Sample records for drug-loaded implantable devices

  1. Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants.

    PubMed

    Kempin, Wiebke; Franz, Christian; Koster, Lynn-Christine; Schneider, Felix; Bogdahn, Malte; Weitschies, Werner; Seidlitz, Anne

    2017-06-01

    The 3D printing technique of fused deposition modeling® (FDM) has lately come into focus as a potential fabrication technique for pharmaceutical dosage forms and medical devices that allows the preparation of delivery systems with nearly any shape. This is particular promising for implants administered at application sites with a high anatomical variability where an individual shape adaption appears reasonable. In this work different polymers (Eudragit®RS, polycaprolactone (PCL), poly(l-lactide) (PLLA) and ethyl cellulose (EC)) were evaluated with respect to their suitability for FDM of drug loaded implants and their drug release behaviour was evaluated. The fluorescent dye quinine was used as a model drug to visualize drug distribution in filaments and implants. Quinine loaded filaments were produced by solvent casting and subsequent hot melt extrusion (HME) and model implants were printed as hollow cylinders using a standard FDM printer. Parameters were found at which model implants (hollow cylinders, outer diameter 4-5mm, height 3mm) could be produced from all tested polymers. The drug release which was examined by incubation of the printed implants in phosphate buffered saline solution (PBS) pH 7.4 was highly dependent on the used polymer. The fastest relative drug release of approximately 76% in 51days was observed for PCL and the lowest for Eudragit®RS and EC with less than 5% of quinine release in 78 and 100days, respectively. For PCL further filaments were prepared with different quinine loads ranging from 2.5% to 25% and thermal analysis proved the presence of a solid dispersion of quinine in the polymer for all tested concentrations. Increasing the drug load also increased the overall percentage of drug released to the medium since nearly the same absolute amount of quinine remained trapped in PCL at the end of drug release studies. This knowledge is valuable for future developments of printed implants with a desired drug release profile that might be

  2. Development of implant loading device for animal study about various loading protocol: a pilot study

    PubMed Central

    Yoon, Joon-Ho; Park, Young-Bum; Cho, Yuna; Kim, Chang-Sung; Choi, Seong-Ho; Moon, Hong-Seok; Lee, Keun-Woo

    2012-01-01

    PURPOSE The aims of this pilot study were to introduce implant loading devices designed for animal study and to evaluate the validity of the load transmission ability of the loading devices. MATERIALS AND METHODS Implant loading devices were specially designed and fabricated with two implant abutments and cast metal bars, and orthodontic expansion screw. In six Beagles, all premolars were extracted and two implants were placed in each side of the mandibles. The loading device was inserted two weeks after the implant placement. According to the loading protocol, the load was applied to the implants with different time and method,simulating early, progressive, and delayed loading. The implants were clinically evaluated and the loading devices were removed and replaced to the master cast, followed by stress-strain analysis. Descriptive statistics of remained strain (µε) was evaluated after repeating three cycles of the loading device activation. Statistic analysis was performed using nonparametric, independent t-test with 5% significance level and Friedman's test was also used for verification. RESULTS The loading devices were in good action. However, four implants in three Beagles showed loss of osseointegration. In stress-strain analysis, loading devices showed similar amount of increase in the remained strain after applying 1-unit load for three times. CONCLUSION Specialized design of the implant loading device was introduced. The loading device applied similar amount of loads near the implant after each 1-unit loading. However, the direction of the loads was not parallel to the long axis of the implants as predicted before the study. PMID:23236575

  3. Dopamine-assisted fixation of drug-loaded polymeric multilayers to osteoarticular implants for tuberculosis therapy.

    PubMed

    Li, Dan; Li, Litao; Ma, Yunlong; Zhuang, Yaping; Li, Dawei; Shen, Hong; Wang, Xing; Yang, Fei; Ma, Yuanzheng; Wu, Decheng

    2017-03-28

    Currently, the major issues in the treatment of osteoarticular tuberculosis (TB) after implant placement are low drug concentration at the infected focus and drug resistance resulting from the long-term chemotherapy. The application of drug-loaded polymeric multilayers on implantable devices offers a promising solution to the problems. Herein, a poly(ethylene glycol)-based hydrogel film embedded with isoniazid (INH)-loaded alginate microparticles was fixed to Ti implants via adhesive polydopamine, subsequently capped by poly(lactic-co-glycolic acid) membranes for the sustained and localized delivery of the anti-TB drug. The antibacterial efficacy of the released INH was confirmed by a 4.5 ± 0.8 cm inhibition zone formed in the fourth week after inoculation of Mycobacterium tuberculosis. The INH-loaded Ti implants showed no toxicity to the osteoblast cell and provided a consistent drug release for nearly one week in vitro. The release profile in vivo showed a high local concentration and low systemic exposure. The local INH concentration could be kept higher than its minimum inhibitory concentration over a period of 8 weeks, which proves that it is a promising strategy to improve the severe osteoarticular TB treatment.

  4. In-vivo orthopedic implant diagnostic device for sensing load, wear, and infection

    DOEpatents

    Evans, III, Boyd McCutchen; Thundat, Thomas G.; Komistek, Richard D.; Dennis, Douglas A.; Mahfouz, Mohamed

    2006-08-29

    A device for providing in vivo diagnostics of loads, wear, and infection in orthopedic implants having at least one load sensor associated with the implant, at least one temperature sensor associated with the implant, at least one vibration sensor associated with the implant, and at least one signal processing device operatively coupled with the sensors. The signal processing device is operable to receive the output signal from the sensors and transmit a signal corresponding with the output signal.

  5. Parafunctional loading and occlusal device on stress distribution around implants: A 3D finite element analysis.

    PubMed

    Borges Radaelli, Manuel Tomás; Idogava, Henrique Takashi; Spazzin, Aloisio Oro; Noritomi, Pedro Yoshito; Boscato, Noéli

    2018-04-30

    An occlusal device is frequently recommended for patients with bruxism to protect implant-supported restorations and prevent marginal bone loss. Scientific evidence to support this treatment is lacking. The purpose of this 3-dimensional (3D) finite element study was to evaluate the influence of an acrylic resin occlusal device, implant length, and insertion depth on stress distribution with functional and parafunctional loadings. Computer-aided design software was used to construct 8 models. The models were composed of a mandibular bone section including the second premolar and first and second molars. Insertion depths (bone level and 2 mm subcrestal) were simulated at the first molar. Three natural antagonist maxillary teeth and the placement or not of an occlusal device were simulated. Functional (200-N axial and 10-N oblique) and parafunctional (1000-N axial and 25-N oblique) forces were applied. Finite element analysis (FEA) was used to determine the maximum principal stress for the cortical and trabecular bone and von Mises for implant and prosthetic abutment. Stress concentration was observed at the abutment-implant and the implant-bone interfaces. Occlusal device placement changed the pattern of stress distribution and reduced stress levels from parafunctional loading in all structures, except in the trabecular bone. Implants with subcrestal insertion depths had reduced stress at the implant-abutment interface and cortical bone around the implant abutment, while the stress increased in the bone in contact with the implant. Parafunctional loading increased the stress levels in all structures when compared with functional loading. An occlusal device resulted in the lowest stress levels at the abutment and implant and the most favorable stress distribution between the cortical and trabecular bone. Under parafunctional loading, an occlusal device was more effective in reducing stress distribution for longer implants inserted at bone level. Subcrestally, implant

  6. An implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release.

    PubMed

    Sasikala, Arathyram Ramachandra Kurup; Unnithan, Afeesh Rajan; Yun, Yeo-Heung; Park, Chan Hee; Kim, Cheol Sang

    2016-02-01

    The study describes the design and synthesis of an implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release. This device is achieved using a two-component smart nanofiber matrix from monodisperse iron oxide nanoparticles (IONPs) as well as bortezomib (BTZ), a chemotherapeutic drug. The IONP-incorporated nanofiber matrix was developed by electrospinning a biocompatible and bioresorbable polymer, poly (d,l-lactide-co-glycolide) (PLGA), and tumor-triggered anticancer drug delivery is realized by exploiting mussel-inspired surface functionalization using 2-(3,4-dihydroxyphenyl)ethylamine (dopamine) to conjugate the borate-containing BTZ anticancer drug through a catechol metal binding in a pH-sensitive manner. Thus, an implantable smart magnetic nanofiber device can be exploited to both apply hyperthermia with an alternating magnetic field (AMF) and to achieve cancer cell-specific drug release to enable synergistic cancer therapy. These results confirm that the BTZ-loaded mussel-inspired magnetic nanofiber matrix (BTZ-MMNF) is highly beneficial not only due to the higher therapeutic efficacy and low toxicity towards normal cells but also, as a result of the availability of magnetic nanoparticles for repeated hyperthermia application and tumor-triggered controlled drug release. The current work report on the design and development of a smart nanoplatform responsive to a magnetic field to administer both hyperthermia and pH-dependent anticancer drug release for the synergistic anticancer treatment. The iron oxide nanoparticles (IONPs) incorporated nanofiber matrix was developed by electrospinning a biocompatible polymer, poly (d,l-lactide-co-glycolide) (PLGA), and tumor-triggered anticancer drug delivery is realized by surface functionalization using 2-(3,4-dihydroxyphenyl)ethylamine (dopamine) to conjugate the boratecontaining anticancer drug bortezomib through a catechol metal binding in a p

  7. Nanopore thin film enabled optical platform for drug loading and release.

    PubMed

    Song, Chao; Che, Xiangchen; Que, Long

    2017-08-07

    In this paper, a drug loading and release device fabricated using nanopore thin film and layer-by-layer (LbL) nanoassembly is reported. The nanopore thin film is a layer of anodic aluminum oxide (AAO), consisting of honeycomb-shape nanopores. Using the LbL nanoassembly process, the drug, using gentamicin sulfate (GS) as the model, can be loaded into the nanopores and the stacked layers on the nanopore thin film surface. The drug release from the device is achieved by immersing it into flowing DI water. Both the loading and release processes can be monitored optically. The effect of the nanopore size/volume on drug loading and release has also been evaluated. Further, the neuron cells have been cultured and can grow normally on the nanopore thin film, verifying its bio-compatibility. The successful fabrication of nanopore thin film device on silicon membrane render it as a potential implantable controlled drug release device.

  8. An implantable thermoresponsive drug delivery system based on Peltier device.

    PubMed

    Yang, Rongbing; Gorelov, Alexander V; Aldabbagh, Fawaz; Carroll, William M; Rochev, Yury

    2013-04-15

    Locally dropping the temperature in vivo is the main obstacle to the clinical use of a thermoresponsive drug delivery system. In this paper, a Peltier electronic element is incorporated with a thermoresponsive thin film based drug delivery system to form a new drug delivery device which can regulate the release of rhodamine B in a water environment at 37 °C. Various current signals are used to control the temperature of the cold side of the Peltier device and the volume of water on top of the Peltier device affects the change in temperature. The pulsatile on-demand release profile of the model drug is obtained by turning the current signal on and off. The work has shown that the 2600 mAh power source is enough to power this device for 1.3 h. Furthermore, the excessive heat will not cause thermal damage in the body as it will be dissipated by the thermoregulation of the human body. Therefore, this simple novel device can be implanted and should work well in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Transdermal power transfer for recharging implanted drug delivery devices via the refill port.

    PubMed

    Evans, Allan T; Chiravuri, Srinivas; Gianchandani, Yogesh B

    2010-04-01

    This paper describes a system for transferring power across a transdermal needle into a smart refill port for recharging implantable drug delivery systems. The device uses a modified 26 gauge (0.46 mm outer diameter) Huber needle with multiple conductive elements designed to couple with mechanical springs in the septum of the refill port of a drug delivery device to form an electrical connection that can sustain the current required to recharge a battery during a reservoir refill session. The needle is fabricated from stainless steel coated with Parylene, and the refill port septum is made from micromachined stainless steel contact springs and polydimethylsiloxane. The device properties were characterized with dry and wet ambient conditions. The needle and port pair had an average contact resistance of less than 2 Omega when mated in either environment. Electrical isolation between the system, the liquid in the needle lumen, and surrounding material has been demonstrated. The device was used to recharge a NiMH battery with currents up to 500 mA with less than 15 degrees C of resistive heating. The system was punctured 100 times to provide preliminary information with regard to device longevity, and exhibited about 1 Omega variation in contact resistance. The results suggest that this needle and refill port system can be used in an implant to enable battery recharging. This allows for smaller batteries to be used and ultimately increases the volume efficiency of an implantable drug delivery device.

  10. An Implantable MEMS Drug Delivery Device for Rapid Delivery in Ambulatory Emergency Care

    DTIC Science & Technology

    2009-06-01

    controlled devices provide advantages over passive release devices, as the drug delivery process can be controlled actively after implantation and...mm, 5 μm, 100 Å, Alltech Associates, USA), with methanol and 0.1% trifluoroacetic acid (TFA) in water. The gradient used was 2 % TFA/min, starting

  11. Near-infrared fluorescence imaging platform for quantifying in vivo nanoparticle diffusion from drug loaded implants.

    PubMed

    Markovic, Stacey; Belz, Jodi; Kumar, Rajiv; Cormack, Robert A; Sridhar, Srinivas; Niedre, Mark

    2016-01-01

    Drug loaded implants are a new, versatile technology platform to deliver a localized payload of drugs for various disease models. One example is the implantable nanoplatform for chemo-radiation therapy where inert brachytherapy spacers are replaced by spacers doped with nanoparticles (NPs) loaded with chemotherapeutics and placed directly at the disease site for long-term localized drug delivery. However, it is difficult to directly validate and optimize the diffusion of these doped NPs in in vivo systems. To better study this drug release and diffusion, we developed a custom macroscopic fluorescence imaging system to visualize and quantify fluorescent NP diffusion from spacers in vivo. To validate the platform, we studied the release of free fluorophores, and 30 nm and 200 nm NPs conjugated with the same fluorophores as a model drug, in agar gel phantoms in vitro and in mice in vivo. Our data verified that the diffusion volume was NP size-dependent in all cases. Our near-infrared imaging system provides a method by which NP diffusion from implantable nanoplatform for chemo-radiation therapy spacers can be systematically optimized (eg, particle size or charge) thereby improving treatment efficacy of the platform.

  12. Trans-Oval-Window Implants, A New Approach for Drug Delivery to the Inner Ear: Extended Dexamethasone Release From Silicone-based Implants.

    PubMed

    Sircoglou, Julie; Gehrke, Maria; Tardivel, Meryem; Siepmann, Florence; Siepmann, Juergen; Vincent, Christophe

    2015-09-01

    The purpose of this study was to develop a new strategy to deliver drugs to the inner ear from dexamethasone (DXM)-loaded silicone implants and to evaluate the distribution of the drug in the cochlea with confocal microscopy. Systemic drug administration for the treatment of inner ear disorders is tricky because of the blood-cochlear barrier, a difficult anatomical access, the small size of the cochlea, and can cause significant adverse effects. An effective way to overcome these obstacles is to administer drugs locally. In vitro, the drug release from DXM-loaded silicone-based thin films and tiny implants into artificial perilymph was thoroughly analyzed by high-performance liquid chromatography. In vivo, a silicone implant loaded with 10% DXM and 5% polyethylene glycol 400 was implanted next to the stapes's footplate of gerbils. Delivery of DXM into the inner ear was proved by confocal microscopy imaging of the whole cochlea and the organ of Corti. The study showed a continuous and prolonged release during 90 days in vitro. This was confirmed by confocal microscopy that allowed detection of DXM by fluorescence labeling in the cell body of the hair cells for at least 30 days. Interestingly, fluorescence was already observed after 20 minutes of implantation, reached a climax at day 7, and could still be detected 30 days after implantation. Thus, we developed a new device for local corticosteroids delivery into the oval window with an extended drug release of DXM to the inner ear.

  13. 21 CFR 876.5270 - Implanted electrical urinary continence device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted electrical urinary continence device... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in...

  14. 21 CFR 876.5270 - Implanted electrical urinary continence device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted electrical urinary continence device... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in...

  15. 21 CFR 876.5270 - Implanted electrical urinary continence device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted electrical urinary continence device... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in...

  16. 21 CFR 876.5270 - Implanted electrical urinary continence device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted electrical urinary continence device... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in...

  17. 21 CFR 876.5270 - Implanted electrical urinary continence device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted electrical urinary continence device...

  18. Recent developments in drug eluting devices with tailored interfacial properties.

    PubMed

    Sanchez-Rexach, Eva; Meaurio, Emilio; Sarasua, Jose-Ramon

    2017-11-01

    Drug eluting devices have greatly evolved during past years to become fundamental products of great marketing importance in the biomedical field. There is currently a large diversity of highly specialized devices for specific applications, making the development of these devices an exciting field of research. The replacement of the former bare metal devices by devices loaded with drugs allowed the sustained and controlled release of drugs, to achieve the desired local therapeutic concentration of drug. The newer devices have been "engineered" with surfaces containing micro- and nanoscale features in a well-controlled manner, that have shown to significantly affect cellular and subcellular function of various biological systems. For example, the topography can be structured to form an antifouling surface mimicking the defense mechanisms found in nature, like the skin of the shark. In the case of bone implants, well-controlled nanostructured interfaces can promote osteoblast differentiation and matrix production, and enhance short-term and long-term osteointegration. In any case, the goal of current research is to design implants that induce controlled, guided, and rapid healing. This article reviews recent trends in the development of drug eluting devices, as well as recent developments on the micro/nanotechnology scales, and their future challenges. For this purpose medical devices have been divided according to the different systems of the body they are focused to: orthopedic devices, breathing stents, gastrointestinal and urinary systems, devices for cardiovascular diseases, neuronal implants, and wound dressings. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Efficient antitumor effect of co-drug-loaded nanoparticles with gelatin hydrogel by local implantation

    PubMed Central

    Zhang, Hao; Tian, Yong; Zhu, Zhenshu; Xu, Huae; Li, Xiaolin; Zheng, Donghui; Sun, Weihao

    2016-01-01

    Tetrandrine (Tet) could enhance the antitumor effect of Paclitaxel (Ptx) by increasing intracellular Reactive Oxygen Species (ROS) levels, which leads to the possibility of co-delivery of both drugs for synergistic antitumor effect. In the current study, we reported an efficient, local therapeutic strategy employing effective Tet and Ptx delivery with a nanoparticle-loaded gelatin system. Tet- and Ptx co-loaded mPEG-PCL nanoparticles (P/T-NPs) were encapsulated into the physically cross-linked gelatin hydrogel and then implanted on the tumor site for continuous drug release. The drug-loaded gelatin hydrogel underwent a phase change when the temperature slowly increased. In vitro study showed that Tet/Ptx-loaded PEG-b-PCL nanoparticles encapsulated within a gelatin hydrogel (P/T-NPs-Gelatin) inhibited the growth and invasive ability of BGC-823 cells more effectively than the combination of free drugs or P/T-NPs. In vivo study validated the therapeutic potential of P/T-NPs-Gelatin. P/T-NPs-Gelatin significantly inhibited the activation of p-Akt and the downstream anti-apoptotic Bcl-2 protein and also inducing the activation of pro-apoptotic Bax protein. Moreover, the molecular-modulating effect of P/T-NPs-Gelatin on related proteins varied slightly under the influence of NAC, which was supported by the observations of the tumor volumes and weights. Based on these findings, local implantation of P/T-NPs-Gelatin may be a promising therapeutic strategy for the treatment of gastric cancer. PMID:27226240

  20. Synthesis and Characterisation of Photocrosslinked poly(ethylene glycol) diacrylate Implants for Sustained Ocular Drug Delivery.

    PubMed

    McAvoy, Kathryn; Jones, David; Thakur, Raghu Raj Singh

    2018-01-16

    To investigate the sustained ocular delivery of small and large drug molecules from photocrosslinked poly(ethylene glycol) diacrylate (PEGDA) implants with varying pore forming agents. Triamcinolone acetonide and ovalbumin loaded photocrosslinked PEGDA implants, with or without pore-forming agents, were fabricated and characterised for chemical, mechanical, swelling, network parameters, as well as drug release and biocompatibility. HPLC-based analytical methods were employed for analysis of two molecules; ELISA was used to demonstrate bioactivity of ovalbumin. Regardless of PEGDA molecular weight or pore former composition all implants loaded with triamcinolone acetonide released significantly faster than those loaded with ovalbumin. Higher molecular weight PEGDA systems (700 Da) resulted in faster drug release of triamcinolone acetonide than their 250 Da counterpart. All ovalbumin released over the 56-day time period was found to be bioactive. Increasing PEGDA molecular weight resulted in increased system swelling, decreased crosslink density (Ve), increased polymer-water interaction parameter (χ), increased average molecular weight between crosslinks (Mc) and increased mesh size (ε). SEM studies showed the porosity of implants increased with increasing PEGDA molecular weight. Biocompatibility showed both PEGDA molecular weight implants were non-toxic when exposed to retinal epithelial cells over a 7-day period. Photocrosslinked PEGDA implant based systems are capable of controlled drug release of both small and large drug molecules through adaptations in the polymer system network. We are currently continuing evaluation of these systems as potential sustained drug delivery devices.

  1. A Review of the Development of a Vehicle for Localized and Controlled Drug Delivery for Implantable Biosensors

    PubMed Central

    Bhardwaj, Upkar; Papadimitrakopoulos, Fotios; Burgess, Diane J.

    2008-01-01

    A major obstacle to the development of implantable biosensors is the foreign body response (FBR) that results from tissue trauma during implantation and the continuous presence of the implant in the body. The in vivo stability and functionality of biosensors are compromised by damage to sensor components and decreased analyte transport to the sensor. This paper summarizes research undertaken by our group since 2001 to control the FBR toward implanted sensors. Localized and sustained delivery of the anti-inflammatory drug, dexamethasone, and the angiogenic growth factor, vascular endothelial growth factor (VEGF), was utilized to inhibit inflammation as well as fibrosis and provide a stable tissue–device interface without producing systemic adverse effects. The drug-loaded polylactic-co-glycolic acid (PLGA) microspheres were embedded in a polyvinyl alcohol (PVA) hydrogel composite to fabricate a drug-eluting, permeable external coating for implantable devices. The composites were fabricated using the freeze–thaw cycle method and had mechanical properties similar to soft body tissue. Dexamethasone-loaded microsphere/hydrogel composites were able to provide anti-inflammatory protection, preventing the FBR. Moreover, concurrent release of dexamethasone with VEGF induced neoangiogenesis in addition to providing anti-inflammatory protection. Sustained release of dexamethasone is required for the entire sensor lifetime, as a delayed inflammatory response developed after depletion of the drug from the composites. These studies have shown the potential of PLGA microsphere/PVA hydrogel-based composites as drug-eluting external coatings for implantable biosensors. PMID:19885291

  2. COMMUNICATION: Drug loading of nanoporous TiO2 films

    NASA Astrophysics Data System (ADS)

    Ayon, Arturo A.; Cantu, Michael; Chava, Kalpana; Mauli Agrawal, C.; Feldman, Marc D.; Johnson, Dave; Patel, Devang; Marton, Denes; Shi, Emily

    2006-12-01

    The loading of therapeutic amounts of drug on a nanoporous TiO2 surface is described. This novel drug-loading scheme on a biocompatible surface, when employed on medical implants, will benefit patients who require the deployment of drug-eluting implants. Anticoagulants, analgesics and antibiotics can be considered on the associated implants for drug delivery during the time of maximal pain or risk for patients undergoing orthopedic procedures. Therefore, this scheme will maximize the chances of patient recovery.

  3. Implantable drug therapy device: A concept

    NASA Technical Reports Server (NTRS)

    Feldstein, C.

    1972-01-01

    Design is described of small, rechargeable, implantable infusor which contains fluid medicament stored under pressure and which dispenses fluid continuously through catheter. Body of infusor is covered by pliable silicone rubber sheath attached to suture pad for securing device.

  4. 21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the...

  5. 21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the...

  6. 21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the...

  7. 21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the...

  8. 21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the...

  9. 78 FR 38994 - Implanted Blood Access Devices for Hemodialysis; Draft Guidance for Industry and Food and Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-D-0749] Implanted Blood Access Devices for Hemodialysis; Draft Guidance for Industry and Food and Drug Administration Staff; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food...

  10. Pore structures in an implantable sol gel titania ceramic device used in controlled drug release applications: A modeling study

    NASA Astrophysics Data System (ADS)

    Peterson, Aaron; Lopez, Tessy; Islas, Emma Ortiz; Gonzalez, Richard D.

    2007-04-01

    Several process variables, which may be helpful in optimizing the rate at which drugs are released from implantable, sol-gel titania devices have been identified in this study. The controlled rate of drug release is compared for two different anticonvulsant drugs, valproic acid and sodic phenytoin. Contrary to what one might expect, when the concentration is increased in the titania reservoir the rate of initial drug delivery decreases. This is a desirable result, because it may reduce the danger of a high initial discharge, which may harm the epileptic rat. The structure of the porous structure within the titania network has been studied using a generalized form of the BET equation which considers only n layers. In general, following an initial discharge, the rate at which the drug is released will increase with the increasing concentration. Pore mouth blocking can present a problem. However, this problem tends to disappear following the initial discharge. The extent of drug loading is a useful variable parameter, which can be adjusted in order to deliver the amount of drug required in a given application.

  11. A novel antiproliferative drug coating for glaucoma drainage devices.

    PubMed

    Ponnusamy, Thiruselvam; Yu, Haini; John, Vijay T; Ayyala, Ramesh S; Blake, Diane A

    2014-01-01

    The implantation of a glaucoma drainage device (GDD) is often necessary for intractable cases of glaucoma. Currently, the success rate of GDD implants is relatively low because fibrosis that develops during the wound-healing process ultimately blocks fluid drainage. We describe herein a novel porous coating for Ahmed glaucoma valves based on biodegradable poly(lactic-co-glycolic acid) (PLGA). Thin films of PLGA were fabricated using a spin-coating technique. The procedure led to an asymmetric pore structure that was exploited to control the rate of dissolution. Double-layered porous films were constructed to achieve continuous drug release. A cell culture system was used to test the efficacy of these coatings. Double-layered films were manufactured to provide a burst of mitomycin C (MMC) release followed by a slow release of 5-fluorouracil (5-FU), which together prevented fibrosis over the most active period of postoperative wound healing (0 to 28 d). Double-layered films containing 5-FU only in the bottom layer showed a 3- to 5-day delay in drug release, followed by a sharp increase that continued for ~28 days. MMC was stable only when surface-loaded, and this drug was therefore surface-loaded onto the top PLGA layer to provide a continuous release of antifibrotics over the wound-healing period. The combined use of both MMC and 5-FU in a biodegradable device inhibits cell proliferation in a tissue culture model and has the potential to reduce fibrosis and increase the success rate of GDD implants. The design is simple and can be scaled for commercial production.

  12. Gastroenterology-urology devices; reclassification of implanted blood access devices. Final rule.

    PubMed

    2014-07-25

    The Food and Drug Administration (FDA) is issuing a final order to reclassify implanted blood access devices, a preamendments class III device, into class II (special controls) based on new information and subject to premarket notification and to further clarify the identification.

  13. 21 CFR 860.93 - Classification of implants, life-supporting or life-sustaining devices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Classification of implants, life-supporting or life-sustaining devices. 860.93 Section 860.93 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Classification § 860.93 Classification of implants, life-supporting or life-sustaining devices. (a) The...

  14. 21 CFR 860.93 - Classification of implants, life-supporting or life-sustaining devices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Classification of implants, life-supporting or life-sustaining devices. 860.93 Section 860.93 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Classification § 860.93 Classification of implants, life-supporting or life-sustaining devices. (a) The...

  15. 21 CFR 860.93 - Classification of implants, life-supporting or life-sustaining devices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Classification of implants, life-supporting or life-sustaining devices. 860.93 Section 860.93 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Classification § 860.93 Classification of implants, life-supporting or life-sustaining devices. (a) The...

  16. 21 CFR 860.93 - Classification of implants, life-supporting or life-sustaining devices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Classification of implants, life-supporting or life-sustaining devices. 860.93 Section 860.93 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Classification § 860.93 Classification of implants, life-supporting or life-sustaining devices. (a) The...

  17. 21 CFR 860.93 - Classification of implants, life-supporting or life-sustaining devices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Classification of implants, life-supporting or life-sustaining devices. 860.93 Section 860.93 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Classification § 860.93 Classification of implants, life-supporting or life-sustaining devices. (a) The...

  18. PLA/PEG-PPG-PEG/dexamethasone implant prepared by hot-melt extrusion for controlled release of immunosuppressive drug to implantable medical devices, Part 2: in vivo evaluation.

    PubMed

    Li, DeXia; Guo, Gang; Deng, Xin; Fan, RangRang; Guo, QingFa; Fan, Min; Liang, Jian; Luo, Feng; Qian, ZhiYong

    2013-01-01

    Hot-melt extrusion (HME) plays an important role in preparing implants as local drug delivery systems in pharmaceutical fields. Here, a new PLA/PEG-PPG-PEG/Dexamethasone (PLA/F68/Dex) implant prepared by HME has been developed. Importantly, the implant was successfully achieved to control release of immunosuppressive drug to an implanted device. In particular, this implant has not been reported previously in pharmaceutical fields. FTIR and XRD were adopted to investigate the properties of the samples. The in vivo release study showed that the maximum value of Dex release from the implants was approximately 50% at 1 month. The in vivo degradation behavior was determined by UV spectrophotometer and scanning electron microscopy studies, and the weight loss rate of the implants were up to 25% at 1 month. Furthermore, complete blood count (CBC) test, serum chemistry and major organs were performed, and there is no significant lesion and side effects observed in these results. Therefore, the results elucidated that the new PLA/F68/Dex implant prepared by HME could deliver an immunosuppressive drug to control the inflammatory reaction at the implant site.

  19. Controlling release from 3D printed medical devices using CLIP and drug-loaded liquid resins.

    PubMed

    Bloomquist, Cameron J; Mecham, Michael B; Paradzinsky, Mark D; Janusziewicz, Rima; Warner, Samuel B; Luft, J Christopher; Mecham, Sue J; Wang, Andrew Z; DeSimone, Joseph M

    2018-05-28

    Mass customization along with the ability to generate designs using medical imaging data makes 3D printing an attractive method for the fabrication of patient-tailored drug and medical devices. Herein we describe the application of Continuous Liquid Interface Production (CLIP) as a method to fabricate biocompatible and drug-loaded devices with controlled release properties, using liquid resins containing active pharmaceutical ingredients (API). In this work, we characterize how the release kinetics of a model small molecule, rhodamine B-base (RhB), are affected by device geometry, network crosslink density, and the polymer composition of polycaprolactone- and poly (ethylene glycol)-based networks. To demonstrate the applicability of using API-loaded liquid resins with CLIP, the UV stability was evaluated for a panel of clinically-relevant small molecule drugs. Finally, select formulations were tested for biocompatibility, degradation and encapsulation of docetaxel (DTXL) and dexamethasone-acetate (DexAc). Formulations were shown to be biocompatible over the course of 175 days of in vitro degradation and the clinically-relevant drugs could be encapsulated and released in a controlled fashion. This study reveals the potential of the CLIP manufacturing platform to serve as a method for the fabrication of patient-specific medical and drug-delivery devices for personalized medicine. Copyright © 2018. Published by Elsevier B.V.

  20. Levetiracetam-loaded biodegradable polymer implants in the tetanus toxin model of temporal lobe epilepsy in rats.

    PubMed

    Halliday, Amy J; Campbell, Toni E; Nelson, Timothy S; McLean, Karen J; Wallace, Gordon G; Cook, Mark J

    2013-01-01

    Approximately one-third of people with epilepsy receive insufficient benefit from currently available anticonvulsant medication, and some evidence suggests that this may be due to a lack of effective penetration into brain parenchyma. The current study investigated the ability of biodegradable polymer implants loaded with levetiracetam to ameliorate seizures following implantation above the motor cortex in the tetanus toxin model of temporal lobe epilepsy in rats. The implants led to significantly shorter seizures and a trend towards fewer seizures for up to 1 week. The results of this study indicate that drug-eluting polymer implants represent a promising evolving treatment option for intractable epilepsy. Future research is warranted to investigate issues of device longevity and implantation site. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Drug diffusion, integration, and stability of nanoengineered drug-releasing implants in bone ex-vivo.

    PubMed

    Rahman, Shafiur; Gulati, Karan; Kogawa, Masakazu; Atkins, Gerald J; Pivonka, Peter; Findlay, David M; Losic, Dusan

    2016-03-01

    To treat skeletal conditions such as bone infections, osteoporotic fractures, and osteosarcoma, it would be ideal to introduce drugs directly to the affected site. Localized drug delivery from the bone implants is a promising alternative to systemic drug administration. In this study we investigated electrochemically nanoengineered Ti wire implants with titania nanotubes (TNTs), as minimally invasive drug-releasing implants for the delivery of drugs directly into the bone tissue. Since trabecular bone in vivo contains a highly interconnected bone marrow, we sought to determine the influence of marrow on drug release and diffusion. Electrochemical anodization of Ti wires (length 10 mm) was performed to create an oxide layer with TNTs on the surface, followed by loading with a fluorescent model drug, Rhodamine B (RhB). Cores of bovine trabecular bone were generated from the sternum of a young steer, and were processed to have an intact bone marrow, or the marrow was removed. RhB-loaded TNTs/Ti wires were inserted into the bone cores, which were then cultured ex vivo using the ZetOS™ bioreactor system to maintain bone viability. Release and diffusion of RhB inside the bone was monitored using fluorescence imaging and different patterns of drug transport in the presence or absence of marrow were observed. Scanning electron microscopy of the implants after retrieval from bone cores confirmed survival of the TNTs structures. Histological investigation showed the presence of bone cells adherent on the implants. This study shows a potential of Ti drug-releasing implants based on TNTs technology towards localized bone therapy. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 714-725, 2016. © 2015 Wiley Periodicals, Inc.

  2. Microencapsulation of hydrophilic drug substances using biodegradable polyesters. Part II: Implants allowing controlled drug release--a feasibility study using bisphosphonates.

    PubMed

    Weidenauer, U; Bodmer, D; Kissel, T

    2004-03-01

    The prolonged delivery of hydrophilic drug salts from hydrophobic polymer carriers at high drug loading is an ambitious goal. Pamidronate disodium salt (APD) containing implants prepared from spray-dried microparticles were investigated using a laboratory ram extruder. An APD-containing polymer matrix consisting of an APD-chitosan implant embedded in the biodegradable polymer D,L-poly(lactide-co-glycolide acid-glucose) (PLG-GLU) was compared with a matrix system with the micronized drug distributed in the PLG-GLU. The APD-chitosan matrix system showed a triphasic release behaviour at loading levels of 6.86 and 15.54% (w/w) over 36 days under in-vitro conditions. At higher loading (31.92%), a drug burst was observed within 6 days due to the formation of pores and channels in the polymeric matrix. In contrast, implants containing the micronized drug showed a more continuous release profile over 48 days up to a loading of 31.78% (w/w). At a drug loading of 46.17% (w/w), a drug burst was observed. Using micronized drug salts and reducing the surface area available for diffusion, parenteral delivery systems for highly water-soluble drug candidates were shown to be technically feasible at high drug loadings.

  3. Characterization of drug-release kinetics in trabecular bone from titania nanotube implants

    PubMed Central

    Aw, Moom Sinn; Khalid, Kamarul A; Gulati, Karan; Atkins, Gerald J; Pivonka, Peter; Findlay, David M; Losic, Dusan

    2012-01-01

    Purpose The aim of this study was to investigate the application of the three-dimensional bone bioreactor for studying drug-release kinetics and distribution of drugs in the ex vivo cancellous bone environment, and to demonstrate the application of nanoengineered titanium (Ti) wires generated with titania nanotube (TNT) arrays as drug-releasing implants for local drug delivery Methods Nanoengineered Ti wires covered with a layer of TNT arrays implanted in bone were used as a drug-releasing implant. Viable bovine trabecular bone was used as the ex vivo bone substrate embedded with the implants and placed in the bone reactor. A hydrophilic fluorescent dye (rhodamine B) was used as the model drug, loaded inside the TNT–Ti implants, to monitor drug release and transport in trabecular bone. The distribution of released model drug in the bone was monitored throughout the bone structure, and concentration profiles at different vertical (0–5 mm) and horizontal (0–10 mm) distances from the implant surface were obtained at a range of release times from 1 hour to 5 days. Results Scanning electron microscopy confirmed that well-ordered, vertically aligned nanotube arrays were formed on the surface of prepared TNT–Ti wires. Thermogravimetric analysis proved loading of the model drug and fluorescence spectroscopy was used to show drug-release characteristics in-vitro. The drug release from implants inserted into bone ex vivo showed a consistent gradual release of model drug from the TNT–Ti implants, with a characteristic three-dimensional distribution into the surrounding bone, over a period of 5 days. The parameters including the flow rate of bone culture medium, differences in trabecular microarchitecture between bone samples, and mechanical loading were found to have the most significant influence on drug distribution in the bone. Conclusion These results demonstrate the utility of the Zetos™ system for ex vivo drug-release studies in bone, which can be applied to

  4. Characterization of drug-release kinetics in trabecular bone from titania nanotube implants.

    PubMed

    Aw, Moom Sinn; Khalid, Kamarul A; Gulati, Karan; Atkins, Gerald J; Pivonka, Peter; Findlay, David M; Losic, Dusan

    2012-01-01

    The aim of this study was to investigate the application of the three-dimensional bone bioreactor for studying drug-release kinetics and distribution of drugs in the ex vivo cancellous bone environment, and to demonstrate the application of nanoengineered titanium (Ti) wires generated with titania nanotube (TNT) arrays as drug-releasing implants for local drug delivery Nanoengineered Ti wires covered with a layer of TNT arrays implanted in bone were used as a drug-releasing implant. Viable bovine trabecular bone was used as the ex vivo bone substrate embedded with the implants and placed in the bone reactor. A hydrophilic fluorescent dye (rhodamine B) was used as the model drug, loaded inside the TNT-Ti implants, to monitor drug release and transport in trabecular bone. The distribution of released model drug in the bone was monitored throughout the bone structure, and concentration profiles at different vertical (0-5 mm) and horizontal (0-10 mm) distances from the implant surface were obtained at a range of release times from 1 hour to 5 days. Scanning electron microscopy confirmed that well-ordered, vertically aligned nanotube arrays were formed on the surface of prepared TNT-Ti wires. Thermogravimetric analysis proved loading of the model drug and fluorescence spectroscopy was used to show drug-release characteristics in-vitro. The drug release from implants inserted into bone ex vivo showed a consistent gradual release of model drug from the TNT-Ti implants, with a characteristic three-dimensional distribution into the surrounding bone, over a period of 5 days. The parameters including the flow rate of bone culture medium, differences in trabecular microarchitecture between bone samples, and mechanical loading were found to have the most significant influence on drug distribution in the bone. These results demonstrate the utility of the Zetos™ system for ex vivo drug-release studies in bone, which can be applied to optimize the delivery of specific therapies

  5. Biocompatible medical implant materials with binding sites for a biodegradable drug-delivery system

    PubMed Central

    Al-Dubai, Haifa; Pittner, Gisela; Pittner, Fritz; Gabor, Franz

    2011-01-01

    Feasibility studies have been carried out for development of a biocompatible coating of medical implant materials allowing the binding of biodegradable drug-delivery systems in a way that their reloading might be possible. These novel coatings, able to bind biodegradable nanoparticles, may serve in the long run as drug carriers to mediate local pharmacological activity. After biodegradation of the nanoparticles, the binding sites could be reloaded with fresh drug-delivering particles. As a suitable receptor system for the nanoparticles, antibodies are anchored. The design of the receptor is of great importance as any bio- or chemorecognitive interaction with other components circulating in the blood has to be avoided. Furthermore, the binding between receptor and the particles has to be strong enough to keep them tightly bound during their lifetime, but on the other hand allow reloading after final degradation of the particles. The nanoparticles suggested as a drug-delivery system for medical implants can be loaded with different pharmaceuticals such as antibiotics, growth factors, or immunosuppressives. This concept may enable the changing of medication, even after implantation of the medical device, if afforded by patients’ needs. PMID:24198488

  6. Numerical investigation of bone remodelling around immediately loaded dental implants using sika deer (Cervus nippon) antlers as implant bed.

    PubMed

    He, Yun; Hasan, Istabrak; Keilig, Ludger; Fischer, Dominik; Ziegler, Luisa; Abboud, Marcus; Wahl, Gerhard; Bourauel, Christoph

    2018-03-01

    This study combines finite element method and animal studies, aiming to investigate tissue remodelling processes around dental implants inserted into sika deer antler and to develop an alternative animal consuming model for studying bone remodelling around implants. Implants were inserted in the antlers and loaded immediately via a self-developed loading device. After 3, 4, 5 and 6 weeks, implants and surrounding tissue were taken out. Specimens were scanned by μCT scanner and finite element models were generated. Immediate loading and osseointegration conditions were simulated at the implant-tissue interface. A vertical force of 10 N was applied on the implant. During the healing time, density and Young's modulus of antler tissue around the implant increased significantly. For each time point, the values of displacement, stresses and strains in the osseointegration model were lower than those of the immediate loading model. As the healing time increased, the displacement of implants was reduced. The 3-week immediate loading model (9878 ± 1965 μstrain) illustrated the highest strains in the antler tissue. Antler tissue showed similar biomechanical properties as human bone in investigating the bone remodelling around implants, therefore the use of sika deer antler model is a promising alternative in implant biomechanical studies.

  7. Drug loaded biodegradable load-bearing nanocomposites for damaged bone repair

    NASA Astrophysics Data System (ADS)

    Gutmanas, E. Y.; Gotman, I.; Sharipova, A.; Psakhie, S. G.; Swain, S. K.; Unger, R.

    2017-09-01

    In this paper we present a short review-scientific report on processing and properties, including in vitro degradation, of load bearing biodegradable nanocomposites as well as of macroporous 3D scaffolds for bone ingrowth. Biodegradable implantable devices should slowly degrade over time and disappear with ingrown of natural bone replacing the synthetic graft. Compared to low strength biodegradable polymers, and brittle CaP ceramics, biodegradable CaP-polymer and CaP-metal nanocomposites, mimicking structure of natural bone, as well as strong and ductile metal nanocomposites can provide to implantable devices both strengths and toughness. Nanostructuring of biodegradable β-TCP (tricalcium phosphate)-polymer (PCL and PLA), β-TCP-metal (FeMg and FeAg) and of Fe-Ag composites was achieved employing high energy attrition milling of powder blends. Nanocomposite powders were consolidated to densities close to theoretical by high pressure consolidation at ambient temperature—cold sintering, with retention of nanoscale structure. The strength of developed nanocomposites was significantly higher as compared with microscale composites of the same or similar composition. Heat treatment at moderate temperatures in hydrogen flow resulted in retention of nanoscale structure and higher ductility. Degradation of developed biodegradable β-TCP-polymer, β-TCP-metal and of Fe-Ag nanocomposites was studied in physiological solutions. Immersion tests in Ringer's and saline solution for 4 weeks resulted in 4 to 10% weight loss and less than 50% decrease in compression or bending strength, the remaining strength being significantly higher than the values reported for other biodegradable materials. Nanostructuring of Fe-Ag based materials resulted also in an increase of degradation rate because of creation on galvanic Fe-Ag nanocouples. In cell culture experiments, the developed nanocomposites supported the attachment the human osteoblast cells and exhibited no signs of cytotoxicity

  8. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices.

    PubMed

    Genina, Natalja; Holländer, Jenny; Jukarainen, Harri; Mäkilä, Ermei; Salonen, Jarno; Sandler, Niklas

    2016-07-30

    The main purpose of this work was to investigate the printability of different grades of ethylene vinyl acetate (EVA) copolymers as new feedstock material for fused-deposition modeling (FDM™)-based 3D printing technology in fabrication of custom-made T-shaped intrauterine systems (IUS) and subcutaneous rods (SR). The goal was to select an EVA grade with optimal properties, namely vinyl acetate content, melting index, flexural modulus, for 3D printing of implantable prototypes with the drug incorporated within the entire matrix of the medical devices. Indomethacin was used as a model drug in this study. Out of the twelve tested grades of the EVA five were printable. One of them showed superior print quality and was further investigated by printing drug-loaded filaments, containing 5% and 15% indomethacin. The feedstock filaments were fabricated by hot-melt extrusion (HME) below the melting point of the drug substance and the IUS and SR were successfully printed at the temperature above the melting point of the drug. As a result, the drug substance in the printed prototypes showed to be at least partly amorphous, while the drug in the corresponding HME filaments was crystalline. This difference affected the drug release profiles from the filaments and printed prototype products: faster release from the prototypes over 30days in the in vitro tests. To conclude, this study indicates that certain grades of EVA were applicable feedstock material for 3D printing to produce drug-loaded implantable prototypes. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Immediately loaded mini dental implants as overdenture retainers: 1-Year cohort study of implant stability and peri-implant marginal bone level.

    PubMed

    Šćepanović, Miodrag; Todorović, Aleksandar; Marković, Aleksa; Patrnogić, Vesna; Miličić, Biljana; Moufti, Adel M; Mišić, Tijana

    2015-05-01

    This 1-year cohort study investigated stability and peri-implant marginal bone level of immediately loaded mini dental implants used to retain overdentures. Each of 30 edentulous patients received 4 mini dental implants (1.8 mm × 13 mm) in the interforaminal mandibular region. The implants were immediately loaded with pre-made overdentures. Outcome measures included implant stability and bone resorption. Implant stability was measured using the Periotest Classic(®) device immediately after placement and on the 3rd and 6th weeks and the 4th, 6th and 12th months postoperatively. The peri-implant marginal bone level (PIBL) was evaluated at the implant's mesial and distal sides from the polished platform to the marginal crest. Radiographs were taken using a tailored film holder to reproducibly position the X-ray tube at the 6th week, 4th and 12th months postoperatively. The primary stability (Periotest value, PTV) measured -0.27 ± 3.41 on a scale of -8 to + 50 (lower PTV reflects higher stability). The secondary stability decreased significantly until week 6 (mean PTV = 7.61 ± 7.05) then increased significantly reaching (PTV = 6.17 ± 6.15) at 12 months. The mean PIBL measured -0.40 mm after 1 year of functional loading, with no statistically significant differences at the various follow-ups (p = 0.218). Mini dental implants placed into the interforaminal region could achieve a favorable primary stability for immediate loading. The follow-up Periotest values fluctuated, apparently reflecting the dynamics of bone remodeling, with the implants remaining clinically stable (98.3%) after 1 year of function. The 1-year bone resorption around immediately loaded MDIs is within the clinically acceptable range for standard implants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Properties of axially loaded implant-abutment assemblies using digital holographic interferometry analysis.

    PubMed

    Brozović, Juraj; Demoli, Nazif; Farkaš, Nina; Sušić, Mato; Alar, Zeljko; Gabrić Pandurić, Dragana

    2014-03-01

    The aim of this study was to (i) obtain the force-related interferometric patterns of loaded dental implant-abutment assemblies differing in diameter and brand using digital holographic interferometry (DHI) and (ii) determine the influence of implant diameter on the extent of load-induced implant deformation by quantifying and comparing the obtained interferometric data. Experiments included five implant brands (Ankylos, Astra Tech, blueSKY, MIS and Straumann), each represented by a narrow and a wide diameter implant connected to a corresponding abutment. A quasi-Fourier setup with a 25mW helium-neon laser was used for interferometric measurements in the cervical 5mm of the implants. Holograms were recorded in two conditions per measurement: a 10N preloaded and a measuring-force loaded assembly, resulting with an interferogram. This procedure was repeated throughout the whole process of incremental axial loading, from 20N to 120N. Each measurement series was repeated three times for each assembly, with complete dismantling of the implant-loading device in between. Additional software analyses calculated deformation data. Deformations were presented as mean values±standard deviations. Statistical analysis was performed using linear mixed effects modeling in R's lme4 package. Implants exhibited linear deformation patterns. The wide diameter group had lower mean deformation values than the narrow diameter group. The diameter significantly affected the deformation throughout loading sessions. This study gained in vitro implant performance data, compared the deformations in implant bodies and numerically stated the biomechanical benefits of wider diameter implants. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Implantable biomedical devices on bioresorbable substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, John A.; Kim, Dae-Hyeong; Omenetto, Fiorenzo

    Provided herein are implantable biomedical devices and methods of administering implantable biomedical devices, making implantable biomedical devices, and using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment.

  12. Implantable biomedical devices on bioresorbable substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between themore » implantable biomedical device and the target tissue in the biological environment.« less

  13. Suppression of scarring in peripheral nerve implants by drug elution.

    PubMed

    FitzGerald, James J

    2016-04-01

    Medical implants made of non-biological materials provoke a chronic inflammatory response, resulting in the deposition of a collagenous scar tissue (ST) layer on their surface, that gradually thickens over time. This is a critical problem for neural interfaces. Scar build-up on electrodes results in a progressive decline in signal level because the scar tissue gradually separates axons away from the recording contacts. In regenerative sieves and microchannel electrodes, progressive scar deposition will constrict and may eventually choke off the sieve hole or channel lumen. Interface designs need to address this issue if they are to be fit for long term use. This study examines a novel method of inhibiting the formation and thickening of the fibrous scar. Research to date has mainly focused on methods of preventing stimulation of the foreign body response by implant surface modification. In this paper a pharmacological approach using drug elution to suppress chronic inflammation is introduced. Microchannel implants made of silicone doped with the steroid drug dexamethasone were implanted in the rat sciatic nerve for periods of up to a year. Tissue from within the microchannels was compared to that from control devices that did not release any drug. In the drug eluting implants the scar layer was significantly thinner at all timepoints, and unlike the controls it did not continue to thicken after 6 months. Control implants supported axon regeneration well initially, but axon counts fell rapidly at later timepoints as scar thickened. Axon counts in drug eluting devices were initially much lower, but increased rather than declined and by one year were significantly higher than in controls. Drug elution offers a potential long term solution to the problem of performance degradation due to scarring around neural implants.

  14. Suppression of scarring in peripheral nerve implants by drug elution

    NASA Astrophysics Data System (ADS)

    FitzGerald, James J.

    2016-04-01

    Objective. Medical implants made of non-biological materials provoke a chronic inflammatory response, resulting in the deposition of a collagenous scar tissue (ST) layer on their surface, that gradually thickens over time. This is a critical problem for neural interfaces. Scar build-up on electrodes results in a progressive decline in signal level because the scar tissue gradually separates axons away from the recording contacts. In regenerative sieves and microchannel electrodes, progressive scar deposition will constrict and may eventually choke off the sieve hole or channel lumen. Interface designs need to address this issue if they are to be fit for long term use. This study examines a novel method of inhibiting the formation and thickening of the fibrous scar. Approach. Research to date has mainly focused on methods of preventing stimulation of the foreign body response by implant surface modification. In this paper a pharmacological approach using drug elution to suppress chronic inflammation is introduced. Microchannel implants made of silicone doped with the steroid drug dexamethasone were implanted in the rat sciatic nerve for periods of up to a year. Tissue from within the microchannels was compared to that from control devices that did not release any drug. Main results. In the drug eluting implants the scar layer was significantly thinner at all timepoints, and unlike the controls it did not continue to thicken after 6 months. Control implants supported axon regeneration well initially, but axon counts fell rapidly at later timepoints as scar thickened. Axon counts in drug eluting devices were initially much lower, but increased rather than declined and by one year were significantly higher than in controls. Significance. Drug elution offers a potential long term solution to the problem of performance degradation due to scarring around neural implants.

  15. Management of Patients With Cardiovascular Implantable Electronic Devices in Dental, Oral, and Maxillofacial Surgery.

    PubMed

    Tom, James

    2016-01-01

    The prevalence of cardiovascular implantable electronic devices as life-prolonging and life-saving devices has evolved from a treatment of last resort to a first-line therapy for an increasing number of patients. As these devices become more and more popular in the general population, dental providers utilizing instruments and medications should be aware of dental equipment and medications that may affect these devices and understand the management of patients with these devices. This review article will discuss the various types and indications for pacemakers and implantable cardioverter-defibrillators, common drugs and instruments affecting these devices, and management of patients with these devices implanted for cardiac dysrhythmias.

  16. Management of Patients With Cardiovascular Implantable Electronic Devices in Dental, Oral, and Maxillofacial Surgery

    PubMed Central

    Tom, James

    2016-01-01

    The prevalence of cardiovascular implantable electronic devices as life-prolonging and life-saving devices has evolved from a treatment of last resort to a first-line therapy for an increasing number of patients. As these devices become more and more popular in the general population, dental providers utilizing instruments and medications should be aware of dental equipment and medications that may affect these devices and understand the management of patients with these devices. This review article will discuss the various types and indications for pacemakers and implantable cardioverter-defibrillators, common drugs and instruments affecting these devices, and management of patients with these devices implanted for cardiac dysrhythmias. PMID:27269668

  17. First In-Human Experience With Complete Integration of Neuromodulation Device Within a Customized Cranial Implant.

    PubMed

    Gordon, Chad R; Santiago, Gabriel F; Huang, Judy; Bergey, Gregory K; Liu, Shuya; Armand, Mehran; Brem, Henry; Anderson, William S

    2017-10-06

    Neuromodulation devices have the potential to transform modern day treatments for patients with medicine-resistant neurological disease. For instance, the NeuroPace System (NeuroPace Inc, Mountain View, California) is a Food and Drug Administration (FDA)-approved device developed for closed-loop direct brain neurostimulation in the setting of drug-resistant focal epilepsy. However, current methods require placement either above or below the skull in nonanatomic locations. This type of positioning has several drawbacks including visible deformities and scalp pressure from underneath leading to eventual wound healing difficulties, micromotion of hardware with infection, and extrusion leading to premature explantation. To introduce complete integration of a neuromodulation device within a customized cranial implant for biocompatibility optimization and prevention of visible deformity. We report a patient with drug-resistant focal epilepsy despite previous seizure surgery and maximized medical therapy. Preoperative imaging demonstrated severe resorption of previous bone flap causing deformity and risk for injury. She underwent successful responsive neurostimulation device implantation via complete integration within a clear customized cranial implant. The patient has recovered well without complication and has been followed closely for 180 d. Device interrogation with electrocorticographic data transmission has been successfully performed through the clear implant material for the first time with no evidence of any wireless transmission interference. Cranial contour irregularities, implant site infection, and bone flap resorption/osteomyelitis are adverse events associated with implantable neurotechnology. This method represents a novel strategy to incorporate all future neuromodulation devices within the confines of a low-profile, computer-designed cranial implant and the newfound potential to eliminate contour irregularities, improve outcomes, and optimize patient

  18. Design of calcium phosphate ceramics for drug delivery applications in bone diseases: A review of the parameters affecting the loading and release of the therapeutic substance.

    PubMed

    Parent, Marianne; Baradari, Hiva; Champion, Eric; Damia, Chantal; Viana-Trecant, Marylène

    2017-04-28

    Effective treatment of critical-size defects is a key challenge in restorative surgery of bone. The strategy covers the implantation of biocompatible, osteoconductive, bioactive and biodegradable devices which (1) well interact with native tissue, mimic multi-dimensional and hierarchical structure of bone and (2) are able to enhance bone repair, treating post implantation pathologies or bone diseases by local delivery of therapeutic agents. Among different options, calcium phosphate biomaterials are found to be attractive choices, due to their excellent biocompatibility, customisable bioactivity and biodegradability. Several approaches have been established to enhance this material ability to be loaded with a therapeutic agent, in order to obtain an in situ controlled release that meets the clinical needs. This article reviews the most important factors influencing on both drug loading and release capacity of porous calcium phosphate bone substitutes. Characteristics of the carrier, drug/carrier interactions, experimental conditions of drug loading and evaluation of drug delivery are considered successively. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Orthopedic implant devices: prevalence and sociodemographic findings from the 1988 National Health Interview Survey.

    PubMed

    Moore, R M; Hamburger, S; Jeng, L L; Hamilton, P M

    1991-01-01

    National population-based estimates on the magnitude and distribution of orthopedic implant devices in the United States have not been available to date. The Food and Drug Administration's Center for Devices and Radiological Health (FDA/CDRH) collaborated with the Centers for Disease Control's National Center for Health Statistics (CDC/NCHS) in the design and conduct of a nationwide medical device implant survey to generate the first national population-based prevalence estimates of orthopedic implant devices. A Medical Device Implant Supplement to the 1988 National Health Interview Survey was administered in personal household interviews to a national sample of 47,485 households, which included 122,310 individuals. An estimated 6.5 million orthopedic implants were in use in the general US population in 1988, including 1.6 million artificial joints and 4.9 million fixation devices. As a group, orthopedic implants comprised nearly half of all medical device implants in use, 43.4%. The majority of artificial joint recipients were 65 years of age or older, white, and male. The majority of fixation device recipients were less than 45 years of age, white, and male. The limitations and strengths of these population-based estimates are discussed.

  20. Prolonged use of the etonogestrel implant and levonorgestrel intrauterine device: 2 years beyond Food and Drug Administration-approved duration.

    PubMed

    McNicholas, Colleen; Swor, Erin; Wan, Leping; Peipert, Jeffrey F

    2017-06-01

    The subdermal contraceptive implant and the 52-mg levonorgestrel intrauterine device are currently Food and Drug Administration approved for 3 and 5 years of use, respectively. Limited available data suggested both of these methods are effective beyond that time. Demonstration of prolonged effectiveness will improve the cost-effectiveness of the device, and potentially patient continuation and satisfaction. We sought to evaluate the effectiveness of the contraceptive implant and the 52-mg hormonal intrauterine device in women using the method for 2 years beyond the current Food and Drug Administration-approved duration. We initiated this ongoing prospective cohort study in January 2012. We are enrolling women using the contraceptive implant or 52-mg levonorgestrel intrauterine device for a minimum of 3 and 5 years, respectively (started intrauterine device in ≥2007 or implant in ≥2009). Demographic and reproductive health histories, as well as objective body mass index, were collected. Implant users were offered periodic venipuncture for analysis of serum etonogestrel levels. The primary outcome, unintended pregnancy rate, was calculated per 100 woman-years. We analyzed baseline demographic characteristics using χ 2 test and Fisher exact test, and compared serum etonogestrel levels stratified by body mass index using the Kruskal-Wallis test. Implant users (n = 291) have contributed 444.0 woman-years of follow-up. There have been no documented pregnancies in implant users during the 2 years of postexpiration follow-up. Calculated failure rates in the fourth and fifth years for the implant are calculated as 0 (1-sided 97.5% confidence interval, 0-1.48) per 100 woman-years at 4 years and 0 (1-sided 97.5% confidence interval, 0-2.65) per 100 woman-years at 5 years. Among 496 levonorgestrel intrauterine device users, 696.9 woman-years of follow-up have been completed. Two pregnancies have been reported. The failure rate in the sixth year of use of the

  1. Finite Element Simulation of NiTi Umbrella-Shaped Implant Used on Femoral Head under Different Loadings.

    PubMed

    Mehrabi, Reza; Dorri, Milad; Elahinia, Mohammad

    2017-03-12

    In this study, an umbrella-shaped device that is used for osteonecrosis treatment is simulated. The femoral head is subjected to various complex loadings as a result of a person's daily movements. Implant devices used in the body are made of shape memory alloy materials because of their remarkable resistance to wear and corrosion, good biocompatibility, and variable mechanical properties. Since this NiTi umbrella-shaped implant is simultaneously under several loadings, a 3-D model of shape memory alloy is utilized to investigate the behavior of the implant under different conditions. Shape memory and pseudo-elasticity behavior of NiTi is analyzed using a numerical model. The simulation is performed within different temperatures and in an isothermal condition with varied and complex loadings. The objective of this study is to evaluate the performance of the device under thermal and multi-axial forces via numerically study. Under tensile loading, the most critical points are on the top part of the implant. It is also shown that changes in temperature have a minor effect on the Von Mises stress. Applied forces and torques have significant influence on the femoral head. Simulations results indicate that the top portion of the umbrella is under the most stress when embedded in the body. Consequently, the middle, curved portion of the umbrella is under the least amount of stress.

  2. Finite Element Simulation of NiTi Umbrella-Shaped Implant Used on Femoral Head under Different Loadings

    PubMed Central

    Mehrabi, Reza; Dorri, Milad; Elahinia, Mohammad

    2017-01-01

    In this study, an umbrella-shaped device that is used for osteonecrosis treatment is simulated. The femoral head is subjected to various complex loadings as a result of a person’s daily movements. Implant devices used in the body are made of shape memory alloy materials because of their remarkable resistance to wear and corrosion, good biocompatibility, and variable mechanical properties. Since this NiTi umbrella-shaped implant is simultaneously under several loadings, a 3-D model of shape memory alloy is utilized to investigate the behavior of the implant under different conditions. Shape memory and pseudo-elasticity behavior of NiTi is analyzed using a numerical model. The simulation is performed within different temperatures and in an isothermal condition with varied and complex loadings. The objective of this study is to evaluate the performance of the device under thermal and multi-axial forces via numerically study. Under tensile loading, the most critical points are on the top part of the implant. It is also shown that changes in temperature have a minor effect on the Von Mises stress. Applied forces and torques have significant influence on the femoral head. Simulations results indicate that the top portion of the umbrella is under the most stress when embedded in the body. Consequently, the middle, curved portion of the umbrella is under the least amount of stress. PMID:28952502

  3. The dynamic natures of implant loading.

    PubMed

    Wang, Rui-Feng; Kang, Byungsik; Lang, Lisa A; Razzoog, Michael E

    2009-06-01

    A fundamental problem in fully understanding the dynamic nature of implant loading is the confusion that exists regarding the torque load delivered to the implant complex, the initial force transformation/stress/strain developed within the system during the implant complex assembly, and how the clamping forces at the interfaces and the preload stress impact the implant prior to any external loading. The purpose of this study was to create an accurately dimensioned finite element model with spiral threads and threaded bores included in the implant complex, positioned in a bone model, and to determine the magnitude and distribution of the force transformation/stress/strain patterns developed in the modeled implant system and bone and, thus, provide the foundational data for the study of the dynamic loading of dental implants prior to any external loading. An implant (Brånemark Mark III), abutment (CeraOne), abutment screw (Unigrip), and the bone surrounding the implant were modeled using HyperMesh software. The threaded interfaces between screw/implant and implant/bone were designed as a spiral thread helix assigned with specific coefficient of friction values. Assembly simulation using ABAQUS and LS-DYNA was accomplished by applying a 32-Ncm horizontal torque load on the abutment screw (Step 1), then decreasing the torque load to 0 Ncm to simulate the wrench removal (Step 2). The postscript data were collected and reviewed by HyperMesh. A regression analysis was used to depict the relationships between the torque load and the mechanical parameters. During the 32-Ncm tightening sequence, the abutment screw elongated 13.3 mum. The tightening torque generated a 554-N clamping force at the abutment/implant interface and a 522-N preload. The von Mises stress values were 248 MPa in the abutment at the abutment-implant interface, 765 MPa at the top of the screw shaft, 694 MPa at the bottom of the screw shaft, 1365 MPa in the top screw thread, and 21 MPa in the bone at the

  4. Fabrication of a microfluidic device for studying the in situ drug-loading/release behavior of graphene oxide-encapsulated hydrogel beads.

    PubMed

    Veerla, Sarath Chandra; Kim, Da Reum; Yang, Sung Yun

    2018-01-01

    Controlled drug delivery system is highly important for not only prolonged the efficacy of drug but also cellular development for tissue engineering. A number of biopolymer composites and nanostructured carriers behave been used for the controlled drug delivery of therapeutics. Recently, in vitro microfluidic devices that mimic the human body have been developed for drug-delivery applications. A microfluidic channel was fabricated via a two-step process: (i) polydimethyl siloxane (PDMS) and curing agent were poured with a 10:2 mass ratio onto an acrylic mold with two steel pipes, and (ii) calcium alginate beads were synthesized using sodium alginate and calcium chloride solutions. Different amounts (10, 25, 50 μg) of graphene oxide (GO) were then added by Hummers method, and studies on the encapsulation and release of the model drug, risedronate (Ris), were performed using control hydrogel beads (pH 6.3), GO-containing beads (10GO, 25GO and 50GO), and different pH conditions. MC3T3 osteoblastic cells were cultured in a microchannel with Ris-loaded GO-hydrogel beads, and their proliferation, viability, attachment and spreading were assessed for a week. The spongy and textured morphology of pristine hydrogel beads was converted to flowery and rod-shaped structures in drug-loaded hydrogel beads at reduced pH (6.3) and at a lower concentration (10 μg) of GO. These latter 10GO drug-loaded beads rapidly released their cargo owing to the calcium phosphate deposited on the surface. Notably, beads containing a higher amount of GO (50GO) exhibited an extended drug-release profile. We further found that MC3T3 cells proliferated continuously in vitro in the microfluidic channel containing the GO-hydrogel system. MTT and live/dead assays showed similar proliferative potential of MC3T3 cells. Therefore, a microfluidic device with microchannels containing hydrogel beads formulated with different amounts of GO and tested under various pH conditions could be a promising system

  5. Tunable drug loading and release from polypeptide multilayer nanofilms

    PubMed Central

    Jiang, Bingbing; Li, Bingyun

    2009-01-01

    Polypeptide multilayer nanofilms were prepared using electrostatic layer-by-layer self-assembly nanotechnology. Small charged drug molecules (eg, cefazolin, gentamicin, and methylene blue) were loaded in polypeptide multilayer nanofilms. Their loading and release were found to be pH-dependent and could also be controlled by changing the number of film layers and drug incubation time, and applying heat-treatment after film formation. Antibioticloaded polypeptide multilayer nanofilms showed controllable antibacterial properties against Staphylococcus aureus. The developed biodegradable polypeptide multilayer nanofilms are capable of loading both positively- and negatively-charged drug molecules and promise to serve as drug delivery systems on biomedical devices for preventing biomedical device-associated infection, which is a significant clinical complication for both civilian and military patients. PMID:19421369

  6. Porous, Dexamethasone-loaded polyurethane coatings extend performance window of implantable glucose sensors in vivo.

    PubMed

    Vallejo-Heligon, Suzana G; Brown, Nga L; Reichert, William M; Klitzman, Bruce

    2016-01-01

    Continuous glucose sensors offer the promise of tight glycemic control for insulin dependent diabetics; however, utilization of such systems has been hindered by issues of tissue compatibility. Here we report on the in vivo performance of implanted glucose sensors coated with Dexamethasone-loaded (Dex-loaded) porous coatings employed to mediate the tissue-sensor interface. Two animal studies were conducted to (1) characterize the tissue modifying effects of the porous Dex-loaded coatings deployed on sensor surrogate implants and (2) investigate the effects of the same coatings on the in vivo performance of Medtronic MiniMed SOF-SENSOR™ glucose sensors. The tissue response to implants was evaluated by quantifying macrophage infiltration, blood vessel formation, and collagen density around implants. Sensor function was assessed by measuring changes in sensor sensitivity and time lag, calculating the Mean Absolute Relative Difference (MARD) for each sensor treatment, and performing functional glucose challenge test at relevant time points. Implants treated with porous Dex-loaded coatings diminished inflammation and enhanced vascularization of the tissue surrounding the implants. Functional sensors with Dex-loaded porous coatings showed enhanced sensor sensitivity over a 21-day period when compared to controls. Enhanced sensor sensitivity was accompanied with an increase in sensor signal lag and MARD score. These results indicate that Dex-loaded porous coatings were able to elicit an attenuated tissue response, and that such tissue microenvironment could be conducive towards extending the performance window of glucose sensors in vivo. In the present article, a coating to extend the functionality of implantable glucose sensors in vivo was developed. Our study showed that the delivery of an anti-inflammatory agent with the presentation of micro-sized topographical cues from coatings may lead to improved long-term glucose sensor function in vivo. We believe that

  7. Critical review of immediate implant loading.

    PubMed

    Gapski, Ricardo; Wang, Hom-Lay; Mascarenhas, Paulo; Lang, Niklaus P

    2003-10-01

    Implant dentistry has become successful with the discovery of the biological properties of titanium. In the original protocol, studies have advocated a 2-stage surgical protocol for load-free and submerged healing to ensure predictable osseointegration. However, the discomfort, inconvenience, and anxiety associated with waiting period remains a challenge to both patients and clinicians. Hence, loading implant right after placement was attempted and has gained popularity among clinicians. Issues/questions related to this approach remain unanswered. Therefore, it is the purpose of this review article to (1). review and analyze critically the current available literature in the field of immediate implant loading and (2). discuss, based on scientific evidence, factors that may influence this treatment modality. Literature published over the past 20 years was selected and reviewed. Findings from these studies were discussed and summarized in the tables. The advantages and disadvantages associated with immediate implant loading were analyzed. Factors that may influence the success of immediate implant loading, including patient selection, type of bone quality, required implant length, micro- and macrostructure of the implant, surgical skill, need for achieving primary stability/control of occlusal force, and prosthesis guidelines, were thoroughly reviewed and discussed. Various studies have demonstrated the feasibility and predictability of this technique. However, most of these articles are based on retrospective data or uncontrolled cases. Randomized, prospective, parallel-armed longitudinal human trials are primarily based on short-term results and long-term follow-ups are still scarce in this field. Nonetheless, from available literature, it may be concluded that anatomic locations, implant designs, and restricted prosthetic guidelines are key to ensure successful outcomes. Future studies, preferably randomized, prospective longitudinal studies, are certainly needed

  8. Body Implanted Medical Device Communications

    NASA Astrophysics Data System (ADS)

    Yazdandoost, Kamya Yekeh; Kohno, Ryuji

    The medical care day by day and more and more is associated with and reliant upon concepts and advances of electronics and electromagnetics. Numerous medical devices are implanted in the body for medical use. Tissue implanted devices are of great interest for wireless medical applications due to the promising of different clinical usage to promote a patient independence. It can be used in hospitals, health care facilities and home to transmit patient measurement data, such as pulse and respiration rates to a nearby receiver, permitting greater patient mobility and increased comfort. As this service permits remote monitoring of several patients simultaneously it could also potentially decrease health care costs. Advancement in radio frequency communications and miniaturization of bioelectronics are supporting medical implant applications. A central component of wireless implanted device is an antenna and there are several issues to consider when designing an in-body antenna, including power consumption, size, frequency, biocompatibility and the unique RF transmission challenges posed by the human body. The radiation characteristics of such devices are important in terms of both safety and performance. The implanted antenna and human body as a medium for wireless communication are discussed over Medical Implant Communications Service (MICS) band in the frequency range of 402-405MHz.

