Science.gov

Sample records for drug-loaded implantable devices

  1. Biological in situ Dose Painting for Image-Guided Radiation Therapy Using Drug-Loaded Implantable Devices

    SciTech Connect

    Cormack, Robert A.; Sridhar, Srinivas; Suh, W. Warren; D'Amico, Anthony V.; Makrigiorgos, G. Mike

    2010-02-01

    Purpose: Implantable devices routinely used for increasing spatial accuracy in modern image-guided radiation treatments (IGRT), such as fiducials or brachytherapy spacers, encompass the potential for in situ release of biologically active drugs, providing an opportunity to enhance the therapeutic ratio. We model this new approach for two types of treatment. Methods and Materials: Radiopaque fiducials used in IGRT, or prostate brachytherapy spacers ('eluters'), were assumed to be loaded with radiosensitizer for in situ drug slow release. An analytic function describing the concentration of radiosensitizer versus distance from eluters, depending on diffusion-elimination properties of the drug in tissue, was developed. Tumor coverage by the drug was modeled for tumors typical of lung stereotactic body radiation therapy treatments for various eluter dimensions and drug properties. Six prostate {sup 125}I brachytherapy cases were analyzed by assuming implantation of drug-loaded spacers. Radiosensitizer-induced subvolume boost was simulated from which biologically effective doses for typical radiosensitizers were calculated in one example. Results: Drug distributions from three-dimensional arrangements of drug eluters versus eluter size and drug properties were tabulated. Four radiosensitizer-loaded fiducials provide adequate radiosensitization for {approx}4-cm-diameter lung tumors, thus potentially boosting biologically equivalent doses in centrally located stereotactic body treated lesions. Similarly, multiple drug-loaded spacers provide prostate brachytherapy with flexible shaping of 'biologically equivalent doses' to fit requirements difficult to meet by using radiation alone, e.g., boosting a high-risk region juxtaposed to the urethra while respecting normal tissue tolerance of both the urethra and the rectum. Conclusions: Drug loading of implantable devices routinely used in IGRT provides new opportunities for therapy modulation via biological in situ dose painting.

  2. In vitro study of drug loading on polymer-free oxide films of metallic implants.

    PubMed

    Shih, Chun-Ming; Shih, Chun-Che; Su, Yea-Yang; Chang, Nen-Chung; Lin, Shing-Jong

    2005-12-01

    Traditionally, a drug that is loaded onto a metallic surface has to use various polymer bondings as its platform. Unfortunately, polymer coatings on a metallic surface cause numerous problems after implantation, such as late thrombosis, inflammation, and restenosis. This research was conducted to investigate whether an oxide layer can be used as a polymer-free platform for drug loading, especially for cardiovascular stents. The interaction and loading of heparin onto different oxide films on 316LVM stainless steel wire was confirmed in vitro by experimental studies using linear voltammetry, electrochemical impedance spectroscopy, and electron spectroscopy for chemical analysis. The eluting of heparin from heparinized surface was studied by using high-performance liquid chromatography, and activated clotting time in addition to linear voltammetry and electron spectroscopy for chemical analysis analyses. Experimental results show that amorphous oxide could be a potential substitute for the polymer coating of drug-loaded stents for minimizing metallic corrosion, inflammation, late thrombosis, and restenosis. PMID:16082699

  3. Near-infrared fluorescence imaging platform for quantifying in vivo nanoparticle diffusion from drug loaded implants.

    PubMed

    Markovic, Stacey; Belz, Jodi; Kumar, Rajiv; Cormack, Robert A; Sridhar, Srinivas; Niedre, Mark

    2016-01-01

    Drug loaded implants are a new, versatile technology platform to deliver a localized payload of drugs for various disease models. One example is the implantable nanoplatform for chemo-radiation therapy where inert brachytherapy spacers are replaced by spacers doped with nanoparticles (NPs) loaded with chemotherapeutics and placed directly at the disease site for long-term localized drug delivery. However, it is difficult to directly validate and optimize the diffusion of these doped NPs in in vivo systems. To better study this drug release and diffusion, we developed a custom macroscopic fluorescence imaging system to visualize and quantify fluorescent NP diffusion from spacers in vivo. To validate the platform, we studied the release of free fluorophores, and 30 nm and 200 nm NPs conjugated with the same fluorophores as a model drug, in agar gel phantoms in vitro and in mice in vivo. Our data verified that the diffusion volume was NP size-dependent in all cases. Our near-infrared imaging system provides a method by which NP diffusion from implantable nanoplatform for chemo-radiation therapy spacers can be systematically optimized (eg, particle size or charge) thereby improving treatment efficacy of the platform. PMID:27069363

  4. Near-infrared fluorescence imaging platform for quantifying in vivo nanoparticle diffusion from drug loaded implants

    PubMed Central

    Markovic, Stacey; Belz, Jodi; Kumar, Rajiv; Cormack, Robert A; Sridhar, Srinivas; Niedre, Mark

    2016-01-01

    Drug loaded implants are a new, versatile technology platform to deliver a localized payload of drugs for various disease models. One example is the implantable nanoplatform for chemo-radiation therapy where inert brachytherapy spacers are replaced by spacers doped with nanoparticles (NPs) loaded with chemotherapeutics and placed directly at the disease site for long-term localized drug delivery. However, it is difficult to directly validate and optimize the diffusion of these doped NPs in in vivo systems. To better study this drug release and diffusion, we developed a custom macroscopic fluorescence imaging system to visualize and quantify fluorescent NP diffusion from spacers in vivo. To validate the platform, we studied the release of free fluorophores, and 30 nm and 200 nm NPs conjugated with the same fluorophores as a model drug, in agar gel phantoms in vitro and in mice in vivo. Our data verified that the diffusion volume was NP size-dependent in all cases. Our near-infrared imaging system provides a method by which NP diffusion from implantable nanoplatform for chemo-radiation therapy spacers can be systematically optimized (eg, particle size or charge) thereby improving treatment efficacy of the platform. PMID:27069363

  5. Efficient antitumor effect of co-drug-loaded nanoparticles with gelatin hydrogel by local implantation.

    PubMed

    Zhang, Hao; Tian, Yong; Zhu, Zhenshu; Xu, Huae; Li, Xiaolin; Zheng, Donghui; Sun, Weihao

    2016-01-01

    Tetrandrine (Tet) could enhance the antitumor effect of Paclitaxel (Ptx) by increasing intracellular Reactive Oxygen Species (ROS) levels, which leads to the possibility of co-delivery of both drugs for synergistic antitumor effect. In the current study, we reported an efficient, local therapeutic strategy employing effective Tet and Ptx delivery with a nanoparticle-loaded gelatin system. Tet- and Ptx co-loaded mPEG-PCL nanoparticles (P/T-NPs) were encapsulated into the physically cross-linked gelatin hydrogel and then implanted on the tumor site for continuous drug release. The drug-loaded gelatin hydrogel underwent a phase change when the temperature slowly increased. In vitro study showed that Tet/Ptx-loaded PEG-b-PCL nanoparticles encapsulated within a gelatin hydrogel (P/T-NPs-Gelatin) inhibited the growth and invasive ability of BGC-823 cells more effectively than the combination of free drugs or P/T-NPs. In vivo study validated the therapeutic potential of P/T-NPs-Gelatin. P/T-NPs-Gelatin significantly inhibited the activation of p-Akt and the downstream anti-apoptotic Bcl-2 protein and also inducing the activation of pro-apoptotic Bax protein. Moreover, the molecular-modulating effect of P/T-NPs-Gelatin on related proteins varied slightly under the influence of NAC, which was supported by the observations of the tumor volumes and weights. Based on these findings, local implantation of P/T-NPs-Gelatin may be a promising therapeutic strategy for the treatment of gastric cancer. PMID:27226240

  6. Efficient antitumor effect of co-drug-loaded nanoparticles with gelatin hydrogel by local implantation

    PubMed Central

    Zhang, Hao; Tian, Yong; Zhu, Zhenshu; Xu, Huae; Li, Xiaolin; Zheng, Donghui; Sun, Weihao

    2016-01-01

    Tetrandrine (Tet) could enhance the antitumor effect of Paclitaxel (Ptx) by increasing intracellular Reactive Oxygen Species (ROS) levels, which leads to the possibility of co-delivery of both drugs for synergistic antitumor effect. In the current study, we reported an efficient, local therapeutic strategy employing effective Tet and Ptx delivery with a nanoparticle-loaded gelatin system. Tet- and Ptx co-loaded mPEG-PCL nanoparticles (P/T-NPs) were encapsulated into the physically cross-linked gelatin hydrogel and then implanted on the tumor site for continuous drug release. The drug-loaded gelatin hydrogel underwent a phase change when the temperature slowly increased. In vitro study showed that Tet/Ptx-loaded PEG-b-PCL nanoparticles encapsulated within a gelatin hydrogel (P/T-NPs-Gelatin) inhibited the growth and invasive ability of BGC-823 cells more effectively than the combination of free drugs or P/T-NPs. In vivo study validated the therapeutic potential of P/T-NPs-Gelatin. P/T-NPs-Gelatin significantly inhibited the activation of p-Akt and the downstream anti-apoptotic Bcl-2 protein and also inducing the activation of pro-apoptotic Bax protein. Moreover, the molecular-modulating effect of P/T-NPs-Gelatin on related proteins varied slightly under the influence of NAC, which was supported by the observations of the tumor volumes and weights. Based on these findings, local implantation of P/T-NPs-Gelatin may be a promising therapeutic strategy for the treatment of gastric cancer. PMID:27226240

  7. Implantable CMOS Biomedical Devices

    PubMed Central

    Ohta, Jun; Tokuda, Takashi; Sasagawa, Kiyotaka; Noda, Toshihiko

    2009-01-01

    The results of recent research on our implantable CMOS biomedical devices are reviewed. Topics include retinal prosthesis devices and deep-brain implantation devices for small animals. Fundamental device structures and characteristics as well as in vivo experiments are presented. PMID:22291554

  8. [Implantable medical devices].

    PubMed

    Crickx, B; Arrault, X

    2008-01-01

    Medical devices have been individualized to include a category of implantable medical devices, "designed to be totally implanted in the human body or to replace an epithelial surface or a surface of the eye, through surgery, and remain in place after the intervention" (directive 93/42/CEE and decree of 20 April 206). Each implantable medical device has a common name and a commercial name for precise identification of the model (type/references). The users' service and the implanting physician should be clearly identified. There are a number of rules concerning health traceability to rapidly identify patients exposed to risks in which the implantable medical devices of a particular batch or series were used and to monitor the consequences. The traceability data should be preserved 10 years and the patient's medical file for 20 years. PMID:18442666

  9. Implantable electrical device

    NASA Technical Reports Server (NTRS)

    Jhabvala, M. D. (Inventor)

    1982-01-01

    A fully implantable and self contained device is disclosed composed of a flexible electrode array for surrounding damaged nerves and a signal generator for driving the electrode array with periodic electrical impulses of nanoampere magnitude to induce regeneration of the damaged nerves.

  10. Sterilisation of implantable devices.

    PubMed

    Matthews, I P; Gibson, C; Samuel, A H

    1994-01-01

    The pathogenesis and rates of infection associated with the use of a wide variety of implantable devices are described. The multi-factorial nature of post-operative periprosthetic infection is outlined and the role of sterilisation of devices is explained. The resistance of bacterial spores is highlighted as a problem and a full description is given of the processes of sterilisation by heat, steam, ethylene oxide, low temperature steam and formaldehyde, ionising radiation and liquid glutaraldehyde. Sterility assurance and validation are discussed in the context of biological indicators and physical/chemical indicators. Adverse effects upon the material composition of devices and problems of process control are listed. Finally, possible optimisations of the ethylene oxide process and their potential significance to the field of sterilisation of implants is explored. PMID:10172076

  11. Implantable medical devices MRI safe.

    PubMed

    Dal Molin, Renzo; Hecker, Bertrand

    2013-01-01

    Pacemakers, ICDs, neurostimulators like deep brain stimulator electrodes, spiral cord stimulators, insulin pumps, cochlear implants, retinal implants, hearing aids, electro cardio gram (ECG) leads, or devices in interventional MRI such as vascular guide wires or catheters are affected by MRI magnetic and electromagnetic fields. Design of MRI Safe medical devices requires computer modeling, bench testing, phantom testing, and animal studies. Implanted medical devices can be MRI unsafe, MRI conditional or MRI safe (see glossary). In the following paragraphs we will investigate how to design implanted medical devices MRI safe. PMID:23739365

  12. Implantable biomedical devices on bioresorbable substrates

    DOEpatents

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo; Kaplan, David L; Litt, Brian; Viventi, Jonathan; Huang, Yonggang; Amsden, Jason

    2014-03-04

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.

  13. Batteries used to Power Implantable Biomedical Devices

    PubMed Central

    Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    2012-01-01

    Battery systems have been developed that provide years of service for implantable medical devices. The primary systems utilize lithium metal anodes with cathode systems including iodine, manganese oxide, carbon monofluoride, silver vanadium oxide and hybrid cathodes. Secondary lithium ion batteries have also been developed for medical applications where the batteries are charged while remaining implanted. While the specific performance requirements of the devices vary, some general requirements are common. These include high safety, reliability and volumetric energy density, long service life, and state of discharge indication. Successful development and implementation of these battery types has helped enable implanted biomedical devices and their treatment of human disease. PMID:24179249

  14. Implantable drug therapy device: A concept

    NASA Technical Reports Server (NTRS)

    Feldstein, C.

    1972-01-01

    Design is described of small, rechargeable, implantable infusor which contains fluid medicament stored under pressure and which dispenses fluid continuously through catheter. Body of infusor is covered by pliable silicone rubber sheath attached to suture pad for securing device.

  15. [Remote monitoring of active implantable medical device].

    PubMed

    Zhang, Yujing

    2013-09-01

    Active implantable medical device develops rapidly in recent years. The clinical demands and current application are introduced, the technical trends are discussed, and the safety risks are analyzed in this paper. PMID:24409793

  16. Biofeedback With Implanted Blood-Pressure Device

    NASA Technical Reports Server (NTRS)

    Rischell, Robert E.

    1988-01-01

    Additional uses found for equipment described in "Implanted Blood-Pressure-Measuring Device" (GSC-13042). Implanted with device electronic circuitry that measures, interprets, and transmits data via inductive link through patient's skin to external receiver. Receiver includes audible alarm generator activated when patient's blood pressure exceeds predetermined threshold. Also included in receiver a blood-pressure display, recorder, or both, for use by patient or physician.

  17. Cochlear implantation: current and future device options.

    PubMed

    Carlson, Matthew L; Driscoll, Colin L W; Gifford, René H; McMenomey, Sean O

    2012-02-01

    Today most cochlear implant users achieve above 80% on standard speech recognition in quiet testing, and enjoy excellent device reliability. Despite such success, conventional designs often fail to provide the frequency resolution required for complex listening tasks. Furthermore, performance variability remains a vexing problem, with a select group of patients performing poorly despite using the most recent technologies and processing strategies. This article provides a brief history of the development of cochlear implant technologies, reviews current implant systems from all 3 major manufacturers, examines recently devised strategies aimed at improving device performance, and discusses potential future developments. PMID:22115692

  18. 21 CFR 876.5270 - Implanted electrical urinary continence device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted electrical urinary continence...

  19. 21 CFR 876.5270 - Implanted electrical urinary continence device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Implanted electrical urinary continence device. (a) Identification. An implanted electrical urinary device is a device intended for treatment of urinary incontinence that consists of a receiver implanted in... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted electrical urinary continence...

  20. Do implantable devices improve mood? Comparisons of chronic pain patients with or without an implantable device.

    PubMed

    Jamison, Robert N; Washington, Tabitha A; Fanciullo, Gilbert J; Ross, Edgar L; McHugo, Gregory J; Baird, John C

    2008-10-01

    Objective.  This descriptive study compares outcome measures of a computerized assessment of pain, emotional distress, and quality of life between chronic noncancer pain patients who have received an implantable device (spinal cord stimulator or intrathecal pump; N = 143) and those who have not received a device (N = 130). Methods.  Each patient marked the location of their pain on a body diagram and rated pain intensity, emotional distress, and impact of their pain on mood, sleep, and quality of life using a computerized pain assessment program. An electronic version of the Hospital Anxiety and Depression Scale (HADS) also was administered. Results.  No significant differences were found on the pain variables between the two groups. Patients with an implantable device gave lower ratings (less impact) on emotional distress (p < 0.05) and rated their health quality of life as better compared with control patients (p < 0.05). The patients with implantable devices also scored lower on the HADS Depression Subscale. Conclusion.  The results suggest that although patients with an implantable device seem to have more pathology and greater disability, they report less emotional distress and improved quality of life compared with patients with chronic pain without an implantable device. Future controlled trials are needed to establish the role that an implantable device plays in improving mood and quality of life. PMID:22151138

  1. Implantable Devices for Sustained, Intravesical Drug Delivery

    PubMed Central

    2016-01-01

    In clinical settings, intravesical instillation of a drug bolus is often performed for the treatment of bladder diseases. However, it requires repeated instillations to extend drug efficacy, which may result in poor patient compliance. To alleviate this challenge, implantable devices have been developed for the purpose of sustained, intravesical drug delivery. In this review, we briefly summarize the current trend in the development of intravesical drug-delivery devices. We also introduce the most recently developed devices with strong potential for intravesical drug-delivery applications. PMID:27377941

  2. Three-Dimensional Printed PCL-Based Implantable Prototypes of Medical Devices for Controlled Drug Delivery.

    PubMed

    Holländer, Jenny; Genina, Natalja; Jukarainen, Harri; Khajeheian, Mohammad; Rosling, Ari; Mäkilä, Ermei; Sandler, Niklas

    2016-09-01

    The goal of the present study was to fabricate drug-containing T-shaped prototypes of intrauterine system (IUS) with the drug incorporated within the entire backbone of the medical device using 3-dimensional (3D) printing technique, based on fused deposition modeling (FDM™). Indomethacin was used as a model drug to prepare drug-loaded poly(ε-caprolactone)-based filaments with 3 different drug contents, namely 5%, 15%, and 30%, by hot-melt extrusion. The filaments were further used to 3D print IUS. The results showed that the morphology and drug solid-state properties of the filaments and 3D prototypes were dependent on the amount of drug loading. The drug release profiles from the printed devices were faster than from the corresponding filaments due to a lower degree of the drug crystallinity in IUS in addition to the differences in the external/internal structure and geometry between the products. Diffusion of the drug from the polymer was the predominant mechanism of drug release, whereas poly(ε-caprolactone) biodegradation had a minor effect. This study shows that 3D printing is an applicable method in the production of drug-containing IUS and can open new ways in the fabrication of controlled release implantable devices. PMID:26906174

  3. Power Approaches for Implantable Medical Devices

    PubMed Central

    Ben Amar, Achraf; Kouki, Ammar B.; Cao, Hung

    2015-01-01

    Implantable medical devices have been implemented to provide treatment and to assess in vivo physiological information in humans as well as animal models for medical diagnosis and prognosis, therapeutic applications and biological science studies. The advances of micro/nanotechnology dovetailed with novel biomaterials have further enhanced biocompatibility, sensitivity, longevity and reliability in newly-emerged low-cost and compact devices. Close-loop systems with both sensing and treatment functions have also been developed to provide point-of-care and personalized medicine. Nevertheless, one of the remaining challenges is whether power can be supplied sufficiently and continuously for the operation of the entire system. This issue is becoming more and more critical to the increasing need of power for wireless communication in implanted devices towards the future healthcare infrastructure, namely mobile health (m-Health). In this review paper, methodologies to transfer and harvest energy in implantable medical devices are introduced and discussed to highlight the uses and significances of various potential power sources. PMID:26580626

  4. Power Approaches for Implantable Medical Devices.

    PubMed

    Ben Amar, Achraf; Kouki, Ammar B; Cao, Hung

    2015-01-01

    Implantable medical devices have been implemented to provide treatment and to assess in vivo physiological information in humans as well as animal models for medical diagnosis and prognosis, therapeutic applications and biological science studies. The advances of micro/nanotechnology dovetailed with novel biomaterials have further enhanced biocompatibility, sensitivity, longevity and reliability in newly-emerged low-cost and compact devices. Close-loop systems with both sensing and treatment functions have also been developed to provide point-of-care and personalized medicine. Nevertheless, one of the remaining challenges is whether power can be supplied sufficiently and continuously for the operation of the entire system. This issue is becoming more and more critical to the increasing need of power for wireless communication in implanted devices towards the future healthcare infrastructure, namely mobile health (m-Health). In this review paper, methodologies to transfer and harvest energy in implantable medical devices are introduced and discussed to highlight the uses and significances of various potential power sources. PMID:26580626

  5. Treatment of Infected Cardiac Implantable Electronic Devices.

    PubMed

    Fakhro, Abdulla; Jalalabadi, Faryan; Brown, Rodger H; Izaddoost, Shayan A

    2016-05-01

    With their rising benefits, cardiac implantable electronic devices (CIEDs) such as pacemakers and left ventricular assist devices (LVADs) have witnessed a sharp rise in use over the past 50 years. As indications for use broaden, so too does their widespread employment with its attendant rise of CIED infections. Such large numbers of infections have inspired various algorithms mandating treatment. Early diagnosis of inciting organisms is crucial to tailoring appropriate antibiotic and or antifungal treatment. In addition, surgical debridement and explant of the device have been a longstanding modality of care. More novel therapies focus on salvage of the device by way of serial washouts and instilling drug-eluting antibiotic impregnated beads into the wound. The wound is then serially debrided until clean and closed. This technique is better suited to patients whose device cannot be removed, patients who are poor candidates for cardiac surgery, or patients who have failed conventional prior treatments. PMID:27152097

  6. 21 CFR 876.5270 - Implanted electrical urinary continence device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted electrical urinary continence device. 876.5270 Section 876.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5270 Implanted electrical urinary continence device....

  7. Implantable photonic devices for improved medical treatments.

    PubMed

    Sheinman, Victor; Rudnitsky, Arkady; Toichuev, Rakhmanbek; Eshiev, Abdyrakhman; Abdullaeva, Svetlana; Egemkulov, Talantbek; Zalevsky, Zeev

    2014-01-01

    An evolving area of biomedical research is related to the creation of implantable units that provide various possibilities for imaging, measurement, and the monitoring of a wide range of diseases and intrabody phototherapy. The units can be autonomic or built-in in some kind of clinically applicable implants. Because of specific working conditions in the live body, such implants must have a number of features requiring further development. This topic can cause wide interest among developers of optical, mechanical, and electronic solutions in biomedicine. We introduce preliminary clinical trials obtained with an implantable pill and devices that we have developed. The pill and devices are capable of applying in-body phototherapy, low-level laser therapy, blue light (450 nm) for sterilization, and controlled injection of chemicals. The pill is also capable of communicating with an external control box, including the transmission of images from inside the patient’s body. In this work, our pill was utilized for illumination of the sinus-carotid zone in dog and red light influence on arterial pressure and heart rate was demonstrated. Intrabody liver tissue laser ablation and nanoparticle-assisted laser ablation was investigated. Sterilization effect of intrabody blue light illumination was applied during a maxillofacial phlegmon treatment. PMID:25279540

  8. Implantable photonic devices for improved medical treatments

    NASA Astrophysics Data System (ADS)

    Sheinman, Victor; Rudnitsky, Arkady; Toichuev, Rakhmanbek; Eshiev, Abdyrakhman; Abdullaeva, Svetlana; Egemkulov, Talantbek; Zalevsky, Zeev

    2014-10-01

    An evolving area of biomedical research is related to the creation of implantable units that provide various possibilities for imaging, measurement, and the monitoring of a wide range of diseases and intrabody phototherapy. The units can be autonomic or built-in in some kind of clinically applicable implants. Because of specific working conditions in the live body, such implants must have a number of features requiring further development. This topic can cause wide interest among developers of optical, mechanical, and electronic solutions in biomedicine. We introduce preliminary clinical trials obtained with an implantable pill and devices that we have developed. The pill and devices are capable of applying in-body phototherapy, low-level laser therapy, blue light (450 nm) for sterilization, and controlled injection of chemicals. The pill is also capable of communicating with an external control box, including the transmission of images from inside the patient's body. In this work, our pill was utilized for illumination of the sinus-carotid zone in dog and red light influence on arterial pressure and heart rate was demonstrated. Intrabody liver tissue laser ablation and nanoparticle-assisted laser ablation was investigated. Sterilization effect of intrabody blue light illumination was applied during a maxillofacial phlegmon treatment.

  9. Left Ventricular Assist Device Implantation After Intracardiac Parachute Device Removal.

    PubMed

    Abu Saleh, Walid K; Al Jabbari, Odeaa; Bruckner, Brian A; Suarez, Erik E; Estep, Jerry D; Loebe, Matthias

    2015-08-01

    Left ventricular assist device implantation is a proven and efficient modality for the treatment of end-stage heart failure. Left ventricular assist device versatility as a bridge to heart transplantation or destination therapy has led to improved patient outcomes with a concomitant rise in its overall use. Other less invasive treatment modalities are being developed to improve heart function and morbidity and mortality for the heart failure population. Percutaneous ventricular restoration is a new investigational therapy that deploys an intracardiac parachute to wall off damaged myocardium in patients with dilated left ventricles and ischemic heart failure. Clinical trials are under way to test the efficacy of percutaneous ventricular restoration using the parachute device. This review describes our encounter with the parachute device, its explantation due to refractory heart failure, and surgical replacement with a left ventricular assist device. PMID:26234850

  10. Right ventricular failure after left ventricular assist device implantation: the need for an implantable right ventricular assist device.

