers Parkinson's Disease Highlights for ... Information Page Parkinson's Disease: Hope Through Research NINDS Deep Brain Stimulation for Parkinson's Disease Parkinson's Research News ...

  15. A case of anastrazole-related drug-induced autoimmune hepatitis.

    PubMed

    Islam, Mohammad Saiful; Wright, Gavin; Tanner, Peter; Lucas, Robert

    2014-10-01

    An otherwise asymptomatic 66-year-old British Caucasian female with a history of breast cancer was referred by the oncologists due to progressively abnormal liver function tests (LFTs). After undergoing wide local excision and axillary dissection she was started on the anti-oestrogen drug Arimidex (anastrozole) as the tumour cells were oestrogen receptor positive. With a background of normal LFTs, an absence of risk factors for chronic liver disease and otherwise good health, 6 months after starting Arimidex the oncology team noted deranged LFTs. Her hepatitis screening including hepatitis A-C, HSV, HIV, CMV and EBV serology and metabolic screening was negative. Liver ultrasound was essentially normal.The autoimmune screening was positive for ANA (1:160) and weakly positive for anti-smooth muscle antibody (1:80). A liver biopsy demonstrated heavy portal tract inflammation, associated interface hepatitis, and numerous necroinflammatory foci throughout the liver parenchyma. There was also a moderate to marked mixed inflammatory infiltrate of mainly plasma cells and lymphocytes with scattered eosinophils and neutrophils, which best reflects drug-induced liver injury (DILI), although potentially could also correspond with autoimmune hepatitis.The exact mechanism of liver injury from anastrazole is not very clear, but metabolic and immune-mediated damage and individual susceptibility are likely involved in what are often idiosyncratic reactions. The type of cellular immune recruitment (e.g., T-helper cells) reflects the chronicity of injury, with the potential to prolonged liver derangement months or years beyond the period of drug exposure such that DILI may mimic and/or cause drug-induced autoimmune hepatitis. PMID:26184021

  16. Intrinsic versus idiosyncratic drug-induced hepatotoxicity--two villains or one?

    PubMed

    Roth, Robert A; Ganey, Patricia E

    2010-03-01

    "Intrinsic" and "idiosyncratic" drug-induced liver injury reactions are commonly thought to arise by different modes of action. Intrinsic toxicity is reproducible in animals and occurs dose-dependently at sublethal doses. Environmental and genetic sensitivity factors can influence the toxicity of intrinsic hepatotoxicants. Among these is inflammatory stress. For example, exposure of mice to inflammatory bacterial lipopolysaccharide (LPS) causes a leftward shift in the dose-response relationship for acetaminophen hepatotoxicity; that is, acetaminophen toxicity is enhanced by LPS-induced inflammatory stress. Idiosyncratic reactions present themselves very differently than intrinsic ones; they happen in a minority of patients, with variable time of onset and no obvious relationship to drug dose, and they are not reproducible in usual animal tests. Although these characteristics seem to distinguish them from intrinsic reactions, consideration of fundamental principles of dose response can explain the differences. For a drug that causes idiosyncratic hepatotoxicity, the liver may not be a typical target for toxicity because the dose-response curve for hepatotoxicity lies to the right of the lethal dose. However, a sporadically occurring sensitivity factor, such as an inflammatory episode, could shift the dose-response curve for hepatotoxicity to the left, thereby bringing hepatotoxic doses into the therapeutic range. This hypothesis can account for the bizarre characteristics of idiosyncratic reactions and is supported by recent results showing that several drugs associated with human idiosyncratic reactions can be rendered hepatotoxic to rodents upon interaction with an inflammatory stimulus. In light of this view, intrinsic and idiosyncratic reactions may not be that different after all. PMID:20019161

  17. Hyaluronic acid prevents immunosuppressive drug-induced ovarian damage via up-regulating PGRMC1 expression

    PubMed Central

    Zhao, Guangfeng; Yan, Guijun; Cheng, Jie; Zhou, Xue; Fang, Ting; Sun, Haixiang; Hou, Yayi; Hu, Yali

    2015-01-01

    Chemotherapy treatment in women can frequently cause damage to the ovaries, which may lead to primary ovarian insufficiency (POI). In this study, we assessed the preventative effects of hyaluronic acid (HA) in immunosuppressive drug-induced POI-like rat models and investigated the possible mechanisms. We found that HA, which was reduced in primary and immunosuppressant-induced POI patients, could protect the immunosuppressant-induced damage to granulosa cells (GCs) in vitro. Then we found that HA blocked the tripterygium glycosides (TG) induced POI-like presentations in rats, including delayed or irregular estrous cycles, reduced 17 beta-estradiol(E2) concentration, decreased number of follicles, destruction of follicle structure, and damage of reproductive ability. Furthermore, we investigated the mechanisms of HA prevention effects on POI, which was associated with promotion of GC proliferation and PGRMC1 expression. In conclusion, HA prevents chemotherapy-induced ovarian damage by promoting PGRMC1 in GCs. This study may provide a new strategy for prevention and treatment of POI. PMID:25558795