  9. Management of antithrombotic therapy during cardiac implantable device surgery.

    PubMed

    AlTurki, Ahmed; Proietti, Riccardo; Birnie, David H; Essebag, Vidal

    2016-06-01

    Anticoagulants are commonly used drugs that are frequently encountered during device placement. Deciding when to halt or continue the use of anticoagulants is a balance between the risks of thromboembolism versus bleeding. Patients taking warfarin with a high risk of thromboembolism should continue to take their warfarin without interruption during device placement while ensuring their international normalized ratio remains below 3. For patients who are taking warfarin and have low risk of thromboembolism, either interrupted or continued warfarin may be used, with no evidence to clearly support either strategy. There is little evidence to support continuing direct acting oral anticoagulants (DOACs) for device implantation. The timing of halting these medications depends largely on renal function. If bleeding occurs, warfarin׳s anticoagulation effect is reversible with vitamin K and activated prothrombin complex concentrate. There are no DOAC reversal agents currently available, but some are under development. Regarding antiplatelet agents, aspirin alone can be safely continued while clopidogrel alone may also be continued, but with a slightly higher bleeding risk. Dual antiplatelet therapy for bare-metal stent/drug-eluting stent implanted within 4 weeks/6 months, respectively, should be continued due to high risk of stent thrombosis; however, if they are implanted after this period, then clopidogrel can be halted 5 days before the procedure and resumed soon after, while aspirin is continued. If the patient is taking both aspirin and warfarin, aspirin should be halted 5 days prior to the procedure, while warfarin is continued.

  10. Doxorubicin-loaded PLA/pearl electrospun nanofibrous scaffold for drug delivery and tumor cell treatment

    NASA Astrophysics Data System (ADS)

    Dai, Jiamu; Jin, Junhong; Yang, Shenglin; Li, Guang

    2017-07-01

    A drug-loaded implantable scaffold is a promising substitute for the treatment of tissue defects after a tumor resection operation. In this work, natural pearl powder with good biocompatibility and osteoconductivity was incorporated into polylactic (PLA) nanofibers via electrospinning, and doxorubicin hydrochloride (DOX) was also loaded in the PLA/pearl scaffold, resulting in a drug-loaded composite nanofibrous scaffold (DOX@PLA/pearl). In vitro drug delivery of DOX from a PLA/pearl composite scaffold was measured and in vitro anti-tumor efficacy was also examined, in particular the effect of the pearl content on both key properties were studied. The results showed that DOX was successfully loaded into PLA/pearl composite nanofibrous scaffolds with different pearl content. More importantly, the delivery rate of DOX kept rising as the pearl content increased, and the anti-tumor efficacy of the drug-loaded scaffold on HeLa cells was improved at an appropriate pearl powder concentration. Thus, we expect that the prepared DOX@PLA/pearl powder nanofibrous mat is a highly promising implantable scaffold that has great potential in postoperative cancer treatment.

  11. Influence of controlled immediate loading and implant design on peri-implant bone formation.

    PubMed

    Vandamme, Katleen; Naert, Ignace; Geris, Liesbet; Vander Sloten, Jozef; Puers, Robert; Duyck, Joke

    2007-02-01

    Tissue formation at the implant interface is known to be sensitive to mechanical stimuli. The aim of the study was to compare the bone formation around immediately loaded versus unloaded implants in two different implant macro-designs. A repeated sampling bone chamber with a central implant was installed in the tibia of 10 rabbits. Highly controlled loading experiments were designed for a cylindrical (CL) and screw-shaped (SL) implant, while the unloaded screw-shaped (SU) implant served as a control. An F-statistic model with alpha=5% determined statistical significance. A significantly higher bone area fraction was observed for SL compared with SU (p<0.0001). The mineralized bone fraction was the highest for SL and significantly different from SU (p<0.0001). The chance that osteoid- and bone-to-implant contact occurred was the highest for SL and significantly different from SU (p<0.0001), but not from CL. When bone-to-implant contact was observed, a loading (SL versus SU: p=0.0049) as well as an implant geometry effect (SL versus CL: p=0.01) was found, in favour of the SL condition. Well-controlled immediate implant loading accelerates tissue mineralization at the interface. Adequate bone stimulation via mechanical coupling may account for the larger bone response around the screw-type implant compared with the cylindrical implant.

  12. Polymeric Micro- and Nanofabricatced Devices for Oral Drug Delivery

    NASA Astrophysics Data System (ADS)

    Fox, Cade Brylee

    While oral drug administration is by far the most preferred route, it is accompanied by many barriers that limit drug uptake such as the low pH of the stomach, metabolic and proteolytic enzymes, and limited permeability of the intestinal epithelium. As a result, many drugs ranging from small molecules to biological therapeutics have limited oral bioavailability, precluding them from oral administration. To address this issue, microfabrication has been applied to create planar, asymmetric devices capable of binding to the lining of the gastrointestinal tract and releasing drug at high concentrations, thereby increasing oral drug uptake. While the efficacy of these devices has been validated in vitro and in vivo, modifying their surfaces with nanoscale features has potential to refine their properties for enhanced drug delivery. This dissertation first presents an approach to fabricate polymeric microdevices coated with nanowires in a rapid, high throughput manner. The nanowires demonstrate rapid drug localization onto the surface of these devices via capillary action and increased adhesion to epithelial tissue, suggesting that this fabrication technique can be used to create devices with enhanced properties for oral drug delivery. Also presented are microdevices sealed with nanostraw membranes. The nanostraw membranes provide sustained drug release by limiting drug efflux from the devices, prevent drug degradation by limiting influx of outside biomolecules, and enhance device bioadhesion by penetrating into the mucus layer of the intestinal lining. Finally, an approach that dramatically increases the capacity and efficiency of drug loading into microdevices over previous methods is presented. A picoliter-volume printer is used to print drug directly into device reservoirs in an automated fashion. The technologies presented here expand the capabilities of microdevices for oral drug delivery by incorporating nanoscale structures that enhance device bioadhesion

  13. Ultrasound enhanced release of therapeutics from drug-releasing implants based on titania nanotube arrays.

    PubMed

    Aw, Moom Sinn; Losic, Dusan

    2013-02-25

    A non-invasive and external stimulus-driven local drug delivery system (DDS) based on titania nanotube (TNT) arrays loaded with drug encapsulated polymeric micelles as drug carriers and ultrasound generator is described. Ultrasound waves (USW) generated by a pulsating sonication probe (Sonotrode) in phosphate buffered saline (PBS) at pH 7.2 as the medium for transmitting pressure waves, were used to release drug-loaded nano-carriers from the TNT arrays. It was demonstrated that a very rapid release in pulsatile mode can be achieved, controlled by several parameters on the ultrasonic generator. This includes pulse length, time, amplitude and power intensity. By optimization of these parameters, an immediate drug-micelles release of 100% that spans a desirable time of 5-50 min was achieved. It was shown that stimulated release can be generated and reproduced at any time throughout the TNT-Ti implant life, suggesting considerable potential of this approach as a feasible and tunable ultrasound-mediated drug delivery system in situ via drug-releasing implants. It is expected that this concept can be translated from an in vitro to in vivo regime for therapeutic applications using drug-releasing implants in orthopedic and coronary stents. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  14. The effect of the use of a counter-torque device on the abutment-implant complex.

    PubMed

    Lang, L A; May, K B; Wang, R F

    1999-04-01

    Little is known about the condition of the abutment-screw joint before loading, after the development of the preload. This study examined the tightening force transmitted to the implant with and without the use of a counter-torque device during the tightening of the abutment screw. Forty Brânemark implants and 10 CeraOne, Estheticone, Procera, and AurAdapt abutments formed the experimental populations. Samples in each group were further divided into 2 groups, 1 group was tightened with a torque controller without the use of a counter-torque device, whereas the other used the counter-torque device. Samples were positioned in a special holder within the grips of a Tohnichi BTG-6 torque gauge for measuring transmitted forces. There were significant differences (P =. 0001) in the tightening forces transmitted to the implant with and without the use of a counter-torque device when tightening the abutment screws. An average of 91% of the recommended preload tightening torque was transmitted to the implant-bone interface in the absence of a counter-torque device. In all abutment systems, less than 10% of the recommended preload tightening torque was transmitted to the implant when the counter-torque device was used.

  15. Bone healing response in cyclically loaded implants: Comparing zero, one, and two loading sessions per day.

    PubMed

    de Barros E Lima Bueno, Renan; Dias, Ana Paula; Ponce, Katia J; Wazen, Rima; Brunski, John B; Nanci, Antonio

    2018-05-31

    When bone implants are loaded, they are inevitably subjected to displacement relative to bone. Such micromotion generates stress/strain states at the interface that can cause beneficial or detrimental sequels. The objective of this study is to better understand the mechanobiology of bone healing at the tissue-implant interface during repeated loading. Machined screw shaped Ti implants were placed in rat tibiae in a hole slightly bigger than the implant diameter. Implants were held stable by a specially-designed bone plate that permits controlled loading. Three loading regimens were applied, (a) zero loading, (b) one daily loading session of 60 cycles with an axial force of 1.5 N/cycle for 7 days, and (c) two such daily sessions with the same axial force also for 7 days. Finite element analysis was used to characterize the mechanobiological conditions produced by the loading sessions. After 7 days, the implants with surrounding interfacial tissue were harvested and processed for histological, histomorphometric and DNA microarray analyses. Histomorphometric analyses revealed that the group subjected to repeated loading sessions exhibited a significant decrease in bone-implant contact and increase in bone-implant distance, as compared to unloaded implants and those subjected to only one loading session. Gene expression profiles differed during osseointegration between all groups mainly with respect to inflammatory and unidentified gene categories. The results indicate that increasing the daily cyclic loading of implants induces deleterious changes in the bone healing response, most likely due to the accumulation of tissue damage and associated inflammatory reaction at the bone-implant interface. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Comparison of load distribution for implant overdenture attachments.

    PubMed

    Porter, Joseph A; Petropoulos, Vicki C; Brunski, John B

    2002-01-01

    The aim of this study was to compare the force and moment distributions that develop on different implant overdenture attachments when vertical compressive forces are applied to an implant-retained overdenture. The following attachments were examined: Nobel Biocare bar and clip (NBC), Nobel Biocare standard ball (NSB), Nobel Biocare 2.25-mm-diameter ball (NB2), Zest Anchor Advanced Generation (ZAAG), Sterngold ERA white (SEW), Sterngold ERA orange (SEO), Compliant Keeper System with titanium shims (CK-Ti), Compliant Keeper System with black nitrile 2SR90 sleeve rings (CK-70), and Compliant Keeper System with clear silicone 2SR90 sleeve rings (CK-90). The attachments were tested using custom strain-gauged abutments and 2 Brånemark System implants placed in a test model. Each attachment type had one part embedded in a denture-like housing and the other part (the abutment) screwed into the implants. Compressive static loads of 100 N were applied (1) bilaterally, over the distal midline (DM); (2) unilaterally, over the right implant (RI); (3) unilaterally, over the left implant (LI); and (4) between implants in the mid-anterior region (MA). Both the force and bending moment on each implant were recorded for each loading location and attachment type. Results were analyzed using 2-way analysis of variance and the Duncan multiple-range test. Both loading location and attachment type were statistically significant factors (P < .05). In general, the force and moment on an implant were greater when the load was applied directly over the implant or at MA. While not significant at every loading location, the largest implant forces tended to occur with ZAAG attachments; the smallest were found with the SEW, the SEO, the NSB, the CK-70, and the CK-90. Typically, higher moments existed for NBC and ZAAG, while lower moments existed for SEW, SEO, NSB, CK-90, and CK-70. For different loading locations, significant differences were found among the different overdenture attachment

  17. Miniscrew implants as temporary anchorage devices in orthodontics: a comprehensive review.

    PubMed

    Jasoria, Gaurav; Shamim, Wamiq; Rathore, Saurabh; Kalra, Amit; Manchanda, Mona; Jaggi, Nitin

    2013-09-01

    In recent times, the use of miniscrew implants to obtain absolute anchorage has gained momentum in clinical orthodontics as rigid anchorage modality. Miniscrew implants offers many advantages when used as temporary anchorage devices like, easy placement and removal, immediate loading, can be used in a variety of locations, provide absolute anchorage, economic and requires less patient cooperation. This makes them as a necessary treatment option in cases with critical anchorage that would have otherwise resulted in anchorage loss if treated with conventional means of anchorage. The aim of this comprehensive review is to highlight the gradual evolution, clinical use, advantages and disadvantages of the miniscrew implants when used to obtain a temporary but absolute skeletal anchorage for orthodontic applications.

  18. In vivo tissue distribution and efficacy studies for cyclosporin A loaded nano-decorated subconjunctival implants.

    PubMed

    Yavuz, Burçin; Bozdağ Pehlivan, Sibel; Kaffashi, Abbas; Çalamak, Semih; Ulubayram, Kezban; Palaska, Erhan; Çakmak, Hasan Basri; Ünlü, Nurşen

    2016-11-01

    Biodegradable implants are promising drug delivery systems for sustained release ocular drug delivery with the benefits such as minimum systemic side effects, constant drug concentration at the target site and getting cleared without surgical removal. Dry eye syndrome (DES) is a common disease characterized with the changes in ocular epithelia surface and results in inflammatory reaction that might lead to blindness. Cyclosporin A (CsA) is a cyclic peptide that is frequently employed for the treatment of DES and it needs to be applied several times a day in tear drops form. The aim of this study was to evaluate in vivo behavior and efficacy of the developed nano-decorated subconjunctival implant systems for sustained release CsA delivery. Biodegradable Poly-ɛ-caprolactone (PCL) implant or micro-fiber implants containing CsA loaded poly-lactide-co-glycolide (85:15) (PLGA) or PCL nanoparticles were prepared in order to achieve sustained release. Two of the formulations PCL-PLGA-NP-F and PCL-PCL-NP-I were selected for in vivo evaluation based on their in vitro characteristics determined in our previous study. In this study, formulations were implanted to Swiss Albino mice with induced dry eye syndrome to investigate the ocular distribution of CsA following subconjunctival implantation and to evaluate the efficacy. Tissue distribution study indicated that CsA was present in ocular tissues such as cornea, sclera and lens even 90 days after the application and blood CsA levels were found lower than ocular tissues. Efficacy studies also showed that application of CsA-loaded fiber implant formulation resulted in faster recovery based on their staining scores.

  19. Influence of immediate loading on provisional restoration in dental implant stability

    NASA Astrophysics Data System (ADS)

    Ikbal, M.; Odang, R. W.; Indrasari, M.; Dewi, R. S.

    2017-08-01

    The success of dental implant treatment is determined by the primary stability at placement. One factor that could influence this stability is occlusal loading through provisional restoration. Two types of loading protocols are usually used: immediate and delayed loading. However, some controversies remain about the influence of occlusal loading on implant stability. Therefore, the influence of immediate loading on implant stability must be studied. An animal study was conducted by placing nine dental implants in the mandibular jaw of three Macaca fascicularis. Provisional restorations with various occlusal contacts (no, light, and normal contact) were placed on the implant. The implant stability was measured using the Ostell ISQ three times: immediately (baseline) and at the first and second months after implant placement. The implant stability between implants with no and normal occlusal contact as well as light and normal occlusal contact showed significant differences (p < 0.05) at the first and second months after implant placement. However, no significant increase (p > 0.05) in implant stability was seen at the baseline and the first and second months after implant placement for all occlusal contact groups. Immediate loading influenced the implant stability, and provisional restoration of implant without occlusal contact showed the highest implant stability.

  20. Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles.

    PubMed

    Keohane, Kieran; Brennan, Des; Galvin, Paul; Griffin, Brendan T

    2014-06-05

    The increasing realisation of the impact of size and surface properties on the bio-distribution of drug loaded colloidal particles has driven the application of micro fabrication technologies for the precise engineering of drug loaded microparticles. This paper demonstrates an alternative approach for producing size controlled drug loaded PLGA based microparticles using silicon Microfluidic Flow Focusing Devices (MFFDs). Based on the precise geometry and dimensions of the flow focusing channel, microparticle size was successfully optimised by modifying the polymer type, disperse phase (Qd) flow rate, and continuous phase (Qc) flow rate. The microparticles produced ranged in sizes from 5 to 50 μm and were highly monodisperse (coefficient of variation <5%). A comparison of Ciclosporin (CsA) loaded PLGA microparticles produced by MFFDs vs conventional production techniques was also performed. MFFDs produced microparticles with a narrower size distribution profile, relative to the conventional approaches. In-vitro release kinetics of CsA was found to be influenced by the production technique, with the MFFD approach demonstrating the slowest rate of release over 7 days (4.99 ± 0.26%). Finally, MFFDs were utilised to produce pegylated microparticles using the block co-polymer, PEG-PLGA. In contrast to the smooth microparticles produced using PLGA, PEG-PLGA microparticles displayed a highly porous surface morphology and rapid CsA release, with 85 ± 6.68% CsA released after 24h. The findings from this study demonstrate the utility of silicon MFFDs for the precise control of size and surface morphology of PLGA based microparticles with potential drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Load fatigue performance of four implant-abutment interface designs: effect of torque level and implant system.

    PubMed

    Quek, H C; Tan, Keson B; Nicholls, Jack I

    2008-01-01

    Biomechanical load-fatigue performance data on single-tooth implant systems with different implant-abutment interface designs is lacking in the literature. This study evaluated the load fatigue performance of 4 implant-abutment interface designs (Brånemark-CeraOne; 3i Osseotite-STA abutment; Replace Select-Easy abutment; and Lifecore Stage-1-COC abutment system). The number of load cycles to fatigue failure of 4 implant-abutment designs was tested with a custom rotational load fatigue machine. The effect of increasing and decreasing the tightening torque by 20% respectively on the load fatigue performance was also investigated. Three different tightening torque levels (recommended torque, -20% recommended torque, +20% recommended torque) were applied to the 4 implant systems. There were 12 test groups with 5 samples in each group. The rotational load fatigue machine subjected specimens to a sinusoidally applied 35 Ncm bending moment at a test frequency of 14 Hz. The number of cycles to failure was recorded. A cutoff of 5 x 10(6) cycles was applied as an upper limit. There were 2 implant failures and 1 abutment screw failure in the Brånemark group. Five abutment screw failures and 4 implant failures was recorded for the 3i system. The Replace Select system had 1 implant failure. Five cone screw failures were noted for the Lifecore system. Analysis of variance revealed no statistically significant difference in load cycles to failure for the 4 different implant-abutment systems torqued at recommended torque level. A statistically significant difference was found between the -20% torque group and the +20% torque group (P < .05) for the 3i system. Load fatigue performance and failure location is system specific and related to the design characteristics of the implant-abutment combination. It appeared that if the implant-abutment interface was maintained, load fatigue failure would occur at the weakest point of the implant. It is important to use the torque level

  2. In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery.

    PubMed

    Maulvi, Furqan A; Lakdawala, Dhara H; Shaikh, Anjum A; Desai, Ankita R; Choksi, Harsh H; Vaidya, Rutvi J; Ranch, Ketan M; Koli, Akshay R; Vyas, Bhavin A; Shah, Dinesh O

    2016-03-28

    Glaucoma is commonly treated using eye drops, which is highly inefficient due to rapid clearance (low residence time) from ocular surface. Contact lenses are ideally suited for controlled drug delivery to cornea, but incorporation of any drug loaded particulate system (formulation) affect the optical and physical property of contact lenses. The objective of the present work was to implant timolol maleate (TM) loaded ethyl cellulose nanoparticle-laden ring in hydrogel contact lenses that could provide controlled drug delivery at therapeutic rates without compromising critical lens properties. TM-implant lenses were developed, by dispersing TM encapsulated ethyl cellulose nanoparticles in acrylate hydrogel (fabricated as ring implant) and implanted the same in hydrogel contact lenses (sandwich system). The TM-ethyl cellulose nanoparticles were prepared by double emulsion method at different ratios of TM to ethyl cellulose. The X-ray diffraction studies revealed the transformation of TM to amorphous state. In vitro release kinetic data showed sustained drug release within the therapeutic window for 168h (NP 1:3 batch) with 150μg loading. Cytotoxicity and ocular irritation study demonstrated the safety of TM-implant contact lenses. In vivo pharmacokinetic studies in rabbit tear fluid showed significant increase in mean residence time (MRT) and area under curve (AUC), with TM-implant contact lenses in comparison to eye drop therapy. In vivo pharmacodynamic data in rabbit model showed sustained reduction in intra ocular pressure for 192h. The study demonstrated the promising potential of implantation technology to treat glaucoma using contact lenses, and could serve as a platform for other ocular diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. 21 CFR 878.4750 - Implantable staple.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implantable staple. 878.4750 Section 878.4750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4750 Implantable staple. (a...

  4. 21 CFR 878.4750 - Implantable staple.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implantable staple. 878.4750 Section 878.4750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4750 Implantable staple. (a...

  5. 21 CFR 878.4750 - Implantable staple.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implantable staple. 878.4750 Section 878.4750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4750 Implantable staple. (a...

  6. 21 CFR 878.4300 - Implantable clip.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implantable clip. 878.4300 Section 878.4300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4300 Implantable clip. (a...

  7. 21 CFR 878.4300 - Implantable clip.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implantable clip. 878.4300 Section 878.4300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4300 Implantable clip. (a...

  8. 21 CFR 878.4300 - Implantable clip.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implantable clip. 878.4300 Section 878.4300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4300 Implantable clip. (a...

  9. 21 CFR 878.4300 - Implantable clip.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implantable clip. 878.4300 Section 878.4300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4300 Implantable clip. (a...

  10. 21 CFR 878.4300 - Implantable clip.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implantable clip. 878.4300 Section 878.4300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4300 Implantable clip. (a...

  11. 21 CFR 878.4750 - Implantable staple.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implantable staple. 878.4750 Section 878.4750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4750 Implantable staple. (a...

  12. 21 CFR 878.4750 - Implantable staple.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implantable staple. 878.4750 Section 878.4750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4750 Implantable staple. (a...

  13. Pectoral nerves (PECS) and intercostal nerve block for cardiac resynchronization therapy device implantation.

    PubMed

    Fujiwara, Atsushi; Komasawa, Nobuyasu; Minami, Toshiaki

    2014-01-01

    A 71-year-old man was scheduled to undergo cardiac resynchronization therapy device (CRTD) implantation. He was combined with severe chronic heart failure due to ischemic heart disease. NYHA class was 3 to 4 and electrocardiogram showed non-sustained ventricular. Ejection fraction was about 20% revealed by transthoracic echocardiogram. He was also on several anticoagulation medications. We planned to implant the device under the greater pectoral muscle. As general anesthesia was considered risky, monitored anesthesia care utilizing peripheral nerve block and slight sedation was scheduled. Pectoral nerves (PECS) block and intercostal block was performed under ultrasonography with ropivacaine. For sedation during the procedure, continuous infusion of dexmedetomidine without a loading dose was performed. The procedure lasted about 3 hours, but the patient showed no pain or restlessness. Combination of PECS block and intercostal block may provide effective analgesia for CRTD implantation.

  14. Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery.

    PubMed

    Fong, Jeffrey; Xiao, Zhiming; Takahata, Kenichi

    2015-02-21

    We demonstrate an active, implantable drug delivery device embedded with a microfluidic pump that is driven by a radio-controlled actuator for temporal drug delivery. The polyimide-packaged 10 × 10 × 2 mm(3) chip contains a micromachined pump chamber and check valves of Parylene C to force the release of the drug from a 76 μL reservoir by wirelessly activating the actuator using external radio-frequency (RF) electromagnetic fields. The rectangular-shaped spiral-coil actuator based on nitinol, a biocompatible shape-memory alloy, is developed to perform cantilever-like actuation for pumping operation. The nitinol-coil actuator itself forms a passive 185 MHz resonant circuit that serves as a self-heat source activated via RF power transfer to enable frequency-selective actuation and pumping. Experimental wireless operation of fabricated prototypes shows successful release of test agents from the devices placed in liquid and excited by radiating tuned RF fields with an output power of 1.1 W. These tests reveal a single release volume of 219 nL, suggesting a device's capacity of ~350 individual ejections of drug from its reservoir. The thermal behavior of the activated device is also reported in detail. This proof-of-concept prototype validates the effectiveness of wireless RF pumping for fully controlled, long-lasting drug delivery, a key step towards enabling patient-tailored, targeted local drug delivery through highly miniaturized implants.

  15. 21 CFR 882.5820 - Implanted cerebellar stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted cerebellar stimulator. 882.5820 Section 882.5820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5820 Implanted...

  16. 21 CFR 882.5820 - Implanted cerebellar stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted cerebellar stimulator. 882.5820 Section 882.5820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5820 Implanted...

  17. Loading capacity of zirconia implant supported hybrid ceramic crowns.

    PubMed

    Rohr, Nadja; Coldea, Andrea; Zitzmann, Nicola U; Fischer, Jens

    2015-12-01

    Recently a polymer infiltrated hybrid ceramic was developed, which is characterized by a low elastic modulus and therefore may be considered as potential material for implant supported single crowns. The purpose of the study was to evaluate the loading capacity of hybrid ceramic single crowns on one-piece zirconia implants with respect to the cement type. Fracture load tests were performed on standardized molar crowns milled from hybrid ceramic or feldspar ceramic, cemented to zirconia implants with either machined or etched intaglio surface using four different resin composite cements. Flexure strength, elastic modulus, indirect tensile strength and compressive strength of the cements were measured. Statistical analysis was performed using two-way ANOVA (p=0.05). The hybrid ceramic exhibited statistically significant higher fracture load values than the feldspar ceramic. Fracture load values and compressive strength values of the respective cements were correlated. Highest fracture load values were achieved with an adhesive cement (1253±148N). Etching of the intaglio surface did not improve the fracture load. Loading capacity of hybrid ceramic single crowns on one-piece zirconia implants is superior to that of feldspar ceramic. To achieve maximal loading capacity for permanent cementation of full-ceramic restorations on zirconia implants, self-adhesive or adhesive cements with a high compressive strength should be used. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Immediate loading of subcrestally placed dental implants in anterior and premolar sites.

    PubMed

    Henningsen, Anders; Smeets, Ralf; Köppen, Kai; Sehner, Susanne; Kornmann, Frank; Gröbe, Alexander; Heiland, Max; Gerlach, Till

    2017-11-01

    Immediate loading of dental implants has been evolving into an appropriate procedure for the treatment of partially edentulous jaws. The purpose of this study was to evaluate the clinical success and radiological outcome of immediately and delayed loaded dental implants in anterior and premolar sites. In this retrospective study, data of 163 individuals requiring tooth removal with subsequent implant placement in anterior and premolar sites were analyzed. Implants were immediately loaded by provisional acrylic resin bridges or loaded with delay. Implants were followed up annually for up to 9 years including intraoral radiographs. A total of 285 implants in 163 patients were placed. 218 implants were immediately loaded and 67 implants with delay. Fifteen implants failed during the follow-up period resulting in survival rates of 94.5% for immediate loading and 95.5% for delayed loading. After an initial decrease of 0.3 mm in the first 12 months the marginal bone level remained stable. No statistically significant differences were found in marginal bone loss between immediately and delayed loaded implants (P = 0.518, 95% CI). Within the limits of this study, immediate loading of immediately subcrestally placed dental implants in anterior and premolar sites is a reliable treatment option for dental rehabilitation. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  19. Toward biomaterial-based implantable photonic devices

    NASA Astrophysics Data System (ADS)

    Humar, Matjaž; Kwok, Sheldon J. J.; Choi, Myunghwan; Yetisen, Ali K.; Cho, Sangyeon; Yun, Seok-Hyun

    2017-03-01

    Optical technologies are essential for the rapid and efficient delivery of health care to patients. Efforts have begun to implement these technologies in miniature devices that are implantable in patients for continuous or chronic uses. In this review, we discuss guidelines for biomaterials suitable for use in vivo. Basic optical functions such as focusing, reflection, and diffraction have been realized with biopolymers. Biocompatible optical fibers can deliver sensing or therapeutic-inducing light into tissues and enable optical communications with implanted photonic devices. Wirelessly powered, light-emitting diodes (LEDs) and miniature lasers made of biocompatible materials may offer new approaches in optical sensing and therapy. Advances in biotechnologies, such as optogenetics, enable more sophisticated photonic devices with a high level of integration with neurological or physiological circuits. With further innovations and translational development, implantable photonic devices offer a pathway to improve health monitoring, diagnostics, and light-activated therapies.

  20. Virtual Humans for Implantable Device Safety Assessment in MRI: Mitigating Magnetic Resonance Imaging Hazards for Implanted Medical Devices.

    PubMed

    Brown, James E; Qiang, Rui; Stadnik, Paul J; Stotts, Larry J; Von Arx, Jeffrey A

    2017-01-01

    Magnetic resonance imaging (MRI) is the preferred modality for soft tissue imaging because of its nonionizing radiation and lack of contrast agent. Due to interactions between the MR system and active implantable medical devices (AIMDs), patients with implants such as pacemakers are generally denied access to MRI, which presents a detriment to that population. It has been estimated that 50-75% of patients with a cardiac device were denied access to MRI scanning and, moreover, that 17% of pacemaker patients need an MRI within 12 months of implantation [1]. In recent years, AIMD manufacturers, such as Biotronik, have assessed the conditional safety of devices in MRI.

  1. In vivo evaluation of the anti-infection potential of gentamicin-loaded nanotubes on titania implants

    PubMed Central

    Yang, Ying; Ao, Hai-yong; Yang, Sheng-bing; Wang, Yu-gang; Lin, Wen-tao; Yu, Zhi-feng; Tang, Ting-ting

    2016-01-01

    Titanium-based implants have been widely used in orthopedic surgery; however, failures still occur. Our in vitro study has demonstrated that gentamicin-loaded, 80 nm-diameter nanotubes possessed both antibacterial and osteogenic activities. Thus, the aim of this study was to further investigate the in vivo anti-infection effect of the titanium implants with gentamicin-loaded nanotubes. Thirty-six male Sprague Dawley rats were used to establish an implant-associated infection model. A volume of 50 μL Staphylococcus aureus suspension (1×105 CFU/mL) was injected into the medullary cavity of the left femur, and then the titanium rods without modification (Ti), titanium nanotubes without drug loading (NT), and gentamicin-loaded titanium nanotubes (NT-G) were inserted with phosphate-buffered saline-inoculated Ti rods as a blank control. X-ray images were obtained 1 day, 21 days, and 42 days after surgery; micro-computed tomography, microbiological, and histopathological analyses were used to evaluate the infections at the time of sacrifice. Radiographic signs of bone infection, including osteolysis, periosteal reaction, osteosclerosis, and damaged articular surfaces, were demonstrated in the infected Ti group and were slightly alleviated in the NT group but not observed in the NT-G group. Meanwhile, the radiographic and gross bone pathological scores of the NT-G group were significantly lower than those of the infected Ti group (P<0.01). Explant cultures revealed significantly less bacterial growth in the NT-G group than in the Ti and NT groups (P<0.01), and the NT group showed decreased live bacterial growth compared with the Ti group (P<0.01). Confocal laser scanning microscopy, scanning electron microscopy, and histopathological observations further confirmed decreased bacterial burden in the NT-G group compared with the Ti and NT groups. We concluded that the NT-G coatings can significantly prevent the development of implant-associated infections in a rat model

  2. Distribution of peri-implant stresses with a countertorque device.

    PubMed

    Sendyk, Claudio Luiz; Lopez, Thais Torralbo; de Araujo, Cleudmar Amaral; Sendyk, Wilson Roberto; Goncalvez, Valdir Ferreira

    2013-01-01

    To verify the effectiveness of a countertorque device in dental implants in redistributing stress to the bone-implant interface during tightening of the abutment screw. Two prismatic photoelastic samples containing implants were made, one with a 3.75-mm-diameter implant and the other with a 5.0-mm-diameter implant (both implants had an external-hexagon interface) and the respective abutments were attached (CeraOne). The samples were placed in a support and submitted to torques of 10, 20, 32, and 45 Ncm with an electronic torque meter. The torque application was repeated 10 times on each sample (n = 10) with and without a countertorque device. Photoelastic patterns were detected; thus, a photographic register of each test was selected. The fringe patterns were analyzed at discrete points near the implants' external arch. In both implants analyzed, a stress gradient reduction was observed through the implant with the countertorque device. The countertorque device used in this study proved to be effective in reducing the stresses generated in the peri-implant bone tissue during torque application.

  3. 21 CFR 882.5225 - Implanted malleable clip.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted malleable clip. 882.5225 Section 882.5225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5225 Implanted malleable clip...

  4. 21 CFR 882.5225 - Implanted malleable clip.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted malleable clip. 882.5225 Section 882.5225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5225 Implanted malleable clip...

  5. Biofeedback With Implanted Blood-Pressure Device

    NASA Technical Reports Server (NTRS)

    Rischell, Robert E.

    1988-01-01

    Additional uses found for equipment described in "Implanted Blood-Pressure-Measuring Device" (GSC-13042). Implanted with device electronic circuitry that measures, interprets, and transmits data via inductive link through patient's skin to external receiver. Receiver includes audible alarm generator activated when patient's blood pressure exceeds predetermined threshold. Also included in receiver a blood-pressure display, recorder, or both, for use by patient or physician.

  6. Time Course of Peri-Implant Bone Regeneration around Loaded and Unloaded Implants in a Rat Model

    PubMed Central

    Jariwala, Shailly H.; Wee, Hwabok; Roush, Evan P.; Whitcomb, Tiffany L.; Murter, Christopher; Kozlansky, Gery; Lakhtakia, Akhlesh; Kunselman, Allen R.; Donahue, Henry J.; Armstrong, April D.; Lewis, Gregory S.

    2018-01-01

    The time-course of cancellous bone regeneration surrounding mechanically loaded implants affects implant fixation, and is relevant to determining optimal rehabilitation protocols following orthopaedic surgeries. We investigated the influence of controlled mechanical loading of titanium-coated polyether-ether ketone (PEEK) implants on osseointegration using time-lapsed, non-invasive, in vivo micro-computed tomography (micro-CT) scans. Implants were inserted into proximal tibial metaphyses of both limbs of eight female Sprague-Dawley rats. External cyclic loading (60 μm or 100 μm displacement, 1 Hz, 60 seconds) was applied every other day for 14 days to one implant in each rat, while implants in contralateral limbs served as the unloaded controls. Hind limbs were imaged with high-resolution micro-CT (12.5 μm voxel size) at 2, 5, 9, and 12 days post-surgery. Trabecular changes over time were detected by 3D image registration allowing for measurements of bone-formation rate (BFR) and bone-resorption rate (BRR). At day 9, mean %BV/TV for loaded and unloaded limbs were 35.5 ± 10.0 % and 37.2 ± 10.0 %, respectively, and demonstrated significant increases in bone volume compared to day 2. BRR increased significantly after day 9. No significant differences between bone volumes, BFR, and BRR were detected due to implant loading. Although not reaching significance (p = 0.16), an average 119 % increase in pull-out strength was measured in the loaded implants. PMID:27381807

  7. pH-controlled drug loading and release from biodegradable microcapsules

    PubMed Central

    Zhao, Qinghe; Li, Bingyun

    2013-01-01

    Microcapsules made of biopolymers are of both scientific and technological interest and have many potential applications in medicine including their use as controlled drug delivery devices. The present study employs the electrostatic interaction between polycations and polyanions to form a multilayered microcapsule shell and also to control the loading and release of charged drug molecules inside the microcapsule. Micron-sized CaCO3 particles were synthesized and integrated with chondroitin sulfate (CS) through a reaction between Na2CO3 and Ca(NO3)2 solutions suspended with CS macromolecules. Oppositely-charged biopolymers were alternately deposited onto the synthesized particles using electrostatic layer-by-layer self-assembly, and glutaraldehyde was introduced to crosslink the multilayered shell structure. Microcapsules integrated with CS inside the multilayered shells were obtained after decomposition of the CaCO3 templates. The integration of a matrix, i.e. CS, enabled the subsequent selective control of drug loading and release. The CS integrated microcapsules were loaded with a model drug, i.e. bovine serum albumin labeled with fluorescein isothiocyanate (FITC-BSA), and it was shown that pH was an effective means of controlling the loading and release of FITC-BSA. Such CS integrated microcapsules may be used for controlled localized drug delivery as biodegradable devices, which have advantages in reducing systemic side effects and increasing drug efficacy. PMID:18657478

  8. pH-controlled drug loading and release from biodegradable microcapsules.

    PubMed

    Zhao, Qinghe; Li, Bingyun

    2008-12-01

    Microcapsules made of biopolymers are of both scientific and technological interest and have many potential applications in medicine, including their use as controlled drug delivery devices. The present study makes use of the electrostatic interaction between polycations and polyanions to form a multilayered microcapsule shell and also to control the loading and release of charged drug molecules inside the microcapsule. Micron-sized calcium carbonate (CaCO3) particles were synthesized and integrated with chondroitin sulfate (CS) through a reaction between sodium carbonate and calcium nitrate tetrahydrate solutions suspended with CS macromolecules. Oppositely charged biopolymers were alternately deposited onto the synthesized particles using electrostatic layer-by-layer self-assembly, and glutaraldehyde was introduced to cross-link the multilayered shell structure. Microcapsules integrated with CS inside the multilayered shells were obtained after decomposition of the CaCO3 templates. The integration of a matrix (i.e., CS) permitted the subsequent selective control of drug loading and release. The CS-integrated microcapsules were loaded with a model drug, bovine serum albumin labeled with fluorescein isothiocyanate (FITC-BSA), and it was shown that pH was an effective means of controlling the loading and release of FITC-BSA. Such CS-integrated microcapsules may be used for controlled localized drug delivery as biodegradable devices, which have advantages in reducing systemic side effects and increasing drug efficacy.

  9. 21 CFR 876.3630 - Penile rigidity implant.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Penile rigidity implant. 876.3630 Section 876.3630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Prosthetic Devices § 876.3630 Penile rigidity implant. (a...

  10. Optimally oriented grooves on dental implants improve bone quality around implants under repetitive mechanical loading.

    PubMed

    Kuroshima, Shinichiro; Nakano, Takayoshi; Ishimoto, Takuya; Sasaki, Muneteru; Inoue, Maaya; Yasutake, Munenori; Sawase, Takashi

    2017-01-15

    The aim was to investigate the effect of groove designs on bone quality under controlled-repetitive load conditions for optimizing dental implant design. Anodized Ti-6Al-4V alloy implants with -60° and +60° grooves around the neck were placed in the proximal tibial metaphysis of rabbits. The application of a repetitive mechanical load was initiated via the implants (50N, 3Hz, 1800 cycles, 2days/week) at 12weeks after surgery for 8weeks. Bone quality, defined as osteocyte density and degree of biological apatite (BAp) c-axis/collagen fibers, was then evaluated. Groove designs did not affect bone quality without mechanical loading; however, repetitive mechanical loading significantly increased bone-to-implant contact, bone mass, and bone mineral density (BMD). In +60° grooves, the BAp c-axis/collagen fibers preferentially aligned along the groove direction with mechanical loading. Moreover, osteocyte density was significantly higher both inside and in the adjacent region of the +60° grooves, but not -60° grooves. These results suggest that the +60° grooves successfully transmitted the load to the bone tissues surrounding implants through the grooves. An optimally oriented groove structure on the implant surface was shown to be a promising way for achieving bone tissue with appropriate bone quality. This is the first report to propose the optimal design of grooves on the necks of dental implants for improving bone quality parameters as well as BMD. The findings suggest that not only BMD, but also bone quality, could be a useful clinical parameter in implant dentistry. Although the paradigm of bone quality has shifted from density-based assessments to structural evaluations of bone, clarifying bone quality based on structural bone evaluations remains challenging in implant dentistry. In this study, we firstly demonstrated that the optimal design of dental implant necks improved bone quality defined as osteocytes and the preferential alignment degree of biological

  11. Power Approaches for Implantable Medical Devices.

    PubMed

    Ben Amar, Achraf; Kouki, Ammar B; Cao, Hung

    2015-11-13

    Implantable medical devices have been implemented to provide treatment and to assess in vivo physiological information in humans as well as animal models for medical diagnosis and prognosis, therapeutic applications and biological science studies. The advances of micro/nanotechnology dovetailed with novel biomaterials have further enhanced biocompatibility, sensitivity, longevity and reliability in newly-emerged low-cost and compact devices. Close-loop systems with both sensing and treatment functions have also been developed to provide point-of-care and personalized medicine. Nevertheless, one of the remaining challenges is whether power can be supplied sufficiently and continuously for the operation of the entire system. This issue is becoming more and more critical to the increasing need of power for wireless communication in implanted devices towards the future healthcare infrastructure, namely mobile health (m-Health). In this review paper, methodologies to transfer and harvest energy in implantable medical devices are introduced and discussed to highlight the uses and significances of various potential power sources.

  12. Power Approaches for Implantable Medical Devices

    PubMed Central

    Ben Amar, Achraf; Kouki, Ammar B.; Cao, Hung

    2015-01-01

    Implantable medical devices have been implemented to provide treatment and to assess in vivo physiological information in humans as well as animal models for medical diagnosis and prognosis, therapeutic applications and biological science studies. The advances of micro/nanotechnology dovetailed with novel biomaterials have further enhanced biocompatibility, sensitivity, longevity and reliability in newly-emerged low-cost and compact devices. Close-loop systems with both sensing and treatment functions have also been developed to provide point-of-care and personalized medicine. Nevertheless, one of the remaining challenges is whether power can be supplied sufficiently and continuously for the operation of the entire system. This issue is becoming more and more critical to the increasing need of power for wireless communication in implanted devices towards the future healthcare infrastructure, namely mobile health (m-Health). In this review paper, methodologies to transfer and harvest energy in implantable medical devices are introduced and discussed to highlight the uses and significances of various potential power sources. PMID:26580626

  13. Implant Mandibular Overdentures Retained by Immediately Loaded Implants: A 1-Year Randomized Trial Comparing the Clinical and Radiographic Outcomes Between Mini Dental Implants and Standard-Sized Implants.

    PubMed

    Zygogiannis, Kostas; Aartman, Irene Ha; Parsa, Azin; Tahmaseb, Ali; Wismeijer, Daniel

    The aim of this 1-year randomized trial was to evaluate and compare the clinical and radiographic performance of four immediately loaded mini dental implants (MDIs) and two immediately loaded standard-sized tissue-level (STL) implants, placed in the interforaminal region of the mandible and used to retain mandibular overdentures (IODs) in completely edentulous patients. A total of 50 completely edentulous patients wearing conventional maxillary dentures and complaining about insufficient retention of their mandibular dentures were divided into two groups; 25 patients received four MDIs and 25 patients received two STL implants. The marginal bone loss (MBL) at the mesial and distal sides of each implant was assessed by means of standardized intraoral radiographs after a period of 1 year. Implant success and survival rates were also calculated. Immediate loading was possible for all patients in the first group. In the second group, an immediate loading protocol could not be applied for 10 patients. These patients were treated with a delayed loading protocol. A mean MBL of 0.42 ± 0.56 mm for the MDIs and 0.54 ± 0.49 mm for the immediately loaded STL implants was recorded at the end of the evaluation period. There was no statistically significant difference between the MDIs and the immediately loaded STL implants. Two MDIs failed, resulting in a survival rate of 98%. The success rate was 91%. For the immediately loaded conventional implants, the survival rate was 100% and the success rate 96.7% after 1 year of function. However, in 10 patients, the immediate loading protocol could not be followed. Considering the limitations of this short-term clinical study, immediate loading of four unsplinted MDIs or two splinted STL implants to retain mandibular overdentures seems to be a feasible treatment option. The marginal bone level changes around the MDIs were well within the clinically acceptable range.

  14. Implantable Drug Dispenser

    NASA Technical Reports Server (NTRS)

    Collins, E. R. J.

    1983-01-01

    Drugs such as insulin are injected as needed directly into bloodstream by compact implantable dispensing unit. Two vapor cavities produce opposing forces on drug-chamber diaphragm. Heaters in cavities allow control of direction and rate of motion of bellows. Dispensing capsule fitted with coil so batteries can be recharged by induction.

  15. Clinical and Radiographic Assessment of Three-Implant-Supported Fixed-Prosthesis Rehabilitation of the Edentulous Mandible: Immediate Versus Delayed Loading.

    PubMed

    Primo, Bruno Tochetto; Mezzari, Leonardo Marcos; da Fontoura Frasca, Luís Carlos; Linderman, Raquel; Rivaldo, Elken Gomes

    To evaluate and compare the clinical and radiographic outcomes of mandibular rehabilitation with fixed prostheses on three implants with immediate versus delayed loading. The sample comprised 21 patients who underwent treatment with immediate loading and 23 who received delayed loading. All had worn their prostheses for at least 18 months. Radiographic evaluation of bone loss was carried out in Adobe Photoshop CS5 by a single calibrated examiner using digitized panoramic radiographs. Clinical examination of the technical conditions of the prosthetic device assessed the condition of the acrylic resin base, dental occlusion, metal framework, presence of cover screws, screw fixation of the prosthesis and abutments, length of cantilever (effort) and resistance arms, presence of plaque on prosthetic abutments, and hygiene of the prosthesis. One implant failed in each group, resulting in a 95.23% treatment success rate with immediate loading and 95.65% with delayed loading (no statistically significant between-group difference). In the immediate-loading group, the mean bone loss was 1.96 ± 0.73 mm around central implants and 1.64 ± 0.84 mm at distal implants. In the delayed-loading group, the mean bone loss was 1.85 ± 0.67 mm around central implants and 1.70 ± 0.77 mm at distal implants. According to Student t test, there was no significant within-group difference in bone loss and no difference between the immediate-loading and delayed-loading groups. The only prosthesis-related complications that differed significantly between groups were "condition of the acrylic base," "occlusion," and "presence of right cover screw." There was no statistically significant association of lever arm ratio with peri-implant bone loss or bone loss on the mesial surfaces compared to the distal surfaces of the distal implants. The three-implant-supported fixed prosthesis protocol tested in this study proved to be a viable therapeutic strategy for mandibular edentulous patients with

  16. Development of Implantable Medical Devices: From an Engineering Perspective

    PubMed Central

    2013-01-01

    From the first pacemaker implant in 1958, numerous engineering and medical activities for implantable medical device development have faced challenges in materials, battery power, functionality, electrical power consumption, size shrinkage, system delivery, and wireless communication. With explosive advances in scientific and engineering technology, many implantable medical devices such as the pacemaker, cochlear implant, and real-time blood pressure sensors have been developed and improved. This trend of progress in medical devices will continue because of the coming super-aged society, which will result in more consumers for the devices. The inner body is a special space filled with electrical, chemical, mechanical, and marine-salted reactions. Therefore, electrical connectivity and communication, corrosion, robustness, and hermeticity are key factors to be considered during the development stage. The main participants in the development stage are the user, the medical staff, and the engineer or technician. Thus, there are three different viewpoints in the development of implantable devices. In this review paper, considerations in the development of implantable medical devices will be presented from the viewpoint of an engineering mind. PMID:24143287

  17. Osseous adaptation to continuous loading of rigid endosseous implants

    NASA Technical Reports Server (NTRS)

    Roberts, W. E.; Smith, R. K.; Mozsary, P. G.; Zilberman, Y.; Smith, R. S.

    1984-01-01

    The effect of loading on etched Ti implants in the femurs of young (3 mo) and adult (6 mo) rabbits is investigated experimentally. The results are presented in photographs, fluorescence and polarization micrographs, radiographs, and drawings and discussed. Implantation is followed by formation of coarse woven bone within 3 d and mature lamellar bone by 6 wks, with nonspecific subperiosteal bony hypertrophy in the young rabbits only. Spring loading at 100 g produces spontaneous spiral-type fractures when applied immediately, but the implants remain rigid when loads are applied after 6-12 wks of healing. The mechanisms of bone formation involved are examined, and the potential of endosseous implants as anchors in orthodontics or dentofacial-orthopedics is confirmed.

  18. 21 CFR 886.3320 - Eye sphere implant.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Eye sphere implant. 886.3320 Section 886.3320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3320 Eye sphere implant. (a) Identification. An eye...

  19. 21 CFR 886.3320 - Eye sphere implant.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Eye sphere implant. 886.3320 Section 886.3320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3320 Eye sphere implant. (a) Identification. An eye...

  20. Drug Delivery: Enabling Technology for Drug Discovery and Development. iPRECIO® Micro Infusion Pump: Programmable, Refillable, and Implantable

    PubMed Central

    Tan, Tsung; Watts, Stephanie W.; Davis, Robert Patrick

    2011-01-01

    Successful drug delivery using implantable pumps may be found in over 12,500 published articles. Their versatility in delivering continuous infusion, intermittent or complex infusion protocols acutely or chronically has made them ubiquitous in drug discovery and basic research. The recent availability of iPRECIO®, a programmable, refillable, and implantable infusion pump has made it possible to carry out quantitative pharmacology (PKPD) in single animals. When combined with specialized catheters, specific administration sites have been selected. When combined with radiotelemetry, the physiologic gold standard, more sensitive and powerful means of detecting drug induced therapeutic, and/or adverse effects has been possible. Numerous application examples are cited from iPRECIO® use in Japan, United States, and Europe with iPRECIO® as an enabling drug delivery device where the refillable and programmability functionality were key benefits. The ability to start/stop drug delivery and to have control periods prior dosing made it possible to have equivalent effects at a much lower dose than previously studied. Five different iPRECIO® applications are described in detail with references to the original work where the implantable, refillable, and programmable benefits are demonstrated with their different end-points. PMID:21863140

  1. Batteries used to Power Implantable Biomedical Devices

    PubMed Central

    Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    2012-01-01

    Battery systems have been developed that provide years of service for implantable medical devices. The primary systems utilize lithium metal anodes with cathode systems including iodine, manganese oxide, carbon monofluoride, silver vanadium oxide and hybrid cathodes. Secondary lithium ion batteries have also been developed for medical applications where the batteries are charged while remaining implanted. While the specific performance requirements of the devices vary, some general requirements are common. These include high safety, reliability and volumetric energy density, long service life, and state of discharge indication. Successful development and implementation of these battery types has helped enable implanted biomedical devices and their treatment of human disease. PMID:24179249

  2. Batteries used to Power Implantable Biomedical Devices.

    PubMed

    Bock, David C; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2012-12-01

    Battery systems have been developed that provide years of service for implantable medical devices. The primary systems utilize lithium metal anodes with cathode systems including iodine, manganese oxide, carbon monofluoride, silver vanadium oxide and hybrid cathodes. Secondary lithium ion batteries have also been developed for medical applications where the batteries are charged while remaining implanted. While the specific performance requirements of the devices vary, some general requirements are common. These include high safety, reliability and volumetric energy density, long service life, and state of discharge indication. Successful development and implementation of these battery types has helped enable implanted biomedical devices and their treatment of human disease.

  3. Testing a Method for Quantifying the Output of Implantable Middle Ear Hearing Devices

    PubMed Central

    Rosowski, J.J.; Chien, W.; Ravicz, M.E.; Merchant, S.N.

    2008-01-01

    This report describes tests of a standard practice for quantifying the performance of implantable middle ear hearing devices (also known as implantable hearing aids). The standard and these tests were initiated by the Food and Drug Administration of the United States Government. The tests involved measurements on two hearing devices, one commercially available and the other home built, that were implanted into ears removed from human cadavers. The tests were conducted to investigate the utility of the practice and its outcome measures: the equivalent ear canal sound pressure transfer function that relates electrically driven middle ear velocities to the equivalent sound pressure needed to produce those velocities, and the maximum effective ear canal sound pressure. The practice calls for measurements in cadaveric ears in order to account for the varied anatomy and function of different human middle ears. PMID:17406105

  4. Complete removal of infected devices and simultaneous implantation of new devices for infective endocarditis after pacemaker implantation.

    PubMed

    Miura, Takuya; Inoue, Kazushige; Yokota, Takenori; Iwata, Takashi; Yoshitatsu, Masao

    2017-02-01

    Two cases of infective endocarditis after pacemaker implantation were reported. Complete removal of infected devices was performed under cardiopulmonary bypass, and simultaneous implantation of new devices was performed using epicardial leads and generator on the abdominal wall. The postoperative course was uneventful and recurrence was not recognized. These procedures may be suitable for the patients who depend on the pacemaker or who have repeat bacteremia with other infectious disease or conditions.

  5. Use of the Etonogestrel Implant and Levonorgestrel Intrauterine Device Beyond the U.S. Food and Drug Administration–Approved Duration

    PubMed Central

    McNicholas, Colleen; Maddipati, Ragini; Zhao, Qiuhong; Swor, Erin; Peipert, Jeffrey F.

    2014-01-01

    Objective To evaluate the effectiveness of the contraceptive implant and the 52mg hormonal intrauterine device (IUD) in women using the method beyond the current U.S. Food and Drug Administration–approved duration of 3 and 5 years respectively. Methods Women willing to continue using their implant or 52mg levonorgestrel IUD (LNG-IUD) beyond the FDA-approved duration were followed prospectively for contraceptive effectiveness. Unintended pregnancy rate per 100 women-years was calculated. Implant users are offered periodic venipuncture for analysis of serum etonogestrel levels. The Kruskal-Wallis test was used to compare the etonogestrel levels across BMI groups. Results Implant users (n=237) have contributed 229.4 women-years of follow-up, with 123 using the etonogestrel implant for 4 years, and 34 using it for 5 years. Zero pregnancies have been documented, for a failure rate of 0 (one-sided 97.5% CI: 0, 1.61) per 100 women-years. Among 263 LNG-IUD users, 197.7 women-years of follow-up have been completed. One pregnancy was confirmed, for a failure rate of 0.51 (95% CI: 0.01, 2.82) per 100 women-years. Among implant users with serum etonogestrel results, the median and range of etonogestrel level at 3 years of use was 188.8 pg/mL (range 63.8, 802.6) and 177.0 pg/mL (67.9, 470.5) at 4 years of use. Etonogestrel levels did not differ by BMI at either time point (3 years: p=0.79; 4 years: p=0.47). Conclusion Preliminary findings indicate the contraceptive implant and 52mg hormonal IUD continue to be highly-effective for an additional year, beyond the FDA approved 3 and 5 years.. Serum etonogestrel levels indicate the implant contains adequate hormone for ovulation suppression at the end of both 3 and 4 years of use. PMID:25730221

  6. The effect of varying implant position in immediately loaded implant-supported mandibular overdentures.

    PubMed

    Shaarawy, Mohammed A; Aboelross, Ehab M

    2013-06-01

    This study was carried out to evaluate the effect of varying implant position in immediately loaded implant-supported mandibular overdentures on peri-implant bone density, muscle activity, and patient satisfaction. Fourteen completely edentulous patients were selected for the study. After complete denture construction, patients were divided into 2 equal groups. Four dental implants were installed bilaterally in the interforaminal region in the first group, while in the second group, 4 dental implants were inserted bilaterally: 2 in the interforaminal region and 2 in the first molar area. Immediately after suturing, telescopic abutments were screwed to the implants, and the retaining caps were picked up into the fitting surface of the lower denture, which was delivered to the patient. Patients were recalled for radiographic bone density evaluation just after denture delivery and then at 3, 6, and 12 months thereafter. Muscle activities of masseter and temporalis muscles as well as patient satisfaction were also evaluated. The results of the study showed a high success rate approximating 98.2% of the immediately loaded implants. The electromyographic (EMG) records of both muscles in group 1 were significantly higher during chewing hard food after 3 months compared with group 2 (P < .05). Bone density changes were comparable in the 2 groups except at the end of the follow-up period, when group 2 showed a significant increase in peri-implant bone density values of the posteriorly placed implants compared with group 1 (P < .05). From the results of this study, it may be concluded that wide distribution of immediately loaded implants used for supporting mandibular overdentures through posterior placement beyond the interforaminal area results in a favorable response in terms of increased peri-implant bone density as well as decreased EMG activity of masseter and temporalis muscles.

  7. Assessment of surface concentrations in resorbable ocular implants: controlled drug delivery devices for 5-fluorouracil (5-FU)

    NASA Astrophysics Data System (ADS)

    Milne, Peter J.; Gautier, Sandrine; Parel, Jean-Marie A.; Jallet, Valerie

    1997-05-01

    The antineoplastic drug 5-fluorouracil (5-fluoro- 2,4,(1H,3H)-pyrimidinedione; 5-FU) has been used to control proliferation of penetrating fibroblasts and to prevent channel closure following glaucoma filtration surgery (trabeculectomy) or laser sclerectomy. Because of the toxicity of the drug, administration of low dosages slowly over time, at the site of the desired treatment, is indicated for optimum efficacy. Repeated injections of low dosages of the drug represent an undesirable intervention and may also result in unwanted toxicity to the corneal epithelium. A suitable biocompatible and resorbable polymer matrix composed of a poly (D,L-lactic-co-glycolic acid: PLGA) has been admixed with varying amounts of 5-FU and cast as shapes suitable for intracorneal implantation. Slow biodegradation of this polymer over a one to two week period has been shown to result in an acceptably slow drug release mechanism. An issue arising during the clinical evaluation of the efficacy of this drug delivery system was how best to quantify the concentration of 5-FU and its distribution spatially in the solid implant. FT-IR and FT-Raman spectroscopies distinguishes between the drug and the polymer matrix and were used to differentiate and quantitate the 5-FU concentration of the implants.

  8. Towards soft robotic devices for site-specific drug delivery.

    PubMed

    Alici, Gursel

    2015-01-01

    Considerable research efforts have recently been dedicated to the establishment of various drug delivery systems (DDS) that are mechanical/physical, chemical and biological/molecular DDS. In this paper, we report on the recent advances in site-specific drug delivery (site-specific, controlled, targeted or smart drug delivery are terms used interchangeably in the literature, to mean to transport a drug or a therapeutic agent to a desired location within the body and release it as desired with negligibly small toxicity and side effect compared to classical drug administration means such as peroral, parenteral, transmucosal, topical and inhalation) based on mechanical/physical systems consisting of implantable and robotic drug delivery systems. While we specifically focus on the robotic or autonomous DDS, which can be reprogrammable and provide multiple doses of a drug at a required time and rate, we briefly cover the implanted DDS, which are well-developed relative to the robotic DDS, to highlight the design and performance requirements, and investigate issues associated with the robotic DDS. Critical research issues associated with both DDSs are presented to describe the research challenges ahead of us in order to establish soft robotic devices for clinical and biomedical applications.

  9. Development of drug-loaded polymer microcapsules for treatment of epilepsy.

    PubMed

    Chen, Yu; Gu, Qi; Yue, Zhilian; Crook, Jeremy M; Moulton, Simon E; Cook, Mark J; Wallace, Gordon G

    2017-09-26

    Despite significant progress in developing new drugs for seizure control, epilepsy still affects 1% of the global population and is drug-resistant in more than 30% of cases. To improve the therapeutic efficacy of epilepsy medication, a promising approach is to deliver anti-epilepsy drugs directly to affected brain areas using local drug delivery systems. The drug delivery systems must meet a number of criteria, including high drug loading efficiency, biodegradability, neuro-cytocompatibility and predictable drug release profiles. Here we report the development of fibre- and sphere-based microcapsules that exhibit controllable uniform morphologies and drug release profiles as predicted by mathematical modelling. Importantly, both forms of fabricated microcapsules are compatible with human brain derived neural stem cells and differentiated neurons and neuroglia, indicating clinical compliance for neural implantation and therapeutic drug delivery.

  10. Influence of semipermanent cement application used in immediately loaded, implant-supported restorations on crestal bone resorption.

    PubMed

    Błaszczyszyn, Artur; Kubasiewicz-Ross, Paweł; Gedrange, Tomasz; Dominiak, Marzena

    2013-01-01

    The paper presents clinical-radiological research on the impact of the new semi-cement luting agent in the immediately loaded implant-supported restoration on alveolar ridge resorption. 25 patients with a partially edentulous alveolar ridge in the anterior section of the maxilla or mandible were included in the study. The implants were inserted with the application of traditional burs or with a Piezosurgery device supplied by Mectron. Taking into account the method of implant bed preparation, the scientific material was divided into two groups. The implants were loaded immediately with single crown restorations cemented with the Implantlink semi cement application. The following indices were taken into consideration: pocket depth around implant calculated at four measuring points, marginal alveolar bone loss measured using radio-visiography, the 3-degree Wachtel scale of healing of the soft tissue. In addition, the presence and possible width or height of any recession around the implants was measured. The success of the implant treatment was assessed according to the Albrektsson success criteria. The research results were subjected to statistical analysis. The results of our study revealed no influence of the Implant-link semi cement on the crestal bone level, regardless of the bone bed preparation technique.

  11. Construction of High Drug Loading and Enzymatic Degradable Multilayer Films for Self-Defense Drug Release and Long-Term Biofilm Inhibition.

    PubMed

    Wang, Bailiang; Liu, Huihua; Sun, Lin; Jin, Yingying; Ding, Xiaoxu; Li, Lingli; Ji, Jian; Chen, Hao

    2018-01-08

    Bacterial infections and biofilm formation on the surface of implants are important issues that greatly affect biomedical applications and even cause device failure. Construction of high drug loading systems on the surface and control of drug release on-demand is an efficient way to lower the development of resistant bacteria and biofilm formation. In the present study, (montmorillonite/hyaluronic acid-gentamicin) 10 ((MMT/HA-GS) 10 ) organic/inorganic hybrid multilayer films were alternately self-assembled on substrates. The loading dosage of GS was as high as 0.85 mg/cm 2 , which could be due the high specific surface area of MMT. The obtained multilayer film with high roughness gradually degraded in hyaluronidase (HAS) solutions or a bacterial infection microenvironment, which caused the responsive release of GS. The release of GS showed dual enzyme and bacterial infection responsiveness, which also indicated good drug retention and on-demand self-defense release properties of the multilayer films. Moreover, the GS release responsiveness to E. coli showed higher sensitivity than that to S. aureus. There was only ∼5 wt % GS release from the film in PBS after 48 h of immersion, and the amount quickly increased to 30 wt % in 10 5 CFU/mL of E. coli. Importantly, the high drug dosage, smart drug release, and film peeling from the surface contributed to the efficient antibacterial properties and long-term biofilm inhibition functions. Both in vitro and in vivo antibacterial tests indicated efficient sterilization function and good mammalian cell and tissue compatibility.

  12. Implant-bone interface stress distribution in immediately loaded implants of different diameters: a three-dimensional finite element analysis.

    PubMed

    Ding, Xi; Zhu, Xing-Hao; Liao, Sheng-Hui; Zhang, Xiu-Hua; Chen, Hong

    2009-07-01

    To establish a 3D finite element model of a mandible with dental implants for immediate loading and to analyze stress distribution in bone around implants of different diameters. Three mandible models, embedded with thread implants (ITI, Straumann, Switzerland) with diameters of 3.3, 4.1, and 4.8 mm, respectively, were developed using CT scanning and self-developed Universal Surgical Integration System software. The von Mises stress and strain of the implant-bone interface were calculated with the ANSYS software when implants were loaded with 150 N vertical or buccolingual forces. When the implants were loaded with vertical force, the von Mises stress concentrated on the mesial and distal surfaces of cortical bone around the neck of implants, with peak values of 25.0, 17.6 and 11.6 MPa for 3.3, 4.1, and 4.8 mm diameters, respectively, while the maximum strains (5854, 4903, 4344 muepsilon) were located on the buccal cancellous bone around the implant bottom and threads of implants. The stress and strain were significantly lower (p < 0.05) with the increased diameter of implant. When the implants were loaded with buccolingual force, the peak von Mises stress values occurred on the buccal surface of cortical bone around the implant neck, with values of 131.1, 78.7, and 68.1 MPa for 3.3, 4.1, and 4.8 mm diameters, respectively, while the maximum strains occurred on the buccal surface of cancellous bone adjacent to the implant neck, with peak values of 14,218, 12,706, and 11,504 microm, respectively. The stress of the 4.1-mm diameter implants was significantly lower (p < 0.05) than those of 3.3-mm diameter implants, but not statistically different from that of the 4.8 mm implant. With an increase of implant diameter, stress and strain on the implant-bone interfaces significantly decreased, especially when the diameter increased from 3.3 to 4.1 mm. It appears that dental implants of 10 mm in length for immediate loading should be at least 4.1 mm in diameter, and uniaxial

  13. Biomedical Imaging in Implantable Drug Delivery Systems

    PubMed Central

    Zhou, Haoyan; Hernandez, Christopher; Goss, Monika; Gawlik, Anna; Exner, Agata A.

    2015-01-01

    Implantable drug delivery systems (DDS) provide a platform for sustained release of therapeutic agents over a period of weeks to months and sometimes years. Such strategies are typically used clinically to increase patient compliance by replacing frequent administration of drugs such as contraceptives and hormones to maintain plasma concentration within the therapeutic window. Implantable or injectable systems have also been investigated as a means of local drug administration which favors high drug concentration at a site of interest, such as a tumor, while reducing systemic drug exposure to minimize unwanted side effects. Significant advances in the field of local DDS have led to increasingly sophisticated technology with new challenges including quantification of local and systemic pharmacokinetics and implant-body interactions. Because many of these sought-after parameters are highly dependent on the tissue properties at the implantation site, and rarely represented adequately with in vitro models, new nondestructive techniques that can be used to study implants in situ are highly desirable. Versatile imaging tools can meet this need and provide quantitative data on morphological and functional aspects of implantable systems. The focus of this review article is an overview of current biomedical imaging techniques, including magnetic resonance imaging (MRI), ultrasound imaging, optical imaging, X-ray and computed tomography (CT), and their application in evaluation of implantable DDS. PMID:25418857

  14. Mesoporous TiO2 implants for loading high dosage of antibacterial agent

    NASA Astrophysics Data System (ADS)

    Park, Se Woong; Lee, Donghyun; Choi, Yong Suk; Jeon, Hoon Bong; Lee, Chang-Hoon; Moon, Ji-Hoi; Kwon, Il Keun

    2014-06-01

    We have fabricated mesoporous thin films composed of TiO2 nanoparticles on anodized titanium implant surfaces for loading drugs at high doses. Surface anodization followed by treatment with TiO2 paste leads to the formation of mechanically stable mesoporous thin films with controllable thickness. A series of antibacterial agents (silver nanoparticles, cephalothin, minocycline, and amoxicillin) were loaded into the mesoporous thin films and their antibacterial activities were evaluated against five bacterial species including three oral pathogens. Additionally, two agents (silver nanoparticles and minocycline) were loaded together on the thin film and tested for antibacterial effectiveness. The combination of silver nanoparticles and minocycline was found to display a wide range of effectiveness against all tested bacteria.

  15. A 3D Printed Implantable Device for Voiding the Bladder Using Shape Memory Alloy (SMA) Actuators.

    PubMed

    Hassani, Faezeh Arab; Peh, Wendy Yen Xian; Gammad, Gil Gerald Lasam; Mogan, Roshini Priya; Ng, Tze Kiat; Kuo, Tricia Li Chuen; Ng, Lay Guat; Luu, Percy; Yen, Shih-Cheng; Lee, Chengkuo

    2017-11-01

    Underactive bladder or detrusor underactivity (DU) is defined as a reduction of contraction strength or duration of the bladder wall. Despite the serious healthcare implications of DU, there are limited solutions for affected individuals. A flexible 3D printed implantable device driven by shape memory alloys (SMA) actuators is presented here for the first time to physically contract the bladder to restore voluntary control of the bladder for individuals suffering from DU. This approach is used initially in benchtop experiments with a rubber balloon acting as a model for the rat bladder to verify its potential for voiding, and that the operating temperatures are safe for the eventual implantation of the device in a rat. The device is then implanted and tested on an anesthetized rat, and a voiding volume of more than 8% is successfully achieved for the SMA-based device without any surgical intervention or drug injection to relax the external sphincter.

  16. Subcutaneous implants for long-acting drug therapy in laboratory animals may generate unintended drug reservoirs.

    PubMed

    Guarnieri, Michael; Tyler, Betty M; Detolla, Louis; Zhao, Ming; Kobrin, Barry

    2014-01-01

    Long-acting therapy in laboratory animals offers advantages over the current practice of 2-3 daily drug injections. Yet little is known about the disintegration of biodegradable drug implants in rodents. Compare bioavailability of buprenorphine with the biodegradation of lipid-encapsulated subcutaneous drug pellets. Pharmacokinetic and histopathology studies were conducted in BALB/c female mice implanted with cholesterol-buprenorphine drug pellets. Drug levels are below the level of detection (0.5 ng/mL plasma) within 4-5 days of implant. However, necroscopy revealed that interstitial tissues begin to seal implants within a week. Visual inspection of the implant site revealed no evidence of inflammation or edema associated with the cholesterol-drug residue. Chemical analyses demonstrated that the residues contained 10-13% of the initial opiate dose for at least two weeks post implant. The results demonstrate that biodegradable scaffolds can become sequestered in the subcutaneous space. Drug implants can retain significant and unintended reservoirs of drugs.

  17. Subcutaneous implants for long-acting drug therapy in laboratory animals may generate unintended drug reservoirs

    PubMed Central

    Guarnieri, Michael; Tyler, Betty M.; DeTolla, Louis; Zhao, Ming; Kobrin, Barry

    2014-01-01

    Background: Long-acting therapy in laboratory animals offers advantages over the current practice of 2-3 daily drug injections. Yet little is known about the disintegration of biodegradable drug implants in rodents. Objective: Compare bioavailability of buprenorphine with the biodegradation of lipid-encapsulated subcutaneous drug pellets. Methods: Pharmacokinetic and histopathology studies were conducted in BALB/c female mice implanted with cholesterol-buprenorphine drug pellets. Results: Drug levels are below the level of detection (0.5 ng/mL plasma) within 4-5 days of implant. However, necroscopy revealed that interstitial tissues begin to seal implants within a week. Visual inspection of the implant site revealed no evidence of inflammation or edema associated with the cholesterol-drug residue. Chemical analyses demonstrated that the residues contained 10-13% of the initial opiate dose for at least two weeks post implant. Discussion: The results demonstrate that biodegradable scaffolds can become sequestered in the subcutaneous space. Conclusion: Drug implants can retain significant and unintended reservoirs of drugs. PMID:24459402

  18. Development of a Microfluidics-Based Intracochlear Drug Delivery Device

    PubMed Central

    Sewell, William F.; Borenstein, Jeffrey T.; Chen, Zhiqiang; Fiering, Jason; Handzel, Ophir; Holmboe, Maria; Kim, Ernest S.; Kujawa, Sharon G.; McKenna, Michael J.; Mescher, Mark M.; Murphy, Brian; Leary Swan, Erin E.; Peppi, Marcello; Tao, Sarah

    2009-01-01

    Background Direct delivery of drugs and other agents into the inner ear will be important for many emerging therapies, including the treatment of degenerative disorders and guiding regeneration. Methods We have taken a microfluidics/MEMS (MicroElectroMechanical Systems) technology approach to develop a fully implantable reciprocating inner-ear drug-delivery system capable of timed and sequenced delivery of agents directly into perilymph of the cochlea. Iterations of the device were tested in guinea pigs to determine the flow characteristics required for safe and effective delivery. For these tests, we used the glutamate receptor blocker DNQX, which alters auditory nerve responses but not cochlear distortion product otoacoustic emissions. Results We have demonstrated safe and effective delivery of agents into the scala tympani. Equilibration of the drug in the basal turn occurs rapidly (within tens of minutes) and is dependent on reciprocating flow parameters. Conclusion We have described a prototype system for the direct delivery of drugs to the inner ear that has the potential to be a fully implantable means for safe and effective treatment of hearing loss and other diseases. PMID:19923811

  19. Implantable batteryless device for on-demand and pulsatile insulin administration

    NASA Astrophysics Data System (ADS)

    Lee, Seung Ho; Lee, Young Bin; Kim, Byung Hwi; Lee, Cheol; Cho, Young Min; Kim, Se-Na; Park, Chun Gwon; Cho, Yong-Chan; Choy, Young Bin

    2017-04-01

    Many implantable systems have been designed for long-term, pulsatile delivery of insulin, but the lifetime of these devices is limited by the need for battery replacement and consequent replacement surgery. Here we propose a batteryless, fully implantable insulin pump that can be actuated by a magnetic field. The pump is prepared by simple-assembly of magnets and constituent units and comprises a drug reservoir and actuator equipped with a plunger and barrel, each assembled with a magnet. The plunger moves to noninvasively infuse insulin only when a magnetic field is applied on the exterior surface of the body. Here we show that the dose is easily controlled by varying the number of magnet applications. Also, pump implantation in diabetic rats results in profiles of insulin concentration and decreased blood glucose levels similar to those observed in rats treated with conventional subcutaneous insulin injections.