    PubMed

    Furukawa, Kojiro; Motomura, Tadashi; Nosé, Yukihiko

    2005-05-01

    Right ventricular failure after implantation of a left ventricular assist device is an unremitting problem. Consideration of portal circulation is important for reversing liver dysfunction and preventing multiple organ failure after left ventricular assist device implantation. To achieve these objectives, it is imperative to maintain the central venous pressure as low as possible. A more positive application of right ventricular assistance is recommended. Implantable pulsatile left ventricular assist devices cannot be used as a right ventricular assist device because of their structure and device size. To improve future prospects, it is necessary to develop an implantable right ventricular assist device based on a rotary blood pump. PMID:15854212

  11. Characterization of implantable microfabricated fluid delivery devices.

    PubMed

    Rathnasingham, Ruben; Kipke, Daryl R; Bledsoe, Sanford C; McLaren, John D

    2004-01-01

    The formal characterization of the performance of microfluidic delivery devices is crucial for reliable in vivo application. A comprehensive laboratory technique was developed and used to optimize, calibrate and validate microfabricated fluid delivery devices. In vivo experiments were carried out to verify the accuracy and reliability of the pressure driven devices. Acute guinea pig experiments were conducted to measure the response to alpha-amino-3-hydroxy-5-methyl-4-isoxalone propionic acid, an excitatory neurotransmitter, at multiple locations in the inferior colliculus. A nondimensional parameter, Q, was successfully used to classify devices in terms of geometry alone (i.e., independent of fluid properties). Functional devices exhibited long-term linearity and reliability in delivering single phase, Newtonian fluids, in discrete volumes with a resolution of 500 picoliters at less than 0.45 lbf/in2 (30 mbar) pressure drop. Results for non-Newtonian fluids are not presented here. The acute results showed a proportional increase in the firing rate for delivered volumes of 2 nL up to 10 nL (at rates of between 0.1 and 1 nL/s). Flow characteristics are maintained during acute experiments and post-implant. A control experiment conducted with Ringer solution produced negligible effects, suggesting the results to be truly pharmacological. The experimental techniques employed have proven to be reliable and will be used for future calibration and testing of next generation chronic microfluidic delivery devices. PMID:14723503

  12. Integrated Microbatteries for Implantable Medical Devices

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; West, William

    2008-01-01

    Integrated microbatteries have been proposed to satisfy an anticipated need for long-life, low-rate primary batteries, having volumes less than 1 mm3, to power electronic circuitry in implantable medical devices. In one contemplated application, such a battery would be incorporated into a tubular hearing-aid device to be installed against an eardrum. This device is based on existing tube structures that have already been approved by the FDA for use in human ears. As shown in the figure, the battery would comprise a single cell at one end of the implantable tube. A small volume of Li-based primary battery cathode material would be compacted and inserted in the tube near one end, followed by a thin porous separator, followed by a pressed powder of a Li-containing alloy. Current-collecting wires would be inserted, with suitably positioned insulators to prevent a short circuit. The battery would contain a liquid electrolyte consisting of a Li-based salt in an appropriate solvent. Hermetic seals would be created by plugging both ends with a waterproof polymer followed by deposition of parylene.

  13. [Future of implantable electrical cardiac devices].

    PubMed

    Daubert, Jean-Claude; Behaghel, Albin; Leclercq, Christophe; Mabo, Philippe

    2014-03-01

    Major improvements in implantable electrical cardiac devices have been made during the last two decades, notably with the advent of automatic internal defibrillation (ICD) to prevent sudden arrhythmic death, and cardiac resynchronisation (CRT) to treat the discoordinated failing heart. They now constitute a major therapeutic option and may eventually supersede drug therapy. The coming era will be marked by a technological revolution, with improvements in treatment delivery, safety and efficacy, and an expansion of clinical indications. Leadless technologyfor cardiac pacemakers and defibrillators is already in the pipeline, endovascular leads currently being responsible for most long-term complications (lead failure, infection, vein thrombosis, etc.). Miniaturized pacemakers based on nanotechnology can now be totally implanted inside the right ventricle through the transvenous route, thus eliminating leads, pockets and scarring In the same way, totally subcutaneous ICD systems are now available, although they are currently only capable of delivering shocks, without pacing (including antitachycardia pacing). In CRT optimised delivery is important to improve clinical responses and to reduce the non-response rate (around 30 % with current technology). Endocardial left ventricular pacing could be a solution if it can be achieved at an acceptable risk. Multisite ventricular pacing is an alternative. Besides CRT neuromodulation, especially by vagal stimulation, is another important field of device researchfor heart failure. Preliminary clinical results are encouraging. PMID:26427291

  14. Modulation Techniques for Biomedical Implanted Devices and Their Challenges

    PubMed Central

    Hannan, Mahammad A.; Abbas, Saad M.; Samad, Salina A.; Hussain, Aini

    2012-01-01

    Implanted medical devices are very important electronic devices because of their usefulness in monitoring and diagnosis, safety and comfort for patients. Since 1950s, remarkable efforts have been undertaken for the development of bio-medical implanted and wireless telemetry bio-devices. Issues such as design of suitable modulation methods, use of power and monitoring devices, transfer energy from external to internal parts with high efficiency and high data rates and low power consumption all play an important role in the development of implantable devices. This paper provides a comprehensive survey on various modulation and demodulation techniques such as amplitude shift keying (ASK), frequency shift keying (FSK) and phase shift keying (PSK) of the existing wireless implanted devices. The details of specifications, including carrier frequency, CMOS size, data rate, power consumption and supply, chip area and application of the various modulation schemes of the implanted devices are investigated and summarized in the tables along with the corresponding key references. Current challenges and problems of the typical modulation applications of these technologies are illustrated with a brief suggestions and discussion for the progress of implanted device research in the future. It is observed that the prime requisites for the good quality of the implanted devices and their reliability are the energy transformation, data rate, CMOS size, power consumption and operation frequency. This review will hopefully lead to increasing efforts towards the development of low powered, high efficient, high data rate and reliable implanted devices. PMID:22368470

  15. Degradability of Polymers for Implantable Biomedical Devices

    PubMed Central

    Lyu, SuPing; Untereker, Darrel

    2009-01-01

    Many key components of implantable medical devices are made from polymeric materials. The functions of these materials include structural support, electrical insulation, protection of other materials from the environment of the body, and biocompatibility, as well as other things such as delivery of a therapeutic drug. In such roles, the stability and integrity of the polymer, over what can be a very long period of time, is very important. For most of these functions, stability over time is desired, but in other cases, the opposite–the degradation and disappearance of the polymer over time is required. In either case, it is important to understand both the chemistry that can lead to the degradation of polymers as well as the kinetics that controls these reactions. Hydrolysis and oxidation are the two classes of reactions that lead to the breaking down of polymers. Both are discussed in detail in the context of the environmental factors that impact the utility of various polymers for medical device applications. Understanding the chemistry and kinetics allows prediction of stability as well as explanations for observations such as porosity and the unexpected behavior of polymeric composite materials in some situations. In the last part, physical degradation such interfacial delamination in composites is discussed. PMID:19865531

  16. Injury to the coronary arteries and related structures by implantation of cardiac implantable electronic devices.

    PubMed

    Pang, Benjamin J; Barold, S Serge; Mond, Harry G

    2015-04-01

    Damage to the coronary arteries and related structures from pacemaker and implantable cardioverter-defibrillator lead implantation is a rarely reported complication that can lead to myocardial infarction and pericardial tamponade that may occur acutely or even years later. We summarize the reported cases of injury to coronary arteries and related structures and review the causes of troponin elevation in the setting of cardiac implantable electronic device implantation. PMID:25564549

  17. Dealing with a left ventricular pseudoaneurysm during assist device implant.

    PubMed

    Ha, Richard V; Chiu, Peter; Banerjee, Dipanjan; Sheikh, Ahmad Y

    2016-06-01

    Despite increasing use of left ventricular devices for the surgical treatment of heart failure, there is limited experience with implantation of devices in the setting of challenging left apical anatomy. We report the case of a 68-year-old man with a chronic post-infarction calcified apical pseudoaneurysm, who underwent pseudoaneurysmectomy, ventricular myoplasty, and left ventricular assist device implantation. A review of the literature and operative strategies are presented. PMID:25834125

  18. 77 FR 36951 - Gastroenterology-Urology Devices; Reclassification of Implanted Blood Access Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... requirement for premarket approval for implanted blood access devices (52 FR 17732 at 17738, May 11, 1987). In 2009, FDA published an order for the submission of information on implanted blood access devices (74 FR... the Device In the preamble to the proposed rule (46 FR 7616, January 23, 1981), the...

  19. Management of Cardiac Implantable Electronic Device Infection

    PubMed Central

    Podoleanu, Cristian

    2014-01-01

    Despite improved preventive measures, infection associated with the use of cardiac implantable electronic devices (CIEDs) to treat often life-threatening conditions is rising at an average annual rate of almost 5 %. This rise is being driven by the increasing complexity of CIED technology and by the advancing age and co-morbidities of the patients. Although CIED infection is usually suspected based on local signs at the generator pocket site, diagnosis can be challenging in patients presenting no local manifestations or symptoms. Diagnostic methods include microbiological testing and echocardiography, and may be completed by positron emission tomography (PET)/computed tomography (CT) scan in selected cases. CIED infection requires a multidisciplinary approach in view of hardware extraction, targeted antibiotic therapy and reimplantation on an as-needed basis. Antibiotic prophylaxis targeting staphylococcal flora is recommended but the relation of these infections to medical care exposes patients to multi-resistant bacteria. New preventive measures utilising an antibacterial sleeve look promising. Treatment can be started on an empirical basis using an antistaphylococcal agent but must be continued using targeted antibiotic therapy. Crucial questions remain as to the best prevention strategy, optimal duration and timing of antibiotic therapy, and the most effective reimplantation technique. PMID:26835089

  20. Energy harvesting for the implantable biomedical devices: issues and challenges

    PubMed Central

    2014-01-01

    The development of implanted devices is essential because of their direct effect on the lives and safety of humanity. This paper presents the current issues and challenges related to all methods used to harvest energy for implantable biomedical devices. The advantages, disadvantages, and future trends of each method are discussed. The concept of harvesting energy from environmental sources and human body motion for implantable devices has gained a new relevance. In this review, the harvesting kinetic, electromagnetic, thermal and infrared radiant energies are discussed. Current issues and challenges related to the typical applications of these methods for energy harvesting are illustrated. Suggestions and discussion of the progress of research on implantable devices are also provided. This review is expected to increase research efforts to develop the battery-less implantable devices with reduced over hole size, low power, high efficiency, high data rate, and improved reliability and feasibility. Based on current literature, we believe that the inductive coupling link is the suitable method to be used to power the battery-less devices. Therefore, in this study, the power efficiency of the inductive coupling method is validated by MATLAB based on suggested values. By further researching and improvements, in the future the implantable and portable medical devices are expected to be free of batteries. PMID:24950601

  1. 21 CFR 876.5270 - Implanted electrical urinary continence device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (premarket approval). (c) Date PMA or notice of completion of a PDP is required. A PMA or a notice of..., 1976. Any other implanted electrical urinary continence device shall have an approved PMA or a...

  2. 21 CFR 876.5270 - Implanted electrical urinary continence device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (premarket approval). (c) Date PMA or notice of completion of a PDP is required. A PMA or a notice of..., 1976. Any other implanted electrical urinary continence device shall have an approved PMA or a...

  3. Perioperative Management of Multiple Noncardiac Implantable Electronic Devices.

    PubMed

    Ramos, Juan A; Brull, Sorin J

    2015-12-01

    The number of patients with noncardiac implantable electronic devices is increasing, and the absence of perioperative management standards, guidelines, practice parameters, or expert consensus statements presents clinical challenges. A 69-year-old woman presented for latissimus dorsi breast reconstruction. The patient had previously undergone implantation of a spinal cord stimulator, a gastric pacemaker, a sacral nerve stimulator, and an intrathecal morphine pump. After consultation with device manufacturers, the devices with patient programmability were switched off. Bipolar cautery was used intraoperatively. Postoperatively, all devices were interrogated to ensure appropriate functioning before home discharge. Perioperative goals include complete preoperative radiologic documentation of device component location, minimizing electromagnetic interference, and avoiding mechanical damage to implanted device components. PMID:26588030

  4. Development of Implantable Medical Devices: From an Engineering Perspective

    PubMed Central

    2013-01-01

    From the first pacemaker implant in 1958, numerous engineering and medical activities for implantable medical device development have faced challenges in materials, battery power, functionality, electrical power consumption, size shrinkage, system delivery, and wireless communication. With explosive advances in scientific and engineering technology, many implantable medical devices such as the pacemaker, cochlear implant, and real-time blood pressure sensors have been developed and improved. This trend of progress in medical devices will continue because of the coming super-aged society, which will result in more consumers for the devices. The inner body is a special space filled with electrical, chemical, mechanical, and marine-salted reactions. Therefore, electrical connectivity and communication, corrosion, robustness, and hermeticity are key factors to be considered during the development stage. The main participants in the development stage are the user, the medical staff, and the engineer or technician. Thus, there are three different viewpoints in the development of implantable devices. In this review paper, considerations in the development of implantable medical devices will be presented from the viewpoint of an engineering mind. PMID:24143287

  5. Development of implantable medical devices: from an engineering perspective.

    PubMed

    Joung, Yeun-Ho

    2013-09-01

    From the first pacemaker implant in 1958, numerous engineering and medical activities for implantable medical device development have faced challenges in materials, battery power, functionality, electrical power consumption, size shrinkage, system delivery, and wireless communication. With explosive advances in scientific and engineering technology, many implantable medical devices such as the pacemaker, cochlear implant, and real-time blood pressure sensors have been developed and improved. This trend of progress in medical devices will continue because of the coming super-aged society, which will result in more consumers for the devices. The inner body is a special space filled with electrical, chemical, mechanical, and marine-salted reactions. Therefore, electrical connectivity and communication, corrosion, robustness, and hermeticity are key factors to be considered during the development stage. The main participants in the development stage are the user, the medical staff, and the engineer or technician. Thus, there are three different viewpoints in the development of implantable devices. In this review paper, considerations in the development of implantable medical devices will be presented from the viewpoint of an engineering mind. PMID:24143287

  6. 78 FR 17940 - Certain Computerized Orthopedic Surgical Devices, Software, Implants, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... COMMISSION Certain Computerized Orthopedic Surgical Devices, Software, Implants, and Components Thereof..., Software, Implants, and Components Thereof, DN 2945; the Commission is soliciting comments on any public... devices, software, implants, and components thereof. The complaint names as respondents Stanmore...

  7. New horizon for infection prevention technology and implantable device.

    PubMed

    Kondo, Yusuke; Ueda, Marehiko; Kobayashi, Yoshio; Schwab, Joerg O

    2016-08-01

    There has been a significant increase in the number of patients receiving cardiovascular implantable electronic devices (CIED) over the last two decades. CIED infection represents a serious complication after CIED implantation and is associated with significant morbidity and mortality. Recently, newly advanced technologies have offered attractive and suitable therapeutic alternatives. Notably, the leadless pacemaker and anti-bacterial envelope decrease the potential risk of CIED infection and the resulting mortality, when it does occur. A completely subcutaneous implantable cardioverter defibrillator is also an alternative to the transvenous implantable cardioverter defibrillator (ICD), as it does not require implantation of any transvenous or epicardial leads. Among the patients who require ICD removal and subsequent antibiotics secondary to infection, the wearable cardioverter defibrillator represents an alternative approach to inpatient monitoring for the prevention of sudden cardiac death. In this review paper, we aimed to introduce the advanced technologies and devices for prevention of CIED infection. PMID:27588153

  8. Surgical implant techniques of left ventricular assist devices: an overview of acute and durable devices

    PubMed Central

    2015-01-01

    Left ventricular support for the failing heart has evolved to include short-term and long-term devices. These devices are implanted percutaneously and surgically. This manuscript provides a general overview of the contemporary, typically practiced, implant techniques with additional insight on minimally invasive approaches. PMID:26793329

  9. Orthopedic medical devices: ethical questions, implant recalls and responsibility.

    PubMed

    Racine, Jennifer

    2013-06-01

    The hip replacement is a surgical procedure to replace the femoral head and acetabulum with prosthetic implants to improve function, increase mobility, and relieve pain caused by damage from disorders such as osteoarthritis and fractures. In recent years, we have seen several recalls of poorly functioning implant systems, most recently, the Johnson and Johnson (J&J) Articular Surface Replacement device. Product recalls are often the results of premature failure of implants requiring additional surgery to exchange the failed device. This raises many questions - technical, medical, regulatory, ethical, and legal - that ultimately put patients at risk, compromise confidence in medicine and regulatory agencies, and important relationships including those between the physician-patient and physician-industry. Where do the responsibilities lie for the patients' suffering, morbidity, and costs of removing the failed device? This article discusses the current recall of the J&J implant, the responsibilities of the manufacturer, surgeons, and the regulatory agency. PMID:23741723

  10. Recharging the battery of implantable biomedical devices by light.

    PubMed

    Algora, Carlos; Peña, Rafael

    2009-10-01

    This article describes a new powering system for implantable medical devices that could significantly increase their lifetime. The idea is based on the substitution of the usual implantable device battery for an electric accumulator (rechargeable battery), which is fed by the electric power generated by a photovoltaic converter inside the implantable device. Light impinges on the photovoltaic device through an optical fiber going from the photovoltaic device to just beneath the patient's epidermis. Light can enter the optical fiber by passing through the skin. A complete power-by-light system has been developed and tested with a real implantable pulse generator for spinal cord stimulation. The feasibility of the proposed system has been evaluated theoretically. For example, after 13 h/week of laser exposure, the lifetime of the implantable device would increase by 50%. Other combinations resulting in lifetime increases of more than 100% are also possible. So, the proposed system is now ready to take a further step forward: in vivo animal testing. PMID:19624580

  11. Infected cardiac-implantable electronic devices: prevention, diagnosis, and treatment.

    PubMed

    Nielsen, Jens Cosedis; Gerdes, Jens Christian; Varma, Niraj

    2015-10-01

    Cardiac implantable electronic device (CIED) infection, according to current trends, appears to be an increasing problem. It can be indolent and its diagnosis challenging. Cardiac implantable electronic device infections are potentially lethal, and timely diagnosis and early initiation of correct treatment are of highest importance for patient prognosis. For reducing CIED infections, careful patient selection, preventative measures, and appropriate choice of device are key. The current review presents available data and consensus opinion within the field of CIED infection and identifies important current practice points and aspects for future development. Strategies for reducing CIED infection should be tested in sufficiently powered and well-designed multicentre randomized controlled trials. PMID:25749852

  12. Left ventricular assist device implantation strategies and outcomes

    PubMed Central

    Smith, LaVone A.; Yarboro, Leora T.

    2015-01-01

    Over the past 15 years, the field of mechanical circulatory support has developed significantly. Currently, there are a multitude of options for both short and long term cardiac support. Choosing the appropriate device for each patient depends on the amount of support needed and the goals of care. This article focuses on long term, implantable devices for both bridge to transplantation and destination therapy indications. Implantation strategies, including the appropriate concomitant surgeries are discussed as well as expected long term outcomes. As device technology continues to improve, long term mechanical circulatory support may become a viable alternative to transplantation. PMID:26793328

  13. Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices

    PubMed Central

    Zebda, A.; Cosnier, S.; Alcaraz, J.-P.; Holzinger, M.; Le Goff, A.; Gondran, C.; Boucher, F.; Giroud, F.; Gorgy, K.; Lamraoui, H.; Cinquin, P.

    2013-01-01

    We describe the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal's body fluids to act as the sole power source for electronic devices. This GBFC is based on carbon nanotube/enzyme electrodes, which utilize glucose oxidase for glucose oxidation and laccase for dioxygen reduction. The GBFC, implanted in the abdominal cavity of a rat, produces an average open-circuit voltage of 0.57 V. This implanted GBFC delivered a power output of 38.7 μW, which corresponded to a power density of 193.5 μW cm−2 and a volumetric power of 161 μW mL−1. We demonstrate that one single implanted enzymatic GBFC can power a light-emitting diode (LED), or a digital thermometer. In addition, no signs of rejection or inflammation were observed after 110 days implantation in the rat. PMID:23519113

  14. Why We Need Postmortem Analysis of Cardiac Implantable Electronic Devices.

    PubMed

    Mauf, Sabrina; Jentzsch, Thorsten; Laberke, Patrick J; Thali, Michael J; Bartsch, Christine

    2016-07-01

    The prevalence of cardiac implantable electronic devices (CIEDs), pacemakers and implantable cardioverter defibrillators (ICDs) is increasing. However, postmortem analysis of CIEDs is not performed routinely. Fourteen consecutive CIEDs were analyzed. The indication for and date of implantation, technical data, CIED reprogramming, heart rhythm disturbances, patient demographics and medical consultations were investigated. Death during the first year after implantation was seen in 54%, whereof 71% consulted a physician within 10 days before death. The time of death was attributed to a particular day in 29%. There was a relationship between CIEDs and cause/manner of death in 50%. Although limited by a small sample size, this study advocates the routine postmortem CIED analysis for forensic and clinical purposes in selected cases. Patients with CIEDs seem to show an increased risk of death during the first year after implantation. The analysis of CIEDs can be helpful in evaluating the time/cause/manner of death. PMID:27364278

  15. Single glucose biofuel cells implanted in rats power electronic devices.

    PubMed

    Zebda, A; Cosnier, S; Alcaraz, J-P; Holzinger, M; Le Goff, A; Gondran, C; Boucher, F; Giroud, F; Gorgy, K; Lamraoui, H; Cinquin, P

    2013-01-01

    We describe the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal's body fluids to act as the sole power source for electronic devices. This GBFC is based on carbon nanotube/enzyme electrodes, which utilize glucose oxidase for glucose oxidation and laccase for dioxygen reduction. The GBFC, implanted in the abdominal cavity of a rat, produces an average open-circuit voltage of 0.57 V. This implanted GBFC delivered a power output of 38.7 μW, which corresponded to a power density of 193.5 μW cm(-2) and a volumetric power of 161 μW mL(-1). We demonstrate that one single implanted enzymatic GBFC can power a light-emitting diode (LED), or a digital thermometer. In addition, no signs of rejection or inflammation were observed after 110 days implantation in the rat. PMID:23519113

  16. Tritium implantation in the accelerator production of tritium device

    SciTech Connect

    Kidman, R.B.

    1997-11-01

    We briefly describe the methods we have developed to compute the magnitude and spatial distribution of born and implanted tritons and protons in the Accelerator Production of Tritium (AFT) device. The methods are verified against experimental measurements and then used to predict that 16% of the tritium is implanted in the walls of the APT distribution tubes. The methods are also used to estimate the spatial distribution of implanted tritium, which will be required for determining the possible diffusion of tritium out of the walls and back into the gas stream.