  18. Evaluation of blood-brain barrier transport and CNS drug metabolism in diseased and control brain after intravenous L-DOPA in a unilateral rat model of Parkinson's disease

    PubMed Central

    2012-01-01

    Background Changes in blood-brain barrier (BBB) functionality have been implicated in Parkinson's disease. This study aimed to investigate BBB transport of L-DOPA transport in conjunction with its intra-brain conversion, in both control and diseased cerebral hemispheres in the unilateral rat rotenone model of Parkinson's disease. Methods In Lewis rats, at 14 days after unilateral infusion of rotenone into the medial forebrain bundle, L-DOPA was administered intravenously (10, 25 or 50 mg/kg). Serial blood samples and brain striatal microdialysates were analysed for L-DOPA, and the dopamine metabolites DOPAC and HVA. Ex-vivo brain tissue was analyzed for changes in tyrosine hydroxylase staining as a biomarker for Parkinson's disease severity. Data were analysed by population pharmacokinetic analysis (NONMEM) to compare BBB transport of L-DOPA in conjunction with the conversion of L-DOPA into DOPAC and HVA, in control and diseased cerebral hemisphere. Results Plasma pharmacokinetics of L-DOPA could be described by a 3-compartmental model. In rotenone responders (71%), no difference in L-DOPA BBB transport was found between diseased and control cerebral hemisphere. However, in the diseased compared with the control side, basal microdialysate levels of DOPAC and HVA were substantially lower, whereas following L-DOPA administration their elimination rates were higher. Conclusions Parkinson's disease-like pathology, indicated by a huge reduction of tyrosine hydroxylase as well as by substantially reduced levels and higher elimination rates of DOPAC and HVA, does not result in changes in BBB transport of L-DOPA. Taking the results of this study and that of previous ones, it can be concluded that changes in BBB functionality are not a specific characteristic of Parkinson's disease, and cannot account for the decreased benefit of L-DOPA at later stages of Parkinson's disease. PMID:22316420

  19. Protective effects of 2,3,5,4'-tetrahydroxystilbene-2-O-?-d-glucoside in the MPTP-induced mouse model of Parkinson's disease: Involvement of reactive oxygen species-mediated JNK, P38 and mitochondrial pathways.

    PubMed

    He, Hong; Wang, Songhai; Tian, Jiyu; Chen, Lei; Zhang, Wei; Zhao, Junjie; Tang, Haifeng; Zhang, Xiaojun; Chen, Jianzong

    2015-11-15

    Parkinson's disease (PD) is characterized by the selective death of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress-induced neuron loss is thought to play a crucial role in the pathogenesis of PD. Previous work from our group suggests that 2,3,5,4'-tetrahydroxystilbene-2-O-?-d-glucoside (TSG), an active component extracted from a traditional Chinese herb, Polygonum multiflorum thunb, can attenuate 1-methyl-4-phenyl pyridium-induced apoptosis in the neuronal cell line PC12, by inhibiting reactive oxygen species generation and modulating c-Jun N-terminal kinases (JNK) activation. Here, we investigated the protective effects of TSG against 1-methyl-4-phenyl-1,2,3,6-tetrahydropypridine (MPTP)-induced loss of tyrosine hydroxylase positive cells in mice and the underlying mechanisms. The results showed that MPTP-induced loss of tyrosine hydroxylase positive cells and reactive oxygen species generation were prevented by TSG in a dose-dependent manner. The reactive oxygen species scavenger N-acetylcysteine could also mitigate reactive oxygen species generation. Moreover, JNK and P38 were activated by MPTP, but extracellular signal-regulated protein kinases phosphorylation did not change after MPTP treatment. TSG at different doses blocked the activation of JNK and P38. The protective effect of TSG was also associated with downregulation of the bax/bcl-2 ratio, reversed the release of cytochrome c and smac, and inhibited the activation of caspase-3, -6, and -9 induced by MPTP. In conclusion, our studies demonstrated that the protective effects of TSG in the MPTP-induced mouse model of PD are involved, at least in part, in controlling reactive oxygen species-mediated JNK, P38, and mitochondrial pathways. PMID:26477638

  20. 75 FR 14602 - Guidance for Industry on Drug-Induced Liver Injury: Premarketing Clinical Evaluation; Opening of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ...-Induced Liver Injury: Premarketing Clinical Evaluation; Opening of Comment Period for Future Revision of... the Federal ] Register July 30, 2009, entitled ``Drug-Induced Liver Injury: Premarketing Clinical Evaluation.'' In addition, FDA, along with the American Association for the Study of Liver Diseases...