  20. LOADING DEVICE

    DOEpatents

    Ohlinger, L.A.

    1958-10-01

    A device is presented for loading or charging bodies of fissionable material into a reactor. This device consists of a car, mounted on tracks, into which the fissionable materials may be placed at a remote area, transported to the reactor, and inserted without danger to the operating personnel. The car has mounted on it a heavily shielded magazine for holding a number of the radioactive bodies. The magazine is of a U-shaped configuration and is inclined to the horizontal plane, with a cap covering the elevated open end, and a remotely operated plunger at the lower, closed end. After the fissionable bodies are loaded in the magazine and transported to the reactor, the plunger inserts the body at the lower end of the magazine into the reactor, then is withdrawn, thereby allowing gravity to roll the remaining bodies into position for successive loading in a similar manner.

  1. 21 CFR 872.3980 - Endosseous dental implant accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Endosseous dental implant accessories. 872.3980... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are manually powered devices intended...

  2. 21 CFR 872.3980 - Endosseous dental implant accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Endosseous dental implant accessories. 872.3980... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are manually powered devices intended...

  3. 21 CFR 872.3980 - Endosseous dental implant accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Endosseous dental implant accessories. 872.3980... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are manually powered devices intended...

  4. 21 CFR 872.3980 - Endosseous dental implant accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endosseous dental implant accessories. 872.3980... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are manually powered devices intended...

  5. 21 CFR 872.3980 - Endosseous dental implant accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Endosseous dental implant accessories. 872.3980... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are manually powered devices intended...

  6. The mechanical response of a polyetheretherketone femoral knee implant under a deep squatting loading condition.

    PubMed

    de Ruiter, Lennert; Janssen, Dennis; Briscoe, Adam; Verdonschot, Nico

    2017-12-01

    The current study was designed to investigate the mechanical response of a polyetheretherketone-on-polyethylene total knee replacement device during a deep squat. Application of this high-demand loading condition can identify weaknesses of the polyetheretherketone relative to cobalt-chromium. This study investigated whether the implant is strong enough for this type of loading, whether cement stresses are considerably changed and whether a polyetheretherketone femoral component is likely to lead to reduced periprosthetic bone loss as compared to a cobalt-chromium component. A finite element model of a total knee arthroplasty subjected to a deep squat loading condition, which was previously published, was adapted with an alternative total knee arthroplasty design made of either polyetheretherketone or cobalt-chromium. The maximum tensile and compressive stresses within the implant and cement mantle were analysed against their yield and fatigue stress levels. The amount of stress shielding within the bone was compared between the polyetheretherketone and cobalt-chromium cases. Relative to its material strength, tensile peak stresses were higher in the cobalt-chromium implant; compressive peak stresses were higher in the polyetheretherketone implant. The stress patterns differed substantially between polyetheretherketone and cobalt-chromium. The tensile stresses in the cement mantle supporting the polyetheretherketone implant were up to 33% lower than with the cobalt-chromium component, but twice as high for compression. Stress shielding was reduced to a median of 1% for the polyetheretherketone implant versus 56% for the cobalt-chromium implant. Both the polyetheretherketone implant and the underlying cement mantle should be able to cope with the stress levels present during a deep squat. Relative to the cobalt-chromium component, stress shielding of the periprosthetic femur was substantially less with a polyetheretherketone femoral component.

  7. Energy harvesting for the implantable biomedical devices: issues and challenges.

    PubMed

    Hannan, Mahammad A; Mutashar, Saad; Samad, Salina A; Hussain, Aini

    2014-06-20

    The development of implanted devices is essential because of their direct effect on the lives and safety of humanity. This paper presents the current issues and challenges related to all methods used to harvest energy for implantable biomedical devices. The advantages, disadvantages, and future trends of each method are discussed. The concept of harvesting energy from environmental sources and human body motion for implantable devices has gained a new relevance. In this review, the harvesting kinetic, electromagnetic, thermal and infrared radiant energies are discussed. Current issues and challenges related to the typical applications of these methods for energy harvesting are illustrated. Suggestions and discussion of the progress of research on implantable devices are also provided. This review is expected to increase research efforts to develop the battery-less implantable devices with reduced over hole size, low power, high efficiency, high data rate, and improved reliability and feasibility. Based on current literature, we believe that the inductive coupling link is the suitable method to be used to power the battery-less devices. Therefore, in this study, the power efficiency of the inductive coupling method is validated by MATLAB based on suggested values. By further researching and improvements, in the future the implantable and portable medical devices are expected to be free of batteries.

  8. Energy harvesting for the implantable biomedical devices: issues and challenges

    PubMed Central

    2014-01-01

    The development of implanted devices is essential because of their direct effect on the lives and safety of humanity. This paper presents the current issues and challenges related to all methods used to harvest energy for implantable biomedical devices. The advantages, disadvantages, and future trends of each method are discussed. The concept of harvesting energy from environmental sources and human body motion for implantable devices has gained a new relevance. In this review, the harvesting kinetic, electromagnetic, thermal and infrared radiant energies are discussed. Current issues and challenges related to the typical applications of these methods for energy harvesting are illustrated. Suggestions and discussion of the progress of research on implantable devices are also provided. This review is expected to increase research efforts to develop the battery-less implantable devices with reduced over hole size, low power, high efficiency, high data rate, and improved reliability and feasibility. Based on current literature, we believe that the inductive coupling link is the suitable method to be used to power the battery-less devices. Therefore, in this study, the power efficiency of the inductive coupling method is validated by MATLAB based on suggested values. By further researching and improvements, in the future the implantable and portable medical devices are expected to be free of batteries. PMID:24950601

  9. 21 CFR 872.3640 - Endosseous dental implant.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Endosseous dental implant. 872.3640 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3640 Endosseous dental implant. (a) Identification. An endosseous dental implant is a device made of a material such as titanium or titanium alloy, that...

  10. 21 CFR 872.3640 - Endosseous dental implant.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endosseous dental implant. 872.3640 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3640 Endosseous dental implant. (a) Identification. An endosseous dental implant is a device made of a material such as titanium or titanium alloy, that...

  11. 21 CFR 872.3640 - Endosseous dental implant.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Endosseous dental implant. 872.3640 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3640 Endosseous dental implant. (a) Identification. An endosseous dental implant is a device made of a material such as titanium or titanium alloy, that...

  12. 21 CFR 872.3640 - Endosseous dental implant.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Endosseous dental implant. 872.3640 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3640 Endosseous dental implant. (a) Identification. An endosseous dental implant is a device made of a material such as titanium or titanium alloy, that...

  13. 21 CFR 872.3640 - Endosseous dental implant.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Endosseous dental implant. 872.3640 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3640 Endosseous dental implant. (a) Identification. An endosseous dental implant is a device made of a material such as titanium or titanium alloy, that...

  14. Multi-pulse drug delivery from a resorbable polymeric microchip device

    NASA Astrophysics Data System (ADS)

    Grayson, Amy C. Richards; Choi, Insung S.; Tyler, Betty M.; Wang, Paul P.; Brem, Henry; Cima, Michael J.; Langer, Robert

    2003-11-01

    Controlled-release drug delivery systems have many applications, including treatments for hormone deficiencies and chronic pain. A biodegradable device that could provide multi-dose drug delivery would be advantageous for long-term treatment of conditions requiring pulsatile drug release. In this work, biodegradable polymeric microchips were fabricated that released four pulses of radiolabelled dextran, human growth hormone or heparin in vitro. Heparin that was released over 142 days retained on average 96 +/- 12% of its bioactivity. The microchips were 1.2 cm in diameter, 480-560 μm thick and had 36 reservoirs that could each be filled with a different chemical. The devices were fabricated from poly(L-lactic acid) and had poly(D,L-lactic-co-glycolic acid) membranes of different molecular masses covering the reservoirs. A drug delivery system can be designed with the potential to release pulses of different drugs at intervals after implantation in a patient by using different molecular masses or materials for the membrane.

  15. 'Breath figure' PLGA films as implant coatings for controlled drug release

    NASA Astrophysics Data System (ADS)

    Ponnusamy, Thiruselvam

    The breath figure method is a versatile and facile approach of generating ordered micro and nanoporous structures in polymeric materials. When a polymer solution (dissolved in a high vapor pressure organic solvent) is evaporated out in the presence of a moist air stream, the evaporative cooling effect causes the condensation and nucleation of water droplets onto the polymer solution surface. This leads to the formation of an imprinted porous structure upon removal of the residual solvent and water. The facile removal of the water droplet template leaving its structural imprint is a specifically appealing aspect of the breath figure film technology. The first part of the dissertation work involves the fabrication of drug loaded breath figure thin films and its utilization as a controlled drug release carrier and biomaterial scaffold. In a single fabrication step, single layer/multilayer porous thin films were designed and developed by combining the breath figure process and a modified spin or dip coating technique. Using biodegradable polymers such as poly (lactic-co-glycolic acid) (PLGA) and poly (ethylene glycol) (PEG), drug loaded films were fabricated onto FDA approved medical devices (the Glaucoma drainage device and the Surgical hernia mesh). The porosity of the films is in the range of 2-4 microm as characterized by scanning electron microscope. The drug coated medical implants were characterized for their surface and bulk morphology, the degradation rate of the film, drug release rate and cell cytotoxicity. The results suggest that the use of breath figure morphologies in biodegradable polymer films adds an additional level of control to drug release. In comparison to non-porous films, the breath figure films showed an increased degradation and enhanced drug release. Furthermore, the porous nature of the film was investigated as a biomaterial scaffold to construct three dimensional in vitro tissue model systems. The breath figure film with interconnected

  16. Development and Characterization of a Scalable Microperforated Device Capable of Long-Term Zero Order Drug Release

    DTIC Science & Technology

    2010-06-29

    posterior segment of the eye and include posterior uveitis , age-related macular degeneration, and macular edema (Hsu 2007). Long term drug therapy may be...device for local and controlled delivery of drugs; as a protective carrier to transport labile drugs; and as an implant for treatment of various chronic

  17. Inhaled Milrinone After Left Ventricular Assist Device Implantation.

    PubMed

    Haglund, Nicholas A; Burdorf, Adam; Jones, Tara; Shostrom, Valerie; Um, John; Ryan, Timothy; Shillcutt, Sasha; Fischer, Patricia; Cox, Zachary L; Raichlin, Eugenia; Anderson, Daniel R; Lowes, Brian D; Dumitru, Ioana

    2015-10-01

    Proven strategies to reduce right ventricular (RV) dysfunction after continuous-flow left ventricular assist device (CF-LVAD) implantation are lacking. We sought to evaluate the tolerability, feasibility, efficacy, and pharmacokinetics of inhaled milrinone (iMil) delivery after CF-LVAD implantation. We prospectively evaluated fixed-dose nebulized iMil delivered into a ventilator circuit for 24 hours in 10 postoperative CF-LVAD (Heartmate-II) patients. Tolerability (arrhythmias, hypotension, and hypersensitivity reaction), efficacy (hemodynamics), pharmacokinetics (plasma milrinone levels), and cost data were collected.Mean age was 56 ± 9 years, 90% were male, and mean INTERMACS profile was 2.5 ± 0.8. No new atrial arrhythmia events occurred, although 3 (30%) ventricular tachycardia (1 nonsustained, 2 sustained) events occurred. Sustained hypotension, drug hypersensitivity, death, or need for right ventricular assist device were not observed. Invasive mean pulmonary arterial pressure from baseline to during iMil therapy was improved (P = .017). Mean plasma milrinone levels (ng/mL) at baseline, and 1, 4, 8, 12, and 24 hours were 74.2 ± 35.4, 111.3 ± 70.9, 135.9 ± 41.5, 205.0 ± 86.7, 176.8 ± 61.3 187.6 ± 105.5, respectively. Reduced institutional cost was observed when iMil was compared with nitric oxide therapy over 24 hours ($165.29 vs $1,944.00, respectively). iMil delivery after CF-LVAD implantation was well tolerated, feasible, and demonstrated favorable hemodynamic, pharmacokinetic, and cost profiles. iMil therapy warrants further study in larger clinical trials. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Effect of Cyclic Loading on Micromotion at the Implant-Abutment Interface.

    PubMed

    Karl, Matthias; Taylor, Thomas D

    2016-01-01

    Cyclic loading may cause settling of abutments mounted on dental implants, potentially affecting screw joint stability and implant-abutment micromotion. It was the goal of this in vitro study to compare micromotion of implant-abutment assemblies before and after masticatory simulation. Six groups of abutments (n = 5) for a specific tissue-level implant system with an internal octagon were subject to micromotion measurements. The implant-abutment assemblies were loaded in a universal testing machine, and an apparatus and extensometers were used to record displacement. This was done twice, in the condition in which they were received from the abutment manufacturer and after simulated loading (100,000 cycles; 100 N). Statistical analysis was based on analysis of variance, two-sample t tests (Welch tests), and Pearson product moment correlation (α = .05). The mean values for micromotion ranged from 33.15 to 63.41 μm and from 30.03 to 42.40 μm before and after load cycling. The general trend toward reduced micromotion following load cycling was statistically significant only for CAD/CAM zirconia abutments (P = .036) and for one type of clone abutment (P = .012), with no significant correlation between values measured before and after cyclic loading (Pearson product moment correlation; P = .104). While significant differences in micromotion were found prior to load cycling, no significant difference among any of the abutment types tested could be observed afterward (P > .05 in all cases). A quantifiable settling effect at the implant-abutment interface seems to result from cyclic loading, leading to a decrease in micromotion. This effect seems to be more pronounced in low-quality abutments. For the implant system tested in this study, retightening of abutment screws is recommended after an initial period of clinical use.

  19. Micro finite element analysis of dental implants under different loading conditions.

    PubMed

    Marcián, Petr; Wolff, Jan; Horáčková, Ladislava; Kaiser, Jozef; Zikmund, Tomáš; Borák, Libor

    2018-05-01

    Osseointegration is paramount for the longevity of dental implants and is significantly influenced by biomechanical stimuli. The aim of the present study was to assess the micro-strain and displacement induced by loaded dental implants at different stages of osseointegration using finite element analysis (FEA). Computational models of two mandible segments with different trabecular densities were constructed using microCT data. Three different implant loading directions and two osseointegration stages were considered in the stress-strain analysis of the bone-implant assembly. The bony segments were analyzed using two approaches. The first approach was based on Mechanostat strain intervals and the second approach was based on tensile/compression yield strains. The results of this study revealed that bone surrounding dental implants is critically strained in cases when only a partial osseointegration is present and when an implant is loaded by buccolingual forces. In such cases, implants also encounter high stresses. Displacements of partially-osseointegrated implant are significantly larger than those of fully-osseointegrated implants. It can be concluded that the partial osseointegration is a potential risk in terms of implant longevity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. From micro- to nanostructured implantable device for local anesthetic delivery

    PubMed Central

    Zorzetto, Laura; Brambilla, Paola; Marcello, Elena; Bloise, Nora; De Gregori, Manuela; Cobianchi, Lorenzo; Peloso, Andrea; Allegri, Massimo; Visai, Livia; Petrini, Paola

    2016-01-01

    Local anesthetics block the transmission of painful stimuli to the brain by acting on ion channels of nociceptor fibers, and find application in the management of acute and chronic pain. Despite the key role they play in modern medicine, their cardio and neurotoxicity (together with their short half-life) stress the need for developing implantable devices for tailored local drug release, with the aim of counterbalancing their side effects and prolonging their pharmacological activity. This review discusses the evolution of the physical forms of local anesthetic delivery systems during the past decades. Depending on the use of different biocompatible materials (degradable polyesters, thermosensitive hydrogels, and liposomes and hydrogels from natural polymers) and manufacturing processes, these systems can be classified as films or micro- or nanostructured devices. We analyze and summarize the production techniques according to this classification, focusing on their relative advantages and disadvantages. The most relevant trend reported in this work highlights the effort of moving from microstructured to nanostructured systems, with the aim of reaching a scale comparable to the biological environment. Improved intracellular penetration compared to microstructured systems, indeed, provides specific drug absorption into the targeted tissue and can lead to an enhancement of its bioavailability and retention time. Nanostructured systems are realized by the modification of existing manufacturing processes (interfacial deposition and nanoprecipitation for degradable polyester particles and high- or low-temperature homogenization for liposomes) or development of novel strategies (electrospun matrices and nanogels). The high surface-to-volume ratio that characterizes nanostructured devices often leads to a burst drug release. This drawback needs to be addressed to fully exploit the advantage of the interaction between the target tissues and the drug: possible strategies

  1. Sustained Zero-Order Release of Intact Ultra-Stable Drug-Loaded Liposomes from an Implantable Nanochannel Delivery System

    PubMed Central

    Celia, Christian; Ferrati, Silvia; Bansal, Shyam; van de Ven, Anne L.; Ruozi, Barbara; Zabre, Erika; Hosali, Sharath; Paolino, Donatella; Sarpietro, Maria Grazia; Fine, Daniel; Fresta, Massimo; Ferrari, Mauro

    2014-01-01

    Metronomic chemotherapy supports the idea that long-term, sustained, constant administration of chemotherapeutics, currently not achievable, could be effective against numerous cancers. Particularly appealing are liposomal formulations, used to solubilize hydrophobic therapeutics and minimize side effects, while extending drug circulation time and enabling passive targeting. As liposome alone cannot survive in circulation beyond 48 hrs, sustaining their constant plasma level for many days is a challenge. To address this, we developed, as a proof of concept, an implantable nanochannel delivery system and ultra-stable PEGylated lapatinib loaded-liposomes, and we demonstrate the release of intact vesicles for over 18 days. Further, we investigate intravasation kinetics of subcutaneously delivered liposomes and verify their biological activity post nanochannel release on BT474 breast cancer cells. The key innovation of this work is the combination of two nanotechnologies to exploit the synergistic effect of liposomes, demonstrated as passive-targeting vectors and nanofluidics to maintain therapeutic constant plasma levels. In principle, this approach could maximize efficacy of metronomic treatments. PMID:23881575

  2. Immediate versus conventional loading of implant-supported maxillary overdentures: a finite element stress analysis.

    PubMed

    Akca, Kivanc; Eser, Atilim; Eckert, Steven; Cavusoglu, Yeliz; Cehreli, Murat Cavit

    2013-01-01

    To compare biomechanical outcomes of immediately and conventionally loaded bar-retained implant-supported maxillary overdentures using finite element stress analysis. Finite element models were created to replicate the spatial positioning of four 4.1 × 12-mm implants in the completely edentulous maxillae of four cadavers to support bar-retained overdentures with 7-mm distal extension cantilevers. To simulate the bone-implant interface of immediately loaded implants, a contact situation was defined at the interface; conventional loading was simulated by "bonding" the implants to the surrounding bone. The prostheses were loaded with 100 N in the projected molar regions bilaterally, and strain magnitudes were measured at the buccal aspect of bone. The amplitude of axial and lateral strains, the overall strain magnitudes, and the strain magnitudes around anterior and posterior implants in the immediate loading group were comparable to those seen in the conventional loading group, suggesting that the loading regimens created similar stress/strain fields (P > .05). Conventional and immediate loading of maxillary implants supporting bar-retained overdentures resulted in similar bone strains.

  3. Current use of implantable electrical devices in Sweden: data from the Swedish pacemaker and implantable cardioverter-defibrillator registry.

    PubMed

    Gadler, Fredrik; Valzania, Cinzia; Linde, Cecilia

    2015-01-01

    The National Swedish Pacemaker and Implantable Cardioverter-Defibrillator (ICD) Registry collects prospective data on all pacemaker and ICD implants in Sweden. We aimed to report the 2012 findings of the Registry concerning electrical devices implantation rates and changes over time, 1 year complications, long-term device longevity and patient survival. Forty-four Swedish implanting centres continuously contribute implantation of pacemakers and ICDs to the Registry by direct data entry on a specific website. Clinical and technical information on 2012 first implants and postoperative complications were analysed and compared with previous years. Patient survival data were obtained from the Swedish population register database. In 2012, the mean pacemaker and ICD first implantation rates were 697 and 136 per million inhabitants, respectively. The number of cardiac resynchronization therapy (CRT) first implantations/million capita was 41 (CRT pacemakers) and 55 (CRT defibrillators), with only a slight increase in CRT-ICD rate compared with 2011. Most device implantations were performed in men. Complication rates for pacemaker and ICD procedures were 5.3 and 10.1% at 1 year, respectively. Device and lead longevity differed among manufacturers. Pacemaker patients were older at the time of first implant and had generally worse survival rate than ICD patients (63 vs. 82% after 5 years). Pacemaker and ICD implantation rates seem to have reached a level phase in Sweden. Implantable cardioverter-defibrillator and CRT implantation rates are very low and do not reflect guideline indications. Gender differences in CRT and ICD implantations are pronounced. Device and patient survival rates are variable, and should be considered when deciding device type. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  4. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings

    PubMed Central

    Shen, Jie; Burgess, Diane J.

    2011-01-01

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under “real-time” and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to “real-time” conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict “real-time” release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under “real-time” and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. PMID:22016033

  5. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings.

    PubMed

    Shen, Jie; Burgess, Diane J

    2012-01-17

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under "real-time" and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to "real-time" conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict "real-time" release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under "real-time" and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Evaluation of a polymer implanted port access device.

    PubMed

    Brown, J M

    1996-01-01

    The implanted port vascular access system has provided many patients with safe and reliable vascular access. Its implanted design provides improved body image, reduced maintenance and a better quality of life. The Huber needle has been the standard means of accessing the implanted port system. Because of the problems associated with the Huber needle system, current standards recommend that the Huber needle be changed every 7 days. This evaluation examines the use of a polymer cannula to access the implanted port system. This polymer cannula eliminates many of the problems associated with the Huber needle and provides longer dwell times without increased complications. Seventy nine patients were accessed for a total of 1533 days with the mean dwell time being 19.4 days with no increase in complications associated with port access. To establish implanted port access times of greater than 7 days without increased complications. A multicenter voluntary enrollment evaluation of a medical device. Patients were offered the opportunity to participate in the evaluation if they had an implanted port and were going to be accessed for therapy for periods of 7 days or more. Patients were observed for adverse cutaneous reactions at the insertion site and any port access complications such as sepsis, leakage, changes in portal chamber integrity, and implant pocket integrity. From October 1994 through November 1995, 79 L-Cath for Ports (Luther Medical Products) polymer catheter port access devices (Illustration 1) were inserted in 54 patients. This polymer port access device was used instead of a rigid metal Huber needle for port access. The total number of access days was 1533 days with the mean duration of access being 19.4 days. Two patients experienced blood stream infections while they were accessed with the polymer port access device. These infections ensued with fever of unknown origin as the presenting symptom during neutropenic episodes after chemotherapy treatment. The

  7. Effect of cyclic loading and retightening on reverse torque value in external and internal implants.

    PubMed

    Cho, Woong-Rae; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    2015-08-01

    The aim of this study was to evaluate the effect of cyclic loading and screw retightening on reverse torque value (RTV) in external and internal type implants. Cement-retained abutments were connected with 30 Ncm torque to external and internal type implants. Experimental groups were classified according to implant connection type and retightening/loading protocol. In groups with no retightening, RTV was evaluated after cyclic loading for 100,000 cycles. In groups with retightening, RTV was measured after 3, 10, 100 cycles as well as every 20,000 cycles until 100,000 cycles of loading. Every group showed decreased RTV after cyclic loading. Before and after cyclic loading, external type implants had significantly higher RTVs than internal type implants. In external type implants, retightening did not affect the decrease in RTV. In contrast, retightening 5 times and retightening after 10 cycles of dynamic loading was effective for maintaining RTV in internal type implants. Retightening of screws is more effective in internal type implants than external type implants. Retightening of screws is recommended in the early stage of functional loading.

  8. 21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2855 Implantable Intra-aneurysm Pressure Measurement System. (a) Identification. Implantable intra...

  9. 21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2855 Implantable Intra-aneurysm Pressure Measurement System. (a) Identification. Implantable intra...

  10. 21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2855 Implantable Intra-aneurysm Pressure Measurement System. (a) Identification. Implantable intra...

  11. Multifunctional High Drug Loading Nanocarriers for Cancer Drug Delivery

    NASA Astrophysics Data System (ADS)

    Jin, Erlei

    2011-12-01

    Most anticancer drugs have poor water-solubility, rapid blood clearance, low tumor-selectivity and severe systemic toxicity to healthy tissues. Thus, polymeric nanocarriers have been widely explored for anticancer drugs to solve these problems. However, polymer nanocarriers developed to date still suffer drawbacks including low drug loading contents, premature drug release, slow cellular internalization, slow intracellular drug release and thereby low therapeutic efficiency in cancer thermotherapy. Accordingly, in this dissertation, functional nanocapsules and nanoparticles including high drug loading liposome-like nanocapsules, high drug loading phospholipid-mimic nanocapsules with fast intracellular drug release, high drug loading charge-reversal nanocapsules, TAT based long blood circulation nanoparticles and charge-reversal nuclear targeted nanoparticles are designed and synthesized. These functional carriers have advantages such as high drug loading contents without premature drug release, fast cellular internalization and intracellular drug release, nuclear targeted delivery and long blood circulation. As a result, all these drug carriers show much higher in vitro and in vivo anti-cancer activities.

  12. Mechanical stability of custom-made implants: Numerical study of anatomical device and low elastic Young's modulus alloy.

    PubMed

    Didier, P; Piotrowski, B; Fischer, M; Laheurte, P

    2017-05-01

    The advent of new manufacturing technologies such as additive manufacturing deeply impacts the approach for the design of medical devices. It is now possible to design custom-made implants based on medical imaging, with complex anatomic shape, and to manufacture them. In this study, two geometrical configurations of implant devices are studied, standard and anatomical. The comparison highlights the drawbacks of the standard configuration, which requires specific forming by plastic strain in order to be adapted to the patient's morphology and induces stress field in bones without mechanical load in the implant. The influence of low elastic modulus of the materials on stress distribution is investigated. Two biocompatible alloys having the ability to be used with SLM additive manufacturing are considered, commercial Ti-6Al-4V and Ti-26Nb. It is shown that beyond the geometrical aspect, mechanical compatibility between implants and bones can be significantly improved with the modulus of Ti-26Nb implants compared with the Ti-6Al-4V. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A Contemporary Medicolegal Analysis of Implanted Devices for Chronic Pain Management.

    PubMed

    Abrecht, Christopher R; Greenberg, Penny; Song, Ellen; Urman, Richard D; Rathmell, James P

    2017-04-01

    Analysis of closed malpractice claims allows the study of rare but serious complications and likely results in improved patient safety by raising awareness of such complications. Clinical studies and closed claims analyses have previously reported on the common complications associated with intrathecal drug delivery systems (IDDS) and spinal cord stimulators (SCS). This study provides a contemporary analysis of claims from within the past 10 years. We performed a closed claims analysis for a period January 1, 2009 to December 31, 2013 for cases with pain medicine as the primary service. These cases were identified using the Controlled Risk Insurance Company (CRICO) Comparative Benchmarking System (CBS), a database containing more than 300,000 malpractice claims from more than 400 academic and community institutions, representing approximately 30% of malpractice cases in the United States. The clinical narratives, which included medical files, claims files, depositions, and expert witness testimony, were reviewed by the authors, as were the CRICO coded variables, which included algorithmically determined contributing factors to the patient injury. Intrathecal drug delivery systems represented 17 of the closed claims; spinal cord stimulators represented 11 of the closed claims. The most common chronic pain diagnoses for which a device was implanted included failed back surgery syndrome and spasticity. The average total incurred for pain medicine claims was $166,028. Damaging events included IDDS refill errors (eg, subcutaneous administration of medication, reprogramming errors), intraoperative nerve damage, and postoperative infection (eg, epidural abscess, meningitis). High-severity outcomes included nerve damage (eg, paraplegia) and death. Medium-severity outcomes included drug reactions (eg, respiratory arrest from opioid overdose) and the need for reoperation. For both IDDS and SCS, deficits in technical skill were the most common contributing factor to injury

  14. 21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... composite implant material. 878.3500 Section 878.3500 Food and Drugs FOOD AND DRUG ADMINISTRATION... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous device...

  15. Immediate Loading of Tapered Implants Placed in Postextraction Sockets and Healed Sites.

    PubMed

    Han, Chang-Hun; Mangano, Francesco; Mortellaro, Carmen; Park, Kwang-Bum

    2016-07-01

    The aim of the present study was to compare the survival, stability, and complications of immediately loaded implants placed in postextraction sockets and healed sites. Over a 2-year period, all patients presenting with partial or complete edentulism of the maxilla and/or mandible (healed site group, at least 4 months of healing after tooth extraction) or in need of replacement of nonrecoverable failing teeth (postextraction group) were considered for inclusion in this study. Tapered implants featuring a nanostructured calcium-incorporated surface were placed and loaded immediately. The prosthetic restorations comprised single crowns, fixed partial dentures, and fixed full arches. Primary outcomes were implant survival, stability, and complications. Implant stability was assessed at placement and at each follow-up evaluation (1 week, 3 months, and 1 year after placement): implants with an insertion torque (IT) <45 N·cm and/or with an implant stability quotient (ISQ) <70 were considered failed for immediate loading. A statistical analysis was performed. Thirty implants were placed in postextraction sockets of 17 patients, and 32 implants were placed in healed sites of 22 patients. There were no statistically significant differences in ISQ values between the 2 groups, at each assessment. In total, 60 implants (96.8%) had an IT ≥45 and an ISQ ≥70 at placement and at each follow-up control: all these implants were successfully loaded. Only 2 implants (1 in a postextraction socket and 1 in a healed site, 3.2%) could not achieve an IT ≥45 N·cm and/or an ISQ ≥70 at placement or over time: accordingly, these were considered failed for stability, as they could not be subjected to immediate loading. One of these 2 implants, in a healed site of a posterior maxilla, had to be removed, yielding an overall 1-year implant survival rate of 98.4%. No complications were reported. No significant differences were reported between the 2 groups with respect to implant

  16. Implantation reduces the negative effects of bio-logging devices on birds.

    PubMed

    White, Craig R; Cassey, Phillip; Schimpf, Natalie G; Halsey, Lewis G; Green, Jonathan A; Portugal, Steven J

    2013-02-15

    Animal-borne logging or telemetry devices are widely used for measurements of physiological and movement data from free-living animals. For such measurements to be relevant, however, it is essential that the devices themselves do not affect the data of interest. A recent meta-analysis reported an overall negative effect of these devices on the birds that bear them, i.e. on nesting productivity, clutch size, nest initiation date, offspring quality, body condition, flying ability, foraging behaviours, energy expenditure and survival rate. Method of attachment (harness, collar, glue, anchor, implant, breast-mounted or tailmount) had no influence on the strength of these effects but anchored and implanted transmitters had the highest reported rates of device-induced mortality. Furthermore, external devices, but not internal devices, caused an increase in 'device-induced behaviour' (comfort behaviours such as preening, fluffing and stretching, and unrest activities including unquantifiable 'active' behaviours). These findings suggest that, with the exception of device-induced behaviour, external attachment is preferable to implantation. In the present study we undertake a meta-analysis of 183 estimates of device impact from 39 studies of 36 species of bird designed to explicitly compare the effects of externally attached and surgically implanted devices on a range of traits, including condition, energy expenditure and reproduction. In contrast to a previous study, we demonstrate that externally attached devices have a consistent detrimental effect (i.e. negative influences on body condition, reproduction, metabolism and survival), whereas implanted devices have no consistent effect. We also show that the magnitude of the negative effect of externally attached devices decreases with time. We therefore conclude that device implantation is preferable to external attachment, providing that the risk of mortality associated with the anaesthesia and surgery required for

  17. Simulation of peri-implant bone healing due to immediate loading in dental implant treatments.

    PubMed

    Chou, Hsuan-Yu; Müftü, Sinan

    2013-03-15

    The goal of this work was to investigate the role of immediate loading on the peri-implant bone healing in dental implant treatments. A mechano-regulatory tissue differentiation model that takes into account the stimuli through the solid and the fluid components of the healing tissue, and the diffusion of pluripotent stem cells into the healing callus was used. A two-dimensional axisymmetric model consisting of a dental implant, the healing callus tissue and the host bone tissue was constructed for the finite element analysis. Poroelastic material properties were assigned to the healing callus and the bone tissue. The effects of micro-motion, healing callus size, and implant thread design on the length of the bone-to-implant contact (BIC) and the bone volume (BV) formed in the healing callus were investigated. In general, the analysis predicted formation of a continuous layer of soft tissue along the faces of the implant which are parallel to the loading direction. This was predicted to be correlated with the high levels of distortional strain transferred through the solid component of the stimulus. It was also predicted that the external threads on the implant, redistribute the interfacial load, thus help reduce the high distortional stimulus and also help the cells to differentiate to bone tissue. In addition, the region underneath the implant apex was predicted to experience high fluid stimulus that results in the development of soft tissue. The relationship between the variables considered in this study and the outcome measures, BV and BIC, was found to be highly nonlinear. A three-way analysis of variance (ANOVA) of the results was conducted and it showed that micro-motion presents the largest hindrance to bone formation during healing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effects of an implantable two-channel peroneal nerve stimulator versus conventional walking device on spatiotemporal parameters and kinematics of hemiparetic gait.

    PubMed

    Kottink, Anke I R; Tenniglo, Martin J B; de Vries, Wiebe H K; Hermens, Hermie J; Buurke, Jaap H

    2012-01-01

    The aims of this study were: (i) to compare the neuro-prosthetic effect of implantable peroneal nerve stimulation to the orthotic effect of a standard of care intervention (no device, shoe or ankle foot orthosis) on walking, as assessed by spatiotemporal parameters; and (ii) to examine whether there is evidence of an enhanced lower-limb flexion reflex with peroneal nerve stimulation and compare the kinematic effect of an implantable peroneal nerve stimulation device vs standard of care intervention on initial loading response of the paretic limb, as assessed by hip, knee and ankle kinematics. Randomized controlled trial. A total of 23 chronic stroke survivors with drop foot. The intervention group received an implantable 2-channel peroneal nerve stimulator for correction of drop foot. The control group continued using a conventional walking device. Spatiotemporal parameters and hip, knee and ankle kinematics were measured while subjects walked with the device on using a 3-dimensional video camera system during baseline and after a follow-up period of 26 weeks. Peroneal nerve stimulation normalized stance and double support of the paretic limb and single support of the non-paretic limb, in comparison with using a conventional walking device. In addition, peroneal nerve stimulation is more effective to provide ankle dorsiflexion during swing and resulted in a normalized initial loading response. Although peroneal nerve stimulation and ankle foot orthosis are both prescribed to correct a drop foot in the same patient population, spatiotemporal parameters, dorsiflexion during swing and loading response are influenced in a functionally different way.

  19. 21 CFR 872.3630 - Endosseous dental implant abutment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...

  20. 21 CFR 872.3630 - Endosseous dental implant abutment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...

  1. 21 CFR 872.3630 - Endosseous dental implant abutment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...

  2. 21 CFR 872.3630 - Endosseous dental implant abutment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...

  3. 21 CFR 872.3630 - Endosseous dental implant abutment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...

  4. Effect of cyclic loading and retightening on reverse torque value in external and internal implants

    PubMed Central

    Cho, Woong-Rae; Huh, Yoon-Hyuk; Park, Chan-Jin

    2015-01-01

    PURPOSE The aim of this study was to evaluate the effect of cyclic loading and screw retightening on reverse torque value (RTV) in external and internal type implants. MATERIALS AND METHODS Cement-retained abutments were connected with 30 Ncm torque to external and internal type implants. Experimental groups were classified according to implant connection type and retightening/loading protocol. In groups with no retightening, RTV was evaluated after cyclic loading for 100,000 cycles. In groups with retightening, RTV was measured after 3, 10, 100 cycles as well as every 20,000 cycles until 100,000 cycles of loading. RESULTS Every group showed decreased RTV after cyclic loading. Before and after cyclic loading, external type implants had significantly higher RTVs than internal type implants. In external type implants, retightening did not affect the decrease in RTV. In contrast, retightening 5 times and retightening after 10 cycles of dynamic loading was effective for maintaining RTV in internal type implants. CONCLUSION Retightening of screws is more effective in internal type implants than external type implants. Retightening of screws is recommended in the early stage of functional loading. PMID:26330975

  5. Dental implants modified with drug releasing titania nanotubes: therapeutic potential and developmental challenges.

    PubMed

    Gulati, Karan; Ivanovski, Sašo

    2017-08-01

    The transmucosal nature of dental implants presents a unique therapeutic challenge, requiring not only rapid establishment and subsequent maintenance of osseointegration, but also the formation of resilient soft tissue integration. Key challenges in achieving long-term success are sub-optimal bone integration in compromised bone conditions and impaired trans-mucosal tissue integration in the presence of a persistent oral microbial biofilm. These challenges can be targeted by employing a drug-releasing implant modification such as TiO 2 nanotubes (TNTs), engineered on titanium surfaces via electrochemical anodization. Areas covered: This review focuses on applications of TNT-based dental implants towards achieving optimal therapeutic efficacy. Firstly, the functions of TNT implants will be explored in terms of their influence on osseointegration, soft tissue integration and immunomodulation. Secondly, the developmental challenges associated with such implants are reviewed including sterilization, stability and toxicity. Expert opinion: The potential of TNTs is yet to be fully explored in the context of the complex oral environment, including appropriate modulation of alveolar bone healing, immune-inflammatory processes, and soft tissue responses. Besides long-term in vivo assessment under masticatory loading conditions, investigating drug-release profiles in vivo and addressing various technical challenges are required to bridge the gap between research and clinical dentistry.

  6. Random spectrum loading of dental implants: An alternative approach to functional performance assessment.

    PubMed

    Shemtov-Yona, K; Rittel, D

    2016-09-01

    The fatigue performance of dental implants is usually assessed on the basis of cyclic S/N curves. This neither provides information on the anticipated service performance of the implant, nor does it allow for detailed comparisons between implants unless a thorough statistical analysis is performed, of the kind not currently required by certification standards. The notion of endurance limit is deemed to be of limited applicability, given unavoidable stress concentrations and random load excursions, that all characterize dental implants and their service conditions. We propose a completely different approach, based on random spectrum loading, as long used in aeronautical design. The implant is randomly loaded by a sequence of loads encompassing all load levels it would endure during its service life. This approach provides a quantitative and comparable estimate of its performance in terms of lifetime, based on the very fact that the implant will fracture sooner or later, instead of defining a fatigue endurance limit of limited practical application. Five commercial monolithic Ti-6Al-4V implants were tested under cyclic, and another 5 under spectrum loading conditions, at room temperature and dry air. The failure modes and fracture planes were identical for all implants. The approach is discussed, including its potential applications, for systematic, straightforward and reliable comparisons of various implant designs and environments, without the need for cumbersome statistical analyses. It is believed that spectrum loading can be considered for the generation of new standardization procedures and design applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Advanced immediate functional loading: requirements for long-term success in modern implant dentistry.

    PubMed

    Romanos, Georgios E

    2014-01-01

    There are benefits to be derived from the use of advanced surgical protocols in conjunction with immediate functional loading using various dental implant designs and implant-abutment connections. Clinical protocols with simultaneous bone grafting, immediate implant placement, and/or sinus augmentations when a shortened treatment period is needed are included in this report, with the aim of providing understanding of the main protocol characteristics and prerequisites for long-term success in implant dentistry. This article presents three clinical cases that illustrate possibilities for advanced immediate loading using different implant designs. It demonstrates treatment of severe bone defects and the facilitation of placing implants in regenerated bone that can be immediately loaded.

  8. Electrically induced energy transmission used for implantable medical devices deep inside the body: Measurement of received voltage in consideration of biological effect.

    PubMed

    Shiba, Kenji

    2015-08-01

    We proposed an electrically induced energy transmission method for implantable medical devices deep inside the body. This method makes it possible to transmit energy deep inside the body using only a couple of titanium electrodes attached to the surface of the implantable medical device. In this study, electromagnetic simulations in which the area and distance of the receiving electrodes were changed were conducted. Then, experimental measurements of the received voltage were conducted in which electric energy was transmitted from the surface of the human phantom to an implantable device inside it (transmitting distance: 12 cm). As a result of the electromagnetic simulation, the area and distance of the receiving electrodes were roughly proportional to the received voltage, respectively. As a result of the experimental measurement, a received voltage of 2460 mV could be obtained with a load resistance of 100 Ω. We confirmed that our energy transmission method could be a powerful method for transmitting energy to a deeply implanted medical device.

  9. Detection of orthopaedic foot and ankle implants by security screening devices.

    PubMed

    Bluman, Eric M; Tankson, Cedric; Myerson, Mark S; Jeng, Clifford L

    2006-12-01

    A common question asked by patients contemplating foot and ankle surgery is whether the implants used will set off security screening devices in airports and elsewhere. Detectability of specific implants may require the orthopaedic surgeon to provide attestation regarding their presence in patients undergoing implantation of these devices. Only two studies have been published since security measures became more stringent in the post-9/11 era. None of these studies specifically focused on the large numbers of orthopaedic foot and ankle implants in use today. This study establishes empiric data on the detectability by security screening devices of some currently used foot and ankle implants. A list of foot and ankle procedures was compiled, including procedures frequently used by general orthopaedists as well as those usually performed only by foot and ankle specialists. Implants tested included those used for open reduction and internal fixation, joint fusion, joint arthroplasty, osteotomies, arthroreisis, and internal bone stimulation. A test subject walked through a gate-type security device and was subsequently screened using a wand-type detection device while wearing each construct grouping. The screening was repeated with the implants placed within uncooked steak to simulate subcutaneous and submuscular implantation. None of the implants were detected by the gate-type security device. Specific implants that triggered the wand-type detection device regardless of coverage with the meat were total ankle prostheses, implantable bone stimulators, large metatarsophalangeal hemiarthroplasty, large arthroreisis plugs, medial distal tibial locking construct, supramalleolar osteotomy fixation, stainless steel bimalleolar ankle fracture fixation, calcaneal fracture plate and screw constructs, large fragment blade plate constructs, intramedullary tibiotalocalcaneal fusion constructs, and screw fixation for calcaneal osteotomies, ankle arthrodeses, triple arthrodeses, and

  10. Materials to clinical devices: technologies for remotely triggered drug delivery.

    PubMed

    Timko, Brian P; Kohane, Daniel S

    2012-11-01

    Technologies in which a remote trigger is used to release drug from an implanted or injected device could enable on-demand release profiles that enhance therapeutic effectiveness or reduce systemic toxicity. A number of new materials have been developed that exhibit sensitivity to light, ultrasound, or electrical or magnetic fields. Delivery systems that incorporate these materials might be triggered externally by the patient, parent or physician to provide flexible control of dose magnitude and timing. To review injectable or implantable systems that are candidates for translation to the clinic, or ones that have already undergone clinical trials. Also considered are applicability in pediatrics and prospects for the future of drug delivery systems. We performed literature searches of the PubMed and Science Citation Index databases for articles in English that reported triggerable drug delivery devices, and for articles reporting related materials and concepts. Approaches to remotely-triggered systems that have clinical potential were identified. Ideally, these systems have been engineered to exhibit controlled on-state release kinetics, low baseline leak rates, and reproducible dosing across multiple cycles. Advances in remotely-triggered drug delivery have been brought about by the convergence of numerous scientific and engineering disciplines, and this convergence is likely to play an important part in the current trend to develop systems that provide more than one therapeutic modality. Preclinical systems must be carefully assessed for biocompatibility, and engineered to ensure pharmacokinetics within the therapeutic window. Future drug delivery systems may incorporate additional modalities, such as closed-loop sensing or onboard power generation, enabling more sophisticated drug delivery regimens. Copyright © 2012 Elsevier HS Journals, Inc. All rights reserved.

  11. Enhanced antitumor efficacy of poly(D,L-lactide-co-glycolide)-based methotrexate-loaded implants on sarcoma 180 tumor-bearing mice

    PubMed Central

    Gao, Li; Xia, Lunyang; Zhang, Ruhui; Duan, Dandan; Liu, Xiuxiu; Xu, Jianjian; Luo, Lan

    2017-01-01

    Purpose Methotrexate is widely used in chemotherapy for a variety of malignancies. However, severe toxicity, poor pharmacokinetics, and narrow safety margin of methotrexate limit its clinical application. The aim of this study was to develop sustained-release methotrexate-loaded implants and evaluate antitumor activity of the implants after intratumoral implantation. Materials and methods We prepared the implants containing methotrexate, poly(D,L-lactide-co-glycolide), and polyethylene glycol 4000 with the melt-molding technique. The implants were characterized with regards to drug content, morphology, in vitro, and in vivo release profiles. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were carried out to investigate the physicochemical properties of the implants. Furthermore, the antitumor activity of the implants was tested in a sarcoma 180 mouse model. Results The implants were prepared as solid rods. Scanning electron microscopy images showed a smooth surface of the implant, suggesting that methotrexate was homogeneously dispersed in the polymeric matrix. The results of DSC and FTIR indicated that no significant interaction between methotrexate and the polymer was observed in the implants. Both in vitro and in vivo release profiles of the implants were characterized by burst release followed by sustained release of methotrexate. Intratumoral implantation of methotrexate-loaded implants could efficiently delay tumor growth. Moreover, an increase in the dose of implants led to a higher tumor suppression rate without additional systemic toxicity. Conclusion These results demonstrate that methotrexate-loaded implants had significant antitumor efficacy in a sarcoma 180 mouse model without dose-limiting side effects, and suggest that the implants could be potentially applied as an intratumoral delivery system to treat cancer. PMID:29118572

  12. Zirconia-implant-supported all-ceramic crowns withstand long-term load: a pilot investigation.

    PubMed

    Kohal, Ralf-J; Klaus, Gerold; Strub, Jörg R

    2006-10-01

    The purpose of this pilot investigation was to test whether zirconia implants restored with different all-ceramic crowns would fulfill the biomechanical requirements for clinical use. Therefore, all-ceramic Empress-1 and Procera crowns were cemented on zirconia implants and exposed to the artificial mouth. Afterwards, the fracture strength of the all-ceramic implant-crown systems was evaluated. Conventional titanium implants restored with porcelain-fused-to-metal (PFM) crowns served as controls. Sixteen titanium implants with 16 PFM crowns and 32 zirconia implants with 16 Empress-1 crowns and 16 Procera crowns each--i.e., three implant-crown groups--were used in this investigation. The titanium implants were fabricated using the ReImplant system and the zirconia implants using the Celay system. The upper left central incisor served as a model for the fabrication of the implants and the crowns. Eight samples of each group were submitted to a long-term load test in the artificial mouth (1.2 million chewing cycles). Subsequently, a fracture strength test was performed with seven of the eight crowns. The remaining eight samples of each group were not submitted to the long-term load in the artificial mouth but were fracture-tested immediately. One loaded and one unloaded sample of each group were evaluated regarding the marginal fit of the crowns. All test samples survived the exposure to the artificial mouth. Three Empress-1 crowns showed cracks in the area of the loading steatite ball. The values for the fracture load in the titanium implant-PFM crown group without artificial loading ranged between 420 and 610 N (mean: 531.4 N), between 460 and 570 N (mean: 512.9 N) in the Empress-1 crown group, and in the Procera crown group the values were between 475 and 700 N (mean: 575.7 N) when not loaded artificially. The results when the specimens were loaded artificially with 1.2 million cycles were as follows: the titanium implant-PFM crowns fractured between 440 and 950 N

  13. Numerical assessment of bone remodeling around conventionally and early loaded titanium and titanium-zirconium alloy dental implants.

    PubMed

    Akça, Kıvanç; Eser, Atılım; Çavuşoğlu, Yeliz; Sağırkaya, Elçin; Çehreli, Murat Cavit

    2015-05-01

    The aim of this study was to investigate conventionally and early loaded titanium and titanium-zirconium alloy implants by three-dimensional finite element stress analysis. Three-dimensional model of a dental implant was created and a thread area was established as a region of interest in trabecular bone to study a localized part of the global model with a refined mesh. The peri-implant tissues around conventionally loaded (model 1) and early loaded (model 2) implants were implemented and were used to explore principal stresses, displacement values, and equivalent strains in the peri-implant region of titanium and titanium-zirconium implants under static load of 300 N with or without 30° inclination applied on top of the abutment surface. Under axial loading, principal stresses in both models were comparable for both implants and models. Under oblique loading, principal stresses around titanium-zirconium implants were slightly higher in both models. Comparable stress magnitudes were observed in both models. The displacement values and equivalent strain amplitudes around both implants and models were similar. Peri-implant bone around titanium and titanium-zirconium implants experiences similar stress magnitudes coupled with intraosseous implant displacement values under conventional loading and early loading simulations. Titanium-zirconium implants have biomechanical outcome comparable to conventional titanium implants under conventional loading and early loading.

  14. Influence of occlusal loading on peri-implant clinical parameters. A pilot study

    PubMed Central

    Pellicer-Chover, Hilario; Viña-Almunia, José; Romero-Millán, Javier; Peñarrocha-Oltra, David; Peñarrocha-Diago, María

    2014-01-01

    Objectives: To investigate the relation between occlusal loading and peri-implant clinical parameters (probing depth, bleeding on probing, gingival retraction, width of keratinized mucosa, and crevicular fluid volume) in patients with implant-supported complete fixed prostheses in both arches. Material and Methods: This clinical study took place at the University of Valencia (Spain) dental clinic. It included patients attending the clinic for regular check-ups during at least 12 months after rehabilitation of both arches with implant-supported complete fixed ceramo-metallic prostheses. One study implant and one control implant were established for each patient using the T-Scan®III computerized system (Tesco, South Boston, USA). The maxillary implant closest to the point of maximum occlusal loading was taken as the study implant and the farthest (with least loading) as the control. Occlusal forces were registered with the T-Scan® III and then occlusal adjustment was performed to distribute occlusal forces correctly. Peri-implant clinical parameters were analyzed in both implants before and two and twelve months after occlusal adjustment. Results: Before occlusal adjustment, study group implants presented a higher mean volume of crevicular fluid (51.3±7.4 UP) than the control group (25.8±5.5 UP), with statistically significant difference. Two months after occlusal adjustment, there were no significant differences between groups (24.6±3.8 UP and 26±4.5 UP respectively) (p=0.977). After twelve months, no significant differences were found between groups (24.4±11.1 UP and 22.5±8.9 UP respectively) (p=0.323). For the other clinical parameters, no significant differences were identified between study and control implants at any of the study times (p>0.05). Conclusions: Study group implants receiving higher occlusal loading presented significantly higher volumes of crevicular fluid than control implants. Crevicular fluid volumes were similar in both groups two and

  15. Wireless microsensor network solutions for neurological implantable devices

    NASA Astrophysics Data System (ADS)

    Abraham, Jose K.; Whitchurch, Ashwin; Varadan, Vijay K.

    2005-05-01

    The design and development of wireless mocrosensor network systems for the treatment of many degenerative as well as traumatic neurological disorders is presented in this paper. Due to the advances in micro and nano sensors and wireless systems, the biomedical sensors have the potential to revolutionize many areas in healthcare systems. The integration of nanodevices with neurons that are in communication with smart microsensor systems has great potential in the treatment of many neurodegenerative brain disorders. It is well established that patients suffering from either Parkinson"s disease (PD) or Epilepsy have benefited from the advantages of implantable devices in the neural pathways of the brain to alter the undesired signals thus restoring proper function. In addition, implantable devices have successfully blocked pain signals and controlled various pelvic muscles in patients with urinary and fecal incontinence. Even though the existing technology has made a tremendous impact on controlling the deleterious effects of disease, it is still in its infancy. This paper presents solutions of many problems of today's implantable and neural-electronic interface devices by combining nanowires and microelectronics with BioMEMS and applying them at cellular level for the development of a total wireless feedback control system. The only device that will actually be implanted in this research is the electrodes. All necessary controllers will be housed in accessories that are outside the body that communicate with the implanted electrodes through tiny inductively-coupled antennas. A Parkinson disease patient can just wear a hat-system close to the implantable neural probe so that the patient is free to move around, while the sensors continually monitor, record, transmit all vital information to health care specialist. In the event of a problem, the system provides an early warning to the patient while they are still mobile thus providing them the opportunity to react and

  16. Immediate loading of titanium hexed screw-type implants in the edentulous patient: case report.

    PubMed

    Calvo, M P; Muller, E; Garg, A K

    2000-01-01

    Histologic and histomorphometric studies in both animals and humans have shown that more rapid and greater bone-to-implant contact can be achieved with implants that incorporate certain surface characteristics compared with the original machined-surface implants. Such findings are significant because various implant designs may allow the fixtures to sufficiently resist functional loading sooner than originally thought. The case report presented here indicates that immediate loading of hexed titanium screw-type implants in the anterior mandible can lead to successful osseointegration and clinical outcome. The number of implants placed, their distribution, and the type of rigid connection are critical considerations for immediate loading. A bone height that can accommodate dental implants > or = 10 mm long is recommended. Biomechanically, the implants to be immediately loaded must be stable and resistant to macromovement to ensure good osseointegration.

  17. Clinical evaluation of immediate loading of titanium orthodontic implants

    PubMed Central

    Chopra, S.S.; Chakranarayan, A.

    2015-01-01

    Background Skeletal anchorage using dental implants, miniplates, miniscrews and microscrews provides an absolute anchorage for tooth movement. Miniscrew and microscrew implants have many benefits such as ease of placement and removal and immediate orthodontic force application. Methods Fifteen subjects in the permanent dentition with an overjet ≥6 mm received treatment with the 0.018-inch pre-adjusted edgewise appliance system (Roth prescription) and extraction of all first premolars. Titanium orthodontic implants were placed in both the upper quadrants and were immediately loaded with elastic chain from the implant head to the sectional arch wire. Result The overall success rate of immediate loaded titanium orthodontic micro implants (OMI) in the present study was 83.33%, with a mean chairside time of 15.33 min of placing two implants in each patient. Peri-implant inflammation was the only complication observed. Most failures were in the initial part of the study. There was no significant difference in the success rate of implants based on sex, side of placement (right or left) and type of malocclusion. Conclusion The OMIs used in the present study proved to be effective and well tolerated in producing immediate orthodontic anchorage for the retraction. PMID:25859080

  18. In vitro and in vivo investigation of bisphosphonate-loaded hydroxyapatite particles for peri-implant bone augmentation.

    PubMed

    Kettenberger, Ulrike; Luginbuehl, Vera; Procter, Philip; Pioletti, Dominique P

    2017-07-01

    Locally applied bisphosphonates, such as zoledronate, have been shown in several studies to inhibit peri-implant bone resorption and recently to enhance peri-implant bone formation. Studies have also demonstrated positive effects of hydroxyapatite (HA) particles on peri-implant bone regeneration and an enhancement of the anti-resorptive effect of bisphosphonates in the presence of calcium. In the present study, both hydroxyapatite nanoparticles (nHA) and zoledronate were combined to achieve a strong reinforcing effect on peri-implant bone. The nHA-zoledronate combination was first investigated in vitro with a pre-osteoclastic cell assay (RAW 264.7) and then in vivo in a rat model of postmenopausal osteoporosis. The in vitro study confirmed that the inhibitory effect of zoledronate on murine osteoclast precursor cells was enhanced by loading the drug on nHA. For the in vivo investigation, either zoledronate-loaded or pure nHA were integrated in hyaluronic acid hydrogel. The gels were injected in screw holes that had been predrilled in rat femoral condyles before the insertion of miniature screws. Micro-CT-based dynamic histomorphometry and histology revealed an unexpected rapid mineralization of the hydrogel in vivo through formation of granules, which served as scaffold for new bone formation. The delivery of zoledronate-loaded nHA further inhibited a degradation of the mineralized hydrogel as well as a resorption of the peri-implant bone as effectively as unbound zoledronate. Hyaluronic acid with zoledronate-loaded nHA, thanks to its dual effect on inducing a rapid mineralization and preventing resorption, is a promising versatile material for bone repair and augmentation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model.

    PubMed

    Zhang, Xin; Jia, Weitao; Gu, Yifei; Xiao, Wei; Liu, Xin; Wang, Deping; Zhang, Changqing; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E; Zhou, Nai

    2010-08-01

    The treatment of chronic osteomyelitis (bone infection) remains a clinical challenge. In this work, pellets composed of a chitosan-bonded mixture of borate bioactive glass particles (<50microm) and teicoplanin powder (antibiotic), were evaluated in vitro and in vivo for treating chronic osteomyelitis induced by methicillin-resistant Staphylococcus aureus (MRSA) in a rabbit model. When immersed in phosphate-buffered saline, the pellets showed sustained release of teicoplanin over 20-30 days, while the bioactive glass converted to hydroxyapatite (HA) within 7 days, eventually forming a porous HA structure. Implantation of the teicoplanin-loaded pellets in a rabbit tibia osteomyelitis model resulted in the detection of teicoplanin in the blood for about 9 days. The implants converted to a bone-like HA graft, and supported the ingrowth of new bone into the tibia defects within 12 weeks of implantation. Microbiological, histological and scanning electron microscopy techniques showed that the implants provided a cure for the bone infection. The results indicate that the teicoplanin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone ingrowth, could provide a method for treating chronic osteomyelitis. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. [Design and application of implantable medical device information management system].

    PubMed

    Cao, Shaoping; Yin, Chunguang; Zhao, Zhenying

    2013-03-01

    Through the establishment of implantable medical device information management system, with the aid of the regional joint sharing of resources, we further enhance the implantable medical device traceability management level, strengthen quality management, control of medical risk.

  1. An instrumented implant for vertebral body replacement that measures loads in the anterior spinal column.

    PubMed

    Rohlmann, Antonius; Gabel, Udo; Graichen, Friedmar; Bender, Alwina; Bergmann, Georg

    2007-06-01

    Realistic loads on a spinal implant are required among others for optimization of implant design and preclinical testing. In addition, such data may help to choose the optimal physiotherapy program for patients with such an implant and to evaluate the efficacy of aids like braces or crutches. Presently, no implant is available that can measure loads in the anterior spinal column during activities of daily life. Therefore, an implant instrumented for in vivo load measurement was developed for vertebral body replacement. The aim of this paper is to describe in detail a telemeterized implant that measures forces and moments acting on it. Six load sensors, a nine-channel telemetry unit and a coil for inductive power supply of the electronic circuits were integrated into a modified vertebral body replacement (Synex). The instrumented part of the implant is hermetically sealed. Patients are videotaped during measurements, and implant loads are displayed on and off line. The average accuracy of load measurement is better than 2% for force and 5% for moment components with reference to the maximum value of 3000 N and 20 Nm, respectively. The measuring implant described here will provide additional information on spinal loads.

  2. Functionalized silica nanoparticles as a carrier for Betamethasone Sodium Phosphate: Drug release study and statistical optimization of drug loading by response surface method.

    PubMed

    Ghasemnejad, M; Ahmadi, E; Mohamadnia, Z; Doustgani, A; Hashemikia, S

    2015-11-01

    Mesoporous silica nanoparticles with a hexagonal structure (SBA-15) were synthesized and modified with (3-aminopropyl) triethoxysilane (APTES), and their performance as a carrier for drug delivery system was studied. Chemical structure and morphology of the synthesized and modified SBA-15 were characterized by SEM, BET, TEM, FT-IR and CHN technique. Betamethasone Sodium Phosphate (BSP) as a water soluble drug was loaded on the mesoporous silica particle for the first time. The response surface method was employed to obtain the optimum conditions for the drug/silica nanoparticle preparation, by using Design-Expert software. The effect of time, pH of preparative media, and drug/silica ratio on the drug loading efficiency was investigated by the software. The maximum loading (33.69%) was achieved under optimized condition (pH: 1.8, time: 3.54 (h) and drug/silica ratio: 1.7). The in vitro release behavior of drug loaded particles under various pH values was evaluated. Finally, the release kinetic of the drug was investigated using the Higuchi and Korsmeyer-Peppas models. Cell culture and cytotoxicity assays revealed the synthesized product doesn't have any cytotoxicity against human bladder cell line 5637. Accordingly, the produced drug-loaded nanostructures can be applied via different routes, such as implantation and topical or oral administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The preparation, cytocompatibility and antimicrobial property of micro/nano structural titanium loading alginate and antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyuan; Zhong, Mou; Sun, Yuhua; Chen, Junhong; Feng, Bo

    2018-03-01

    Titanium with hybrid microporous/nanotubes (TMNT) structure on its surface was fabricated by acid etching and subsequently anodization at different voltages. Bovine lactoferricin, a kind of antimicrobial peptide, and sodium alginate (NaAlg) were loaded onto titanium surface through layer by layer assembly. The drug release, cytocompatibility and antimicrobial property against S.aureus and E.coil were studied by release experiment, osteoblast and bacterial cultures. Results indicated that samples with nanotubes of bigger diameter carried more drugs and had better biocompatibility, and drug-loaded samples acquired better biocompatibility compared with drug-free samples. Furthermore, the drug-loaded samples exhibited good initial antimicrobial property, but weak long-term antimicrobial property. Therefore, drug-loaded titanium with micro/nano structure, especially, of big diameter nanotubes, could be a promise material for medical implants, such as internal/external fixation devices.

  4. Evaluation of tissue interactions with mechanical elements of a transscleral drug delivery device.

    PubMed

    Cohen, Sarah J; Chan, Robison V Paul; Keegan, Mark; Andreoli, Christopher M; Borenstein, Jeffrey T; Miller, Joan W; Gragoudas, Evangelos S

    2012-03-12

    The goal of this work was to evaluate tissue-device interactions due to implantation of a mechanically operated drug delivery system onto the posterior sclera. Two test devices were designed and fabricated to model elements of the drug delivery device-one containing a free-spinning ball bearing and the other encasing two articulating gears. Openings in the base of test devices modeled ports for drug passage from device to sclera. Porous poly(tetrafluoroethylene) (PTFE) membranes were attached to half of the gear devices to minimize tissue ingrowth through these ports. Test devices were sutured onto rabbit eyes for 10 weeks. Tissue-device interactions were evaluated histologically and mechanically after removal to determine effects on device function and changes in surrounding tissue. Test devices were generally well-tolerated during residence in the animal. All devices encouraged fibrous tissue formation between the sclera and the device, fibrous tissue encapsulation and invasion around the device, and inflammation of the conjunctiva. Gear devices encouraged significantly greater inflammation in all cases and a larger rate of tissue ingrowth. PTFE membranes prevented tissue invasion through the covered drug ports, though tissue migrated in through other smaller openings. The torque required to turn the mechanical elements increased over 1000 times for gear devices, but only on the order of 100 times for membrane-covered gear devices and less than 100 times for ball bearing devices. Maintaining a lower device profile, minimizing microscale motion on the eye surface and covering drug ports with a porous membrane may minimize inflammation, decreasing the risk of damage to surrounding tissues and minimizing disruption of device operation.

  5. Biodegradation and cytotoxicity of ciprofloxacin-loaded hydroxyapatite-polycaprolactone nanocomposite film for sustainable bone implants.

    PubMed

    Nithya, Rajendran; Meenakshi Sundaram, Nachiappan

    2015-01-01

    In recent years there has been a steep increase in the number of orthopedic patients for many reasons. One major reason is osteomyelitis, caused by pyrogenic bacteria, with progressive infection of the bone or bone marrow and surrounding tissues. So antibiotics must be introduced during bone implantation to avoid prolonged infection. The objective of the study reported here was to prepare a composite film of nanocrystalline hydroxyapatite (HAp) and polycaprolactone (PCL) polymer loaded with ciprofloxacin, a frequently used antibiotic agent for bone infections. Nanocrystalline HAp was synthesized by precipitation method using the precursor obtained from eggshell. The nanocomposite film (HAp-PCL-ciprofloxacin) was prepared by solvent evaporation. Drug-release and biodegradation studies were undertaken by immersing the composite film in phosphate-buffered saline solution, while a cytotoxicity test was performed using the fibroblast cell line NIH-3T3 and osteoblast cell line MG-63. The pure PCL film had quite a low dissolution rate after an initial sharp weight loss, whereas the ciprofloxacin-loaded HAp-PCL nanocomposite film had a large weight loss due to its fast drug release. The composite film had higher water absorption than the pure PCL, and increasing the concentration of the HAp increased the water absorption. The in vitro cell-line study showed a good biocompatibility and bioactivity of the developed nanocomposite film. The prepared film will act as a sustainable bone implant in addition to controlled drug delivery.

  6. Evaluation of Tissue Interactions with Mechanical Elements of a Transscleral Drug Delivery Device

    PubMed Central

    Cohen, Sarah J.; Chan, Robison V. Paul; Keegan, Mark; Andreoli, Christopher M.; Borenstein, Jeffrey T.; Miller, Joan W.; Gragoudas, Evangelos S.

    2012-01-01

    The goal of this work was to evaluate tissue-device interactions due to implantation of a mechanically operated drug delivery system onto the posterior sclera. Two test devices were designed and fabricated to model elements of the drug delivery device—one containing a free-spinning ball bearing and the other encasing two articulating gears. Openings in the base of test devices modeled ports for drug passage from device to sclera. Porous poly(tetrafluoroethylene) (PTFE) membranes were attached to half of the gear devices to minimize tissue ingrowth through these ports. Test devices were sutured onto rabbit eyes for 10 weeks. Tissue-device interactions were evaluated histologically and mechanically after removal to determine effects on device function and changes in surrounding tissue. Test devices were generally well-tolerated during residence in the animal. All devices encouraged fibrous tissue formation between the sclera and the device, fibrous tissue encapsulation and invasion around the device, and inflammation of the conjunctiva. Gear devices encouraged significantly greater inflammation in all cases and a larger rate of tissue ingrowth. PTFE membranes prevented tissue invasion through the covered drug ports, though tissue migrated in through other smaller openings. The torque required to turn the mechanical elements increased over 1000 times for gear devices, but only on the order of 100 times for membrane-covered gear devices and less than 100 times for ball bearing devices. Maintaining a lower device profile, minimizing microscale motion on the eye surface and covering drug ports with a porous membrane may minimize inflammation, decreasing the risk of damage to surrounding tissues and minimizing disruption of device operation. PMID:24300189

  7. Low permanent pacemaker rates following Lotus device implantation for transcatheter aortic valve replacement due to modified implantation protocol.

    PubMed

    Krackhardt, Florian; Kherad, Behrouz; Krisper, Maximilian; Pieske, Burkert; Laule, Michael; Tschöpe, Carsten

    2017-01-01

    Conduction disturbances requiring permanent pacemaker implantation following transcatheter aortic valve replacement (TAVR) are a common problem. Pacemaker implantation rates after TAVR appear to be higher compared to conventional aortic valve replacement. The aim of this study was to analyze whether a high annulus implantation conveys the benefit of a decreased rate of permanent pacemaker implantation while being safe and successful according to Valve Academic Research Consortium 2 (VARC2)-criteria. A total of 23 patients with symptomatic severe aortic valve stenosis, an aortic annulus of 19-27 mm and at high risk for surgery were treated with the Lotus valve. In all patients the valve was implanted in a high annulus position via femoral access. The primary device performance endpoint was VARC2-defined device success after 30 days and the primary safety endpoint was the need for permanent pacemaker implantation. The mean age was 73.23 ± 7.65 years, 46% were female, 38% were New York Heart Association class III/IV at baseline. Thirty-day follow-up data were available for all patients. The VARC2-defined device success rate after 30 days was 22/23 (96%). 2/21 (10%) patients required a newly implanted pacemaker due to 3rd degree atrioventricular block. 25% of the patients developed a new left bundle branch block after valvuloplasty or device implantation. 21 of the 23 patients (96%) had no other signs of conduction disturbances after 30 days. The approach of the modified implantation technique of Lotus TAVR device was safe and effective. The incidence of need for a permanent pacemaker following TAVR could be significantly reduced due to adopted implantation protocol.

  8. Instant loading with intraoral welding technique and PRAMA implants: a new prosthetic approach.

    PubMed

    Celletti, R; Fanali, S; Laici, C U; Santori, C; Pignatelli, P; Sinjari, B

    2017-01-01

    When splinting multiple implants passive fit of the framework should be achieved to avoid excessive force distribution on the implants. Recently, a protocol was suggested for immediate loading of multiple implants by welding a titanium bar to implant abutments directly in the oral cavity so as to create a customized, precise and passive metal-reinforced provisional restoration. The intraoral welding technique subsequently proves to be a successful option in the full-arch immediate restorations of the mandible and maxilla. The aim of this article is to present a case report in which a new prosthetic approach, using trans-mucosal implants, is described. Dental implants are instantly loaded with a provisional prosthesis supported by an intraoral welded titanium framework to obtain a precise passive fit of the immediate loaded prosthesis.

  9. Histologic and histomorphometric evaluation of peri-implant bone of immediate or delayed occlusal-loaded non-splinted implants in the posterior mandible--an experimental study in monkeys.

    PubMed

    Stokholm, Rie; Isidor, Flemming; Nyengaard, Jens R

    2014-11-01

    The primary aim of this study was to compare the bone reaction around immediate-loaded non-splinted single implants vs. delayed loaded non-splinted single implants placed in healed ridges in the posterior mandible. Six adult Macaca Fascicularis monkeys were used in this study. The first and second premolars and the first molar were extracted in both sides of the mandible. After 3 months of healing, four implants (Replace Select Tapered; Nobel Biocare, Gothenburg, Sweden) with a moderately rough surface (TiUnite, Nobel Biocare) were placed in the edentulous areas of each monkey, two in each side. The implants had a length of 10 mm and a diameter of 3.5 mm. Four groups of varying time and occlusal loading aspects were created: (i) control group: implant placed non-loaded for 3 months; (ii) immediate loaded: implant placed and loaded immediately for 3 months; (iii) immediate loaded: implant placed and loaded immediately for 6 months; and (iv) delayed loaded: implant placed submerged for 3 months and then loaded for 3 months. At the loaded implants, after a second stage surgery, a composite crown was made directly on an abutment mounted on the implant reinsuring simultaneous occlusal contact on the implant crown and the neighboring teeth. After euthanization of the animals, histologic specimens were quantified in the light microscope. All implants were clinically, radiographically, and histologically osseointegrated at the time of euthanization and with only mild signs of inflammation in the peri-implant mucosa. The histologic marginal bone level was located on average 1.14-1.74 mm apical to the margin of the implants in the various groups. The average bone-to-implant contact (BIC) varied between 55% and 65% and the average bone density (i.e., the proportion of mineralized bone tissue from the implant surface and to a distance of 1 mm lateral to the implant) varied between 30.6% and 34.2%. No statistical significant differences between groups were observed in

  10. Finite element analysis of different loading conditions for implant-supported overdentures supported by conventional or mini implants.