  17. Cardiac Implantable Electronic Device Infection in Patients at Risk

    PubMed Central

    Tarakji, Khaldoun G; Ellis, Christopher R; Defaye, Pascal; Kennergren, Charles

    2016-01-01

    The incidence of infection following implantation of cardiac implantable electronic devices (CIEDs) is increasing at a faster rate than that of device implantation. Patients with a CIED infection usually require hospitalisation and complete device and lead removal. A significant proportion die from their infection. Transvenous lead extraction (TLE) is associated with rare but serious complications including major vascular injury or cardiac perforation. Operator experience and advances in lead extraction methods, including laser technology and rotational sheaths, have resulted in procedures having a low risk of complication and mortality. Strategies for preventing CIED infections include intravenous antibiotics and aseptic surgical techniques. An additional method to reduce CIED infection may be the use of antibacterial TYRX™ envelope. Data from non-randomised cohort studies have indicated that antibacterial envelope use can reduce the incidence of CIED infection by more than 80 % in high-risk patients and a randomised clinical trial is ongoing. PMID:27403296

  18. MRI compatibility and visibility assessment of implantable medical devices.

    PubMed

    Schueler, B A; Parrish, T B; Lin, J C; Hammer, B E; Pangrle, B J; Ritenour, E R; Kucharczyk, J; Truwit, C L

    1999-04-01

    We have developed a protocol to evaluate the magnetic resonance (MR) compatibility of implantable medical devices. The testing protocol consists of the evaluation of magnetic field-induced movement, electric current, heating, image distortion, and device operation. In addition, current induction is evaluated with a finite element analysis simulation technique that models the effect of radiofrequency fields on each device. The protocol has been applied to several implantable infusion pumps and neurostimulators with associated attachments. Experiments were performed using a 1.5-T whole-body MR system with parameters selected to approximate the intended clinical and worst case configuration. The devices exhibited moderate magnetic field-induced deflection and torque but had significant image artifacts. No heating was detected for any of the devices. Pump operation was halted in the magnetic field, but resumed after removed. Exposure to the magnetic field activated some of the neurostimulators. PMID:10232520

  19. Implantable rhythm devices and electromagnetic interference: myth or reality?

    PubMed

    Dyrda, Katia; Khairy, Paul

    2008-07-01

    Current medical guidelines have prompted implementation of increasing numbers of implantable rhythm devices, be they pacemakers, internal cardioverter-defibrillators or loop recorders. These devices rely on complex microcircuitry and use electromagnetic waves for communication. They are, therefore, susceptible to interference from surrounding electromagnetic radiation and magnetic energy. Hermetic shielding in metallic cases, filters, interference rejection circuits and bipolar sensing have contributed to their relative resistance to electromagnetic interference (EMI) in household and workplace environments. Device interactions have occurred in hospitals where EMI sources are ubiquitous, including radiation, electrocautery and MRI exposures. However, with rapidly evolving technology, devices and potential sources of EMI continue to change. This review provides a contemporary overview of the current state of knowledge regarding risks attributable to EMI; highlights current limitations of implantable rhythm devices; and attempts to distinguish myths from realities. PMID:18570620

  20. Critical appraisal of cardiac implantable electronic devices: complications and management

    PubMed Central

    Padeletti, Luigi; Mascioli, Giosuè; Perini, Alessandro Paoletti; Grifoni, Gino; Perrotta, Laura; Marchese, Procolo; Bontempi, Luca; Curnis, Antonio

    2011-01-01

    Population aging and broader indications for the implant of cardiac implantable electronic devices (CIEDs) are the main reasons for the continuous increase in the use of pacemakers (PMs), implantable cardioverter-defibrillators (ICDs) and devices for cardiac resynchronization therapy (CRT-P, CRT-D). The growing burden of comorbidities in CIED patients, the greater complexity of the devices, and the increased duration of procedures have led to an augmented risk of infections, which is out of proportion to the increase in implantation rate. CIED infections are an ominous condition, which often implies the necessity of hospitalization and carries an augmented risk of in-hospital death. Their clinical presentation may be either at pocket or at endocardial level, but they can also manifest themselves with lone bacteremia. The management of these infections requires the complete removal of the device and subsequent, specific, antibiotic therapy. CIED failures are monitored by competent public authorities, that require physicians to alert them to any failures, and that suggest the opportune strategies for their management. Although the replacement of all potentially affected devices is often suggested, common practice indicates the replacement of only a minority of devices, as close follow-up of the patients involved may be a safer strategy. Implantation of a PM or an ICD may cause problems in the patients’ psychosocial adaptation and quality of life, and may contribute to the development of affective disorders. Clinicians are usually unaware of the psychosocial impact of implanted PMs and ICDs. The main difference between PM and ICD patients is the latter’s dramatic experience of receiving a shock. Technological improvements and new clinical evidences may help reduce the total burden of shocks. A specific supporting team, providing psychosocial help, may contribute to improving patient quality of life. PMID:22915942

  1. [Perioperative management of patients equipped with cardiac implanted electronic devices].

    PubMed

    Booke, Michael; Casu, Sebastian

    2016-04-01

    Anaesthetists are in increasing frequency confronted with patients equipped with cardiac implantable electrical devices. A consensus conference standardized the handling of such patients for elective cases. However, this multidisciplinary approach is characterized by a complexity, which is hard to handle in emergency cases and even in nowadays clinical routine. However, risks associated with electrocautery or electromagnetic interference can be easily handled applying a significantly easier approach. Telemetric reprogramming and/or postoperative interrogation of the cardiac implanted eletronical device can be avoided in most cases. PMID:27070514

  2. Optimal operating frequency in wireless power transmission for implantable devices.

    PubMed

    Poon, Ada S Y; O'Driscoll, Stephen; Meng, Teresa H

    2007-01-01

    This paper examines short-range wireless powering for implantable devices and shows that existing analysis techniques are not adequate to conclude the characteristics of power transfer efficiency over a wide frequency range. It shows, theoretically and experimentally, that the optimal frequency for power transmission in biological media can be in the GHz-range while existing solutions exclusively focus on the MHz-range. This implies that the size of the receive coil can be reduced by 10(4) times which enables the realization of fully integrated implantable devices. PMID:18003300

  3. Wireless microsensor network solutions for neurological implantable devices

    NASA Astrophysics Data System (ADS)

    Abraham, Jose K.; Whitchurch, Ashwin; Varadan, Vijay K.

    2005-05-01

    The design and development of wireless mocrosensor network systems for the treatment of many degenerative as well as traumatic neurological disorders is presented in this paper. Due to the advances in micro and nano sensors and wireless systems, the biomedical sensors have the potential to revolutionize many areas in healthcare systems. The integration of nanodevices with neurons that are in communication with smart microsensor systems has great potential in the treatment of many neurodegenerative brain disorders. It is well established that patients suffering from either Parkinson"s disease (PD) or Epilepsy have benefited from the advantages of implantable devices in the neural pathways of the brain to alter the undesired signals thus restoring proper function. In addition, implantable devices have successfully blocked pain signals and controlled various pelvic muscles in patients with urinary and fecal incontinence. Even though the existing technology has made a tremendous impact on controlling the deleterious effects of disease, it is still in its infancy. This paper presents solutions of many problems of today's implantable and neural-electronic interface devices by combining nanowires and microelectronics with BioMEMS and applying them at cellular level for the development of a total wireless feedback control system. The only device that will actually be implanted in this research is the electrodes. All necessary controllers will be housed in accessories that are outside the body that communicate with the implanted electrodes through tiny inductively-coupled antennas. A Parkinson disease patient can just wear a hat-system close to the implantable neural probe so that the patient is free to move around, while the sensors continually monitor, record, transmit all vital information to health care specialist. In the event of a problem, the system provides an early warning to the patient while they are still mobile thus providing them the opportunity to react and

  4. Right heart failure post left ventricular assist device implantation

    PubMed Central

    Argiriou, Mihalis; Kolokotron, Styliani-Maria; Sakellaridis, Timothy; Argiriou, Orestis; Charitos, Christos; Katsikogiannis, Nikolaos; Kougioumtzi, Ioanna; Machairiotis, Nikolaos; Tsiouda, Theodora; Tsakiridis, Kosmas; Zarogoulidis, Konstantinos

    2014-01-01

    Right heart failure (RHF) is a frequent complication following left ventricular assist device (LVAD) implantation. The incidence of RHF complicates 20-50% (range, 9-44%) of cases and is a major factor of postoperative morbidity and mortality. Unfortunately, despite the fact that many risk factors contributing to the development of RHF after LVAD implantation have been identified, it seems to be extremely difficult to avoid them. Prevention of RHF consists of the management of the preload and the afterload of the right ventricle with optimum inotropic support. The administration of vasodilators designed to reduce pulmonary vascular resistance is standard practice in most centers. The surgical attempt of implantation of a right ventricular assist device does not always resolve the problem and is not available in all cardiac surgery centers. PMID:24672699

  5. Bulk Metallic Glasses for Implantable Medical Devices and Surgical Tools.

    PubMed

    Meagher, Philip; O'Cearbhaill, Eoin D; Byrne, James H; Browne, David J

    2016-07-01

    With increasing knowledge of the materials science of bulk metallic glasses (BMGs) and improvements in their properties and processing, they have started to become candidate materials for biomedical devices. A dichotomy in the types of medical applications has also emerged, in which some families of BMGs are being developed for permanent devices whilst another family - of Mg-based alloys - is showing promise in bioabsorbable implants. The current status of these metallurgical and technological developments is summarized. PMID:27031058

  6. Adhesive bonding of medical and implantable devices.

    PubMed

    Tavakoli, S M

    2002-09-01

    Although there are many commercially available medical-grade adhesives, their use for new applications requires detailed investigation. It is also important that as well as the initial joint strength, durability of the bonded components during intended use, including exposure to low and high temperatures, stress, fluids and sterilisation, are investigated. Design of accelerated ageing tests, which can simulate the service environments, is critical in providing realistic durability data. Interpretation of ageing data and lifetime prediction of the joint is essential in assessing the performance of medical devices. Emergence of new types of adhesives as well as further development of precision dispensing and rapid-curing technologies offer many exciting and commercially attractive opportunities for joining medical devices. PMID:12397833

  7. Biocompatibility tests of components of an implantable cardiac assist device.

    PubMed

    von Recum, A F; Imamura, H; Freed, P S; Kantrowitz, A; Chen, S T; Ekstrom, M E; Baechler, C A; Barnhart, M I

    1978-09-01

    A permanently implantable in-series left ventricular assist device, the dynamic aortic patch (DAP), has been tested in chronic animal experiments. The DAP replaces a section of the intrathoracic aortic wall. Hemothorax and hematocele at the implantation site have been complications in recent experiments. Primary postoperative hemorrhage was ruled out, and the biocompatibility of all components was therefore examined. Dacron velour, Teflon felt, conductive polyurethane, segmented polyether polyurethane, and Teflon-coated polyester fiber sutures were implanted in the pleural cavities of dogs and tested in vitro by culturing canine saphenous vein explants on them. In vivo experiments demonstrated that all components elicited mild to moderate inflammatory reactions, but hematocele occurred only when the components were implanted in the aorta with direct blood contact and exposed to arterial blood pressures. In vitro, cells were cultured on all components with no signs of toxic reactions. These results indicated that the host tolerated all implant components without major inflammatory responses. However, histological data indicated that chronic slow bleeding into or through the Dacron velour in contact with the arterial blood serum could account for hemothorax or hematocele formation. Therefore, a configuration of the assist device using materials impermeable to blood may obviate these difficulties. PMID:151687

  8. Surgical Management of the Patient with an Implanted Cardiac Device

    PubMed Central

    Madigan, John D.; Choudhri, Asim F.; Chen, Jonathan; Spotnitz, Henry M.; Oz, Mehmet C.; Edwards, Niloo

    1999-01-01

    Objective To identify the sources of electromagnetic interference (EMI) that may alter the performance of implanted cardiac devices and develop strategies to minimize their effects on patient hemodynamic status. Summary Background Data Since the development of the sensing demand pacemaker, EMI in the clinical setting has concerned physicians treating patients with such devices. Implanted cardiovertor defibrillators (ICDs) and ventricular assist devices (VADs) can also be affected by EMI. Methods All known sources of interference to pacemakers, ICDs, and VADs were evaluated and preventative strategies were devised. Results All devices should be thoroughly evaluated before and after surgery to make sure that its function has not been permanently damaged or changed. If electrocautery is to be used, pacemakers should be placed in a triggered or asynchronous mode; ICDs should have arrhythmia detection suspended before surgery. If defibrillation is to be used, the current flow between the paddles should be kept as far away from and perpendicular to the lead system as possible. Both pacemakers and ICDs should be properly shielded if magnetic resonance imaging, positron emission tomography, or radiation therapy is to be used. The effect of EMI on VADs depends on the model. Magnetic resonance imaging adversely affects all VADs except the Abiomed VAD, and therefore its use should be avoided in this population of patients. Conclusions The patient with an implanted cardiac device can safely undergo surgery as long as certain precautions are taken. PMID:10561087

  9. Hemolysis and Pulmonary Insufficiency following Right Ventricular Assist Device Implantation.

    PubMed

    Schubert, Sarah A; Soleimani, Behzad; Pae, Walter E

    2012-01-01

    We report a case of severe hemolysis and pulmonary valve insufficiency (PI) following right ventricular support using a paracorporeal pneumatic pump (Abiomed, Danvers, MA, USA). We speculate that the high velocity jet of blood emanating from the outflow cannula caused turbulence above the pulmonary valve, leading to PI and hemolysis. Despite the growing number of implanted ventricular assist devices, we could find no report in the literature describing pulmonary valve insufficiency secondary to right ventricular assist device (RVAD) placement. Fortunately, in this case, right ventricular function recovered sufficiently after seven days of support, allowing explantation of the device and resolution of PI and hemolysis. PMID:23213613

  10. Outcomes After Concomitant Procedures with Left Ventricular Assist Device Implantation: Implications by Device Type and Indication.

    PubMed

    Maltais, Simon; Haglund, Nicholas A; Davis, Mary E; Aaronson, Keith D; Pagani, Francis D; Dunlay, Shannon M; Stulak, John M

    2016-01-01

    Guidelines for performing concomitant procedures (CPs) in patients undergoing continuous flow-left ventricular assist device (CF-LVAD) implantation are unclear. The impact of an increased surgical complexity outside the constraint of landmark clinical trials has not been reported. From May 2004 to December 2013, 614 patients (499 males, 81%) underwent CF-LVAD implant at our institutions. Median age was 57 ± 13 years and 364 (59%) were bridge to transplantation (BTT). Survival and device-related complications were analyzed and stratified based on the surgical intervention. A total of 398 patients (65%) underwent CF-LVAD implantation without CPs. The remaining patients (35%, n = 216) were grouped according to various CPs. Survival was comparable between groups and not influenced by the CP, device type, or indication for implant. Time-to-first device-related adverse event was shorter in patients with CPs. Regression analysis revealed only increased age (p = 0.03), increase in baseline creatinine (p = 0.002), cardiopulmonary bypass time (p = 0.03), and decreased body mass index (p = 0.03) were predictors of mortality, whereas only age (p = 0.006) and prior sternotomy (p = 0.02) were related to adverse device-related events. Performing CPs leads to comparable survival and device-related outcomes after implant. The decision to perform CPs should be balanced with age, preoperative renal dysfunction, and projected complexity of surgery. PMID:27164038

  11. 21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted mechanical/hydraulic urinary...

  12. 21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted mechanical/hydraulic urinary...

  13. 21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by...

  14. A Review of the Biocompatibility of Implantable Devices: Current Challenges to Overcome Foreign Body Response

    PubMed Central

    Onuki, Yoshinori; Bhardwaj, Upkar; Papadimitrakopoulos, Fotios; Burgess, Diane J.

    2008-01-01

    In recent years, a variety of devices (drug-eluting stents, artificial organs, biosensors, catheters, scaffolds for tissue engineering, heart valves, etc.) have been developed for implantation into patients. However, when such devices are implanted into the body, the body can react to these in a number of different ways. These reactions can result in an unexpected risk for patients. Therefore, it is important to assess and optimize the biocompatibility of implantable devices. To date, numerous strategies have been investigated to overcome body reactions induced by the implantation of devices. This review focuses on the foreign body response and the approaches that have been taken to overcome this. The biological response following device implantation and the methods for biocompatibility evaluation are summarized. Then the risks of implantable devices and the challenges to overcome these problems are introduced. Specifically, the challenges used to overcome the functional loss of glucose sensors, restenosis after stent implantation, and calcification induced by implantable devices are discussed. PMID:19885290

  15. Cardiovascular implantable electronic devices: patient education, information and ethical issues.

    PubMed

    Manaouil, Cécile; Gignon, Maxime; Traulle, Sarah

    2012-09-01

    Cardiovascular implantable electronic devices (CIED) are implanted increasingly frequently. CIEDs are indicated for the treatment of bradycardia, tachycardia and heart failure and therefore improve quality of life and life expectancy. CIED can treat ventricular arrhythmias that would be fatal without immediate care. However, CIEDs raise several patient education, medico-legal, and ethical questions that will be addressed in this article. Information is a patient's right, and necessary for informed consent. When implanting a CIED, the patient must be educated about the need for the device, the function of the device, any restrictions that apply postimplant, and postimplant follow-up methods and schedules. This transfer of information to the patient makes the patient responsible. The occupational physician can determine whether a patient wearing a CIED is able to work. Under current French law, patients are not prohibited from working while wearing a CIED. However, access to certain job categories remains limited, such as jobs involving mechanical stress to the chest, exposure to electromagnetic fields, or jobs requiring permanent vigilance. Pacemakers and defibrillators are medical treatments and are subject to the same ethical and clinical considerations as any other treatment. However, stopping a pacemaker or a defibrillator raises different ethical issues. Implantable Cardioverter Defibrillator shocks can be considered to be equivalent to resuscitation efforts and can be interpreted as being unreasonable in an end-of-life patient. Pacing is painless and it is unlikely to unnecessarily prolong the life of a patient with a terminal disease. Patients with a CIED should live as normally as possible, but must also be informed about the constraints related to the device and must inform each caregiver about the presence of the device. The forensic and ethical implications must be assessed in relation to current legislation. PMID:23248837

  16. Integration of High Dose Boron Implants--Modification of Device Parametrics through Implant Temperature Control

    SciTech Connect

    Schmeide, Matthias; Ameen, M. S.; Kondratenko, Serguei; Krimbacher, Bernhard; Reece, Ronald N.

    2011-01-07

    In the present study, we have extended a previously reported 250 nm logic p-S/D implant (7 keV B 4.5x10{sup 15} cm{sup -2}) process matching exercise [5] to include wafer temperature, and demonstrate that matching can be obtained by increasing the temperature of the wafer during implant. We found that the high dose rate delivered by the single wafer implanter caused the formation of a clear amorphous layer, which upon subsequent annealing altered the diffusion, activation, and clustering properties of the boron. Furthermore, increasing the temperature of the wafer during the implant was sufficient to suppress amorphization, allowing profiles and device parameters to become matched. Figure 5 shows a representative set of curves indicating the cluster phenomena observed for the lower temperature, high flux single wafer implanter, and the influence of wafer temperature on the profiles. The results indicate the strong primary effect of dose rate in determining final electrical properties of devices, and successful implementation of damage engineering using wafer temperature control.

  17. Sexual Concerns of Patients With Implantable Left Ventricular Assist Devices.

    PubMed

    Merle, Pascal; Maxhera, Bujar; Albert, Alexander; Ortmann, Philipp; Günter, Mareile; Lichtenberg, Artur; Saeed, Diyar

    2015-08-01

    The growing field of implantable left ventricular assist devices (LVADs) lacks studies that evaluate the sexual and psychosocial concerns of LVAD patients. The aim of this prospective study was to determine the sexual and psychosocial behaviors of these patients. A sexual and psychosocial survey was conducted in patients who underwent the implantation of LVAD. Inclusion criteria were patients who were discharged home. The survey consisted of 17 questions with main focus on the sexual life and activities. The survey was sent to 38 patients. Twelve patients had either no partners or did not respond to the survey. Data of the remaining 26 patients with a mean age of 54 ± 13 years old were analyzed. The mean time between LVAD implantation and the first sexual activity was 16 ± 13 weeks (6-42 weeks). Following LVAD implantation, there was a steady improvement in the physical condition and quality of life. However, a remarkable decrease in the degree of satisfaction with sexual life following LVAD implantation (5.5 ± 2.2 vs. 4.1 ± 2.5) was observed (P = 0.05) (a scale of 1-7, with 7 being very satisfied and 1 not satisfied). Decreasing sexual activities after LVAD implantation was mainly to avoid partner disappointment, sudden cardiac arrest, and LVAD failure. There is a notable reduction in the degree of satisfaction with sexual life after LVAD implantation. The majority of the patients avoid discussing this issue with their physicians. Psychological and psychosocial support of LVAD patients is mandatory to improve their life quality. PMID:26148127

  18. III-Nitride ion implantation and device processing

    SciTech Connect

    Zolper, J.C.; Shul, R.J.; Baca, A.G.; Pearton, S.J.; Abernathy, C.R.; Wilson, R.G.; Stall, R.A.; Shur, M.

    1996-06-01

    Ion implantation doping and isolation has played a critical role in realizing high performance photonic and electronic devices in all mature semiconductor materials; this is also expected for binary III-Nitride materials (InN, GaN, AlN) and their alloys as epitaxy improves and more advanced device structures fabricated. This paper reports on recent progress in ion implantation doping of III-Nitride materials that has led to the first demonstration of a GaN JFET (junction field effect transistor). The JFET was fabricated with all ion implantation doping; in particular, p-type doping of GaN with Ca has been demonstrated with an estimated acceptor ionization energy of 169 meV. O-implantation has also been studied and shown to yield n-type conduction with an ionization energy of {similar_to}29 meV. Neither Ca or O display measurable redistribution during a 1125 C, 15 s activation anneal which sets an upper limit on their diffusivity at this temperature of 2.7{times}10{sup {minus}13}cm{sup 2}/s.

  19. Transvenous Lead Extraction for Cardiac Implantable Electronic Devices.

    PubMed

    Shea, Julie B

    2015-01-01

    This article illustrates the important role that lead extraction plays in the management of patients with cardiac implantable electronic devices. Individualized care of the patient is paramount when considering lead management strategies. The critical care nurse must have a comprehensive understanding of the indications, procedural considerations, and preprocedural and postprocedural care for patients undergoing lead extraction procedures, thereby improving patient safety and maximizing patient outcomes. PMID:26484992

  20. Ultra-thin layer packaging for implantable electronic devices

    NASA Astrophysics Data System (ADS)

    Hogg, A.; Aellen, T.; Uhl, S.; Graf, B.; Keppner, H.; Tardy, Y.; Burger, J.

    2013-07-01

    State of the art packaging for long-term implantable electronic devices generally uses reliable metal and glass housings; however, these are limited in the miniaturization potential and cost reduction. This paper focuses on the development of biocompatible hermetic thin-film packaging based on poly-para-xylylene (Parylene-C) and silicon oxide (SiOx) multilayers for smart implantable microelectromechanical systems (MEMS) devices. For the fabrication, a combined Parylene/SiOx single-chamber deposition system was developed. Topological aspects of multilayers were characterized by atomic force microscopy and scanning electron microscopy. Material compositions and layer interfaces were analyzed by Fourier transform infrared spectrometry and x-ray photoelectron spectroscopy. To evaluate the multilayer corrosion protection, water vapor permeation was investigated using a calcium mirror test. The calcium mirror test shows very low water permeation rates of 2 × 10-3 g m-2 day-1 (23 °C, 45% RH) for a 4.7 µm multilayer, which is equivalent to a 1.9 mm pure Parylene-C coating. According to the packaging standard MIL-STD-883, the helium gas tightness was investigated. These helium permeation measurements predict that a multilayer of 10 µm achieves the hermeticity acceptance criterion required for long-term implantable medical devices.

  1. Management of antithrombotic therapy during cardiac implantable device surgery.

    PubMed

    AlTurki, Ahmed; Proietti, Riccardo; Birnie, David H; Essebag, Vidal

    2016-06-01

    Anticoagulants are commonly used drugs that are frequently encountered during device placement. Deciding when to halt or continue the use of anticoagulants is a balance between the risks of thromboembolism versus bleeding. Patients taking warfarin with a high risk of thromboembolism should continue to take their warfarin without interruption during device placement while ensuring their international normalized ratio remains below 3. For patients who are taking warfarin and have low risk of thromboembolism, either interrupted or continued warfarin may be used, with no evidence to clearly support either strategy. There is little evidence to support continuing direct acting oral anticoagulants (DOACs) for device implantation. The timing of halting these medications depends largely on renal function. If bleeding occurs, warfarin׳s anticoagulation effect is reversible with vitamin K and activated prothrombin complex concentrate. There are no DOAC reversal agents currently available, but some are under development. Regarding antiplatelet agents, aspirin alone can be safely continued while clopidogrel alone may also be continued, but with a slightly higher bleeding risk. Dual antiplatelet therapy for bare-metal stent/drug-eluting stent implanted within 4 weeks/6 months, respectively, should be continued due to high risk of stent thrombosis; however, if they are implanted after this period, then clopidogrel can be halted 5 days before the procedure and resumed soon after, while aspirin is continued. If the patient is taking both aspirin and warfarin, aspirin should be halted 5 days prior to the procedure, while warfarin is continued. PMID:27354859

  2. In-vivo orthopedic implant diagnostic device for sensing load, wear, and infection

    DOEpatents

    Evans, III, Boyd McCutchen; Thundat, Thomas G.; Komistek, Richard D.; Dennis, Douglas A.; Mahfouz, Mohamed

    2006-08-29

    A device for providing in vivo diagnostics of loads, wear, and infection in orthopedic implants having at least one load sensor associated with the implant, at least one temperature sensor associated with the implant, at least one vibration sensor associated with the implant, and at least one signal processing device operatively coupled with the sensors. The signal processing device is operable to receive the output signal from the sensors and transmit a signal corresponding with the output signal.

  3. 21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted mechanical/hydraulic urinary continence device. 876.5280 Section 876.5280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5280 Implanted mechanical/hydraulic...

  4. Critical Assessment of Implantable Drug Delivery Devices in Glaucoma Management

    PubMed Central

    Manickavasagam, Dharani; Oyewumi, Moses O.

    2013-01-01

    Glaucoma is a group of heterogeneous disorders involving progressive optic neuropathy that can culminate into visual impairment and irreversible blindness. Effective therapeutic interventions must address underlying vulnerability of retinal ganglion cells (RGCs) to degeneration in conjunction with correcting other associated risk factors (such as elevated intraocular pressure). However, realization of therapeutic outcomes is heavily dependent on suitable delivery system that can overcome myriads of anatomical and physiological barriers to intraocular drug delivery. Development of clinically viable sustained release systems in glaucoma is a widely recognized unmet need. In this regard, implantable delivery systems may relieve the burden of chronic drug administration while potentially ensuring high intraocular drug bioavailability. Presently there are no FDA-approved implantable drug delivery devices for glaucoma even though there are several ongoing clinical studies. The paper critically assessed the prospects of polymeric implantable delivery systems in glaucoma while identifying factors that can dictate (a) patient tolerability and acceptance, (b) drug stability and drug release profiles, (c) therapeutic efficacy, and (d) toxicity and biocompatibility. The information gathered could be useful in future research and development efforts on implantable delivery systems in glaucoma. PMID:24066234

  5. The evolution of the cardiac implantable electronic device connector.

    PubMed

    Mond, Harry G; Helland, John R; Fischer, Avi

    2013-11-01

    Cardiac implantable electronic devices (CIEDs) play a vital role in the management of cardiac rhythm disturbances. The devices are comprised of two primary components: a generator and lead joined by a connector. Original pacemaker lead connectors were created de novo at the time of implantation or replacement and were very unreliable. With the development of new lead designs, creation of a standard connector configuration, the IS-1 connector became mandatory. Similar connector development also occurred with the advent of the implantable cardioverter defibrillator (ICD), resulting in creation of the high voltage standard: the DF-1 connector. Differing from a pacemaker lead, the ICD lead connector requires one IS-1 connector and one or two DF-1 connectors, resulting in a large cumbersome lead connector and generator header block. Recently, a revolutionary quad pole single plug connector standard has been approved for market release. These are the single-pin DF4 and IS4 lead connectors that carry low- and high-voltage poles or all low-voltage poles, respectively. These connectors, together with new labeling guidelines, have simplified operative procedures and reduced errors, when mating lead connectors into the generator's connector block. PMID:23808816

  6. Infection control in implantation of cardiac implantable electronic devices: current evidence, controversial points, and unresolved issues.