  1. Drug-induced PML: a global agenda for a global challenge.

    PubMed

    Vinhas de Souza, M; Keller-Stanislawski, B; Blake, K; Hidalgo-Simon, A; Arlett, P; Dal Pan, G

    2012-04-01

    The occurrence of severe adverse events such as progressive multifocal leukoencephalopathy (PML) has the potential to limit the benefits of highly efficacious medicines being developed to fulfill unmet clinical needs across therapeutic areas. Following an Expert meeting in London in July 2011 (http://www.ema.europa.eu/docs/en_GB/document_library/Report/2011/09/WC500111562.pdf), a research agenda, highlighting methodological, clinical, and communication elements, to mitigate the risk and improve the management of drug-induced PML has been agreed upon. PMID:22378158

  2. Galactosylated Polymer Nano-objects by Polymerization-Induced Self-Assembly, Potential Drug Nanocarriers.

    PubMed

    Semsarilar, Mona; Canton, Irene; Ladmiral, Vincent

    2016-01-01

    Glycopolymer-based nanostructures are invaluable tools to both study biological phenomena and to design future targeted drug delivery systems. Polymerization-induced self-assembly, especially RAFT aqueous dispersion polymerization is a unique method to prepare such polymer nanostructures, as it enables the preparation of very-well-defined morphologies at very high concentrations. Here we describe the implementation of PISA to the synthesis of galactosylated spheres, wormlike micelles and vesicles, and the preliminary results of cell toxicity, cell uptake, and cargo delivering capacity of galactose-decorated vesicles. PMID:26537467

  3. Tryptamine-Gallic Acid Hybrid Prevents Non-steroidal Anti-inflammatory Drug-induced Gastropathy

    PubMed Central

    Pal, Chinmay; Bindu, Samik; Dey, Sumanta; Alam, Athar; Goyal, Manish; Iqbal, Mohd. Shameel; Sarkar, Souvik; Kumar, Rahul; Halder, Kamal Krishna; Debnath, Mita Chatterjee; Adhikari, Susanta; Bandyopadhyay, Uday

    2012-01-01

    We have investigated the gastroprotective effect of SEGA (3a), a newly synthesized tryptamine-gallic acid hybrid molecule against non-steroidal anti-inflammatory drug (NSAID)-induced gastropathy with mechanistic details. SEGA (3a) prevents indomethacin (NSAID)-induced mitochondrial oxidative stress (MOS) and dysfunctions in gastric mucosal cells, which play a pathogenic role in inducing gastropathy. SEGA (3a) offers this mitoprotective effect by scavenging of mitochondrial superoxide anion (O2??) and intramitochondrial free iron released as a result of MOS. SEGA (3a) in vivo blocks indomethacin-mediated MOS, as is evident from the inhibition of indomethacin-induced mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. SEGA (3a) corrects indomethacin-mediated mitochondrial dysfunction in vivo by restoring defective electron transport chain function, collapse of transmembrane potential, and loss of dehydrogenase activity. SEGA (3a) not only corrects mitochondrial dysfunction but also inhibits the activation of the mitochondrial pathway of apoptosis by indomethacin. SEGA (3a) inhibits indomethacin-induced down-regulation of bcl-2 and up-regulation of bax genes in gastric mucosa. SEGA (3a) also inhibits indometacin-induced activation of caspase-9 and caspase-3 in gastric mucosa. Besides the gastroprotective effect against NSAID, SEGA (3a) also expedites the healing of already damaged gastric mucosa. Radiolabeled (99mTc-labeled SEGA (3a)) tracer studies confirm that SEGA (3a) enters into mitochondria of gastric mucosal cell in vivo, and it is quite stable in serum. Thus, SEGA (3a) bears an immense potential to be a novel gastroprotective agent against NSAID-induced gastropathy. PMID:22157011

  4. Are patients with Parkinson’s disease blind to blindsight?

    PubMed Central

    Stebbins, Glenn; Schiltz, Christine; Goetz, Christopher G.

    2014-01-01

    In Parkinson’s disease, visual dysfunction is prominent. Visual hallucinations can be a major hallmark of late stage disease, but numerous visual deficits also occur in early stage Parkinson’s disease. Specific retinopathy, deficits in the primary visual pathway and the secondary ventral and dorsal pathways, as well as dysfunction of the attention pathways have all been posited as causes of hallucinations in Parkinson’s disease. We present data from patients with Parkinson’s disease that contrast with a known neuro-ophthalmological syndrome, termed ‘blindsight’. In this syndrome, there is an absence of conscious object identification, but preserved ‘guess’ of the location of a stimulus, preserved reflexive saccades and motion perception and preserved autonomical and expressive reactions to negative emotional facial expressions. We propose that patients with Parkinson’s disease have the converse of blindsight, being ‘blind to blindsight’. As such they preserve conscious vision, but show erroneous ‘guess’ localization of visual stimuli, poor saccades and motion perception, and poor emotional face perception with blunted autonomic reaction. Although a large data set on these deficits in Parkinson’s disease has been accumulated, consolidation into one specific syndrome has not been proposed. Focusing on neuropathological and physiological data from two phylogenetically old and subconscious pathways, the retino-colliculo-thalamo-amygdala and the retino-geniculo-extrastriate pathways, we propose that aberrant function of these systems, including pathologically inhibited superior colliculus activity, deficient corollary discharges to the frontal eye fields, dysfunctional pulvinar, claustrum and amygdaloid subnuclei of the amygdala, the latter progressively burdened with Lewy bodies, underlie this syndrome. These network impairments are further corroborated by the concept of the ‘silent amygdala’. Functionally being ‘blind to blindsight’ may facilitate the highly distinctive ‘presence’ or ‘passage’ hallucinations of Parkinson’s disease and can help to explain handicaps in driving capacities and dysfunctional ‘theory of mind’. We propose this synthesis to prompt refined neuropathological and neuroimaging studies on the pivotal nuclei in these pathways in order to better understand the networks underpinning this newly conceptualized syndrome in Parkinson’s disease. PMID:24764573