    PubMed

    Solberg, K; Heinemann, F; Pellikaan, P; Keilig, L; Stark, H; Bourauel, C; Hasan, I

    2017-05-01

    The effect of implants' number on overdenture stability and stress distribution in edentulous mandible, implants and overdenture was numerically investigated for implant-supported overdentures. Three models were constructed. Overdentures were connected to implants by means of ball head abutments and rubber ring. In model 1, the overdenture was retained by two conventional implants; in model 2, by four conventional implants; and in model 3, by five mini implants. The overdenture was subjected to a symmetrical load at an angle of 20 degrees to the overdenture at the canine regions and vertically at the first molars. Four different loading conditions with two total forces (120, 300 N) were considered for the numerical analysis. The overdenture displacement was about 2.2 times higher when five mini implants were used rather than four conventional implants. The lowest stress in bone bed was observed with four conventional implants. Stresses in bone were reduced by 61% in model 2 and by 6% in model 3 in comparison to model 1. The highest stress was observed with five mini implants. Stresses in implants were reduced by 76% in model 2 and 89% increased in model 3 compared to model 1. The highest implant displacement was observed with five mini implants. Implant displacements were reduced by 29% in model 2, and increased by 273% in model 3 compared to model 1. Conventional implants proved better stability for overdenture than mini implants. Regardless the type and number of implants, the stress within the bone and implants are below the critical limits.

  11. BAYESIAN META-ANALYSIS ON MEDICAL DEVICES: APPLICATION TO IMPLANTABLE CARDIOVERTER DEFIBRILLATORS

    PubMed Central

    Youn, Ji-Hee; Lord, Joanne; Hemming, Karla; Girling, Alan; Buxton, Martin

    2012-01-01

    Objectives: The aim of this study is to describe and illustrate a method to obtain early estimates of the effectiveness of a new version of a medical device. Methods: In the absence of empirical data, expert opinion may be elicited on the expected difference between the conventional and modified devices. Bayesian Mixed Treatment Comparison (MTC) meta-analysis can then be used to combine this expert opinion with existing trial data on earlier versions of the device. We illustrate this approach for a new four-pole implantable cardioverter defibrillator (ICD) compared with conventional ICDs, Class III anti-arrhythmic drugs, and conventional drug therapy for the prevention of sudden cardiac death in high risk patients. Existing RCTs were identified from a published systematic review, and we elicited opinion on the difference between four-pole and conventional ICDs from experts recruited at a cardiology conference. Results: Twelve randomized controlled trials were identified. Seven experts provided valid probability distributions for the new ICDs compared with current devices. The MTC model resulted in estimated relative risks of mortality of 0.74 (0.60–0.89) (predictive relative risk [RR] = 0.77 [0.41–1.26]) and 0.83 (0.70–0.97) (predictive RR = 0.84 [0.55–1.22]) with the new ICD therapy compared to Class III anti-arrhythmic drug therapy and conventional drug therapy, respectively. These results showed negligible differences from the preliminary results for the existing ICDs. Conclusions: The proposed method incorporating expert opinion to adjust for a modification made to an existing device may play a useful role in assisting decision makers to make early informed judgments on the effectiveness of frequently modified healthcare technologies. PMID:22559753

  12. Drug Loading and Release Behavior Depending on the Induced Porosity of Chitosan/Cellulose Multilayer Nanofilms.

    PubMed

    Park, Sohyeon; Choi, Daheui; Jeong, Hyejoong; Heo, Jiwoong; Hong, Jinkee

    2017-10-02

    The ability to control drug loading and release is the most important feature in the development of medical devices. In this research, we prepared a functional nanocoating technology to incorporate a drug-release layer onto a desired substrate. The multilayer films were prepared using chitosan (CHI) and carboxymethyl cellulose (CMC) polysaccharides by the layer-by-layer (LbL) method. By using chemical cross-linking to change the inner structure of the assembled multilayer, we could control the extent of drug loading and release. The cross-linked multilayer film had a porous structure and enhanced water wettability. Interestingly, more of the small-molecule drug was loaded into and released from the non-cross-linked multilayer film, whereas more of the macromolecular drug was loaded into and released from the cross-linked multilayer film. These results indicate that drug loading and release can be easily controlled according to the molecular weight of the desired drug by changing the structure of the film.

  13. Research on ion implantation in MEMS device fabrication by theory, simulation and experiments

    NASA Astrophysics Data System (ADS)

    Bai, Minyu; Zhao, Yulong; Jiao, Binbin; Zhu, Lingjian; Zhang, Guodong; Wang, Lei

    2018-06-01

    Ion implantation is widely utilized in microelectromechanical systems (MEMS), applied for embedded lead, resistors, conductivity modifications and so forth. In order to achieve an expected device, the principle of ion implantation must be carefully examined. The elementary theory of ion implantation including implantation mechanism, projectile range and implantation-caused damage in the target were studied, which can be regarded as the guidance of ion implantation in MEMS device design and fabrication. Critical factors including implantations dose, energy and annealing conditions are examined by simulations and experiments. The implantation dose mainly determines the dopant concentration in the target substrate. The implantation energy is the key factor of the depth of the dopant elements. The annealing time mainly affects the repair degree of lattice damage and thus the activated elements’ ratio. These factors all together contribute to ions’ behavior in the substrates and characters of the devices. The results can be referred to in the MEMS design, especially piezoresistive devices.

  14. Biomechanical optimization of implant diameter and length for immediate loading: a nonlinear finite element analysis.

    PubMed

    Kong, Liang; Gu, Zexu; Li, Tao; Wu, Junjie; Hu, Kaijin; Liu, Yanpu; Zhou, Hongzhi; Liu, Baolin

    2009-01-01

    A nonlinear finite element method was applied to examine the effects of implant diameter and length on the maximum von Mises stresses in the jaw, and to evaluate the maximum displacement of the implant-abutment complex in immediate-loading models. The implant diameter (D) ranged from 3.0 to 5.0 mm and implant length (L) ranged from 6.0 to 16.0 mm. The results showed that the maximum von Mises stress in cortical bone was decreased by 65.8% under a buccolingual load with an increase in D. In cancellous bone, it was decreased by 71.5% under an axial load with an increase in L. The maximum displacement in the implant-abutment complex decreased by 64.8% under a buccolingual load with an increase in D. The implant was found to be more sensitive to L than to D under axial loads, while D played a more important role in enhancing its stability under buccolingual loads. When D exceeded 4.0 mm and L exceeded 11.0 mm, both minimum stress and displacement were obtained. Therefore, these dimensions were the optimal biomechanical selections for immediate-loading implants in type B/2 bone.

  15. Effect of cyclic load on vertical misfit of prefabricated and cast implant single abutment

    PubMed Central

    DE JESUS TAVAREZ, Rudys Rodolfo; BONACHELA, Wellington Cardoso; XIBLE, Anuar Antônio

    2011-01-01

    Objective The purpose of this in vitro study was to evaluate misfit alterations at the implant/abutment interface of external and internal connection implant systems when subjected to cyclic loading. Material and Methods Standard metal crowns were fabricated for 5 groups (n=10) of implant/abutment assemblies: Group 1, external hexagon implant and UCLA cast-on premachined abutment; Group 2, internal hexagon implant and premachined abutment; Group 3, internal octagon implant and prefabricated abutment; Group 4, external hexagon implant and UCLA cast-on premachined abutment; and Group 5, external hexagon implant and Ceraone abutment. For groups 1, 2, 3 and 5, the crowns were cemented on the abutments and in group 4 crowns were screwed directly on the implant. The specimens were subjected to 500,000 cycles at 19.1 Hz of frequency and non-axial load of 133 N in a MTS 810 machine. The vertical misfit (μm) at the implant/abutment interface was evaluated before (B) and after (A) application of the cyclic loading. Data were analyzed statistically by using two-away ANOVA and Tukey’s post-hoc test (p<0.05). Results Before loading values showed no difference among groups 2 (4.33±3.13), 3 (4.79±3.43) and 5 (3.86±4.60); between groups 1 (12.88±6.43) and 4 (9.67±3.08), and among groups 2, 3 and 4. However, groups 1 and 4 were significantly different from groups 2, 3 and 5. After loading values of groups 1 (17.28±8.77) and 4 (17.78±10.99) were significantly different from those of groups 2 (4.83±4.50), 3 (8.07±4.31) and 5 (3.81±4.84). There was a significant increase in misfit values of groups 1, 3 and 4 after cyclic loading, but not for groups 2 and 5. Conclusion The cyclic loading and type of implant/abutment connection may develop a role on the vertical misfit at the implant/abutment interface. PMID:21437464

  16. Early versus delayed loading of mandibular implant-supported overdentures: 5-year results.

    PubMed

    Turkyilmaz, Ilser; Tözüm, Tolga F; Tumer, Celal

    2010-05-01

    Because of poor retention of complete removable dentures for edentulous patients, implant-supported mandibular overdentures have lately become a popular alternative for them. The aims of this prospective study were to evaluate treatment outcomes of mandibular overdentures supported by two unsplinted early-loaded implants and compare these results with those for delayed-loaded implants. A total of 26 edentulous patients were treated with two unsplinted implants supporting a mandibular overdenture. All implants were placed in the canine regions of each mandible according to the one-stage surgical protocol. There were two groups: test group, in which the overdenture was connected 1 week after surgery, and control group, in which the overdenture was connected 3 months after surgery. Standardized clinical and radiographic parameters were recorded at surgery, and after 3, 6, 12, and 18 months, and 2, 3, 4, and 5 years. No implants were lost, and 0.93 +/- 0.3 mm marginal bone resorption was noted for all implants after 5 years. Clinical implant stability measurements, clinical peri-implant parameters, and marginal bone resorptions showed no statistically significant differences between the two groups over 5 years. The results of this prospective clinical study suggest that there is no significant difference in the clinical and radiographic state of patients treated with implant supported mandibular overdentures loaded either 1 week or 3 months after surgery.

  17. A Laminated Microfluidic Device for Comprehensive Preclinical Testing in the Drug ADME Process.

    PubMed

    An, Fan; Qu, Yueyang; Luo, Yong; Fang, Ning; Liu, Yang; Gao, Zhigang; Zhao, Weijie; Lin, Bingcheng

    2016-04-28

    New techniques are urgently needed to replace conventional long and costly pre-clinical testing in the new drug administration process. In this study, a laminated microfluidic device was fabricated to mimic the drug ADME response test in vivo. This proposed device was loaded and cultured with functional cells for drug response investigation and organ tissues that are involved in ADME testing. The drug was introduced from the top of the device and first absorbed by the Caco-2 cell layer, and then metabolized by the primary hepatocyte layer. It subsequently interacted with the MCF-7 cell layer, distributed in the lung, heart and fat tissues, and was finally eliminated through the dialysis membrane. Throughout this on-chip ADME process, the proposed device can be used as a reliable tool to simultaneously evaluate the drug anti-tumor activity, hepatotoxicity and pharmacokinetics. Furthermore, this device was proven to be able to reflect the hepatic metabolism of a drug, drug distribution in the target tissues, and the administration method of a drug. Furthermore, this microdevice is expected to reduce the number of drug candidates and accelerate the pre-clinical testing process subject to animal testing upon adaptation in new drug discovery.

  18. In vivo delivery of recombinant human growth hormone from genetically engineered human fibroblasts implanted within Baxter immunoisolation devices.

    PubMed

    Josephs, S F; Loudovaris, T; Dixit, A; Young, S K; Johnson, R C

    1999-01-01

    Continuous delivery of therapeutic peptide to the systemic circulation would be the optimal treatment for a variety of diseases. The Baxter TheraCyte system is a membrane encapsulation system developed for implantation of tissues, cells such as endocrine cells or cell lines genetically engineered for therapeutic peptide delivery in vivo. To demonstrate the utility of this system, cell lines were developed which expressed human growth hormone (hGH) at levels exceeding 1 microgram per million cells per day. These were loaded into devices which were then implanted into juvenile nude rats. Significant levels of hGH of up to 2.5 ng/ml were detected in plasma throughout the six month duration of the study. In contrast, animals implanted with free cells showed peak plasma levels of 0.5 to 1.2 ng four days after implantation with no detectable hGH beyond 10 days. Histological examination of explanted devices showed they were vascularized and contained cells that were viable and morphologically healthy. After removal of the implants, no hGH could be detected which confirmed that the source of hGH was from cells contained within the device. The long term expression of human growth hormone as a model peptide has implications for the peptide therapies for a variety of human diseases using membrane encapsulated cells.

  19. Microchips and controlled-release drug reservoirs.

    PubMed

    Staples, Mark

    2010-01-01

    This review summarizes and updates the development of implantable microchip-containing devices that control dosing from drug reservoirs integrated with the devices. As the expense and risk of new drug development continues to increase, technologies that make the best use of existing therapeutics may add significant value. Trends of future medical care that may require advanced drug delivery systems include individualized therapy and the capability to automate drug delivery. Implantable drug delivery devices that promise to address these anticipated needs have been constructed in a variety of ways using micro- and nanoelectromechanical systems (MEMS or NEMS)-based technology. These devices expand treatment options for addressing unmet medical needs related to dosing. Within the last few years, advances in several technologies (MEMS or NEMS fabrication, materials science, polymer chemistry, and data management) have converged to enable the construction of miniaturized implantable devices for controlled delivery of therapeutic agents from one or more reservoirs. Suboptimal performance of conventional dosing methods in terms of safety, efficacy, pain, or convenience can be improved with advanced delivery devices. Microchip-based implantable drug delivery devices allow localized delivery by direct placement of the device at the treatment site, delivery on demand (emergency administration, pulsatile, or adjustable continuous dosing), programmable dosing cycles, automated delivery of multiple drugs, and dosing in response to physiological and diagnostic feedback. In addition, innovative drug-medical device combinations may protect labile active ingredients within hermetically sealed reservoirs. Copyright (c) 2010 John Wiley & Sons, Inc.

  20. Implantable physiologic controller for left ventricular assist devices with telemetry capability.

    PubMed

    Asgari, Siavash S; Bonde, Pramod

    2014-01-01

    Rotary type left ventricular assist devices have mitigated the problem of durability associated with earlier pulsatile pumps and demonstrated improved survival. However, the compromise is the loss of pulsatility due to continuous flow and retained percutaneous driveline leading to increased mortality and morbidity. Lack of pulsatility is implicated in increased gastrointestinal bleeding, aortic incompetence, and diastolic hypertension. We present a novel, wirelessly powered, ultra-compact, implantable physiologic controller capable of running a left ventricular assist device in a pulsatile mode with wireless power delivery. The schematic of our system was laid out on a circuit board to wirelessly receive power and run a left ventricular assist device with required safety and backup measures. We have embedded an antenna and wireless network for telemetry. Multiple signal processing steps and controlling algorithm were incorporated. The controller was tested in in vitro and in vivo experiments. The controller drove left ventricular assist devices continuously for 2 weeks in an in vitro setup and in vivo without any failure. Our controller is more power efficient than the current Food and Drug Administration-approved left ventricular assist device controllers. When used with electrocardiography synchronization, the controller allowed on-demand customization of operation with instantaneous flow and revolutions per minute changes, resulting in a pulsatile flow with adjustable pulse pressure. Our test results prove the system to be remarkably safe, accurate, and efficient. The unique combination of wireless powering and small footprint makes this system an ideal totally implantable physiologic left ventricular assist device system. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  1. Do we need to establish guidelines for patients with neuromodulation implantable devices, including spinal cord stimulators undergoing nonspinal surgeries?

    PubMed Central

    Ghaly, Ramsis F.; Tverdohleb, Tatiana; Candido, Kenneth D.; Knezevic, Nebojsa Nick

    2016-01-01

    Background: Spinal cord stimulation is currently approved to treat chronic intractable pain of the trunk and limbs. However, such implantable electronic devices are vulnerable to external electrical currents and magnetic fields. Within the hospitals and modern operating rooms (ORs), there is an abundance of electrical devices and other types of equipment that could interfere with such devices. Despite the increasing number of patients with neuromodulation implantable devices, there are no written guidelines available or consensus of cautions for such patients undergoing unrelated surgery. Case Descriptions: A 60-year-old female with a permanent St. Jude's spinal cord stimulator (SCS) presented for open total abdominal hysterectomy. Both the anesthesia and gynecology staffs were aware of the device presence, but were unaware of any precautions regarding intraoperative management. The device was found to be nonmagnetic resonance imaging compatible, and bipolar cautery was used instead of monopolar cautery. A 59-year-old female with a 9-year-old permanent Medtronic SCS, presented for right total hip arthroplasty. The device was switched off prior to entering the OR, bipolar cautery was used, and grounding pads were placed away from her battery site. In each case, the manufacturer's representative was contacted preoperative. Both surgeries proceeded uneventfully. Conclusions: The Food and Drug Administration safety information manual warns about the use of diathermy, concomitant implanted stimulation devices, lithotripsy, external defibrillation, radiation therapy, ultrasonic scanning, and high-output ultrasound, all of which can lead to permanent implant damage if not turned off prior to undertaking procedures. Lack of uniform guidelines makes intraoperative management, as well as remote anesthesia care of patients with previously implanted SCSs unsafe. PMID:26958424

  2. Biocompatible polymeric implants for controlled drug delivery produced by MAPLE

    NASA Astrophysics Data System (ADS)

    Paun, Irina Alexandra; Moldovan, Antoniu; Luculescu, Catalin Romeo; Dinescu, Maria

    2011-10-01

    Implants consisting of drug cores coated with polymeric films were developed for delivering drugs in a controlled manner. The polymeric films were produced using matrix assisted pulsed laser evaporation (MAPLE) and consist of poly(lactide-co-glycolide) (PLGA), used individually as well as blended with polyethylene glycol (PEG). Indomethacin (INC) was used as model drug. The implants were tested in vitro (i.e. in conditions similar with those encountered inside the body), for predicting their behavior after implantation at the site of action. To this end, they were immersed in physiological media (i.e. phosphate buffered saline PBS pH 7.4 and blood). At various intervals of PBS immersion (and respectively in blood), the polymeric films coating the drug cores were studied in terms of morphology, chemistry, wettability and blood compatibility. PEG:PLGA film exhibited superior properties as compared to PLGA film, the corresponding implant being thus more suitable for internal use in the human body. In addition, the implant containing PEG:PLGA film provided an efficient and sustained release of the drug. The kinetics of the drug release was consistent with a diffusion mediated mechanism (as revealed by fitting the data with Higuchi's model); the drug was gradually released through the pores formed during PBS immersion. In contrast, the implant containing PLGA film showed poor drug delivery rates and mechanical failure. In this case, fitting the data with Hixson-Crowell model indicated a release mechanism dominated by polymer erosion.

  3. 21 CFR 870.3610 - Implantable pacemaker pulse generator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implantable pacemaker pulse generator. 870.3610... pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has... implantable pacemaker pulse generator device that was in commercial distribution before May 28, 1976, or that...

  4. 21 CFR 870.3610 - Implantable pacemaker pulse generator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implantable pacemaker pulse generator. 870.3610... pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has... implantable pacemaker pulse generator device that was in commercial distribution before May 28, 1976, or that...

  5. Settling of abutments into implants and changes in removal torque in five different implant-abutment connections. Part 1: Cyclic loading.

    PubMed

    Kim, Ki-Seong; Han, Jung-Suk; Lim, Young-Jun

    2014-01-01

    The aim of this study was to evaluate and compare the settling of abutments into implants and the removal torque values (RTVs) before and after cyclic loading. Five different implant-abutment connections were tested: Ext = external butt joint + two-piece abutment; Int-H2 = internal hexagon + two-piece abutment; Int-H1 = internal hexagon + one-piece abutment; Int-O2 = internal octagon + two-piece abutment; and Int-O1 = internal octagon + one-piece abutment. Ten abutments from each group were secured to their corresponding implants (total n = 50). All samples were tested in a universal testing machine with a vertical load of 250 N for 100,000 cycles of 14 Hz. The amount of settling of the abutment into the implant was calculated from the change in the total length of the implant-abutment sample before and after loading, as measured with an electronic digital micrometer. The RTV after cyclic loading was compared to the initial RTV with a digital torque gauge. Statistical analysis was performed at a 5% significance level. A multiple-comparison test showed specific significant differences in settling values in each group after 250 N cyclic loading (Int-H1, Ext < Int-H2 < Int-O2 < Int-O1). There were statistically significant decreases in RTVs after loading compared to the initial RTVs in the Int-H2 and Int-O2 groups. No statistically significant differences were found in the Ext, Int-H1, and Int-O1 groups. The results of this study demonstrated that the settling amount and RTV (loss of preload) after cyclic loading were specific to the abutment type and related to the design characteristics of the implant-abutment connection.

  6. Integrated Microbatteries for Implantable Medical Devices

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; West, William

    2008-01-01

    Integrated microbatteries have been proposed to satisfy an anticipated need for long-life, low-rate primary batteries, having volumes less than 1 mm3, to power electronic circuitry in implantable medical devices. In one contemplated application, such a battery would be incorporated into a tubular hearing-aid device to be installed against an eardrum. This device is based on existing tube structures that have already been approved by the FDA for use in human ears. As shown in the figure, the battery would comprise a single cell at one end of the implantable tube. A small volume of Li-based primary battery cathode material would be compacted and inserted in the tube near one end, followed by a thin porous separator, followed by a pressed powder of a Li-containing alloy. Current-collecting wires would be inserted, with suitably positioned insulators to prevent a short circuit. The battery would contain a liquid electrolyte consisting of a Li-based salt in an appropriate solvent. Hermetic seals would be created by plugging both ends with a waterproof polymer followed by deposition of parylene.

  7. Sensitivity and Specificity of Stability Criteria for Immediately Loaded Splinted Maxillary Implants.

    PubMed

    Wentaschek, Stefan; Scheller, Herbert; Schmidtmann, Irene; Hartmann, Sinsa; Weyhrauch, Michael; Weibrich, Gernot; Lehmann, Karl Martin

    2015-10-01

    To assess the suitability of dental implants for immediate loading, primary stability is usually evaluated intraoperatively. This retrospective study aimed to assess the suitability of three stability parameters - namely, insertion torque (IT), implant stability quotient (ISQ; measured by resonance frequency analysis), and Periotest (PT) values - as potential predictors for the risk of nonosseointegration of immediately loaded splinted implants. The stability parameters were routinely collected under immediate loading. Nineteen patients with 11 edentulous and 8 partially edentulous maxillae were treated with 105 dental implants, which were immediately loaded using temporary fixed dentures. The IT results, PT values, and ISQ results were recorded. Receiver operating characteristic analysis was performed to assess the quality of each parameter as a diagnostic test. After a 3-month observation period, 11 implants in four patients were not osseointegrated. The IT and ISQ (IT 25.0 ± 12.5 Ncm and 8.4 ± 2.3 Ncm; PT -1.5 ± 3.0 and +2.7 ± 3.0; and ISQ 62.6 ± 6.7 and 54.7 ± 6.2) differed significantly between the osseointegrated and failed implants (p < .005). The IT showed the greatest specificity at a sensitivity of 1 and the greatest area under the curve (AUC; 0.929), followed by the PT value (AUC = 0.836) and ISQ (AUC = 0.811). Among the intraoperative parameters analyzed, IT showed the highest specificity at a high sensitivity of 1. Therefore, the IT can be considered the most valid prognostic factor for osseointegration of immediately loaded splinted dental implants. © 2014 Wiley Periodicals, Inc.

  8. In Vivo Response of Laser Processed Porous Titanium Implants for Load-Bearing Implants.

    PubMed

    Bandyopadhyay, Amit; Shivaram, Anish; Tarafder, Solaiman; Sahasrabudhe, Himanshu; Banerjee, Dishary; Bose, Susmita

    2017-01-01

    Applications of porous metallic implants to enhance osseointegration of load-bearing implants are increasing. In this work, porous titanium implants, with 25 vol.% porosity, were manufactured using Laser Engineered Net Shaping (LENS™) to measure the influence of porosity towards bone tissue integration in vivo. Surfaces of the LENS™ processed porous Ti implants were further modified with TiO 2 nanotubes to improve cytocompatibility of these implants. We hypothesized that interconnected porosity created via additive manufacturing will enhance bone tissue integration in vivo. To test our hypothesis, in vivo experiments using a distal femur model of male Sprague-Dawley rats were performed for a period of 4 and 10 weeks. In vivo samples were characterized via micro-computed tomography (CT), histological imaging, scanning electron microscopy, and mechanical push-out tests. Our results indicate that porosity played an important role to establish early stage osseointegration forming strong interfacial bonding between the porous implants and the surrounding tissue, with or without surface modification, compared to dense Ti implants used as a control.

  9. In vivo response of laser processed porous titanium implants for load-bearing implants

    PubMed Central

    Bandyopadhyay, Amit; Shivaram, Anish; Tarafder, Solaiman; Sahasrabudhe, Himanshu; Banerjee, Dishary; Bose, Susmita

    2016-01-01

    Applications of porous metallic implants to enhance osseointegration of load-bearing implants are increasing. In this work, porous titanium implants, with 25 volume% porosity, were manufactured using Laser Engineered Net Shaping (LENS™) to measure the influence of porosity towards bone tissue integration in vivo. Surfaces of the LENS™ processed porous Ti implants were further modified with TiO2 nanotubes to improve cytocompatibility of these implants. We hypothesized that interconnected porosity created via additive manufacturing will enhance bone tissue integration in vivo. To test our hypothesis, in vivo experiments using a distal femur model of male Sprague-Dawley rats were performed for a period of 4 and 10 weeks. In vivo samples were characterized via micro-computed tomography (CT), histological imaging, scanning electron microscopy, and mechanical push-out tests. Our results indicate that porosity played an important role to establish early stage osseointegration forming strong interfacial bonding between the porous implants and the surrounding tissue, with or without surface modification, compared to dense Ti implants used as a control. PMID:27307009

  10. Assessment of Embedded Conjugated Polymer Sensor Arrays for Potential Load Transmission Measurement in Orthopaedic Implants

    PubMed Central

    Micolini, Carolina; Holness, Frederick Benjamin; Johnson, James A.

    2017-01-01

    Load transfer through orthopaedic joint implants is poorly understood. The longer-term outcomes of these implants are just starting to be studied, making it imperative to monitor contact loads across the entire joint implant interface to elucidate the force transmission and distribution mechanisms exhibited by these implants in service. This study proposes and demonstrates the design, implementation, and characterization of a 3D-printed smart polymer sensor array using conductive polyaniline (PANI) structures embedded within a polymeric parent phase. The piezoresistive characteristics of PANI were investigated to characterize the sensing behaviour inherent to these embedded pressure sensor arrays, including the experimental determination of the stable response of PANI to continuous loading, stability throughout the course of loading and unloading cycles, and finally sensor repeatability and linearity in response to incremental loading cycles. This specially developed multi-material additive manufacturing process for PANI is shown be an attractive approach for the fabrication of implant components having embedded smart-polymer sensors, which could ultimately be employed for the measurement and analysis of joint loads in orthopaedic implants for in vitro testing. PMID:29186079

  11. 21 CFR 882.4545 - Shunt system implantation instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Shunt system implantation instrument. 882.4545 Section 882.4545 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4545 Shunt system...

  12. 21 CFR 882.4545 - Shunt system implantation instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Shunt system implantation instrument. 882.4545 Section 882.4545 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4545 Shunt system...

  13. Disease-responsive drug delivery: the next generation of smart delivery devices.

    PubMed

    Wanakule, Prinda; Roy, Krishnendu

    2012-01-01

    With the advent of highly potent and cytotoxic drugs, it is increasingly critical that they be targeted and released only in cells of diseased tissues, while sparing physiologically normal neighbors. Simple ligand-based targeting of drug carriers, although promising, cannot always provide the required specificity to achieve this since often normal cells also express significant levels of the targeted receptors. Therefore, stimuli-responsive delivery systems are being explored to allow drug release from nano- and microcarriers and implantable devices, primarily in the presence of physiological or disease-specific pathophysiological signals. Designing smart biomaterials that respond to temperature or pH changes, protein and ligand binding, disease-specific degradation, e.g. enzymatic cleavage, has become an integral part of this approach. These strategies are used in combination with nano- and microparticle systems to improve delivery efficiency through several routes of administration, and with injectable or implantable systems for long term controlled release. This review focuses on recent developments in stimuli-responsive systems, their physicochemical properties, release profiles, efficacy, safety and biocompatibility, as well as future perspectives.

  14. Drug-releasing nano-engineered titanium implants: therapeutic efficacy in 3D cell culture model, controlled release and stability.

    PubMed

    Gulati, Karan; Kogawa, Masakazu; Prideaux, Matthew; Findlay, David M; Atkins, Gerald J; Losic, Dusan

    2016-12-01

    There is an ongoing demand for new approaches for treating localized bone pathologies. Here we propose a new strategy for treatment of such conditions, via local delivery of hormones/drugs to the trauma site using drug releasing nano-engineered implants. The proposed implants were prepared in the form of small Ti wires/needles with a nano-engineered oxide layer composed of array of titania nanotubes (TNTs). TNTs implants were inserted into a 3D collagen gel matrix containing human osteoblast-like, and the results confirmed cell migration onto the implants and their attachment and spread. To investigate therapeutic efficacy, TNTs/Ti wires loaded with parathyroid hormone (PTH), an approved anabolic therapeutic for the treatment of severe bone fractures, were inserted into 3D gels containing osteoblast-like cells. Gene expression studies revealed a suppression of SOST (sclerostin) and an increase in RANKL (receptor activator of nuclear factor kappa-B ligand) mRNA expression, confirming the release of PTH from TNTs at concentrations sufficient to alter cell function. The performance of the TNTs wire implants using an example of a drug needed at relatively higher concentrations, the anti-inflammatory drug indomethacin, is also demonstrated. Finally, the mechanical stability of the prepared implants was tested by their insertion into bovine trabecular bone cores ex vivo followed by retrieval, which confirmed the robustness of the TNT structures. This study provides proof of principle for the suitability of the TNT/Ti wire implants for localized bone therapy, which can be customized to cater for specific therapeutic requirements. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. 75 FR 18219 - Drug and Medical Device Forum on Food and Drug Administration Drug and Device Requirements and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0142] Drug and Medical Device Forum on Food and Drug Administration Drug and Device Requirements and Supplier Controls; Public Educational Forum AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public...

  16. Hydrodynamically-driven drug release during interstitial flow through hollow fibers implanted near lymphatics

    PubMed Central

    Dukhin, Stanislav S.; Labib, Mohamed E.

    2016-01-01

    Current drug delivery devices (DDD) are mainly based on the use of diffusion as the main transport process. Diffusion-driven processes can only achieve low release rate because diffusion is a slow process. This represents a serious obstacle in the realization of recent successes in the suppression of lymphatic metastasis and in the prevention of limb and organ transplant rejection. Surprisingly, it was overlooked that there is a more favorable drug release mode which can be achieved when a special DDD is implanted near lymphatics. This opportunity can be realized when the interstitial fluid flow penetrates a drug delivery device of proper design and allows such fluid to flow out of it. This design is based on hollow fibers loaded with drug and whose hydrodynamic permeability is much higher than that of the surrounding tissue. The latter is referred to as hollow fiber of high hydrodynamic permeability (HFHP). The interstitial flow easily penetrates the hollow fiber membrane as well as its lumen with a higher velocity than that in the adjacent tissue. The interstitial liquid stream entering the lumen becomes almost saturated with drug as it flows out of the HFHP. This is due to the drug powder dissolution in the lumens of HFHP which forms a strip of drug solution that crosses the interstitium and finally enters the lymphatics. This hydrodynamically-driven release (HDR) may exceed the concomitant diffusion-driven release (DDR) by one or even two orders of magnitude. The hydrodynamics of the two-compartment media is sufficient for developing the HDR theory which is detailed in this paper. Convective diffusion theory for two compartments (membrane of hollow fiber and adjacent tissue) is required for exact quantification when a small contribution of DDR to predominating HDR is present. Hence, modeling is important for HDR which would lead to establishing a new branch in physico-chemical hydrodynamics. The release rate achieved with the use of HFHP increases proportional

  17. 78 FR 17940 - Certain Computerized Orthopedic Surgical Devices, Software, Implants, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ..., Software, Implants, and Components Thereof; Notice of Receipt of Complaint; Solicitation of Comments... Certain Computerized Orthopedic Surgical Devices, Software, Implants, and Components Thereof, DN 2945; the... importation of certain computerized orthopedic surgical devices, software, implants, and components thereof...

  18. Effects of mechanical repetitive load on bone quality around implants in rat maxillae

    PubMed Central

    Uto, Yusuke; Nakano, Takayoshi; Ishimoto, Takuya; Inaba, Nao; Uchida, Yusuke; Sawase, Takashi

    2017-01-01

    Greater understanding and acceptance of the new concept “bone quality”, which was proposed by the National Institutes of Health and is based on bone cells and collagen fibers, are required. The novel protein Semaphorin3A (Sema3A) is associated with osteoprotection by regulating bone cells. The aims of this study were to investigate the effects of mechanical loads on Sema3A production and bone quality based on bone cells and collagen fibers around implants in rat maxillae. Grade IV-titanium threaded implants were placed at 4 weeks post-extraction in maxillary first molars. Implants received mechanical loads (10 N, 3 Hz for 1800 cycles, 2 days/week) for 5 weeks from 3 weeks post-implant placement to minimize the effects of wound healing processes by implant placement. Bone structures, bone mineral density (BMD), Sema3A production and bone quality based on bone cells and collagen fibers were analyzed using microcomputed tomography, histomorphometry, immunohistomorphometry, polarized light microscopy and birefringence measurement system inside of the first and second thread (designated as thread A and B, respectively), as mechanical stresses are concentrated and differently distributed on the first two threads from the implant neck. Mechanical load significantly increased BMD, but not bone volume around implants. Inside thread B, but not thread A, mechanical load significantly accelerated Sema3A production with increased number of osteoblasts and osteocytes, and enhanced production of both type I and III collagen. Moreover, mechanical load also significantly induced preferential alignment of collagen fibers in the lower flank of thread B. These data demonstrate that mechanical load has different effects on Sema3A production and bone quality based on bone cells and collagen fibers between the inside threads of A and B. Mechanical load-induced Sema3A production may be differentially regulated by the type of bone structure or distinct stress distribution, resulting in

  19. Effects of mechanical repetitive load on bone quality around implants in rat maxillae.

    PubMed

    Uto, Yusuke; Kuroshima, Shinichiro; Nakano, Takayoshi; Ishimoto, Takuya; Inaba, Nao; Uchida, Yusuke; Sawase, Takashi

    2017-01-01

    Greater understanding and acceptance of the new concept "bone quality", which was proposed by the National Institutes of Health and is based on bone cells and collagen fibers, are required. The novel protein Semaphorin3A (Sema3A) is associated with osteoprotection by regulating bone cells. The aims of this study were to investigate the effects of mechanical loads on Sema3A production and bone quality based on bone cells and collagen fibers around implants in rat maxillae. Grade IV-titanium threaded implants were placed at 4 weeks post-extraction in maxillary first molars. Implants received mechanical loads (10 N, 3 Hz for 1800 cycles, 2 days/week) for 5 weeks from 3 weeks post-implant placement to minimize the effects of wound healing processes by implant placement. Bone structures, bone mineral density (BMD), Sema3A production and bone quality based on bone cells and collagen fibers were analyzed using microcomputed tomography, histomorphometry, immunohistomorphometry, polarized light microscopy and birefringence measurement system inside of the first and second thread (designated as thread A and B, respectively), as mechanical stresses are concentrated and differently distributed on the first two threads from the implant neck. Mechanical load significantly increased BMD, but not bone volume around implants. Inside thread B, but not thread A, mechanical load significantly accelerated Sema3A production with increased number of osteoblasts and osteocytes, and enhanced production of both type I and III collagen. Moreover, mechanical load also significantly induced preferential alignment of collagen fibers in the lower flank of thread B. These data demonstrate that mechanical load has different effects on Sema3A production and bone quality based on bone cells and collagen fibers between the inside threads of A and B. Mechanical load-induced Sema3A production may be differentially regulated by the type of bone structure or distinct stress distribution, resulting in

  20. Cellular automata model for drug release from binary matrix and reservoir polymeric devices.

    PubMed

    Johannes Laaksonen, Timo; Mikael Laaksonen, Hannu; Tapio Hirvonen, Jouni; Murtomäki, Lasse

    2009-04-01

    Kinetics of drug release from polymeric tablets, inserts and implants is an important and widely studied area. Here we present a new and widely applicable cellular automata model for diffusion and erosion processes occurring during drug release from polymeric drug release devices. The model divides a 2D representation of the release device into an array of cells. Each cell contains information about the material, drug, polymer or solvent that the domain contains. Cells are then allowed to rearrange according to statistical rules designed to match realistic drug release. Diffusion is modeled by a random walk of mobile cells and kinetics of chemical or physical processes by probabilities of conversion from one state to another. This is according to the basis of diffusion coefficients and kinetic rate constants, which are on fundamental level just probabilities for certain occurrences. The model is applied to three kinds of devices with different release mechanisms: erodable matrices, diffusion through channels or pores and membrane controlled release. The dissolution curves obtained are compared to analytical models from literature and the validity of the model is considered. The model is shown to be compatible with all three release devices, highlighting easy adaptability of the model to virtually any release system and geometry. Further extension and applications of the model are envisioned.

  1. Multi-Center, Community-Based Cardiac Implantable Electronic Devices Registry: Population, Device Utilization, and Outcomes.

    PubMed

    Gupta, Nigel; Kiley, Mary Lou; Anthony, Faith; Young, Charlie; Brar, Somjot; Kwaku, Kevin

    2016-03-09

    The purpose of this study is to describe key elements, clinical outcomes, and potential uses of the Kaiser Permanente-Cardiac Device Registry. This is a cohort study of implantable cardioverter defibrillators (ICD), pacemakers (PM), and cardiac resynchronization therapy (CRT) devices implanted between January 1, 2007 and December 31, 2013 by ≈400 physicians in 6 US geographical regions. Registry data variables, including patient characteristics, comorbidities, indication for procedures, complications, and revisions, were captured using the healthcare system's electronic medical record. Outcomes were identified using electronic screening algorithms and adjudicated via chart review. There were 11 924 ICDs, 33 519 PMs, 4472 CRTs, and 66 067 leads registered. A higher proportion of devices were implanted in males: 75.1% (ICD), 55.0% (PM), and 66.7% (CRT), with mean patient age 63.2 years (ICD), 75.2 (PM), and 67.2 (CRT). The 30-day postoperative incidence of tamponade, hematoma, and pneumothorax were ≤0.3% (ICD), ≤0.6% (PM), and ≤0.4% (CRT). Device failures requiring revision occurred at a rate of 2.17% for ICDs, 0.85% for PMs, and 4.93% for CRTs, per 100 patient observation years. Superficial infection rates were <0.03% for all devices; deep infection rates were 0.6% (ICD), 0.5% (PM), and 1.0% (CRT). Results were used to monitor vendor-specific variations and were systematically shared with individual regions to address potential variations in outcomes, utilization, and to assist with the management of device recalls. The Kaiser Permanente-Cardiac Device Registry is a robust tool to monitor postprocedural patient outcomes and postmarket surveillance of implants and potentially change practice patterns. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  2. A frequency control method for regulating wireless power to implantable devices.

    PubMed

    Ping Si; Hu, A P; Malpas, S; Budgett, D

    2008-03-01

    This paper presents a method to regulate the power transferred over a wireless link by adjusting the resonant operating frequency of the primary converter. A significant advantage of this method is that effective power regulation is maintained under variations in load, coupling and circuit parameters. This is particularly important when the wireless supply is used to power implanted medical devices where substantial coupling variations between internal and external systems is expected. The operating frequency is changed dynamically by altering the effective tuning capacitance through soft switched phase control. A thorough analysis of the proposed system has been undertaken, and experimental results verify its functionality.

  3. A Laminated Microfluidic Device for Comprehensive Preclinical Testing in the Drug ADME Process

    PubMed Central

    An, Fan; Qu, Yueyang; Luo, Yong; Fang, Ning; Liu, Yang; Gao, Zhigang; Zhao, Weijie; Lin, Bingcheng

    2016-01-01

    New techniques are urgently needed to replace conventional long and costly pre-clinical testing in the new drug administration process. In this study, a laminated microfluidic device was fabricated to mimic the drug ADME response test in vivo. This proposed device was loaded and cultured with functional cells for drug response investigation and organ tissues that are involved in ADME testing. The drug was introduced from the top of the device and first absorbed by the Caco-2 cell layer, and then metabolized by the primary hepatocyte layer. It subsequently interacted with the MCF-7 cell layer, distributed in the lung, heart and fat tissues, and was finally eliminated through the dialysis membrane. Throughout this on-chip ADME process, the proposed device can be used as a reliable tool to simultaneously evaluate the drug anti-tumor activity, hepatotoxicity and pharmacokinetics. Furthermore, this device was proven to be able to reflect the hepatic metabolism of a drug, drug distribution in the target tissues, and the administration method of a drug. Furthermore, this microdevice is expected to reduce the number of drug candidates and accelerate the pre-clinical testing process subject to animal testing upon adaptation in new drug discovery. PMID:27122192

  4. Stress on external hexagon and Morse taper implants submitted to immediate loading

    PubMed Central

    Odo, Caroline H.; Pimentel, Marcele J.; Consani, Rafael L.X.; Mesquita, Marcelo F.; Nóbilo, Mauro A.A.

    2015-01-01

    Background/Aims This study aimed to evaluate the stress distribution around external hexagon (EH) and Morse taper (MT) implants with different prosthetic systems of immediate loading (distal bar (DB), casting technique (CT), and laser welding (LW)) by using photoelastic method. Methods Three infrastructures were manufactured on a model simulating an edentulous lower jaw. All models were composed by five implants (4.1 mm × 13.0 mm) simulating a conventional lower protocol. The samples were divided into six groups. G1: EH implants with DB and acrylic resin; G2: EH implants with titanium infrastructure CT; G3: EH implants with titanium infrastructure attached using LW; G4: MT implants with DB and acrylic resin; G5: MT implants with titanium infrastructure CT; G6: MT implants with titanium infrastructure attached using LW. After the infrastructures construction, the photoelastic models were manufactured and a loading of 4.9 N was applied in the cantilever. Five pre-determined points were analyzed by Fringes software. Results Data showed significant differences between the connection types (p < 0.0001), and there was no significant difference among the techniques used for infrastructure. Conclusion The reduction of the stress levels was more influenced by MT connection (except for CT). Different bar types submitted to immediate loading not influenced stress concentration. PMID:26605142

  5. PLGA-based drug delivery systems: importance of the type of drug and device geometry.

    PubMed

    Klose, D; Siepmann, F; Elkharraz, K; Siepmann, J

    2008-04-16

    Different types of ibuprofen- and lidocaine-loaded, poly(lactic-co-glycolic acid) (PLGA)-based microparticles and thin, free films of various dimensions were prepared and physico-chemically characterized in vitro. The obtained experimental results were analyzed using mathematical theories based on Fick's second law of diffusion. Importantly, the initial drug loadings were low in all cases (4%, w/w), simplifying the mathematical treatment and minimizing potential effects of the acidic/basic nature of the two model drugs on polymer degradation. Interestingly, the type of drug and device geometry strongly affected the resulting release kinetics and relative importance of the involved mass transport mechanisms. For instance, the relative release rate was almost unaffected by the system size in the case of spherical microparticles, but strongly depended on the thickness of thin, free films, irrespective of the type of drug. Ibuprofen and lidocaine release was found to be primarily diffusion controlled from the investigated PLGA-based microparticles for all system sizes, whereas diffusion was only dominant in the case of the thinnest free films. Interestingly, the type of drug did not significantly affect the resulting polymer degradation kinetics. However, ibuprofen release was always much faster than lidocaine release for all system geometries and sizes. This can probably be attributed to attractive ionic interactions between protonated, positively charged lidocaine ions and negatively charged, deprotonated carboxylic end groups of PLGA, hindering drug diffusion. The determined apparent diffusion coefficients of the drugs clearly point out that the mobility of an active agent in PLGA-based delivery systems does not only depend on its own physico-chemical properties and the type of PLGA used, but also to a large extent on the size and shape of the device. This has to be carefully taken into account when developing/optimizing this type of advanced drug delivery systems.

  6. Clinical evaluation of a novel dental implant system as single implants under immediate loading conditions - 4-month post-loading results from a multicentre randomised controlled trial.

    PubMed

    Esposito, Marco; Trullenque-Eriksson, Anna; Blasone, Rodolfo; Malaguti, Giuliano; Gaffuri, Cristiano; Caneva, Marco; Minciarelli, Armando; Luongo, Giuseppe

    To evaluate the safety and clinical effectiveness of a novel dental implant system (GENESIS Implant System, Keystone Dental, Massachusetts, USA) using another dental implant system by the same manufacturer as a control (PRIMA Implant System, Keystone Dental). A total of 53 patients requiring at least two single crowns had their sites randomised according to a split-mouth design to receive both implant systems at six centres. If implants could be placed with a torque superior to 40 Ncm they were to be loaded immediately with provisional crowns, otherwise after 3 months of submerged healing. Provisional crowns were replaced by definitive crowns 4 months after initial loading, when the follow-up period for the initial part of this study was completed. Outcome measures were crown/implant failures, complications, pink esthetic score (PES), peri-implant marginal bone level changes, plaque score, marginal bleeding, patients and preference of the clinician. In total 53 PRIMA and 53 GENESIS implants were placed. Three patients dropped out but all of the remaining patients were followed up to 4-months post-loading. No PRIMA implant failed whereas four GENESIS implants failed. Only two complications were reported for PRIMA implants. There were no statistically significant differences for crown/implant failures (difference in proportions = 0.080; P (McNemar test) = 0.125) and complications (difference in proportions = -0.04; P (McNemar test) = 0.500) between the implant systems. There were no differences at 4-months post-loading for plaque (difference = -0.54, 95% CI: -3.01 to 1.93; P (Paired t-test) = 0.660), marginal bleeding (difference = -3.8, 95% CI: -7.63 to 0.019; P (Paired t-test) = 0.051), PES (difference = 0.47, 95% CI: -0.56 to 1.50; P (Paired t-test) = 0.365) and marginal bone level changes (difference in mm = -0.04, 95% CI: -0.33 to 0.26; P (Paired t-test) = 0.795). The majority of the patients (46) had no

  7. 21 CFR 870.3610 - Implantable pacemaker pulse generator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... asynchronous devices implanted in the human body. (b) Classification. Class III (premarket approval). (c) Date... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implantable pacemaker pulse generator. 870.3610 Section 870.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  8. 21 CFR 870.3610 - Implantable pacemaker pulse generator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... asynchronous devices implanted in the human body. (b) Classification. Class III (premarket approval). (c) Date... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implantable pacemaker pulse generator. 870.3610 Section 870.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  9. 21 CFR 870.3610 - Implantable pacemaker pulse generator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implantable pacemaker pulse generator. 870.3610 Section 870.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has...

  10. Modified titanium implant as a gateway to the human body: the implant mediated drug delivery system.

    PubMed

    Park, Young-Seok; Cho, Joo-Youn; Lee, Shin-Jae; Hwang, Chee Il

    2014-01-01

    The aim of this study was to investigate the efficacy of a proposed new implant mediated drug delivery system (IMDDS) in rabbits. The drug delivery system is applied through a modified titanium implant that is configured to be implanted into bone. The implant is hollow and has multiple microholes that can continuously deliver therapeutic agents into the systematic body. To examine the efficacy and feasibility of the IMDDS, we investigated the pharmacokinetic behavior of dexamethasone in plasma after a single dose was delivered via the modified implant placed in the rabbit tibia. After measuring the plasma concentration, the areas under the curve showed that the IMDDS provided a sustained release for a relatively long period. The result suggests that the IMDDS can deliver a sustained release of certain drug components with a high bioavailability. Accordingly, the IMDDS may provide the basis for a novel approach to treating patients with chronic diseases.

  11. Implantable photonic devices for improved medical treatments

    NASA Astrophysics Data System (ADS)

    Sheinman, Victor; Rudnitsky, Arkady; Toichuev, Rakhmanbek; Eshiev, Abdyrakhman; Abdullaeva, Svetlana; Egemkulov, Talantbek; Zalevsky, Zeev

    2014-10-01

    An evolving area of biomedical research is related to the creation of implantable units that provide various possibilities for imaging, measurement, and the monitoring of a wide range of diseases and intrabody phototherapy. The units can be autonomic or built-in in some kind of clinically applicable implants. Because of specific working conditions in the live body, such implants must have a number of features requiring further development. This topic can cause wide interest among developers of optical, mechanical, and electronic solutions in biomedicine. We introduce preliminary clinical trials obtained with an implantable pill and devices that we have developed. The pill and devices are capable of applying in-body phototherapy, low-level laser therapy, blue light (450 nm) for sterilization, and controlled injection of chemicals. The pill is also capable of communicating with an external control box, including the transmission of images from inside the patient's body. In this work, our pill was utilized for illumination of the sinus-carotid zone in dog and red light influence on arterial pressure and heart rate was demonstrated. Intrabody liver tissue laser ablation and nanoparticle-assisted laser ablation was investigated. Sterilization effect of intrabody blue light illumination was applied during a maxillofacial phlegmon treatment.

  12. Peak insertion torque values of five mini-implant systems under different insertion loads.

    PubMed

    Quraishi, Erma; Sherriff, Martyn; Bister, Dirk

    2014-06-01

    To assess the effect of 1 and 3 kg insertion load on five makes of self-drilling mini-implants on peak insertion torque values to establish risk factors involved in the fracture of mini-implants. Two different loads were applied during insertion of 40 mini-implants from five different manufacturers (Dual Top(™) (1·6×8 mm), Infinitas(™) (1·5×9 mm), Ortho Easy(™) (1·7×8 mm), Spider Screw(™) (1·5×8 mm) and Vector TAS(™) (1·4×8 mm)) into acrylic blocks at 8 rev/min utilizing a Motorized Torque Measurement Stand. Peak insertion torque values for both loads were highest for Vector TAS followed by Ortho Easy and Dual Top and were nearly three times higher than Infinitas (original version) and Spider Screws(TM). The log-rank test showed statistically significant differences for both loads for Vector TAS, Ortho Easy and Spider Screws. Unlike other designs tested, both tapered mini-implant designs (Spider Screw and Infinitas) showed a tendency to buckle in the middle of the body but fractured at the tip. Non-tapered mini-implants fractured at significantly higher torque values compared to tapered designs under both loads. Increased pressure resulted in slightly higher maximum torque values at fracture for some of the mini-implant designs, although this is unlikely to be of clinical relevance. Tripling insertion pressure from 1 to 3 kg increased the risk of bending tapered mini-implants before fracture. © 2014 British Orthodontic Society.

  13. Drug release characteristics of quercetin-loaded TiO2 nanotubes coated with chitosan.

    PubMed

    Mohan, L; Anandan, C; Rajendran, N

    2016-12-01

    TiO 2 nanotubes formed by anodic oxidation of Ti-6Al-7Nb were loaded with quercetin (TNTQ) and chitosan was coated on the top of the quercetin (TNTQC) to various thicknesses. Field emission scanning electron microscopy (FESEM), 3D and 2D analyses were used to characterize the samples. The drug release studies of TNTQ and TNTQC were studied in Hanks' solution for 192h. The studies showed that the native oxide on the sample is substituted by self assembled nanotube arrays by anodisation. FESEM images of chitosan-loaded TNT samples showed that filling of chitosan takes place in inter-tubular space and pores. Drug release studies revealed that the release of drug into the local environment during that duration was constant. The local concentration of the drug can be controlled and tuned by controlling the thickness of the chitosan (0.6, 1 and 3μm) to fit into an optimal therapeutic window in order to treat postoperative infections, inflammation and for quick healing with better osseointegration of the titanium implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effects of Early Moderate Loading on Implant Stability: A Retrospective Investigation of 634 Implants with Platform Switching and Morse-Tapered Connections.

    PubMed

    Romanos, Georgios; Grizas, Eleftherios; Laukart, Elena; Nentwig, Georg-Hubertus

    2016-04-01

    This retrospective investigation aimed to evaluate the effect of early moderate loading (EML) on implant stability. Following 6 weeks of conventional healing, 634 dental implants (Ankylos®, Dentsply Implants, Mannheim, Germany) inserted in 247 patients were uncovered. Provisional restorations were placed in infra-occlusion in partially edentulous patients and in full occlusion in edentulous patients. Patients were instructed to consume a soft/liquid diet until final restorations were delivered after approximately 6 weeks. Periotest values (PTVs) at the time of uncovering and after EML were assessed in order to calculate the change in PTV (ΔPTV). Improvement of the PTV was analyzed to account for dependencies between measurements on multiple implants of a single patient, along with other factors. No implant was lost during the EML. After a mean loading time of 3 years (± 1.7 years), the implant survival rate was 98.74%. The PTV of 556 implants decreased (improved) over the course of the study. The ΔPTV was statistically significant (p = .0001), and none of the factors analyzed appeared to influence it. The EML of implants does not impair the implants' stability, as determined by Periotest. On the contrary, early moderate loading seems to be beneficial at compromised bone qualities. © 2015 Wiley Periodicals, Inc.

  15. 21 CFR 874.3695 - Mandibular implant facial prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mandibular implant facial prosthesis. 874.3695 Section 874.3695 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... intended to be implanted for use in the functional reconstruction of mandibular deficits. The device is...

  16. 21 CFR 874.3695 - Mandibular implant facial prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Mandibular implant facial prosthesis. 874.3695 Section 874.3695 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... intended to be implanted for use in the functional reconstruction of mandibular deficits. The device is...

  17. Microfabricated injectable drug delivery system

    DOEpatents

    Krulevitch, Peter A.; Wang, Amy W.

    2002-01-01

    A microfabricated, fully integrated drug delivery system capable of secreting controlled dosages of multiple drugs over long periods of time (up to a year). The device includes a long and narrow shaped implant with a sharp leading edge for implantation under the skin of a human in a manner analogous to a sliver. The implant includes: 1) one or more micromachined, integrated, zero power, high and constant pressure generating osmotic engine; 2) low power addressable one-shot shape memory polymer (SMP) valves for switching on the osmotic engine, and for opening drug outlet ports; 3) microfabricated polymer pistons for isolating the pressure source from drug-filled microchannels; 4) multiple drug/multiple dosage capacity, and 5) anisotropically-etched, atomically-sharp silicon leading edge for penetrating the skin during implantation. The device includes an externally mounted controller for controlling on-board electronics which activates the SMP microvalves, etc. of the implant.

  18. 21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted diaphragmatic/phrenic nerve stimulator. 882.5830 Section 882.5830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5830...

  19. 21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted diaphragmatic/phrenic nerve stimulator. 882.5830 Section 882.5830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5830...

  20. 21 CFR 872.3970 - Interarticular disc prosthesis (interpositional implant).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Interarticular disc prosthesis (interpositional implant). 872.3970 Section 872.3970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3970 Interarticular...

  1. A survey of cardiac implantable electronic device implantation in India: By Indian Society of Electrocardiology and Indian Heart Rhythm Society.

    PubMed

    Shenthar, Jayaprakash; Bohra, Shomu; Jetley, Vinay; Vora, Amit; Lokhandwala, Yash; Nabar, Ashish; Naik, Ajay; Calambur, Narsimhan; Gupta, S B

    2016-01-01

    There is limited data regarding the demographics and type of cardiac implantable electronic device (CIED) in India. The aim of this survey was to define trends in CIED implants, which included permanent pacemakers (PM), intracardiac defibrillators (ICD), and cardiac resynchronization therapy pacemakers and defibrillators (CRT-P/D) devices in India. The survey was the initiative of the Indian Society of Electrocardiology and the Indian Heart Rhythm Society. The type of CIED used, their indications, demographic characteristics, clinical status and co-morbidities were collected using a survey form over a period of 1 year. 2117 forms were analysed from 136 centers. PM for bradyarrhythmic indication constituted 80% of the devices implanted with ICD's and CRT-P/D forming approximately 10% each. The most common indication for PM implantation was complete atrio-ventricular block (76%). Single chamber (VVI) pacemakers formed 54% of implants, majority in males (64%). The indication for ICD implantation was almost equal for primary and secondary prevention. A single chamber ICD was most commonly implanted (65%). Coronary artery disease was the etiology in 58.5% of patients with ICD implants. CRT pacemakers were implanted mostly in patients with NYHA III/IV (82%), left ventricular ejection fraction <0.35 (88%) with CRT-P being most commonly used (57%). A large proportion of CIED implants in India are PM for bradyarrhythmic indications, predominantly AV block. ICD's are implanted almost equally for primary and secondary prophylaxis. Most CRT devices are implanted for NYHA Class III. There is a male predominance for implantation of CIED. Copyright © 2015 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  2. Load Transfer Characteristics of Various Designs of Three-Implant-Retained Mandibular Overdentures.

    PubMed

    Tokar, Emre; Uludag, Bulent

    2015-01-01

    Many different attachment systems (eg, bars, studs, magnets, telescopic copings) have been used to retain overdentures. The current study aimed to investigate the load transfer characteristics and to compare the stress levels of four attachment designs for mandibular overdentures retained by one central implant and two inclined distal implants. Photoelastic mandibular models fabricated with three screw-type implants (Tapered Screw-Vent, 3.75 × 13 mm) were placed in the parasymphyseal area. The center implant was vertically oriented to the midline, and the other implants were embedded in the canine areas with a 20-degree angulation relative to the center implant. Four overdentures with different attachment designs (bar, bar/ball, bar/distally placed Rk-1s, and Locators) were studied in the context of this model. Vertical loads (100 N) were applied to the central fossa of the right first molar area of each overdenture. Stress levels that developed in the denture-bearing areas and around the implants were observed photoelastically and evaluated visually. The studied attachment designs showed low and moderate stress levels. The greatest stress was found with the bar/ball design, while the lowest stress levels were observed with the Locator attachment design. Stresses were concentrated on the loaded side for each design. All tested designs experienced moderate stress around the posterior edentulous area. None of the designs experienced more than moderate stress. The lowest stress was noted with the Locator attachments, which transmitted little discernible stress around the implants.

  3. Microfluidic-based screening of resveratrol and drug-loading PLA/Gelatine nano-scaffold for the repair of cartilage defect.

    PubMed

    Ming, Li; Zhipeng, Yuan; Fei, Yu; Feng, Rao; Jian, Weng; Baoguo, Jiang; Yongqiang, Wen; Peixun, Zhang

    2018-03-26

    Cartilage defect is common in clinical but notoriously difficult to treat for low regenerative and migratory capacity of chondrocytes. Biodegradable tissue engineering nano-scaffold with a lot of advantages has been the direction of material to repair cartilage defect in recent years. The objective of our study is to establish a biodegradable drug-loading synthetic polymer (PLA) and biopolymer (Gelatine) composite 3D nano-scaffold to support the treatment of cartilage defect. We designed a microfluidic chip-based drug-screening device to select the optimum concentration of resveratrol, which has strong protective capability for chondrocyte. Then biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds were fabricated and used to repair the cartilage defects. As a result, we successfully cultured primary chondrocytes and screened the appropriate concentrations of resveratrol by the microfluidic device. We also smoothly obtained superior biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds and compared the properties and therapeutic effects of cartilage defect in rats. In summary, our microfluidic device is a simple but efficient platform for drug screening and resveratrol-loading PLA/Gelatine 3D nano-scaffolds could greatly promote the cartilage formation. It would be possible for materials and medical researchers to explore individualized pharmacotherapy and drug-loading synthetic polymer and biopolymer composite tissue engineering scaffolds for the repair of cartilage defect in future.

  4. In situ microradioscopy and microtomography of fatigue-loaded dental two-piece implants.

    PubMed

    Wiest, Wolfram; Zabler, Simon; Rack, Alexander; Fella, Christian; Balles, Andreas; Nelson, Katja; Schmelzeisen, Rainer; Hanke, Randolf

    2015-11-01

    Synchrotron real-time radioscopy and in situ microtomography are the only techniques providing direct visible information on a micrometre scale of local deformation in the implant-abutment connection (IAC) during and after cyclic loading. The microgap formation at the IAC has been subject to a number of studies as it has been proposed to be associated with long-term implant success. The next step in this scientific development is to focus on the in situ fatigue procedure of two-component dental implants. Therefore, an apparatus has been developed which is optimized for the in situ fatigue analysis of dental implants. This report demonstrates both the capability of in situ radioscopy and microtomography at the ID19 beamline for the study of cyclic deformation in dental implants. The first results show that it is possible to visualize fatigue loading of dental implants in real-time radioscopy in addition to the in situ fatigue tomography. For the latter, in situ microtomography is applied during the cyclic loading cycles in order to visualize the opening of the IAC microgap. These results concur with previous ex situ studies on similar systems. The setup allows for easily increasing the bending force, to simulate different chewing situations, and is, therefore, a versatile tool for examining the fatigue processes of dental implants and possibly other specimens.

  5. Pinch-off syndrome: transection of implantable central venous access device.

    PubMed

    Sugimoto, Takuya; Nagata, Hiroshi; Hayashi, Ken; Kano, Nobuyasu

    2012-11-30

    As the population of people with cancer increases so does the number of patients who take chemotherapy. Majority of them are administered parentally continuously. Implantable central venous catheter device is a good choice for those patients; however, severe complication would occur concerning the devices. Pinch-off syndrome is one of the most severe complications. The authors report a severe case of pinch-off syndrome. The patient with the implantable central venous device could not take chemotherapy because the device occluded. Further examination revealed the transection of the catheter. The transected fragment of the catheter in the heart was successfully removed by using a loop snare placed through the right femoral vein.

  6. Assessment of Various Risk Factors for Success of Delayed and Immediate Loaded Dental Implants: A Retrospective Analysis.

    PubMed

    Prasant, M C; Thukral, Rishi; Kumar, Sachin; Sadrani, Sannishth M; Baxi, Harsh; Shah, Aditi

    2016-10-01

    Ever since its introduction in 1977, a minimum of few months of period is required for osseointegration to take place after dental implant surgery. With the passage of time and advancements in the fields of dental implant, this healing period is getting smaller and smaller. Immediate loading of dental implants is becoming a very popular procedure in the recent time. Hence, we retrospectively analyzed the various risk factors for the failure of delayed and immediate loaded dental implants. In the present study, retrospective analysis of all the patients was done who underwent dental implant surgeries either by immediate loading procedure or by delayed loading procedures. All the patients were divided broadly into two groups with one group containing patients in which delayed loaded dental implants were placed while other consisted of patients in whom immediate loaded dental implants were placed. All the patients in whom follow-up records were missing and who had past medical history of any systemic diseases were excluded from the present study. Evaluation of associated possible risk factors was done by classifying the predictable factors as primary and secondary factors. All the results were analyzed by Statistical Package for the Social Sciences (SPSS) software. Kaplan-Meier survival analyses and chi-square test were used for assessment of level of significance. In delayed and immediate group of dental implants, mean age of the patients was 54.2 and 54.8 years respectively. Statistically significant results were obtained while comparing the clinical parameters of the dental implants in both the groups while demographic parameters showed nonsignificant correlation. Significant higher risk of dental implant failure is associated with immediate loaded dental implants. Tobacco smoking, shorter implant size, and other risk factors play a significant role in predicting the success and failure of dental implants. Delayed loaded dental implant placement should be preferred

  7. Electromagnetic interference caused by common surgical energy-based devices on an implanted cardiac defibrillator.

    PubMed

    Paniccia, Alessandro; Rozner, Marc; Jones, Edward L; Townsend, Nicole T; Varosy, Paul D; Dunning, James E; Girard, Guillaume; Weyer, Christopher; Stiegmann, Gregory V; Robinson, Thomas N

    2014-12-01

    Surgical energy-based devices emit energy, which can interfere with other electronic devices (eg, implanted cardiac pacemakers and/or defibrillators). The purpose of this study was to quantify the amount of unintentional energy (electromagnetic interference [EMI]) transferred to an implanted cardiac defibrillator by common surgical energy-based devices. A transvenous cardiac defibrillator was implanted in an anesthetized pig. The primary outcome measure was the average maximum EMI occurring on the implanted cardiac device during activations of multiple different surgical energy-based devices. The EMI transferred to the implanted cardiac device is as follows: traditional bipolar 30 W .01 ± .004 mV, advanced bipolar .004 ± .003 mV, ultrasonic shears .01 ± .004 mV, monopolar Bovie 30 W coagulation .50 ± .20 mV, monopolar Bovie 30 W blend .92 ± .63 mV, monopolar instrument without dispersive electrode .21 ± .07 mV, plasma energy 3.48 ± .78 mV, and argon beam coagulator 2.58 ± .34 mV. Surgeons can minimize EMI on implanted cardiac defibrillators by preferentially utilizing bipolar and ultrasonic devices. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. 2D FEA of evaluation of micromovements and stresses at bone-implant interface in immediately loaded tapered implants in the posterior maxilla

    PubMed Central

    Desai, Shrikar R.; Singh, Rika; Karthikeyan, I.

    2013-01-01

    Aim: The aim of the study is to evaluate the influence implant length on stress distribution at bone implant interface in single immediately loaded implants when placed in D4 bone quality. Materials and Methods: A 2-dimensional finite element models were developed to simulate two types of implant designs, standard 3.75 mm–diameter tapered body implants of 6 and 10 mm lengths. The implants were placed in D4 bone quality with a cortical bone thickness of 0.5 mm. The implant design incorporated microthreads at the crestal part and the rest of the implant body incorporated Acme threads. The Acme thread form has a 29° thread angle with a thread height half of the pitch; the apex and valley are flat. A 100 N of force was applied vertically and in the oblique direction (at an angle of 45°) to the long axis of the implants. The respective material properties were assigned. Micro-movements and stresses at the bone implant interface were evaluated. Results: The results of total deformation (micro-movement) and Von mises stress were found to be lower for tapered long implant (10 mm) than short implant (6 mm) while using both vertical as well as oblique loading. Conclusion: Short implants can be successfully placed in poor bone quality under immediate loading protocol. The novel approach of the combination of microthreads at the crestal portion and acme threads for body portion of implant fixture gave promising results. PMID:24174759

  9. 2D FEA of evaluation of micromovements and stresses at bone-implant interface in immediately loaded tapered implants in the posterior maxilla.

    PubMed

    Desai, Shrikar R; Singh, Rika; Karthikeyan, I

    2013-09-01

    The aim of the study is to evaluate the influence implant length on stress distribution at bone implant interface in single immediately loaded implants when placed in D4 bone quality. A 2-dimensional finite element models were developed to simulate two types of implant designs, standard 3.75 mm-diameter tapered body implants of 6 and 10 mm lengths. The implants were placed in D4 bone quality with a cortical bone thickness of 0.5 mm. The implant design incorporated microthreads at the crestal part and the rest of the implant body incorporated Acme threads. The Acme thread form has a 29° thread angle with a thread height half of the pitch; the apex and valley are flat. A 100 N of force was applied vertically and in the oblique direction (at an angle of 45°) to the long axis of the implants. The respective material properties were assigned. Micro-movements and stresses at the bone implant interface were evaluated. The results of total deformation (micro-movement) and Von mises stress were found to be lower for tapered long implant (10 mm) than short implant (6 mm) while using both vertical as well as oblique loading. Short implants can be successfully placed in poor bone quality under immediate loading protocol. The novel approach of the combination of microthreads at the crestal portion and acme threads for body portion of implant fixture gave promising results.

  10. The application of ink-jet technology for the coating and loading of drug-eluting stents.

    PubMed

    Tarcha, Peter J; Verlee, Donald; Hui, Ho Wah; Setesak, Jeff; Antohe, Bogdan; Radulescu, Delia; Wallace, David

    2007-10-01

    The combination of drugs with devices, where locally delivered drugs elute from the device, has demonstrated distinct advantages over therapies involving systemic or local drugs and devices administered separately. Drug-eluting stents are most notable. Ink jet technology offers unique advantages for the coating of very small medical devices with drugs and drug-coating combinations, especially in cases where the active pharmaceutical agent is very expensive to produce and wastage is to be minimized. For medical devices such as drug-containing stents, the advantages of ink-jet technology result from the controllable and reproducible nature of the droplets in the jet stream and the ability to direct the stream to exact locations on the device surfaces. Programmed target deliveries of 100 microg drug, a typical dose for a small stent, into cuvettes gave a standard deviation (SD) of dose of 0.6 microg. Jetting on coated, uncut stent tubes exhibited 100% capture efficiency with a 1.8 microg SD for a 137 microg dose. In preliminary studies, continuous jetting on stents can yield efficiencies up to 91% and coefficients of variation as low as 2%. These results indicate that ink-jet technology may provide significant improvement in drug loading efficiency over conventional coating methods.

  11. Accuracy of mechanical torque-limiting devices for dental implants.

    PubMed

    L'Homme-Langlois, Emilie; Yilmaz, Burak; Chien, Hua-Hong; McGlumphy, Edwin

    2015-10-01

    A common complication in implant dentistry is unintentional implant screw loosening. The critical factor in the prevention of screw loosening is the delivery of the appropriate target torque value. Mechanical torque-limiting devices (MTLDs) are the most frequently recommended devices by the implant manufacturers to deliver the target torque value to the screw. Two types of MTLDs are available: friction-style and spring-style. Limited information is available regarding the influence of device type on the accuracy of MTLDs. The purpose of this study was to determine and compare the accuracy of spring-style and friction-style MTLDs. Five MTLDs from 6 different dental implant manufacturers (Astra Tech/Dentsply, Zimmer Dental, Biohorizons, Biomet 3i, Straumann [ITI], and Nobel Biocare) (n=5 per manufacturer) were selected to determine their accuracy in delivering target torque values preset by their manufacturers. All torque-limiting devices were new and there were 3 manufacturers for the friction-style and 3 manufacturers for the spring-style. The procedure of target torque measurement was performed 10 times for each device and a digital torque gauge (Chatillon Model DFS2-R-ND; Ametek) was used to record the measurements. Statistical analysis used nonparametric tests to determine the accuracy of the MTLDs in delivering target torque values and Bonferroni post hoc tests were used to assess pairwise comparisons. Median absolute difference between delivered torque values and target torque values of friction-style and spring-style MTLDs were not significantly different (P>.05). Accuracy of Astra Tech and Zimmer Dental friction-style torque-limiting devices were significantly different than Biohorizons torque-limiting devices (P<.05). There is no difference between the accuracy of new friction-style MTLDs and new spring-style MTLDs. All MTLDs fell within ±10% of the target torque value. Astra Tech and Zimmer Dental friction-style torque-limiting devices were significantly

  12. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing.