    PubMed

    Korantzopoulos, Panagiotis; Sideris, Skevos; Dilaveris, Polychronis; Gatzoulis, Konstantinos; Goudevenos, John A

    2016-04-01

    A significant increase in the implantation of cardiac implantable electronic devices (CIEDs) is evident over the past years, while there is evidence for a disproportionate increase in CIED-related infections. The cumulative probability of device infection seems to be higher in implantable cardioverter defibrillator and in cardiac resynchronization therapy patients compared with permanent pacemaker patients. Given that more than a half of CIED infections are possibly related to the operative procedure, there is a need for effective periprocedural infection control. However, many of the current recommendations are empirical and not evidence-based, while questions, unresolved issues, and conflicting evidence arise. The perioperative systemic use of antibiotics confers significant benefit in prevention of CIED infections. However, there are no conclusive data regarding the specific value of each agent in different clinical settings, the value of post-operative antibiotic treatment as well as the optimal duration of therapy. The merit of local pocket irrigation with antibiotic and/or antiseptic agents remains unproved. Of note, recent evidence indicates that the application of antibacterial envelopes into the device pocket markedly decreases the infection risk. In addition, limited reports on strict integrated infection control protocols show a dramatic reduction in infection rates in this setting and therefore deserve further attention. Finally, the relative impact of particular factors on the infection risk, including the type of the CIED, patients' individual characteristics and comorbidities, should be further examined since it may facilitate the development of tailored prophylactic interventions for each patient. PMID:26516219

  7. Feasibility study for future implantable neural-silicon interface devices.

    PubMed

    Al-Armaghany, Allann; Yu, Bo; Mak, Terrence; Tong, Kin-Fai; Sun, Yihe

    2011-01-01

    The emerging neural-silicon interface devices bridge nerve systems with artificial systems and play a key role in neuro-prostheses and neuro-rehabilitation applications. Integrating neural signal collection, processing and transmission on a single device will make clinical applications more practical and feasible. This paper focuses on the wireless antenna part and real-time neural signal analysis part of implantable brain-machine interface (BMI) devices. We propose to use millimeter-wave for wireless connections between different areas of a brain. Various antenna, including microstrip patch, monopole antenna and substrate integrated waveguide antenna are considered for the intra-cortical proximity communication. A Hebbian eigenfilter based method is proposed for multi-channel neuronal spike sorting. Folding and parallel design techniques are employed to explore various structures and make a trade-off between area and power consumption. Field programmable logic arrays (FPGAs) are used to evaluate various structures. PMID:22254974

  8. [The management of implantable medical device and the application of the internet of things in hospitals].

    PubMed

    Zhou, Li; Xu, Liang

    2011-11-01

    Implantable medical device is a special product which belongs to medical devices. It not only possesses product characteristics in common, but also has specificity for safety and effectiveness. Implantable medical device must be managed by the relevant laws and regulations of the State Food and Drug Administration. In this paper, we have used cardiac pacemakers as an example to describe the significance of the management of implantable medical device products and the application of the internet of things in hospitals. PMID:22379772

  9. 78 FR 38867 - Gastroenterology-Urology Devices; Reclassification of Implanted Blood Access Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... section 513(e) proposing the reclassification of implanted blood access devices for hemodialysis (77 FR... reclassification for June 27, 2013 (78 FR 25747; May 2, 2013). The three comments submitted in response to the... discussed in the preamble to the proposed rule (46 FR 7616; January 23, 1981), the...

  10. The cardiac implantable electronic device power source: evolution and revolution.

    PubMed

    Mond, Harry G; Freitag, Gary

    2014-12-01

    Although the first power source for an implantable pacemaker was a rechargeable nickel-cadmium battery, it was rapidly replaced by an unreliable short-life zinc-mercury cell. This sustained the small pacemaker industry until the early 1970s, when the lithium-iodine cell became the dominant power source for low voltage, microampere current, single- and dual-chamber pacemakers. By the early 2000s, a number of significant advances were occurring with pacemaker technology which necessitated that the power source should now provide milliampere current for data logging, telemetric communication, and programming, as well as powering more complicated pacing devices such as biventricular pacemakers, treatment or prevention of atrial tachyarrhythmias, and the integration of innovative physiologic sensors. Because the current delivery of the lithium-iodine battery was inadequate for these functions, other lithium anode chemistries that can provide medium power were introduced. These include lithium-carbon monofluoride, lithium-manganese dioxide, and lithium-silver vanadium oxide/carbon mono-fluoride hybrids. In the early 1980s, the first implantable defibrillators for high voltage therapy used a lithium-vanadium pentoxide battery. With the introduction of the implantable cardioverter defibrillator, the reliable lithium-silver vanadium oxide became the power source. More recently, because of the demands of biventricular pacing, data logging, and telemetry, lithium-manganese dioxide and the hybrid lithium-silver vanadium oxide/carbon mono-fluoride laminate have also been used. Today all cardiac implantable electronic devices are powered by lithium anode batteries. PMID:25387600

  11. Successful left ventricular assist device re-implantation with omental covering for MDRP device infection.

    PubMed

    Inafuku, Hitoshi; Kuniyoshi, Yukio; Yamashiro, Satoshi; Totsuka, Yuichi; Ono, Minoru

    2016-06-01

    We present a case of paracorporeal left ventricular assist device (p-LVAD)-related infection, caused by multi-drug resistant Pseudomonas aeruginosae (MDRP), and successfully treated by p-LVAD re-implantation with omental covering. A 59-year-old man underwent p-LVAD implantation and coronary artery bypass grafting after percutaneous cardiopulmonary support and intra-aortic balloon pumping for cardiogenic shock due to acute myocardial infarction. Then, he was registered for heart transplantation. He suffered from blood stream infection causative organism of Pseudomonas aeruginosa, 2 months after that operation. He underwent re-median sternotomy and open drainage, 15 months after the p-LVAD implantation. However, he suffered from septic shock due to MDRP. He underwent p-LVAD re-implantation under hypothermic circulatory arrest and iodine gauze packing, followed by omental covering of the all artificial materials in his body 10 days after that operation. Soon after that, the infection was well controlled and the intravenous antibiotics could be discontinued 2 months after that operation. He successfully underwent heart transplantation, 17 months after that procedure. We concluded that p-LVAD re-implantation with omental covering is seemed to be useful in the treatment of massive device infection. This procedure might be a novel treatment for severe VAD-related infection until heart transplantation. PMID:26740211

  12. Direction or inertia: the future for regulation of surgical implant devices.

    PubMed

    Habal, M B; Karlan, M S; Leake, D

    1978-01-01

    The time has arrived when certain standards are to be introduced to control the introduction of and appropriate use of surgical implant devices. Now is the time for the professional groups involved in standards and medical device legislation to become active and develop surgical implant device standards to be applicable for the future. A commission could be established to work with FDA in respect to the requirements for surgical implant devices. It is time for the clinical organizations involved in writing consensus standards to cooperate in the introduction of surgical implant device standards. PMID:10316638

  13. New molecular strategies for reducing implantable medical devices associated infections.

    PubMed

    Holban, Alina Maria; Gestal, Monica Cartelle; Grumezescu, Alexandru Mihai

    2014-01-01

    Due to the great prevalence of persistent and recurrent implanted device associated-infections novel and alternative therapeutic approaches are intensely investigated. For reducing complications and antibiotic resistance development, one major strategy is using natural or synthetic modulators for targeting microbial molecular pathways which are not related with cell multiplication and death, as Quorum Sensing, virulence and biofilm formation. The purpose of this review paper is to discuss the most recent in vitro approaches, investigating the efficiency of some novel antimicrobial products and the nano-technologic progress performed in order to increase their effect and stability. PMID:24606502

  14. From hemodynamic towards cardiomechanic sensors in implantable devices

    NASA Astrophysics Data System (ADS)

    Ferek-Petric, Bozidar

    2013-06-01

    Sensor could significantly improve the cardiac electrotherapy. It has to provide long-term stabile signal not impeding the device longevity and lead reliability. It may not introduce special implantation and adjustment procedures. Hemodynamic sensors based on the blood flow velocity and cardiomechanic sensors based on the lead bending measurement are disclosed. These sensors have a broad clinical utility. Triboelectric and high-frequency lead bending sensors yield accurate and stable signals whereby functioning with every cardiac lead. Moreover, high frequency measurement avoids use of any kind of special hardware mounted on the cardiac lead.

  15. Management of Patients With Cardiovascular Implantable Electronic Devices in Dental, Oral, and Maxillofacial Surgery.

    PubMed

    Tom, James

    2016-01-01

    The prevalence of cardiovascular implantable electronic devices as life-prolonging and life-saving devices has evolved from a treatment of last resort to a first-line therapy for an increasing number of patients. As these devices become more and more popular in the general population, dental providers utilizing instruments and medications should be aware of dental equipment and medications that may affect these devices and understand the management of patients with these devices. This review article will discuss the various types and indications for pacemakers and implantable cardioverter-defibrillators, common drugs and instruments affecting these devices, and management of patients with these devices implanted for cardiac dysrhythmias. PMID:27269668

  16. Cardiac Implantable Electronic Device Infection: From an Infection Prevention Perspective

    PubMed Central

    Sastry, Sangeeta; Rahman, Riaz; Yassin, Mohamed H.

    2015-01-01

    A cardiac implantable electronic device (CIED) is indicated for patients with severely reduced ejection fraction or with life-threatening cardiac arrhythmias. Infection related to a CIED is one of the most feared complications of this life-saving device. The rate of CIED infection has been estimated to be between 2 and 25; though evidence shows that this rate continues to rise with increasing expenditure to the patient as well as healthcare systems. Multiple risk factors have been attributed to the increased rates of CIED infection and host comorbidities as well as procedure related risks. Infection prevention efforts are being developed as defined bundles in numerous hospitals around the country given the increased morbidity and mortality from CIED related infections. This paper aims at reviewing the various infection prevention measures employed at hospitals and also highlights the areas that have relatively less established evidence for efficacy. PMID:26550494

  17. Wireless energy transfer platform for medical sensors and implantable devices.

    PubMed

    Zhang, Fei; Hackworth, Steven A; Liu, Xiaoyu; Chen, Haiyan; Sclabassi, Robert J; Sun, Mingui

    2009-01-01

    Witricity is a newly developed technique for wireless energy transfer. This paper presents a frequency adjustable witricity system to power medical sensors and implantable devices. New witricity resonators are designed for both energy transmission and reception. A prototype platform is described, including an RF power source, two resonators with new structures, and inductively coupled input and output stages. In vitro experiments, both in open air and using a human head phantom consisting of simulated tissues, are employed to verify the feasibility of this platform. An animal model is utilized to evaluate in vivo energy transfer within the body of a laboratory pig. Our experiments indicate that witricity is an effective new tool for providing a variety of medical sensors and devices with power. PMID:19964948

  18. Ion Implantation Angle Variation to Device Performance and the Control in Production

    SciTech Connect

    Zhao, Z.Y.; Hendrix, D.; Wu, L.Y.; Cusson, B.K.

    2003-08-26

    As the device features get smaller and aspect ratios of photoresist openings get steeper, shadowing effect has more impact on the performance of devices. Many of the traditional 7 deg. tilt implants have progressed to 0 deg. implants. But shadowing may still occur if the tilt angle deviates from normal direction. Some implants, such as halo implants, demand even more stringent angle control to reduce device performance variation. The demand for implant angle control and monitoring thus becomes more obvious and important. However, statistical process control (SPC) cannot be done on shadowing effect without special test structures. Channeling, on the other hand, provides good sensitivity in regard to implant angle changes. It is the authors' intention to introduce channeling implant in different channels to monitor the implant angle variation. The incoming <100> silicon wafers have a cut-angle spec of +/- 1.0 deg. This poses a difficulty if one wants to control the implant angle's accuracy within +/- 0.5 deg. Other measures have to be taken to ensure the consistency of test wafers and to have prompt diagnosis feedback when needed. This paper will discuss the effect of implant tilt angle on device parameters and how to control the angle variation in production. Correlations of implant tilt angle variation to ThermaWave, sheet resistance (Rs), Secondary Ion Mass Spectrometry (SIMS) and device parameters will be covered with certain implant conditions.

  19. Ion Implantation Angle Variation to Device Performance and the Control in Production

    NASA Astrophysics Data System (ADS)

    Zhao, Z. Y.; Hendrix, D.; Wu, L. Y.; Cusson, B. K.

    2003-08-01

    As the device features get smaller and aspect ratios of photoresist openings get steeper, shadowing effect has more impact on the performance of devices. Many of the traditional 7° tilt implants have progressed to 0° implants. But shadowing may still occur if the tilt angle deviates from normal direction. Some implants, such as halo implants, demand even more stringent angle control to reduce device performance variation. The demand for implant angle control and monitoring thus becomes more obvious and important. However, statistical process control (SPC) cannot be done on shadowing effect without special test structures. Channeling, on the other hand, provides good sensitivity in regard to implant angle changes. It is the authors' intention to introduce channeling implant in different channels to monitor the implant angle variation. The incoming <100> silicon wafers have a cut-angle spec of +/- 1.0°. This poses a difficulty if one wants to control the implant angle's accuracy within +/- 0.5°. Other measures have to be taken to ensure the consistency of test wafers and to have prompt diagnosis feedback when needed. This paper will discuss the effect of implant tilt angle on device parameters and how to control the angle variation in production. Correlations of implant tilt angle variation to ThermaWave™, sheet resistance (Rs), Secondary Ion Mass Spectrometry (SIMS) and device parameters will be covered with certain implant conditions.

  20. Perioperative management of antithrombotic treatment during implantation or revision of cardiac implantable electronic devices: the European Snapshot Survey on Procedural Routines for Electronic Device Implantation (ESS-PREDI).

    PubMed

    Deharo, Jean-Claude; Sciaraffia, Elena; Leclercq, Christophe; Amara, Walid; Doering, Michael; Bongiorni, Maria G; Chen, Jian; Dagres, Nicolaus; Estner, Heidi; Larsen, Torben B; Johansen, Jens B; Potpara, Tatjana S; Proclemer, Alessandro; Pison, Laurent; Brunet, Caroline; Blomström-Lundqvist, Carina

    2016-05-01

    The European Snapshot Survey on Procedural Routines for Electronic Device Implantation (ESS-PREDI) was a prospective European survey of consecutive adults who had undergone implantation/surgical revision of a cardiac implantable electronic device (CIED) on chronic antithrombotic therapy (enrolment March-June 2015). The aim of the survey was to investigate perioperative treatment with oral anticoagulants and antiplatelets in CIED implantation or surgical revision and to determine the incidence of complications, including clinically significant pocket haematomas. Information on antithrombotic therapy before and after surgery and bleeding and thromboembolic complications occurring after the intervention was collected at first follow-up. The study population comprised 723 patients (66.7% men, 76.9% aged ≥66 years). Antithrombotic treatment was continued during surgery in 489 (67.6%) patients; 6 (0.8%) had their treatment definitively stopped; 46 (6.4%) were switched to another antithrombotic therapy. Heparin bridging was used in 55 out of 154 (35.8%) patients when interrupting vitamin K antagonist (VKA) treatment. Non-vitamin K oral anticoagulant (NOAC) treatment was interrupted in 88.7% of patients, with heparin bridging in 25.6%, but accounted for only 25.3% of the oral anticoagulants used. A total of 108 complications were observed in 98 patients. No intracranial haemorrhage or embolic events were observed. Chronic NOAC treatment before surgery was associated with lower rates of minor pocket haematoma (1.4%; P= 0.042) vs. dual antiplatelet therapy (13.0%), VKA (11.4%), VKA + antiplatelet (9.2%), or NOAC + antiplatelet (7.7%). Similar results were observed for bleeding complications (P= 0.028). Perioperative management of patients undergoing CIED implantation/surgical revision while on chronic antithrombotic therapy varies, with evidence of a disparity between guideline recommendations and practice patterns in Europe. Haemorrhagic complications were significantly

  1. 21 CFR 860.93 - Classification of implants, life-supporting or life-sustaining devices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Classification of implants, life-supporting or... Classification § 860.93 Classification of implants, life-supporting or life-sustaining devices. (a) The classification panel will recommend classification into class III of any implant or life-supporting or...

  2. 21 CFR 860.93 - Classification of implants, life-supporting or life-sustaining devices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Classification of implants, life-supporting or... Classification § 860.93 Classification of implants, life-supporting or life-sustaining devices. (a) The classification panel will recommend classification into class III of any implant or life-supporting or...

  3. 21 CFR 860.93 - Classification of implants, life-supporting or life-sustaining devices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Classification of implants, life-supporting or... Classification § 860.93 Classification of implants, life-supporting or life-sustaining devices. (a) The classification panel will recommend classification into class III of any implant or life-supporting or...

  4. 21 CFR 860.93 - Classification of implants, life-supporting or life-sustaining devices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Classification of implants, life-supporting or... Classification § 860.93 Classification of implants, life-supporting or life-sustaining devices. (a) The classification panel will recommend classification into class III of any implant or life-supporting or...

  5. Risk Factors Influencing Complications of Cardiac Implantable Electronic Device Implantation: Infection, Pneumothorax and Heart Perforation

    PubMed Central

    Lin, Yu-Sheng; Hung, Sheng-Ping; Chen, Pei-Rung; Yang, Chia-Hung; Wo, Hung-Ta; Chang, Po-Cheng; Wang, Chun-Chieh; Chou, Chung-Chuan; Wen, Ming-Shien; Chung, Chang-Ming; Chen, Tien-Hsing

    2014-01-01

    Abstract As the number of cardiac implantable electronic devices (CIEDs) is increasing annually, CIED-related complications are becoming increasingly important. The aim of the study was to assess the risks associated with CIEDs by a nationwide database. Patients were selected from the Taiwan National Health Insurance Database. Admissions for CIED implantation, replacement, and revision were evaluated and the evaluation period was 14 years. Endpoints included CIED-related infection, pneumothorax, and heart perforation. The study included 40,608 patients with a mean age of 71.8 ± 13.3 years. Regarding infection, the incidence rate was 2.45 per 1000 CIED-years. Male gender, younger age, device replacement, and previous infection were risks for infection while old age and high-volume centers (>200 per year) were protectors. The incidence of pneumothorax was 0.6%, with an increased risk in individuals who had chronic obstructive lung disease (COPD) and cardiac resynchronized therapy (CRT). The incidence of heart perforation was 0.09%, with an increased risk in individuals who had pre-operation temporal pacing and steroid use. High-volume center was found to decrease infection rate while male gender, young people, and individuals who underwent replacements were associated with an increased risk of infection. Additionally, pre-operation temporal pacing and steroid use should be avoided if possible. Furthermore, COPD patients or those who accept CRTs should be monitored closely. PMID:25501080

  6. Design of an implantable device for ocular drug delivery.

    PubMed

    Lee, Jae-Hwan; Pidaparti, Ramana M; Atkinson, Gary M; Moorthy, Ramana S

    2012-01-01

    Ocular diseases, such as, glaucoma, age-related macular degeneration (AMD), diabetic retinopathy, and retinitis pigmentosa require drug management in order to prevent blindness and affecting million of adults in USA and worldwide. There is an increasing need to develop devices for drug delivery to address ocular diseases. This study focuses on the design, simulation, and development of an implantable ocular drug delivery device consisting of micro-/nanochannels embedded between top and bottom covers with a drug reservoir made from polydimethylsiloxane (PDMS) which is silicon-based organic and biodegradable polymer. Several simulations were carried out with six different micro-channel configurations in order to see the feasibility for ocular drug delivery applications. Based on the results obtained, channel design of osmotic I and osmotic II satisfied the diffusion rates required for ocular drug delivery. Finally, a prototype illustrating the three components of the drug delivery design is presented. In the future, the device will be tested for its functionality and diffusion characteristics. PMID:22919500

  7. Endoscopic Electrosurgery in Patients with Cardiac Implantable Electronic Devices

    PubMed Central

    Baeg, Myong Ki; Kim, Sang-Woo; Ko, Sun-Hye; Lee, Yoon Bum; Hwang, Seawon; Lee, Bong-Woo; Choi, Hye Jin; Park, Jae Myung; Lee, In-Seok; Oh, Yong-Seog; Choi, Myung-Gyu

    2016-01-01

    Background/Aims: Patients with cardiac implantable electronic devices (CIEDs) undergoing endoscopic electrosurgery (EE) are at a risk of electromagnetic interference (EMI). We aimed to analyze the effects of EE in CIED patients. Methods: Patients with CIED who underwent EE procedures such as snare polypectomy, endoscopic submucosal dissection (ESD), and endoscopic retrograde cholangiopancreatography (ERCP) with endoscopic sphincterotomy (EST) were retrospectively analyzed. Postprocedural symptoms as well as demographic and outpatient follow-up data were reviewed through medical records. Electrical data, including preprocedural and postprocedural arrhythmia records, were reviewed through pacemaker interrogation, 24-hour Holter monitoring, or electrocardiogram. Results: Fifty-nine procedures in 49 patients were analyzed. Fifty procedures were performed in 43 patients with a pacemaker, and nine were performed in six patients with an implantable cardioverter-defibrillator. There were one gastric and 44 colon snare polypectomies, five gastric and one colon ESDs, and eight ERCPs with EST. Fifty-five cases of electrical follow-up were noted, with two postprocedural changes not caused by EE. Thirty-one pacemaker interrogations had procedure recordings, with two cases of asymptomatic tachycardia. All patients were asymptomatic with no adverse events. Conclusions: Our study reports no adverse events from EE in patients with CIED, suggesting that this procedure is safe. However, because of the possibility of EMI, recommendations on EE should be followed. PMID:26867552

  8. Psychosocial issues in ventricular assist device implantation and management

    PubMed Central

    Bauman, Lillian

    2015-01-01

    The primary goal of mechanical circulatory support (MCS) is to increase quantity and quality of life (QOL) in patients with systolic heart failure refractory to medical therapies. A key contributor to the success in MCS therapy is a comprehensive assessment of the candidate for device implantation. A crucial element of that assessment is an evaluation of the individual’s psychosocial status, recommended by most current MCS guidelines. By focusing on criteria including drug, alcohol and tobacco abuse, ability to learn and problem solve, history of adherence to medical regimens, and adequate psychosocial support following implant, the team has an opportunity to create an individualized post-discharge plan that addresses identified gaps and optimizes the patient’s likelihood for success. Information gathered also provides the team with a setting in which to discuss the patient’s personal goals for the therapy and advanced care planning. We explore all of these issues and offer recommendations for approaching psychosocial assessment for MCS patients. PMID:26793339

  9. Experimenting with microbial fuel cells for powering implanted biomedical devices.

    PubMed

    Roxby, Daniel N; Nham Tran; Pak-Lam Yu; Nguyen, Hung T

    2015-08-01

    Microbial Fuel Cell (MFC) technology has the ability to directly convert sugar into electricity by using bacteria. Such a technology could be useful for powering implanted biomedical devices that require a surgery to replace their batteries every couple of years. In steps towards this, parameters such as electrode configuration, inoculation size, stirring of the MFC and single versus dual chamber reactor configuration were tested for their effect on MFC power output. Results indicate that a Top-Bottom electrode configuration, stirring and larger amounts of bacteria in single chamber MFCs, and smaller amounts of bacteria in dual chamber MFCs give increased power outputs. Finally, overall dual chamber MFCs give several fold larger MFC power outputs. PMID:26736845

  10. Thin-film rechargeable lithium batteries for implantable devices

    SciTech Connect

    Bates, J.b.; Dudney, N.J.

    1997-05-01

    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x-ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin-film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001 %/cycle or less. The reliability and performance of Li-LiCoO{sub 2} thin-film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

  11. Thin-film Rechargeable Lithium Batteries for Implantable Devices

    DOE R&D Accomplishments Database

    Bates, J. B.; Dudney, N. J.