  5. Peripheral neuropathy and parkinsonism: a large clinical and pathogenic spectrum.

    PubMed

    Vital, Anne; Lepreux, Sebastien; Vital, Claude

    2014-12-01

    Peripheral neuropathy (PN) has been reported in idiopathic and hereditary forms of parkinsonism, but the pathogenic mechanisms are unclear and likely heterogeneous. Levodopa-induced vitamin B12 deficiency has been discussed as a causal factor of PN in idiopathic Parkinson's disease, but peripheral nervous system involvement might also be a consequence of the underlying neurodegenerative process. Occurrence of PN with parkinsonism has been associated with a panel of mitochondrial cytopathies, more frequently related to a nuclear gene defect and mainly polymerase gamma (POLG1) gene. Parkin (PARK2) gene mutations are responsible for juvenile parkinsonism, and possible peripheral nervous system involvement has been reported. Rarely, an association of parkinsonism with PN may be encountered in other neurodegenerative diseases such as fragile X-associated tremor and ataxia syndrome related to premutation CGG repeat expansion in the fragile X mental retardation (FMR1) gene, Machado-Joseph disease related to an abnormal CAG repeat expansion in ataxin-3 (ATXN3) gene, Kufor-Rakeb syndrome caused by mutations in ATP13A2 gene, or in hereditary systemic disorders such as Gaucher disease due to mutations in the ?-glucocerebrosidase (GBA) gene and Chediak-Higashi syndrome due to LYST gene mutations. This article reviews conditions in which PN may coexist with parkinsonism. PMID:25582874

  6. Protective Mechanisms of Flavonoids in Parkinson's Disease

    PubMed Central

    Magalingam, Kasthuri Bai; Radhakrishnan, Ammu Kutty; Haleagrahara, Nagaraja

    2015-01-01

    Parkinson's disease is a chronic, debilitating neurodegenerative movement disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta region in human midbrain. To date, oxidative stress is the well accepted concept in the etiology and progression of Parkinson's disease. Hence, the therapeutic agent is targeted against suppressing and alleviating the oxidative stress-induced cellular damage. Within the past decades, an explosion of research discoveries has reported on the protective mechanisms of flavonoids, which are plant-based polyphenols, in the treatment of neurodegenerative disease using both in vitro and in vivo models. In this paper, we have reviewed the literature on the neuroprotective mechanisms of flavonoids in protecting the dopaminergic neurons hence reducing the symptoms of this movement disorder. The mechanism reviewed includes effect of flavonoids in activation of endogenous antioxidant enzymes, suppressing the lipid peroxidation, inhibition of inflammatory mediators, flavonoids as a mitochondrial target therapy, and modulation of gene expression in neuronal cells. PMID:26576219

  7. [A case of drug-induced pulmonary injury showing organizing pneumonia pattern due to S-1].

    PubMed

    Nakata, Hiroaki; Shinano, Hideki; Kuraya, Daisuke; Fujioka, Yasunori

    2012-06-01

    Reported here is the case of a 76-year-old male with gastric cancer. Distal gastrectomy was performed after his admission to our hospital. Histopathologically, the cancer was determined to be in the advanced stage. Combination chemotherapy with CDDP and S-1 was administered for 6 courses, after which S-1 was used alone. Chest X-ray and CT showed multiple dispersed lesions in the lung. Further examination by bronchoscope was performed. Histopathological examination of a biopsy specimen revealed the lesion to be organizing pneumonia. A drug-induced lymphocyte stimulation test (DLST) for S-1 proved to be positive. Discontinuation of S-1 administration led to natural improvement of the pneumonia. These results suggest that S-1 had induced the organizing pneumonia. PMID:22705691

  8. Clinical Features of Drug-induced Liver Injury According to Etiology

    PubMed Central

    Lee, Byoung Moo; Lee, Woong Cheul; Ahn, Pyoung; Kim, Jin Nyoung; Jeong, Soung Won; Park, Eui Ju; Lee, Sae Hwan; Kim, Sang Gyune; Cha, Sang-Woo; Kim, Young Seok; Cho, Young Deok; Kim, Hong Soo; Kim, Boo Sung