    PubMed

    Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan

    2015-09-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Degradability of Polymers for Implantable Biomedical Devices

    PubMed Central

    Lyu, SuPing; Untereker, Darrel

    2009-01-01

    Many key components of implantable medical devices are made from polymeric materials. The functions of these materials include structural support, electrical insulation, protection of other materials from the environment of the body, and biocompatibility, as well as other things such as delivery of a therapeutic drug. In such roles, the stability and integrity of the polymer, over what can be a very long period of time, is very important. For most of these functions, stability over time is desired, but in other cases, the opposite–the degradation and disappearance of the polymer over time is required. In either case, it is important to understand both the chemistry that can lead to the degradation of polymers as well as the kinetics that controls these reactions. Hydrolysis and oxidation are the two classes of reactions that lead to the breaking down of polymers. Both are discussed in detail in the context of the environmental factors that impact the utility of various polymers for medical device applications. Understanding the chemistry and kinetics allows prediction of stability as well as explanations for observations such as porosity and the unexpected behavior of polymeric composite materials in some situations. In the last part, physical degradation such interfacial delamination in composites is discussed. PMID:19865531

  14. Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review

    PubMed Central

    Bocan, Kara N.; Sejdić, Ervin

    2016-01-01

    Wireless energy transfer is a broad research area that has recently become applicable to implantable medical devices. Wireless powering of and communication with implanted devices is possible through wireless transcutaneous energy transfer. However, designing wireless transcutaneous systems is complicated due to the variability of the environment. The focus of this review is on strategies to sense and adapt to environmental variations in wireless transcutaneous systems. Adaptive systems provide the ability to maintain performance in the face of both unpredictability (variation from expected parameters) and variability (changes over time). Current strategies in adaptive (or tunable) systems include sensing relevant metrics to evaluate the function of the system in its environment and adjusting control parameters according to sensed values through the use of tunable components. Some challenges of applying adaptive designs to implantable devices are challenges common to all implantable devices, including size and power reduction on the implant, efficiency of power transfer and safety related to energy absorption in tissue. Challenges specifically associated with adaptation include choosing relevant and accessible parameters to sense and adjust, minimizing the tuning time and complexity of control, utilizing feedback from the implanted device and coordinating adaptation at the transmitter and receiver. PMID:26999154

  15. Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review.

    PubMed

    Bocan, Kara N; Sejdić, Ervin

    2016-03-18

    Wireless energy transfer is a broad research area that has recently become applicable to implantable medical devices. Wireless powering of and communication with implanted devices is possible through wireless transcutaneous energy transfer. However, designing wireless transcutaneous systems is complicated due to the variability of the environment. The focus of this review is on strategies to sense and adapt to environmental variations in wireless transcutaneous systems. Adaptive systems provide the ability to maintain performance in the face of both unpredictability (variation from expected parameters) and variability (changes over time). Current strategies in adaptive (or tunable) systems include sensing relevant metrics to evaluate the function of the system in its environment and adjusting control parameters according to sensed values through the use of tunable components. Some challenges of applying adaptive designs to implantable devices are challenges common to all implantable devices, including size and power reduction on the implant, efficiency of power transfer and safety related to energy absorption in tissue. Challenges specifically associated with adaptation include choosing relevant and accessible parameters to sense and adjust, minimizing the tuning time and complexity of control, utilizing feedback from the implanted device and coordinating adaptation at the transmitter and receiver.

  16. Improved survival in patients enrolled promptly into remote monitoring following cardiac implantable electronic device implantation.

    PubMed

    Mittal, Suneet; Piccini, Jonathan P; Snell, Jeff; Prillinger, Julie B; Dalal, Nirav; Varma, Niraj

    2016-08-01

    Guidelines advocate remote monitoring (RM) in patients with a cardiac implantable electronic device (CIED). However, it is not known when RM should be initiated. We hypothesized that prompt initiation of RM (within 91 days of implant) is associated with improved survival compared to delayed initiation. This retrospective, national, observational cohort study evaluated patients receiving new implants of market-released St. Jude Medical™ pacemakers (PM), implantable cardioverter defibrillators (ICD), and cardiac resynchronization therapy (CRT) devices. Patients were assigned to one of two groups: an "RM Prompt" group, in which RM was initiated within 91 days of implant; and an "RM Delayed" group, in which RM was initiated >91 days but ≤365 days of implant. The primary endpoint was all-cause mortality. The cohort included 106,027 patients followed for a mean of 2.6 ± 0.9 years. Overall, 47,014 (44 %) patients had a PM, 31,889 (30 %) patients had an ICD, 24,005 (23 %) patients had a CRT-D, and 3119 (3 %) patients had a CRT-P. Remote monitoring was initiated promptly (median 4 weeks [IQR 2, 8 weeks]) in 66,070 (62 %) patients; in the other 39,957 (38 %) patients, RM initiation was delayed (median 24 weeks [IQR 18, 34 weeks]). In comparison to delayed initiation, prompt initiation of RM was associated with a lower mortality rate (4023 vs. 4679 per 100,000 patient-years, p < 0.001) and greater adjusted survival (HR 1.18 [95 % CI 1.13-1.22], p < 0.001). Our data, for the first time, show improved survival in patients enrolled promptly into RM following CIED implantation. This advantage was observed across all CIED device types.

  17. 21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implantable Intra-aneurysm Pressure Measurement System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices...

  18. 21 CFR 870.2855 - Implantable Intra-aneurysm Pressure Measurement System.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implantable Intra-aneurysm Pressure Measurement System. 870.2855 Section 870.2855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices...

  19. Simulation study of a high power density rectenna array for biomedical implantable devices

    NASA Astrophysics Data System (ADS)

    Day, John; Yoon, Hargsoon; Kim, Jaehwan; Choi, Sang H.; Song, Kyo D.

    2016-04-01

    The integration of wireless power transmission devices using microwaves into the biomedical field is close to a practical reality. Implanted biomedical devices need a long lasting power source or continuous power supply. Recent development of high efficiency rectenna technology enables continuous power supply to these implanted devices. Due to the size limit of most of medical devices, it is imperative to minimize the rectenna as well. The research reported in this paper reviews the effects of close packing the rectenna elements which show the potential of directly empowering the implanted devices, especially within a confined area. The rectenna array is tested in the X band frequency range.

  20. Effects of Food Texture on Three-Dimensional Loads on Implants During Mastication Based on In Vivo Measurements.

    PubMed

    Yoda, Nobuhiro; Ogawa, Toru; Gunji, Yoshinori; Vanegas, Juan R; Kawata, Tetsuo; Sasaki, Keiichi

    2016-08-01

    The mechanisms by which the loads exerted on implants that support prostheses are modulated during mastication remain unclear. The purpose of this study was to evaluate the effects of food texture on 3-dimensional loads measured at a single implant using a piezoelectric transducer. Two subjects participated in this study. The transducer and the experimental superstructure, which had been adjusted to the subject's occlusal scheme, were attached to the implant with a titanium screw. The foods tested were chewing gum and peanuts. The mean maximum load on the implant in each chewing cycle was significantly higher during peanut chewing than during gum chewing. The direction of maximum load was significantly more widely dispersed during peanut chewing than during gum chewing. The range of changes in load direction during the force-increasing phase of each chewing cycle was significantly wider during peanut chewing than during gum chewing. The load on the implant was affected by food texture in both subjects. This measurement method can be useful to investigate the mechanisms of load modulation on implants during mastication.

  1. A novel three-dimensional printed guiding device for electrode implantation of sacral neuromodulation.

    PubMed

    Cui, Z; Wang, Z; Ye, G; Zhang, C; Wu, G; Lv, J

    2018-01-01

    The aim was to test the feasibility of a novel three-dimensional (3D) printed guiding device for electrode implantation of sacral neuromodulation (SNM). A 3D printed guiding device for electrode implantation was customized to patients' anatomy of the sacral region. Liquid photopolymer was selected as the printing material. The details of the device designation and prototype building are described. The guiding device was used in two patients who underwent SNM for intractable constipation. Details of the procedure and the outcomes are given. With the help of the device, the test needle for stimulation was placed in the target sacral foramen successfully at the first attempt of puncture in both patients. The time to implant a tined SNM electrode was less than 20 min and no complications were observed. At the end of the screening phase, symptoms of constipation were relieved by more than 50% in both patients and permanent stimulation was established. The customized 3D printed guiding device for implantation of SNM is a promising instrument that facilitates a precise and quick implantation of the electrode into the target sacral foramen. Colorectal Disease © 2017 The Association of Coloproctology of Great Britain and Ireland.

  2. Elastomeric load sharing device

    NASA Technical Reports Server (NTRS)

    Isabelle, Charles J. (Inventor); Kish, Jules G. (Inventor); Stone, Robert A. (Inventor)

    1992-01-01

    An elastomeric load sharing device, interposed in combination between a driven gear and a central drive shaft to facilitate balanced torque distribution in split power transmission systems, includes a cylindrical elastomeric bearing and a plurality of elastomeric bearing pads. The elastomeric bearing and bearing pads comprise one or more layers, each layer including an elastomer having a metal backing strip secured thereto. The elastomeric bearing is configured to have a high radial stiffness and a low torsional stiffness and is operative to radially center the driven gear and to minimize torque transfer through the elastomeric bearing. The bearing pads are configured to have a low radial and torsional stiffness and a high axial stiffness and are operative to compressively transmit torque from the driven gear to the drive shaft. The elastomeric load sharing device has spring rates that compensate for mechanical deviations in the gear train assembly to provide balanced torque distribution between complementary load paths of split power transmission systems.

  3. Biomechanical evaluation of CIBOR spine interbody fusion device.

    PubMed

    Chong, Alexander C M; Harrer, Seth W; Heggeness, Michael H; Wooley, Paul H

    2017-07-01

    The CIBOR PEEK spinal interbody fusion device is an anterior lumbar interbody fusion construct with a hollow center designed to accommodate an osteoinductive carbon foam insert to promote bony ingrowth to induce fusion where rigid stabilization is needed. Three different sizes of the device were investigated. Part-I: implants were tested under axial compression and rotation using polyurethane foam blocks. Part-II: simulated 2-legged stance using cadaveric specimen using the L5-S1 lumbar spine segment. Part-III: a survey feedback form was used to investigate two orthopedic surgeons concern regarding the implant. In Part-I, the subsidence hysteresis under axial compression loading was found to be statistical significant difference between these three implant sizes. It was noted that the implants had migration as rotation applied, and the amount of subsidence was a factor of the axial compression loads applied. In Part-II, a minor subsidence and carbon foam debris were observed when compared to each implant size. Poor contact surface of the implant with the end plates of the L5 or S1 vertebrae from the anterior view under maximum loads was observed; however, the implant seemed to be stable. Each surgeon has their own subjective opinion about the CIBOR implant. Two out of the three different sizes of the device (medium and large sizes) provided appropriate rigid stabilization at the physiological loads. Neither orthopedic surgeon was 100% satisfied with overall performance of the implant, but felt potential improvement could be made. This study indicates an option for operative treatment of spine interbody fusion, as the CIBOR spine interbody fusion device has a hollow center. This hollow center is designed to accommodate a carbon foam insert to promote bony ingrowth. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1157-1168, 2017. © 2016 Wiley Periodicals, Inc.

  4. Investigational Clinical Trial of a Prototype Optoelectronic Computer-Aided Navigation Device for Dental Implant Surgery.

    PubMed

    Jokstad, Asbjørn; Winnett, Brenton; Fava, Joseph; Powell, David; Somogyi-Ganss, Eszter

    New digital technologies enable real-time computer-aided (CA) three-dimensional (3D) guidance during dental implant surgery. The aim of this investigational clinical trial was to demonstrate the safety and effectiveness of a prototype optoelectronic CA-navigation device in comparison with the conventional approach for planning and effecting dental implant surgery. Study participants with up to four missing teeth were recruited from the pool of patients referred to the University of Toronto Graduate Prosthodontics clinic. The first 10 participants were allocated to either a conventional or a prototype device study arm in a randomized trial. The next 10 participants received implants using the prototype device. All study participants were restored with fixed dental prostheses after 3 (mandible) or 6 (maxilla) months healing, and monitored over 12 months. The primary outcome was the incidence of any surgical, biologic, or prosthetic adverse events or device-related complications. Secondary outcomes were the incidence of positioning of implants not considered suitable for straightforward prosthetic restoration (yes/no); the perception of the ease of use of the prototype device by the two oral surgeons, recorded by use of a Likert-type questionnaire; and the clinical performance of the implant and superstructure after 1 year in function. Positioning of the implants was appraised on periapical radiographs and clinical photographs by four independent blinded examiners. Peri-implant bone loss was measured on periapical radiographs by a blinded examiner. No adverse events occurred related to placing any implants. Four device-related complications led to a switch from using the prototype device to the conventional method. All implants placed by use of the prototype device were in a position considered suitable for straightforward prosthetic restoration (n = 21). The qualitative evaluation by the surgeons was generally positive, although ergonomic challenges were identified

  5. A micropower miniature piezoelectric actuator for implantable middle ear hearing device.

    PubMed

    Wang, Zhigang; Mills, Robert; Luo, Hongyan; Zheng, Xiaolin; Hou, Wensheng; Wang, Lijun; Brown, Stuart I; Cuschieri, Alfred

    2011-02-01

    This paper describes the design and development of a small actuator using a miniature piezoelectric stack and a flextensional mechanical amplification structure for an implantable middle ear hearing device (IMEHD). A finite-element method was used in the actuator design. Actuator vibration displacement was measured using a laser vibrometer. Preliminary evaluation of the actuator for an IMEHD was conducted using a temporal bone model. Initial results from one temporal bone study indicated that the actuator was small enough to be implanted within the middle ear cavity, and sufficient stapes displacement can be generated for patients with mild to moderate hearing losses, especially at higher frequency range, by the actuator suspended onto the stapes. There was an insignificant mass-loading effect on normal sound transmission (<3 dB) when the actuator was attached to the stapes and switched off. Improved vibration performance is predicted by more firm attachment. The actuator power consumption and its generated equivalent sound pressure level are also discussed. In conclusion, the actuator has advantages of small size, lightweight, and micropower consumption for potential use as IMHEDs.

  6. Biomedical Impact in Implantable Devices-The Transcatheter Aortic Valve as an example

    NASA Astrophysics Data System (ADS)

    Anastasiou, Alexandros; Saatsakis, George

    2015-09-01

    Objective: To update of the scientific community about the biomedical engineering involvement in the implantable devices chain. Moreover the transcatheter Aortic Valve (TAV) replacement, in the field of cardiac surgery, will be analyzed as an example of contemporary implantable technology. Methods: A detailed literature review regarding biomedical engineers participating in the implantable medical product chain, starting from the design of the product till the final implantation technique. Results: The scientific role of biomedical engineers has clearly been established. Certain parts of the product chain are implemented almost exclusively by experienced biomedical engineers such as the transcatheter aortic valve device. The successful professional should have a multidisciplinary knowledge, including medicine, in order to pursue the challenges for such intuitive technology. This clearly indicates that biomedical engineers are among the most appropriate scientists to accomplish such tasks. Conclusions: The biomedical engineering involvement in medical implantable devices has been widely accepted by the scientific community, worldwide. Its important contribution, starting from the design and extended to the development, clinical trials, scientific support, education of other scientists (surgeons, cardiologists, technicians etc.), and even to sales, makes biomedical engineers a valuable player in the scientific arena. Notably, the sector of implantable devices is constantly raising, as emerging technologies continuously set up new targets.

  7. 21 CFR 872.3970 - Interarticular disc prosthesis (interpositional implant).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Interarticular disc prosthesis (interpositional implant). 872.3970 Section 872.3970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... (interpositional implant) is a device that is intended to be an interface between the natural articulating surface...

  8. Biodegradable implants from poly-(alpha-hydroxy acid) polymers for isoniazid delivery.

    PubMed

    Hurley, L; Andersen, B R

    1999-11-01

    In vitro and in vivo study of an isoniazid (INH) drug delivery system. To develop a system for the treatment of tuberculosis using a subcutaneous polymer implant with a large drug load released slowly over a long period. INH delivery by biodegradable poly-(alpha-hydroxy acid) polymers was evaluated using ground polymer and compression molded implants. Rate of drug release and structural stability of the implant in an aqueous environment were measured, as were in vivo evaluations of the duration of measurable levels of INH in serum and urine. Factors that influenced the suitability of an implant in an in vitro system included polymer molecular weight and crystallinity, polymer and drug particle size, drug loading dose, and press temperature and pressure. The implant characteristics that most closely approached optimal conditions include a polymer of 100% L-lactide with low intrinsic viscosity, polymer particle size <75 micron, and INH particle = 126-180 micron, INH loading dose not to exceed 46%, and press conditions of 70 degrees C and 345000 kPa. Studies of subcutaneous implants in rabbits and baboons show that INH is released from the implant for 15 to 26 weeks. An INH-containing polymer was developed that was structurally stable in an aqueous environment and that released INH over a period of at least 15 weeks. Studies with infected animals will be necessary to determine the dose required for prophylaxis and treatment of active disease.

  9. Pre-load on oral implants after screw tightening fixed full prostheses: an in vivo study.

    PubMed

    Duyck, J; Van Oosterwyck, H; Vander Sloten, J; De Cooman, M; Puers, R; Naert, I

    2001-03-01

    The fit of implant supported fixed prostheses is said to be of clinical concern because of the rigid fixation of an oral implant in its surrounding bone. The influence of the torque sequence of the set screws during fixation of implant supported fixed full prostheses on the final pre-load was investigated in vitro. No significant effect of the torque sequence of the set screws on the final pre-load was observed. The main objective of this study was to quantify and qualify the pre-load in vivo on implants supporting a fixed full prosthesis. This was performed when the prostheses were supported by all five or six implants and was repeated when the prostheses were supported by only four and three implants. A total of 13 patients with a fixed full implant supported prosthesis were selected. The existing abutments were changed for strain gauged abutments. After tightening the set screws with a torque of 10 N cm, the pre-load conditions were registered. The average (SEM) axial forces and bending moments in case of five or six, four and three supporting implants were 323 N (43 N), 346 N (59 N), 307 N (60 N) 21 N cm (3 N cm) and 21 N cm (2 N cm), 23 N cm (5 N cm), respectively. In addition, the pre-load was registered after fixation of a machined gold cylinder, as delivered by the manufacturer, on each of the supporting implants, representing the 'optimal fit' situation. The corresponding average (SEM) axial forces and bending moments in case of five or six, four and three supporting implants were 426 N (36 N), 405 N (40 N), 413 N (46 N) and 8 N cm (1 N cm), 8 N cm (1 N cm), 8 N cm (1 N cm), respectively. The induced axial forces after tightening the prostheses were significantly lower then after tightening the gold cylinder in case of five or six supporting implants (P < 0.02). The induced bending moments after tightening the prostheses were statistically significantly higher (P < 0.0001) then after tightening the gold cylinder in all test conditions (five or six, four or

  10. Ultra-thin layer packaging for implantable electronic devices

    NASA Astrophysics Data System (ADS)

    Hogg, A.; Aellen, T.; Uhl, S.; Graf, B.; Keppner, H.; Tardy, Y.; Burger, J.

    2013-07-01

    State of the art packaging for long-term implantable electronic devices generally uses reliable metal and glass housings; however, these are limited in the miniaturization potential and cost reduction. This paper focuses on the development of biocompatible hermetic thin-film packaging based on poly-para-xylylene (Parylene-C) and silicon oxide (SiOx) multilayers for smart implantable microelectromechanical systems (MEMS) devices. For the fabrication, a combined Parylene/SiOx single-chamber deposition system was developed. Topological aspects of multilayers were characterized by atomic force microscopy and scanning electron microscopy. Material compositions and layer interfaces were analyzed by Fourier transform infrared spectrometry and x-ray photoelectron spectroscopy. To evaluate the multilayer corrosion protection, water vapor permeation was investigated using a calcium mirror test. The calcium mirror test shows very low water permeation rates of 2 × 10-3 g m-2 day-1 (23 °C, 45% RH) for a 4.7 µm multilayer, which is equivalent to a 1.9 mm pure Parylene-C coating. According to the packaging standard MIL-STD-883, the helium gas tightness was investigated. These helium permeation measurements predict that a multilayer of 10 µm achieves the hermeticity acceptance criterion required for long-term implantable medical devices.

  11. "Real life" longevity of implantable cardioverter-defibrillator devices.

    PubMed

    Manolis, Antonis S; Maounis, Themistoklis; Koulouris, Spyridon; Vassilikos, Vassilios

    2017-09-01

    Manufacturers of implantable cardioverter-defibrillators (ICDs) promise a 5- to 9-year projected longevity; however, real-life data indicate otherwise. The aim of the present study was to assess ICD longevity among 685 consecutive patients over the last 20 years. Real-life longevity of ICDs may differ from that stated by the manufacturers. The study included 601 men and 84 women (mean age, 63.1 ± 13.3 years). The underlying disease was coronary (n = 396) or valvular (n = 15) disease, cardiomyopathy (n = 220), or electrical disease (n = 54). The mean ejection fraction was 35%. Devices were implanted for secondary (n = 562) or primary (n = 123) prevention. Single- (n = 292) or dual-chamber (n = 269) or cardiac resynchronization therapy (CRT) devices (n = 124) were implanted in the abdomen (n = 17) or chest (n = 668). Over 20 years, ICD pulse generator replacements were performed in 238 patients (209 men; age 63.7 ± 13.9 years; ejection fraction, 37.7% ± 14.0%) who had an ICD for secondary (n = 210) or primary (n = 28) prevention. The mean ICD longevity was 58.3 ± 18.7 months. In 20 (8.4%) patients, devices exhibited premature battery depletion within 36 months. Most (94%) patients had none, minor, or modest use of ICD therapy. Longevity was longest for single-chamber devices and shortest for CRT devices. Latest-generation devices replaced over the second decade lasted longer compared with devices replaced during the first decade. When analyzed by manufacturer, Medtronic devices appeared to have longer longevity by 13 to 18 months. ICDs continue to have limited longevity of 4.9 ± 1.6 years, and 8% demonstrate premature battery depletion by 3 years. CRT devices have the shortest longevity (mean, 3.8 years) by 13 to 17 months, compared with other ICD devices. These findings have important implications, particularly in view of the high expense involved with this type of electrical

  12. Cardiovascular implantable electronic device infections in left ventricular assist device recipients.

    PubMed

    Riaz, Talha; Nienaber, Juhsien J C; Baddour, Larry M; Walker, Randall C; Park, Soon J; Sohail, Muhammad Rizwan

    2014-02-01

    Most patients with left ventricular assist devices (LVADs) have concomitant cardiovascular implantable electronic devices (CIEDs). However, clinical presentation and outcome of CIED infection in the setting of LVAD has not been previously described. We retrospectively reviewed 247 patients who underwent LVAD implantation at Mayo Clinic campuses in Minnesota, Arizona, and Florida, from January 2005 to December 2011. Demographic and clinical data of patients who met criteria for CIED infection were extracted. Of 247 patients with LVADs, 215 (87%) had CIED at the time of LVAD implantation and six (2.8%) subsequently developed CIED infections. Three patients developed CIED lead-related endocarditis and the other three had pocket infection. All three instances of CIED pocket infection were preceded by device generator exchange, whereas all three patients with CIED lead-related endocarditis had prior LVAD-related infections. Causative pathogens included Pseudomonas aeruginos (1), coagulase-negative staphylococci (2), methicillin-resistant Staphylococcus aureus (1), a gram-positive bacillus (1), and culture negative (2). All patients underwent complete CIED removal along with antimicrobial therapy. The three patients with CIED lead-related endocarditis and prior LVAD infections received chronic suppressive antibiotic therapy, and one patient had LVAD exchange. All but one remained alive at the last follow-up with a median duration of 15 months (7-46 months) from the time of CIED infection. Patients who are receiving LVAD therapy and develop CIED infection should be managed with complete CIED removal. Chronic suppressive antibiotic therapy is warranted in cases that have concomitant LVAD infection. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.

  13. Success and High Predictability of Intraorally Welded Titanium Bar in the Immediate Loading Implants

    PubMed Central

    Fogli, Vaniel; Camerini, Michele; Carinci, Francesco

    2014-01-01

    The implants failure may be caused by micromotion and stress exerted on implants during the phase of bone healing. This concept is especially true in case of implants placed in atrophic ridges. So the primary stabilization and fixation of implants are an important goal that can also allow immediate loading and oral rehabilitation on the same day of surgery. This goal may be achieved thanks to the technique of welding titanium bars on implant abutments. In fact, the procedure can be performed directly in the mouth eliminating possibility of errors or distortions due to impression. This paper describes a case report and the most recent data about long-term success and high predictability of intraorally welded titanium bar in immediate loading implants. PMID:24963419

  14. Experimental study of PLLA/INH slow release implant fabricated by three dimensional printing technique and drug release characteristics in vitro.

    PubMed

    Wu, Gui; Wu, Weigang; Zheng, Qixin; Li, Jingfeng; Zhou, Jianbo; Hu, Zhilei

    2014-07-19

    Local slow release implant provided long term and stable drug release in the lesion. The objective of this study was to fabricate biodegradable slow release INH/PLLA tablet via 3 dimensional printing technique (3DP) and to compare the drug release characteristics of three different structured tablets in vitro. Three different drug delivery systems (columnar-shaped tablet (CST), doughnut-shaped tablet (DST) and multilayer doughnut-shaped tablet (MDST)) were manufactured by the three dimensional printing machine and isoniazid was loaded into the implant. Dynamic soaking method was used to study the drug release characteristics of the three implants. MTT cytotoxicity test and direct contact test were utilized to study the biocompatibility of the implant. The microstructures of the implants' surfaces were observed with electron microscope. The PLLA powder in the tablet could be excellently combined through 3DP without disintegration. Electron microscope observations showed that INH distributed evenly on the surface of the tablet in a "nest-shaped" way, while the surface of the barrier layer in the multilayer doughnut shaped tablet was compact and did not contain INH. The concentration of INH in all of the three tablets were still higher than the effective bacteriostasis concentration (Isoniazid: 0.025 ~ 0.05 μg/ml) after 30 day's release in vitro. All of the tablets showed initial burst release of the INH in the early period. Drug concentration of MDST became stable and had little fluctuation starting from the 6th day of the release. Drug concentration of DST and CST decreased gradually and the rate of decrease in concentration was faster in DST than CST. MTT cytotoxicity test and direct contact test indicated that the INH-PLLA tablet had low cytotoxicity and favorable biocompatibility. Three dimensional printing technique was a reliable technique to fabricate complicated implants. Drug release pattern in MDST was the most stable among the three implants. It was

  15. A simple device for exteriorizing chronically implanted catheters in dogs.

    PubMed

    Butterfield, J L; Decker, G E

    1984-04-01

    A device, consisting of a round base and cap made of polytetrafluoroethylene, was made to exteriorize and protect chronically implanted arterial and venous catheters in conscious dogs. In experiments lasting as long as 9 months, the subcutaneously implanted button-like appliance did not cause tissue reactions and was well tolerated by 98% of a group of 200 dogs. Being maintenance-free, having the capacity to exteriorize several catheter or wire outputs, and needing no protective harness were advantages of the device.

  16. Inducer Hydrodynamic Load Measurement Devices

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen E.; Zoladz, Thomas F.

    2002-01-01

    Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.

  17. Inducer Hydrodynamic Load Measurement Devices

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen E.; Zoladz, Thomas F.; Turner, Jim (Technical Monitor)

    2002-01-01

    Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher-frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.

  18. Does implant coating with antibacterial-loaded hydrogel reduce bacterial colonization and biofilm formation in vitro?

    PubMed

    Drago, Lorenzo; Boot, Willemijn; Dimas, Kostantinos; Malizos, Kostantinos; Hänsch, Gertrud M; Stuyck, Jos; Gawlitta, Debby; Romanò, Carlo L

    2014-11-01

    Implant-related infections represent one of the most severe complications in orthopaedics. A fast-resorbable, antibacterial-loaded hydrogel may reduce or prevent bacterial colonization and biofilm formation of implanted biomaterials. We asked: (1) Is a fast-resorbable hydrogel able to deliver antibacterial compounds in vitro? (2) Can a hydrogel (alone or antibacterial-loaded) coating on implants reduce bacterial colonization? And (3) is intraoperative coating feasible and resistant to press-fit implant insertion? We tested the ability of Disposable Antibacterial Coating (DAC) hydrogel (Novagenit Srl, Mezzolombardo, Italy) to deliver antibacterial agents using spectrophotometry and a microbiologic assay. Antibacterial and antibiofilm activity were determined by broth microdilution and a crystal violet assay, respectively. Coating resistance to press-fit insertion was tested in rabbit tibias and human femurs. Complete release of all tested antibacterial compounds was observed in less than 96 hours. Bactericidal and antibiofilm effect of DAC hydrogel in combination with various antibacterials was shown in vitro. Approximately 80% of the hydrogel coating was retrieved on the implant after press-fit insertion. Implant coating with an antibacterial-loaded hydrogel reduces bacterial colonization and biofilm formation in vitro. A fast-resorbable, antibacterial-loaded hydrogel coating may help prevent implant-related infections in orthopaedics. However, further validation in animal models and properly controlled human studies is required.

  19. Load power device, system and method of load control and management employing load identification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Luebke, Charles John; Schoepf, Thomas J.

    A load power device includes a power input, at least one power output for at least one load, a plurality of sensors structured to sense voltage and current at the at least one power output, and a processor. The processor provides: (a) load identification based upon the sensed voltage and current, and (b) load control and management based upon the load identification.

  20. Misfit of Three Different Implant-Abutment Connections Before and After Cyclic Load Application: An In Vitro Study.

    PubMed

    Gehrke, Sergio Alexandre; Delgado-Ruiz, Rafael Arcesio; Prados Frutos, Juan Carlos; Prados-Privado, María; Dedavid, Berenice Anina; Granero Marín, Jose Manuel; Calvo Guirado, José Luiz

    This study aimed to evaluate the misfit of three different implant-abutment connections before and after cycling load. One hundred twenty dental implants and correspondent prefabricated titanium abutments were used. Three different implant-abutment connections were evaluated: Morse taper (MT group), external hexagon (EH group), and internal hexagon (IH group). Forty implants and 40 abutments were used per group. The parameters for the mechanical evaluation were set as: 360,000 cycles, load of 150 N, and frequency of 4 Hz. Samples were sectioned in their longitudinal and transversal axes, and the misfit of the implant-abutment connection was evaluated by scanning electron microscopy analysis. One-way analyses of variance, Tukey post hoc analyses (α = .05), and t test (P < .05) were used to determine differences between groups. At the longitudinal direction, all the groups showed the presence of microgaps before cycling load; after cycling load, microgaps were reduced in all groups (P > .05). Transversally, only the MT group showed full fitting after cycling load compared with the other groups (EH and IH) (P < .0001). The application of cycling load produces an accommodation of the implant-abutment connection in internal, external, and Morse taper connections. In the longitudinal direction, the accommodation decreases and/or eliminates the gap observed initially (before load). In the horizontal direction, Morse cone implant-abutment connections experience a complete accommodation with the elimination of the gap.

  1. Immediate Versus Delayed Loading of Implant for Replacement of Missing Mandibular First Molar: A Randomized Prospective Six Years Clinical Study.

    PubMed

    Chidagam, Prudhvi Raj Lakshmi Venkata; Gande, Vijaya Chandra; Yadlapalli, Sravanthi; Venkata, Ramani Yarlagadda; Kondaka, Sudheer; Chedalawada, Sravya

    2017-04-01

    Emergence of dental implants made the replacement of missing tooth easy. During the early days of introduction, implants were loaded three to six months after implant insertion, but understanding of healing cascade and improved production technology has changed the phase of restoration from delayed to immediate loading. To evaluate and compare the clinical outcome of immediate and delayed loaded implant supported prosthesis for missing mandibular first molar. The objectives were bleeding on probing, probing depth, implant mobility, marginal bone level and peri-implant radiolucency were evaluated during follow up period. Twenty patients were included in this study who were in the need of fixed implant supported prosthesis for missing mandibular first molar. Single tooth implant with immediate loading done within two days of implant insertion in one group and another group were loaded after three months of implant insertion. These groups were evaluated clinically and radiographically over a period of 72 months after loading using Wilcoxon matched pairs test and Mann-Whitney U test. The study consists of 14 male and six female patients with the age range of 19 to 31 years. There was no bleeding on probing and probing depth remained well within the normal range even after 72 months of loading among both the groups. Minimal marginal bone loss observed with no mobility and peri-implant radiolucency. Implant supported prosthesis for missing mandibular first molar with immediate loading can be used as a successful treatment modality. It reduces treatment time, provides early function and prevents undue migration of adjacent tooth. Immediate loading showed similar clinical and radiographic results as that of delayed loading, indicating it as an equally efficient technique for implant supported prosthesis.

  2. Influence of matrix attachment installation load on movement and resultant forces in implant overdentures.

    PubMed

    Goto, Takaharu; Nagao, Kan; Ishida, Yuichi; Tomotake, Yoritoki; Ichikawa, Tetsuo

    2015-02-01

    This in vitro study investigated the effect of attachment installation conditions on the load transfer and denture movements of implant overdentures, and aims to clarify the differences among the three types of attachments, namely ball, Locator, and magnet attachments. Three types of attachments, namely ball, Locator, and magnetic attachments were used. An acrylic resin mandibular edentulous model with two implants placed in the bilateral canine regions and removable overdenture were prepared. The two implants and bilateral molar ridges were connected to three-axis load-cell transducers, and a universal testing machine was used to apply a 50 N vertical force to each site of the occlusal table in the first molar region. The denture movement was measured using a G(2) motion sensor. Three installation conditions, namely, the application of 0, 50, and 100 N loads were used to install each attachment on the denture base. The load transfer and denture movement were then evaluated. The resultant force decreased with increasing installation load for all attachments. In particular, the resultant force on implants on the loading side of the Locator attachment significantly decreased when the installation load was increased from 0 to 50 N, and that for magnetic attachment significantly decreased when the installation load was increased from 50 to 100 N. For the residual ridges on the loading side, the direction of the forces for all attachments changed to downward with increasing installation load. Furthermore, the yaw Euler angle increased with increasing installation load for the magnetic attachment. Subject to the limitations of this study, the use of any installation load greater than 0 N is recommended for the installation of ball and Locator attachments on a denture base. Regarding magnetic attachments, our results also recommend installation on a denture base using any installation load greater than 0 N, and suggest that the resultant force acting on the implant can be

  3. Identification of Bodies by Unique Serial Numbers on Implanted Medical Devices.

    PubMed

    Blessing, Melissa M; Lin, Peter T

    2018-05-01

    Visual identification is the most common identification method used by medical examiners but is not always possible. Alternative methods include X-ray, fingerprint, or DNA comparison, but these methods require additional resources. Comparison of serial numbers on implanted medical devices is a rapid and definitive method of identification. To assess the practicality of using this method, we reviewed 608 consecutive forensic autopsies performed at a regional medical examiner office. Of these, 56 cases required an alternative method of identification due to decomposition (n = 35), gunshot wound (n = 9), blunt trauma (n = 6), or charring (n = 6). Of these 56 cases, eight (14.3%) were known to have an implanted medical device. Of these eight cases, five (63%) could be positively identified by comparing serial numbers. If an implanted medical device is known to be present, and medical records are available, identification by medical device serial number should be a first-line method. © 2017 American Academy of Forensic Sciences.

  4. Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release

    NASA Astrophysics Data System (ADS)

    Hardiansyah, Andri; Yang, Ming-Chien; Liu, Ting-Yu; Kuo, Chih-Yu; Huang, Li-Ying; Chan, Tzu-Yi

    2017-05-01

    Less targeted and limited solubility of hydrophobic-based drug are one of the serious obstacles in drug delivery system. Thus, new strategies to enhance the solubility of hydrophobic drug and controlled release behaviors would be developed. Herein, curcumin, a model of hydrophobic drug, has been loaded into PEGylated magnetic liposomes as a drug carrier platform for drug controlled release system. Inductive magnetic heating (hyperthermia)-stimulated drug release, in vitro cellular cytotoxicity assay of curcumin-loaded PEGylated magnetic liposomes and cellular internalization-induced by magnetic guidance would be investigated. The resultant of drug carriers could disperse homogeneously in aqueous solution, showing a superparamagnetic characteristic and could inductive magnetic heating with external high-frequency magnetic field (HFMF). In vitro curcumin release studies confirmed that the drug carriers exhibited no significant release at 37 °C, whereas exhibited rapid releasing at 45 °C. However, it would display enormous (three times higher) curcumin releasing under the HFMF exposure, compared with that without HFMF exposure at 45 °C. In vitro cytotoxicity test shows that curcumin-loaded PEGylated magnetic liposomes could efficiently kill MCF-7 cells in parallel with increasing curcumin concentration. Fluorescence microscopy observed that these drug carriers could internalize efficiently into the cellular compartment of MCF-7 cells. Thus, it would be anticipated that the novel hydrophobic drug-loaded PEGylated magnetic liposomes in combination with inductive magnetic heating are promising to apply in the combination of chemotherapy and thermotherapy for cancer therapy.

  5. Perioperative management of patients with cardiac implantable electronic devices.

    PubMed

    Poveda-Jaramillo, R; Castro-Arias, H D; Vallejo-Zarate, C; Ramos-Hurtado, L F

    2017-05-01

    The use of implantable cardiac devices in people of all ages is increasing, especially in the elderly population: patients with pacemakers, cardioverter-defibrillators or cardiac resynchronization therapy devices regularly present for surgery for non-cardiac causes. This review was made in order to collect and analyze the latest evidence for the proper management of implantable cardiac devices in the perioperative period. Through a detailed exploration of PubMed, Academic Search Complete (EBSCO), ClinicalKey, Cochrane (Ovid), the search software UpToDate, textbooks and patents freely available to the public on Google, we selected 33 monographs, which matched the objectives of this publication. Copyright © 2016 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Implantable device for in-vivo intracranial and cerebrospinal fluid pressure monitoring

    DOEpatents

    Ericson, Milton N.; McKnight, Timothy E.; Smith, Stephen F.; Hylton, James O.

    2003-01-01

    The present invention relates to a completely implantable intracranial pressure monitor, which can couple to existing fluid shunting systems as well as other internal monitoring probes. The implant sensor produces an analog data signal which is then converted electronically to a digital pulse by generation of a spreading code signal and then transmitted to a location outside the patient by a radio-frequency transmitter to an external receiver. The implanted device can receive power from an internal source as well as an inductive external source. Remote control of the implant is also provided by a control receiver which passes commands from an external source to the implant system logic. Alarm parameters can be programmed into the device which are capable of producing an audible or visual alarm signal. The utility of the monitor can be greatly expanded by using multiple pressure sensors simultaneously or by combining sensors of various physiological types.

  7. Enhancing of Osseointegration with Propolis-Loaded TiO2 Nanotubes in Rat Mandible for Dental Implants

    PubMed Central

    Somsanith, Nithideth; Jang, Young-Seok; Lee, Young-Hee; Yi, Ho-Keun; Kim, Kyoung-A; Bae, Tae-Sung; Lee, Min-Ho

    2018-01-01

    TiO2 nanotubes (TNT) formation is beneficial for improving bone cell–material interaction and drug delivery for Ti dental implants. Among the natural drugs to be installed in TNT, selected propolis has antibacterial and anti-inflammatory properties. It is a resinous natural product which is collected by the honeybees from the various types of plants with their salivary enzymes. This study concludes that TNT loaded with a propolis (PL-TNT-Ti) dental implant has the ability to improve osseointegration. The propolis particles were embedded within the TNT or adhered to the top. In a cytotoxicity test using osteoblast, PL-TNT-Ti group exhibited an increased cell proliferation and differentiation. A Sprague Dawley rat mandibular model was used to evaluate the osseointegration and bone bonding of TNT or PL-TNT-Ti. From the µ-CT and hematoxylin and eosin (HE) histological results after implantation at 1 and 4 weeks to rat mandibular, an increase in the extent of new bone formation and mineral density around the PL-TNT-Ti implant was confirmed. The Masson’s trichrome staining showed the expression of well-formed collagenous for bone formation on the PL-TNT-Ti. Immunohistochemistry staining indicate that bone morphogenetic proteins (BMP-2 and BMP-7) around the PL-TNT-Ti increased the expression of collagen fibers and of osteogenic differentiation whereas the expression of inflammatory cytokine such as interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) is decreased. PMID:29301269

  8. A pilot study of implantable cardiac device interrogation by emergency department personnel.

    PubMed

    Neuenschwander, James F; Hiestand, Brian C; Peacock, W Frank; Billings, John M; Sondrup, Cole; Hummel, John D; Abraham, William T

    2014-03-01

    Implanted devices (eg, pacemakers and defibrillators) provide valuable information and may be interrogated to obtain diagnostic information and to direct management. During admission to an emergency department (ED), significant time and cost are spent waiting for device manufacturer representatives or cardiologists to access the data. If ED personnel could safely interrogate implanted devices, more rapid disposition could occur, thus leading to potentially better outcomes at a reduced cost. This was a pilot study examining the feasibility of ED device interrogation. This was a prospective convenience sample study of patients presenting to the ED with any chief complaint and who had an implantable device capable of being interrogated by a Medtronic reader. After obtaining informed consent, study patients underwent device interrogation by ED research personnel. After reviewing the device data, the physician documented their opinions of the value of data in aiding care. Patients were followed up at intervals ranging from 30 days out to 1 year to determine adverse events relating to interrogation. Forty-four patients underwent device interrogation. Their mean age was 56 ± 14.7 years (range, 28-83), 75% (33/44) were male and 75% (33/44) were hospitalized from the ED. The interrogations took less than 10 minutes 89% of the time. In 60% of the cases, ED physicians reported the data-assisted patient care. No adverse events were reported relating to the ED interrogations. In this pilot study, we found that ED personnel can safely and quickly interrogate implantable devices to obtain potentially useful clinical data.

  9. Wireless communication with implanted medical devices using the conductive properties of the body.

    PubMed

    Ferguson, John E; Redish, A David

    2011-07-01

    Many medical devices that are implanted in the body use wires or wireless radiofrequency telemetry to communicate with circuitry outside the body. However, the wires are a common source of surgical complications, including breakage, infection and electrical noise. In addition, radiofrequency telemetry requires large amounts of power and results in low-efficiency transmission through biological tissue. As an alternative, the conductive properties of the body can be used to enable wireless communication with implanted devices. In this article, several methods of intrabody communication are described and compared. In addition to reducing the complications that occur with current implantable medical devices, intrabody communication can enable novel types of miniature devices for research and clinical applications.

  10. Load Transfer Characteristics of Three-Implant-Retained Overdentures with Different Interimplant Distances.

    PubMed

    Tokar, Emre; Uludag, Bulent; Karacaer, Ozgul

    Implant-retained overdentures are the first choice of rehabilitation for edentulous mandibles. Bone morphology and anatomical landmarks may be influenced by the location and angulation of implants and distances between the implants. The purpose of this study was to investigate stress distribution characteristics and to compare stress levels of three different attachment designs of three-implant-retained mandibular overdentures with three different interimplant distances. Three photoelastic mandibular models with three implants were fabricated using an edentulous mandible cast with moderate residual ridge resorption. The center implants were embedded parallel to the midline, and the distal implants were aligned at a 20-degree angulation corresponding to the center implants. Distances between the center and distal implants were set at 11, 18, and 25 mm at the photoelastic models. Bar, bar-ball, and Locator attachment-retained overdentures were prepared for the models. Vertical loads were applied to the overdentures, and stress levels and distribution were evaluated by a circular polariscope. The greatest observed stress level was moderate for the tested overdenture designs. The Locator attachment system showed the lowest stress level for the 11-mm and 25-mm photoelastic models. The bar attachment design transmitted less stress compared with the other tested designs for the 18-mm photoelastic model. Stresses were observed on the loaded side of the photoelastic models. The lowest stress was found with the Locator and bar attachments for the 11-mm photoelastic model, which transmitted little or no discernible stress around the implants.

  11. Effect of implant number and distribution on load transfer in implant-supported partial fixed dental prostheses for the anterior maxilla: A photoelastic stress analysis study.

    PubMed

    Lee, Jae-In; Lee, Yoon; Kim, Yu-Lee; Cho, Hye-Won

    2016-02-01

    The 4-, 3- or even 2-implant-supported partial fixed dental prosthesis (PFDP) designs have been used to rehabilitate the anterior edentulous maxilla. The purpose of this in vitro study was to compare the stress distribution in the supporting tissues surrounding implants placed in the anterior maxilla with 5 PFDP designs. A photoelastic model of the human maxilla with an anterior edentulous region was made with photoelastic resin (PL-2; Vishay Micro-Measurements), and 6 straight implants (OsseoSpeed; Astra Tech AB) were placed in the 6 anterior tooth positions. The 5 design concepts based on implant location were as follows: model 6I: 6 implants; model 2C2CI: 4 implants (2 canines and 2 central incisors); model 2C2LI: 4 implants (2 canines and 2 lateral incisors); model 2C1CI: 3 implants (2 canines and 1 central incisor); and model 2C: 2 canines. A load of 127.4 N was applied on the cingulum of 3 teeth at a 30-degree angle to the long axis of the implant. Stresses that developed in the supporting structure were recorded photographically. The 6-implant-supported PFDP exhibited the most even and lowest distribution of stresses in all loading conditions. When the canine was loaded, the 2- or 3-implant-supported PFDP showed higher stresses around the implant at the canine position than did the 4- or 6-implant-supported PFDP. When the central incisor or lateral incisor was loaded, the two 4-implant-supported PFDPs exhibited similar levels of stresses around the implants and showed lower stresses than did the 2- or 3-implant-supported PFDP. Implant number and distribution influenced stress distribution around the implants in the anterior maxilla. With a decrease in implant number, the stresses around the implants increased. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. The effect of device use after sequential bilateral cochlear implantation in children: An electrophysiological approach.

    PubMed

    Sparreboom, Marloes; Beynon, Andy J; Snik, Ad F M; Mylanus, Emmanuel A M

    2016-07-01

    In many studies evaluating the effect of sequential bilateral cochlear implantation in congenitally deaf children, device use is not taken into account. In this study, however, device use was analyzed in relation to auditory brainstem maturation and speech recognition, which were measured in children with early-onset deafness, 5-6 years after bilateral cochlear implantation. We hypothesized that auditory brainstem maturation is mostly functionally driven by auditory stimulation and is therefore influenced by device use and not mainly by inter-implant delay. Twenty-one children participated and had inter-implant delays between 1.2 and 7.2 years. The electrically-evoked auditory brainstem response was measured for both implants separately. The difference in interaural wave V latency and speech recognition between both implants were used in the analyses. Device use was measured with a Likert scale. Results showed that the less the second device is used, the larger the difference in interaural wave V latencies is, which consequently leads to larger differences in interaural speech recognition. In children with early-onset deafness, after various periods of unilateral deprivation, full-time device use can lead to similar auditory brainstem responses and speech recognition between both ears. Therefore, device use should be considered as a relevant factor contributing to outcomes after sequential bilateral cochlear implantation. These results are indicative for a longer window between implantations in children with early-onset deafness to obtain symmetrical auditory pathway maturation than is mentioned in the literature. Results, however, must be interpreted as preliminary findings as actual device use with data logging was not yet available at the time of the study. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Immediate functional loading of single implants: a multicenter study with 4 years of follow-up

    PubMed Central

    Raes, Filiep; Eccellente, Tammaro; Lenzi, Carolina; Ortolani, Michele; Luongo, Giuseppe; Mangano, Carlo; Mangano, Francesco

    2018-01-01

    Background. In the current scientific literature there are only few studies on the immediate functional loading of single implants. The aim of the present present study was to evaluate the 4-year survival rate, complication rate and peri-implant marginal bone loss (PIMBL) of immediately loaded single implants inserted in healed ridges and fresh post-extraction sites. Methods. Six centers were involved in this prospective study. The surgical and prosthetic protocol was defined in detail, before the start of recruiting patients. Recruitment of patients and performance of surgeries took place between February 2012 and February 2013. Criteria for inclusion were single-tooth gaps in healed ridges and fresh post-extraction sockets. All the fixtures (Anyridge®, Megagen Corporation, Gyeongbuk, South Korea) were functionally loaded immediately after insertion and followed for a period of 4 years. Outcome measures were implant survival, complications and PIMBL. Results. Forty-six patients (18‒73 years of age) were selected. In total, 57 fixtures were placed (10 in fresh post-extraction sockets). After 4 years of functional loading, only one fixture was lost; therefore, high survival rates (97.6% patient-based; 98.1% implant-based) were reported. In addition, a limited incidence of biologic (4.8% patient-based; 3.8% implant-based) and prosthetic (9.7% patient-based; 7.6% implant-based) complications was reported. The overall 4-year PIMBL amounted to 0.38±0.21 mm (healed ridges: 0.4±0.21 mm; fresh post-extraction sockets: 0.33±0.20 mm). Conclusion. Loading single implants immediately seems to be a highly successful treatment modality. However, long-term data are needed to confirm these positive outcomes. PMID:29732018

  14. Removal torque evaluation of three different abutment screws for single implant restorations after mechanical cyclic loading.

    PubMed

    Paepoemsin, T; Reichart, P A; Chaijareenont, P; Strietzel, F P; Khongkhunthian, P

    2016-01-01

    The aim of this study was to evaluate the removal torque of three different abutment screws and pull out strength of implant-abutment connection for single implant restorations after mechanical cyclic loading. The study was performed in accordance with ISO 14801:2007. Three implant groups (n=15) were used: group A, PW Plus® with flat head screw; group B, PW Plus® with tapered screw; and group C, Conelog® with flat head screw. All groups had the same implant-abutment connection feature: cone with mandatory index. All screws were tightened with manufacturer's recommended torque. Ten specimens in each group underwent cyclic loading (1×106 cycles, 10 Hz, and 250 N). Then, all specimens were un-tightened, measured for the removal torque, and underwent a tensile test. The force that dislodged abutment from implant fixture was recorded. The data were analysed using independent sample t-test, ANOVA and Tukey HSD test. Before cyclic loading, removal torque in groups A, B and C were significantly different (B> A> C, P<.05). After cyclic loading, removal torque in all groups decreased significantly (P<.05). Group C revealed significantly less removal torque than groups A and B (P<.005). Tensile force in all groups significantly increased after cyclic loading (P<.05), group A had significantly less tensile force than groups B and C (P<.005). Removal torque reduced significantly after cyclic loading. Before cyclic loading, tapered screws maintained more preload than did flat head screws. After cyclic loading, tapered and flat head screws maintained even amounts of preload. The tensile force that dislodged abutment from implant fixture increased immensely after cyclic loading.

  15. Removal torque evaluation of three different abutment screws for single implant restorations after mechanical cyclic loading

    PubMed Central

    PAEPOEMSIN, T.; REICHART, P. A.; CHAIJAREENONT, P.; STRIETZEL, F. P.; KHONGKHUNTHIAN, P.

    2016-01-01

    SUMMARY Purpose The aim of this study was to evaluate the removal torque of three different abutment screws and pull out strength of implant-abutment connection for single implant restorations after mechanical cyclic loading. Methods The study was performed in accordance with ISO 14801:2007. Three implant groups (n=15) were used: group A, PW Plus® with flat head screw; group B, PW Plus® with tapered screw; and group C, Conelog® with flat head screw. All groups had the same implant-abutment connection feature: cone with mandatory index. All screws were tightened with manufacturer’s recommended torque. Ten specimens in each group underwent cyclic loading (1×106 cycles, 10 Hz, and 250 N). Then, all specimens were un-tightened, measured for the removal torque, and underwent a tensile test. The force that dislodged abutment from implant fixture was recorded. The data were analysed using independent sample t-test, ANOVA and Tukey HSD test. Results Before cyclic loading, removal torque in groups A, B and C were significantly different (B> A> C, P<.05). After cyclic loading, removal torque in all groups decreased significantly (P<.05). Group C revealed significantly less removal torque than groups A and B (P<.005). Tensile force in all groups significantly increased after cyclic loading (P<.05), group A had significantly less tensile force than groups B and C (P<.005). Conclusions Removal torque reduced significantly after cyclic loading. Before cyclic loading, tapered screws maintained more preload than did flat head screws. After cyclic loading, tapered and flat head screws maintained even amounts of preload. The tensile force that dislodged abutment from implant fixture increased immensely after cyclic loading. PMID:28042450

  16. Fracture mode during cyclic loading of implant-supported single-tooth restorations.

    PubMed

    Hosseini, Mandana; Kleven, Erik; Gotfredsen, Klaus

    2012-08-01

    Fracture of veneering ceramics in zirconia-based restorations has frequently been reported. Investigation of the fracture mode of implant-supported ceramic restorations by using clinically relevant laboratory protocols is needed. This study compared the mode of fracture and number of cyclic loads until veneering fracture when ceramic and metal ceramic restorations with different veneering ceramics were supported by implants. Thirty-two implant-supported single-tooth restorations were fabricated. The test group was composed of 16 ceramic restorations of zirconia abutment-retained crowns with zirconia copings veneered with glass-ceramics (n=8) and feldspathic ceramics (n=8). The control group was composed of 16 metal ceramic restorations of titanium abutment-retained crowns with gold alloy copings veneered with glass (n=8) and feldspathic ceramics (n=8). The palatal surfaces of the crowns were exposed to cyclic loading of 800 N with a frequency of 2 Hz, which continued to 4.2 million cycles or until fracture of the copings, abutments, or implants. The number of cycles and the fracture modes were recorded. The fracture modes were analyzed by descriptive analysis and the Mann-Whitney test (α=.05). The differences in loading cycles until veneering fracture were estimated with the Cox proportional hazards analysis. Veneering fracture was the most frequently observed fracture mode. The severity of fractures was significantly more in ceramic restorations than in metal ceramic restorations. Significantly more loading cycles until veneering fracture were estimated with metal ceramic restorations veneered with glass-ceramics than with other restorations. The metal ceramic restorations demonstrated fewer and less severe fractures and resisted more cyclic loads than the ceramic restorations, particularly when the metal ceramic crowns were veneered with glass-ceramics. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All

  17. 78 FR 2647 - Dental Devices; Reclassification of Blade-Form Endosseous Dental Implant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    .... FDA-2012-N-0677] Dental Devices; Reclassification of Blade-Form Endosseous Dental Implant AGENCY: Food...) is proposing to reclassify the blade- form endosseous dental implant, a preamendments class III... proposing to revise the classification of blade-form endosseous dental implants. DATES: Submit either...

  18. Analysis of PMN-PT and PZT circular diaphragm energy harvesters for use in implantable medical devices

    NASA Astrophysics Data System (ADS)

    Mo, Changki; Radziemski, Leon J.; Clark, William W.

    2007-04-01

    This paper presents current work on a project to demonstrate the feasibility of harvesting energy for medical devices from internal biomechanical forces using piezoelectric transducer technology based on PMN-PT. The energy harvesting device in this study is a partially covered, simply-supported PMN-PT unimorph circular plate to capture biomechanical energy and to provide power to implanted medical devices. Power harvesting performance for the piezoelectric energy harvesting diaphragm structure is examined analytically. The analysis includes comprehensive modeling and parametric study to provide a design primer for a specific application. An expression for the total power output from the devices for applied pressure is shown, and then used to determine optimal design parameters. It is shown that the device's deflections and stresses under load are the limiting factors in the design. While the primary material choice for energy harvesting today is PZT, an advanced material, PMN-PT, which exhibits improved potential over current materials, is used.

  19. New-generation devices for transcatheter aortic valve implantation.

    PubMed

    Gatto, Laura; Biondi-Zoccai, Giuseppe; Romagnoli, Enrico; Frati, Giacomo; Prati, Francesco; Giordano, Arturo

    2018-04-20

    Transcatheter aortic valve implantation (TAVI) has overcome the pioneering phase and thanks to accrued clinical evidence has become a mainstay alternative to surgical aortic valve replacement (SAVR) in patients at high risk for post-operative complications. Despite these successes, TAVI remains a junior technology facing momentous developments in techniques and devices. Indeed, several new-generation devices for TAVI have become available in the last few years, including Acurate, Allegra, Evolut, Lotus, JenaValve, Portico, and SAPIEN3. Despite the inevitable setbacks, such as the one represented by DirectFlow, these new devices appear associated with comparative benefits, especially for minimal invasiveness, rates of permanent pacemaker implantation, and risk of residual aortic regurgitation. Indeed, no single device appears clearly better than the others, and a tailored and individualized approach should be sought in using these prostheses, taking into account operator and institutional expertise, on top of patient features. Few comparative effectiveness studies are available to date to guide decision making, and thus careful scrutiny is needed even in everyday clinical practice, especially if seeking to expand the current indications of TAVI. Further guidance will however come from long-term follow-up of completed studies and from results of ongoing trials.

  20. Hearing improvement with softband and implanted bone-anchored hearing devices and modified implantation surgery in patients with bilateral microtia-atresia.

    PubMed

    Wang, Yibei; Fan, Xinmiao; Wang, Pu; Fan, Yue; Chen, Xiaowei

    2018-01-01

    To evaluate auditory development and hearing improvement in patients with bilateral microtia-atresia using softband and implanted bone-anchored hearing devices and to modify the implantation surgery. The subjects were divided into two groups: the softband group (40 infants, 3 months to 2 years old, Ponto softband) and the implanted group (6 patients, 6-28 years old, Ponto). The Infant-Toddler Meaning Auditory Integration Scale was used conducted to evaluate auditory development at baseline and after 3, 6, 12, and 24 months, and visual reinforcement audiometry was used to assess the auditory threshold in the softband group. In the implanted group, bone-anchored hearing devices were implanted combined with the auricular reconstruction surgery, and high-resolution CT was used to assess the deformity preoperatively. Auditory threshold and speech discrimination scores of the patients with implants were measured under the unaided, softband, and implanted conditions. Total Infant-Toddler Meaning Auditory Integration Scale scores in the softband group improved significantly and approached normal levels. The average visual reinforcement audiometry values under the unaided and softband conditions were 76.75 ± 6.05 dB HL and 32.25 ± 6.20 dB HL (P < 0.01), respectively. In the implanted group, the auditory thresholds under the unaided, softband, and implanted conditions were 59.17 ± 3.76 dB HL, 32.5 ± 2.74 dB HL, and 17.5 ± 5.24 dB HL (P < 0.01), respectively. The respective speech discrimination scores were 23.33 ± 14.72%, 77.17 ± 6.46%, and 96.50 ± 2.66% (P < 0.01). Using softband bone-anchored hearing devices is effective for auditory development and hearing improvement in infants with bilateral microtia-atresia. Wearing softband bone-anchored hearing devices before auricle reconstruction and combining bone-anchored hearing device implantation with auricular reconstruction surgery may bethe optimal clinical choice for these patients, and

  1. Effects of lateral cortical anchorage on the primary stability of implants subjected to controlled loads: an in vitro study.

    PubMed

    Xiao, Jian-rui; Li, Yong-Qi; Guan, Su-Min; Kong, Liang; Liu, Baolin; Li, Dehua

    2012-03-01

    Our aim was to evaluate the effects of lateral cortical anchorage on the primary stability of implants subjected to immediate loading. Implants were placed into bovine bones with monocortical anchorage (implant placed through the cortical bone of the crest) and bicortical anchorage (the crest cortical bone plus one cortical bone on the lateral side). Loads of 25N and 50N were applied to the implants in different cycles. The implant stability quotient (ISQ) was measured before and after the cyclic loadings. Under 25N load there was no difference in ISQ between 1800 cyclic loading and preloading, but the values decreased significantly after 3600 cyclic loading in both groups (p<0.05). Under a 50N load the ISQ value after 1800 and 3600 cyclic loading decreased in the monocortical group (p<0.05), but there was no difference between 1800 cyclic loading and preloading in the bicortical group, and the ISQ in the bicortical group was higher than in the monocortical group after 1800 cyclic loading (p<0.05). Our results suggest that the stability of implants with bicortical anchorage decreased more slowly under higher loads. Copyright © 2011 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Experimental study of PLLA/INH slow release implant fabricated by three dimensional printing technique and drug release characteristics in vitro

    PubMed Central

    2014-01-01

    Background Local slow release implant provided long term and stable drug release in the lesion. The objective of this study was to fabricate biodegradable slow release INH/PLLA tablet via 3 dimensional printing technique (3DP) and to compare the drug release characteristics of three different structured tablets in vitro. Methods Three different drug delivery systems (columnar-shaped tablet (CST), doughnut-shaped tablet (DST) and multilayer doughnut-shaped tablet (MDST)) were manufactured by the three dimensional printing machine and isoniazid was loaded into the implant. Dynamic soaking method was used to study the drug release characteristics of the three implants. MTT cytotoxicity test and direct contact test were utilized to study the biocompatibility of the implant. The microstructures of the implants’ surfaces were observed with electron microscope. Results The PLLA powder in the tablet could be excellently combined through 3DP without disintegration. Electron microscope observations showed that INH distributed evenly on the surface of the tablet in a “nest-shaped” way, while the surface of the barrier layer in the multilayer doughnut shaped tablet was compact and did not contain INH. The concentration of INH in all of the three tablets were still higher than the effective bacteriostasis concentration (Isoniazid: 0.025 ~ 0.05 μg/ml) after 30 day’s release in vitro. All of the tablets showed initial burst release of the INH in the early period. Drug concentration of MDST became stable and had little fluctuation starting from the 6th day of the release. Drug concentration of DST and CST decreased gradually and the rate of decrease in concentration was faster in DST than CST. MTT cytotoxicity test and direct contact test indicated that the INH-PLLA tablet had low cytotoxicity and favorable biocompatibility. Conclusions Three dimensional printing technique was a reliable technique to fabricate complicated implants. Drug release pattern in MDST was

  3. Optimization of drug loading to improve physical stability of paclitaxel-loaded long-circulating liposomes.

    PubMed

    Kannan, Vinayagam; Balabathula, Pavan; Divi, Murali K; Thoma, Laura A; Wood, George C

    2015-01-01

    The effect of formulation and process parameters on drug loading and physical stability of paclitaxel-loaded long-circulating liposomes was evaluated. The liposomes were prepared by hydration-extrusion method. The formulation parameters such as total lipid content, cholesterol content, saturated-unsaturated lipid ratio, drug-lipid ratio and process parameters such as extrusion pressure and number of extrusion cycles were studied and their impact on drug loading and physical stability was evaluated. A proportionate increase in drug loading was observed with increase in the total phospholipid content. Cholesterol content and saturated lipid content in the bilayer showed a negative influence on drug loading. The short-term stability evaluation of liposomes prepared with different drug-lipid ratios demonstrated that 1:60 as the optimum drug-lipid ratio to achieve a loading of 1-1.3 mg/mL without the risk of physical instability. The vesicle size decreased with an increase in the extrusion pressure and number of extrusion cycles, but no significant trends were observed for drug loading with changes in process pressure or number of cycles. The optimization of formulation and process parameters led to a physically stable formulation of paclitaxel-loaded long-circulating liposomes that maintain size, charge and integrity during storage.

  4. 21 CFR 201.2 - Drugs and devices; National Drug Code numbers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Drugs and devices; National Drug Code numbers. 201.2 Section 201.2 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING General Labeling Provisions § 201.2 Drugs and devices; National Drug Code...

  5. 21 CFR 201.2 - Drugs and devices; National Drug Code numbers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Drugs and devices; National Drug Code numbers. 201.2 Section 201.2 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING General Labeling Provisions § 201.2 Drugs and devices; National Drug Code...

  6. 21 CFR 201.2 - Drugs and devices; National Drug Code numbers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Drugs and devices; National Drug Code numbers. 201.2 Section 201.2 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING General Labeling Provisions § 201.2 Drugs and devices; National Drug Code...

  7. 21 CFR 201.2 - Drugs and devices; National Drug Code numbers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Drugs and devices; National Drug Code numbers. 201.2 Section 201.2 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING General Labeling Provisions § 201.2 Drugs and devices; National Drug Code...

  8. 21 CFR 201.2 - Drugs and devices; National Drug Code numbers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drugs and devices; National Drug Code numbers. 201.2 Section 201.2 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING General Labeling Provisions § 201.2 Drugs and devices; National Drug Code...

  9. Regulatory Requirements for Devices for the Handicapped.

    ERIC Educational Resources Information Center

    Stigi, John, Ed.; Rivera, Richard J., Ed.

    This booklet explains in question/answer form the basic regulatory requirements established by the Food and Drug Administration (FDA) of the federal government concerning the manufacture, marketing and distribution of medical devices (including implantable devices and devices previously regulated as drugs) for persons with disabilities. Topics…

  10. Cardiac or Other Implantable Electronic Devices and Sleep-disordered Breathing - Implications for Diagnosis and Therapy.

    PubMed

    Fox, Henrik; Bitter, Thomas; Gutleben, Klaus-Jürgen; Horstkotte, Dieter; Oldenburg, Olaf

    2014-08-01

    Sleep-disordered breathing (SDB) is of growing interest in cardiology because SDB is a highly prevalent comorbidity in patients with a variety of cardiovascular diseases. The prevalence of SDB is particularly high in patients with cardiac dysrhythmias and/or heart failure. In this setting, many patients now have implantable cardiac devices, such as pacemakers, implantable cardioverter-defibrillators or implanted cardiac resynchronisation therapy devices (CRT). Treatment of SDB using implantable cardiac devices has been studied previously, with atrial pacing and CRT being shown not to bring about satisfactory results in SDB care. The latest generations of these devices have the capacity to determine transthoracic impedance, to detect and quantify breathing efforts and to identify SDB. The capability of implantable cardiac devices to detect SDB is of potential importance for patients with cardiovascular disease, allowing screening for SDB, monitoring of the course of SDB in relation to cardiac status, and documenting of the effects of treatment.

  11. Gas loading of graphene-quartz surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Whitehead, E. F.; Chick, E. M.; Bandhu, L.; Lawton, L. M.; Nash, G. R.

    2013-08-01

    Graphene was transferred to the propagation path of quartz surface acoustic wave devices and the attenuation due to gas loading of air and argon measured at 70 MHz and 210 MHz and compared to devices with no graphene. Under argon loading, there was no significant difference between the graphene and non-graphene device and the values of measured attenuation agree well with those calculated theoretically. Under air loading, at 210 MHz, there was a significant difference between the non-graphene and graphene devices, with the average value of attenuation obtained with the graphene devices being approximately twice that obtained from the bare quartz devices.

  12. Current State and Future Perspectives of Energy Sources for Totally Implantable Cardiac Devices.

    PubMed

    Bleszynski, Peter A; Luc, Jessica G Y; Schade, Peter; PhilLips, Steven J; Tchantchaleishvili, Vakhtang

    There is a large population of patients with end-stage congestive heart failure who cannot be treated by means of conventional cardiac surgery, cardiac transplantation, or chronic catecholamine infusions. Implantable cardiac devices, many designated as destination therapy, have revolutionized patient care and outcomes, although infection and complications related to external power sources or routine battery exchange remain a substantial risk. Complications from repeat battery replacement, power failure, and infections ultimately endanger the original objectives of implantable biomedical device therapy - eliminating the intended patient autonomy, affecting patient quality of life and survival. We sought to review the limitations of current cardiac biomedical device energy sources and discuss the current state and trends of future potential energy sources in pursuit of a lifelong fully implantable biomedical device.

  13. Two Bilateral Zygomatic Implants Placed and Immediately Loaded: A Retrospective Chart Review with Up-to-54-Month Follow-up.

    PubMed

    Neugarten, Jay; Tuminelli, Frank J; Walter, Leora

    To report on the outcome of placement of two bilateral zygomatic implants with an immediately loaded prosthesis. A retrospective chart review was conducted of all patients treated with zygomatic implants between August 1, 2011 and June 6, 2016. All patients had at least two zygomatic implants placed bilaterally and immediately loaded with a provisional prosthesis the same day of implant placement. The implants were Nobel Biocare TiUnite or machined surface with lengths of 30 to 52.5 mm. All patients were treated by a team consisting of one surgeon, a restorative dentist or prosthodontist, an anesthesiologist, and a laboratory technician. Implant success was defined as successful integration of the implant; prosthetic success was defined as retention of the prosthesis under normal function. One hundred five zygomatic implants were placed and immediately loaded in 28 patients over a period of 1 to 60 months. Ages ranged from 46 to 81 years, with 26 female and 2 male patients. All the implants were placed by one surgeon. The immediate load on the day of implant placement was completed by either one of 2 prosthodontists or 11 restorative dentists. Implant success was 96% (101/105). All four failed implants were in one patient and were TiUnite surface coated. This study demonstrated that two zygomatic implants bilaterally placed and immediately loaded with a full-arch splinted prosthesis will provide a predictable outcome.

  14. 21 CFR 880.5970 - Percutaneous, implanted, long-term intravascular catheter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Percutaneous, implanted, long-term intravascular catheter. 880.5970 Section 880.5970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital...

  15. 21 CFR 880.5970 - Percutaneous, implanted, long-term intravascular catheter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Percutaneous, implanted, long-term intravascular catheter. 880.5970 Section 880.5970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital...

  16. 21 CFR 880.5970 - Percutaneous, implanted, long-term intravascular catheter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Percutaneous, implanted, long-term intravascular catheter. 880.5970 Section 880.5970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital...

  17. 21 CFR 880.5970 - Percutaneous, implanted, long-term intravascular catheter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Percutaneous, implanted, long-term intravascular catheter. 880.5970 Section 880.5970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital...

  18. 21 CFR 880.5970 - Percutaneous, implanted, long-term intravascular catheter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Percutaneous, implanted, long-term intravascular catheter. 880.5970 Section 880.5970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital...

  19. Pain and discomfort following immediate and delayed loading by overdentures in the single mandibular implant study (SMIS).

    PubMed

    Mundt, T; Passia, N; Att, W; Heydecke, G; Freitag-Wolf, S; Luthardt, R G; Kappel, S; Konstantinidis, I K; Stiesch, M; Wolfart, S; Kern, M

    2017-03-01

    This randomized clinical trial compares immediate and delayed loading of single implants to support mandibular overdentures. The aim of this preliminary analysis is to test the hypothesis whether patients with immediate loading will experience less pain and discomfort through the intervention than patients with delayed loading. Edentulous patients in nine German dental schools received a midline implant with a length of 11 mm. Implants with a minimum insertion torque of 30 Ncm and an implant stability quotient of ≥60 were randomly allocated to group A for immediate loading using ball attachments or to group B for delayed loading after 3 months. Patients completed questionnaires with 100-mm visual analogue scales about the items pain, pain during chewing, swelling, bleeding, and perception of the intervention at the day of surgery and 1, 2, 3, and 7 days, thereafter. Groups were compared by Wilcoxon-Mann-Whitney tests (P ≤ 0.05). The questionnaires of 81 patients in group A and 74 patients in group B were completed. The medians for pain and discomfort were moderate (<30). Participants of group A felt significantly more pain from the first day and more swelling from the third day after implantation than participants of group B. The individual perception of interventions showed no significant differences between groups. Immediate loading evoked more postoperative pain and swelling than the two stages of delayed loading. Immediate loading of a single mandibular midline implant supporting overdentures should be carefully considered.