    1997-05-01

    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001%/cycle or less. The reliability and performance of Li LiCoO{sub 2} thin film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

  12. Development of implant loading device for animal study about various loading protocol: a pilot study

    PubMed Central

    Yoon, Joon-Ho; Park, Young-Bum; Cho, Yuna; Kim, Chang-Sung; Choi, Seong-Ho; Moon, Hong-Seok; Lee, Keun-Woo

    2012-01-01

    PURPOSE The aims of this pilot study were to introduce implant loading devices designed for animal study and to evaluate the validity of the load transmission ability of the loading devices. MATERIALS AND METHODS Implant loading devices were specially designed and fabricated with two implant abutments and cast metal bars, and orthodontic expansion screw. In six Beagles, all premolars were extracted and two implants were placed in each side of the mandibles. The loading device was inserted two weeks after the implant placement. According to the loading protocol, the load was applied to the implants with different time and method,simulating early, progressive, and delayed loading. The implants were clinically evaluated and the loading devices were removed and replaced to the master cast, followed by stress-strain analysis. Descriptive statistics of remained strain (µε) was evaluated after repeating three cycles of the loading device activation. Statistic analysis was performed using nonparametric, independent t-test with 5% significance level and Friedman's test was also used for verification. RESULTS The loading devices were in good action. However, four implants in three Beagles showed loss of osseointegration. In stress-strain analysis, loading devices showed similar amount of increase in the remained strain after applying 1-unit load for three times. CONCLUSION Specialized design of the implant loading device was introduced. The loading device applied similar amount of loads near the implant after each 1-unit loading. However, the direction of the loads was not parallel to the long axis of the implants as predicted before the study. PMID:23236575

  13. 21 CFR 860.93 - Classification of implants, life-supporting or life-sustaining devices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Classification of implants, life-supporting or life-sustaining devices. 860.93 Section 860.93 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Classification § 860.93 Classification of implants, life-supporting or life-sustaining devices. (a)...

  14. Ion implantation in compound semiconductors for high-performance electronic devices

    SciTech Connect

    Zolper, J.C.; Baca, A.G.; Sherwin, M.E.; Klem, J.F.

    1996-05-01

    Advanced electronic devices based on compound semiconductors often make use of selective area ion implantation doping or isolation. The implantation processing becomes more complex as the device dimensions are reduced and more complex material systems are employed. The authors review several applications of ion implantation to high performance junction field effect transistors (JFETs) and heterostructure field effect transistors (HFETs) that are based on compound semiconductors, including: GaAs, AlGaAs, InGaP, and AlGaSb.

  15. From micro- to nanostructured implantable device for local anesthetic delivery

    PubMed Central

    Zorzetto, Laura; Brambilla, Paola; Marcello, Elena; Bloise, Nora; De Gregori, Manuela; Cobianchi, Lorenzo; Peloso, Andrea; Allegri, Massimo; Visai, Livia; Petrini, Paola

    2016-01-01

    Local anesthetics block the transmission of painful stimuli to the brain by acting on ion channels of nociceptor fibers, and find application in the management of acute and chronic pain. Despite the key role they play in modern medicine, their cardio and neurotoxicity (together with their short half-life) stress the need for developing implantable devices for tailored local drug release, with the aim of counterbalancing their side effects and prolonging their pharmacological activity. This review discusses the evolution of the physical forms of local anesthetic delivery systems during the past decades. Depending on the use of different biocompatible materials (degradable polyesters, thermosensitive hydrogels, and liposomes and hydrogels from natural polymers) and manufacturing processes, these systems can be classified as films or micro- or nanostructured devices. We analyze and summarize the production techniques according to this classification, focusing on their relative advantages and disadvantages. The most relevant trend reported in this work highlights the effort of moving from microstructured to nanostructured systems, with the aim of reaching a scale comparable to the biological environment. Improved intracellular penetration compared to microstructured systems, indeed, provides specific drug absorption into the targeted tissue and can lead to an enhancement of its bioavailability and retention time. Nanostructured systems are realized by the modification of existing manufacturing processes (interfacial deposition and nanoprecipitation for degradable polyester particles and high- or low-temperature homogenization for liposomes) or development of novel strategies (electrospun matrices and nanogels). The high surface-to-volume ratio that characterizes nanostructured devices often leads to a burst drug release. This drawback needs to be addressed to fully exploit the advantage of the interaction between the target tissues and the drug: possible strategies

  16. From micro- to nanostructured implantable device for local anesthetic delivery.

    PubMed

    Zorzetto, Laura; Brambilla, Paola; Marcello, Elena; Bloise, Nora; De Gregori, Manuela; Cobianchi, Lorenzo; Peloso, Andrea; Allegri, Massimo; Visai, Livia; Petrini, Paola

    2016-01-01

    Local anesthetics block the transmission of painful stimuli to the brain by acting on ion channels of nociceptor fibers, and find application in the management of acute and chronic pain. Despite the key role they play in modern medicine, their cardio and neurotoxicity (together with their short half-life) stress the need for developing implantable devices for tailored local drug release, with the aim of counterbalancing their side effects and prolonging their pharmacological activity. This review discusses the evolution of the physical forms of local anesthetic delivery systems during the past decades. Depending on the use of different biocompatible materials (degradable polyesters, thermosensitive hydrogels, and liposomes and hydrogels from natural polymers) and manufacturing processes, these systems can be classified as films or micro- or nanostructured devices. We analyze and summarize the production techniques according to this classification, focusing on their relative advantages and disadvantages. The most relevant trend reported in this work highlights the effort of moving from microstructured to nanostructured systems, with the aim of reaching a scale comparable to the biological environment. Improved intracellular penetration compared to microstructured systems, indeed, provides specific drug absorption into the targeted tissue and can lead to an enhancement of its bioavailability and retention time. Nanostructured systems are realized by the modification of existing manufacturing processes (interfacial deposition and nanoprecipitation for degradable polyester particles and high- or low-temperature homogenization for liposomes) or development of novel strategies (electrospun matrices and nanogels). The high surface-to-volume ratio that characterizes nanostructured devices often leads to a burst drug release. This drawback needs to be addressed to fully exploit the advantage of the interaction between the target tissues and the drug: possible strategies

  17. Dental devices; reclassification of root-form endosseous dental implants and endosseous dental implant abutments. Final rule.

    PubMed

    2004-05-12

    The Food and Drug Administration (FDA) is reclassifying root-form endosseous dental implants and endosseous dental implant abutments from class III to class II (special controls). Root-form endosseous dental implants are intended to be surgically placed in the bone of the upper or lower jaw arches to provide support for prosthetic devices, such as artificial teeth, in order to restore the patient's chewing function. Endosseous dental implant abutments are separate components that are attached to the dental implant and intended to aid in prosthetic rehabilitation. FDA is reclassifying these devices on its own initiative on the basis of new information. Elsewhere in this issue of the Federal Register, FDA is announcing the availability of the guidance document that will serve as the special control for these devices. FDA is taking this action under the Federal Food, Drug, and Cosmetic Act (the act), as amended by the Medical Device Amendments of 1976 (the 1976 amendments), the Safe Medical Devices Act of 1990, the Food and Drug Administration Modernization Act of 1997, and the Medical Device User Fee and Modernization Act of 2002. PMID:15141676

  18. Remote monitoring of cardiac implantable electronic devices (CIED).

    PubMed

    Zeitler, Emily P; Piccini, Jonathan P

    2016-08-01

    With increasing indications and access to cardiac implantable electronic devices (CIEDs) worldwide, the number of patients needing CIED follow-up continues to rise. In parallel, the technology available for managing these devices has advanced considerably. In this setting, remote monitoring (RM) has emerged as a complement to routine in-office care. Rigorous studies, randomized and otherwise, have demonstrated advantages to patient with CIED management systems, which incorporates RM resulting in authoritative guidelines from relevant professional societies recommending RM for all eligible patients. In addition to clinical benefits, CIED management programs that include RM have been shown to be cost effective and associated with high patient satisfaction. Finally, RM programs hold promise for the future of CIED research in light of the massive data collected through RM databases converging with unprecedented computational capability. This review outlines the available data associated with clinical outcomes in patients managed with RM with an emphasis on randomized trials; the impact of RM on patient satisfaction, cost-effectiveness, and healthcare utilization; and possible future directions for the use of RM in clinical practice and research. PMID:27134007

  19. Changes in Spirometry After Left Ventricular Assist Device Implantation.

    PubMed

    Mohamedali, Burhan; Bhat, Geetha; Yost, Gardner; Tatooles, Antone

    2015-12-01

    Left ventricular assist devices (LVADs) are increasingly being used as life-saving therapy in patients with end-stage heart failure. The changes in spirometry following LVAD implantation and subsequent unloading of the left ventricle and pulmonary circulation are unknown. In this study, we explored long-term changes in spirometry after LVAD placement. In this retrospective study, we compared baseline preoperative pulmonary function test (PFT) results to post-LVAD spirometric measurements. Our results indicated that pulmonary function tests were significantly reduced after LVAD placement (forced expiratory volume in one second [FEV1 ]: 1.9 vs.1.7, P = 0.016; forced vital capacity [FVC]: 2.61 vs. 2.38, P = 0.03; diffusing capacity of the lungs for carbon monoxide [DLCO]: 14.75 vs. 11.01, P = 0.01). Subgroup analysis revealed greater impairment in lung function in patients receiving HeartMate II (Thoratec, Pleasanton, CA, USA) LVADs compared with those receiving HeartWare (HeartWare, Framingham, MA, USA) devices. These unexpected findings may result from restriction of left anterior hemi-diaphragm; however, further prospective studies to validate our findings are warranted. PMID:25994850

  20. Pyoderma gangrenosum after totally implanted central venous access device insertion

    PubMed Central

    Inan, Ihsan; Myers, Patrick O; Braun, Rolf; Hagen, Monica E; Morel, Philippe

    2008-01-01

    Background Pyoderma gangrenosum is an aseptic skin disease. The ulcerative form of pyoderma gangrenosum is characterized by a rapidly progressing painful irregular and undermined bordered necrotic ulcer. The aetiology of pyoderma gangrenosum remains unclear. In about 70% of cases, it is associated with a systemic disorder, most often inflammatory bowel disease, haematological disease or arthritis. In 25–50% of cases, a triggering factor such as recent surgery or trauma is identified. Treatment consists of local and systemic approaches. Systemic steroids are generally used first. If the lesions are refractory, steroids are combined with other immunosuppressive therapy or to antimicrobial agents. Case presentation A 90 years old patient with myelodysplastic syndrome, seeking regular transfusions required totally implanted central venous access device (Port-a-Cath®) insertion. Fever and inflammatory skin reaction at the site of insertion developed on the seventh post-operative day, requiring the device's explanation. A rapid progression of the skin lesions evolved into a circular skin necrosis. Intravenous steroid treatment stopped the necrosis' progression. Conclusion Early diagnosis remains the most important step to the successful treatment of pyoderma gangrenosum. PMID:18325095

  1. Dosimetric review of cardiac implantable electronic device patients receiving radiotherapy.

    PubMed

    Prisciandaro, Joann I; Makkar, Akash; Fox, Colleen J; Hayman, James A; Horwood, Laura; Pelosi, Frank; Moran, Jean M

    2015-01-01

    A formal communication process was established and evaluated for the management of patients with cardiac implantable electronic devices (CIEDs) receiving radiation therapy (RT). Methods to estimate dose to the CIED were evaluated for their appropriateness in the management of these patients. A retrospective, institutional review board (IRB) approved study of 69 patients with CIEDs treated with RT between 2005 and 2011 was performed. The treatment sites, techniques, and the estimated doses to the CIEDs were analyzed and compared to estimates from published peripheral dose (PD) data and three treatment planning systems(TPSs) - UMPlan, Eclipse's AAA and Acuros algorithms. When measurements were indicated, radiation doses to the CIEDs ranged from 0.01-5.06 Gy. Total peripheral dose estimates based on publications differed from TLD measurements by an average of 0.94 Gy (0.05-4.49 Gy) and 0.51 Gy (0-2.74 Gy) for CIEDs within 2.5 cm and between 2.5 and 10 cm of the treatment field edge, respectively. Total peripheral dose estimates based on three TPSs differed from measurements by an average of 0.69 Gy (0.02-3.72 Gy) for CIEDs within 2.5 cm of the field edge. Of the 69 patients evaluated in this study, only two with defibrillators experienced a partial reset of their device during treatment. Based on this study, few CIED-related events were observed during RT. The only noted correlation with treatment parameters for these two events was beam energy, as both patients were treated with high-energy photon beams (16 MV). Differences in estimated and measured CIED doses were observed when using published PD data and TPS calculations. As such, we continue to follow conservative guidelines and measure CIED doses when the device is within 10 cm of the field or the estimated dose is greater than 2 Gy for pacemakers or 1 Gy for defibrillators. PMID:25679176

  2. Percutaneous Endovascular Salvage Techniques for Implanted Venous Access Device Dysfunction

    SciTech Connect

    Breault, Stéphane; Glauser, Frédéric; Babaker, Malik Doenz, Francesco Qanadli, Salah Dine

    2015-06-15

    PurposeImplanted venous access devices (IVADs) are often used in patients who require long-term intravenous drug administration. The most common causes of device dysfunction include occlusion by fibrin sheath and/or catheter adherence to the vessel wall. We present percutaneous endovascular salvage techniques to restore function in occluded catheters. The aim of this study was to evaluate the feasibility, safety, and efficacy of these techniques.Methods and MaterialsThrough a femoral or brachial venous access, a snare is used to remove fibrin sheath around the IVAD catheter tip. If device dysfunction is caused by catheter adherences to the vessel wall, a new “mechanical adhesiolysis” maneuver was performed. IVAD salvage procedures performed between 2005 and 2013 were analyzed. Data included clinical background, catheter tip position, success rate, recurrence, and rate of complication.ResultsEighty-eight salvage procedures were performed in 80 patients, mostly women (52.5 %), with a mean age of 54 years. Only a minority (17.5 %) of evaluated catheters were located at an optimal position (i.e., cavoatrial junction ±1 cm). Mechanical adhesiolysis or other additional maneuvers were used in 21 cases (24 %). Overall technical success rate was 93.2 %. Malposition and/or vessel wall adherences were the main cause of technical failure. No complications were noted.ConclusionThese IVAD salvage techniques are safe and efficient. When a catheter is adherent to the vessel wall, mechanical adhesiolysis maneuvers allow catheter mobilization and a greater success rate with no additional risk. In patients who still require long-term use of their IVAD, these procedures can be performed safely to avoid catheter replacement.

  3. Safety of nerve conduction studies in patients with implanted cardiac devices.

    PubMed

    Schoeck, Andreas P; Mellion, Michelle L; Gilchrist, James M; Christian, Fredric V

    2007-04-01

    Patients with implanted cardiac devices and their physicians may defer important electrodiagnostic testing because of anxiety about potential negative effects on the device. To determine the safety of routine nerve conduction studies (NCS) in this population, 10 patients with permanent dual-chamber pacemakers of various types and five patients with implanted cardiac defibrillators (ICD) underwent nerve stimulation at sites commonly used during NCS. The implanted cardiac device was interrogated before and after the study and there was continuous monitoring of the surface electrocardiogram (ECG) and atrial and ventricular electrograms. Electrical impulses generated during routine NCS were never detected by the sensing amplifier and did not affect the programmed settings of the implanted cardiac device. We conclude that routine NCS is safe in patients with implanted cardiac pacemakers with bipolar sensing configurations and defibrillators. PMID:17094099

  4. Robotic Assisted Implantation of Ventricular Assist Device after Sternectomy & Pectoralis Muscle Flap

    PubMed Central

    Khalpey, Zain; Sydow, Nicole; Paidy, Samata; Slepian, Marvin J.; Friedman, Mark; Cooper, Anthony; Marsh, Katherine M.; Schmitto, Jan D; Poston, Robert

    2014-01-01

    Left ventricular assist devices are increasingly important in the management of advanced heart failure. Most patients who benefit from these devices have had some prior cardiac surgery, making implantation of higher risk. This is especially true in patients who have had prior pectoralis flap reconstruction after sternectomy for mediastinitis. We outline the course of such a patient, in whom the use of robotic assistance allowed for a less invasive device implantation approach with preservation of the flap for transplantation. PMID:25072555

  5. Minimally Invasive Right Ventricular Assist Device Implantation in a Patient with HeartWare left ventricular Assist Device.

    PubMed

    Maxhera, Bujar; Albert, Alexander; Westenfeld, Ralf; Boeken, Udo; Lichtenberg, Artur; Saeed, Diyar

    2015-01-01

    Many centers reported positive outcome after left ventricular assist devices (LVADs) implantation using a minimally invasive approach. The main drawback of this minimally invasive approach is the feasibility of right ventricular assist device (RVAD) implantation with direct cannulation of the pulmonary artery in cases of perioperative right ventricular failure (RVF). We report our experience with a 41-year-old male patient who was supported with a temporary RVAD using J-sternotomy approach for RVF after LVAD implantation. No technical issue was encountered, and the patient's condition stabilized immediately after RVAD implantation. However, several days later, the patient developed severe septic shock caused by pneumonia and died on the postoperative day 15 after RVAD implantation. PMID:25914955

  6. Capsule Endoscopy in Patients with Implantable Electromedical Devices is Safe

    PubMed Central

    Harris, Lucinda A.; Hansel, Stephanie L.; Rajan, Elizabeth; Srivathsan, Komandoor; Rea, Robert; Crowell, Michael D.; Fleischer, David E.; Pasha, Shabana F.; Gurudu, Suryakanth R.; Heigh, Russell I.; Shiff, Arthur D.; Post, Janice K.; Leighton, Jonathan A.

    2013-01-01

    Background and Study Aims. The presence of an implantable electromechanical cardiac device (IED) has long been considered a relative contraindication to the performance of video capsule endoscopy (CE). The primary aim of this study was to evaluate the safety of CE in patients with IEDs. A secondary purpose was to determine whether IEDs have any impact on images captured by CE. Patients and Methods. A retrospective chart review of all patients who had a capsule endoscopy at Mayo Clinic in Scottsdale, AZ, USA, or Rochester, MN, USA, (January 2002 to June 2010) was performed to identify CE studies done on patients with IEDs. One hundred and eighteen capsule studies performed in 108 patients with IEDs were identified and reviewed for demographic data, method of preparation, and study data. Results. The most common indications for CE were obscure gastrointestinal bleeding (77%), anemia (14%), abdominal pain (5%), celiac disease (2%), diarrhea (1%), and Crohn's disease (1%). Postprocedure assessments did not reveal any detectable alteration on the function of the IED. One patient with an ICD had a 25-minute loss of capsule imaging due to recorder defect. Two patients with LVADs had interference with capsule image acquisition. Conclusions. CE did not interfere with IED function, including PM, ICD, and/or LVAD and thus appears safe. Additionally, PM and ICD do not appear to interfere with image acquisition but LVAD may interfere with capsule images and require that capsule leads be positioned as far away as possible from the IED to assure reliable image acquisition. PMID:23710168

  7. Surgical management of infected cardiac implantable electronic devices.

    PubMed

    Chaudhry, Umar A R; Harling, Leanne; Ashrafian, Hutan; Athanasiou, Christina; Tsipas, Pantelis; Kokotsakis, John; Athanasiou, Thanos

    2016-01-15

    The growing use of cardiac implantable electronic devices (CIED) has led to infections requiring intervention. These are traditionally managed using a percutaneous transvenous approach to fully extract the culpable leads. Indications for such strategies are well-established and range from simple traction to the use of powered extraction tools including laser sheaths. Where such attempts fail, or if there are further complications, then there may be need for a cardiothoracic surgical approach. Limited evidence is currently available on the merits of individual strategies, and these are mainly drawn from case reports or series. Most utilise cardiopulmonary bypass, cardioplegic arrest and entry within the right atrium to allow direct visualisation of any vegetation and safely explant all CIED components whilst avoiding perforation, valvular and paravalvular damage. In this review, we describe a number of these and the unique challenges faced by surgeons when attempting to extract CIED. It is clear that future work should concentrate on creating clear consensus and guidelines on indications, risks and measures of efficacy outcomes for various surgical techniques. PMID:26590887

  8. Insertion of Totally Implantable Central Venous Access Devices by Surgeons

    PubMed Central

    An, Hyeonjun; Ryu, Chun-Geun; Jung, Eun-Joo; Kang, Hyun Jong; Paik, Jin Hee; Yang, Jung-Hyun

    2015-01-01

    Purpose The aim of this study is to evaluate the results for the insertion of totally implantable central venous access devices (TICVADs) by surgeons. Methods Total 397 patients, in whom TICVADs had been inserted for intravenous chemotherapy between September 2008 and June 2014, were pooled. This procedure was performed under local anesthesia in an operation room. The insertion site for the TICVAD was mainly in the right-side subclavian vein. In the case of breast cancer patients, the subclavian vein opposite the surgical site was used for insertion. Results The 397 patients included 73 males and 324 females. Primary malignant tumors were mainly colorectal and breast cancer. The mean operation time was 54 minutes (18-276 minutes). Operation-related complications occurred in 33 cases (8.3%). Early complications developed in 15 cases with catheter malposition and puncture failure. Late complications, which developed after 24 hours, included inflammation in 6 cases, skin necrosis in 6 cases, hematoma in 3 cases, port malfunction in 1 case, port migration in 1 case, and intractable pain at the port site in 1 case. Conclusion Insertion of a TICVAD under local anesthesia by a surgeon is a relatively safe procedure. Meticulous undermining of the skin and carefully managing the TICVAD could minimize complications. PMID:25960974

  9. Readmissions After Continuous Flow Left Ventricular Assist Device Implantation: Differences Observed Between Two Contemporary Device Types.

    PubMed

    Haglund, Nicholas A; Davis, Mary E; Tricarico, Nicole M; Keebler, Mary E; Maltais, Simon

    2015-01-01

    Readmissions after continuous flow left ventricular assist devices implantation are common. We compared the frequency and etiology of readmissions between two continuous flow left ventricular assist devices 6 months after implant. We retrospectively assessed readmissions in 81 patients who received a bridge to transplant HeartMate-II (HM-II) n = 35, 43% or HeartWare (HW) n = 46, 57%, from 2009 to 2014. Readmissions were divided into cardiac, infection, gastrointestinal bleeding, stroke, pump thrombosis, and miscellaneous profiles. Age, gender, creatinine, INTERMACS profiles were comparable between groups (p > 0.05). Sixty-one patients accounted for 141 readmissions. At 6 months, the overall readmission rate was higher among HM-II versus HW recipients (2.3 ± 1.7 vs. 1.4 ± 1.3; p = 0.024). Multiple readmissions (≥2) occurred more frequently in HM-II recipients (HM-II 23, 66% vs. HW 20, 44%; p = 0.047) which accounted for 87% of overall readmission frequency. Cardiac profile was the most common reason for readmission (HM-II = 15, HW = 17; p = 0.95). Readmission for arrhythmia (HM-II = 10, HW = 3; p = 0.021) and overall infection rate (0.49 ± 0.70 vs. 0.17 ± 0.68; p = 0.001) were more common among HM-II recipients; however, other readmission profiles were comparable between devices (p > 0.05). Readmission frequency, multiple readmissions, and clinical profile characteristics were different between HM-II and HW recipients. PMID:25806614

  10. Bizarre Paranoid Delusions Associated With an Implanted Surgical Device.

    PubMed

    Dodds, Peter R; Dodds, Tyler J; Jacoby, Teri L

    2016-03-01

    We describe a case involving bizarre paranoid delusions following implantation of a sacral nerve stimulator, and review the literature regarding psychotic symptoms related to surgical implants. A 64-year-old female developed bizarre paranoid delusions regarding a sacral nerve stimulator that had been implanted two years previously for dysfunctional voiding. The patient believed that the wires from the sacral nerve electrodes had grown up her spine and were affecting her vision as well as controlling her thoughts. The delusions developed in the setting of profound anxiety and feelings of loss after the death of her mother. The patient initially demanded that the implant be removed emergently. The delusions gradually abated as she adjusted to the loss of her mother. Fortunately the symptoms abated entirely with supportive care. We suspect that given the frequency of surgical implants that the association with delusional thoughts might be much higher than suggested by a literature review. PMID:27169299

  11. Subcutaneous Implantable Cardioverter-Defibrillator Implantation in a Patient with a Left Ventricular Assist Device Already in Place

    PubMed Central

    Subzposh, Faiz; Hankins, Shelley R.; Kutalek, Steven P.

    2015-01-01

    A 56-year-old man with ischemic cardiomyopathy, a biventricular implantable cardioverter-defibrillator (ICD), and a left ventricular assist device (LVAD) developed a pocket hematoma and infection after an ICD generator change. The biventricular ICD was extracted, and the patient was given a full course of antibiotics. Because he had no indications for bradycardia pacing or biventricular pacing, he was implanted with a subcutaneous ICD under full anticoagulation. There was no interference in sensing or shock delivery from the ICD. The LVAD readings were unchanged during and after the procedure. The patient had an uneventful postoperative course, and both devices were functioning normally. To our knowledge, this is the first reported case of the implantation of a subcutaneous ICD in the presence of an LVAD. This report illustrates that both devices can be implanted successfully in the same patient. In addition, the subcutaneous ICD minimizes the risk of bloodstream infections, which can be fatal in patients who have life-supporting devices such as an LVAD. PMID:25873825

  12. Kinetic and thermal energy harvesters for implantable medical devices and biomedical autonomous sensors

    NASA Astrophysics Data System (ADS)

    Cadei, Andrea; Dionisi, Alessandro; Sardini, Emilio; Serpelloni, Mauro

    2014-01-01

    Implantable medical devices usually require a battery to operate and this can represent a severe restriction. In most cases, the implantable medical devices must be surgically replaced because of the dead batteries; therefore, the longevity of the whole implantable medical device is determined by the battery lifespan. For this reason, researchers have been studying energy harvesting techniques from the human body in order to obtain batteryless implantable medical devices. The human body is a rich source of energy and this energy can be harvested from body heat, breathing, arm motion, leg motion or the motion of other body parts produced during walking or any other activity. In particular, the main human-body energy sources are kinetic energy and thermal energy. This paper reviews the state-of-art in kinetic and thermoelectric energy harvesters for powering implantable medical devices. Kinetic energy harvesters are based on electromagnetic, electrostatic and piezoelectric conversion. The different energy harvesters are analyzed highlighting their sizes, energy or power they produce and their relative applications. As they must be implanted, energy harvesting devices must be limited in size, typically about 1 cm3. The available energy depends on human-body positions; therefore, some positions are more advantageous than others. For example, favorable positions for piezoelectric harvesters are hip, knee and ankle where forces are significant. The energy harvesters here reported produce a power between 6 nW and 7.2 mW; these values are comparable with the supply requirements of the most common implantable medical devices; this demonstrates that energy harvesting techniques is a valid solution to design batteryless implantable medical devices.