    2015-01-01

    Drug-induced liver injury (DILI) is an increasingly common cause of acute hepatitis. We examined clinical features and types of liver injury of 65 affected patients who underwent liver biopsy according DILI etiology. The major causes of DILI were the use of herbal medications (43.2%), prescribed medications (21.6%), and traditional therapeutic preparations and dietary supplements (35%). DILI from herbal medications, traditional therapeutic preparations, and dietary supplements was associated with higher elevations in aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels than was DILI from prescription medications. The types of liver injury based on the R ratio were hepatocellular (67.7%), mixed (10.8%), and cholestatic (21.5%). Herbal medications and traditional therapeutic preparations were more commonly associated with hepatocellular liver injury than were prescription medications (P = 0.002). Herbal medications and traditional therapeutic preparations induce more hepatocellular DILI and increased elevations in AST and ALT than prescribed medications. PMID:26713057

  9. Oxidative stress and Parkinson’s disease

    PubMed Central

    Blesa, Javier; Trigo-Damas, Ines; Quiroga-Varela, Anna; Jackson-Lewis, Vernice R.

    2015-01-01

    Parkinson disease (PD) is a chronic, progressive neurological disease that is associated with a loss of dopaminergic neurons in the substantia nigra pars compacta of the brain. The molecular mechanisms underlying the loss of these neurons still remain elusive. Oxidative stress is thought to play an important role in dopaminergic neurotoxicity. Complex I deficiencies of the respiratory chain account for the majority of unfavorable neuronal degeneration in PD. Environmental factors, such as neurotoxins, pesticides, insecticides, dopamine (DA) itself, and genetic mutations in PD-associated proteins contribute to mitochondrial dysfunction which precedes reactive oxygen species formation. In this mini review, we give an update of the classical pathways involving these mechanisms of neurodegeneration, the biochemical and molecular events that mediate or regulate DA neuronal vulnerability, and the role of PD-related gene products in modulating cellular responses to oxidative stress in the course of the neurodegenerative process. PMID:26217195

  10. The lipid lowering drug lovastatin protects against doxorubicin-induced hepatotoxicity

    SciTech Connect

    Henninger, Christian; Institute of Toxicology, University Duesseldorf, Medical Faculty, Universitätsstrasse 1, D-40225 Duesseldorf ; Huelsenbeck, Johannes; Huelsenbeck, Stefanie; Grösch, Sabine; Lackner, Karl J.; Kaina, Bernd; Fritz, Gerhard; Institute of Toxicology, University Duesseldorf, Medical Faculty, Universitätsstrasse 1, D-40225 Duesseldorf

    2012-05-15

    Liver is the main detoxifying organ and therefore the target of high concentrations of genotoxic compounds, such as environmental carcinogens and anticancer drugs. Here, we investigated the usefulness of lovastatin, which is nowadays widely used for lipid lowering purpose, as a hepatoprotective drug following the administration of the anthracycline derivative doxorubicin in vivo. To this end, BALB/c mice were exposed to either a single high dose or three consecutive low doses of doxorubicin. Acute and subacute hepatotoxicities were analyzed with or without lovastatin co-treatment. Lovastatin protected the liver against doxorubicin-induced acute pro-inflammatory and pro-fibrotic stress responses as indicated by an attenuated mRNA expression of tumor necrosis factor alpha (TNF?) and connective tissue growth factor (CTGF), respectively. Hepatoprotection by lovastatin was due to a reduced induction of DNA damage following doxorubicin treatment. The statin also mitigated subacute anthracycline-provoked hepatotoxicity as shown on the level of doxorubicin- and epirubicin-stimulated CTGF mRNA expression as well as histopathologically detectable fibrosis and serum concentration of marker enzymes of hepatotoxicity (GPT/GLDH). Kidney damage following doxorubicin exposure was not detectable under our experimental conditions. Moreover, lovastatin showed multiple inhibitory effects on doxorubicin-triggered hepatic expression of genes involved in oxidative stress response, drug transport, DNA repair, cell cycle progression and cell death. Doxorubicin also stimulated the formation of ceramides. Ceramide production, however, was not blocked by lovastatin, indicating that hepatoprotection by lovastatin is independent of the sphingolipid metabolism. Overall, the data show that lovastatin is hepatoprotective following genotoxic stress induced by anthracyclines. Based on the data, we hypothesize that statins might be suitable to lower hepatic injury following anthracycline-based anticancer therapy. -- Highlights: ? Normal tissue damage is the therapy limiting side effect of anthracyclines. ? The effect of lovastatin on doxorubicin-induced hepatic damage was analyzed in vivo. ? Lovastatin protects the liver against DNA damage induced by doxorubicin. ? Lovastatin protects against acute and subacute doxorubicin-induced hepatotoxicity. ? Hepatoprotection by lovastatin is independent of the shingolipid metabolism.