  20. A wireless power transmission system for implantable devices in freely moving rodents.

    PubMed

    Eom, Kyungsik; Jeong, Joonsoo; Lee, Tae Hyung; Kim, Jinhyung; Kim, Junghoon; Lee, Sung Eun; Kim, Sung June

    2014-08-01

    Reliable wireless power delivery for implantable devices in animals is highly desired for safe and effective experimental use. Batteries require frequent replacement; wired connections are inconvenient and unsafe, and short-distance inductive coupling requires the attachment of an exterior transmitter to the animal's body. In this article, we propose a solution by which animals with implantable devices can move freely without attachments. Power is transmitted using coils attached to the animal's cage and is received by a receiver coil implanted in the animal. For a three-dimensionally uniform delivery of power, we designed a columnar dual-transmitter coil configuration. A resonator-based inductive link was adopted for efficient long-range power delivery, and we used a novel biocompatible liquid crystal polymer substrate as the implantable receiver device. Using this wireless power delivery system, we obtain an average power transfer efficiency of 15.2% (minimum efficiency of 10% and a standard deviation of 2.6) within a cage of 15×20×15 cm3.

  1. Bone microstrain values of 1-piece and 2-piece implants subjected to mechanical loading.

    PubMed

    Harel, Noga; Eshkol-Yogev, Inbar; Piek, Dana; Livne, Shiri; Lavi, David; Ormianer, Zeev

    2013-06-01

    The purpose of this study was to measure and compare the strain levels in peri-implant bone as generated by 1-piece (1P) and 2-piece (2P) implant systems. The implants (1P and 2P) were placed into bovine bone according to the manufacturer's protocol. Four linear strain gauges were placed around each implant neck and apex. Each model was loaded in static loading by a material testing machine in ascending forces ranging from 20 to 120 N. Microstrains (μ[Latin Small Letter Open E]) generated in the surrounding bone were measured by a strain gauge and recorded. Recorded microstrains were significantly higher for 1P implants than for 2P implants. Average recorded microstrain values were significantly lower in the neck (71.6 and 17.3 µs) compared with the apical (132 and 60 µs) regions of 1P and 2P implants, respectively (P < 0.0001). Within the limitations of this study, highest microstrains were generated in apical regions regardless of implant design, but the 2P implant ap-peared to provide a stress-damping effect in both the cervical and apical regions compared with the 1P implant.

  2. Biomechanics and strain mapping in bone as related to immediately-loaded dental implants

    PubMed Central

    Du, Jing; Lee, Jihyun; Jang, Andrew; Gu, Allen; Hossaini-Zadeh, Mehran; Prevost, Richard; Curtis, Don; Ho, Sunita

    2015-01-01

    The effects of alveolar bone socket geometry and bone-implant contact on implant biomechanics, and resulting strain distributions in bone were investigated. Following extraction of lateral incisors on a cadaver mandible, immediate implants were placed and bone-implant contact area, stability and bone strain were measured. In situ biomechanical testing coupled with micro X-ray microscope (μ-XRM) illustrated less stiff bone-implant complexes (701-822 N/mm) compared with bone-periodontal ligament (PDL)-tooth complexes (791-913 N/mm). X-ray tomograms illustrated that the cause of reduced stiffness was due to reduced and limited bone-implant contact. Heterogeneous elemental composition of bone was identified by using energy dispersive X-ray spectroscopy (EDS). The novel aspect of this study was the application of a new experimental mechanics method, that is, digital volume correlation, which allowed mapping of strains in volumes of alveolar bone in contact with a loaded implant. The identified surface and subsurface strain concentrations were a manifestation of load transferred to bone through bone-implant contact based on bone-implant geometry, quality of bone, implant placement, and implant design. 3D strain mapping indicated that strain concentrations are not exclusive to the bone-implant contact regions, but also extend into bone not directly in contact with the implant. The implications of the observed strain concentrations are discussed in the context of mechanobiology. Although a plausible explanation of surgical complications for immediate implant treatment is provided, extrapolation of results is only warranted by future systematic studies on more cadaver specimens and/or in vivo small scale animal models. PMID:26162549

  3. 21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Polytetrafluoroethylene with carbon fibers... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous device...

  4. Development and experimental study of large size composite plasma immersion ion implantation device

    NASA Astrophysics Data System (ADS)

    Falun, SONG; Fei, LI; Mingdong, ZHU; Langping, WANG; Beizhen, ZHANG; Haitao, GONG; Yanqing, GAN; Xiao, JIN

    2018-01-01

    Plasma immersion ion implantation (PIII) overcomes the direct exposure limit of traditional beam-line ion implantation, and is suitable for the treatment of complex work-piece with large size. PIII technology is often used for surface modification of metal, plastics and ceramics. Based on the requirement of surface modification of large size insulating material, a composite full-directional PIII device based on RF plasma source and metal plasma source is developed in this paper. This device can not only realize gas ion implantation, but also can realize metal ion implantation, and can also realize gas ion mixing with metal ions injection. This device has two metal plasma sources and each metal source contains three cathodes. Under the condition of keeping the vacuum unchanged, the cathode can be switched freely. The volume of the vacuum chamber is about 0.94 m3, and maximum vacuum degree is about 5 × 10-4 Pa. The density of RF plasma in homogeneous region is about 109 cm-3, and plasma density in the ion implantation region is about 1010 cm-3. This device can be used for large-size sample material PIII treatment, the maximum size of the sample diameter up to 400 mm. The experimental results show that the plasma discharge in the device is stable and can run for a long time. It is suitable for surface treatment of insulating materials.

  5. Leadless Cardiac Pacemaker Implantation After Lead Extraction in Patients With Severe Device Infection.

    PubMed

    Kypta, Alexander; Blessberger, Hermann; Kammler, Juergen; Lambert, Thomas; Lichtenauer, Michael; Brandstaetter, Walter; Gabriel, Michael; Steinwender, Clemens

    2016-09-01

    Conventional pacemaker therapy is limited by short- and long-term complications, most notably device infection. Transcatheter pacing systems (TPS) may be beneficial in this kind of patients as they eliminate the need for a device pocket and leads and thus may reduce the risk of re-infection. We assessed a novel procedure in 6 patients with severe device infection who were pacemaker dependent. After lead extraction a single chamber TPS was implanted into the right ventricle. Of the 6 patients who underwent lead extraction due to severe device infection at our institution, 3 were diagnosed with a pocket infection only, whereas the other 3 showed symptoms of both pocket and lead infection. Successful lead extraction and TPS implantation was accomplished in all patients. Four patients were bridged with a temporary pacemaker between 2 hours and 2 days after lead extraction, whereas 2 patients had the TPS implanted during the same procedure just before traditional pacemaker system removal. All patients stayed free of infection during the follow-up period of 12 weeks. An additional positron emission tomography scan was performed in each patient and indicated no signs of an infection around the TPS. Transcather pacemaker implantation was safe and feasible in 6 patients and did not result in re-infection even if implanted before removal of the infected pacemaker system within the same procedure. Therefore, implantation of a TPS may be an option for patients with severe device infection, especially in those with blocked venous access or who are pacemaker dependent. © 2016 Wiley Periodicals, Inc.

  6. Displacement of dental implants in trabecular bone under a static lateral load in fresh bovine bone.

    PubMed

    Engelke, Wilfried; Müller, Alois; Decco, Oscar A; Rau, María J; Cura, Andrea C; Ruscio, Mara L; Knösel, Michael

    2013-04-01

    The study aims to provide objective data for the displacement of titanium screw implants in trabecular bone specimens. One hundred Semados implants (Bego, Bremen, Germany) were inserted in bovine type IV bone specimens. All implants had a diameter of 3.75 mm; 50 implants had a length of 8.5 mm and 50 implants had a length of 15 mm. Insertion torque was determined at intervals of 10, 20, and 30 Ncm. Implants were loaded horizontally with 10, 20, and 30 N for 2 seconds. An indicator strip was attached to the implant abutment to allow direct observation of implant movement relative to the bone surface. Horizontal displacement was assessed with an accuracy of measurement of 10 µm. Seven implants got lost by visible loosening. Degree of displacement was subject to evaluation with all others. Those implants showed a mean displacement of 59 µm for 10 N (n = 100), 173 µm for 20 N (n = 99), and 211 µm for 30 N (n = 93). The mean displacement of 15-mm implants (16, 37, 51 µm) was significantly lower compared with 8.5-mm implants (103, 311, 396 µm) corresponding to 10, 20, and 30 N as lateral loads. Displacement of screw implants in trabecular bone can be detected and visualized using commercially available endoscopes with a high magnification. A lateral load of 20 N indicates a mean displacement of over 100 µm and therefore results in a critical displacement. © 2011 Wiley Periodicals, Inc.

  7. High drug-loading nanomedicines: progress, current status, and prospects

    PubMed Central

    Shen, Shihong; Wu, Youshen; Liu, Yongchun; Wu, Daocheng

    2017-01-01

    Drug molecules transformed into nanoparticles or endowed with nanostructures with or without the aid of carrier materials are referred to as “nanomedicines” and can overcome some inherent drawbacks of free drugs, such as poor water solubility, high drug dosage, and short drug half-life in vivo. However, most of the existing nanomedicines possess the drawback of low drug-loading (generally less than 10%) associated with more carrier materials. For intravenous administration, the extensive use of carrier materials might cause systemic toxicity and impose an extra burden of degradation, metabolism, and excretion of the materials for patients. Therefore, on the premise of guaranteeing therapeutic effect and function, reducing or avoiding the use of carrier materials is a promising alternative approach to solve these problems. Recently, high drug-loading nanomedicines, which have a drug-loading content higher than 10%, are attracting increasing interest. According to the fabrication strategies of nanomedicines, high drug-loading nanomedicines are divided into four main classes: nanomedicines with inert porous material as carrier, nanomedicines with drug as part of carrier, carrier-free nanomedicines, and nanomedicines following niche and complex strategies. To date, most of the existing high drug-loading nanomedicines belong to the first class, and few research studies have focused on other classes. In this review, we investigate the research status of high drug-loading nanomedicines and discuss the features of their fabrication strategies and optimum proposal in detail. We also point out deficiencies and developing direction of high drug-loading nanomedicines. We envision that high drug-loading nanomedicines will occupy an important position in the field of drug-delivery systems, and hope that novel perspectives will be proposed for the development of high drug-loading nanomedicines. PMID:28615938

  8. Pacemaker implantation rate after transcatheter aortic valve implantation with early and new-generation devices: a systematic review.

    PubMed

    van Rosendael, Philippe J; Delgado, Victoria; Bax, Jeroen J

    2018-06-01

    The incidence of new-onset conduction abnormalities requiring permanent pacemaker implantation (PPI) after transcatheter aortic valve implantation (TAVI) with new-generation prostheses remains debated. This systematic review analyses the incidence of PPI after TAVI with new-generation devices and evaluates the electrical, anatomical, and procedural factors associated with PPI. In addition, the incidence of PPI after TAVI with early generation prostheses was reviewed for comparison. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist, this systematic review screened original articles published between October 2010 and October 2017, reporting on the incidence of PPI after implantation of early and new-generation TAVI prostheses. Of the 1406 original articles identified in the first search for new-generation TAVI devices, 348 articles were examined for full text, and finally, 40 studies (n = 17 139) were included. The incidence of a PPI after the use of a new-generation TAVI prosthesis ranged between 2.3% and 36.1%. For balloon-expandable prostheses, the PPI rate remained low when using an early generation SAPIEN device (ranging between 2.3% and 28.2%), and with the new-generation SAPIEN 3 device, the PPI rate was between 4.0% and 24.0%. For self-expandable prostheses, the PPI rates were higher with the early generation CoreValve device (16.3-37.7%), and despite a reduction in PPI rates with the new Evolut R, the rates remained relatively higher (14.7-26.7%). When dividing the studies according to the highest (>26.0%) and the lowest (<12.1%) quintile of PPI rate, patients within the highest quintile were more frequently women when compared with the lowest quintile group (50.9% vs. 46.3%, P < 0.001). Pre-existent conduction abnormalities (electrical factor), calcification of the left ventricular outflow tract (anatomical factor), and balloon valvuloplasty and depth of implantation (procedural factors) were associated

  9. Comparative ex vivo evaluation of two electronic percussive testing devices measuring the stability of dental implants.

    PubMed

    Geckili, Onur; Bilhan, Hakan; Cilingir, Altug; Bilmenoglu, Caglar; Ates, Gokcen; Urgun, Aliye Ceren; Bural, Canan

    2014-12-01

    A comparative ex vivo study was performed to determine electronic percussive test values (PTVs) measured by cabled and wireless electronic percussive testing (EPT) devices and to evaluate the intra- and interobserver reliability of the wireless EPT device. Forty implants were inserted into the vertebrae and forty into the pelvis of a steer, a safe distance apart. The implants were all 4.3 mm wide and 13 mm long, from the same manufacturer. PTV of each implant was measured by four different examiners, using both EPT devices, and compared. Additionally, the intra- and interobserver reliability of the wireless EPT device was evaluated. Statistically significant differences (P <0.05) were observed between PTVs made by the two EPT devices. PTVs measured by the wireless EPT device were significantly higher than the cabled EPT device (P <0.05), indicating lower implant stability. The intraobserver reliability of the wireless EPT device was evaluated as excellent for the measurements in type II bone and good-to-excellent in type IV bone; interobserver reliability was evaluated as fair-to-good in both bone types. The wireless EPT device gives PTVs higher than the cabled EPT device, indicating lower implant stability, and its inter- and intraobserver reliability is good and acceptable.

  10. Load-bearing capacity of screw-retained CAD/CAM-produced titanium implant frameworks (I-Bridge®2) before and after cyclic mechanical loading.

    PubMed

    Dittmer, Marc Philipp; Nensa, Moritz; Stiesch, Meike; Kohorst, Philipp

    2013-01-01

    Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo depends on additional aspects. Further studies are

  11. Load-bearing capacity of screw-retained CAD/CAM-produced titanium implant frameworks (I-Bridge®2) before and after cyclic mechanical loading

    PubMed Central

    DITTMER, Marc Philipp; NENSA, Moritz; STIESCH, Meike; KOHORST, Philipp

    2013-01-01

    Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. Objective The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Material and Methods Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). Results All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. Conclusion The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo

  12. Centrifuge-simulated suborbital spaceflight in subjects with cardiac implanted devices.

    PubMed

    Blue, Rebecca S; Reyes, David P; Castleberry, Tarah L; Vanderploeg, James M

    2015-04-01

    Future commercial spaceflight participants (SFPs) with conditions requiring personal medical devices represent a unique challenge. The behavior under stress of cardiac implanted devices (CIDs) such as pacemakers is of special concern. No known data currently exist on how such devices may react to the stresses of spaceflight. We examined the responses of two volunteer subjects with CIDs to G forces in a centrifuge to evaluate how similar potential commercial SFPs might tolerate the forces of spaceflight. Two subjects, 75- and 79-yr-old men with histories of atrial fibrillation and implanted dual-lead, rate-responsive pacemakers, underwent seven centrifuge runs over 2 d. Day 1 consisted of two +Gz runs (peak = +3.5 Gz, run 2) and two +Gx runs (peak = +6.0 Gx, run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +Gx/+Gz). Data collected included blood pressures, electrocardiograms, pulse oximetry, neurovestibular exams, and postrun questionnaires regarding motion sickness, disorientation, greyout, and other symptoms. Despite both subjects' significant medical histories, neither had abnormal physiological responses. Post-spin analysis demonstrated no lead displacement, damage, or malfunction of either CID. Potential risks to SFPs with CIDs include increased arrhythmogenesis, lead displacement, and device damage. There are no known prior studies of individuals with CIDs exposed to accelerations anticipated during the dynamic phases of suborbital spaceflight. These cases demonstrate that even individuals with significant medical histories and implanted devices can tolerate the acceleration exposures of commercial spaceflight. Further investigation will determine which personal medical devices present significant risks during suborbital flight and beyond.

  13. Security and privacy issues in implantable medical devices: A comprehensive survey.

    PubMed

    Camara, Carmen; Peris-Lopez, Pedro; Tapiador, Juan E

    2015-06-01

    Bioengineering is a field in expansion. New technologies are appearing to provide a more efficient treatment of diseases or human deficiencies. Implantable Medical Devices (IMDs) constitute one example, these being devices with more computing, decision making and communication capabilities. Several research works in the computer security field have identified serious security and privacy risks in IMDs that could compromise the implant and even the health of the patient who carries it. This article surveys the main security goals for the next generation of IMDs and analyzes the most relevant protection mechanisms proposed so far. On the one hand, the security proposals must have into consideration the inherent constraints of these small and implanted devices: energy, storage and computing power. On the other hand, proposed solutions must achieve an adequate balance between the safety of the patient and the security level offered, with the battery lifetime being another critical parameter in the design phase. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. In vivo surface roughness evolution of a stressed metallic implant

    NASA Astrophysics Data System (ADS)

    Tan, Henry

    2016-10-01

    Implant-associated infection, a serious medical issue, is caused by the adhesion of bacteria to the surface of biomaterials; for this process the surface roughness is an important property. Surface nanotopography of medical implant devices can control the extent of bacterial attachment by modifying the surface morphology; to this end a model is introduced to facilitate the analysis of a nanoscale smooth surface subject to mechanical loading and in vivo corrosion. At nanometre scale rough surface promotes friction, hence reduces the mobility of the bacteria; this sessile environment expedites the biofilm growth. This manuscript derives the controlling equation for surface roughness evolution for metallic implant subject to in-plane stresses, and predicts the in vivo roughness changes within 6 h of continued mechanical loading at different stress level. This paper provides analytic tool and theoretical information for surface nanotopography of medical implant devices.

  15. Implantable cardiac arrhythmia devices--part I: pacemakers.

    PubMed

    Kusumoto, Fred M; Goldschlager, Nora

    2006-05-01

    Implantable cardiac devices have become firmly entrenched as important therapeutic tools for a variety of cardiac conditions. The first part of this two-part review will discuss the contemporary use and follow-up of pacemakers, while the second part will address the use of implantable cardioverter defibrillators and implantable loop recorders. Pacemakers are the only available treatment for symptomatic bradycardia not due to reversible causes. Large randomized studies have demonstrated a small but statistically significant reduction in atrial fibrillation associated with pacing modes that maintain atrioventricular synchrony. In contrast, pacing mode appears to have a less dramatic effect in patients with atrioventricular block. Cardiac resynchronization with specialized left ventricular leads has been shown to reduce symptoms and improve survival in patients with symptomatic heart failure, systolic dysfunction, and widened QRS complexes. For all patients, careful follow-up is necessary to ensure optimal therapeutic benefit of pacing systems.

  16. Objective Comparison of Commercially Available Breast Implant Devices.

    PubMed

    Henderson, Peter W; Nash, David; Laskowski, Marta; Grant, Robert T

    2015-10-01

    Breast implants are frequently used for both cosmetic breast augmentation and breast reconstruction after mastectomy. Three companies currently offer FDA-approved breast implants (Allergan, Mentor, and Sientra), but their product offerings-including permanent breast implants, breast tissue expanders, sizers, and post-operative warranty-can be difficult to compare because of brand names and company-specific jargon. The ability to have a brand-agnostic understanding of all available options is important for both the surgical trainee as well as the surgeon in clinical practice. After a brief review of the history of breast implant devices, this review utilizes a unique conceptual framework based on variables such as fill material, shape, relative dimensions, and surface coating to facilitate a better understanding of the similarities and differences between the different company's offerings. Specifically, we identify which types of devices are offered by all three companies, those that are offered by only one company, those that have very limited product offerings, and those combinations that are not available at all. Finally, clinical implications are drawn from this framework that can be used by both cosmetic and reconstructive surgeons to counsel patients about all available options. Importantly, this project is entirely independent of any company's funding, support, or input. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  17. Three-Dimensional Nonlinear Finite Element Analysis and Microcomputed Tomography Evaluation of Microgap Formation in a Dental Implant Under Oblique Loading.

    PubMed

    Jörn, Daniela; Kohorst, Philipp; Besdo, Silke; Borchers, Lothar; Stiesch, Meike

    2016-01-01

    Since bacterial leakage along the implant-abutment interface may be responsible for peri-implant infections, a realistic estimation of the interface gap width during function is important for risk assessment. The purpose of this study was to compare two methods for investigating microgap formation in a loaded dental implant, namely, microcomputed tomography (micro-CT) and three-dimensional (3D) nonlinear finite element analysis (FEA); additionally, stresses to be expected during loading were also evaluated by FEA. An implant-abutment complex was inspected for microgaps between the abutment and implant in a micro-CT scanner under an oblique load of 200 N. A numerical model of the situation was constructed; boundary conditions and external load were defined according to the experiment. The model was refined stepwise until its load-displacement behavior corresponded sufficiently to data from previous load experiments. FEA of the final, validated model was used to determine microgap widths. These were compared with the widths as measured in micro-CT inspection. Finally, stress distributions were evaluated in selected regions. No microgaps wider than 13 μm could be detected by micro-CT for the loaded implant. FEA revealed gap widths up to 10 μm between the implant and abutment at the side of load application. Furthermore, FEA predicted plastic deformation in a limited area at the implant collar. FEA proved to be an adequate method for studying microgap formation in dental implant-abutment complexes. FEA is not limited in gap width resolution as are radiologic techniques and can also provide insight into stress distributions within the loaded complex.

  18. Does aquatic exercise reduce hip and knee joint loading? In vivo load measurements with instrumented implants

    PubMed Central

    Kutzner, Ines; Dymke, Jörn; Damm, Philipp; Duda, Georg N.; Günzl, Reiner; Bergmann, Georg

    2017-01-01

    Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36–55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in

  19. Does aquatic exercise reduce hip and knee joint loading? In vivo load measurements with instrumented implants.

    PubMed

    Kutzner, Ines; Richter, Anja; Gordt, Katharina; Dymke, Jörn; Damm, Philipp; Duda, Georg N; Günzl, Reiner; Bergmann, Georg

    2017-01-01

    Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36-55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the

  20. Mandibular single-implant overdentures: preliminary results of a randomised-control trial on early loading with different implant diameters and attachment systems.

    PubMed

    Alsabeeha, Nabeel H M; Payne, Alan G T; De Silva, Rohana K; Thomson, W Murray

    2011-03-01

    To determine surgical and prosthodontic outcomes of mandibular single-implant overdentures, opposing complete maxillary dentures, using a wide diameter implant and large ball attachment system compared with different regular diameter implants with standard attachment systems. Thirty-six edentulous participants (mean age 68 years, SD 9.2) were randomly assigned into three treatment groups (n=12). A single implant was placed in the mandibular midline of participants to support an overdenture using a 6-week loading protocol. The control group received Southern regular implants and standard ball attachments. One group received Southern 8-mm-wide implants and large ball attachments. Another group received Neoss regular implants and Locator attachments. Parametric and non-parametric tests of a statistical software package (SPSS) were used to determine between groups differences in marginal bone loss, implant stability, implant, and prosthodontic success (P<0.05). Implant success after 1 year was 75% for Southern regular implant (control) group; and 100% for the Southern wide and Neoss regular implant groups (P=0.038). Mean marginal bone loss at 1 year was 0.19 mm (SD 0.39) without significant differences observed. Implant stability quotient (ISQ) at baseline was significantly lower for the Southern regular (control) group than the other two groups (P=0.001; P=0.009). At 1 year, no significant difference in implant stability was observed (mean ISQ 74.6, SD 6.1). The change in implant stability from baseline to 1 year was significant for the control group (P=0.025). Prosthodontic success was comparable between the groups but the maintenance (41 events overall, mean 1.2) was greater for the Locator and the standard ball attachments. Mandibular single-implant overdentures are a successful treatment option for older edentulous adults with early loading protocol using implants of different diameters and with different attachment systems. © 2010 John Wiley & Sons A/S.

  1. Biocompatibility tests of components of an implantable cardiac assist device.

    PubMed

    von Recum, A F; Imamura, H; Freed, P S; Kantrowitz, A; Chen, S T; Ekstrom, M E; Baechler, C A; Barnhart, M I

    1978-09-01

    A permanently implantable in-series left ventricular assist device, the dynamic aortic patch (DAP), has been tested in chronic animal experiments. The DAP replaces a section of the intrathoracic aortic wall. Hemothorax and hematocele at the implantation site have been complications in recent experiments. Primary postoperative hemorrhage was ruled out, and the biocompatibility of all components was therefore examined. Dacron velour, Teflon felt, conductive polyurethane, segmented polyether polyurethane, and Teflon-coated polyester fiber sutures were implanted in the pleural cavities of dogs and tested in vitro by culturing canine saphenous vein explants on them. In vivo experiments demonstrated that all components elicited mild to moderate inflammatory reactions, but hematocele occurred only when the components were implanted in the aorta with direct blood contact and exposed to arterial blood pressures. In vitro, cells were cultured on all components with no signs of toxic reactions. These results indicated that the host tolerated all implant components without major inflammatory responses. However, histological data indicated that chronic slow bleeding into or through the Dacron velour in contact with the arterial blood serum could account for hemothorax or hematocele formation. Therefore, a configuration of the assist device using materials impermeable to blood may obviate these difficulties.

  2. Low cost mobile explosive/drug detection devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gozani, T.; Bendahan, J.

    1999-06-10

    Inspection technologies based on Thermal Neutron Analysis (TNA) and/or Fast Neutron Analysis (FNA) are the basis for relatively compact and low-cost, material-sensitive devices for a wide variety of inspection needs. The TNA allows the use of either isotropic neutron sources such as a {sup 252}Cf, or electronic neutron generators such as the d-T sealed neutron generator tubes. The latter could be used in a steady state mode or in slow (>{mu}s) pulsing mode, to separate the thermal neutron capture signatures following the pulse from the combination of the FNA plus TNA signatures during the pulse. Over the years, Ancore Corporationmore » has built and is continuing to develop a variety of inspection devices based on its TNA and FNA technologies: SPEDS--an explosive detection device for small parcels, portable electronics, briefcases and other similar carry-on items; MDS - a system for the detection or confirmation of buried mines; VEDS - a system for the detection of varied amounts of explosives and/or drugs concealed in passenger vehicles, pallets, lightly loaded trucks or containers, etc.; ACD - a device to clear alarms from a primary, non-specific explosive detection system for passenger luggage. The principle and performance of these devices will be shown and discussed.« less

  3. Immediate loading of implants in the aesthetic zone: comparison between two placement timings.

    PubMed

    Carini, Fabrizio; Longoni, Salvatore; Pisapia, Valeria; Francesconi, Manuel; Saggese, Vito; Porcaro, Gianluca

    2014-01-01

    Implant rehabilitation delivered in accordance with the traditional protocol has proven to be highly predictable and acceptable (1). Nevertheless, the application of immediate loading on post-extraction implants, especially for aesthetic zones, has now considerably increased (2). The aim of this work is to illustrate the immediate loading of implants placed in the aesthetic zone through tapered design fixtures with microgeometry of a high degree of porosity inserted at the same time or 4-8 weeks from dental avulsion (TSA® Advance, Phibo®). A total of 15 implant fixtures of which 8 at an interval of 4-8 weeks from extraction (type 2) and the remaining according to the immediate post-extraction technique (type 1) were positioned. All implants were prosthesized within 24 hours from the placement. Definitive crowns replaced provisional restorations after 20-24 weeks. After 4 and 12 months from implant insertion, the following parameters were assessed: X-ray image, pain, mobility or suppuration, soft tissue condition and aesthetic appearance. Percentage of osseointegration was 93.75%, and 53.5% of the osseointegrated fixtures was type 2. No statistically significant difference between the mean ISQ values for implants of type 1 and 2 both in the post-operative period and after 12 months was evident, indicating that the timing of insertion did not affect the achievement of stability for the implant fixtures tested in our study. Immediate post-extraction implants showed a greater propensity for gingival recession and a peri-implant radiolucency greater than those placed at an interval of 4-8 weeks. The values obtained for the PES/WES and the subjective evaluation of the analyzed sample showed the considerable aesthetic value and the high level of satisfaction guaranteed by the implant technique illustrated. Although well-designed, high quality, randomized clinical trials are still needed as well as the requirement to establish a common, complete, and reproducible index

  4. Microfluidic device for drug delivery

    NASA Technical Reports Server (NTRS)

    MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Beebe, David J. (Inventor); Mensing, Glennys A. (Inventor)

    2010-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  5. Esthetic Outcomes of Immediately Loaded Locking Taper Implants in the Anterior Maxilla: A Case Series Study.

    PubMed

    Lombardo, Giorgio; Corrocher, Giovanni; Pighi, Jacopo; Mascellaro, Anna; Marincola, Mauro; Nocini, Per Francesco

    2016-06-01

    The purpose of this study was to evaluate the esthetic outcome of single-tooth locking taper connection implants placed in the anterior maxilla following a postextractive nonfunctional loading protocol. This preliminary clinical study involving 16 patients evaluated the results of 21 implants placed in areas with high esthetic value. For each implant the pink esthetic score, white esthetic score, cumulative survival rate, and health status of peri-implant tissues were evaluated. The cumulative survival rate was 100% 2 years after prosthetic loading, and the mean total pink esthetic score/white esthetic score was 16.9 ± 1.14 on a maximum value of 20. There was excellent plaque control in all patients, and inflammation indices were within the norm. Within the limits of this study, this immediate nonfunctional loading protocol seems to be a successful procedure esthetically and for the maintenance of peri-implant soft tissues.

  6. Concomitant transcatheter aortic valve and left ventricular assist device implantation.

    PubMed

    Baum, Christina; Seiffert, Moritz; Treede, Hendrik; Reichenspurner, Hermann; Deuse, Tobias

    2013-01-01

    Relevant aortic regurgitation (AR) requires surgical repair at the time of left ventricular assist device (LVAD) implantation to reduce recirculation and ensure adequate forward flow. We report here on a patient with moderate AR in a noncalcified aortic valve and extensive calcification of the ascending aorta. The latter precluded aortic-crossclamping and, thus, surgical intervention on the aortic valve. Although there were no valvular or annular calcifications, a JenaValve transcatheter heart valve was successfully placed transapically with subsequent LVAD implantation in one operation. We believe concomitant transcatheter aortic valve implantation (TAVI) and LVAD implantation is a promising hybrid procedure, even in patients with pure AR.

  7. First-in-human testing of a wirelessly controlled drug delivery microchip.

    PubMed

    Farra, Robert; Sheppard, Norman F; McCabe, Laura; Neer, Robert M; Anderson, James M; Santini, John T; Cima, Michael J; Langer, Robert

    2012-02-22

    The first clinical trial of an implantable microchip-based drug delivery device is discussed. Human parathyroid hormone fragment (1-34) [hPTH(1-34)] was delivered from the device in vivo. hPTH(1-34) is the only approved anabolic osteoporosis treatment, but requires daily injections, making patient compliance an obstacle to effective treatment. Furthermore, a net increase in bone mineral density requires intermittent or pulsatile hPTH(1-34) delivery, a challenge for implantable drug delivery products. The microchip-based devices, containing discrete doses of lyophilized hPTH(1-34), were implanted in eight osteoporotic postmenopausal women for 4 months and wirelessly programmed to release doses from the device once daily for up to 20 days. A computer-based programmer, operating in the Medical Implant Communications Service band, established a bidirectional wireless communication link with the implant to program the dosing schedule and receive implant status confirming proper operation. Each woman subsequently received hPTH(1-34) injections in escalating doses. The pharmacokinetics, safety, tolerability, and bioequivalence of hPTH(1-34) were assessed. Device dosing produced similar pharmacokinetics to multiple injections and had lower coefficients of variation. Bone marker evaluation indicated that daily release from the device increased bone formation. There were no toxic or adverse events due to the device or drug, and patients stated that the implant did not affect quality of life.

  8. Cardiac or Other Implantable Electronic Devices and Sleep-disordered Breathing – Implications for Diagnosis and Therapy

    PubMed Central

    Bitter, Thomas; Gutleben, Klaus-Jürgen; Horstkotte, Dieter; Oldenburg, Olaf

    2014-01-01

    Sleep-disordered breathing (SDB) is of growing interest in cardiology because SDB is a highly prevalent comorbidity in patients with a variety of cardiovascular diseases. The prevalence of SDB is particularly high in patients with cardiac dysrhythmias and/or heart failure. In this setting, many patients now have implantable cardiac devices, such as pacemakers, implantable cardioverter-defibrillators or implanted cardiac resynchronisation therapy devices (CRT). Treatment of SDB using implantable cardiac devices has been studied previously, with atrial pacing and CRT being shown not to bring about satisfactory results in SDB care. The latest generations of these devices have the capacity to determine transthoracic impedance, to detect and quantify breathing efforts and to identify SDB. The capability of implantable cardiac devices to detect SDB is of potential importance for patients with cardiovascular disease, allowing screening for SDB, monitoring of the course of SDB in relation to cardiac status, and documenting of the effects of treatment. PMID:26835077

  9. Clinical outcomes of immediate/early loading of dental implants. A literature review of recent controlled prospective clinical studies.

    PubMed

    Sennerby, L; Gottlow, J

    2008-06-01

    Two previous reviews have evaluated the clinical outcomes of immediate/early loading of dental implants based on studies published until 2005.(1,2) The aim of the present paper was to review controlled clinical studies on the subject published since 2005 including at least 10 patients in each group followed for at least one year in function. Six comparative studies were found and none of these showed any differences in survival rates or marginal bone loss after one to five years. Most authors used specified inclusion criteria to avoid known risk factors such as soft bone, short implants and bruxism. Data from one randomized study in the edentulous maxilla showed no differences between early and delayed loading in consecutive clinical routine cases including short implants and soft bone. Three additional studies comparing different surfaces or implant designs under immediate loading were reviewed. No differences between implants with a moderately rough or smooth surface topography were observed. The data add to the previous bulk of evidence that various designs of implants can be loaded shortly after their placement in both the mandible and the maxilla. However, one study reported on marginal bone loss around a novel one-piece implant design leading to implant failure which was not seen for control two-piece implants.(3).

  10. A Tunable, Biodegradable, Thin-Film Polymer Device as a Long-Acting Implant Delivering Tenofovir Alafenamide Fumarate for HIV Pre-exposure Prophylaxis

    PubMed Central

    Schlesinger, Erica; Johengen, Daniel; Luecke, Ellen; Rothrock, Ginger; McGowan, Ian; van der Straten, Ariane; Desai, Tejal

    2016-01-01

    Purpose The effectiveness of Tenofovir based HIV pre-exposure prophylaxis (PrEP) is proven, but hinges on correct and consistent use. User compliance and therapeutic effectiveness can be improved by long acting drug delivery systems. Here we describe a thin-film polymer device (TFPD) as a biodegradable subcutaneous implant for PrEP. Methods A thin-film polycaprolactone (PCL) membrane controls drug release from a reservoir. To achieve membrane controlled release, TAF requires a formulation excipient such as PEG300 to increase the dissolution rate and reservoir solubility. Short-term In vitro release studies are used to develop an empirical design model, which is applied to the production of in vitro prototype devices demonstrating up to 90-days of linear release and TAF chemical stability. Results The size and shape of the TFPD are tunable, achieving release rates ranging from 0.5–4.4 mg/day in devices no larger than a contraceptive implant. Based on published data for oral TAF, subcutaneous constant-rate release for HIV PrEP is estimated at < 2.8mg/day. Prototype devices demonstrated linear release at 1.2mg/day for up to 90 days and at 2.2mg/day for up to 60 days. Conclusions We present a biodegradable TFPD for subcutaneous delivery of TAF for HIV PrEP. The size, shape and release rate of the device are tunable over a > 8-fold range. PMID:26975357

  11. Electromagnetic immunity of implantable pacemakers exposed to wi-fi devices.

    PubMed

    Mattei, Eugenio; Censi, Federica; Triventi, Michele; Calcagnini, Giovanni

    2014-10-01

    The purpose of this study is to evaluate the potential for electromagnetic interference (EMI) and to assess the immunity level of implantable pacemakers (PM) when exposed to the radiofrequency (RF) field generated by Wi-Fi devices. Ten PM from five manufacturers, representative of what today is implanted in patients, have been tested in vitro and exposed to the signal generated by a Wi-Fi transmitter. An exposure setup that reproduces the actual IEEE 802.11b/g protocol has been designed and used during the tests. The system is able to amplify the Wi-Fi signal and transmits at power levels higher than those allowed by current international regulation. Such approach allows one to obtain, in case of no EMI, a safety margin for PM exposed to Wi-Fi signals, which otherwise cannot be derived if using commercial Wi-Fi equipment. The results of this study mitigate concerns about using Wi-Fi devices close to PM: none of the PM tested exhibit any degradation of their performance, even when exposed to RF field levels five times higher than those allowed by current international regulation (20 W EIRP). In conclusion, Wi-Fi devices do not pose risks of EMI to implantable PM. The immunity level of modern PM is much higher than the transmitting power of RF devices operating at 2.4 GHz.

  12. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion.

    PubMed

    Çalışkan, Nazlı; Bayram, Cem; Erdal, Ebru; Karahaliloğlu, Zeynep; Denkbaş, Emir Baki

    2014-02-01

    This study aims to generate a bactericidal agent releasing surface via nanotube layer on titanium metal and to investigate how aspect ratio of nanotubes affects drug elution time and cell proliferation. Titania nanotube layers were generated on metal surfaces by anodic oxidation at various voltage and time parameters. Gentamicin loading was carried out via simple pipetting and the samples were tested against S. aureus for the efficacy of the applied modification. Drug releasing time and cell proliferation were also tested in vitro. Titania nanotube layers with varying diameters and lengths were prepared after anodization and anodizing duration was found as the most effective parameter for amount of loaded drug and drug releasing time. Drug elution lasted up to 4 days after anodizing for 80 min of the samples, whereas release completed in 24 h when the samples were anodized for 20 min. All processed samples had bactericidal properties against S. aureus organism except unmodified titanium, which was also subjected to drug incorporation step. The anodization also enhanced water wettability and cell adhesion results. Anodic oxidation is an effective surface modification to enhance tissue-implant interactions and also resultant titania layer can act as a drug reservoir for the release of bactericidal agents. The use of implants as local drug eluting devices is promising but further in vivo testing is required. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Immediate loading of unsplinted implants in the anterior mandible for overdentures: 3-year results.

    PubMed

    Roe, Phillip; Kan, Joseph Y K; Rungcharassaeng, Kitichai; Lozada, Jaime L

    2011-01-01

    This 3-year study evaluated the implant survival rate, peri-implant tissue response, prosthetic maintenance, and prosthetic complications in a series of patients who received two immediately loaded unsplinted threaded implants to retain a mandibular overdenture. Eight completely edentulous patients were evaluated clinically and radiographically immediately after implant placement, at 3 months, and at 1, 2, and 3 years after implant placement. Data were analyzed using repeated-measures one-way analysis of variance and the Wilcoxon signed rank test at a significance level of α = .05. At 3 years, all implants remained osseointegrated (16/16), with an overall mean marginal bone change of -0.58 ± 0.39 mm and a mean Periotest value of -7.19 ± 0.54. The modified Plaque Index scores showed marked improvement in oral hygiene during the first year, but some relapse was observed thereafter. Prosthetic maintenance and complications included replacement of the attachment inserts, abutment loosening, dislodgement of the attachment housing, overdenture reline, denture tooth fracture, and overdenture base fracture. This 3-year study suggests that, despite less than ideal oral hygiene and a high incidence of complete/partial fracture of overdentures, favorable implant survival rate and peri-implant tissue responses can be achieved in mandibular overdentures retained with two immediately loaded unsplinted threaded implants.

  14. Percutaneous Repair of Postoperative Mitral Regurgitation After Left Ventricular Assist Device Implant.

    PubMed

    Cork, David P; Adamson, Robert; Gollapudi, Raghava; Dembitsky, Walter; Jaski, Brian

    2018-02-01

    Mitral regurgitation commonly improves after implantation of a left ventricular assist device without concomitant valvular repair owing to the mechanical unloading of the left ventricle. However, the development (or persistence) of significant mitral regurgitation after implantation of a left ventricular assist device is associated with adverse clinical events. We present a case of a left ventricular assist device patient who successfully underwent a percutaneous MitraClip procedure for repair of persistent late postoperative mitral insufficiency with demonstrable clinical and hemodynamic improvement. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Electromagnetic Radiation Efficiency of Body-Implanted Devices

    NASA Astrophysics Data System (ADS)

    Nikolayev, Denys; Zhadobov, Maxim; Karban, Pavel; Sauleau, Ronan

    2018-02-01

    Autonomous wireless body-implanted devices for biotelemetry, telemedicine, and neural interfacing constitute an emerging technology providing powerful capabilities for medicine and clinical research. We study the through-tissue electromagnetic propagation mechanisms, derive the optimal frequency range, and obtain the maximum achievable efficiency for radiative energy transfer from inside a body to free space. We analyze how polarization affects the efficiency by exciting TM and TE modes using a magnetic dipole and a magnetic current source, respectively. Four problem formulations are considered with increasing complexity and realism of anatomy. The results indicate that the optimal operating frequency f for deep implantation (with a depth d ≳3 cm ) lies in the (108- 109 )-Hz range and can be approximated as f =2.2 ×107/d . For a subcutaneous case (d ≲3 cm ), the surface-wave-induced interference is significant: within the range of peak radiation efficiency (about 2 ×108 to 3 ×109 Hz ), the max-to-min ratio can reach a value of 6.5. For the studied frequency range, 80%-99% of radiation efficiency is lost due to the tissue-air wave-impedance mismatch. Parallel polarization reduces the losses by a few percent; this effect is inversely proportional to the frequency and depth. Considering the implantation depth, the operating frequency, the polarization, and the directivity, we show that about an order-of-magnitude efficiency improvement is achievable compared to existing devices.

  16. Kinematic and fatigue biomechanics of an interpositional facet arthroplasty device.

    PubMed

    Dahl, Michael C; Freeman, Andrew L

    2016-04-01

    Although approximately 30% of chronic lumbar pain can be attributed to the facets, limited surgical options exist for patients. Interpositional facet arthroplasty (IFA) is a novel treatment for lumbar facetogenic pain designed to provide patients who gain insufficient relief from medical interventional treatment options with long-term relief, filling a void in the facet pain treatment continuum. This study aimed to quantify the effect of IFA on segmental range of motion (ROM) compared with the intact state, and to observe device position and condition after 10,000 cycles of worst-case loading. In situ biomechanical analysis of the lumbar spine following implantation of a novel IFA device was carried out. Twelve cadaveric functional spinal units (L2-L3 and L5-S1) were tested in 7.5 Nm flexion-extension, lateral bending, and torsion while intact and following device implantation. Additionally, specimens underwent 10,000 cycles of worst-case complex loading and were testing in ROM again. Load-displacement and fluoroscopic data were analyzed to determine ROM and to evaluate device position during cyclic testing. Devices and facets were evaluated post testing. Institutional support for implant evaluation was received by Zyga Technology. Range of motion post implantation decreased versus intact, and then was restored post cyclic-testing. Of the tested devices, 6.5% displayed slight movement (0.5-2 mm), all from tight L2-L3 facet joints with misplaced devices or insufficient cartilage. No damage was observed on the devices, and wear patterns were primarily linear. The results from this in situ cadaveric biomechanics and cyclic fatigue study demonstrate that a low-profile, conformable IFA device can maintain position and facet functionality post implantation and through 10,000 complex loading cycles. In vivo conditions were not accounted for in this model, which may affect implant behavior not predictable via a biomechanical study. However, these data along with

  17. Improved Noncoherent UWB Receiver for Implantable Biomedical Devices.

    PubMed

    Nagaraj, Santosh; Rassam, Faris G

    2016-10-01

    The purpose of this paper is to describe a novel noncoherent receiver architecture to improve the error performance of impulse-radio ultrawideband (IR-UWB) in bioimplanted devices. IR-UWB receivers based on energy detection are popular in biomedical applications owing to the low implementation cost/complexity and the high data rates that UWB can potentially support. Implanted devices suffer from severe frequency-dependent attenuation due to human blood and tissues, while most receivers in the literature are designed based on commonly used indoor wireless channel models. We propose a novel receiver design that is based on judiciously combining the energies in different bands of the signal spectrum with a weighted linear combiner. We derive the optimum coefficients of the combiner. The receiver retains almost all of the advantages of a conventional noncoherent detector, but can also compensate for attenuation properties of blood/tissue. The receiver design can be adapted to different implantation depths by simply varying the combiner weights. The receiver can also be considered to be a simple form of equalizer for noncoherent reception. Our simulations show about 2-dB improvement over other commonly used receivers. This receiver design is significant in that it can enhance critical battery life of implanted transmitters.

  18. Implant healing in experimental animal models of diabetes.

    PubMed

    Le, Nga N; Rose, Michael B; Levinson, Howard; Klitzman, Bruce

    2011-05-01

    Diabetes mellitus is becoming increasingly prevalent worldwide. Additionally, there is an increasing number of patients receiving implantable devices such as glucose sensors and orthopedic implants. Thus, it is likely that the number of diabetic patients receiving these devices will also increase. Even though implantable medical devices are considered biocompatible by the Food and Drug Administration, the adverse tissue healing that occurs adjacent to these foreign objects is a leading cause of their failure. This foreign body response leads to fibrosis, encapsulation of the device, and a reduction or cessation of device performance. A second adverse event is microbial infection of implanted devices, which can lead to persistent local and systemic infections and also exacerbates the fibrotic response. Nearly half of all nosocomial infections are associated with the presence of an indwelling medical device. Events associated with both the foreign body response and implant infection can necessitate device removal and may lead to amputation, which is associated with significant morbidity and cost. Diabetes mellitus is generally indicated as a risk factor for the infection of a variety of implants such as prosthetic joints, pacemakers, implantable cardioverter defibrillators, penile implants, and urinary catheters. Implant infection rates in diabetic patients vary depending upon the implant and the microorganism, however, for example, diabetes was found to be a significant variable associated with a nearly 7.2% infection rate for implantable cardioverter defibrillators by the microorganism Candida albicans. While research has elucidated many of the altered mechanisms of diabetic cutaneous wound healing, the internal healing adjacent to indwelling medical devices in a diabetic model has rarely been studied. Understanding this healing process is crucial to facilitating improved device design. The purpose of this article is to summarize the physiologic factors that

  19. Implant Healing in Experimental Animal Models of Diabetes

    PubMed Central

    Le, Nga N; Rose, Michael B; Levinson, Howard; Klitzman, Bruce

    2011-01-01

    Diabetes mellitus is becoming increasingly prevalent worldwide. Additionally, there is an increasing number of patients receiving implantable devices such as glucose sensors and orthopedic implants. Thus, it is likely that the number of diabetic patients receiving these devices will also increase. Even though implantable medical devices are considered biocompatible by the Food and Drug Administration, the adverse tissue healing that occurs adjacent to these foreign objects is a leading cause of their failure. This foreign body response leads to fibrosis, encapsulation of the device, and a reduction or cessation of device performance. A second adverse event is microbial infection of implanted devices, which can lead to persistent local and systemic infections and also exacerbates the fibrotic response. Nearly half of all nosocomial infections are associated with the presence of an indwelling medical device. Events associated with both the foreign body response and implant infection can necessitate device removal and may lead to amputation, which is associated with significant morbidity and cost. Diabetes mellitus is generally indicated as a risk factor for the infection of a variety of implants such as prosthetic joints, pacemakers, implantable cardioverter defibrillators, penile implants, and urinary catheters. Implant infection rates in diabetic patients vary depending upon the implant and the microorganism, however, for example, diabetes was found to be a significant variable associated with a nearly 7.2% infection rate for implantable cardioverter defibrillators by the microorganism Candida albicans. While research has elucidated many of the altered mechanisms of diabetic cutaneous wound healing, the internal healing adjacent to indwelling medical devices in a diabetic model has rarely been studied. Understanding this healing process is crucial to facilitating improved device design. The purpose of this article is to summarize the physiologic factors that

  20. Machined versus roughened immediately loaded and finally restored single implants inserted flapless: Preliminary 6-month data from a split- mouth randomised controlled trial.

    PubMed

    Cannizzaro, Gioacchino; Felice, Pietro; Loi, Ignazio; Viola, Paolo; Ferri, Vittorio; Leone, Michele; Lazzarini, Matteo; Trullenque-Eriksson, Anna; Esposito, Marco

    To compare the outcome of immediately loaded single implants with a machined or a roughened surface. Fifty patients had two implant sites randomly allocated to receive flaplessplaced single Syra implants (Sweden & Martina), one with a machined and one with a roughened surface (sand-blasted with zirconia powder and acid etched), according to a split-mouth design. To be loaded immediately, implants had to be inserted with a torque superior to 50 Ncm. Implants were restored with definitive crowns in direct occlusal contact within 48 h. Patients were followed for 6 months after loading. Outcome measures were prosthetic and implant failures and complications. Two machined implants and four roughened implants were not loaded immediately. Six months after loading no dropout occurred. One implant loaded late, which had a rough implant surface, failed 20 days after loading (P (McNemar test) = 0.625; difference in proportions = -0.04; 95% CI: -0.15 to 0.07). Three crowns had to be remade on machined implants and four on roughened implants (P (McNemar test) = 1.000; difference in proportions = -0.02; 95% CI: -0.12 to 0.08). Three machined and five roughened implants experienced complications (P (McNemar test) = 0.625; difference in proportions = -0.04; 95% CI: -0.15 to 0.07). There were no statistically significant differences between groups for crown and implant losses as well as complications. Up to 6 months after loading both machined and roughened flapless-placed and immediately loaded single implants provided good and similar results, however, longer follow-ups are needed to evaluate the long-term prognosis of implants with different surfaces.

  1. Development of a Portable Knee Rehabilitation Device That Uses Mechanical Loading.

    PubMed

    Fitzwater, Daric; Dodge, Todd; Chien, Stanley; Yokota, Hiroki; Anwar, Sohel

    2013-12-01

    Joint loading is a recently developed mechanical modality, which potentially provides a therapeutic regimen to activate bone formation and prevent degradation of joint tissues. To our knowledge, however, few joint loading devices are available for clinical or point-of-care applications. Using a voice-coil actuator, we developed an electromechanical loading system appropriate for human studies and preclinical trials that should prove both safe and effective. Two specific tasks for this loading system were development of loading conditions (magnitude and frequency) suitable for humans, and provision of a convenient and portable joint loading apparatus. Desktop devices have been previously designed to evaluate the effects of various loading conditions using small and large animals. However, a portable knee loading device is more desirable from a usability point of view. In this paper, we present such a device that is designed to be portable, providing a compact, user-friendly loader. The portable device was employed to evaluate its capabilities using a human knee model. The portable device was characterized for force-pulse width modulation duty cycle and loading frequency properties. The results demonstrate that the device is capable of producing the necessary magnitude of forces at appropriate frequencies to promote the stimulation of bone growth and which can be used in clinical studies for further evaluations.

  2. Micromotion and stress distribution of immediate loaded implants: a finite element analysis.

    PubMed

    Fazel, A; Aalai, S; Rismanchian, M; Sadr-Eshkevari, P

    2009-12-01

    Primary stability and micromotion of the implant fixture is mostly influenced by its macrodesign. To assess and compare the peri-implant stress distribution and micromotion of two types of immediate loading implants, immediate loaded screw (ILS) Nisastan and Xive (DENTSPLY/Friadent, Monnheim, Germany), and to determine the best macrodesign of these two implants by finite element analysis. In this experimental study, the accurate pictures of two fixtures (ILS: height = 13, diameter = 4 mm and Xive: height = 13, diameter = 3.8 mm) were taken by a new digital camera (Nikon Coolpix 5700 [Nikon, Japan], resolution = 5.24 megapixel, lens = 8x optical, 4x digital zoom). Following accurate measurements, the three-dimensional finite element computer model was simulated and inserted in simulated mandibular bone (D(2)) in SolidWorks 2003 (SolidWork Corp., MA, USA) and Ansys 7.1 (Ansys, Inc., Canonsburg, PA, USA). After loading (500 N, 75 degrees above horizon), the displacement was displayed and von Mises stress was recorded. It was found that the primary stability of ILS was greater (152 microm) than Xive (284 microm). ILS exhibited more favorable stress distribution. Maximum stress concentration found in periapical bone around Xive ( approximately 30 MPa) was lesser than Nisastan ( approximately 37 MPa). Macrodesign of ILS leads to better primary stability and stress distribution. Maximum stress around Xive was less.

  3. Cable load sensing device

    DOEpatents

    Beus, Michael J.; McCoy, William G.

    1998-01-01

    Apparatus for sensing the magnitude of a load on a cable as the cable is employed to support the load includes a beam structure clamped to the cable so that a length of the cable lies along the beam structure. A spacer associated with the beam structure forces a slight curvature in a portion of the length of cable under a cable "no-load" condition so that the portion of the length of cable is spaced from the beam structure to define a cable curved portion. A strain gauge circuit including strain gauges is secured to the beam structure by welding. As the cable is employed to support a load the load causes the cable curved portion to exert a force normal to the cable through the spacer and on the beam structure to deform the beam structure as the cable curved portion attempts to straighten under the load. As this deformation takes place, the resistance of the strain gauges is set to a value proportional to the magnitude of the normal strain on the beam structure during such deformation. The magnitude of the normal strain is manipulated in a control device to generate a value equal to the magnitude or weight of the load supported by the cable.

  4. Annual update: drugs, diagnostics and devices.

    PubMed

    Berardinelli, Candace; Kupecz, Deborah

    2003-03-01

    As NPs continue to play an important role in health care as administers of prescriptions, the value of reviewing the latest Food and Drug Administration (FDA) approvals for new drugs and devices is immeasurable. In 2002, the FDA approved several new drugs and devices, as well as monitored previously approved drugs for adverse reactions and untoward events. This article provides a brief review of relevant primary care topics.

  5. [Mechanical studies of lumbar interbody fusion implants].

    PubMed

    Bader, R J; Steinhauser, E; Rechl, H; Mittelmeier, W; Bertagnoli, R; Gradinger, R

    2002-05-01

    In addition to autogenous or allogeneic bone grafts, fusion cages composed of metal or plastic are being used increasingly as spacers for interbody fusion of spinal segments. The goal of this study was the mechanical testing of carbon fiber reinforced plastic (CFRP) fusion cages used for anterior lumbar interbody fusion. With a special testing device according to American Society for Testing and Materials (ASTM) standards, the mechanical properties of the implants were determined under four different loading conditions. The implants (UNION cages, Medtronic Sofamor Danek) provide sufficient axial compression, shear, and torsional strength of the implant body. Ultimate axial compression load of the fins is less than the physiological compression loads at the lumbar spine. Therefore by means of an appropriate surgical technique parallel grooves have to be reamed into the endplates of the vertebral bodies according to the fin geometry. Thereby axial compression forces affect the implants body and the fins are protected from damaging loading. Using a supplementary anterior or posterior instrumentation, in vivo failure of the fins as a result of physiological shear and torsional spinal loads is unlikely. Due to specific complications related to autogenous or allogeneic bone grafts, fusion cages made of metal or carbon fiber reinforced plastic are an important alternative implant in interbody fusion.

  6. The effects of dynamic compressive loading on biodegradable implants of 50-50% polylactic Acid-polyglycolic Acid.

    PubMed

    Thompson, D E; Agrawal, C M; Athanasiou, K

    1996-01-01

    Biodegradable implants that release growth factors or other bioactive agents in a controlled manner are investigated to enhance the repair of musculoskeletal tissues. In this study, the in vitro release characteristics and mechanical properties of a 50:50 polylactic acid/polyglycolic acid two phase implant were examined over a 6-week period under no-load conditions or under a cyclic compressive load, such as that experienced when walking slowly during rehabilitation. The results demonstrated that a cyclic compressive load significantly slows the decrease of molecular chain size during the first week, significantly increases protein release for the first 2-3 weeks, and significantly stiffens the implant for the first 3 weeks. It was also shown that protein release is initially high and steadily decreases with time until the molecular weight declines to about 20% of its original value (approximately 4 weeks). Once this threshold is reached, increased protein release, surface deformation, and mass loss occurs. This study also showed that dynamic loading and the environment in which an implant is placed affect its biodegradation. Therefore, it may be essential that in vitro degradation studies of these or similar implants include a dynamic functional environment.

  7. Technique of after-loading interstitial implants.

    PubMed

    Syed, A M; Feder, B H

    1977-01-01

    Interstitial implants are either removable or permanent (and occasionally a combination of both). Permanent implants are generally utilized where tumors are not accessible enough to permit easy removal of sources or where accurate source distribution is less critical. They are useful for cancers of the lung, pancreas, prostate, bladder, lymph nodes, etc. Radon and gold-198 have been largely replaced by iodine-125. Our major interests are in the removable after-loading iridium-192 implant techniques. Template (steel guide) and non-template (plastic tube) techniques are utilized. Templates are preferred where the tumor volume can only be approached from one side and where accurate positioning of sources would otherwise be difficult. They are useful for cancers of the cervix, vagina, urethra, and rectum. Non-template (plastic tube) techniques are preferred where the tumor volume can be approached from at least two sides and where templates are either not feasible or not essential for accurate positioning of sources. The single needle non-template approach is useful for cancers of lip, nodes, and breast (plastic button) and for cancers of the oral cavity and oropharynx (gold button). The paired needle non-template approach is useful for cancers of the gum, retromolar trigone, and base of tongue (loop technique) and for cancers of the palate (arch technique). Procedures for each technique are described in detail.

  8. 21 CFR 880.5965 - Subcutaneous, implanted, intravascular infusion port and catheter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Subcutaneous, implanted, intravascular infusion... Hospital and Personal Use Therapeutic Devices § 880.5965 Subcutaneous, implanted, intravascular infusion port and catheter. (a) Identification. A subcutaneous, implanted, intravascular infusion port and...

  9. 21 CFR 880.5965 - Subcutaneous, implanted, intravascular infusion port and catheter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Subcutaneous, implanted, intravascular infusion... Hospital and Personal Use Therapeutic Devices § 880.5965 Subcutaneous, implanted, intravascular infusion port and catheter. (a) Identification. A subcutaneous, implanted, intravascular infusion port and...

  10. Pacemakers and implantable cardioverter defibrillators: device longevity is more important than smaller size: the patient's viewpoint.

    PubMed

    Wild, David M; Fisher, John D; Kim, Soo G; Ferrick, Kevin J; Gross, Jay N; Palma, Eugen C

    2004-11-01

    The size of pacemakers and implantable cardioverter defibrillators (ICDs) has been diminishing progressively. If two devices are otherwise identical in components, features and technology, the one with a larger battery should have a longer service life. Therefore, patients who receive smaller devices may require more frequent surgery to replace the devices. It is uncertain whether this tradeoff for smaller size is desired by patients. We surveyed 156 patients to determine whether patients prefer a larger, longer-lasting device, or a smaller device that is less noticeable but requires more frequent surgery. The effects of subgroups were evaluated; these included body habitus, age, gender, and patients seen at time of pulse generator replacement (PGR), initial implant, or follow-up. Among 156 patients surveyed, 151 expressed a preference. Of these, 90.1% preferred the larger device and 9.9% the smaller device (P <0.0001). Among thin patients, 79.5% preferred a larger device. Ninety percent of males and 89.2% of females selected the larger device. Among younger patients (< or =72 years), 89.6% preferred the larger device, as did 90.5% of older patients (>72 years). Of patients undergoing PGR or initial implants, 95% favored the larger device, as did 86% of patients presenting for follow-up. The vast majority of patients prefer a larger device to reduce the number of potential replacement operations. This preference crosses the spectrum of those with a previously implanted device, those undergoing initial implants, those returning for routine follow-up, and patients of various ages, gender, and habitus.

  11. In-vitro development of a temporal abutment screw to protect osseointegration in immediate loaded implants.

    PubMed

    García-Roncero, Herminio; Caballé-Serrano, Jordi; Cano-Batalla, Jordi; Cabratosa-Termes, Josep; Figueras-Álvarez, Oscar

    2015-04-01

    In this study, a temporal abutment fixation screw, designed to fracture in a controlled way upon application of an occlusal force sufficient to produce critical micromotion was developed. The purpose of the screw was to protect the osseointegration of immediate loaded single implants. Seven different screw prototypes were examined by fixing titanium abutments to 112 Mozo-Grau external hexagon implants (MG Osseous®; Mozo-Grau, S.A., Valladolid, Spain). Fracture strength was tested at 30° in two subgroups per screw: one under dynamic loading and the other without prior dynamic loading. Dynamic loading was performed in a single-axis chewing simulator using 150,000 load cycles at 50 N. After normal distribution of obtained data was verified by Kolmogorov-Smirnov test, fracture resistance between samples submitted and not submitted to dynamic loading was compared by the use of Student's t-test. Comparison of fracture resistance among different screw designs was performed by the use of one-way analysis of variance. Confidence interval was set at 95%. Fractures occurred in all screws, allowing easy retrieval. Screw Prototypes 2, 5 and 6 failed during dynamic loading and exhibited statistically significant differences from the other prototypes. Prototypes 2, 5 and 6 may offer a useful protective mechanism during occlusal overload in immediate loaded implants.

  12. SCIMITAR: subject-carried implant monitoring inductive telemetric ambulatory reader for remote data acquisition from implanted orthopaedic prostheses.

    PubMed

    Hao, Shiying; Gorjon, Jose; Taylor, Stephen

    2014-03-01

    This work describes the functions of the external, portable part of a telemetry system for powering and interrogating implantable electrical devices built within orthopaedic implants for real-time data acquisition of strain, load, temperature, humidity and other relevant data (e.g. from inertial sensors). The system contains a battery powered inductive energiser and demodulator to remotely power the implant electronics and demodulate the signals transmitted from the implanted device. Due to the housing of the internal coil, sufficient inductive coupling is obtained between the external and internal tuned circuits to enable simultaneous power and data transmission over the same inductive link. The actual performance of this system when used with one specific implant was studied, and some correspondence made to the relevant theory. Performance factors relating to both power efficiency and data reconstruction were identified. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Remote Monitoring of Cardiac Implantable Electronic Devices.

    PubMed

    Cheung, Christopher C; Deyell, Marc W

    2018-01-08

    Over the past decade, technological advancements have transformed the delivery of care for arrhythmia patients. From early transtelephonic monitoring to new devices capable of wireless and cellular transmission, remote monitoring has revolutionized device care. In this article, we review the current evolution and evidence for remote monitoring in patients with cardiac implantable electronic devices. From passive transmission of device diagnostics, to active transmission of patient- and device-triggered alerts, remote monitoring can shorten the time to diagnosis and treatment. Studies have shown that remote monitoring can reduce hospitalization and emergency room visits, and improve survival. Remote monitoring can also reduce the health care costs, while providing increased access to patients living in rural or marginalized communities. Unfortunately, as many as two-thirds of patients with remote monitoring-capable devices do not use, or are not offered, this feature. Current guidelines recommend remote monitoring and interrogation, combined with annual in-person evaluation in all cardiac device patients. Remote monitoring should be considered in all eligible device patients and should be considered standard of care. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  14. Influence of the implant abutment types and the dynamic loading on initial screw loosening

    PubMed Central

    Kim, Eun-Sook

    2013-01-01

    PURPOSE This study examined the effects of the abutment types and dynamic loading on the stability of implant prostheses with three types of implant abutments prepared using different fabrication methods by measuring removal torque both before and after dynamic loading. MATERIALS AND METHODS Three groups of abutments were produced using different types of fabrication methods; stock abutment, gold cast abutment, and CAD/CAM custom abutment. A customized jig was fabricated to apply the load at 30° to the long axis. The implant fixtures were fixed to the jig, and connected to the abutments with a 30 Ncm tightening torque. A sine curved dynamic load was applied for 105 cycles between 25 and 250 N at 14 Hz. Removal torque before loading and after loading were evaluated. The SPSS was used for statistical analysis of the results. A Kruskal-Wallis test was performed to compare screw loosening between the abutment systems. A Wilcoxon signed-rank test was performed to compare screw loosening between before and after loading in each group (α=0.05). RESULTS Removal torque value before loading and after loading was the highest in stock abutment, which was then followed by gold cast abutment and CAD/CAM custom abutment, but there were no significant differences. CONCLUSION The abutment types did not have a significant influence on short term screw loosening. On the other hand, after 105 cycles dynamic loading, CAD/CAM custom abutment affected the initial screw loosening, but stock abutment and gold cast abutment did not. PMID:23509006

  15. Pacemakers and implantable cardioverter defibrillators--general and anesthetic considerations.

    PubMed

    Rapsang, Amy G; Bhattacharyya, Prithwis

    2014-01-01

    A pacemaking system consists of an impulse generator and lead or leads to carry the electrical impulse to the patient's heart. Pacemaker and implantable cardioverter defibrillator codes were made to describe the type of pacemaker or implantable cardioverter defibrillator implanted. Indications for pacing and implantable cardioverter defibrillator implantation were given by the American College of Cardiologists. Certain pacemakers have magnet-operated reed switches incorporated; however, magnet application can have serious adverse effects; hence, devices should be considered programmable unless known otherwise. When a device patient undergoes any procedure (with or without anesthesia), special precautions have to be observed including a focused history/physical examination, interrogation of pacemaker before and after the procedure, emergency drugs/temporary pacing and defibrillation, reprogramming of pacemaker and disabling certain pacemaker functions if required, monitoring of electrolyte and metabolic disturbance and avoiding certain drugs and equipments that can interfere with pacemaker function. If unanticipated device interactions are found, consider discontinuation of the procedure until the source of interference can be eliminated or managed and all corrective measures should be taken to ensure proper pacemaker function should be done. Post procedure, the cardiac rate and rhythm should be monitored continuously and emergency drugs and equipments should be kept ready and consultation with a cardiologist or a pacemaker-implantable cardioverter defibrillator service may be necessary. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  16. 21 CFR 882.5860 - Implanted neuromuscular stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted neuromuscular stimulator. 882.5860... neuromuscular stimulator. (a) Identification. An implanted neuromuscular stimulator is a device that provides electrical stimulation to a patient's peroneal or femoral nerve to cause muscles in the leg to contract, thus...

  17. Parameters influencing the course of passive drug loading into lipid nanoemulsions.

    PubMed

    Göke, Katrin; Bunjes, Heike

    2018-05-01

    Passive drug loading can be used to effectively identify suitable colloidal lipid carrier systems for poorly water-soluble drugs. This method comprises incubation of preformed carrier systems with drug powder and subsequent determination of the resulting drug load of the carrier particles. Until now, the passive loading mechanism is unknown, which complicates reliable routine use. In this work, the influence of drug characteristics on the course of passive loading was investigated systematically varying drug surface area and drug solubility. Fenofibrate and flufenamic acid were used as model drugs; the carrier system was a trimyristin nanodispersion. Loading progress was analyzed by UV spectroscopy or by a novel method based on differential scanning calorimetry. While increasing drug solubility by micelle incorporation did not speed up passive loading, a large drug surface area and high water solubility were key parameters for fast loading. Since both factors are crucial in drug dissolution as described by the Noyes-Whitney equation, these findings point to a dissolution-diffusion-based passive loading mechanism. Accordingly, passive loading also occurred when drug and carrier particles were separated by a dialysis membrane. Knowledge of the loading mechanism allows optimizing the conditions for future passive loading studies and assessing the limitations of the method. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Comparative analysis of anchorage systems for micro implant orthodontics.

    PubMed

    Favero, Lorenzo; Giagnorio, Costantino; Cocilovo, Francesco

    2010-01-01

    The study analysed twelve anchorage systems based on micro implants in terms of their bio-mechanical properties and appraised their actual clinical effectiveness. The analysed micro implants had data provided by the manufacturers or extracted from articles published in specialised journals. The parameters taken into account were: material, surface treatment, head type, length, diameter, neck length, filleted self drilling or self tapping surface, applicable orthodontic forces, possibility of immediate loading, and device removal. Material Grade 5 titanium, titanium alloy (TiAl6V4), surgical steel; surfaces: smooth, sand-blasted and acid etched; head type: bracket, conic with button, round, hexagonal, button with cross cuts, double melted sphere; lengths: between 8.0 to 14 mm; diameters: between 1.2 to 2.0 mms; neck lengths: inferior to 1.5mm and superior to 2.0mm; filleted portion: self tapping and/or self drilling; applicable orthodontic forces: up to 500 g, possibility of immediate loading, device removal, possibility to use in growing patients. The most widely used material was TiAl6V4; most of the surfaces were smooth; the most commonly used head type was the bracket; the most often produced length was the "short" one (8.0-9.9 mm), the most demanded diameter the "smaller" one (1.2-1.4 mms); six systems out of eleven had micro implants with "extra" and "standard" necks; only 3 systems out of eleven produced "non self drilling"devices; all the micro implants analysed were able to withstand orthodontic forces between 150 g and 350 g; all devices were suitable for "immediate loading"; all micro implants had to be removed; all micro implants could be used in growing patients. The comparative analysis showed that micro implants could be used as valid anchorage systems, if dental anchorage was insufficient either in qualitative terms (i.e. parodontal problems) or in quantitative terms (i.e. few dental elements remaining), and in all those situations of limited patient

  19. Long-term outcome after implantation of a suprachoroidal cyclosporine drug delivery device in horses with recurrent uveitis.

    PubMed

    Gilger, Brian C; Wilkie, David A; Clode, Allison B; McMullen, Richard J; Utter, Mary E; Komaromy, Andras M; Brooks, Dennis E; Salmon, Jacklin H

    2010-09-01

    To determine the long-term efficacy, complications, and duration of effect of a cyclosporine (CsA) suprachoroidal implant (CSI) in horses with equine recurrent uveitis (ERU). Horses with ERU were treated with a 6-mm diameter, 25 mg, reservoir matrix CsA implant in the deep sclera adjacent to the suprachoroidal space. Horses with follow-up >1 year were examined for frequency of uveitis episodes, complications, and vision at last recheck. Data from 151 eyes of 133 horses from the USA and Europe that had CsA devices implanted for ERU were reviewed. Follow-up time ranged from 13 to 85 months after surgery, with a mean and median follow-up time of 28.9 and 26.3 months, respectively. Overall, at last follow-up 78.8% of eyes were considered visual and the overall mean frequency of uveitis episodes after CSI was 0.09 ± SD 0.08 episodes per month. The most common complications leading to vision loss at last follow-up were persistent uveitis episodes (54%), glaucoma (22%), mature cataracts (16%), and retinal detachment (6%). Persistent uveitis episodes tended to be the highest cause of vision loss in horses with <24 months and >48 months of follow-up. This study demonstrated the long-term maintenance of vision of horses with ERU implanted with a CSI. The increased vision loss related to uveitis episode of inflammation in eyes after the likely depletion of CsA from the CSI suggests that a repeat CSI may be required at or before 48 months after surgery.