  13. Improvement of device isolation using field implantation for GaN MOSFETs

    NASA Astrophysics Data System (ADS)

    Jiang, Ying; Wang, Qingpeng; Zhang, Fuzhe; Li, Liuan; Shinkai, Satoko; Wang, Dejun; Ao, Jin-Ping

    2016-03-01

    Gallium nitride (GaN) metal-oxide-semiconductor field-effect transistors (MOSFETs) with boron field implantation isolation and mesa isolation were fabricated and characterized. The process of boron field implantation was altered and subsequently conducted after performing high-temperature ohmic annealing and gate oxide thermal treatment. Implanted regions with high resistivity were achieved. The circular MOSFET fabricated in the implanted region showed an extremely low current of 6.5 × 10-12 A under a gate voltage value up to 10 V, thus demonstrating that the parasitic MOSFET in the isolation region was eliminated by boron field implantation. The off-state drain current of the rectangular MOSFET with boron field implantation was 5.5 × 10-11 A, which was only one order of magnitude higher than the 6.6 × 10-12 A of the circular device. By contrast, the rectangular MOSFET with mesa isolation presented an off-state drain current of 3.2 × 10-9 A. The field isolation for GaN MOSFETs was achieved by using boron field implantation. The implantation did not reduce the field-effect mobility. The isolation structure of both mesa and implantation did not influence the subthreshold swing, whereas the isolation structure of only the implantation increased the subthreshold swing. The breakdown voltage of the implanted region with 5 μm spacing was up to 901.5 V.

  14. Science and technology of biocompatible thin films for implantable biomedical devices.

    SciTech Connect

    Li, W.; Kabius, B.; Auciello, O.; Materials Science Division

    2010-01-01

    This presentation focuses on reviewing research to develop two critical biocompatible film technologies to enable implantable biomedical devices, namely: (1) development of bioinert/biocompatible coatings for encapsulation of Si chips implantable in the human body (e.g., retinal prosthesis implantable in the human eye) - the coating involves a novel ultrananocrystalline diamond (UNCD) film or hybrid biocompatible oxide/UNCD layered films; and (2) development of biocompatible films with high-dielectric constant and microfabrication process to produce energy storage super-capacitors embedded in the microchip to achieve full miniaturization for implantation into the human body.

  15. Implantable device for in-vivo intracranial and cerebrospinal fluid pressure monitoring

    DOEpatents

    Ericson, Milton N.; McKnight, Timothy E.; Smith, Stephen F.; Hylton, James O.

    2003-01-01

    The present invention relates to a completely implantable intracranial pressure monitor, which can couple to existing fluid shunting systems as well as other internal monitoring probes. The implant sensor produces an analog data signal which is then converted electronically to a digital pulse by generation of a spreading code signal and then transmitted to a location outside the patient by a radio-frequency transmitter to an external receiver. The implanted device can receive power from an internal source as well as an inductive external source. Remote control of the implant is also provided by a control receiver which passes commands from an external source to the implant system logic. Alarm parameters can be programmed into the device which are capable of producing an audible or visual alarm signal. The utility of the monitor can be greatly expanded by using multiple pressure sensors simultaneously or by combining sensors of various physiological types.

  16. Nanomaterials and synergistic low intensity direct current (LIDC) stimulation technology for orthopaedic implantable medical devices

    PubMed Central

    Samberg, Meghan E.; Cohen, Paul H.; Wysk, Richard A.; Monteiro-Riviere, Nancy A.

    2012-01-01

    Nanomaterials play a significant role in biomedical research and applications due to their unique biological, mechanical, and electrical properties. In recent years, they have been utilised to improve the functionality and reliability of a wide range of implantable medical devices ranging from well-established orthopaedic residual hardware devices (e.g. hip implants) that can repair defects in skeletal systems to emerging tissue engineering scaffolds that can repair or replace organ functions. This review summarizes the applications and efficacies of these nanomaterials that include synthetic or naturally occurring metals, polymers, ceramics, and composites in orthopaedic implants, the largest market segment of implantable medical devices. The importance of synergistic engineering techniques that can augment or enhance the performance of nanomaterial applications in orthopaedic implants is also discussed,, the focus being on a low intensity direct electric current (LIDC) stimulation technology to promote the long-term antibacterial efficacy of oligodynamic metal-based surfaces by ionization, while potentially accelerating tissue growth and osseointegration. While many nanomaterials have clearly demonstrated their ability to provide more effective implantable medical surfaces, further decisive investigations are necessary before they can translate into medically safe and commercially viable clinical applications. The paper concludes with a discussion about some of the critical impending issues with the application of nanomaterials-based technologies in implantable medical devices, and potential directions to address these. PMID:23335493

  17. High Curie temperature drive layer materials for ion-implanted magnetic bubble devices

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Wolfe, R.; Blank, S. L.; Nelson, T. J.

    1984-01-01

    Ion implantation of bubble garnets can lower the Curie temperature by 70 C or more, thus limiting high temperature operation of devices with ion-implanted propagation patterns. Therefore, double-layer materials were made with a conventional 2-micron bubble storage layer capped by an ion-implantable drive layer of high Curie temperature, high magnetostriction material. Contiguous disk test patterns were implanted with varying doses of a typical triple implant. Quality of propagation was judged by quasistatic tests on 8-micron period major and minor loops. Variations of magnetization, uniaxial anisotropy, implant dose, and magnetostriction were investigated to ensure optimum flux matching, good charged wall coupling, and wide operating margins. The most successful drive layer compositions were in the systems (SmDyLuCa)3(FeSi)5O12 and (BiGdTmCa)3(FeSi)5O12 and had Curie temperatures 25-44 C higher than the storage layers.

  18. A novel implantable device for the treatment of obstructive sleep apnea: clinical safety and feasibility

    PubMed Central

    Pavelec, Vaclav; Rotenberg, Brian W; Maurer, Joachim T; Gillis, Edward; Verse, Thomas

    2016-01-01

    Objective Many cases of obstructive sleep apnea (OSA) involve collapse of the tongue base and soft palate during sleep, causing occlusion of the upper airway and leading to oxygen desaturation. Existing therapies can be effective, but they are plagued by patient adherence issues and the invasiveness of surgical approaches. A new, minimally invasive implant for OSA has been developed, which is elastic and contracts a few weeks after deployment, stabilizing the surrounding soft tissue. The device has had good outcomes in preclinical testing; this report describes the preliminary feasibility and safety of its implementation in humans. Patients and methods A prospective, multicenter, single-arm feasibility study was conducted. Subjects were adults with moderate-to-severe OSA who had previously failed or refused conventional continuous positive airway pressure treatment. Intraoperative feasibility data, postoperative pain, and safety information were collected for a 30-day postoperative period. Results Forty subjects participated (37 men, three women; average age of 46.1 years); each received two tongue-base implants and two soft-palate implants. Surgical procedure time averaged 43 minutes. Postsurgical pain resolved readily in most cases; at 30 days post implantation, <20% of subjects reported pain, which averaged less than two out of ten. Adverse events were generally the mild and expected sequelae of a surgical procedure with general anesthesia and intraoral manipulation. The device was well tolerated. Implant extrusions were reported with soft-palate implants (n=12), while tongue-base implants required few revisions (n=2). Quantitative and qualitative sleep effectiveness outcomes (including full-night polysomnographic and quality-of-life measures) will be presented in a subsequent report. Conclusion Implantation of the device was feasible. Although a relatively high rate of extrusions occurred in the now-discontinued palate implants, tongue-base implants were

  19. Cardiac Implantable Electronic Devices and End-of-Life Care: An Australian Perspective.

    PubMed

    Alhammad, Nasser J; O'Donnell, Mark; O'Donnell, David; Mariani, Justin A; Gould, Paul A; McGavigan, Andrew D

    2016-08-01

    Cardiac implantable electronic devices (pacemakers and defibrillators) are increasingly common in modern cardiology practice, and health professionals from a variety of specialties will encounter patients with such devices on a frequent basis. This article will focus on the subset of patients who may request, or be appropriate for, device deactivation and discuss the issues surrounding end-of-life decisions, along with the ethical and legal implications of device deactivation. PMID:27320854

  20. [A fully-implantable active hearing device in congenital auricular atresia].

    PubMed

    Siegert, R; Neumann, C

    2014-07-01

    Active implantable hearing devices were primarily developed for sensorineural hearing loss. The vibrator coupling mechanisms were oriented towards normal middle ear anatomy and function. The aim of this project was to modify the only fully implantable hearing device with an implantable microphone for application in congenital auricular atresia, Carina™, and to introduce the modified device into the clinic. A special prosthesis was developed for the transducer and its individual coupling achieved by a special cramping system. The system was implanted in 5 patients with congenital auricular atresia. Audiological results were good; with patients' hearing gain exceeding 30 dB HL. Anatomic limits to the system's indications and technical drawbacks are also discussed. PMID:25056646

  1. Patient Report and Review of Rapidly Growing Mycobacterial Infection after Cardiac Device Implantation

    PubMed Central

    Hirsh, David S.; Goswami, Neela D.

    2016-01-01

    Mycobacterial infections resulting from cardiac implantable electronic devices are rare, but as more devices are implanted, these organisms are increasingly emerging as causes of early-onset infections. We report a patient with an implantable cardioverter-defibrillator pocket and associated bloodstream infection caused by an organism of the Mycobacterium fortuitum group, and we review the literature regarding mycobacterial infections resulting from cardiac device implantations. Thirty-two such infections have been previously described; most (70%) were caused by rapidly growing species, of which M. fortuitum group species were predominant. When managing such infections, clinicians should consider the potential need for extended incubation of routine cultures or dedicated mycobacterial cultures for accurate diagnosis; combination antimicrobial drug therapy, even for isolates that appear to be macrolide susceptible, because of the potential for inducible resistance to this drug class; and the arrhythmogenicity of the antimicrobial drugs traditionally recommended for infections caused by these organisms. PMID:26890060

  2. Animal Models for Evaluation of Bone Implants and Devices: Comparative Bone Structure and Common Model Uses.

    PubMed

    Wancket, L M

    2015-09-01

    Bone implants and devices are a rapidly growing field within biomedical research, and implants have the potential to significantly improve human and animal health. Animal models play a key role in initial product development and are important components of nonclinical data included in applications for regulatory approval. Pathologists are increasingly being asked to evaluate these models at the initial developmental and nonclinical biocompatibility testing stages, and it is important to understand the relative merits and deficiencies of various species when evaluating a new material or device. This article summarizes characteristics of the most commonly used species in studies of bone implant materials, including detailed information about the relevance of a particular model to human bone physiology and pathology. Species reviewed include mice, rats, rabbits, guinea pigs, dogs, sheep, goats, and nonhuman primates. Ultimately, a comprehensive understanding of the benefits and limitations of different model species will aid in rigorously evaluating a novel bone implant material or device. PMID:26163303

  3. Implantable Smart Technologies (IST): Defining the 'Sting' in Data and Device.

    PubMed

    Haddow, Gill; Harmon, Shawn H E; Gilman, Leah

    2016-09-01

    In a world surrounded by smart objects from sensors to automated medical devices, the ubiquity of 'smart' seems matched only by its lack of clarity. In this article, we use our discussions with expert stakeholders working in areas of implantable medical devices such as cochlear implants, implantable cardiac defibrillators, deep brain stimulators and in vivo biosensors to interrogate the difference facets of smart in 'implantable smart technologies', considering also whether regulation needs to respond to the autonomy that such artefacts carry within them. We discover that when smart technology is deconstructed it is a slippery and multi-layered concept. A device's ability to sense and transmit data and automate medicine can be associated with the 'sting' of autonomy being disassociated from human control as well as affecting individual, group, and social environments. PMID:26646672

  4. Internet-Based Device-Assisted Remote Monitoring of Cardiovascular Implantable Electronic Devices

    PubMed Central

    Pron, G; Ieraci, L; Kaulback, K

    2012-01-01

    Executive Summary Objective The objective of this Medical Advisory Secretariat (MAS) report was to conduct a systematic review of the available published evidence on the safety, effectiveness, and cost-effectiveness of Internet-based device-assisted remote monitoring systems (RMSs) for therapeutic cardiac implantable electronic devices (CIEDs) such as pacemakers (PMs), implantable cardioverter-defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices. The MAS evidence-based review was performed to support public financing decisions. Clinical Need: Condition and Target Population Sudden cardiac death (SCD) is a major cause of fatalities in developed countries. In the United States almost half a million people die of SCD annually, resulting in more deaths than stroke, lung cancer, breast cancer, and AIDS combined. In Canada each year more than 40,000 people die from a cardiovascular related cause; approximately half of these deaths are attributable to SCD. Most cases of SCD occur in the general population typically in those without a known history of heart disease. Most SCDs are caused by cardiac arrhythmia, an abnormal heart rhythm caused by malfunctions of the heart’s electrical system. Up to half of patients with significant heart failure (HF) also have advanced conduction abnormalities. Cardiac arrhythmias are managed by a variety of drugs, ablative procedures, and therapeutic CIEDs. The range of CIEDs includes pacemakers (PMs), implantable cardioverter-defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices. Bradycardia is the main indication for PMs and individuals at high risk for SCD are often treated by ICDs. Heart failure (HF) is also a significant health problem and is the most frequent cause of hospitalization in those over 65 years of age. Patients with moderate to severe HF may also have cardiac arrhythmias, although the cause may be related more to heart pump or haemodynamic failure. The presence of HF, however

  5. Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review

    PubMed Central

    Bocan, Kara N.; Sejdić, Ervin

    2016-01-01

    Wireless energy transfer is a broad research area that has recently become applicable to implantable medical devices. Wireless powering of and communication with implanted devices is possible through wireless transcutaneous energy transfer. However, designing wireless transcutaneous systems is complicated due to the variability of the environment. The focus of this review is on strategies to sense and adapt to environmental variations in wireless transcutaneous systems. Adaptive systems provide the ability to maintain performance in the face of both unpredictability (variation from expected parameters) and variability (changes over time). Current strategies in adaptive (or tunable) systems include sensing relevant metrics to evaluate the function of the system in its environment and adjusting control parameters according to sensed values through the use of tunable components. Some challenges of applying adaptive designs to implantable devices are challenges common to all implantable devices, including size and power reduction on the implant, efficiency of power transfer and safety related to energy absorption in tissue. Challenges specifically associated with adaptation include choosing relevant and accessible parameters to sense and adjust, minimizing the tuning time and complexity of control, utilizing feedback from the implanted device and coordinating adaptation at the transmitter and receiver. PMID:26999154

  6. Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review.

    PubMed

    Bocan, Kara N; Sejdić, Ervin

    2016-01-01

    Wireless energy transfer is a broad research area that has recently become applicable to implantable medical devices. Wireless powering of and communication with implanted devices is possible through wireless transcutaneous energy transfer. However, designing wireless transcutaneous systems is complicated due to the variability of the environment. The focus of this review is on strategies to sense and adapt to environmental variations in wireless transcutaneous systems. Adaptive systems provide the ability to maintain performance in the face of both unpredictability (variation from expected parameters) and variability (changes over time). Current strategies in adaptive (or tunable) systems include sensing relevant metrics to evaluate the function of the system in its environment and adjusting control parameters according to sensed values through the use of tunable components. Some challenges of applying adaptive designs to implantable devices are challenges common to all implantable devices, including size and power reduction on the implant, efficiency of power transfer and safety related to energy absorption in tissue. Challenges specifically associated with adaptation include choosing relevant and accessible parameters to sense and adjust, minimizing the tuning time and complexity of control, utilizing feedback from the implanted device and coordinating adaptation at the transmitter and receiver. PMID:26999154

  7. Drug loading into porous calcium carbonate microparticles by solvent evaporation.

    PubMed

    Preisig, Daniel; Haid, David; Varum, Felipe J O; Bravo, Roberto; Alles, Rainer; Huwyler, Jörg; Puchkov, Maxim

    2014-08-01

    Drug loading into porous carriers may improve drug release of poorly water-soluble drugs. However, the widely used impregnation method based on adsorption lacks reproducibility and efficiency for certain compounds. The aim of this study was to evaluate a drug-loading method based on solvent evaporation and crystallization, and to investigate the underlying drug-loading mechanisms. Functionalized calcium carbonate (FCC) microparticles and four drugs with different solubility and permeability properties were selected as model substances to investigate drug loading. Ibuprofen, nifedipine, losartan potassium, and metronidazole benzoate were dissolved in acetone or methanol. After dispersion of FCC, the solvent was removed under reduced pressure. For each model drug, a series of drug loads were produced ranging from 25% to 50% (w/w) in steps of 5% (w/w). Loading efficiency was qualitatively analyzed by scanning electron microscopy (SEM) using the presence of agglomerates and drug crystals as indicators of poor loading efficiency. The particles were further characterized by mercury porosimetry, specific surface area measurements, differential scanning calorimetry, and USP2 dissolution. Drug concentration was determined by HPLC. FCC-drug mixtures containing equivalent drug fractions but without specific loading strategy served as reference samples. SEM analysis revealed high efficiency of pore filling up to a drug load of 40% (w/w). Above this, agglomerates and separate crystals were significantly increased, indicating that the maximum capacity of drug loading was reached. Intraparticle porosity and specific surface area were decreased after drug loading because of pore filling and crystallization on the pore surface. HPLC quantification of drugs taken up by FCC showed only minor drug loss. Dissolution rate of FCC loaded with metronidazole benzoate and nifedipine was faster than the corresponding FCC-drug mixtures, mainly due to surface enlargement, because only small

  8. The Esteem System: a totally implantable hearing device.

    PubMed

    Maurer, J; Savvas, E

    2010-01-01

    The Esteem totally implantable active middle ear implant is a new technology to augment hearing in patients suffering from moderate-to-severe and severe sensorineural hearing loss. In contrast to conventional (acoustic) hearing aids, the system uses two piezoelectric transducers (PZTs). PZTs are used as the sensor and driver to replace the function of the middle ear. Sound is received via a PZT sensor that picks up eardrum vibrations, following the piezoelectric principle, and transforms them into an electric signal. This signal is filtered, modified, amplified and transferred to a PZT driver, which mechanically drives the stapes and thereby the inner ear. The sound processor also contains a power source, which is an implantable lithium iodide battery. All components of the hearing restoration system are totally implantable to offer good sound fidelity and reduce hearing aid stigma caused by the visibility of conventional and semi-implantable hearing systems. Our experience shows that this system can provide considerable benefit to patients with sensorineural hearing loss. PMID:20610915

  9. Deuterium-incorporated gate oxide of MOS devices fabricated by using deuterium ion implantation

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Sung; Lear, Kevin L.

    2012-04-01

    In the aspect of metal-oxide-semiconductor (MOS) device reliability, deuterium-incorporated gate oxide could be utilized to suppress the wear-out that is combined with oxide trap generation. An alternative deuterium process for the passivation of oxide traps or defects in the gate oxide of MOS devices has been suggested in this study. The deuterium ion is delivered to the location where the gate oxide resides by using an implantation process and subsequent N2 annealing process at the back-end of metallization process. A conventional MOS field-effect transistor (MOSFET) with a 3-nm-thick gate oxide and poly-to-ploy capacitor sandwiched with 20-nm-thick SiO2 were fabricated in order to demonstrate the deuterium effect in our process. An optimum condition of ion implantation was necessary to account for the topography of the overlaying layers in the device structure and to minimize the physical damage due to the energy of the implanted ion. Device parameter variations, the gate leakage current, and the dielectric breakdown phenomenon were investigated in the deuterium-ion-implanted devices. We found the isotope effect between hydrogen- and deuterium-implanted devices and an improved electrical reliability in the deuterated gate oxide. This implies that deuterium bonds are generated effectively at the Si/SiO2 interface and in the SiO2 bulk.

  10. A Review of the Design Process for Implantable Orthopedic Medical Devices

    PubMed Central

    Aitchison, G.A; Hukins, D.W.L; Parry, J.J; Shepherd, D.E.T; Trotman, S.G

    2009-01-01

    The design process for medical devices is highly regulated to ensure the safety of patients. This paper will present a review of the design process for implantable orthopedic medical devices. It will cover the main stages of feasibility, design reviews, design, design verification, manufacture, design validation, design transfer and design changes. PMID:19662153

  11. An unusual etiological agent of implantable cardioverter device endocarditis: Corynebacterium mucifaciens.

    PubMed

    Kaya, Adnan; Tekkesin, Ahmet Ilker; Kalenderoglu, Koray; Alper, Ahmet Taha

    2016-01-01

    Cardiac pacing devices and implantable cardioverter defibrillator (ICD) are becoming the mainstay of therapy in cardiology and infective endocarditis (IE) and pocket infection; however, these devices require careful monitoring. Here, we describe a case of a 68-year-old female with an ICD presenting with a previously unknown etiological agent of IE, Corynebacterium mucifaciens. PMID:27133333

  12. Telecardiology and Remote Monitoring of Implanted Electrical Devices: The Potential for Fresh Clinical Care Perspectives

    PubMed Central

    Diemberger, Igor; Martignani, Cristian; Biffi, Mauro; Valzania, Cinzia; Bertini, Matteo; Domenichini, Giulia; Saporito, Davide; Ziacchi, Matteo; Branzi, Angelo

    2007-01-01

    Telecardiology may help confront the growing burden of monitoring the reliability of implantable defibrillators/pacemakers. Herein, we suggest that the evolving capabilities of implanted devices to monitor patients’ status (heart rhythm, fluid overload, right ventricular pressure, oximetry, etc.) may imply a shift from strictly device-centered follow-up to perspectives centered on the patient (and patient-device interactions). Such approaches could provide improvements in health care delivery and clinical outcomes, especially in the field of heart failure. Major professional, policy, and ethical issues will have to be overcome to enable real-world implementation. This challenge may be relevant for the evolution of our health care systems. PMID:18095049

  13. Implantation of a defibrillator in a patient with an upper airway stimulation device.

    PubMed

    Ong, Adrian A; O'Brien, Terrence X; Nguyen, Shaun A; Gillespie, M Boyd

    2016-02-01

    The patient is a 62-year-old man with continuous positive airway pressure-intolerant obstructive sleep apnea who was enrolled in a study for a hypoglossal nerve upper airway stimulation device (UAS). Nearly 2.5 years later, he was admitted to the hospital for unstable angina. Diagnostic workup revealed a prior myocardial infarction, an ejection fraction of 30% on maximal medical therapy, and episodes of nonsustained ventricular tachycardia. During hospitalization, the patient received an implantable cardioverter defibrillator (ICD). This is the first reported case of simultaneous use of a UAS and an ICD, and we report no untoward device interference between the two implantable devices. PMID:26403681

  14. Wireless communication with implanted medical devices using the conductive properties of the body

    PubMed Central

    Ferguson, John E; Redish, A David

    2013-01-01

    Many medical devices that are implanted in the body use wires or wireless radiofrequency telemetry to communicate with circuitry outside the body. However, the wires are a common source of surgical complications, including breakage, infection and electrical noise. In addition, radiofrequency telemetry requires large amounts of power and results in low-efficiency transmission through biological tissue. As an alternative, the conductive properties of the body can be used to enable wireless communication with implanted devices. In this article, several methods of intrabody communication are described and compared. In addition to reducing the complications that occur with current implantable medical devices, intrabody communication can enable novel types of miniature devices for research and clinical applications. PMID:21728728

  15. Biomedical Impact in Implantable Devices-The Transcatheter Aortic Valve as an example

    NASA Astrophysics Data System (ADS)

    Anastasiou, Alexandros; Saatsakis, George

    2015-09-01

    Objective: To update of the scientific community about the biomedical engineering involvement in the implantable devices chain. Moreover the transcatheter Aortic Valve (TAV) replacement, in the field of cardiac surgery, will be analyzed as an example of contemporary implantable technology. Methods: A detailed literature review regarding biomedical engineers participating in the implantable medical product chain, starting from the design of the product till the final implantation technique. Results: The scientific role of biomedical engineers has clearly been established. Certain parts of the product chain are implemented almost exclusively by experienced biomedical engineers such as the transcatheter aortic valve device. The successful professional should have a multidisciplinary knowledge, including medicine, in order to pursue the challenges for such intuitive technology. This clearly indicates that biomedical engineers are among the most appropriate scientists to accomplish such tasks. Conclusions: The biomedical engineering involvement in medical implantable devices has been widely accepted by the scientific community, worldwide. Its important contribution, starting from the design and extended to the development, clinical trials, scientific support, education of other scientists (surgeons, cardiologists, technicians etc.), and even to sales, makes biomedical engineers a valuable player in the scientific arena. Notably, the sector of implantable devices is constantly raising, as emerging technologies continuously set up new targets.

  16. Biofunctionalization of surfaces by energetic ion implantation: Review of progress on applications in implantable biomedical devices and antibody microarrays

    NASA Astrophysics Data System (ADS)

    Bilek, Marcela M. M.