  11. Behavioural and pharmacological specificity of the effects of drugs on punished schedule-induced polydipsia.

    PubMed

    Pérez-Padilla, Angeles; Pellón, Ricardo

    2007-11-01

    Wistar rats were exposed to a multiple fixed-time 30-s food delivery schedule, with an on/off tone signalling the two components. Animals were matched in accordance with the levels of schedule-induced polydipsia. Drinking was then punished in one of the components: half of the rats received lick-dependent 10-s signalled delays and the other half lick-dependent electric shocks. The intensities of the shocks were adjusted to reduce behaviour by the same amount as the delays in food presentation. Unpunished components were used as yoked-control conditions, by presenting delays or shocks independently of the animals' behaviour. D-Amphetamine (0.3-2.0 mg/kg) and cocaine (1.0-10.0 mg/kg) dose-dependently increased (although only slightly) and then decreased schedule-induced polydipsia punished with lick-dependent delays in food presentation, a result not observed in control conditions or when the behaviour was suppressed by lick-dependent electric shocks. Diazepam (1.0-17.0 mg/kg) and pentobarbital (3.0-17.0 mg/kg) dose-dependently increased and then decreased only the schedule-induced drinking punished with lick-dependent shocks. Buspirone (0.1-1.0 mg/kg) and morphine (2.0-5.6 mg/kg) showed either no specific effects or further suppressed schedule-induced drinking. Results of these and previous experiments suggest that the antipunishment effects of drugs depend not only on the precise nature of the drug, but also on the manner in which the behaviour is maintained. PMID:17912053

  12. Treatment of advanced Parkinson’s disease

    PubMed Central

    Giugni, Juan C.; Okun, Michael S.

    2014-01-01

    Purpose of the review Later stage Parkinson’s disease (PD), sometimes referred to as advanced disease, has been characterized by motor complication, as well as by the potential emergence non-levodopa responsive motor and non-motor symptoms. The management of advanced stage PD can be complex. This review summarizes the currently available treatment strategies for addressing advanced PD. Recent findings We will discuss the latest pharmacological strategies (e.g. inhibitors of dopamine-metabolizing enzymes, dopamine agonists and extended release dopamine formulations) for addressing motor dysfunction. We will summarize the risks and benefits of current invasive treatments. Finally, we will address the current evidence supporting the treatment of non-motor symptoms in the advanced PD patient. We will conclude by detailing the potential non-pharmacological and multidisciplinary approaches for advanced stage PD. Summary The optimization of levodopa is in most cases the most powerful therapeutic option available, however medication optimization requires an advanced understanding of PD. Failure of conventional pharmacotherapy, should precipitate a discussion of the potential risks and benefits of more invasive treatments. Currently, there are no comparative studies of invasive treatment. Among the invasive treatments, deep brain stimulation has the largest amount of existing evidence, but also has the highest individual per patient risk. Non-motor symptoms will affect quality of life more than the motor PD symptoms, and these non-motor symptoms should be aggressively treated. Many advanced PD patients will likely benefit from multi- and interdisciplinary PD teams with multiple professionals collaborating to develop a collective and tailored strategy for an individual patient. PMID:24978634

  13. [Application of ultra high performance liquid chromatography-mass spectrometry to metabolomics study of drug-induced hepatotoxicity].

    PubMed

    Liu, Xiaoyan; Liu, Yanqiu; Cheng, Mengchun; Xiao, Hongbin

    2015-07-01

    Drug-induced hepatotoxicity is a worldwide health issue. And diagnosing the injury in the early stage is still a challenge in clinic. In this study, pattern recognition analysis of the ultra high performance liquid chromatography-mass spectrometry (UPLC-MS) of hepatocytes HL7702 was performed to develop differential metabolites related to hepatotoxicity induced by hepatotoxicants, including carbon tetrachloride (CCl4), acetaminophen (APAP), emodin, aristolochic acid (AA) and triptolide. Hepatocytes injuries were induced by 48 h of treatment with CCl4 (4 mmol/L), APAP (6.5 mmol/L), emodin (14 ?mol/L), AA (35 ?mol/L) and triptolide (18 nmol/L), separately. Global metabolomics profiling, multivariate analysis and database searching were performed to discover common differential metabolites for live injury. The positive hepatoprotective drug, bifendate, was used to repair triptolide induced hepatocytes injury, and bifendate-induced changes of hepatotoxicity-related metabolites were investigated. In the results, fatty acid oxidation and cellular oxidative stress-related metabolites, including nicotinamide adenine dinucleotide and glutathione were significantly changed between the control and hepatotoxicant-treated groups, and after treatment with bifendate, those perturbed metabolites all partly returned to normal level. In conclusion, we discovered potential hepatotoxicity-related metabolites that could be used to evaluate hepatotoxicity induced by chemicals, drugs and traditional Chinese medicines. This study also proved that metabolomics is one of the effective tools to investigate drug-induced hepatotoxicity. PMID:26672195