  20. Percutaneous Lead Extraction in Infection of Cardiac Implantable Electronic Devices: a Systematic Review

    PubMed Central

    Menezes Júnior, Antônio da Silva; Magalhães, Thaís Rodrigues; Morais, Alana de Oliveira Alarcão

    2018-01-01

    Introduction In the last two decades, the increased number of implants of cardiac implantable electronic devices has been accompanied by an increase in complications, especially infection. Current recommendations for the appropriate treatment of cardiac implantable electronic devices-related infections consist of prolonged antibiotic therapy associated with complete device extraction. The purpose of this study was to analyze the importance of percutaneous extraction in the treatment of these devices infections. Methods A systematic review search was performed in the PubMed, BVS, Cochrane CENTRAL, CAPES, SciELO and ScienceDirect databases. A total of 1,717 studies were identified and subsequently selected according to the eligibility criteria defined by relevance tests by two authors working independently. Results Sixteen studies, describing a total of 3,354 patients, were selected. Percutaneous extraction was performed in 3,081 patients. The average success rate for the complete percutaneous removal of infected devices was 92.4%. Regarding the procedure, the incidence of major complications was 2.9%, and the incidence of minor complications was 8.4%. The average in-hospital mortality of the patients was 5.4%, and the mortality related to the procedure ranged from 0.4 to 3.6%. The mean mortality was 20% after 6 months and 14% after a one-year follow-up. Conclusion Percutaneous extraction is the main technique for the removal of infected cardiac implantable electronic devices, and it presents low rates of complications and mortality related to the procedure.

  1. Numerical verification of two-component dental implant in the context of fatigue life for various load cases.

    PubMed

    Szajek, Krzysztof; Wierszycki, Marcin

    2016-01-01

    Dental implant designing is a complex process which considers many limitations both biological and mechanical in nature. In earlier studies, a complete procedure for improvement of two-component dental implant was proposed. However, the optimization tasks carried out required assumption on representative load case, which raised doubts on optimality for the other load cases. This paper deals with verification of the optimal design in context of fatigue life and its main goal is to answer the question if the assumed load scenario (solely horizontal occlusal load) leads to the design which is also "safe" for oblique occlussal loads regardless the angle from an implant axis. The verification is carried out with series of finite element analyses for wide spectrum of physiologically justified loads. The design of experiment methodology with full factorial technique is utilized. All computations are done in Abaqus suite. The maximal Mises stress and normalized effective stress amplitude for various load cases are discussed and compared with the assumed "safe" limit (equivalent of fatigue life for 5e6 cycles). The obtained results proof that coronial-appical load component should be taken into consideration in the two component dental implant when fatigue life is optimized. However, its influence in the analyzed case is small and does not change the fact that the fatigue life improvement is observed for all components within whole range of analyzed loads.

  2. Immediate vs non-immediate loading post-extractive implants: a comparative study of implant stability quotient (ISQ)

    PubMed Central

    MILILLO, L.; FIANDACA, C.; GIANNOULIS, F.; OTTRIA, L.; LUCCHESE, A.; SILVESTRE, F.; PETRUZZI, M.

    2016-01-01

    SUMMARY Purpose This study aims to evaluate differences in implant stability between post-extractive implants vs immediately placed post-extractive implants by resonance frequency analysis (RFA). Materials and methods Patients were grouped into two different categories. In Group A 10 patients had an immediate post-extractive implant, then a provisional, acrylic resin crown was placed (immediate loading). In Group B (control group) 10 patients only had an immediate post-extractive implant. Both upper and lower premolars were chosen as post-extractive sites. Implant Stability Quotient (ISQ) was measured thanks to RFA measurements (Osstell®). Five intervals were considered: immediately after surgery (T0) and every four weeks, until five months after implant placement (T1, T2, T3, T4,T5). A statistical analysis by means of Student’s T-test (significance set at p<0.05) for independent sample was carried out in order to compare Groups A and B. Results The ISQ value between the two groups showed a statistically significant difference (p<0.02) at T1. No statistically significant difference in ISQ was assessed at T0, T2, T3, T4 and T5. Conclusions After clinical assessment it is possible to confirm that provisional and immediate prosthetic surgery in post-extraction sites with cone-shaped implants, platform-switching abutment and bioactive surface can facilitate osseointegration, reducing healing time. PMID:28042440

  3. Study of ocular transport of drugs released from an intravitreal implant using magnetic resonance imaging.

    PubMed

    Kim, Hyuncheol; Lizak, Martin J; Tansey, Ginger; Csaky, Karl G; Robinson, Michael R; Yuan, Peng; Wang, Nam Sun; Lutz, Robert J

    2005-02-01

    Ensuring optimum delivery of therapeutic agents in the eye requires detailed information about the transport mechanisms and elimination pathways available. This knowledge can guide the development of new drug delivery devices. In this study, we investigated the movement of a drug surrogate, Gd-DTPA (Magnevist) released from a polymer-based implant in rabbit vitreous using T1-weighted magnetic resonance imaging (MRI). Intensity values in the MRI data were converted to concentration by comparison with calibration samples. Concentration profiles approaching pseudosteady state showed gradients from the implant toward the retinal surface, suggesting that diffusion was occurring into the retinal-choroidal-scleral (RCS) membrane. Gd-DTPA concentration varied from high values near the implant to lower values distal to the implant. Such regional concentration differences throughout the vitreous may have clinical significance when attempting to treat ubiquitous eye diseases using a single positional implant. We developed a finite element mathematical model of the rabbit eye and compared the MRI experimental concentration data with simulation concentration profiles. The model utilized a diffusion coefficient of Gd-DTPA in the vitreous of 2.8 x 10(-6) cm2 s(-1) and yielded a diffusion coefficient for Gd-DTPA through the simulated composite posterior membrane (representing the retina-choroidsclera membrane) of 6.0 x 10(-8) cm2 s(-1). Since the model membrane was 0.03-cm thick, this resulted in an effective membrane permeability of 2.0 x 10(-6) cm s(-1). Convective movement of Gd-DTPA was shown to have minimal effect on the concentration profiles since the Peclet number was 0.09 for this system.

  4. No influence of simultaneous bone-substitute application on the success of immediately loaded dental implants: a retrospective cohort study.

    PubMed

    Kopp, Sigmar; Behrend, Detlef; Kundt, Günther; Ottl, Peter; Frerich, Bernhard; Warkentin, Mareike

    2013-06-01

    To examine the influence of bone-substitute application during implantation on the success of immediately placed and loaded dental implants. A total of 147 consecutive patients (age, 16.5-80.4 years) were provided with 696 immediately loaded implants. The mean follow-up time was 34.1 months. Of these implants, 50.4% (n=351) were immediately placed into extraction sockets. A total of 119 implants were added by simultaneous bone-substitute application (NanoBone, Artoss GmbH, Rostock Germany), whereas the other implants were placed in healed bone. Univariate and multivariate analysis was performed using IBM SPSS V.20. The overall implant success rate was 96.1%. Implants with simultaneous bone replacement had a hazard ratio of 0.877 (p=0.837); 95% CI, 0.253-3.04). Factors found to be statistically significant modifiers of success on multivariate analysis (p<0.05) included type of superstructure (p<0.001), implant-abutment connection (p<0.001), membrane use (p=0.010), and jaw (p=0.026). None of the other factors investigated were significant modifiers. The present study demonstrates high success rates for immediately loaded implants and their superstructures independent of the simultaneous application of bone substitute. The declared aim of socket preservation, the prevention avoiding bone loss, is achieved in the immediate implant placement scenario under immediate-loading conditions.

  5. Prospective randomized clinical trial of hydrophilic tapered implant placement at maxillary posterior area: 6 weeks and 12 weeks loading

    PubMed Central

    2016-01-01

    PURPOSE Early loading of implant can be determined by excellent primary stability and characteristic of implant surface. The implant system with recently improved surface can have load application 4-6 weeks after installing in maxilla and mandible. This study evaluated the effect of healing period to the stability of hydrophilic tapered-type implant at maxillary posterior area. MATERIALS AND METHODS This study included 30 patients treated by hydrophilic tapered-type implants (total 41 implants at maxilla) and classified by two groups depending on healing period. Group 1 (11 patients, 15 implants) was a control group and the healing period was 12 weeks, and Group 2 (19 patients, 26 implants) was test group and the healing period was 6 weeks. Immediately after implant placement, at the first impression taking, implant stability was measured using Osstell Mentor. The patients also took periapical radiographs after restoration delivery, 12 months after restoration and final followup period. The marginal bone loss around the implants was measured using the periapical radiographs. RESULTS All implants were survived and success rate was 97.56%. The marginal bone loss was less than 1mm after 1 year postoperatively except the one implant. The stabilities of the implants were not correlated with age, healing period until loading, insertion torque (IT), the diameter of fixture and the location of implant. Only the quality of bone in group 2 (6 week) was correlated with the stability of implant. CONCLUSION Healing period of 6 weeks can make the similar clinical prognosis of implants to that of healing period of 12 weeks if bone quality is carefully considered in case of early loading. PMID:27826390

  6. Nanomaterials and synergistic low intensity direct current (LIDC) stimulation technology for orthopaedic implantable medical devices

    PubMed Central

    Samberg, Meghan E.; Cohen, Paul H.; Wysk, Richard A.; Monteiro-Riviere, Nancy A.

    2012-01-01

    Nanomaterials play a significant role in biomedical research and applications due to their unique biological, mechanical, and electrical properties. In recent years, they have been utilised to improve the functionality and reliability of a wide range of implantable medical devices ranging from well-established orthopaedic residual hardware devices (e.g. hip implants) that can repair defects in skeletal systems to emerging tissue engineering scaffolds that can repair or replace organ functions. This review summarizes the applications and efficacies of these nanomaterials that include synthetic or naturally occurring metals, polymers, ceramics, and composites in orthopaedic implants, the largest market segment of implantable medical devices. The importance of synergistic engineering techniques that can augment or enhance the performance of nanomaterial applications in orthopaedic implants is also discussed,, the focus being on a low intensity direct electric current (LIDC) stimulation technology to promote the long-term antibacterial efficacy of oligodynamic metal-based surfaces by ionization, while potentially accelerating tissue growth and osseointegration. While many nanomaterials have clearly demonstrated their ability to provide more effective implantable medical surfaces, further decisive investigations are necessary before they can translate into medically safe and commercially viable clinical applications. The paper concludes with a discussion about some of the critical impending issues with the application of nanomaterials-based technologies in implantable medical devices, and potential directions to address these. PMID:23335493

  7. Effects of immediate and delayed loading on peri-implant trabecular structures: a cone beam CT evaluation.

    PubMed

    Huang, Yan; Van Dessel, Jeroen; Liang, Xin; Depypere, Maarten; Zhong, Weijian; Ma, Guowu; Lambrichts, Ivo; Maes, Frederik; Jacobs, Reinhilde

    2014-12-01

    To develop a method for characterizing trabecular bone microarchitecture using cone beam computed tomography (CBCT) and to evaluate trabecular bone changes after rehabilitation using immediate versus delayed implant protocols. Six mongrel dogs randomly received 27 titanium implants in the maxillary incisor or mandibular premolar areas, following one of four protocols: (1) normal extraction socket healing; (2) immediate implant placement and immediate loading; (3) delayed implant placement and delayed loading; (4) delayed implant placement and immediate loading. The animals were euthanized at 8 weeks, and block biopsies were scanned using high resolution CBCT. Standard bone structural variables were assessed in coronal, middle, and apical levels. Coronal and middle regions had more compact, more platelike, and thicker trabeculae. Protocols (2), (3), and (4) had significantly higher values (p < 0.001) than protocol (1) for bone surface density, bone surface volume ratio, and connectivity density, while significantly lower values (p < 0.001) were found for trabecular separation and fractal dimension. However, protocols (2), (3), and (4) did not show significantly different bone remodeling. Compared with normal extraction healing, the implant protocols have an improved bone structural integration. Results do not suggest a different bone remodeling pattern when a delayed versus an immediate implant protocol is used. © 2013 Wiley Periodicals, Inc.

  8. Fungal Biofilms, Drug Resistance, and Recurrent Infection

    PubMed Central

    Desai, Jigar V.; Mitchell, Aaron P.; Andes, David R.

    2014-01-01

    A biofilm is a surface-associated microbial community. Diverse fungi are capable of biofilm growth. The significance of this growth form for infection biology is that biofilm formation on implanted devices is a major cause of recurrent infection. Biofilms also have limited drug susceptibility, making device-associated infection extremely difficult to treat. Biofilm-like growth can occur during many kinds of infection, even when an implanted device is not present. Here we summarize the current understanding of fungal biofilm formation, its genetic control, and the basis for biofilm drug resistance. PMID:25274758

  9. Home monitoring after ambulatory implanted primary cardiac implantable electronic devices: The home ambulance pilot study.

    PubMed

    Parahuleva, Mariana S; Soydan, Nedim; Divchev, Dimitar; Lüsebrink, Ulrich; Schieffer, Bernhard; Erdogan, Ali

    2017-11-01

    The Home Monitoring (HM) system of cardiac implantable electronic devices (CIEDs) permits early detection of arrhythmias or device system failures. The aim of this pilot study was to examine how the safety and efficacy of the HM system in patients after ambulatory implanted primary CIEDs compare to patients with a standard procedure and hospitalization. We hypothesized that HM and their modifications would be a useful extension of the present concepts for ambulatory implanted CIEDs. This retrospective analysis evaluates telemetric data obtained from 364 patients in an ambulatory single center over 6 years. Patients were assigned to an active group (n = 217), consisting of those who were discharged early on the day of implantation of the primary CIED, or to a control group (n = 147), consisting of those discharged and followed up with the HM system according to usual medical practices. The mean duration of hospitalization was 73.2% shorter in the active group than in the control group, corresponding to 20.5 ± 13 fewer hours (95% confidence interval [CI]: 6.3-29.5; P < 0.01) spent in the hospital (7.5 ± 1.5 vs 28 ± 4.5 h). This shorter mean hospital stay was attributable to a 78.8% shorter postoperative period in the active group. The proportion of patients with treatment-related adverse events was 11% (n = 23) in the active group and 17% (n = 25) in the control group (95% CI: 5.5-8.3; P = 0.061). This 6% absolute risk reduction (95% CI: 3.3-9.1; P = 0.789) confirmed the noninferiority of the ambulatory implanted CIED when compared with standard management of these patients. Early discharge with the HM system after ambulatory CIED implantation was safe and not inferior to the classic medical procedure. Thus, together with lower costs, HM and its modifications would be a useful extension of the present concepts for ambulatory implanted CIEDs. © 2017 Wiley Periodicals, Inc.

  10. Appraisal of evidence base for introduction of new implants in hip and knee replacement: a systematic review of five widely used device technologies.

    PubMed

    Nieuwenhuijse, Marc J; Nelissen, R G H H; Schoones, J W; Sedrakyan, A

    2014-09-09

    To determine the evidence of effectiveness and safety for introduction of five recent and ostensibly high value implantable devices in major joint replacement to illustrate the need for change and inform guidance on evidence based introduction of new implants into healthcare. Systematic review of clinical trials, comparative observational studies, and registries for comparative effectiveness and safety of five implantable device innovations. PubMed (Medline), Embase, Web of Science, Cochrane, CINAHL, reference lists of articles, annual reports of major registries, summaries of safety and effectiveness for pre-market application and mandated post-market studies at the US Food and Drug Administration. The five selected innovations comprised three in total hip replacement (ceramic-on-ceramic bearings, modular femoral necks, and uncemented monoblock cups) and two in total knee replacement (high flexion knee replacement and gender specific knee replacement). All clinical studies of primary total hip or knee replacement for symptomatic osteoarthritis in adults that compared at least one of the clinical outcomes of interest (patient centred outcomes or complications, or both) in the new implant group and control implant group were considered. Data searching, abstraction, and analysis were independently performed and confirmed by at least two authors. Quantitative data syntheses were performed when feasible. After assessment of 10,557 search hits, 118 studies (94 unique study cohorts) met the inclusion criteria and reported data related to 15,384 implants in 13,164 patients. Comparative evidence per device innovation varied from four low to moderate quality retrospective studies (modular femoral necks) to 56 studies of varying quality including seven high quality (randomised) studies (high flexion knee replacement). None of the five device innovations was found to improve functional or patient reported outcomes. National registries reported two to 12 year follow-up for

  11. Cardiac implantable electronic device infection due to Mycobacterium species: a case report and review of the literature.

    PubMed

    Al-Ghamdi, Bandar; Widaa, Hassan El; Shahid, Maie Al; Aladmawi, Mohammed; Alotaibi, Jawaher; Sanei, Aly Al; Halim, Magid

    2016-08-24

    Infection of cardiac implantable electronic devices is a serious cardiovascular disease and it is associated with a high mortality. Mycobacterium species may rarely cause cardiac implantable electronic devices infection. We are reporting a case of miliary tuberculosis in an Arab patient with dilated cardiomyopathy and a cardiac resynchronization therapy-defibrillator device that was complicated with infection of his cardiac resynchronization therapy-defibrillator device. To our knowledge, this is the third case in the literature with such a presentation and all patients died during the course of treatment. This underscores the importance of early diagnosis and management. We also performed a literature review of reported cases of cardiac implantable electronic devices infection related to Mycobacterium species. Cardiac implantable electronic devices infection due to Mycobacterium species is an uncommon but a well-known entity. Early diagnosis and prompt management may result in a better outcome.

  12. Drug loading into beta-cyclodextrin granules using a supercritical fluid process for improved drug dissolution.

    PubMed

    Hussein, Khaled; Türk, Michael; Wahl, Martin A

    2008-03-03

    To improve dissolution properties of drugs, a supercritical fluid (SCF) technique was used to load these drugs into a solid carrier. In this study, granules based on beta-cyclodextrin (betaCD) were applied as a carrier for poor water-soluble drug and loaded with a model drug (ibuprofen) using two different procedures: controlled particle deposition (CPD), SCF process and solution immersion (SI) as a conventional method for comparison. Using the CPD technique, 17.42+/-2.06wt.% (n=3) ibuprofen was loaded into betaCD-granules, in contrast to only 3.8+/-0.15wt.% (n=3) in the SI-product. The drug loading was confirmed as well by reduction of the BET surface area for the CPD-product (1.134+/-0.07m(2)/g) compared to the unloaded-granules (1.533+/-0.031m(2)/g). Such a reduction was not seen in the SI-product (1.407+/-0.048m(2)/g). The appearance of an endothermic melting peak at 77 degrees C and X-ray patterns representing ibuprofen in drug-loaded granules can be attributed to the amount of ibuprofen loaded in its crystalline form. A significant increase in drug dissolution was achieved by either drug-loading procedures compared to the unprocessed ibuprofen. In this study, the CPD technique, a supercritical fluid process avoiding the use of toxic or organic solvents was successfully applied to load drug into solid carriers, thereby improving the water-solubility of the drug.

  13. Co-delivery of timolol and hyaluronic acid from semi-circular ring-implanted contact lenses for the treatment of glaucoma: in vitro and in vivo evaluation.

    PubMed

    Desai, Ankita R; Maulvi, Furqan A; Pandya, Mihir M; Ranch, Ketan M; Vyas, Bhavin A; Shah, Shailesh A; Shah, Dinesh O

    2018-05-29

    Glaucoma is a chronic disease, which is currently treated using frequent high dose applications of an eye drop solution; this method is tedious, and most of patients are non-compliant to it. Contact lenses are emerging as a convenient option to sustain the release of ophthalmic drugs. However, the incorporation of a drug/formulation changes the optical and physical properties of contact lenses. Contact lens users have also reported pink eye syndrome; this makes contact lenses unsuitable to be accepted as a medical device. The objective of the present study was to design novel timolol and hyaluronic acid (comfort agent)-loaded semi-circular ring-implanted contact lenses that could uphold the release at therapeutic rates without compromising the critical lens properties. The drug-loaded rings were individually implanted within the periphery of the contact lenses using modified cast-moulding technology. Atomic force microscopy showed an average roughness of 12.38 nm for the implanted lens that was significantly lower as compared to that of the Freshlook contact lenses (116.27 nm). A major amount of timolol was leached (from 46.47 to 58.79%) during the monomer extraction and moist sterilization (autoclave) steps; therefore, the lenses were sterilized by radiation and packaged under dry conditions (dehydrated). The in vitro release data showed sustained release of timolol and hyaluronic acid up to 96 h. The in vivo drug release study on rabbit eyes showed the presence of timolol in tear fluid up to 72 h. The in vivo pharmacodynamics studies showed a reduction in IOP till 144 h with a low drug loading (154 μg) as compared to the case of a single instillation eye drop solution (250 μg). This study has demonstrated the successful application of implantation technology to co-deliver timolol and hyaluronic acid from contact lenses for an extended period of time to treat glaucoma.

  14. Long-Term Survival of Dental Implants with Different Prosthetic Loading Times in Healthy Patients: A 5-Year Retrospective Clinical Study.

    PubMed

    Muelas-Jiménez, M Isabel; Olmedo-Gaya, Maria Victoria; Manzano-Moreno, Francisco J; Reyes-Botella, Candela; Vallecillo-Capilla, Manuel

    2017-02-01

    To compare survival rates among dental implants restored with immediate, early, and conventional loading protocols, also comparing between maxillary and mandibular implants, and to evaluate the influence of implant length and diameter and the type of prosthesis on treatment outcomes. This retrospective cohort study initially included all 52 patients receiving dental implants between July 2006 and February 2008 at a private oral surgery clinic in Granada (Southern Spain). Clinical and radiographic examinations were performed, including periapical or panoramic radiographs, and incidences during completion of the restoration were recorded at 1 week, 3 months, 6 months, and at 1, 2, 3, 4, and 5 years. After a 5-year follow-up, 1 patient had died, 3 were lost to follow-up, and 6 required grafting before implant placement; therefore, the final study sample comprised 42 patients with 164 implants. Variables associated with the survival/failure of the restoration were: number of implants (higher failure rate with fewer implants), bone type (higher failure rate in type III or IV bone), and type of prosthesis (higher failure rate with single crowns). No significant association was found in univariate or multivariate analyses between survival rate and the loading protocol, implant length or diameter, or maxillary/mandibular location. Immediate occlusal loading, immediate provisionalization without occlusal loading, and early loading are viable treatment options with similar survival rates to those obtained with conventional loading. Bone quality and number of implants per patient were the most influential factors. © 2015 by the American College of Prosthodontists.

  15. A power-efficient communication system between brain-implantable devices and external computers.

    PubMed

    Yao, Ning; Lee, Heung-No; Chang, Cheng-Chun; Sclabassi, Robert J; Sun, Mingui

    2007-01-01

    In this paper, we propose a power efficient communication system for linking a brain-implantable device to an external system. For battery powered implantable devices, the processor and the transmitter power should be reduced in order to both conserve battery power and reduce the health risks associated with transmission. To accomplish this, a joint source-channel coding/decoding system is devised. Low-density generator matrix (LDGM) codes are used in our system due to their low encoding complexity. The power cost for signal processing within the implantable device is greatly reduced by avoiding explicit source encoding. Raw data which is highly correlated is transmitted. At the receiver, a Markov chain source correlation model is utilized to approximate and capture the correlation of raw data. A turbo iterative receiver algorithm is designed which connects the Markov chain source model to the LDGM decoder in a turbo-iterative way. Simulation results show that the proposed system can save up to 1 to 2.5 dB on transmission power.

  16. Sudden visual loss after cardiac resynchronization therapy device implantation.

    PubMed

    De Vitis, Luigi A; Marchese, Alessandro; Giuffrè, Chiara; Carnevali, Adriano; Querques, Lea; Tomasso, Livia; Baldin, Giovanni; Maestranzi, Gisella; Lattanzio, Rosangela; Querques, Giuseppe; Bandello, Francesco

    2017-03-10

    To report a case of sudden decrease in visual acuity possibly due to a cardiogenic embolism in a patient who underwent cardiac resynchronization therapy (CRT) device implantation. A 62-year-old man with severe left ventricular systolic dysfunction and a left bundle branch block was referred to our department because of a sudden decrease in visual acuity. Nine days earlier, he had undergone cardiac transapical implantation of a CRT device, which was followed, 2 days later, by an inflammatory reaction. The patient underwent several general and ophthalmologic examinations, including multimodal imaging. At presentation, right eye (RE) best-corrected visual acuity (BCVA) was counting fingers and RE pupil was hyporeactive. Fundus examination revealed white-centered hemorrhagic dots suggestive of Roth spots. Fluorescein angiography showed delay in vascular perfusion during early stage, late hyperfluorescence of the macula and optic disk, and peripheral perivascular leakage. The first visual field test showed complete loss of vision RE and a normal left eye. Due to suspected giant cell arteritis, temporal artery biopsy was performed. Thirty minutes after the procedure, an ischemic stroke with right hemisyndrome and aphasia occurred. The RE BCVA worsened to hands motion. Four months later, RE BCVA did not improve, despite improvement in fluorescein angiography inflammatory sign. We report a possible cardiogenic embolism secondary to undiagnosed infective endocarditis causing monocular visual loss after CRT device implantation. It remains unclear how the embolus caused severe functional damage without altering the retinal anatomical structure.

  17. Immediate Functional Loading of One-Piece Zirconia Implants in a Full-Arch Maxillary Restoration: A Five-Year Case Report.

    PubMed

    Peter, Burghard

    Immediate loading has proven to be a predictable modality for restorations with titanium dental implants. An increasing number of articles indicate that zirconia implants might osseointegrate to a similar extent in this context. This 5-year case report describes an outpatient maxillary restoration with eight immediately loaded zirconia implants. Implantation followed extensive bone augmentation. At the 5-year follow-up, all implants were still well osseointegrated clinically and radiologically. No major bone loss or peri-implantitis had occurred in spite of temporary insufficient patient compliance. More research and studies are needed to confirm these results.

  18. Evaluation of load transfer devices : final report.

    DOT National Transportation Integrated Search

    1975-11-01

    This report describes the procedures and findings of a study conducted to evaluate two types of load transfer devices used in Louisiana--steel dowel bars and starlugs (a patented device). A statistical comparison was accomplished by evaluating existi...

  19. Immediate versus early non-occlusal loading of dental implants placed flapless in partially edentulous patients: a 3-year randomized clinical trial.

    PubMed

    Merli, Mauro; Moscatelli, Marco; Mariotti, Giorgia; Piemontese, Matteo; Nieri, Michele

    2012-02-01

    To compare immediate versus early non-occlusal loading of dental implants placed flapless in a 3-year, parallel group, randomized clinical trial. The study was conducted in a private dental clinic between July 2005 and July 2010. Patients 18 years or older were randomized to receive implants for fixed partial dentures in cases of partial edentulism. The test group was represented by immediate non-occlusal implant loading, whereas the control group was represented by early non-occlusal implant loading. The outcome variables were implant failure, complications and radiographic bone level at implant sites 3 years after loading, measured from the implant-abutment junction to the most coronal point of bone-to-implant contact. Randomization was computer-generated with allocation concealment by opaque sequentially numbered sealed envelopes, and the measurer was blinded to group assignment. Sixty patients were randomized: 30 to the immediately loaded group and 30 to the early loaded group. Four patients dropped out; however, the data of all patients were included in the analysis. No implant failure occurred. Two complications occurred in the control group and one in the test group. The mean bone level at 3 years was 1.91 mm for test group and 1.59 mm for control group. The adjusted difference in bone level was 0.26 mm (CI 95% -0.08 to 0.59, p = 0.1232). The null hypothesis of no difference in failure rates, complications and bone level between implants that were loaded immediately or early at 3 years cannot be rejected in this randomized clinical trial. © 2011 John Wiley & Sons A/S.

  20. Surface Modifications of Titanium Implants by Multilayer Bioactive Coatings with Drug Delivery Potential: Antimicrobial, Biological, and Drug Release Studies

    NASA Astrophysics Data System (ADS)

    Ordikhani, Farideh; Zustiak, Silviya Petrova; Simchi, Abdolreza

    2016-04-01

    Recent strategies to locally deliver antimicrobial agents to combat implant-associated infections—one of the most common complications in orthopedic surgery—are gaining interest. However, achieving a controlled release profile over a desired time frame remains a challenge. In this study, we present an innovative multifactorial approach to combat infections which comprises a multilayer chitosan/bioactive glass/vancomycin nanocomposite coating with an osteoblastic potential and a drug delivery capacity. The bioactive drug-eluting coating was prepared on the surface of titanium foils by a multistep electrophoretic deposition technique. The adopted deposition strategy allowed for a high antibiotic loading of 1038.4 ± 40.2 µg/cm2. The nanocomposite coating exhibited a suppressed burst release with a prolonged sustained vancomycin release for up to 6 weeks. Importantly, the drug release profile was linear with respect to time, indicating a zero-order release kinetics. An in vitro bactericidal assay against Staphylococcus aureus confirmed that releasing the drug reduced the risk of bacterial infection. Excellent biocompatibility of the developed coating was also demonstrated by in vitro cell studies with a model MG-63 osteoblast cell line.

  1. Full Body Loading for Small Exercise Devices Project

    NASA Technical Reports Server (NTRS)

    Downs, Meghan; Hanson, Andrea; Newby, Nathaniel

    2015-01-01

    Protecting astronauts' spine, hip, and lower body musculoskeletal strength will be critical to safely and efficiently perform physically demanding vehicle egress, exploration, and habitat building activities necessary to expand human presence in the solar system. Functionally limiting decrements in musculoskeletal health are likely during Mars proving-ground and Earth-independent missions given extended transit times and the vehicle limitations for exercise devices (low-mass, small volume). Most small exercise device concepts are designed with single-cable loading, which inhibits the ability to perform full body exercises requiring two-point loading at the shoulders. Shoulder loading is critical to protect spine, hip, and lower body musculoskeletal strength. We propose a novel low-mass, low-maintenance, and rapid deploy pulley-based system that can attach to a single-cable small exercise device to enable two-point loading at the shoulders. This attachment could protect astronauts' health and save cost, space, and energy during all phases of the Journey to Mars.

  2. Sheep as a large animal model for middle and inner ear implantable hearing devices: a feasibility study in cadavers.

    PubMed

    Schnabl, Johannes; Glueckert, Rudolf; Feuchtner, Gudrun; Recheis, Wolfgang; Potrusil, Thomas; Kuhn, Volker; Wolf-Magele, Astrid; Riechelmann, Herbert; Sprinzl, Georg M

    2012-04-01

    Currently, no large animal model exists for surgical-experimental exploratory analysis of implantable hearing devices. In a histomorphometric study, we sought to investigate whether sheep or pig cochleae are suitable for this purpose and whether device implantation is feasible. Skulls of pig and sheep cadavers were examined using high-resolution 128-slice computed tomography (CT) to study anatomic relationships. A cochlear implant and an active middle ear implant could be successfully implanted into the sheep's inner and middle ear, respectively. Correct device placement was verified by CT and histology. The cochlear anatomy of the sheep was further studied by micro-CT and histology. Our investigations indicate that the sheep is a suitable animal model for implantation of implantable hearing devices. The implantation of the devices was successfully performed by access through a mastoidectomy. The histologic, morphologic, and micro-CT study of the sheep cochlea showed that it is highly similar to the human cochlea. The temporal bone of the pig was not suitable for these microsurgical procedures because the middle and inner ear were not accessible owing to distinct soft and fatty tissue coverage of the mastoid. The sheep is an appropriate large animal model for experimental studies with implantable hearing devices, whereas the pig is not.

  3. A Paradigm for the Development and Evaluation of Novel Implant Topologies for Bone Fixation: In Vivo Evaluation

    PubMed Central

    Long, Jason P.; Hollister, Scott J.; Goldstein, Steven A.

    2012-01-01

    While contemporary prosthetic devices restore some function to individuals who have lost a limb, there are efforts to develop bio-integrated prostheses to improve functionality. A critical step in advancing this technology will be to securely attach the device to remnant bone. To investigate mechanisms for establishing robust implant fixation in bone while undergoing loading, we previously used a topology optimization scheme to develop optimized orthopaedic implants and then fabricated selected designs from titanium (Ti)-alloy with selective laser sintering (SLS) technology. In the present study, we examined how implant architecture and mechanical stimulation influence osseointegration within an in vivo environment. To do this, we evaluated three implant designs (two optimized and one non-optimized) using a unique in vivo model that applied cyclic, tension/ compression loads to the implants. Eighteen (six per implant design) adult male canines had implants surgically placed in their proximal, tibial metaphyses. Experimental duration was 12 weeks; daily loading (peak load of ±22N for 1000 cycles) was applied to one of each animal’s bilateral implants for the latter six weeks. Following harvest, osseointegration was assessed by non-destructive mechanical testing, micro-computed tomography (microCT) and back-scatter scanning electron microscopy (SEM). Data revealed that implant loading enhanced osseointegration by significantly increasing construct stiffness, peri-implant trabecular morphology, and percentages of interface connectivity and bone ingrowth. While this experiment did not demonstrate a clear advantage associated with the optimized implant designs, osseointegration was found to be significantly influenced by aspects of implant architecture. PMID:22951278

  4. A paradigm for the development and evaluation of novel implant topologies for bone fixation: in vivo evaluation.

    PubMed

    Long, Jason P; Hollister, Scott J; Goldstein, Steven A

    2012-10-11

    While contemporary prosthetic devices restore some function to individuals who have lost a limb, there are efforts to develop bio-integrated prostheses to improve functionality. A critical step in advancing this technology will be to securely attach the device to remnant bone. To investigate mechanisms for establishing robust implant fixation in bone while undergoing loading, we previously used a topology optimization scheme to develop optimized orthopedic implants and then fabricated selected designs from titanium (Ti)-alloy with selective laser sintering (SLS) technology. In the present study, we examined how implant architecture and mechanical stimulation influence osseointegration within an in vivo environment. To do this, we evaluated three implant designs (two optimized and one non-optimized) using a unique in vivo model that applied cyclic, tension/compression loads to the implants. Eighteen (six per implant design) adult male canines had implants surgically placed in their proximal, tibial metaphyses. Experimental duration was 12 weeks; daily loading (peak load of ±22 N for 1000 cycles) was applied to one of each animal's bilateral implants for the latter six weeks. Following harvest, osseointegration was assessed by non-destructive mechanical testing, micro-computed tomography (microCT) and back-scatter scanning electron microscopy (SEM). Data revealed that implant loading enhanced osseointegration by significantly increasing construct stiffness, peri-implant trabecular morphology, and percentages of interface connectivity and bone ingrowth. While this experiment did not demonstrate a clear advantage associated with the optimized implant designs, osseointegration was found to be significantly influenced by aspects of implant architecture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Enhanced active liposomal loading of a poorly soluble ionizable drug using supersaturated drug solutions.

    PubMed

    Modi, Sweta; Xiang, Tian-Xiang; Anderson, Bradley D

    2012-09-10

    Nanoparticulate drug carriers such as liposomal drug delivery systems are of considerable interest in cancer therapy because of their ability to passively accumulate in solid tumors. For liposomes to have practical utility for antitumor therapy in patients, however, optimization of drug loading, retention, and release kinetics are necessary. Active loading is the preferred method for optimizing loading of ionizable drugs in liposomes as measured by drug-to-lipid ratios, but the extremely low aqueous solubilities of many anticancer drug candidates may limit the external driving force, thus slowing liposomal uptake during active loading. This report demonstrates the advantages of maintaining drug supersaturation during active loading. A novel method was developed for creating and maintaining supersaturation of a poorly soluble camptothecin analogue, AR-67 (7-t-butyldimethylsilyl-10-hydroxycamptothecin), using a low concentration of a cyclodextrin (sulfobutylether-β-cyclodextrin) to inhibit crystallization over a 48 h period. Active loading into liposomes containing high concentrations of entrapped sodium or calcium acetate was monitored using drug solutions at varying degrees of supersaturation. Liposomal uptake rates increased linearly with the degree of supersaturation of drug in the external loading solution. A mathematical model was developed to predict the rate and extent of drug loading versus time, taking into account the chemical equilibria inside and outside of the vesicles and the transport kinetics of various permeable species across the lipid bilayer and the dialysis membrane. Intraliposomal sink conditions were maintained by the high internal pH caused by the efflux of acetic acid and exchange with AR-67, which undergoes lactone ring-opening, ionization, and membrane binding in the interior of the vesicles. The highest drug to lipid ratio achieved was 0.17 from a supersaturated solution at a total drug concentration of 0.6 mg/ml. The rate and extent of

  6. In-vitro development of a temporal abutment screw to protect osseointegration in immediate loaded implants

    PubMed Central

    2015-01-01

    PURPOSE In this study, a temporal abutment fixation screw, designed to fracture in a controlled way upon application of an occlusal force sufficient to produce critical micromotion was developed. The purpose of the screw was to protect the osseointegration of immediate loaded single implants. MATERIALS AND METHODS Seven different screw prototypes were examined by fixing titanium abutments to 112 Mozo-Grau external hexagon implants (MG Osseous®; Mozo-Grau, S.A., Valladolid, Spain). Fracture strength was tested at 30° in two subgroups per screw: one under dynamic loading and the other without prior dynamic loading. Dynamic loading was performed in a single-axis chewing simulator using 150,000 load cycles at 50 N. After normal distribution of obtained data was verified by Kolmogorov-Smirnov test, fracture resistance between samples submitted and not submitted to dynamic loading was compared by the use of Student's t-test. Comparison of fracture resistance among different screw designs was performed by the use of one-way analysis of variance. Confidence interval was set at 95%. RESULTS Fractures occurred in all screws, allowing easy retrieval. Screw Prototypes 2, 5 and 6 failed during dynamic loading and exhibited statistically significant differences from the other prototypes. CONCLUSION Prototypes 2, 5 and 6 may offer a useful protective mechanism during occlusal overload in immediate loaded implants. PMID:25932315

  7. Adult patient decision-making regarding implantation of complex cardiac devices: a scoping review.

    PubMed

    Malecki-Ketchell, Alison; Marshall, Paul; Maclean, Joan

    2017-10-01

    Complex cardiac rhythm management device (CRMD) therapy provides an important treatment option for people at risk of sudden cardiac death. Despite the survival benefit, device implantation is associated with significant physical and psychosocial concerns presenting considerable challenges for the decision-making process surrounding CRMD implantation for patients and physicians. The purpose of this scoping review was to explore what is known about how adult (>16 years) patients make decisions regarding implantation of CRMD therapy. Published, peer reviewed, English language studies from 2000 to 2016 were identified in a search across eight healthcare databases. Eligible studies were concerned with patient decision-making for first time device implantation. Quality assessment was completed using the mixed methods appraisal tool for all studies meeting the inclusion criteria. The findings of eight qualitative and seven quantitative studies, including patients who accepted or declined primary or secondary sudden cardiac death prevention devices, were clustered into two themes: knowledge acquisition and the process of decision-making, exposing similarities and distinctions with the treatment decision-making literature. The review revealed some insight in to the way patients approach decision-making but also exposed a lack of clarity and research activity specific to CRMD patients. Further research is recommended to support the development and application of targeted decision support mechanisms.

  8. Experimental and theoretical studies of implant assisted magnetic drug targeting

    NASA Astrophysics Data System (ADS)

    Aviles, Misael O.

    One way to achieve drug targeting in the body is to incorporate magnetic nanoparticles into drug carriers and then retain them at the site using an externally applied magnetic field. This process is referred to as magnetic drug targeting (MDT). However, the main limitation of MDT is that an externally applied magnetic field alone may not be able to retain a sufficient number of magnetic drug carrier particles (MDCPs) to justify its use. Such a limitation might not exist when high gradient magnetic separation (HGMS) principles are applied to assist MDT by means of ferromagnetic implants. It was hypothesized that an Implant Assisted -- MDT (IA-MDT) system would increase the retention of the MDCPs at a target site where an implant had been previously located, since the magnetic forces are produced internally. With this in mind, the overall objective of this work was to demonstrate the feasibility of an IA-MDT system through mathematical modeling and in vitro experimentation. The mathematical models were developed and used to demonstrate the behavior and limitations of IA-MDT, and the in vitro experiments were designed and used to validate the models and to further elucidate the important parameters that affect the performance of the system. IA-MDT was studied with three plausible implants, ferromagnetic stents, seed particles, and wires. All implants were studied theoretically and experimentally using flow through systems with polymer particles containing magnetite nanoparticles as MDCPs. In the stent studies, a wire coil or mesh was simply placed in a flow field and the capture of the MDCPs was studied. In the other cases, a porous polymer matrix was used as a surrogate capillary tissue scaffold to study the capture of the MDCPs using wires or particle seeds as the implant, with the seeds either fixed within the polymer matrix or captured prior to capturing the MDCPs. An in vitro heart tissue perfusion model was also used to study the use of stents. In general, all

  9. Similarities and differences in coatings for magnesium-based stents and orthopaedic implants

    PubMed Central

    Ma, Jun; Thompson, Marc; Zhao, Nan; Zhu, Donghui

    2016-01-01

    Magnesium (Mg)-based biodegradable materials are promising candidates for the new generation of implantable medical devices, particularly cardiovascular stents and orthopaedic implants. Mg-based cardiovascular stents represent the most innovative stent technology to date. However, these products still do not fully meet clinical requirements with regards to fast degradation rates, late restenosis, and thrombosis. Thus various surface coatings have been introduced to protect Mg-based stents from rapid corrosion and to improve biocompatibility. Similarly, different coatings have been used for orthopaedic implants, e.g., plates and pins for bone fracture fixation or as an interference screw for tendon-bone or ligament-bone insertion, to improve biocompatibility and corrosion resistance. Metal coatings, nanoporous inorganic coatings and permanent polymers have been proved to enhance corrosion resistance; however, inflammation and foreign body reactions have also been reported. By contrast, biodegradable polymers are more biocompatible in general and are favoured over permanent materials. Drugs are also loaded with biodegradable polymers to improve their performance. The key similarities and differences in coatings for Mg-based stents and orthopaedic implants are summarized. PMID:27695671

  10. LOADING AND UNLOADING DEVICE

    DOEpatents

    Treshow, M.

    1960-08-16

    A device for loading and unloading fuel rods into and from a reactor tank through an access hole includes parallel links carrying a gripper. These links enable the gripper to go through the access hole and then to be moved laterally from the axis of the access hole to the various locations of the fuel rods in the reactor tank.

  11. Functional and unmodified MWNTs for delivery of the water-insoluble drug Carvedilol - A drug-loading mechanism

    NASA Astrophysics Data System (ADS)

    Li, Yuting; Wang, Tianyi; Wang, Jing; Jiang, Tongying; Cheng, Gang; Wang, Siling

    2011-04-01

    The purpose of this study was to develop carboxyl multi-wall carbon nanotubes (MWNTs) and unmodified MWNTs loaded with a poorly water-soluble drug, intended to improve the drug loading capacity, dissolubility and study the drug-loading mechanism. MWNTs were modified with a carboxyl group through the acid treatment. MWNTs as well as the resulting functionalized MWNTs were investigated as scaffold for loading the model drug, Carvedilol (CAR), using three different methods (the fusion method, the incipient wetness impregnation method, and the solvent method). The effects of different pore size, specific surface area and physical state were systematically studied using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transformation infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), nitrogen adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The functional MWNTs allowed a higher drug loading than the unmodified preparations. The methods used to load the drug had a marked effect on the drug-loading, dissolution, and physical state of the drug as well as its distribution. In addition, the solubility of the drug was increased when carried by both MWNTs and functional MWNTs, and this might help to improve the bioavailability.

  12. Immediate loading of tapered implants placed in postextraction sockets: retrospective analysis of the 5-year clinical outcome.

    PubMed

    Mura, Priamo

    2012-08-01

    The use of immediate implant loading protocols delivers obvious benefits to the patient. When applied in healed sites, this has not only been well documented in the totally edentolous mandible but has also been documented and reported to be predictable in the upper jaw, and in cases of partial edentoulism, as well. A further application of immediate loading protocol, although still controversial, especially when replacing single maxillary teeth in the anterior zone, is the immediate implant placement and provisionalization in postextractive sockets. In consideration of the oxidized surface promoting bone healing and the tapered shape of the implant body, the Replace Select Tapered TiUnite implants have been used for many years in our clinic when facing these clinical situations. This article will report about our long-term clinical experience with such implants and the relevant role of a correct surgical and prosthetic treatment planning. The aim of this retrospective study was to report on the 5-year clinical and radiologic outcome of patients treated with Replace Select Tapered TiUnite implants when used according to an immediate loading protocol in postextraction sites. In routine practice, 56 consecutive patients were treated with 79 implants. The patients, 23 males and 33 females, had a mean age of 50.9 years, range 21-76 years, at implant placement. Forty-seven implants were placed in the maxilla and 32 implants were placed in the mandible. All implants were placed in postextraction sites and were immediately loaded. Provisional restorations were delivered within 2 hours from surgery and all were in occlusion. Forty-three patients received a single implant while in the remaining 13 patients the implants were splinted. Definitive prosthetic restoration was delivered within 1 to 4 months following implant placement. Evaluations of soft tissue health and marginal bone remodeling were conducted. An independent radiologist performed the radiographic evaluation

  13. Towards an implantable bio-sensor platform for continuous real-time monitoring of anti-epileptic drugs.

    PubMed

    Hammoud, Abbas; Chamseddine, Ahmad; Nguyen, Dang K; Sawan, Mohamad

    2016-08-01

    The need of continuous real-time monitoring device for in-vivo drug level detection has been widely articulated lately. Such monitoring could guide drug posology and timing of intake, detect low or high drug levels, in order to take adequate measures, and give clinicians a valuable window into patients' health and their response to therapeutics. This paper presents a novel implantable bio-sensor based on impedance measurement capable of continuously monitoring various antiepileptic drug levels. This portable point-of-care microsystem replaces large and stationary conventional macrosystems, and is a one of a kind system designed with an array of electrodes to monitor various anti-epileptic drugs rather than one drug. The micro-system consists of (i) the front-end circuit including an inductive coil to receive energy from an external base station, and to exchange data with the latter; (ii) the power management block; (iii) the readout and control block; and (iv) the biosensor array. The electrical circuitry was designed using the 0.18-um CMOS process technology intended to be miniature and consume ultra-low power.

  14. Influence of cochleostomy and cochlear implant insertion on drug gradients following intratympanic application in guinea pigs

    PubMed Central

    King, EB; Hartsock, JJ; O'Leary, SJ; Salt, AN

    2013-01-01

    Locally-applied drugs can protect residual hearing following cochlear implantation. The influence of cochlear implantation on drug levels in scala tympani (ST) after round window application was investigated in guinea pigs using the marker trimethylphenlyammonium (TMPA) measured in real-time with TMPA-selective microelectrodes. TMPA concentration in the upper basal turn of ST rapidly increased during implantation and then declined due to cerebrospinal fluid entering ST at the cochlear aqueduct and exiting at the cochleostomy. The TMPA increase was found to be caused by the cochleostomy drilling, if the burr tip partially entered ST. TMPA distribution in the second turn was less affected by implantation procedures. These findings show that basal turn drug levels may be changed during implantation and the changes may need to be considered in the interpretation of therapeutic effects of drugs in conjunction with implantation. PMID:24008355

  15. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone - a feasibility study.

    PubMed

    Marcián, Petr; Borák, Libor; Valášek, Jiří; Kaiser, Jozef; Florian, Zdeněk; Wolff, Jan

    2014-12-18

    The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant geometries and the levels of bone-to-implant contact (BIC) on the surrounding bone. Six mandibular bone segments demonstrating different grades of mandibular bone atrophy and various bone volume fractions (from 0.149 to 0.471) were imaged using a micro-CT device. The acquired bone STL models and implant (Brånemark, Straumann, Ankylos) were merged into a three-dimensional finite elements structure. The mean displacement value for all implants was 3.1 ±1.2 µm. Displacements were lower in the group with a strong BIC. The results indicated that the maximum strain values of cortical and cancellous bone increased with lower bone density. Strain distribution is the first and foremost dependent on the shape of bone and architecture of cancellous bone. The geometry of the implant, thread patterns, grade of bone atrophy and BIC all affect the displacement and micro-strain on the mandible bone. Preoperative finite element analysis could offer improved predictability in the long-term outlook of dental implant restorations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Comparison of Sequential Drug Release in Vitro and in Vivo

    PubMed Central

    Sundararaj, Sharath C.; Al-Sabbagh, Mohanad; Rabek, Cheryl L.; Dziubla, Thomas D.; Thomas, Mark V.; Puleo, David A.

    2015-01-01

    Development of drug delivery devices typically involves characterizing in vitro release performance with the inherent assumption that this will closely approximate in vivo performance. Yet, as delivery devices become more complex, for instance with a sequential drug release pattern, it is important to confirm that in vivo properties correlate with the expected “programming” achieved in vitro. In this work, a systematic comparison between in vitro and in vivo biomaterial erosion and sequential release was performed for a multilayered association polymer system comprising cellulose acetate phthalate and Pluronic F-127. After assessing the materials during incubation in phosphate-buffered saline, devices were implanted supracalvarially in rats. Devices with two different doses and with different erosion rates were harvested at increasing times post-implantation, and the in vivo thickness loss, mass loss, and the drug release profiles were compared with their in vitro counterparts. The sequential release of four different drugs observed in vitro was successfully translated to in vivo conditions. Results suggest, however, that the total erosion time of the devices was longer and release rates of the four drugs were different, with drugs initially released more quickly and then more slowly in vivo. Whereas many comparative studies of in vitro and in vivo drug release from biodegradable polymers involved a single drug, the present research demonstrated that sequential release of four drugs can be maintained following implantation. PMID:26111338

  17. Understanding long-term silver release from surface modified porous titanium implants.

    PubMed

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2017-08-01

    Prevention of orthopedic device related infection (ODRI) using antibiotics has met with limited amount of success and is still a big concern during post-surgery. As an alternative, use of silver as an antibiotic treatment to prevent surgical infections is being used due to the well-established antimicrobial properties of silver. However, in most cases silver is used in particulate form with wound dressings or with short-term devices such as catheters but not with load-bearing implants. We hypothesize that strongly adherent silver to load-bearing implants can offer longer term solution to infection in vivo. Keeping that in mind, the focus of this study was to understand the long term release study of silver ions for a period of minimum 6months from silver coated surface modified porous titanium implants. Implants were fabricated using a LENS™ system, a powder based additive manufacturing technique, with at least 25% volume porosity, with and without TiO 2 nanotubes in phosphate buffer saline (pH 7.4) to see if the total release of silver ions is within the toxic limit for human cells. Considering the fact that infection sites may reduce the local pH, silver release was also studied in acetate buffer (pH 5.0) for a period of 4weeks. Along with that, the osseointegrative properties as well as cytotoxicity of porous titanium implants were assessed in vivo for a period of 12weeks using a rat distal femur model. In vivo results indicate that porous titanium implants with silver coating show comparable, if not better, biocompatibility and bonding at the bone-implant interface negating any concerns related to toxicity related to silver to normal cells. The current research is based on our recently patented technology, however focused on understanding longer-term silver release to mitigate infection related problems in load-bearing implants that can even arise several months after the surgery. Prevention of orthopedic device related infection using antibiotics has met

  18. Fabrication and anti-microbial evaluation of drug loaded polylactide space filler intended for ridge preservation following tooth extraction

    PubMed Central

    Thomas, Nebu George; Sanil, George P.; Rajmohan, Gopimohan; Prabhakaran, Jayachandran V.; Panda, Amulya K.

    2011-01-01

    Background: The preservation or reduction of alveolar ridge resorption following tooth extraction is important in patients especially for those intended for implants at a later stage. One way to achieve this is by using membranes, graft materials, and biodegradable space fillers to prevent alveolar bone resorption and promote regeneration. A major attraction for using biodegradable and biocompatible polymers as space fillers for ridge preservation is their safety profile in comparison to xenograft materials like lyophilized bone and collagen. Materials and Methods: Biocompatible polylactide space fillers were fabricated by fusing porous polylactide particles. The sponges were loaded with drugs by placing them in the respective solutions. Pseudomonas aeruginosa was isolated from a chronic periodontitis patient and in vitro anti-microbial evaluation was done with the drug loaded sponges. Results: Chlorhexidine loaded space filler showed significant anti microbial effect against multiple drug resistant Pseudomonas aeruginosa isolated from a patient with chronic periodontitis. Conclusion: The results of this study indicate that biodegradable drug releasing polylactide space fillers has the potential to be used for ridge preservation following tooth extraction. Release of drugs in the socket may prove useful in preventing development of alveolar osteitis post extraction which can interfere with normal healing of the socket. Synthetic biodegradable polymers also exhibit a controlled degradation rate to achieve complete resorption within the intended time. PMID:22028514

  19. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted peripheral nerve stimulator for pain....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral nerve...

  20. Micro-Fluidic Device for Drug Delivery

    NASA Technical Reports Server (NTRS)

    Beebe, David J. (Inventor); Eddington, David T. (Inventor); MacDonald, Michael J. (Inventor); Mensing, Glennys A. (Inventor)

    2014-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  1. Polypeptide multilayer film co-delivers oppositely-charged drug molecules in sustained manners.

    PubMed

    Jiang, Bingbing; Defusco, Elizabeth; Li, Bingyun

    2010-12-13

    The current state-of-the-art for drug-carrying biomedical devices is mostly limited to those that release a single drug. Yet there are many situations in which more than one therapeutic agent is needed. Also, most polyelectrolyte multilayer films intended for drug delivery are loaded with active molecules only during multilayer film preparation. In this paper, we present the integration of capsules as vehicles within polypeptide multilayer films for sustained release of multiple oppositely charged drug molecules using layer-by-layer nanoassembly technology. Calcium carbonate (CaCO(3)) particles were impregnated with polyelectrolytes, shelled with polyelectrolyte multilayers, and then assembled onto polypeptide multilayer films using glutaraldehyde. Capsule-integrated polypeptide multilayer films were obtained after decomposition of CaCO(3) templates. Two oppositely charged drugs were loaded into capsules within polypeptide multilayer films postpreparation based on electrostatic interactions between the drugs and the polyelectrolytes impregnated within capsules. We determined that the developed innovative capsule-integrated polypeptide multilayer films could be used to load multiple drugs of very different properties (e.g., opposite charges) any time postpreparation (e.g., minutes before surgical implantation inside an operating room), and such capsule-integrated films allowed simultaneous delivery of two oppositely charged drug molecules and a sustained (up to two weeks or longer) and sequential release was achieved.

  2. Implanting inequality: empirical evidence of social and ethical risks of implantable radio-frequency identification (RFID) devices.

    PubMed

    Monahan, Torin; Fisher, Jill A

    2010-10-01

    The aim of this study was to assess empirically the social and ethical risks associated with implantable radio-frequency identification (RFID) devices. Qualitative research included observational studies in twenty-three U.S. hospitals that have implemented new patient identification systems and eighty semi-structured interviews about the social and ethical implications of new patient identification systems, including RFID implants. The study identified three primary social and ethical risks associated with RFID implants: (i) unfair prioritization of patients based on their participation in the system, (ii) diminished trust of patients by care providers, and (iii) endangerment of patients who misunderstand the capabilities of the systems. RFID implants may aggravate inequalities in access to care without any clear health benefits. This research underscores the importance of critically evaluating new healthcare technologies from the perspective of both normative ethics and empirical ethics.

  3. Legal, ethical, and procedural bases for the use of aseptic techniques to implant electronic devices

    USGS Publications Warehouse

    Mulcahy, Daniel M.

    2013-01-01

    The popularity of implanting electronic devices such as transmitters and data loggers into captive and free-ranging animals has increased greatly in the past two decades. The devices have become smaller, more reliable, and more capable (Printz 2004; Wilson and Gifford 2005; Metcalfe et al. 2012). Compared with externally mounted devices, implanted devices are largely invisible to external viewers such as tourists and predators; exist in a physically protected, thermally stable environment in mammals and birds; and greatly reduce drag and risk of entanglement. An implanted animal does not outgrow its device or attachment method as can happen with collars and harnesses, which allows young animals to be more safely equipped. However, compared with mounting external devices, implantation requires greater technical ability to perform the necessary anesthesia, analgesia, and surgery. More than 83% of publications in the 1990s that used radiotelemetry on animals assumed that there were no adverse effects on the animal (Godfrey and Bryant 2003). It is likely that some studies using implanted electronic devices have not been published due to a high level of unexpected mortality or to aberrant behavior or disappearance of the implanted animals, a phenomenon known as the “file drawer” problem (Rosenthal 1979; Scargle 2000). The near absence of such studies from the published record may be providing a false sense of security that procedures being used are more innocuous than they actually are. Similarly, authors sometimes state that it was unlikely that device implantation was problematic because study animals appeared to behave normally, or authors state that previous investigators used the same technique and saw no problems. Such statements are suppositions if no supporting data are provided or if the animals were equipped because there was no other way to follow their activity. Moreover, such suppositions ignore other adverse effects that affect behavior indirectly, and

  4. Potential for Personal Digital Assistant interference with implantable cardiac devices.

    PubMed

    Tri, Jeffrey L; Trusty, Jane M; Hayes, David L

    2004-12-01

    To determine whether the wireless local area network (WLAN) technology, specifically the Personal Digital Assistant (PDA), interferes with implantable cardiac pacemakers and defibrillators. Various pacemakers and defibrillators were tested in vitro at the Mayo Clinic in Rochester, Minn, between March 6 and July 30, 2003. These cardiac devices were exposed to an HP Compaq IPAQ PDA fitted with a Cisco Aironet WLAN card. Initial testing was designed to show whether the Aironet card radiated energy in a consistent pattern from the antenna of the PDA to ensure that subsequent cardiac device testing would not be affected by the orientation of the PDA to the cardiac device. Testing involved placing individual cardiac devices in a simulator and uniformly exposing each device at its most sensitive programmable value to the WLAN card set to maximum power. During testing with the Cisco WLAN Aironet card, all devices programmed to the unipolar or bipolar configuration single- or dual-chamber mode had normal pacing and sensing functions and exhibited no effects of electromagnetic interference except for 1 implantable cardioverter-defibrillator (ICD). This aberration was determined to relate to the design of the investigators' testing apparatus and not to the output of the PDA. The ICD device appropriately identified and labeled the electromagnetic aberration as "noise." We documented no electromagnetic interference caused by the WLAN technology by using in vitro testing of pacemakers and ICDs; however, testing ideally should be completed in vivo to confirm the lack of any clinically important interactions.

  5. Comparative Microstrain Study of Internal Hexagon and Plateau Design of Short Implants Under Vertical Loading.

    PubMed

    Nishioka, Renato Sussumu; Rodrigues, Vinicius Anéas; De Santis, Leandro Ruivo; Nishioka, Gabriela Nogueira De Melo; Santos, Vivian Mayumi Miyazaki; Souza, Francisley Ávila

    2016-02-01

    To quantify microstrain development during axial loading using strain gauge analysis for short implants, varying the type of fixture-abutment joint and thread design. An internal hexagon implant (4 × 8 mm) and a plateau design implant (4 × 8 mm) were embedded on the center of 10 polyurethane blocks with dimensions of 190 × 30 × 12 mm. The respective abutments were screwed onto the implants. Four strain gauges (SGs) were bonded onto the surface of each block, and 4 vertical SGs were bonded onto the side of each block. Axial load of 30 kgf was applied for 10 seconds in the center of each implant. The data were analyzed statistically by analysis of variance for repeated measures and Tukey test (P < 0.05). The interaction between implant and region factors have been statistically significant (P = 0.0259). Tukey test revealed a difference on plateau's horizontal region. The cervical region presented higher microstrain values, when compared with the medium and apical regions of the implants. Within the purpose of the study, the type of fixture-abutment joint is a relevant factor to affect the amount of stress/strain in bone simulation. The microstrain development was concentrated on the cervical region of the implant.

  6. Influence of Implant Positions and Occlusal Forces on Peri-Implant Bone Stress in Mandibular Two-Implant Overdentures: A 3-Dimensional Finite Element Analysis.

    PubMed

    Alvarez-Arenal, Angel; Gonzalez-Gonzalez, Ignacio; deLlanos-Lanchares, Hector; Brizuela-Velasco, Aritza; Dds, Elena Martin-Fernandez; Ellacuria-Echebarria, Joseba

    2017-12-01

    The aim of this study was to evaluate and compare the bone stress around implants in mandibular 2-implant overdentures depending on the implant location and different loading conditions. Four 3-dimensional finite element models simulating a mandibular 2-implant overdenture and a Locator attachment system were designed. The implants were located at the lateral incisor, canine, second premolar, and crossed-implant levels. A 150 N unilateral and bilateral vertical load of different location was applied, as was 40 N when combined with midline load. Data for von Mises stress were produced numerically, color coded, and compared between the models for peri-implant bone and loading conditions. With unilateral loading, in all 4 models much higher peri-implant bone stress values were recorded on the load side compared with the no-load side, while with bilateral occlusal loading, the stress distribution was similar on both sides. In all models, the posterior unilateral load showed the highest stress, which decreased as the load was applied more mesially. In general, the best biomechanical environment in the peri-implant bone was found in the model with implants at premolar level. In the crossed-implant model, the load side greatly altered the biomechanical environment. Overall, the overdenture with implants at second premolar level should be the chosen design, regardless of where the load is applied. The occlusal loading application site influences the bone stress around the implant. Bilateral occlusal loading distributes the peri-implant bone stress symmetrically, while unilateral loading increases it greatly on the load side, no matter where the implants are located.

  7. Load-Bearing Capacity and Retention of Newly Developed Micro-Locking Implant Prosthetic System: An In Vitro Pilot Study.

    PubMed

    Choi, Jae-Won; Choi, Kyung-Hee; Chae, Hee-Jin; Chae, Sung-Ki; Bae, Eun-Bin; Lee, Jin-Ju; Lee, So-Hyoun; Jeong, Chang-Mo; Huh, Jung-Bo

    2018-04-06

    The aim of this study was to introduce the newly developed micro-locking implant prosthetic system and to evaluate the resulting its characteristics. To evaluate load-bearing capacity, 25 implants were divided into five groups: external-hexagon connection (EH), internal-octagon connection (IO), internal-hexagon connection (IH), one-body implant (OB), micro-locking implant system (ML). The maximum compressive load was measured using a universal testing machine (UTM) according to the ISO 14801. Retention was evaluated in two experiments: (1) a tensile test of the structure modifications of the components (attachment and implant) and (2) a tensile test after cyclic loading (total 5,000,000 cycles, 100 N, 2 Hz). The load-bearing capacity of the ML group was not significantly different from the other groups ( p > 0.05). The number of balls in the attachment and the presence of a hexagonal receptacle did not show a significant correlation with retention ( p > 0.05), but the shape of the retentive groove in the implant post had a statistically significant effect on retention ( p < 0.05). On the other hand, the retention loss was observed during the initial 1,000,000 cycles, but an overall constant retention was maintained afterward. Various preclinical studies on this novel micro-locking implant prosthetic system should continue so that it can be applied in clinical practice.

  8. Load-Bearing Capacity and Retention of Newly Developed Micro-Locking Implant Prosthetic System: An In Vitro Pilot Study

    PubMed Central

    Choi, Kyung-Hee; Chae, Hee-Jin; Chae, Sung-Ki; Bae, Eun-Bin; Lee, Jin-Ju; Lee, So-Hyoun; Jeong, Chang-Mo; Huh, Jung-Bo

    2018-01-01

    The aim of this study was to introduce the newly developed micro-locking implant prosthetic system and to evaluate the resulting its characteristics. To evaluate load-bearing capacity, 25 implants were divided into five groups: external-hexagon connection (EH), internal-octagon connection (IO), internal-hexagon connection (IH), one-body implant (OB), micro-locking implant system (ML). The maximum compressive load was measured using a universal testing machine (UTM) according to the ISO 14801. Retention was evaluated in two experiments: (1) a tensile test of the structure modifications of the components (attachment and implant) and (2) a tensile test after cyclic loading (total 5,000,000 cycles, 100 N, 2 Hz). The load-bearing capacity of the ML group was not significantly different from the other groups (p > 0.05). The number of balls in the attachment and the presence of a hexagonal receptacle did not show a significant correlation with retention (p > 0.05), but the shape of the retentive groove in the implant post had a statistically significant effect on retention (p < 0.05). On the other hand, the retention loss was observed during the initial 1,000,000 cycles, but an overall constant retention was maintained afterward. Various preclinical studies on this novel micro-locking implant prosthetic system should continue so that it can be applied in clinical practice. PMID:29642407

  9. Effect of abutment screw length and cyclic loading on removal torque in external and internal hex implants.

    PubMed

    Mohammed, Hnd Hadi; Lee, Jin-Han; Bae, Ji-Myung; Cho, Hye-Won

    2016-02-01

    The purpose of this study was to evaluate the effects of abutment screw length and cyclic loading on the removal torque (RTV) in external hex (EH) and internal hex (IH) implants. Forty screw-retained single crowns were connected to external and internal hex implants. The prepared titanium abutment screws were classified into 8 groups based on the number of threads (n = 5 per group): EH 12.5, 6.5, 3.5, 2.5 and IH 6.5, 5, 3.5, 2.5 threads. The abutment screws were tightened with 20 Ncm torque twice with 10-minute intervals. After 5 minutes, the initial RTVs of the abutment screws were measured with a digital torque gauge (MGT12). A customized jig was constructed to apply a load along the implant long axis at the central fossa of the maxillary first molar. The post-loading RTVs were measured after 16,000 cycles of mechanical loading with 50 N at a 1-Hz frequency. Statistical analysis included one-way analysis of variance and paired t-tests. The post-loading RTVs were significantly lower than the initial RTVs in the EH 2.5 thread and IH 2.5 thread groups (P<.05). The initial RTVs exhibited no significant differences among the 8 groups, whereas the post-loading RTVs of the EH 6.5 and EH 3.5 thread groups were higher than those of the IH 3.5 thread group (P<.05). Within the limitations of this study, the external hex implants with short screw lengths were more advantageous than internal hex implants with short screw lengths in torque maintenance after cyclic loading.

  10. Effect of abutment screw length and cyclic loading on removal torque in external and internal hex implants

    PubMed Central

    Mohammed, Hnd Hadi; Lee, Jin-Han; Bae, Ji-Myung

    2016-01-01

    PURPOSE The purpose of this study was to evaluate the effects of abutment screw length and cyclic loading on the removal torque (RTV) in external hex (EH) and internal hex (IH) implants. MATERIALS AND METHODS Forty screw-retained single crowns were connected to external and internal hex implants. The prepared titanium abutment screws were classified into 8 groups based on the number of threads (n = 5 per group): EH 12.5, 6.5, 3.5, 2.5 and IH 6.5, 5, 3.5, 2.5 threads. The abutment screws were tightened with 20 Ncm torque twice with 10-minute intervals. After 5 minutes, the initial RTVs of the abutment screws were measured with a digital torque gauge (MGT12). A customized jig was constructed to apply a load along the implant long axis at the central fossa of the maxillary first molar. The post-loading RTVs were measured after 16,000 cycles of mechanical loading with 50 N at a 1-Hz frequency. Statistical analysis included one-way analysis of variance and paired t-tests. RESULTS The post-loading RTVs were significantly lower than the initial RTVs in the EH 2.5 thread and IH 2.5 thread groups (P<.05). The initial RTVs exhibited no significant differences among the 8 groups, whereas the post-loading RTVs of the EH 6.5 and EH 3.5 thread groups were higher than those of the IH 3.5 thread group (P<.05). CONCLUSION Within the limitations of this study, the external hex implants with short screw lengths were more advantageous than internal hex implants with short screw lengths in torque maintenance after cyclic loading. PMID:26949489

  11. Strain Distribution in a Kennedy Class I Implant Assisted Removable Partial Denture under Various Loading Conditions

    PubMed Central

    Shahmiri, Reza; Aarts, John M.; Bennani, Vincent; Swain, Michael V.

    2013-01-01

    Purpose. This in vitro study investigates how unilateral and bilateral occlusal loads are transferred to an implant assisted removable partial denture (IARPD). Materials and Methods. A duplicate model of a Kennedy class I edentulous mandibular arch was made and then a conventional removable partial denture (RPD) fabricated. Two Straumann implants were placed in the second molar region, and the prosthesis was modified to accommodate implant retained ball attachments. Strain gages were incorporated into the fitting surface of both the framework and acrylic to measure microstrain (μStrain). The IARPD was loaded to 120Ns unilaterally and bilaterally in three different loading positions. Statistical analysis was carried out using SPSS version 18.0 (SPSS, Inc., Chicago, IL, USA) with an alpha level of 0.05 to compare the maximum μStrain values of the different loading conditions. Results. During unilateral and bilateral loading the maximum μStrain was predominantly observed in a buccal direction. As the load was moved anteriorly the μStrain increased in the mesial area. Unilateral loading resulted in a twisting of the structure and generated a strain mismatch between the metal and acrylic surfaces. Conclusions. Unilateral loading created lateral and vertical displacement of the IARPD. The curvature of the dental arch resulted in a twisting action which intensified as the unilateral load was moved anteriorly. PMID:23737788

  12. Remote monitoring of patients with implanted devices: data exchange and integration.

    PubMed

    Van der Velde, Enno T; Atsma, Douwe E; Foeken, Hylke; Witteman, Tom A; Hoekstra, Wybo H G J

    2013-06-01

    Remote follow-up of implanted implantable cardioverter defibrillators (ICDs) may offer a solution to the problem of overcrowded outpatient clinics, and may also be effective in detecting clinical events early. Data obtained from remote follow up systems, as developed by all major device companies, are stored in a central database system, operated and owned by the device company. A problem now arises that the patient's clinical information is partly stored in the local electronic health record (EHR) system in the hospital, and partly in the remote monitoring database, which may potentially result in patient safety issues. To address the requirement of integrating remote monitoring data in the local EHR, the Integrating the Healthcare Enterprise (IHE) Implantable Device Cardiac Observation (IDCO) profile has been developed. This IHE IDCO profile has been adapted by all major device companies. In our hospital, we have implemented the IHE IDCO profile to import data from the remote databases from two device vendors into the departmental Cardiology Information System (EPD-Vision). Data is exchanged via a HL7/XML communication protocol, as defined in the IHE IDCO profile. By implementing the IHE IDCO profile, we have been able to integrate the data from the remote monitoring databases in our local EHRs. It can be expected that remote monitoring systems will develop into dedicated monitoring and therapy platforms. Data retrieved from these systems should form an integral part of the electronic patient record as more and more out-patient clinic care will shift to personalized care provided at a distance, in other words at the patient's home.