    2014-08-01

    Despite major research efforts in the field of biomaterials, rejection, severe immune responses, scar tissue and poor integration continue to seriously limit the performance of today's implantable biomedical devices. Implantable biomaterials that interact with their host via an interfacial layer of active biomolecules to direct a desired cellular response to the implant would represent a major and much sought after improvement. Another, perhaps equally revolutionary, development that is on the biomedical horizon is the introduction of cost-effective microarrays for fast, highly multiplexed screening for biomarkers on cell membranes and in a variety of analyte solutions. Both of these advances will rely on effective methods of functionalizing surfaces with bioactive molecules. After a brief introduction to other methods currently available, this review will describe recently developed approaches that use energetic ions extracted from plasma to facilitate simple, one-step covalent surface immobilization of bioactive molecules. A kinetic theory model of the immobilization process by reactions with long-lived, mobile, surface-embedded radicals will be presented. The roles of surface chemistry and microstructure of the ion treated layer will be discussed. Early progress on applications of this technology to create diagnostic microarrays and to engineer bioactive surfaces for implantable biomedical devices will be reviewed.

  17. MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices

    PubMed Central

    Shi, Qiongfeng; Wang, Tao; Lee, Chengkuo

    2016-01-01

    Acoustic energy transfer is a promising energy harvesting technology candidate for implantable biomedical devices. However, it does not show competitive strength for enabling self-powered implantable biomedical devices due to two issues – large size of bulk piezoelectric ultrasound transducers and output power fluctuation with transferred distance due to standing wave. Here we report a microelectromechanical systems (MEMS) based broadband piezoelectric ultrasonic energy harvester (PUEH) to enable self-powered implantable biomedical devices. The PUEH is a microfabricated lead zirconate titanate (PZT) diaphragm array and has wide operation bandwidth. By adjusting frequency of the input ultrasound wave within the operation bandwidth, standing wave effect can be minimized for any given distances. For example, at 1 cm distance, power density can be increased from 0.59 μW/cm2 to 3.75 μW/cm2 at input ultrasound intensity of 1 mW/cm2 when frequency changes from 250 to 240 kHz. Due to the difference of human body and manual surgical process, distance fluctuation for implantable biomedical devices is unavoidable and it strongly affects the coupling efficiency. This issue can be overcome by performing frequency adjustment of the PUEH. The proposed PUEH shows great potential to be integrated on an implanted biomedical device chip as power source for various applications. PMID:27112530

  18. MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices.

    PubMed

    Shi, Qiongfeng; Wang, Tao; Lee, Chengkuo

    2016-01-01

    Acoustic energy transfer is a promising energy harvesting technology candidate for implantable biomedical devices. However, it does not show competitive strength for enabling self-powered implantable biomedical devices due to two issues - large size of bulk piezoelectric ultrasound transducers and output power fluctuation with transferred distance due to standing wave. Here we report a microelectromechanical systems (MEMS) based broadband piezoelectric ultrasonic energy harvester (PUEH) to enable self-powered implantable biomedical devices. The PUEH is a microfabricated lead zirconate titanate (PZT) diaphragm array and has wide operation bandwidth. By adjusting frequency of the input ultrasound wave within the operation bandwidth, standing wave effect can be minimized for any given distances. For example, at 1 cm distance, power density can be increased from 0.59 μW/cm(2) to 3.75 μW/cm(2) at input ultrasound intensity of 1 mW/cm(2) when frequency changes from 250 to 240 kHz. Due to the difference of human body and manual surgical process, distance fluctuation for implantable biomedical devices is unavoidable and it strongly affects the coupling efficiency. This issue can be overcome by performing frequency adjustment of the PUEH. The proposed PUEH shows great potential to be integrated on an implanted biomedical device chip as power source for various applications. PMID:27112530

  19. MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices

    NASA Astrophysics Data System (ADS)

    Shi, Qiongfeng; Wang, Tao; Lee, Chengkuo

    2016-04-01

    Acoustic energy transfer is a promising energy harvesting technology candidate for implantable biomedical devices. However, it does not show competitive strength for enabling self-powered implantable biomedical devices due to two issues – large size of bulk piezoelectric ultrasound transducers and output power fluctuation with transferred distance due to standing wave. Here we report a microelectromechanical systems (MEMS) based broadband piezoelectric ultrasonic energy harvester (PUEH) to enable self-powered implantable biomedical devices. The PUEH is a microfabricated lead zirconate titanate (PZT) diaphragm array and has wide operation bandwidth. By adjusting frequency of the input ultrasound wave within the operation bandwidth, standing wave effect can be minimized for any given distances. For example, at 1 cm distance, power density can be increased from 0.59 μW/cm2 to 3.75 μW/cm2 at input ultrasound intensity of 1 mW/cm2 when frequency changes from 250 to 240 kHz. Due to the difference of human body and manual surgical process, distance fluctuation for implantable biomedical devices is unavoidable and it strongly affects the coupling efficiency. This issue can be overcome by performing frequency adjustment of the PUEH. The proposed PUEH shows great potential to be integrated on an implanted biomedical device chip as power source for various applications.

  20. Minimally invasive is the future of left ventricular assist device implantation

    PubMed Central

    Makdisi, George

    2015-01-01

    There have been many factors that have allowed for progressive improvement in outcomes and lower complication rates. These include the improvement in left ventricular assist device (LVAD) technologies, combined with better understanding of patient management, all these. Nowadays the numbers of LVAD implantations exceed the number of annual heart transplants worldwide. Minimally invasive procedures are shown to improve the surgical outcome in both LVAD insertion and replacement. These minimally invasive techniques can be grouped grossly into shifting from on-pump to off-pump implantation, alternative access for implantation other than sternotomy, and a combination of both, which should be the ultimate aim of minimally invasive LVAD implantation. Here we describe the alternative techniques and configurations of minimally invasive and sites of implantation. PMID:26543617

  1. Minimally invasive is the future of left ventricular assist device implantation.

    PubMed

    Makdisi, George; Wang, I-Wen

    2015-09-01

    There have been many factors that have allowed for progressive improvement in outcomes and lower complication rates. These include the improvement in left ventricular assist device (LVAD) technologies, combined with better understanding of patient management, all these. Nowadays the numbers of LVAD implantations exceed the number of annual heart transplants worldwide. Minimally invasive procedures are shown to improve the surgical outcome in both LVAD insertion and replacement. These minimally invasive techniques can be grouped grossly into shifting from on-pump to off-pump implantation, alternative access for implantation other than sternotomy, and a combination of both, which should be the ultimate aim of minimally invasive LVAD implantation. Here we describe the alternative techniques and configurations of minimally invasive and sites of implantation. PMID:26543617

  2. Security and privacy issues in implantable medical devices: A comprehensive survey.

    PubMed

    Camara, Carmen; Peris-Lopez, Pedro; Tapiador, Juan E

    2015-06-01

    Bioengineering is a field in expansion. New technologies are appearing to provide a more efficient treatment of diseases or human deficiencies. Implantable Medical Devices (IMDs) constitute one example, these being devices with more computing, decision making and communication capabilities. Several research works in the computer security field have identified serious security and privacy risks in IMDs that could compromise the implant and even the health of the patient who carries it. This article surveys the main security goals for the next generation of IMDs and analyzes the most relevant protection mechanisms proposed so far. On the one hand, the security proposals must have into consideration the inherent constraints of these small and implanted devices: energy, storage and computing power. On the other hand, proposed solutions must achieve an adequate balance between the safety of the patient and the security level offered, with the battery lifetime being another critical parameter in the design phase. PMID:25917056

  3. Implantable devices for venous access: nurses' and patients' evaluation of three different port systems.

    PubMed

    Lilienberg, A; Bengtsson, M; Starkhammar, H

    1994-01-01

    Implantable injection port systems are safe and convenient for long-term venous access. The present investigation comprises nurses' and patients' evaluation of three different types of devices; Port-A-Cath (16.0 g), Cordis Miniport (3.8 g) for implantation in the chest wall and the PAS Port system (5.6 g) for implantation in the forearm. The devices were implanted for chemotherapy. Eighty patients and 17 nurses answered a questionnaire regarding their experience with the devices. Overall, the systems functioned well and were helpful for both patients and nurses. In the patient study few significant differences emerged. Nurses noted that the PAS Port system was more difficult to withdraw blood from (P < 0.001) and its infusion flow capacity was inferior to the two ports in the chest wall (P < 0.001). Port-A-Cath was judged to be the easiest system for needle insertion and the needle position was felt to be more secure (P < 0.001). Fourteen of the 17 nurses preferred Cordis Miniport for cosmetic reasons (P < 0.001). All devices functioned well. The differences in shape, size and site of implantation allow an optimum port selection for each patient. The replies in this study expressed the need for educational programmes in order to spread the injection port concept further. PMID:8138625

  4. Utilization of YouTube as a Tool to Assess Patient Perception Regarding Implanted Cardiac Devices

    PubMed Central

    Hayes, Kevin; Mainali, Prajeena; Deshmukh, Abhishek; Pant, Sadip; Badheka, Apurva O; Paydak, Hakan

    2014-01-01

    Background: The outreach of YouTube may have a dramatic role in the widespread dissemination of knowledge on implantable cardioverter devices (ICD). Aims: This study was designed to review and analyze the information available on YouTube pertaining to implantable cardiac devices such as implantable cardioverter defibrillators (ICDs) and pacemakers. Materials and Methods: YouTube was queried for the terms “ICD”, “Implantable Cardioverter Defibrillator”, and “Pacemaker”. The videos were reviewed and categorized as according to content; number of views and “likes” or “dislikes” was recorded by two separate observers. Results: Of the 55 videos reviewed, 18 of the videos were categorized as patient education, 12 were advertisements, 8 were intraoperative videos documenting the device implantation procedures, 7 of the videos were produced to document personal patient experiences, and 4 were categorized as documentation of a public event. 3 were intended to educate health care workers. The remaining 3 were intended to raise public awareness about sudden cardiac death. The videos portraying intraoperative procedures generated the most “likes” or “dislikes” per view. Conclusion: While YouTube provides a logical platform for delivery of health information, the information on this platform is not regulated. Initiative by reputed authorities and posting accurate information in such platform can be a great aid in public education regarding device therapy. PMID:25077075

  5. Shape-memory alloy overload protection device for osseointegrated transfemoral implant prosthetic limb attachment system

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Shao, Fei; Hughes, Steven

    2002-11-01

    The osseointegrated trans-femoral implant system provides a direct anchoring technique to attach prosthetic limb. This technique was first introduced PI Brenmark in Sweden. The UK had the first clinical trial in 1997 and currently has 6 active limb wearers. The success of this procedure has the potential for improved gait function and mobility, increased employability and significant long-term improvements in the quality of life for above knee amputees. However, the significant load involved in the trans-femoral implant system has caused permanent deformation and/or fractures of the implant abutment in several occasions. To protect the implant system, the implant abutment in particularly, an overloading protection device was introduced. The device uses mechanical mechanism to release torsion overload on the abutment. However, the bending overload protection remains unsolved. To solve the problem, a new overload protection device was developed. This device uses SMA component for bending overload protection. In this paper, the results of non-linear finite element modelling of the SMA and steel (AISI 1040) components were presented. Experiments were also carried out using steel components to assess the design which is based on the non-linear property of the materials.

  6. Clinical use of antibacterial mesh envelopes in cardiovascular electronic device implantations

    PubMed Central

    Hirsh, David S; Bloom, Heather L

    2015-01-01

    Cardiovascular implantable electronic device system infection is a serious complication of cardiac device implantation and carries with it a risk of significant morbidity and mortality. In the last 15 years, expansions of indications for cardiac devices have resulted in much higher volumes of much sicker patients being implanted, carrying significant risk of infection. Coagulase (−) Staphylococcus and Staphylococcus aureus are responsible for the majority of these infections, and these organisms are increasingly resistant to methicillin. The Aigis™ envelop is a Food and Drug Administration–approved implantable mesh that is impregnated with antibiotics that can be placed in the surgical incision prior to closure. The antibiotics elute off the mesh for 7–10 days, providing in vivo surgical site coverage with rifampin and minocyclin. This paper reviews the three retrospective clinical trials published in peer-reviewed journals and the interim analysis of the two ongoing prospective trials that have been presented at international conferences. Overall consensus is that the Aigis™ offers significant risk reduction for cardiovascular implantable electronic device infection. We then give a comprehensive discussion of how to use the Aigis™ envelop in the clinical setting, comparing the manufacturer’s recommendations with our extensive clinical experience. PMID:25624774

  7. Implantable imaging device for brain functional imaging system using flavoprotein fluorescence

    NASA Astrophysics Data System (ADS)

    Sunaga, Yoshinori; Yamaura, Hiroshi; Haruta, Makito; Yamaguchi, Takahiro; Motoyama, Mayumi; Ohta, Yasumi; Takehara, Hiroaki; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Yoshimura, Yumiko; Ohta, Jun

    2016-03-01

    The autofluorescence of mitochondrial flavoprotein is very useful for functional brain imaging because the fluorescence intensity of flavoprotein changes as per neural activities. In this study, we developed an implantable imaging device for green fluorescence imaging and detected fluorescence changes of flavoprotein associated with visual stimulation using the device. We examined the device performance using anesthetized mice. We set the device on the visual cortex and measured fluorescence changes of flavoprotein in response to visual stimulation. A full-field sinusoidal grating with a vertical orientation was used for applying to activate the visual cortex. We successfully observed visually evoked fluorescence changes in the mouse visual cortex using our implantable device. This result suggests that we can observe the fluorescence changes of flavoprotein associated with visual stimulation in a freely moving mouse by using this technology.

  8. The role of industry in the implantation and follow-up of devices: a practitioner's perspective.

    PubMed

    Hayes, John J

    2003-01-01

    Implantable cardiac rhythm management devices continue to get more technologically complex at a pace that is difficult for most clinicians to keep up with. We have come to rely heavily on industry representatives to provide technical expertise during device implantation and follow-up. Concern has been raised about the involvement of medical device industry representatives in the clinical environment. Guidelines have been published that acknowledge the importance of device industry representatives in providing technical expertise and assistance, while also clarifying the role these representatives should play in patient care. The main principles from published policy statements are summarized, emphasizing that the physician remains responsible for the patient's overall care as well as device function and programming. PMID:12766520

  9. Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses.

    PubMed

    Potter, Kelsey A; Buck, Amy C; Self, Wade K; Capadona, Jeffrey R

    2012-08-01

    An estimated 25 million people in the US alone rely on implanted medical devices, ∼2.5 million implanted within the nervous system. Even though many devices perform adequately for years, the host response to medical devices often severely limits tissue integration and long-term performance. This host response is believed to be particularly limiting in the case of intracortical microelectrodes, where it has been shown that glial cell encapsulation and localized neuronal cell loss accompany intracortical microelectrode implantation. Since neuronal ensembles must be within ∼50 µm of the electrode to obtain neuronal spikes and local field potentials, developing a better understanding of the molecular and cellular environment at the device-tissue interface has been the subject of significant research. Unfortunately, immunohistochemical studies of scar maturation in correlation to device function have been inconclusive. Therefore, here we present a detailed quantitative study of the cellular events and the stability of the blood-brain barrier (BBB) following intracortical microelectrode implantation and cortical stab injury in a chronic survival model. We found two distinctly inverse multiphasic profiles for neuronal survival in device-implanted tissue compared to stab-injured animals. For chronically implanted animals, we observed a biphasic paradigm between blood-derived/trauma-induced and CNS-derived inflammatory markers driving neurodegeneration at the interface. In contrast, stab injured animals demonstrated a CNS-mediated neurodegenerative environment. Collectively these data provide valuable insight to the possibility of multiple roles of chronic neuroinflammatory events on BBB disruption and localized neurodegeneration, while also suggesting the importance to consider multiphasic neuroinflammatory kinetics in the design of therapeutic strategies for stabilizing neural interfaces. PMID:22832283

  10. Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses

    NASA Astrophysics Data System (ADS)

    Potter, Kelsey A.; Buck, Amy C.; Self, Wade K.; Capadona, Jeffrey R.

    2012-08-01

    An estimated 25 million people in the US alone rely on implanted medical devices, ˜2.5 million implanted within the nervous system. Even though many devices perform adequately for years, the host response to medical devices often severely limits tissue integration and long-term performance. This host response is believed to be particularly limiting in the case of intracortical microelectrodes, where it has been shown that glial cell encapsulation and localized neuronal cell loss accompany intracortical microelectrode implantation. Since neuronal ensembles must be within ˜50 µm of the electrode to obtain neuronal spikes and local field potentials, developing a better understanding of the molecular and cellular environment at the device-tissue interface has been the subject of significant research. Unfortunately, immunohistochemical studies of scar maturation in correlation to device function have been inconclusive. Therefore, here we present a detailed quantitative study of the cellular events and the stability of the blood-brain barrier (BBB) following intracortical microelectrode implantation and cortical stab injury in a chronic survival model. We found two distinctly inverse multiphasic profiles for neuronal survival in device-implanted tissue compared to stab-injured animals. For chronically implanted animals, we observed a biphasic paradigm between blood-derived/trauma-induced and CNS-derived inflammatory markers driving neurodegeneration at the interface. In contrast, stab injured animals demonstrated a CNS-mediated neurodegenerative environment. Collectively these data provide valuable insight to the possibility of multiple roles of chronic neuroinflammatory events on BBB disruption and localized neurodegeneration, while also suggesting the importance to consider multiphasic neuroinflammatory kinetics in the design of therapeutic strategies for stabilizing neural interfaces.

  11. Device-length changes and implant function following surgical implantation of the KineSpring in cadaver knees

    PubMed Central

    McNicholas, Michael J; Gabriel, Stefan M; Clifford, Anton G; Hasler, Evelyne M

    2015-01-01

    Introduction The KineSpring implant system has been shown to provide load reductions at the medial compartment of the knee, and has demonstrated clinical success in reducing pain and increasing function in patients with medial knee osteoarthritis. These results depend on the ability of the KineSpring to rotate, lengthen, and shorten to accommodate knee motions, and in response to knee position and loading. Purpose The present study was undertaken to determine length changes of the implanted KineSpring in response to a range of knee positions, external knee loads, and placements by different orthopedic surgeons. Materials and methods KineSpring system components were implanted in ten cadaver leg specimens by ten orthopedic surgeons, and absorber-length changes were measured under combined loading and in different positions of the knee. Results and conclusion Spring compression consistent with knee-load reduction, and device lengthening and shortening to accommodate knee loads and motions were seen. These confirm the functionality of the KineSpring when implanted medially to the knee. PMID:25610006

  12. Exercise Rehabilitation for Chronic Heart Failure Patients with Cardiac Device Implants

    PubMed Central

    Haennel, Robert G.

    2012-01-01

    In the past decade a significant development in the management and rehabilitation of people with chronic heart failure (CHF) has been the utilization of cardiac devices. The use of biventricular pacemakers, referred to as Cardiac Resynchronization Therapy (CRT) can yield improvements in functional abilities for a select group of CHF patients and the inclusion of implantable cardiac defibrillators (ICDs) may reduce the risk of sudden death. This review provides physical therapists with a basic understanding of how to prescribe exercise for people with CHF who have these device implants. PMID:22993499

  13. Which device is more accurate to determine the stability/mobility of dental implants? A human cadaver study.

    PubMed

    Tözüm, T F; Bal, B T; Turkyilmaz, I; Gülay, G; Tulunoglu, I

    2010-03-01

    Non-invasive devices including resonance frequency (RF) analysis and mobility measuring (MM) damping capacity assessment are used to measure implant stability/mobility. The aims of the study were to compare the primary stability of implant inserted into extraction sockets by using RF with cable, RF wireless and new wireless MM device, to clarify the relation between these devices and to understand the correlations between peri-implant bone levels and implant stability. A total of 30 screw-type implants (3.75 x 11 and 4.2 x 11 mm) were inserted into extraction sockets of eight mandibular pre-molar regions of human cadavers. The primary stability of implants was measured by three devices after insertion. Peri-implant vertical defects were created in millimetre increments ranging between 0 and 5 mm, and stability/mobility of implants were analysed. At placement, the mean implant stability quotient of RF with cable, RF wireless and MM device values was 46 +/- 1, 57.8 +/- 9 and -5.4 +/- 1, respectively. Statistical correlations were demonstrated between these devices (P = 0.001). Statistically significant differences were presented for all peri-implant detects ranging between 0 and 5 mm for RF with cable and RF wireless at all increments. However, only a significant decrease was found between 0 and 1 mm defects, and 4 and 5 mm defects in MM device. Although RF with cable and RF wireless seem to be suitable to detect peri-implant bone loss around implants in 1 mm increments, the new MM device may not be suitable to detect the 1 mm peri-implant bone changes in human dried cadaver mandibles. PMID:20002537

  14. Electromagnetic interference of implantable cardiac devices from a shoulder massage machine.

    PubMed

    Yoshida, Saeko; Fujiwara, Kousaku; Kohira, Satoshi; Hirose, Minoru

    2014-09-01

    Shoulder massage machines have two pads that are driven by solenoid coils to perform a per cussive massage on the shoulders. There have been concerns that such machines might create electromagnetic interference (EMI) in implantable cardiac devices because of the time-varying magnetic fields produced by the alternating current in the solenoid coils. The objective of this study was to investigate the potential EMI from one such shoulder massage machine on implantable cardiac devices. We measured the distribution profile of the magnetic field intensity around the massage machine. Furthermore, we performed an inhibition test and an asynchronous test on an implantable cardiac pacemaker using the standardized Irnich human body model. We examined the events on an implantable cardioverter-defibrillator (ICD) using a pacemaker programmer while the massage machine was in operation. The magnetic field distribution profile exhibited a peak intensity of 212 (A/m) in one of the solenoid coils. The maximal interference distance between the massage machine and the implantable cardiac pacemaker was 28 cm. Ventricular fibrillation was induced when the massage machine was brought near the electrode of the ICD and touched the Irnich human body model. It is necessary to provide a "don't use" warning on the box or the exterior of the massage machines or in the user manuals and to caution patients with implanted pacemakers about the dangers and appropriate usage of massage machines. PMID:24710851

  15. New cosurface capacitive stimulators for the development of active osseointegrative implantable devices.

    PubMed

    Soares Dos Santos, Marco P; Marote, Ana; Santos, T; Torrão, João; Ramos, A; Simões, José A O; da Cruz E Silva, Odete A B; Furlani, Edward P; Vieira, Sandra I; Ferreira, Jorge A F

    2016-01-01

    Non-drug strategies based on biophysical stimulation have been emphasized for the treatment and prevention of musculoskeletal conditions. However, to date, an effective stimulation system for intracorporeal therapies has not been proposed. This is particularly true for active intramedullary implants that aim to optimize osseointegration. The increasing demand for these implants, particularly for hip and knee replacements, has driven the design of innovative stimulation systems that are effective in bone-implant integration. In this paper, a new cosurface-based capacitive system concept is proposed for the design of implantable devices that deliver controllable and personalized electric field stimuli to target tissues. A prototype architecture of this system was constructed for in vitro tests, and its ability to deliver controllable stimuli was numerically analyzed. Successful results were obtained for osteoblastic proliferation and differentiation in the in vitro tests. This work provides, for the first time, a design of a stimulation system that can be embedded in active implantable devices for controllable bone-implant integration and regeneration. The proposed cosurface design holds potential for the implementation of novel and innovative personalized stimulatory therapies based on the delivery of electric fields to bone cells. PMID:27456818

  16. New cosurface capacitive stimulators for the development of active osseointegrative implantable devices

    PubMed Central

    Soares dos Santos, Marco P.; Marote, Ana; Santos, T.; Torrão, João; Ramos, A.; Simões, José A. O.; da Cruz e Silva, Odete A. B.; Furlani, Edward P.; Vieira, Sandra I.; Ferreira, Jorge A. F.

    2016-01-01

    Non-drug strategies based on biophysical stimulation have been emphasized for the treatment and prevention of musculoskeletal conditions. However, to date, an effective stimulation system for intracorporeal therapies has not been proposed. This is particularly true for active intramedullary implants that aim to optimize osseointegration. The increasing demand for these implants, particularly for hip and knee replacements, has driven the design of innovative stimulation systems that are effective in bone-implant integration. In this paper, a new cosurface-based capacitive system concept is proposed for the design of implantable devices that deliver controllable and personalized electric field stimuli to target tissues. A prototype architecture of this system was constructed for in vitro tests, and its ability to deliver controllable stimuli was numerically analyzed. Successful results were obtained for osteoblastic proliferation and differentiation in the in vitro tests. This work provides, for the first time, a design of a stimulation system that can be embedded in active implantable devices for controllable bone-implant integration and regeneration. The proposed cosurface design holds potential for the implementation of novel and innovative personalized stimulatory therapies based on the delivery of electric fields to bone cells. PMID:27456818

  17. An Adverse Electrophysiological Interaction Between an Implantable Cardioverter-Defibrillator and a Ventricular Assist Device.

    PubMed

    Chhabra, Lovely; Hiendlmayr, Brett; Kluger, Jeffrey

    2015-01-01

    Many patients with left ventricular assist devices (LVAD) have implantable cardioverter defibrillators (ICDs) as part of the management of advanced heart failure. With increasing use and coexistence of these devices in patients with advanced cardiomyopathy, adverse interactions between these devices have been recognized. We herewith describe a rare adverse interaction of electromagnetic interference (EMI) between a third-generation, continuous-flow device (The HeartWare HVAD) and an ICD which resulted in the delivery of inappropriate ICD therapies. A schematic approach for the prevention and treatment of electromagnetic interference has also been described. PMID:26263716

  18. How are arrhythmias detected by implanted cardiac devices managed in Europe? Results of the European Heart Rhythm Association Survey.