  14. Personality, addiction, dopamine: insights from Parkinson's disease.

    PubMed

    Dagher, Alain; Robbins, Trevor W

    2009-02-26

    In rare instances, patients with Parkinson's disease (PD) may become addicted to their own medication or develop behavioral addictions such as pathological gambling. This is surprising because PD patients typically have a very low incidence of drug abuse and display a personality type that is the polar opposite of the addictive personality. These rare addictive syndromes, which appear to result from excessive dopaminergic medication use, illustrate the link between dopamine, personality, and addiction. We describe the clinical phenomena and attempt to relate them to current models of learning and addiction. We conclude that persistently elevated dopaminergic stimulation promotes the development and maintenance of addictive behaviors. PMID:19249271

  15. The Efficacy of Dandelion Root Extract in Inducing Apoptosis in Drug-Resistant Human Melanoma Cells

    PubMed Central

    Chatterjee, S. J.; Ovadje, P.; Mousa, M.; Hamm, C.; Pandey, S.

    2011-01-01

    Notoriously chemoresistant melanoma has become the most prevalent form of cancer for the 25–29 North American age demographic. Standard treatment after early detection involves surgical excision (recurrence is possible), and metastatic melanoma is refractory to immuno-, radio-, and most harmful chemotherapies. Various natural compounds have shown efficacy in killing different cancers, albeit not always specifically. In this study, we show that dandelion root extract (DRE) specifically and effectively induces apoptosis in human melanoma cells without inducing toxicity in noncancerous cells. Characteristic apoptotic morphology of nuclear condensation and phosphatidylserine flipping to the outer leaflet of the plasma membrane of A375 human melanoma cells was observed within 48 hours. DRE-induced apoptosis activates caspase-8 in A375 cells early on, demonstrating employment of an extrinsic apoptotic pathway to kill A375 cells. Reactive Oxygen Species (ROS) generated from DRE-treated isolated mitochondria indicates that natural compounds in DRE can also directly target mitochondria. Interestingly, the relatively resistant G361 human melanoma cell line responded to DRE when combined with the metabolism interfering antitype II diabetic drug metformin. Therefore, treatment with this common, yet potent extract of natural compounds has proven novel in specifically inducing apoptosis in chemoresistant melanoma, without toxicity to healthy cells. PMID:21234313

  16. Sleep loss and acute drug abuse can induce DNA damage in multiple organs of mice.

    PubMed

    Alvarenga, T A; Ribeiro, D A; Araujo, P; Hirotsu, C; Mazaro-Costa, R; Costa, J L; Battisti, M C; Tufik, S; Andersen, M L

    2011-09-01

    The purpose of the present study was to characterize the genetic damage induced by paradoxical sleep deprivation (PSD) in combination with cocaine or ecstasy (3,4-methylenedioxymethamphetamine; MDMA) in multiple organs of male mice using the single cell gel (comet) assay. C57BL/6J mice were submitted to PSD by the platform technique for 72 hours, followed by drug administration and evaluation of DNA damage in peripheral blood, liver and brain tissues. Cocaine was able to induce genetic damage in the blood, brain and liver cells of sleep-deprived mice at the majority of the doses evaluated. Ecstasy also induced increased DNA migration in peripheral blood cells for all concentrations tested. Analysis of damaged cells by the tail moment data suggests that ecstasy is a genotoxic chemical at the highest concentrations tested, inducing damage in liver or brain cells after sleep deprivation in mice. Taken together, our results suggest that cocaine and ecstasy/MDMA act as potent genotoxins in multiple organs of mice when associated with sleep loss. PMID:21071548

  17. Anti-inflammatory drug (BW755C) inhibits airway hyperresponsiveness induced by ozone in dogs

    SciTech Connect

    Fabbri, L.M.; Aizawa, H.; O'Byrne, P.M.; Bethel, R.A.; Walters, E.H.; Holtzman, M.J.; Nadel, J.A.

    1985-08-01

    To follow up a previous observation that airway hyperresponsiveness induced by ozone is linked to airway inflammation, the authors investigated the effect of BW755C, an anti-inflammatory drug, on ozone-induced hyperresponsiveness in dogs. Airway responsiveness was assessed with dose-response curves of acetylcholine aerosol versus pulmonary resistance in two sets of experiments. In one set (placebo treatment), five dogs were given only saline solution treatment and were studied before treatment or ozone exposure and then after treatment both before and after ozone (3.0 ppm, 2 hours); in another set (BW755C treatment), the same dogs were studied before BW755C treatment or ozone and then after treatment (10 mg/kg intravenously) both before and after ozone. When the dogs were given no BW755C treatment, ozone induced a marked increase in airway responsiveness to acetylcholine. When the dogs were given BW755C, responsiveness was no different during treatment than before treatment but, more importantly, responsiveness did not increase significantly after ozone. The authors conclude that BW755C markedly inhibits ozone-induced airway hyperresponsiveness in dogs, probably by inhibiting the formation of oxygenation products of arachidonic acid.