  13. Effect on Bone Architecture of Marginal Grooves in Dental Implants Under Occlusal Loaded Conditions in Beagle Dogs.

    PubMed

    Kato, Hatsumi; Kuroshima, Shinichiro; Inaba, Nao; Uto, Yusuke; Sawase, Takashi

    2018-02-01

    The aim of this study was to clarify whether marginal grooves on dental implants affect osseointegration, bone structure, and the alignment of collagen fibers to determine bone quality under loaded conditions. Anodized Ti-6Al-4V alloy dental implants, with and without marginal grooves (test and control implants, respectively), were used (3.7 × 8.0 mm). Fourth premolars and first molars of 6 beagle mandibles were extracted. Two control and test implants were placed in randomly selected healed sites at 12 weeks after tooth extraction. Screw-retained single crowns for first molars were fabricated. Euthanasia was performed at 8 weeks after the application of occlusal forces. Implant marginal bone level, bone to implant contact (BIC), bone structure around dental implants, and the alignment of collagen fibers determining bone quality were analyzed. The marginal bone level in test implants was significantly higher than that in control implants. Occlusal forces significantly increased BIC in test implants ( P = .007), whereas BIC did not change in control implants, irrespective of occlusal forces ( P = .303). Moreover, occlusal forces significantly increased BIC in test implants compared with control implants ( P = .032). Additionally, occlusal forces preferentially aligned collagen fibers in test implants, but not control implants. Hence, marginal grooves on dental implants have positive effects on increased osseointegration and adapted bone quality based on the preferential alignment of collagen fibers around dental implants under loaded conditions.

  14. Safety, efficacy, and performance of implanted recycled cardiac rhythm management (CRM) devices in underprivileged patients.

    PubMed

    Hasan, Reema; Ghanbari, Hamid; Feldman, Dustin; Menesses, Daniel; Rivas, Daniel; Zakhem, Nicole C; Duarte, Carlos; Machado, Christian

    2011-06-01

    Patients in underdeveloped nations have limited access to life-saving medical technology including cardiac rhythm management (CRM) devices. We evaluated alternative means to provide such technology to this patient population while assessing the safety and efficacy of such a practice. Patients in the United States with clinical indications for extraction of CRM devices were consented. Antemortem CRM devices were cleaned and sterilized following a protocol established at our institution. Surveillance in vitro cultures were performed for quality assurance. The functional status of pulse generators was tested with a pacing system analyzer to confirm at least 70% battery life. Most generators were transported, in person, to an implanting institution in Nicaragua. Recipients with a Class I indication for CRM implantation, and meeting economical criteria set forth, were consented for implantation of a recycled device. Between 2003 and 2009, implantation was performed in 17 patients with an average age of 42.1 ± 20.3 years. Of the 17 patients, nine were male and eight were female. Mean follow-up was 68 ± 38 months. Device evaluation occurred prior to discharge, 4 weeks post implantation, and every 6 months thereafter. There were three deaths during the follow-up period secondary to myocardial infarction, stroke, and heart failure. Hematoma formation occurred in one patient. No infections, early battery depletion, or device malfunction were identified during follow-up. Our case series is the longest follow-up of recipients of recycled antemortem CRM devices. Our findings support the feasibility and safety of this alternative acquisition of life-saving technology. ©2011, The Authors. Journal compilation ©2011 Wiley Periodicals, Inc.

  15. Radiographic and clinical outcomes of implants placed in ridge preserved sites: a 12-month post-loading follow-up.

    PubMed

    Patel, K; Mardas, N; Donos, N

    2013-06-01

    The aim of this clinical study was to evaluate the interproximal radiographic bone levels and the survival/success rate of dental implants placed in alveolar ridges previously preserved with a synthetic bone substitute or a bovine xenograft. Alveolar ridge preservation was performed in 27 patients who were randomly assigned in two groups. In the test group (n = 14), the extraction socket was treated with a synthetic bone graft Straumann Bone Ceramic; SBC and a collagen barrier, whereas in the control group (n = 13) a deproteinized bovine bone mineral (DBBM) and the same collagen barrier were used. After 8 months of healing, titanium dental implants with a hydrophilic surface were placed in the preserved ridges. During surgery, 9/13 implants in the SBC group and 8/12 implants in the DBBM group presented with either dehiscence or fenestration defects and required additional bone augmentation. The implants were loaded at 4 months following placement and were followed up for 1 year post-loading. Interproximal radiographic bone levels were evaluated in standardized periapical radiographs at loading and 1 year post-loading. Probing pocket depth, gingival recession and bleeding upon probing were recorded at implants and neighbouring teeth. The success rate of the implants was evaluated according to criteria set by Albrektsson et al. (1986). The survival rate of the implants in both groups was 100% at 1-year post-loading. No statistically significant differences in any of the clinical and radiographic measurements were detected between the two groups (P < 0.05). The success rate of the implants was 84.6% (11/13) in the SBC group and 83.3% (10/12) in the DBBM group. Equivalent success and survival rates (as well as similar radiographic changes) of dental implants placed in alveolar ridges previously preserved with SBC or DBBM should be anticipated. © 2012 John Wiley & Sons A/S.

  16. Ensuring safety of implanted devices under MRI using reversed RF polarization.

    PubMed

    Overall, William R; Pauly, John M; Stang, Pascal P; Scott, Greig C

    2010-09-01

    Patients with long-wire medical implants are currently prevented from undergoing magnetic resonance imaging (MRI) scans due to the risk of radio frequency (RF) heating. We have developed a simple technique for determining the heating potential for these implants using reversed radio frequency (RF) polarization. This technique could be used on a patient-to-patient basis as a part of the standard prescan procedure to ensure that the subject's device does not pose a heating risk. By using reversed quadrature polarization, the MR scan can be sensitized exclusively to the potentially dangerous currents in the device. Here, we derive the physical principles governing the technique and explore the primary sources of inaccuracy. These principles are verified through finite-difference simulations and through phantom scans of implant leads. These studies demonstrate the potential of the technique for sensitively detecting potentially dangerous coupling conditions before they can do any harm. 2010 Wiley-Liss, Inc.

  17. Appraisal of evidence base for introduction of new implants in hip and knee replacement: a systematic review of five widely used device technologies

    PubMed Central

    Nieuwenhuijse, Marc J; Nelissen, R G H H; Schoones, J W

    2014-01-01

    Objective To determine the evidence of effectiveness and safety for introduction of five recent and ostensibly high value implantable devices in major joint replacement to illustrate the need for change and inform guidance on evidence based introduction of new implants into healthcare. Design Systematic review of clinical trials, comparative observational studies, and registries for comparative effectiveness and safety of five implantable device innovations. Data sources PubMed (Medline), Embase, Web of Science, Cochrane, CINAHL, reference lists of articles, annual reports of major registries, summaries of safety and effectiveness for pre-market application and mandated post-market studies at the US Food and Drug Administration. Study selection The five selected innovations comprised three in total hip replacement (ceramic-on-ceramic bearings, modular femoral necks, and uncemented monoblock cups) and two in total knee replacement (high flexion knee replacement and gender specific knee replacement). All clinical studies of primary total hip or knee replacement for symptomatic osteoarthritis in adults that compared at least one of the clinical outcomes of interest (patient centred outcomes or complications, or both) in the new implant group and control implant group were considered. Data searching, abstraction, and analysis were independently performed and confirmed by at least two authors. Quantitative data syntheses were performed when feasible. Results After assessment of 10 557 search hits, 118 studies (94 unique study cohorts) met the inclusion criteria and reported data related to 15 384 implants in 13 164 patients. Comparative evidence per device innovation varied from four low to moderate quality retrospective studies (modular femoral necks) to 56 studies of varying quality including seven high quality (randomised) studies (high flexion knee replacement). None of the five device innovations was found to improve functional or patient reported outcomes

  18. Single dental implant retained mandibular complete dentures – influence of the loading protocol: study protocol for a randomized controlled trial

    PubMed Central

    2014-01-01

    Background Over the years, there has been a strong consensus in dentistry that at least two implants are required to retain a complete mandibular denture. It has been shown in several clinical trials that one single median implant can retain a mandibular overdenture sufficiently well for up to 5 years without implant failures, when delayed loading was used. However, other trials have reported conflicting results with in part considerable failure rates when immediate loading was applied. Therefore it is the purpose of the current randomized clinical trial to test the hypothesis that immediate loading of a single mandibular midline implant with an overdenture will result in a comparable clinical outcome as using the standard protocol of delayed loading. Methods/design This prospective nine-center randomized controlled clinical trial is still ongoing. The final patient will complete the trial in 2016. In total, 180 edentulous patients between 60 and 89 years with sufficient complete dentures will receive one median implant in the edentulous mandible, which will retain the existing complete denture using a ball attachment. Loading of the median implant is either immediately after implant placement (experimental group) or delayed by 3 months of submerged healing at second-stage surgery (control group). Follow-up of patients will be performed for 24 months after implant loading. The primary outcome measure is non-inferiority of implant success rate of the experimental group compared to the control group. The secondary outcome measures encompass clinical, technical and subjective variables. The study was funded by the Deutsche Forschungsgemeinschaft (German research foundation, KE 477/8-1). Discussion This multi-center clinical trial will give information on the ability of a single median implant to retain a complete mandibular denture when immediately loaded. If viable, this treatment option will strongly improve everyday dental practice. Trial registration The trial

  19. Load Fatigue Performance Evaluation on Two Internal Tapered Abutment-Implant Connection Implants Under Different Screw Tightening Torques.

    PubMed

    Jeng, Ming-Dih; Liu, Po-Yi; Kuo, Jia-Hum; Lin, Chun-Li

    2017-04-01

    This study evaluates the load fatigue performance of different abutment-implant connection implant types-retaining-screw (RS) and taper integrated screwed-in (TIS) types under 3 applied torque levels based on the screw elastic limit. Three torque levels-the recommended torque (25 Ncm), 10% less, and 10% more than the ratio of recommended torque to screw elastic limits of different implants were applied to the implants to perform static and dynamic testing according to the ISO 14801 method. Removal torque loss was calculated for each group after the endurance limitation was reached (passed 5 × 10 6 cycles) in the fatigue test. The static fracture resistance results showed that the fracture resistance in the TIS-type implant significantly increased (P < .05) when the abutment screw was inserted tightly. The dynamic testing results showed that the endurance limitations for the RS-type implant were 229 N, 197 N, and 224 N and those for the TIS-type implant were 322 N, 364 N, and 376 N when the screw insertion torques were applied from low to high. The corresponding significant (P < .05) removal torque losses for the TIS-type implant were 13.2%, 5.3%, and 2.6% but no significant difference was found for the RS-type implant. This study concluded that the static fracture resistance and dynamic endurance limitation of the TIS-type implant (1-piece solid abutment) increased when torque was applied more tightly on the screw. Less torque loss was also found when increasing the screw insertion torque.

  20. Immediate versus early loading of two implants placed with a flapless technique supporting mandibular bar-retained overdentures: a single-blinded, randomised controlled clinical trial.

    PubMed

    Cannizzaro, Gioacchino; Leone, Michele; Esposito, Marco

    2008-01-01

    To evaluate the efficacy of immediate loading versus early loading at 6 weeks of bar-retained mandibular overdentures supported by two implants placed with a flapless technique. Sixty patients were randomised: 30 to the immediately loaded group and 30 to the early loaded group. To be immediately loaded, implants had to be inserted with a minimum torque > 48 Ncm. Outcome measures were prosthesis and implant failures, biological and biomechanical complications, patient satisfaction, and Implant Stability Quotient (ISQ) assessed with a resonance frequency analysis instrument. Sixty implants were placed in each group. Flaps had to be raised in nine patients to check drill direction or to better visualise the area after multiple teeth extraction. Two implants in two patients did not reach the planned insertion torque and were immediately replaced by larger diameters ones. After 1 year no drop out occurred and two early loaded implants failed in two patients. There were no statistically significant differences between groups for prosthesis failures, implant losses, complications, and mean ISQ values; however, patients in the immediately loaded group were significantly more satisfied than those loaded early. When comparing mean ISQ values taken 6 weeks after placement with 1-year data within each group, values decreased significantly. Mandibular overdentures can be successfully loaded the same day of implant placement with a minimally invasive surgery, increasing patient satisfaction while decreasing treatment time and patient discomfort. No apparent advantages were seen when loading the overdentures at 6 weeks.

  1. Utilization of YouTube as a Tool to Assess Patient Perception Regarding Implanted Cardiac Devices.

    PubMed

    Hayes, Kevin; Mainali, Prajeena; Deshmukh, Abhishek; Pant, Sadip; Badheka, Apurva O; Paydak, Hakan

    2014-07-01

    The outreach of YouTube may have a dramatic role in the widespread dissemination of knowledge on implantable cardioverter devices (ICD). This study was designed to review and analyze the information available on YouTube pertaining to implantable cardiac devices such as implantable cardioverter defibrillators (ICDs) and pacemakers. YouTube was queried for the terms "ICD", "Implantable Cardioverter Defibrillator", and "Pacemaker". The videos were reviewed and categorized as according to content; number of views and "likes" or "dislikes" was recorded by two separate observers. Of the 55 videos reviewed, 18 of the videos were categorized as patient education, 12 were advertisements, 8 were intraoperative videos documenting the device implantation procedures, 7 of the videos were produced to document personal patient experiences, and 4 were categorized as documentation of a public event. 3 were intended to educate health care workers. The remaining 3 were intended to raise public awareness about sudden cardiac death. The videos portraying intraoperative procedures generated the most "likes" or "dislikes" per view. While YouTube provides a logical platform for delivery of health information, the information on this platform is not regulated. Initiative by reputed authorities and posting accurate information in such platform can be a great aid in public education regarding device therapy.

  2. Comparative histomorphometry and resonance frequency analysis of implants with moderately rough surfaces in a loaded animal model.

    PubMed

    Al-Nawas, B; Groetz, K A; Goetz, H; Duschner, H; Wagner, W

    2008-01-01

    Test of favourable conditions for osseointegration with respect to optimum bone-implant contact (BIC) in a loaded animal model. The varied parameters were surface roughness and surface topography of commercially available dental implants. Thirty-two implants of six types of macro and microstructure were included in the study (total 196). The different types were: minimally rough control: Branemark machined Mk III; oxidized surface: TiUnite MkIII and MkIV; ZL Ticer; blasted and etched surface: Straumann SLA; rough control: titanium plasma sprayed (TPS). Sixteen beagle dogs were implanted with the whole set of the above implants. After a healing period of 8 weeks, implants were loaded for 3 months. For the evaluation of the BIC areas, adequately sectioned biopsies were visualized by subsurface scans with confocal laser scanning microscopy (CLSM). The primary statistical analysis testing BIC of the moderately rough implants (mean 56.1+/-13.0%) vs. the minimally rough and the rough controls (mean 53.9+/-11.2%) does not reveal a significant difference (P=0.57). Mean values of 50-70% BIC were found for all implant types. Moderately rough oxidized implants show a median BIC, which is 8% higher than their minimally rough turned counterpart. The intraindividual difference between the TPS and the blasted and etched counterparts revealed no significant difference. The turned and the oxidized implants show median values of the resonance frequency [implant stability quotients (ISQ)] over 60; the nonself-tapping blasted and etched and TPS implants show median values below 60. In conclusion, the benefit of rough surfaces relative to minimally rough ones in this loaded animal model was confirmed histologically. The comparison of different surface treatment modalities revealed no significant differences between the modern moderately rough surfaces. Resonance frequency analysis seems to be influenced in a major part by the transducer used, thus prohibiting the comparison of

  3. Laser sclerectomy and 5-FU controlled-drug-release biodegradable implant for glaucoma therapy

    NASA Astrophysics Data System (ADS)

    Villain, Franck L.; Parel, Jean-Marie A.; Kiss, Katalin; Parrish, Richard K.; Kuhne, Francois; Takesue, Yoshiko; Hostyn, Patrick

    1993-06-01

    Laser sclerectomy, a simple filtering procedure performed to alleviate high intraocular pressure in glaucoma patients, was taught to offer longer lasting effect and therefore improve the patient's outcome when compared with the standard trabeculectomy procedure. Recent clinical trials have shown that this was not the case and pharmacologic wound healing modulation is also required with this new procedure. Five-Fluorouracil (5-FU) is useful as an adjunct treatment for glaucoma filtering surgery. However, efficacy depends upon maintaining sustained drug levels, currently achieved by repeated daily injection of the drug for several weeks. To overcome this limitation, we designed a biodegradable implant for the sustained release of 5-FU. After laser sclerectomy, the implant is inserted through the same 1 mm wide conjunctival snip incision and positioned below the open channel. Implantation takes less than a minute. The implant releases the drug for over 15 days and totally biodegrades in less than 100 days. The combined laser surgery and implantation procedure show great potentials for the treatment of glaucoma.

  4. Successful weaning of a left ventricular assist device implanted for ischemic heart failure.

    PubMed

    Beurtheret, Sylvain; Mordant, Pierre; Pavie, Alain; Leprince, Pascal

    2010-10-01

    We report the case of a patient stabilized under extra-corporeal membrane oxygenation after a refractory cardiogenic shock following myocardial infarction. Persistent left ventricular failure required secondary implantation of the left ventricular assist device (LVAD) HeartMate II. LVAD succeeded in the gradual recovery of myocardial contractility, allowing weaning of the device five months after implantation. Simultaneously, the patient beneficiated from coronary revascularization and resumed normal activity. This case emphasizes potential late recoveries after myocardial infarction complicated by left ventricular failure.

  5. A controlled antibiotic release system to prevent orthopedic-implant associated infections: An in vitro study

    PubMed Central

    Gimeno, Marina; Pinczowski, Pedro; Pérez, Marta; Giorello, Antonella; Martínez, Miguel Ángel; Santamaría, Jesús; Arruebo, Manuel; Luján, Lluís

    2015-01-01

    A new device for local delivery of antibiotics is presented, with potential use as a drug-eluting fixation pin for orthopedic applications. The implant consists of a stainless steel hollow tubular reservoir packed with the desired antibiotic. Release takes place through several orifices previously drilled in the reservoir wall, a process that does not compromise the mechanical properties required for the implant. Depending on the antibiotic chosen and the number of orifices, the release profile can be tailored from a rapid release of the load (ca. 20 h) to a combination of rapid initial release and slower, sustained release for a longer period of time (ca. 200 h). An excellent bactericidal action is obtained, with 4-log reductions achieved in as little as 2 h, and total bacterial eradication in 8 h using 6-pinholed implants filled with cefazolin. PMID:26297104

  6. Incidence, Characteristics, and Clinical Course of Device-Related Thrombus After Watchman Left Atrial Appendage Occlusion Device Implantation in Atrial Fibrillation Patients.

    PubMed

    Kubo, Shunsuke; Mizutani, Yukiko; Meemook, Krissada; Nakajima, Yoshifumi; Hussaini, Asma; Kar, Saibal

    2017-12-11

    This study investigated characteristics and clinical impact of device-related thrombus formation after Watchman device implantation in atrial fibrillation (AF) patients. Left atrial appendage occlusion using the Watchman device is an effective alternative to anticoagulation for stroke prevention in AF patients. However, device-related thrombus formation remains an important concern after Watchman implantation. From 2006 to 2014, 119 consecutive AF patients underwent Watchman implantation. Transesophageal echocardiographic (TEE) follow-up was scheduled at 45 days, at 6 months, and at 12 months after the procedure. The incidence, characteristics, and clinical course of device-related thrombus formation detected by TEE were assessed. Follow-up TEE identified thrombus formation on the Watchman device in 4 patients (3.4%). The prevalence of chronic AF was 100% in patients with thrombus, which was higher than that for patients without thrombus (40.0%). Deployed device size was numerically larger in patients with thrombus (29.3 ± 3.8 mm vs. 25.7 ± 3.2 mm, respectively). All patients with thrombus discontinued any of the anticoagulant/antiplatelet therapy which was required under the study protocol. After restarting or continuing warfarin and aspirin therapy, complete resolution of the thrombus was achieved in all patients at subsequent follow-up TEE. Warfarin therapy was discontinued within 6 months for all cases, and there was no thrombus recurrence. The mean follow-up duration was 1,456 ± 546 days, with no death, stroke, or systemic embolization events in patients with thrombus. AF burden, device size, and anticoagulant/antiplatelet regimens can be associated with device-related thrombus after Watchman device implantation. Short-term warfarin therapy was effective, and the clinical outcomes were favorable. Copyright © 2017 American College of Cardiology Foundation. All rights reserved.

  7. Magnesium alloys as body implants: fracture mechanism under dynamic and static loadings in a physiological environment.

    PubMed

    Choudhary, Lokesh; Raman, R K Singh

    2012-02-01

    It is essential that a metallic implant material possesses adequate resistance to cracking/fracture under the synergistic action of a corrosive physiological environment and mechanical loading (i.e. stress corrosion cracking (SCC)), before the implant can be put to actual use. This paper presents a critique of the fundamental issues with an assessment of SCC of a rapidly corroding material such as magnesium alloys, and describes an investigation into the mechanism of SCC of a magnesium alloy in a physiological environment. The SCC susceptibility of the alloy in a simulated human body fluid was established by slow strain rate tensile (SSRT) testing using smooth specimens under different electrochemical conditions for understanding the mechanism of SCC. However, to assess the life of the implant devices that often possess fine micro-cracks, SCC susceptibility of notched specimens was investigated by circumferential notch tensile (CNT) testing. CNT tests also produced important design data, i.e. threshold stress intensity for SCC (KISCC) and SCC crack growth rate. Fractographic features of SCC were examined using scanning electron microscopy. The SSRT and CNT results, together with fractographic evidence, confirmed the SCC susceptibility of both smooth and notched specimens of a magnesium alloy in the physiological environment. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Influence of electronic apex locators and a gutta-percha heating device on implanted cardiac devices: an in vivo study.

    PubMed

    Moraes, A P; Silva, E J; Lamas, C C; Portugal, P H; Neves, A A

    2016-06-01

    To evaluate the potential for electromagnetic interference (EMI) of electronic apex locators (EALs) and a gutta-percha heating device (HD) in patients with implantable cardiac pacemakers (ICPs) or cardioverter-defibrillators (ICDs). Two types of EALs (Romiapex A-15 and Novapex) and a HD (Touch'n Heat) were tested in patients followed in an outpatient clinic for cardiac arrhythmias. The heart rhythm was monitored on a computer screen during all experimental phases. After baseline data collection, the patient held each appliance (turned on) for 30 s, simulating their clinical use. If background noise was detected on the cardiac monitor, the sensitivity of the ICP/ICD was lowered by the cardiologist to evaluate the intensity of the detected EMI. Twelve patients were evaluated (5 female and 7 male), and in nine instances, background noise in their cardiac devices related to the use of the endodontic devices was detected (6 patients). After lowering the sensitivity of the cardiac implants, three patients had more severe EMI in six instances, including pauses in ICP function. The presence of a symptomatic or asymptomatic pause was related to the patient's underlying heart rhythm. The HD device produced background noise more often compared to EALs. These were associated with more severe types of EMI. The EALs and gutta-percha HD were capable of causing background noise detection or pauses in cardiac implants in vivo. The use of electronic dental devices nearby patients with cardiac implants should be carefully considered in clinical practice. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  9. Evaluating the Safety Profile of Non-Active Implantable Medical Devices Compared with Medicines.

    PubMed

    Pane, Josep; Coloma, Preciosa M; Verhamme, Katia M C; Sturkenboom, Miriam C J M; Rebollo, Irene

    2017-01-01

    Recent safety issues involving non-active implantable medical devices (NAIMDs) have highlighted the need for better pre-market and post-market evaluation. Some stakeholders have argued that certain features of medicine safety evaluation should also be applied to medical devices. Our objectives were to compare the current processes and methodologies for the assessment of NAIMD safety profiles with those for medicines, identify potential gaps, and make recommendations for the adoption of new methodologies for the ongoing benefit-risk monitoring of these devices throughout their entire life cycle. A literature review served to examine the current tools for the safety evaluation of NAIMDs and those for medicines. We searched MEDLINE using these two categories. We supplemented this search with Google searches using the same key terms used in the MEDLINE search. Using a comparative approach, we summarized the new product design, development cycle (preclinical and clinical phases), and post-market phases for NAIMDs and drugs. We also evaluated and compared the respective processes to integrate and assess safety data during the life cycle of the products, including signal detection, signal management, and subsequent potential regulatory actions. The search identified a gap in NAIMD safety signal generation: no global program exists that collects and analyzes adverse events and product quality issues. Data sources in real-world settings, such as electronic health records, need to be effectively identified and explored as additional sources of safety information, particularly in some areas such as the EU and USA where there are plans to implement the unique device identifier (UDI). The UDI and other initiatives will enable more robust follow-up and assessment of long-term patient outcomes. The safety evaluation system for NAIMDs differs in many ways from those for drugs, but both systems face analogous challenges with respect to monitoring real-world usage. Certain features

  10. Biopolymers for Antitumor Implantable Drug Delivery Systems: Recent Advances and Future Outlook.

    PubMed

    Talebian, Sepehr; Foroughi, Javad; Wade, Samantha J; Vine, Kara L; Dolatshahi-Pirouz, Alireza; Mehrali, Mehdi; Conde, João; Wallace, Gordon G

    2018-05-13

    In spite of remarkable improvements in cancer treatments and survivorship, cancer still remains as one of the major causes of death worldwide. Although current standards of care provide encouraging results, they still cause severe systemic toxicity and also fail in preventing recurrence of the disease. In order to address these issues, biomaterial-based implantable drug delivery systems (DDSs) have emerged as promising therapeutic platforms, which allow local administration of drugs directly to the tumor site. Owing to the unique properties of biopolymers, they have been used in a variety of ways to institute biodegradable implantable DDSs that exert precise spatiotemporal control over the release of therapeutic drug. Here, the most recent advances in biopolymer-based DDSs for suppressing tumor growth and preventing tumor recurrence are reviewed. Novel emerging biopolymers as well as cutting-edge polymeric microdevices deployed as implantable antitumor DDSs are discussed. Finally, a review of a new therapeutic modality within the field, which is based on implantable biopolymeric DDSs, is given. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A comparative study of the effectiveness of early and delayed loading of short tissue-level dental implants with hydrophilic surfaces placed in the posterior section of the mandible-A preliminary study.

    PubMed

    Makowiecki, Arkadiusz; Botzenhart, Ute; Seeliger, Julia; Heinemann, Friedhelm; Biocev, Peter; Dominiak, Marzena

    2017-07-01

    The objective of the present study was to compare the primary and secondary stability of tissue-level short dental titanium implants with polished necks and hydrophilic surfaces of two different designs and manufacturers. The first implant system used (SPI ® ELEMENT RC INICELL titanium implants, Thommen Medical AG, Grenchen, Switzerland), allowed functional loading 6 weeks after its placement, whereas the second implant system (RN SLActiv ® tissue-level titanium implants, Straumann GmbH, Fribourg, Germany), was loaded after 15 weeks. The degree of primary and secondary stability was determined using an Osstell ISQ measuring device. Marginal bone loss (MBL) was evaluated radiographically 12 and 24 weeks after implantation and the Wachtel's healing index as well as the patient's satisfaction with the treatment was registered on a VAS scale. The intergroup comparison revealed significant differences in terms of primary stability as well as differences in MBL 3 months after the procedure, but no significant differences could be found after 6 months and for secondary stability. The primary stability was significantly higher for Thommen ® compared to Straumann ® implants. Insertion of short dental implants with a hydrophilic conditioned surface significantly shortens patient treatment time. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. The effect of number and distribution of unsplinted maxillary implants on the load transfer in implant-retained maxillary overdentures: an in vitro study.

    PubMed

    Damghani, Sahar; Masri, Radi; Driscoll, Carl F; Romberg, Elaine

    2012-06-01

    There is little information as to how the number and distribution of implants affect the amount of load transmitted to the palate in implant-retained maxillary overdentures. The purpose of this study was to evaluate the effect of the number and distribution of dental implants on the load transmitted to the palate. Eight implant analogues were placed in a replica of an average sized edentulous maxilla corresponding to the position of canines, first and second premolars, and first molars. The anteroposterior distance between the centers of implants in each quadrant was 8 mm. Fifteen denture bases were fabricated to fit the edentulous maxilla analogue. The denture bases were attached to the oral analogue using 6 different configurations of attachments (6 groups): Either no Locator attachments were used (control group), or the 2 most anterior attachments were attached, or 4 implants were engaged with a distance of 8, 16, or 24 mm between the centers of implants on left and right side, and finally, when all 8 attachments were activated. A force-measuring sensor was used to measure the force transmitted to the palate when a static force of 245 N was applied on the occlusal rims of the denture bases. Data (Newtons) were analyzed using 1-way ANOVA and Tukey's HSD test α=.05). The mean (SD) amount of force measured on the palate when the overdentures were supported by 4 Locator attachments; [49.84 (26.52) at 8 mm spacing], [24.42 (15.05) at 16 mm spacing], [35.66 (22.94) at 24 mm spacing] was significantly lower than when no attachments [90.98 (20.20), control], or when 2 Locator attachments were used [76.07 (27.63)] (P<.001). When the overdentures were supported by 8 Locator attachments, the force measured on the palate [20.67(16.06) N] was significantly lower than that for the control group (P<.001), overdentures supported by 2 Locator attachments (P<.001), and overdentures supported by 4 Locator attachments when the distance between the anterior and posterior implants

  13. Continuous Flow Left Ventricular Assist Device Implant Significantly Improves Pulmonary Hypertension, Right Ventricular Contractility, and Tricuspid Valve Competence

    PubMed Central

    Atluri, Pavan; Fairman, Alexander S.; MacArthur, John W.; Goldstone, Andrew B.; Cohen, Jeffrey E.; Howard, Jessica L.; Zalewski, Christyna M.; Shudo, Yasuhiro; Woo, Y. Joseph

    2014-01-01

    Background Continuous flow left ventricular assist devices (CF LVAD) are being implanted with increasing frequency for end-stage heart failure. At the time of LVAD implant, a large proportion of patients have pulmonary hypertension, right ventricular (RV) dysfunction, and tricuspid regurgitation (TR). RV dysfunction and TR can exacerbate renal dysfunction, hepatic dysfunction, coagulopathy, edema, and even prohibit isolated LVAD implant. Repairing TR mandates increased cardiopulmonary bypass time and bicaval cannulation, which should be reserved for the time of orthotopic heart transplantation. We hypothesized that CF LVAD implant would improve pulmonary artery pressures, enhance RV function, and minimize TR, obviating need for surgical tricuspid repair. Methods One hundred fourteen continuous flow LVADs implanted from 2005 through 2011 at a single center, with medical management of functional TR, were retrospectively analyzed. Pulmonary artery pressures were measured immediately prior to and following LVAD implant. RV function and TR were graded according to standard echocardiographic criteria, prior to, immediately following, and long-term following LVAD. Results There was a significant improvement in post-VAD mean pulmonary arterial pressures (26.6 ± 4.9 vs. 30.2 ± 7.4 mmHg, p = 0.008) with equivalent loading pressures (CVP = 12.0 ± 4.0 vs. 12.1 ± 5.1 p = NS). RV function significantly improved, as noted by right ventricular stroke work index (7.04 ± 2.60 vs. 6.05 ± 2.54, p = 0.02). There was an immediate improvement in TR grade and RV function following LVAD implant, which was sustained long term. Conclusion Continuous flow LVAD implant improves pulmonary hypertension, RV function, and tricuspid regurgitation. TR may be managed nonoperatively during CF LVAD implant. PMID:24118109

  14. Effect of radial head implant shape on joint contact area and location during static loading.

    PubMed

    Shannon, Hannah L; Deluce, Simon R; Lalone, Emily A; Willing, Ryan; King, Graham J W; Johnson, James A

    2015-04-01

    To examine the effect of implant shape on radiocapitellar joint contact area and location in vitro. We used 8 fresh-frozen cadaveric upper extremities. An elbow loading simulator examined joint contact in pronation, neutral rotation, and supination with the elbow at 90° flexion. Muscle tendons were attached to pneumatic actuators to allow for computer-controlled loading to achieve the desired forearm rotation. We performed testing with the native radial head, an axisymmetric implant, a reverse-engineered patient-specific implant, and a population-based quasi-anatomic implant. Implants were inserted using computer navigation. Contact area and location were quantified using a casting technique. We found no significant difference between contact locations for the native radial head and the 3 implants. All of the implants had a contact area lower than the native radial head; however, only the axisymmetric implant was significantly different. There was no significant difference in contact area between implant shapes. The similar contact areas and locations of the 3 implant designs suggest that the shape of the implant may not be important with respect to radiocapitellar joint contact mechanics when placed optimally using computer navigation. Further work is needed to explore the sensitivity of radial head implant malpositioning on articular contact. The lower contact area of the radial head implants relative to the native radial head is similar to previous benchtop studies and is likely the result of the greater stiffness of the implant. Radial head implant shape does not appear to have a pronounced influence on articular contact, and both axisymmetric and anatomic metal designs result in elevated cartilage stress relative to the intact state. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  15. 77 FR 4226 - Implantation or Injectable Dosage Form New Animal Drugs; Danofloxacin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    .... FDA-2011-N-0003] Implantation or Injectable Dosage Form New Animal Drugs; Danofloxacin AGENCY: Food... amending the animal drug regulations to reflect approval of a supplemental new animal drug application.... 801-808. List of Subjects in 21 CFR Part 522 Animal drugs. Therefore, under the Federal Food, Drug...

  16. Clinical evaluation of immediate loading of electroeroded screw-retained titanium fixed prostheses supported by tilted implant: a multicenter retrospective study.

    PubMed

    Acocella, Alessandro; Ercoli, Carlo; Geminiani, Alessandro; Feng, Changyong; Billi, Mauro; Acocella, Gabriele; Giannini, Domenico; Sacco, Roberto

    2012-05-01

    Immediate occlusal loading of dental implants in the edentulous mandible has proven to be an effective, reliable, and predictable treatment protocol. However, there is limited long-term data available in the literature, when an electroeroded definitive cast-titanium fixed prosthesis is used for this treatment protocol. The aim of this study was to evaluate the clinical effectiveness of dental implants (Astra Tech Dental, Mölndal, Sweden) in the edentulous mandible immediately loaded with an electroeroded cast-titanium screw-retained fixed prosthesis. Forty-five patients received five implants each in the interforaminal area. All the implants were inserted with torque up to 40 Ncm and the distal implants were distally tilted approximately 20 to 30 degrees to minimize the length of posterior cantilevers. Implants were loaded within 48 hours of placement with an acrylic resin-titanium screw-retained prosthesis fabricated by electroerosion. Two of the 225 inserted implants failed after 3 and 16 months of healing, respectively, with a cumulative survival rate of 99.1% and a prosthetic survival rate of 97.8%. Immediate loading of tilted dental implants inserted in the edentulous mandible with a screw-retained titanium definitive prosthesis fabricated with electrical discharge machining provide reliable and predictable results. © 2011 Wiley Periodicals, Inc.

  17. Immediate occlusal loading of NanoTite PREVAIL implants: a prospective 1-year clinical and radiographic study.

    PubMed

    Ostman, Pär-Olov; Wennerberg, Ann; Albrektsson, Tomas

    2010-03-01

    Recently, a new implant surface texture, featuring application of nanometer-scale calcium phosphate has been shown to enhance early bone fixation and formation in preclinical studies and in human histomorphometric studies, which may be beneficial in immediate loading situations. The purpose of the present prospective clinical study was to, during 1 year, clinically and radiographically evaluate a nanometer scale surface modified implant placed for immediate loading of fixed prostheses in both maxillary and mandibular regions. Thirty-five out of 38 patients who needed implant treatment and met inclusion criteria agreed to participate in the study and were consecutively enrolled. Surgical implant placement requirements consisted of a final torque of a least 25 Ncm prior to final seating and an implant stability quotient above 55. A total of 102 NanoTite PREVAIL (NTP) implants (BIOMET 3i, Palm Beach Gardens, FL, USA) (66 maxillary and 36 mandibular) were placed by one investigator, and the majority of these were placed in posterior regions (65%) and in soft bone (69%). A total of 44 prosthetic constructions were evaluated consisting of 14 single-tooth restorations, 26 fixed partial dentures, and four complete fixed restorations. All provisional constructions were delivered within 1 hour, and the final constructions placed after 4 months. Implants were monitored for clinical and radiographic outcomes at follow-up examinations scheduled for 3, 6, and 12 months. Of the 102 study implants, one implant failed. The simple cumulative survival rate value at 1 year was 99.2%. The average marginal bone resorption was 0.37 mm (SD 0.39) during the first year in function. According to the success criteria of Albrektsson and Zarb, success grade 1 was found with 93% of the implants. Although limited to the short follow-up, immediate loading of NanoTite Prevail implants seems to be a viable option in implant rehabilitation, at least when a good initial fixation is achieved.

  18. Hollow mesoporous silica as a high drug loading carrier for regulation insoluble drug release.

    PubMed

    Geng, Hongjian; Zhao, Yating; Liu, Jia; Cui, Yu; Wang, Ying; Zhao, Qinfu; Wang, Siling

    2016-08-20

    The purpose of this study was to develop a high drug loading hollow mesoporous silica nanoparticles (HMS) and apply for regulation insoluble drug release. HMS was synthesized using hard template phenolic resin nanoparticles with the aid of cetyltrimethyl ammonium bromide (CTAB), which was simple and inexpensive. To compare the difference between normal mesoporous silica (NMS) and hollow mesoporous silica in drug loading efficiency, drug release behavior and solid state, NMS was also prepared by soft template method. Transmission electron microscopy (TEM), specific surface area analysis, FT-IR and zeta potential were employed to characterize the morphology structure and physicochemical property of these carriers. The insoluble drugs, carvedilol and fenofibrate(Car and Fen), were chosen as the model drug to be loaded into HMS and NMS. We also chose methylene blue (MB) as a basic dye to estimate the adsorption ability of these carriers from macroscopic and microscopic view, and the drug-loaded carriers were systematically studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and UV-vis spectrophotometry. What' more, the in vivo process of HMS was also study by confocal microscopy and in vivo fluorescence imaging. In order to confirm the gastrointestinal safety of HMS, the pathological examination of stomach and intestine also be evaluated. HMS allowed a higher drug loading than NMS and exhibited a relative sustained release curve, while NMS was immediate-release. And the effect of preventing drugs crystallization was weaker than NMS. As for in vivo process, HMS was cleared relatively rapidly from the mouse gastrointestinal and barely uptake by intestinal epithelial cell in this study due to its large particle size. And the damage of HMS to gastrointestinal could be ignored. This study provided a simple method to obtain high drug loading and regulation insoluble drug release, expanded the application of inorganic carriers in drug delivery system

  19. Electromyography tests in patients with implanted cardiac devices are safe regardless of magnet placement.

    PubMed

    Ohira, Masayuki; Silcox, Jade; Haygood, Deavin; Harper-King, Valerie; Alsharabati, Mohammad; Lu, Liang; Morgan, Marla B; Young, Angela M; Claussen, Gwen C; King, Peter H; Oh, Shin J

    2013-01-01

    We compared the problems or complications associated with electrodiagnostic testing in 77 patients with implanted cardiac devices. Thirty tests were performed after magnet placement, and 47 were performed without magnet application. All electrodiagnostic tests were performed safely in all patients without any serious effect on the implanted cardiac devices with or without magnet placement. A significantly higher number of patient symptoms and procedure changes were reported in the magnet group (P < 0.013). No statistical difference was found in the testing difficulty or ECG changes. The magnet group patients had an approximately 11-fold greater risk of symptoms than those in the control group. Our data do not support a recommendation that magnet placement is necessary for routine electrodiagnostic testing in patients with implanted cardiac devices, as long as our general and specific guidelines are followed. Copyright © 2012 Wiley Periodicals, Inc.

  20. Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses

    NASA Astrophysics Data System (ADS)

    Potter, Kelsey A.; Buck, Amy C.; Self, Wade K.; Capadona, Jeffrey R.

    2012-08-01

    An estimated 25 million people in the US alone rely on implanted medical devices, ˜2.5 million implanted within the nervous system. Even though many devices perform adequately for years, the host response to medical devices often severely limits tissue integration and long-term performance. This host response is believed to be particularly limiting in the case of intracortical microelectrodes, where it has been shown that glial cell encapsulation and localized neuronal cell loss accompany intracortical microelectrode implantation. Since neuronal ensembles must be within ˜50 µm of the electrode to obtain neuronal spikes and local field potentials, developing a better understanding of the molecular and cellular environment at the device-tissue interface has been the subject of significant research. Unfortunately, immunohistochemical studies of scar maturation in correlation to device function have been inconclusive. Therefore, here we present a detailed quantitative study of the cellular events and the stability of the blood-brain barrier (BBB) following intracortical microelectrode implantation and cortical stab injury in a chronic survival model. We found two distinctly inverse multiphasic profiles for neuronal survival in device-implanted tissue compared to stab-injured animals. For chronically implanted animals, we observed a biphasic paradigm between blood-derived/trauma-induced and CNS-derived inflammatory markers driving neurodegeneration at the interface. In contrast, stab injured animals demonstrated a CNS-mediated neurodegenerative environment. Collectively these data provide valuable insight to the possibility of multiple roles of chronic neuroinflammatory events on BBB disruption and localized neurodegeneration, while also suggesting the importance to consider multiphasic neuroinflammatory kinetics in the design of therapeutic strategies for stabilizing neural interfaces.

  1. Adhoc electromagnetic compatibility testing of non-implantable medical devices and radio frequency identification

    PubMed Central

    2013-01-01

    Background The use of radiofrequency identification (RFID) in healthcare is increasing and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have documented that RFID can interfere with medical devices. The majority of past studies have concentrated on implantable medical devices such as implantable pacemakers and implantable cardioverter defibrillators (ICDs). This study examined EMC between RFID systems and non-implantable medical devices. Methods Medical devices were exposed to 19 different RFID readers and one RFID active tag. The RFID systems used covered 5 different frequency bands: 125–134 kHz (low frequency (LF)); 13.56 MHz (high frequency (HF)); 433 MHz; 915 MHz (ultra high frequency (UHF])) and 2.4 GHz. We tested three syringe pumps, three infusion pumps, four automatic external defibrillators (AEDs), and one ventilator. The testing procedure is modified from American National Standards Institute (ANSI) C63.18, Recommended Practice for an On-Site, Ad Hoc Test Method for Estimating Radiated Electromagnetic Immunity of Medical Devices to Specific Radio-Frequency Transmitters. Results For syringe pumps, we observed electromagnetic interference (EMI) during 13 of 60 experiments (22%) at a maximum distance of 59 cm. For infusion pumps, we observed EMI during 10 of 60 experiments (17%) at a maximum distance of 136 cm. For AEDs, we observed EMI during 18 of 75 experiments (24%) at a maximum distance of 51 cm. The majority of the EMI observed was classified as probably clinically significant or left the device inoperable. No EMI was observed for all medical devices tested during exposure to 433 MHz (two readers, one active tag) or 2.4 GHz RFID (two readers). Conclusion Testing confirms that RFID has the ability to interfere with critical medical equipment. Hospital staff should be aware of the potential for medical device EMI caused by RFID systems and should be encouraged to

  2. Adhoc electromagnetic compatibility testing of non-implantable medical devices and radio frequency identification.

    PubMed

    Seidman, Seth J; Guag, Joshua W

    2013-07-11

    The use of radiofrequency identification (RFID) in healthcare is increasing and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have documented that RFID can interfere with medical devices. The majority of past studies have concentrated on implantable medical devices such as implantable pacemakers and implantable cardioverter defibrillators (ICDs). This study examined EMC between RFID systems and non-implantable medical devices. Medical devices were exposed to 19 different RFID readers and one RFID active tag. The RFID systems used covered 5 different frequency bands: 125-134 kHz (low frequency (LF)); 13.56 MHz (high frequency (HF)); 433 MHz; 915 MHz (ultra high frequency (UHF])) and 2.4 GHz. We tested three syringe pumps, three infusion pumps, four automatic external defibrillators (AEDs), and one ventilator. The testing procedure is modified from American National Standards Institute (ANSI) C63.18, Recommended Practice for an On-Site, Ad Hoc Test Method for Estimating Radiated Electromagnetic Immunity of Medical Devices to Specific Radio-Frequency Transmitters. For syringe pumps, we observed electromagnetic interference (EMI) during 13 of 60 experiments (22%) at a maximum distance of 59 cm. For infusion pumps, we observed EMI during 10 of 60 experiments (17%) at a maximum distance of 136 cm. For AEDs, we observed EMI during 18 of 75 experiments (24%) at a maximum distance of 51 cm. The majority of the EMI observed was classified as probably clinically significant or left the device inoperable. No EMI was observed for all medical devices tested during exposure to 433 MHz (two readers, one active tag) or 2.4 GHz RFID (two readers). Testing confirms that RFID has the ability to interfere with critical medical equipment. Hospital staff should be aware of the potential for medical device EMI caused by RFID systems and should be encouraged to perform on-site RF immunity tests prior

  3. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: III. Impact of drug nanoparticle loading.

    PubMed

    Krull, Scott M; Moreno, Jacqueline; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2017-05-15

    Polymer strip films have emerged as a robust platform for poorly water-soluble drug delivery. However, the common conception is that films cannot exceed low drug loadings, mainly due to poor drug stability, slow release, and film brittleness. This study explores the ability to achieve high loadings of poorly water-soluble drug nanoparticles in strip films while retaining good mechanical properties and enhanced dissolution rate. Aqueous suspensions containing up to 30wt% griseofulvin nanoparticles were prepared via wet stirred media milling and incorporated into hydroxypropyl methylcellulose (HPMC) films. Griseofulvin loading in films was adjusted to be between 9 and 49wt% in HPMC-E15 films and 30 and 73wt% in HPMC-E4M films by varying the mixing ratio of HPMC solution-to-griseofulvin suspension. All films exhibited good content uniformity and nanoparticle redispersibility up to 50wt% griseofulvin, while E4M films above 50wt% griseofulvin had slightly worse content uniformity and poor nanoparticle redispersibility. Increasing drug loading in films generally required more time to achieve 100% release during dissolution, although polymer-drug clusters dispersed from E4M films above 50wt% griseofulvin, resulting in similar dissolution profiles. While all films exhibited good tensile strength, a significant decrease in percent elongation was observed above 40-50wt% GF, resulting in brittle films. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Microfluidic Remote Loading for Rapid Single-Step Liposomal Drug Preparation

    PubMed Central

    Hood, R.R.; Vreeland, W. N.; DeVoe, D.L.

    2014-01-01

    Microfluidic-directed formation of liposomes is combined with in-line sample purification and remote drug loading for single step, continuous-flow synthesis of nanoscale vesicles containing high concentrations of stably loaded drug compounds. Using an on-chip microdialysis element, the system enables rapid formation of large transmembrane pH and ion gradients, followed by immediate introduction of amphipathic drug for real-time remote loading into the liposomes. The microfluidic process enables in-line formation of drug-laden liposomes with drug:lipid molar ratios of up to 1.3, and a total on-chip residence time of approximately 3 min, representing a significant improvement over conventional bulk-scale methods which require hours to days for combined liposome synthesis and remote drug loading. The microfluidic platform may be further optimized to support real-time generation of purified liposomal drug formulations with high concentrations of drugs and minimal reagent waste for effective liposomal drug preparation at or near the point of care. PMID:25003823

  5. A Radiographic Comparison of Progressive and Conventional Loading on Crestal Bone Loss and Density in Single Dental Implants: A Randomized Controlled Trial Study

    PubMed Central

    Ghoveizi, Rahab; Alikhasi, Marzieh; Siadat, Mohammad-Reza; Siadat, Hakimeh; Sorouri, Majid

    2013-01-01

    Objective: Crestal bone loss is a biological complication in implant dentistry. The aim of this study was to compare the effect of progressive and conventional loading on crestal bone height and bone density around single osseointegrated implants in the posterior maxilla by a longitudinal radiographic assessment technique. Materials and Methods: Twenty micro thread implants were placed in 10 patients (two implants per patient). One of the two implants in each patient was assigned to progressive and the other to conventional loading groups. Eight weeks after surgery, conventional implants were restored with a metal ceramic crown and the progressive group underwent a progressive loading protocol. The progressive loading group took different temporary acrylic crowns at 2, 4 and 6 months. After eight months, acrylic crowns were replaced with a metal ceramic crown. Computer radiography of both progressive and conventional implants was taken at 2, 4, 6, and 12 months. Image analysis was performed to measure the height of crestal bone loss and bone density. Results: The mean values of crestal bone loss at month 12 were 0.11 (0.19) mm for progressively and 0.36 (0.36) mm for conventionally loaded implants, with a statistically significant difference (P < 0.05) using Wilcoxon sign rank. Progressively loaded group showed a trend for higher bone density gain compared to the conventionally loaded group, but when tested with repeated measure ANOVA, the differences were not statistically significant (P > 0.05). Conclusion: The progressive group showed less crestal bone loss in single osseointegrated implant than the conventional group. Bone density around progressively loaded implants showed increase in crestal, middle and apical areas. PMID:23724215

  6. Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs

    NASA Astrophysics Data System (ADS)

    Taepaiboon, Pattama; Rungsardthong, Uracha; Supaphol, Pitt

    2006-05-01

    Mats of PVA nanofibres were successfully prepared by the electrospinning process and were developed as carriers of drugs for a transdermal drug delivery system. Four types of non-steroidal anti-inflammatory drug with varying water solubility property, i.e. sodium salicylate (freely soluble in water), diclofenac sodium (sparingly soluble in water), naproxen (NAP), and indomethacin (IND) (both insoluble in water), were selected as model drugs. The morphological appearance of the drug-loaded electrospun PVA mats depended on the nature of the model drugs. The 1H-nuclear magnetic resonance results confirmed that the electrospinning process did not affect the chemical integrity of the drugs. Thermal properties of the drug-loaded electrospun PVA mats were analysed by differential scanning calorimetry and thermogravimetric analysis. The molecular weight of the model drugs played a major role on both the rate and the total amount of drugs released from the as-prepared drug-loaded electrospun PVA mats, with the rate and the total amount of the drugs released decreasing with increasing molecular weight of the drugs. Lastly, the drug-loaded electrospun PVA mats exhibited much better release characteristics of the model drugs than drug-loaded as-cast films.

  7. Structural and mechanical implications of PMMA implant shape and interface geometry in cranioplasty--A finite element study.

    PubMed

    Ridwan-Pramana, Angela; Marcián, Petr; Borák, Libor; Narra, Nathaniel; Forouzanfar, Tim; Wolff, Jan

    2016-01-01

    This computational study investigates the effect of shape (defect contour curvature) and bone-implant interface (osteotomy angle) on the stress distribution within PMMA skull implants. Using finite element methodology, 15 configurations--combinations of simplified synthetic geometric shapes (circular, square, triangular, irregular) and interface angulations--were simulated under 50N static loads. Furthermore, the implant fixation devices were modelled and analysed in detail. Negative osteotomy configurations demonstrated the largest stresses in the implant (275 MPa), fixation devices (1258 MPa) and bone strains (0.04). The circular implant with zero and positive osteotomy performed well with maximum observed magnitudes of--implant stress (1.2 MPa and 1.2 MPa), fixation device stress (11.2 MPa and 2.2 MPa), bone strain (0.218e-3 and 0.750e-4). The results suggest that the preparation of defect sites is a critical procedure. Of the greatest importance is the angle at which the edges of the defect are sawed. If under an external load, the implant has no support from the interface and the stresses are transferred to the fixation devices. This can endanger their material integrity and lead to unphysiological strains in the adjacent bone, potentially compromising the bone morphology required for anchoring. These factors can ultimately weaken the stability of the entire implant assembly. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. Tardive Dyskinesia, Oral Parafunction, and Implant-Supported Rehabilitation.

    PubMed

    Lumetti, S; Ghiacci, G; Macaluso, G M; Amore, M; Galli, C; Calciolari, E; Manfredi, E

    2016-01-01

    Oral movement disorders may lead to prosthesis and implant failure due to excessive loading. We report on an edentulous patient suffering from drug-induced tardive dyskinesia (TD) and oral parafunction (OP) rehabilitated with implant-supported screw-retained prostheses. The frequency and intensity of the movements were high, and no pharmacological intervention was possible. Moreover, the patient refused night-time splint therapy. A series of implant and prosthetic failures were experienced. Implant failures were all in the maxilla and stopped when a rigid titanium structure was placed to connect implants. Ad hoc designed studies are desirable to elucidate the mutual influence between oral movement disorders and implant-supported rehabilitation.

  9. Tardive Dyskinesia, Oral Parafunction, and Implant-Supported Rehabilitation

    PubMed Central

    Amore, M.

    2016-01-01

    Oral movement disorders may lead to prosthesis and implant failure due to excessive loading. We report on an edentulous patient suffering from drug-induced tardive dyskinesia (TD) and oral parafunction (OP) rehabilitated with implant-supported screw-retained prostheses. The frequency and intensity of the movements were high, and no pharmacological intervention was possible. Moreover, the patient refused night-time splint therapy. A series of implant and prosthetic failures were experienced. Implant failures were all in the maxilla and stopped when a rigid titanium structure was placed to connect implants. Ad hoc designed studies are desirable to elucidate the mutual influence between oral movement disorders and implant-supported rehabilitation. PMID:28050290

  10. A novel implantable device for the treatment of obstructive sleep apnea: clinical safety and feasibility.

    PubMed

    Pavelec, Vaclav; Rotenberg, Brian W; Maurer, Joachim T; Gillis, Edward; Verse, Thomas

    2016-01-01

    Many cases of obstructive sleep apnea (OSA) involve collapse of the tongue base and soft palate during sleep, causing occlusion of the upper airway and leading to oxygen desaturation. Existing therapies can be effective, but they are plagued by patient adherence issues and the invasiveness of surgical approaches. A new, minimally invasive implant for OSA has been developed, which is elastic and contracts a few weeks after deployment, stabilizing the surrounding soft tissue. The device has had good outcomes in preclinical testing; this report describes the preliminary feasibility and safety of its implementation in humans. A prospective, multicenter, single-arm feasibility study was conducted. Subjects were adults with moderate-to-severe OSA who had previously failed or refused conventional continuous positive airway pressure treatment. Intraoperative feasibility data, postoperative pain, and safety information were collected for a 30-day postoperative period. Forty subjects participated (37 men, three women; average age of 46.1 years); each received two tongue-base implants and two soft-palate implants. Surgical procedure time averaged 43 minutes. Postsurgical pain resolved readily in most cases; at 30 days post implantation, <20% of subjects reported pain, which averaged less than two out of ten. Adverse events were generally the mild and expected sequelae of a surgical procedure with general anesthesia and intraoral manipulation. The device was well tolerated. Implant extrusions were reported with soft-palate implants (n=12), while tongue-base implants required few revisions (n=2). Quantitative and qualitative sleep effectiveness outcomes (including full-night polysomnographic and quality-of-life measures) will be presented in a subsequent report. Implantation of the device was feasible. Although a relatively high rate of extrusions occurred in the now-discontinued palate implants, tongue-base implants were largely stable and well tolerated. The minimally

  11. Comparison of patient-reported outcomes between immediately and conventionally loaded mandibular two-implant overdentures: A preliminary study.

    PubMed

    Omura, Yuri; Kanazawa, Manabu; Sato, Daisuke; Kasugai, Shohei; Minakuchi, Shunsuke

    2016-07-01

    The aim of this preliminary study is to compare patient-reported outcomes between immediately and conventionally loaded mandibular two-implant overdentures retained by magnetic attachments. Nineteen participants with edentulous mandibles were randomly assigned into either an immediate loading group (immediate group) or a conventional loading group (conventional group). Each participant received 2 implants in the inter-foraminal region by means of flapless surgery. Prostheses in the immediate and conventional groups were loaded using magnetic attachments on the same day as implant placement or 3 months after surgery, respectively. All participants completed questionnaires (the Japanese version of the Oral Health Impact Profile for edentulous [OHIP-EDENT-J], the patient's denture assessment [PDA], and general satisfaction) before implant placement (baseline) and 1, 2, 3, 4, 5, 6, and 12 months after surgery. The median differences between baseline and each monthly score were compared using the Mann-Whitney U test. The differences in median and 95% confidence interval between two groups were analyzed. The immediate group showed slightly lower OHIP-EDENT-J summary score at 1 and 3 months than the conventional group (P=0.09). In the lower denture domain of PDA, the immediate group showed a statistically higher score at 3 months (P=0.04). There was no statistically significant difference in general satisfaction between the two groups. Based on this preliminary study, immediate loading of mandibular two-implant overdentures with magnetic attachments tends to improve oral health-related quality of life and patient assessment earlier than observed with a conventional loading protocol. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Sagittal and vertical load-deflection and permanent deformation of transpalatal arches connected with palatal implants: an in-vitro study.

    PubMed

    Crismani, Adriano G; Celar, Ales G; Burstone, Charles J; Bernhart, Thomas G; Bantleon, Hans-Peter; Mittlboeck, Martina

    2007-06-01

    The purposes of this laboratory investigation were to (1) measure the sagittal and vertical deflection of loaded transpalatal arches (TPAs) connected to a palatal implant, (2) measure the extent of permanent deformation of the connecting TPA in the sagittal and vertical directions, (3) test various wire dimensions in terms of deflection behavior, and (4) evaluate soldering vs laser welding vs adhesive bonding of TPAs in terms of load deflection behavior. Stainless steel wires of 6 dimensions were tested: 0.8 x 0.8, 0.9, 1, 1.1, 1.2, and 1.2 x 1.2 mm. For each dimension, 10 specimens were soldered to the palatal implant abutment, 10 were laser welded, and 10 were adhesively bonded to the implant abutment (total, 180 specimens). The measuring device applied increments of force of 50 cN, from 0 to 500 cN. Then the specimens were unloaded. The values were statistically described and analyzed with ANOVA and Wilcoxon rank sum tests. Absolute orthodontic anchorage without deformation of TPAs was not observed with the wire dimensions tested. To prevent loss of anchorage greater than 370 mum (sagittal deflection of 1.2 x 1.2 mm adhesively bonded TPA at 500 cN force level), wires thicker than 1.2 x 1.2 mm or cast anchorage elements must be considered for clinical practice. However, larger cross sections might cause more patient discomfort, and laboratory procedures increase costs.

  13. Titanium wire implants with nanotube arrays: A study model for localized cancer treatment.

    PubMed

    Kaur, Gagandeep; Willsmore, Tamsyn; Gulati, Karan; Zinonos, Irene; Wang, Ye; Kurian, Mima; Hay, Shelley; Losic, Dusan; Evdokiou, Andreas

    2016-09-01

    Adverse complications associated with systemic administration of anti-cancer drugs are a major problem in cancer therapy in current clinical practice. To increase effectiveness and reduce side effects, localized drug delivery to tumour sites requiring therapy is essential. Direct delivery of potent anti-cancer drugs locally to the cancer site based on nanotechnology has been recognised as a promising alternative approach. Previously, we reported the design and fabrication of nano-engineered 3D titanium wire based implants with titania (TiO2) nanotube arrays (Ti-TNTs) for applications such as bone integration by using in-vitro culture systems. The aim of present study is to demonstrate the feasibility of using such Ti-TNTs loaded with anti-cancer agent for localized cancer therapy using pre-clinical cancer models and to test local drug delivery efficiency and anti-tumour efficacy within the tumour environment. TNF-related apoptosis-inducing ligand (TRAIL) which has proven anti-cancer properties was selected as the model drug for therapeutic delivery by Ti-TNTs. Our in-vitro 2D and 3D cell culture studies demonstrated a significant decrease in breast cancer cell viability upon incubation with TRAIL loaded Ti-TNT implants (TRAIL-TNTs). Subcutaneous tumour xenografts were established to test TRAIL-TNTs implant performance in the tumour environment by monitoring the changes in tumour burden over a selected time course. TRAIL-TNTs showed a significant regression in tumour burden within the first three days of implant insertion at the tumour site. Based on current experimental findings these Ti-TNTs wire implants have shown promising capacity to load and deliver anti-cancer agents maintaining their efficacy for cancer treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Intraoperative Cochlear Implant Device Testing Utilizing an Automated Remote System: A Prospective Pilot Study.

    PubMed

    Lohmann, Amanda R; Carlson, Matthew L; Sladen, Douglas P

    2018-03-01

    Intraoperative cochlear implant device testing provides valuable information regarding device integrity, electrode position, and may assist with determining initial stimulation settings. Manual intraoperative device testing during cochlear implantation requires the time and expertise of a trained audiologist. The purpose of the current study is to investigate the feasibility of using automated remote intraoperative cochlear implant reverse telemetry testing as an alternative to standard testing. Prospective pilot study evaluating intraoperative remote automated impedance and Automatic Neural Response Telemetry (AutoNRT) testing in 34 consecutive cochlear implant surgeries using the Intraoperative Remote Assistant (Cochlear Nucleus CR120). In all cases, remote intraoperative device testing was performed by trained operating room staff. A comparison was made to the "gold standard" of manual testing by an experienced cochlear implant audiologist. Electrode position and absence of tip fold-over was confirmed using plain film x-ray. Automated remote reverse telemetry testing was successfully completed in all patients. Intraoperative x-ray demonstrated normal electrode position without tip fold-over. Average impedance values were significantly higher using standard testing versus CR120 remote testing (standard mean 10.7 kΩ, SD 1.2 vs. CR120 mean 7.5 kΩ, SD 0.7, p < 0.001). There was strong agreement between standard manual testing and remote automated testing with regard to the presence of open or short circuits along the array. There were, however, two cases in which standard testing identified an open circuit, when CR120 testing showed the circuit to be closed. Neural responses were successfully obtained in all patients using both systems. There was no difference in basal electrode responses (standard mean 195.0 μV, SD 14.10 vs. CR120 194.5 μV, SD 14.23; p = 0.7814); however, more favorable (lower μV amplitude) results were obtained with the remote

  15. Macrotextured Breast Implants with Defined Steps to Minimize Bacterial Contamination around the Device: Experience in 42,000 Implants.

    PubMed

    Adams, William P; Culbertson, Eric J; Deva, Anand K; R Magnusson, Mark; Layt, Craig; Jewell, Mark L; Mallucci, Patrick; Hedén, Per

    2017-09-01

    Bacteria/biofilm on breast implant surfaces has been implicated in capsular contracture and breast implant-associated anaplastic large-cell lymphoma (ALCL). Macrotextured breast implants have been shown to harbor more bacteria than smooth or microtextured implants. Recent reports also suggest that macrotextured implants are associated with a significantly higher incidence of breast implant-associated ALCL. Using techniques to reduce the number of bacteria around implants, specifically, the 14-point plan, has successfully minimized the occurrence of capsular contracture. The authors hypothesize that a similar effect may be seen in reducing the risk of breast implant-associated ALCL. Pooled data from eight plastic surgeons assessed the use of macrotextured breast implants (Biocell and polyurethane) and known cases of breast implant-associated ALCL. Surgeon adherence to the 14-point plan was also analyzed. A total of 42,035 Biocell implants were placed in 21,650 patients; mean follow-up was 11.7 years (range, 1 to 14 years). A total of 704 polyurethane implants were used, with a mean follow-up of 8.0 years (range, 1 to 20 years). The overall capsular contracture rate was 2.2 percent. There were no cases of implant-associated ALCL. All surgeons routinely performed all 13 perioperative components of the 14-point plan; two surgeons do not routinely prescribe prophylaxis for subsequent unrelated procedures. Mounting evidence implicates the role of a sustained T-cell response to implant bacteria/biofilm in the development of breast implant-associated ALCL. Using the principles of the 14-point plan to minimize bacterial load at the time of surgery, the development and subsequent sequelae of capsular contracture and breast implant-associated ALCL may be reduced, especially with higher-risk macrotextured implants. Therapeutic, IV.

  16. In Situ Loading of Drugs into Mesoporous Silica SBA-15.

    PubMed

    Wan, Mi Mi; Li, Yan Yan; Yang, Tian; Zhang, Tao; Sun, Xiao Dan; Zhu, Jian Hua

    2016-04-25

    In a new strategy for loading drugs into mesoporous silica, a hydrophilic (heparin) or hydrophobic drug (ibuprofen) is encapsulated directly in a one-pot synthesis by evaporation-induced self-assembly. In situ drug loading significantly cuts down the preparation time and dramatically increases the loaded amount and released fraction of the drug, and appropriate drug additives favor a mesoporous structure of the vessels. Drug loading was verified by FTIR spectroscopy and release tests, which revealed much longer release with a larger amount of heparin or ibuprofen compared to postloaded SBA-15. Besides, the in vitro anticoagulation properties of the released heparin and the biocompatibility of the vessels were carefully assessed, including activated partial thromboplastin time, thrombin time, hemolysis, platelet adhesion experiments, and the morphologies of red blood cells. A concept of new drug-release agents with soft core and hard shell is proposed and offers guidance for the design of novel drug-delivery systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Successful Implantation of a Left Ventricular Assist Device After Treatment With the Paracor HeartNet.

    PubMed

    Schweiger, Martin; Stepanenko, Alexander; Potapov, Evgenji; Drews, Thorsten; Hetzer, Roland; Krabatsch, Thomas

    2010-01-01

    The Paracor HeartNet, a ventricular constraint device for the treatment of heart failure (HF), is implanted through a left lateral thoracotomy. It envelopes the heart like a mesh "bag." This method of application raises the question of whether adhesions with the pericardium allow the safe implantation of a left ventricular assist device (LVAD) if HF worsens. A male patient who had undergone implantation of the Paracor HeartNet 42 months earlier presented with advanced HF for cardiac transplantation. The patient's condition deteriorated, and because no suitable organ for transplantation was available, implantation of an LVAD became necessary. Surgery was performed via a median sternotomy without complications. No severe adhesions were found. This is the first report on "how to do" LVAD implantation after Paracor HeartNet implantation with images and information about cutting the constraint. Because the Paracor HeartNet is "wrapped" around the heart, concerns persist that severe adhesions with the pericardium might occur. In this case, LVAD implantation after therapy with the Paracor HeartNet was without complications, and the expected massive adhesions were absent.

  18. Outcomes of Minimally Invasive Temporary Right Ventricular Assist Device Support for Acute Right Ventricular Failure During Minimally Invasive Left Ventricular Assist Device Implantation.

    PubMed

    Schaefer, Andreas; Reichart, Daniel; Bernhardt, Alexander M; Kubik, Mathias; Barten, Markus J; Wagner, Florian M; Reichenspurner, Hermann; Philipp, Sebastian A; Deuse, Tobias

    Right ventricular failure (RVF) may still occur despite the benefits of minimally invasive left ventricular assist device (MI-LVAD) implantation. Our center strategy aims to avoid aggressive postoperative inotrope use by using mechanical support to facilitate right ventricle recovery and adaptation. We herein report first outcomes of patients with minimally invasive temporary right ventricular assist device (MI-t-RVAD) support for RVF during MI-LVAD implantation. Right ventricular failure was defined as requiring more than moderate inotopic support after weaning from cardiopulmonary bypass according to Interagency Registry for Mechanically Assisted Circulatory Support adverse event definitions. All patients requiring MI-t-RVAD support for RVF during MI-LVAD implantation between January, 2012 and April, 2016 were retrospectively reviewed. Clinical endpoints were death or unsuccessful RVAD weaning. Overall 10 patients (90% male, mean age 49.6 ± 14.8 years) underwent MI-t-RVAD implantation. Duration of MI-t-RVAD support was 16.2 ± 11.6 days. Right ventricular assist device weaning and subsequent uneventful awake device explantation was successful in all cases. The 30 day survival was 80%. Our results confirm safety and feasibility of MI-t-RVAD support for acute RVF in the setting of MI-LVAD implantation. The potential benefits of this strategy are more stable hemodynamics in the first postoperative days that usually are crucial for LVAD patients and reduced inotrope requirement.

  19. Aptamer-based liposomes improve specific drug loading and release.

    PubMed

    Plourde, Kevin; Derbali, Rabeb Mouna; Desrosiers, Arnaud; Dubath, Céline; Vallée-Bélisle, Alexis; Leblond, Jeanne

    2017-04-10

    Aptamer technology has shown much promise in cancer therapeutics for its targeting abilities. However, its potential to improve drug loading and release from nanocarriers has not been thoroughly explored. In this study, we employed drug-binding aptamers to actively load drugs into liposomes. We designed a series of DNA aptamer sequences specific to doxorubicin, displaying multiple binding sites and various binding affinities. The binding ability of aptamers was preserved when incorporated into cationic liposomes, binding up to 15equivalents of doxorubicin per aptamer, therefore drawing the drug into liposomes. Optimization of the charge and drug/aptamer ratios resulted in ≥80% encapsulation efficiency of doxorubicin, ten times higher than classical passively-encapsulating liposomal formulations and similar to a pH-gradient active loading strategy. In addition, kinetic release profiles and cytotoxicity assay on HeLa cells demonstrated that the release and therapeutic efficacy of liposomal doxorubicin could be controlled by the aptamer's structure. Our results suggest that the aptamer exhibiting a specific intermediate affinity is the best suited to achieve high drug loading while maintaining efficient drug release and therapeutic activity. This strategy was successfully applied to tobramycin, a hydrophilic drug suffering from low encapsulation into liposomes, where its loading was improved six-fold using aptamers. Overall, we demonstrate that aptamers could act, in addition to their targeting properties, as multifunctional excipients for liposomal formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Influence of surgical and prosthetic techniques on marginal bone loss around titanium implants. Part I: immediate loading in fresh extraction sockets.

    PubMed

    Berberi, Antoine N; Tehini, Georges E; Noujeim, Ziad F; Khairallah, Alexandre A; Abousehlib, Moustafa N; Salameh, Ziad A

    2014-10-01

    Delayed placement of implant abutments has been associated with peri-implant marginal bone loss; however, long-term results obtained by modifying surgical and prosthetic techniques after implant placement are still lacking. This study aimed to evaluate the marginal bone loss around titanium implants placed in fresh extraction sockets using two loading protocols after a 5-year follow-up period. A total of 36 patients received 40 titanium implants (Astra Tech) intended for single-tooth replacement. Implants were immediately placed into fresh extraction sockets using either a one-stage (immediate loading by placing an interim prosthesis into functional occlusion) or a two-stage prosthetic loading protocol (insertion of abutments after 8 weeks of healing time). Marginal bone levels relative to the implant reference point were evaluated at four time intervals using intraoral radiographs: at time of implant placement, and 1, 3, and 5 years after implant placement. Measurements were obtained from mesial and distal surfaces of each implant (α = 0.05). One-stage immediate implant placement into fresh extraction sockets resulted in a significant reduction in marginal bone loss (p < 0.002) compared to the traditional two-stage technique. Whereas mesial surfaces remained stable for the 5-year observation period, significant marginal bone loss was observed on distal surfaces of implants after cementation of interim prostheses (p < 0.007) and after 12 months (p < 0.034). Within the limitations of this study, immediate loading of implants placed into fresh extraction sockets reduced marginal bone loss and did not compromise the success rate of the restorations. © 2014 by the American College of Prosthodontists.