  18. Generation of a Drug-inducible Reporter System to Study Cell Reprogramming in Human Cells*

    PubMed Central

    Ruiz, Sergio; Panopoulos, Athanasia D.; Montserrat, Nuria; Multon, Marie-Christine; Daury, Aurélie; Rocher, Corinne; Spanakis, Emmanuel; Batchelder, Erika M.; Orsini, Cécile; Deleuze, Jean-François; Izpisua Belmonte, Juan Carlos

    2012-01-01

    Reprogramming of somatic cells into induced pluripotent stem cells is achieved by the expression of defined transcription factors. In the last few years, reprogramming strategies on the basis of doxycycline-inducible lentiviruses in mouse cells became highly powerful for screening purposes when the expression of a GFP gene, driven by the reactivation of endogenous stem cell specific promoters, was used as a reprogramming reporter signal. However, similar reporter systems in human cells have not been generated. Here, we describe the derivation of drug-inducible human fibroblast-like cell lines that express different subsets of reprogramming factors containing a GFP gene under the expression of the endogenous OCT4 promoter. These cell lines can be used to screen functional substitutes for reprogramming factors or modifiers of reprogramming efficiency. As a proof of principle of this system, we performed a screening of a library of pluripotent-enriched microRNAs and identified hsa-miR-519a as a novel inducer of reprogramming efficiency. PMID:23019325

  19. Drug-induced liver disease--a review of 14 cases.

    PubMed

    Wang, C K; Liu, J D; Lin, S Y; Liao, L Y; Cheng, N Y; Wang, C S; Siauw, C P; Chen, P H

    1995-04-01

    The clinical and pathological features of 14 cases of acute drug-induced liver disease (DILD) were analyzed using the French group method for drug reaction assessment. Among them, 8 were of the cytotoxic type, 4 were of the cholestatic type and 2 were of the mixed type. Serum alkaline phosphatase (ALP) levels of the cytotoxic type DILD were all < 1.8 times the normal value, while those of the cholestatic type DILD > 1.8 times (P < 0.05). The alanine aminotransaminase and aspartate aminotransaminase (ALT and AST) levels of the cholestatic type were all < 13.1 times the normal value, while those of the cytotoxic type varied from 2.2 to 118 times the normal value. We found that steatosis was the major feature in the cytotoxic type with ALT and AST < 2.5 times the normal value. Piecemeal necrosis was noted only in all the cases with ALT and AST > 20 times the normal value. In the cholestatic type, the pathological features of the oral contraceptive-related DILD showed mainly cholestasis, whereas chlorpromazine-related DILD revealed additional portal inflammation. Meticulous taking of patient history and clinical assessment are mandatory for the diagnosis of DILD. The ALP levels were helpful in distinguishing different types of DILD. There are some correlations between biochemical changes and pathological features, and both are helpful in distinguishing different etiologies of DILD when the inciting drug is in doubt. PMID:7602656

  20. Evaluation of drug-induced neurotoxicity based on metabolomics, proteomics and electrical activity measurements in complementary CNS in vitro models.

    PubMed

    Schultz, Luise; Zurich, Marie-Gabrielle; Culot, Maxime; da Costa, Anaelle; Landry, Christophe; Bellwon, Patricia; Kristl, Theresa; Hörmann, Katrin; Ruzek, Silke; Aiche, Stephan; Reinert, Knut; Bielow, Chris; Gosselet, Fabien; Cecchelli, Romeo; Huber, Christian G; Schroeder, Olaf H-U; Gramowski-Voss, Alexandra; Weiss, Dieter G; Bal-Price, Anna

    2015-12-25

    The present study was performed in an attempt to develop an in vitro integrated testing strategy (ITS) to evaluate drug-induced neurotoxicity. A number of endpoints were analyzed using two complementary brain cell culture models and an in vitro blood-brain barrier (BBB) model after single and repeated exposure treatments with selected drugs that covered the major biological, pharmacological and neuro-toxicological responses. Furthermore, four drugs (diazepam, cyclosporine A, chlorpromazine and amiodarone) were tested more in depth as representatives of different classes of neurotoxicants, inducing toxicity through different pathways of toxicity. The developed in vitro BBB model allowed detection of toxic effects at the level of BBB and evaluation of drug transport through the barrier for predicting free brain concentrations of the studied drugs. The measurement of neuronal electrical activity was found to be a sensitive tool to predict the neuroactivity and neurotoxicity of drugs after acute exposure. The histotypic 3D re-aggregating brain cell cultures, containing all brain cell types, were found to be well suited for OMICs analyses after both acute and long term treatment. The obtained data suggest that an in vitro ITS based on the information obtained from BBB studies and combined with metabolomics, proteomics and neuronal electrical activity measurements performed in stable in vitro neuronal cell culture systems, has high potential to improve current in vitro drug-induced neurotoxicity evaluation. PMID:26026931