    PubMed

    Todd, Derick; Hernandez-Madrid, Antonio; Proclemer, Alessandro; Bongiorni, Maria Grazia; Estner, Heidi; Blomström-Lundqvist, Carina

    2015-09-01

    The management of arrhythmias detected by implantable cardiac devices can be challenging. There are no formal international guidelines to inform decision-making. The purpose of this European Heart Rhythm Association (EHRA) survey was to assess the management of various clinical scenarios among members of the EHRA electrophysiology research network. There were 49 responses to the questionnaire. The survey responses were mainly (81%) from medium-high volume device implanting centres, performing more than 200 total device implants per year. Clinical scenarios were described focusing on four key areas: the implantation of pacemakers for bradyarrhythmia detected on an implantable loop recorder (ILR), the management of patients with ventricular arrhythmia detected by an ILR or pacemaker, the management of atrial fibrillation in patients with pacemakers and cardiac resynchronization therapy devices and the management of ventricular tachycardia in patients with implantable cardioverter-defibrillators. PMID:26443791

  19. B-Type Natriuretic Peptide Levels Predict Ventricular Arrhythmia Post Left Ventricular Assist Device Implantation.

    PubMed

    Hellman, Yaron; Malik, Adnan S; Lin, Hongbo; Shen, Changyu; Wang, I-Wen; Wozniak, Thomas C; Hashmi, Zubair A; Pickrell, Jeanette; Jani, Milena; Caccamo, Marco A; Gradus-Pizlo, Irmina; Hadi, Azam

    2015-12-01

    B-type natriuretic peptide (BNP) levels have been shown to predict ventricular arrhythmia (VA) and sudden death in patients with heart failure. We sought to determine whether BNP levels before left ventricular assist device (LVAD) implantation can predict VA post LVAD implantation in advanced heart failure patients. We conducted a retrospective study consisting of patients who underwent LVAD implantation in our institution during the period of May 2009-March 2013. The study was limited to patients receiving a HeartMate II or HeartWare LVAD. Acute myocardial infarction patients were excluded. We compared between the patients who developed VA within 15 days post LVAD implantation to the patients without VA. A total of 85 patients underwent LVAD implantation during the study period. Eleven patients were excluded (five acute MI, four without BNP measurements, and two discharged earlier than 13 days post LVAD implantation). The incidence of VA was 31%, with 91% ventricular tachycardia (VT) and 9% ventricular fibrillation. BNP remained the single most powerful predictor of VA even after adjustment for other borderline significant factors in a multivariate logistic regression model (P < 0.05). BNP levels are a strong predictor of VA post LVAD implantation, surpassing previously described risk factors such as age and VT in the past. PMID:25864448

  20. A Study of Success Rate of Miniscrew Implants as Temporary Anchorage Devices in Singapore

    PubMed Central

    Yi Lin, Song; Mimi, Yow; Ming Tak, Chew; Kelvin Weng Chiong, Foong; Hung Chew, Wong

    2015-01-01

    Objective. To find out the success rate of miniscrew implants in the National Dental Centre of Singapore (NDCS) and the impact of patient-related, location-related, and miniscrew implant-related factors. Materials and Methods. Two hundred and eighty-five orthodontic miniscrew implants were examined from NDCS patient records. Eleven variables were analysed to see if there is any association with success. Outcome was measured twice, immediately after surgery prior to orthodontic loading (T1) and 12 months after surgery (T2). The outcome at T2 was assessed 12 months after the miniscrew's insertion date or after its use as a temporary anchorage device has ceased. Results. Overall success rate was 94.7% at T1 and 83.3% at T2. Multivariate analysis revealed only the length of miniscrew implant to be significantly associated with success at both T1 (P = 0.002) and T2 (P = 0.030). Miniscrew implants with lengths of 10–12 mm had the highest success rate (98.0%) compared to other lengths, and this is statistically significant (P = 0.035). At T2, lengths of 10–12 mm had significantly (P = 0.013) higher success rates (93.5%) compared to 6-7 mm (76.7%) and 8 mm (82.1%) miniscrew implants. Conclusion. Multivariate statistical analyses of 11 variables demonstrate that length of miniscrew implant is significant in determining success. PMID:25861272

  1. A study of success rate of miniscrew implants as temporary anchorage devices in singapore.

    PubMed

    Yi Lin, Song; Mimi, Yow; Ming Tak, Chew; Kelvin Weng Chiong, Foong; Hung Chew, Wong

    2015-01-01

    Objective. To find out the success rate of miniscrew implants in the National Dental Centre of Singapore (NDCS) and the impact of patient-related, location-related, and miniscrew implant-related factors. Materials and Methods. Two hundred and eighty-five orthodontic miniscrew implants were examined from NDCS patient records. Eleven variables were analysed to see if there is any association with success. Outcome was measured twice, immediately after surgery prior to orthodontic loading (T1) and 12 months after surgery (T2). The outcome at T2 was assessed 12 months after the miniscrew's insertion date or after its use as a temporary anchorage device has ceased. Results. Overall success rate was 94.7% at T1 and 83.3% at T2. Multivariate analysis revealed only the length of miniscrew implant to be significantly associated with success at both T1 (P = 0.002) and T2 (P = 0.030). Miniscrew implants with lengths of 10-12 mm had the highest success rate (98.0%) compared to other lengths, and this is statistically significant (P = 0.035). At T2, lengths of 10-12 mm had significantly (P = 0.013) higher success rates (93.5%) compared to 6-7 mm (76.7%) and 8 mm (82.1%) miniscrew implants. Conclusion. Multivariate statistical analyses of 11 variables demonstrate that length of miniscrew implant is significant in determining success. PMID:25861272

  2. Clinical Characteristics and Outcome of Cardiovascular Implantable Electronic Device Infections in Turkey.

    PubMed

    Aydin, Mesut; Yildiz, Abdulkadir; Kaya, Zeynettin; Kaya, Zekeriya; Basarir, Ahmet Ozgur; Cakmak, Nazmiye; Donmez, Ibrahim; Morrad, Baktash; Avci, Ahmet; Demir, Kenan; Cagliyan, Emre Caglar; Yuksel, Murat; Elbey, Mehmet Ali; Kayan, Fethullah; Ozaydogdu, Necdet; Islamoglu, Yahya; Cayli, Murat; Alan, Said; Ulgen, Mehmet Siddik; Ozhan, Hakan

    2016-07-01

    Infection is one of the most devastating outcomes of cardiovascular implantable electronic device (CIED) implantation and is related to significant morbidity and mortality. In our country, there is no evaluation about CIED infection. Therefore, our aim was to investigate clinical characteristics and outcome of patients who had infection related to CIED implantation or replacement. The study included 144 consecutive patients with CIED infection treated at 11 major hospitals in Turkey from 2005 to 2014 retrospectively. We analyzed the medical files of all patients hospitalized with the diagnosis of CIED infection. Inclusion criteria were definite infection related to CIED implantation, replacement, or revision. Generator pocket infection, with or without bacteremia, was the most common clinical presentation, followed by CIED-related endocarditis. Coagulase-negative staphylococci and Staphylococcus aureus were the leading causative agents of CIED infection. Multivariate analysis showed that infective endocarditis and ejection fraction were the strongest predictors of in-hospital mortality. PMID:25589093

  3. Cardiac implantable electronic device infections: the enemy that lurks beneath the skin.

    PubMed

    Margey, Ronan

    2010-01-01

    The use of cardiac implantable electronic devices has increased exponentially in recent years with expanding indications and the aging of the general population. Despite improvements in device design, infection control practices, and the administration of antibiotic prophylaxis, the rate of cardiac implantable electronic device (CIED) infection has increased at a faster rate. With CIED infection becoming an increasing management problem, the purpose of this paper is to review the epidemiology, causes, pathogenesis, management and outcomes of CIED infection, and to summarize the recent updated guidelines published by the American Heart Association. While an extensive retrospective literature exists, only a few prospective clinical studies exist to help guide our management of this important problem. Research continues into the diagnosis, treatment and prevention of CIED infection. CIED infection is a growing clinical problem with significant morbidity and mortality. Summarizing the currently available literature, CIED infection is best managed by a combined strategy of complete device and lead extraction plus appropriately tailored antimicrobial therapy. PMID:21395519

  4. Application of virtual reality force feedback haptic device for oral implant surgery.

    PubMed

    Kusumoto, Naoki; Sohmura, Taiji; Yamada, Shinichi; Wakabayashi, Kazumichi; Nakamura, Takashi; Yatani, Hirofumi

    2006-12-01

    A novel support system for implant surgery was tried out, which involves manipulating a three-dimensional (3-D) computed tomography (CT) image of a jawbone with a virtual reality force feedback haptic device. Through this virtual system, the haptic experience of bone drilling with vibration and the sound of the contra-angle handpiece could be realized. It is expected to be useful for training inexperienced dentists and educating dental students. The simulation of oral implant insertion was also focused on. A simple cylindrical implant model was inserted into a 3-D image of the jawbone by operating the haptic device, with consideration of bone condition. A rectangular solid object that served as a bone-supported surgical template was adopted, and the shapes of the bone and the implant were subtracted from the object. In this manner, the CAD of the surgical template with impressions of the bone and the implant guide holes for insertion was realized. The surgical template was milled with a computer-controlled milling machine (CAM). Surgical template accuracy was examined with an edentulous gypsum bone model having six holes for implant insertion. Simulation of the oral implant insertion and CAD/CAM of the surgical template were conducted. The milled surgical template was fitted on the gypsum bone model, and CT images were taken. Cross-sections of the guide holes in the surgical template were imaged, and misalignment between the guide holes of the surgical template and the drilled holes on the jawbone was measured. The average misalignment is less than 0.2 mm, and it indicates that the present system is potentially applicable to oral implant surgery. PMID:17092231

  5. Considerations in Patients With Cardiac Implantable Electronic Devices at End of Life.

    PubMed

    Gura, Melanie T

    2015-01-01

    Since the introduction of implantable cardiac pacemakers in 1958 and implantable cardioverter-defibrillators in 1980, these devices have been proven to save and prolong lives. Pacemakers, implantable cardioverter-defibrillators, and cardiac resynchronization therapy are deemed life-sustaining therapies. Despite these life-saving technologies, all patients ultimately will reach the end of their lives from either their heart disease or development of a terminal illness. Clinicians may be faced with patient and family requests to withdraw these life-sustaining therapies. The purpose of this article is to educate clinicians about the legal and ethical principles that underlie withdrawal of life-sustaining therapies such as device deactivation and to highlight the importance of proactive communication with patients and families in these situations. PMID:26484996

  6. Perioperative management for the prevention of bacterial infection in cardiac implantable electronic device placement.

    PubMed

    Imai, Katsuhiko

    2016-08-01

    Cardiac implantable electronic devices (CIEDs) have become important in the treatment of cardiac disease and placement rates increased significantly in the last decade. However, despite the use of appropriate antimicrobial prophylaxis, CIED infection rates are increasing disproportionately to the implantation rate. CIED infection often requires explantation of all hardware, and at times results in death. Surgical site infection (SSI) is the most common cause of CIED infection as a pocket infection. The best method of combating CIED infection is prevention. Prevention of CIED infections comprises three phases: before, during, and after device implantation. The most critical factors in the prevention of SSIs are detailed operative techniques including the practice of proper technique by the surgeon and surgical team. PMID:27588150

  7. Security Risks, Low-tech User Interfaces, and Implantable Medical Devices: A Case Study with Insulin Pump Infusion Systems

    SciTech Connect

    Paul, Nathanael R; Kohno, Tadayoshi

    2012-01-01

    Portable implantable medical device systems are playing a larger role in modern health care. Increasing attention is now being given to the wireless control interface of these systems. Our position is that wireless security in portable implantable medical device systems is just a part of the overall system security, and increased attention is needed to address low-tech security issues.

  8. Electronic article surveillance systems and interactions with implantable cardiac devices: risk of adverse interactions in public and commercial spaces.

    PubMed

    Gimbel, J Rod; Cox, James W

    2007-03-01

    Electronic article surveillance (EAS) systems are widely implemented in public spaces and can adversely affect the performance of pacemakers and implantable cardioverter defibrillators. The interaction between implantable devices and EAS systems is a serious problem that can be minimized through appropriate facility design. Careful facility design and employee education along with patient vigilance remain imperative in avoiding potentially life-threatening EAS system-implantable device interactions. PMID:17352368

  9. Radiography of Cardiac Conduction Devices: A Pictorial Review of Pacemakers and Implantable Cardioverter Defibrillators

    PubMed Central

    Torres-Ayala, Stephanie C; Santacana-Laffitte, Guido; Maldonado, José

    2014-01-01

    Cardiac conduction devices (CCDs) depend on correct anatomic positioning to function properly. Chest radiography is the preferred imaging modality to evaluate CCD's anatomic location, lead wire integrity, and help in identifying several complications. In this pictorial review, our goal is to familiarize radiologists with CCD implantation techniques, appropriate positioning of the device, common causes of malfunction, methods to improve report accuracy, and assure maximal therapeutic benefit. PMID:25806132

  10. 21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... cuff to pass on the urethra. (b) Classification. Class III (premarket approval). (c) Date PMA or notice of completion of a PDP is required. A PMA or a notice of completion of a PDP is required to be filed... implanted mechanical/hydraulic urinary continence device shall have an approved PMA or a declared...

  11. The Challenges of Balancing Safety and Security in Implantable Medical Devices.

    PubMed

    Katzis, Konstantinos; Jones, Richard W; Despotou, George

    2016-01-01

    Modern Implantable Medical Devices (IMDs), implement capabilities that have contributed significantly to patient outcomes, as well as quality of life. The ever increasing connectivity of IMD's does raise security concerns though there are instances where implemented security measures might impact on patient safety. The paper discusses challenges of addressing both of these attributes in parallel. PMID:27350457

  12. Speech Intelligibility of Pediatric Cochlear Implant Recipients with 7 Years of Device Experience.

    ERIC Educational Resources Information Center

    Peng, Shu-Chen; Spencer, Linda J.; Tomblin, J. Bruce

    2004-01-01

    Speech intelligibility of 24 prelingually deaf pediatric cochlear implant (CI) recipients with 84 months of device experience was investigated. Each CI participant's speech samples were judged by a panel of 3 listeners. Intelligibility scores were calculated as the average of the 3 listeners' responses. The average write-down intelligibility score…

  13. Cardiac or Other Implantable Electronic Devices and Sleep-disordered Breathing – Implications for Diagnosis and Therapy

    PubMed Central

    Bitter, Thomas; Gutleben, Klaus-Jürgen; Horstkotte, Dieter; Oldenburg, Olaf

    2014-01-01

    Sleep-disordered breathing (SDB) is of growing interest in cardiology because SDB is a highly prevalent comorbidity in patients with a variety of cardiovascular diseases. The prevalence of SDB is particularly high in patients with cardiac dysrhythmias and/or heart failure. In this setting, many patients now have implantable cardiac devices, such as pacemakers, implantable cardioverter-defibrillators or implanted cardiac resynchronisation therapy devices (CRT). Treatment of SDB using implantable cardiac devices has been studied previously, with atrial pacing and CRT being shown not to bring about satisfactory results in SDB care. The latest generations of these devices have the capacity to determine transthoracic impedance, to detect and quantify breathing efforts and to identify SDB. The capability of implantable cardiac devices to detect SDB is of potential importance for patients with cardiovascular disease, allowing screening for SDB, monitoring of the course of SDB in relation to cardiac status, and documenting of the effects of treatment. PMID:26835077

  14. Legal, ethical, and procedural bases for the use of aseptic techniques to implant electronic devices

    USGS Publications Warehouse

    Mulcahy, Daniel M.

    2013-01-01

    The popularity of implanting electronic devices such as transmitters and data loggers into captive and free-ranging animals has increased greatly in the past two decades. The devices have become smaller, more reliable, and more capable (Printz 2004; Wilson and Gifford 2005; Metcalfe et al. 2012). Compared with externally mounted devices, implanted devices are largely invisible to external viewers such as tourists and predators; exist in a physically protected, thermally stable environment in mammals and birds; and greatly reduce drag and risk of entanglement. An implanted animal does not outgrow its device or attachment method as can happen with collars and harnesses, which allows young animals to be more safely equipped. However, compared with mounting external devices, implantation requires greater technical ability to perform the necessary anesthesia, analgesia, and surgery. More than 83% of publications in the 1990s that used radiotelemetry on animals assumed that there were no adverse effects on the animal (Godfrey and Bryant 2003). It is likely that some studies using implanted electronic devices have not been published due to a high level of unexpected mortality or to aberrant behavior or disappearance of the implanted animals, a phenomenon known as the “file drawer” problem (Rosenthal 1979; Scargle 2000). The near absence of such studies from the published record may be providing a false sense of security that procedures being used are more innocuous than they actually are. Similarly, authors sometimes state that it was unlikely that device implantation was problematic because study animals appeared to behave normally, or authors state that previous investigators used the same technique and saw no problems. Such statements are suppositions if no supporting data are provided or if the animals were equipped because there was no other way to follow their activity. Moreover, such suppositions ignore other adverse effects that affect behavior indirectly, and

  15. A high-efficiency power and data transmission system for biomedical implanted electronic devices

    NASA Astrophysics Data System (ADS)

    Hamici, Zoubir; Itti, Roland; Champier, Jacques

    1996-02-01

    In biomedical engineering, inductive transcutaneous links can be used for power and data transfer between external systems and implanted electronic devices. The development of a micro-telemeter having a significant implantation depth needs a high-efficiency magnetic transcutaneous link. This paper presents a new system, which uses a multi-frequency load network for transmitter coil based on the class E power amplifier. At the carrier frequency used, the resistive load is influenced by the coupling of the coils and by the variation of the implant equivalent resistance. Modulating this latter between two rails permits one to modulate the amplitude of the external transmitter current and then to transmit internal data without the use of the classical implanted emitter design. Furthermore, the fact that the modulation index depends on the coupling factor, allows one to find the external coil's correct position using a position feedback loop. A complete study of the concept of digital data transmission by impedance modulation associated with a class E power amplifier is presented. Internal data transmission using this system yields a decrease of the internal electronic circuitry bulk and constitutes a high-efficiency energizing device. A theoretical investigation shows that the efficiency of the power transfer varies between 44 and 75% within a wide range of implantation depths (20 - 40 mm).

  16. Compensating for Tissue Changes in an Ultrasonic Power Link for Implanted Medical Devices.

    PubMed

    Vihvelin, Hugo; Leadbetter, Jeff; Bance, Manohar; Brown, Jeremy A; Adamson, Robert B A

    2016-04-01

    Ultrasonic power transfer using piezoelectric devices is a promising wireless power transfer technology for biomedical implants. However, for sub-dermal implants where the separation between the transmitter and receiver is on the order of several acoustic wavelengths, the ultrasonic power transfer efficiency (PTE) is highly sensitive to the distance between the transmitter and receiver. This sensitivity can cause large swings in efficiency and presents a serious limitation on battery life and overall performance. A practical ultrasonic transcutaneous energy transfer (UTET) system design must accommodate different implant depths and unpredictable acoustic changes caused by tissue growth, hydration, ambient temperature, and movement. This paper describes a method used to compensate for acoustic separation distance by varying the transmit (Tx) frequency in a UTET system. In a benchtop UTET system we experimentally show that without compensation, power transfer efficiency can range from 9% to 25% as a 5 mm porcine tissue sample is manipulated to simulate in situ implant conditions. Using an active frequency compensation method, we show that the power transfer efficiency can be kept uniformly high, ranging from 20% to 27%. The frequency compensation strategy we propose is low-power, non-invasive, and uses only transmit-side measurements, making it suitable for active implanted medical device applications. PMID:26054073

  17. Predictors of right ventricular failure after left ventricular assist device implantation

    PubMed Central

    Koprivanac, Marijan; Kelava, Marta; Sirić, Franjo; Cruz, Vincent B.; Moazami, Nader; Mihaljević, Tomislav

    2014-01-01

    Number of left ventricular assist device (LVAD) implantations increases every year, particularly LVADs for destination therapy (DT). Right ventricular failure (RVF) has been recognized as a serious complication of LVAD implantation. Reported incidence of RVF after LVAD ranges from 6% to 44%, varying mostly due to differences in RVF definition, different types of LVADs, and differences in patient populations included in studies. RVF complicating LVAD implantation is associated with worse postoperative mortality and morbidity including worse end-organ function, longer hospital length of stay, and lower success of bridge to transplant (BTT) therapy. Importance of RVF and its predictors in a setting of LVAD implantation has been recognized early, as evidenced by abundant number of attempts to identify independent risk factors and develop RVF predictor scores with a common purpose to improve patient selection and outcomes by recognizing potential need for biventricular assist device (BiVAD) at the time of LVAD implantation. The aim of this article is to review and summarize current body of knowledge on risk factors and prediction scores of RVF after LVAD implantation. Despite abundance of studies and proposed risk scores for RVF following LVAD, certain common limitations make their implementation and clinical usefulness questionable. Regardless, value of these studies lies in providing information on potential key predictors for RVF that can be taken into account in clinical decision making. Further investigation of current predictors and existing scores as well as new studies involving larger patient populations and more sophisticated statistical prediction models are necessary. Additionally, a short description of our empirical institutional approach to management of RVF following LVAD implantation is provided. PMID:25559829

  18. Predictors of right ventricular failure after left ventricular assist device implantation.

    PubMed

    Koprivanac, Marijan; Kelava, Marta; Sirić, Franjo; Cruz, Vincent B; Moazami, Nader; Mihaljević, Tomislav

    2014-12-01

    Number of left ventricular assist device (LVAD) implantations increases every year, particularly LVADs for destination therapy (DT). Right ventricular failure (RVF) has been recognized as a serious complication of LVAD implantation. Reported incidence of RVF after LVAD ranges from 6% to 44%, varying mostly due to differences in RVF definition, different types of LVADs, and differences in patient populations included in studies. RVF complicating LVAD implantation is associated with worse postoperative mortality and morbidity including worse end-organ function, longer hospital length of stay, and lower success of bridge to transplant (BTT) therapy. Importance of RVF and its predictors in a setting of LVAD implantation has been recognized early, as evidenced by abundant number of attempts to identify independent risk factors and develop RVF predictor scores with a common purpose to improve patient selection and outcomes by recognizing potential need for biventricular assist device (BiVAD) at the time of LVAD implantation. The aim of this article is to review and summarize current body of knowledge on risk factors and prediction scores of RVF after LVAD implantation. Despite abundance of studies and proposed risk scores for RVF following LVAD, certain common limitations make their implementation and clinical usefulness questionable. Regardless, value of these studies lies in providing information on potential key predictors for RVF that can be taken into account in clinical decision making. Further investigation of current predictors and existing scores as well as new studies involving larger patient populations and more sophisticated statistical prediction models are necessary. Additionally, a short description of our empirical institutional approach to management of RVF following LVAD implantation is provided. PMID:25559829

  19. The Application of Virtual Planning and Navigation Devices for Mandible Reconstruction and Immediate Dental Implantation.

    PubMed

    Rahimov, Chingiz R; Farzaliyev, Ismayil M; Fathi, Hamid Reza; Davudov, Mahammad M; Aliyev, Anar; Hasanov, Emin

    2016-06-01

    Routine reconstruction of subtotal defects of the mandible and orthopedic rehabilitation supported by dental implants is achieved by means of detailed planning and lasts over a year. This article shows the outcomes of single-stage surgical treatment and immediate orthopedic rehabilitation performed with the help of preoperative virtual computer simulation. 3D investigation of pathological and donor sites, virtual simulation of tumor resection, positioning of the dental implants into fibula, virtual flap bending and transfer, virtual bending of fixing reconstruction plates, and fabrication of navigation templates and bridge prosthesis supported by dental implants were done preoperatively. The surgery included tumor resection, insertion of dental implants into fibula, elevation of fibula osteocutaneous free flap, rigid fixation within recipient site, and immediate loading by bridge orthopedic device. On 10-month follow-up, functional and esthetic results were asses as reasonable. Radiography showed dental implants to be integrated and positioned appropriately. We found that successful rehabilitation of the patients with extensive defects of the jaws could be achieved by ablative tumor resection, dental implants insertion prior to flap elevation guided by navigation templates, further osteotomy, modeling of the flap based on navigation template, flap transfer, and rigid fixation within recipient site by prebended plates, with application of prefabricated prosthesis. PMID:27162568

  20. RF communication with implantable wireless device: effects of beating heart on performance of miniature antenna

    PubMed Central

    Borghi, Alessandro; Bahmanyar, Mohammad Reza; McLeod, Christopher N.; Navaratnarajah, Manoraj; Yacoub, Magdi; Toumazou, Christofer

    2014-01-01

    The frequency response of an implantable antenna is key to the performance of a wireless implantable sensor. If the antenna detunes significantly, there are substantial power losses resulting in loss of accuracy. One reason for detuning is because of a change in the surrounding environment of an antenna. The pulsating anatomy of the human heart constitutes such a changing environment, so detuning is expected but this has not been quantified dynamically before. Four miniature implantable antennas are presented (two different geometries) along with which are placed within the heart of living swine the dynamic reflection coefficients. These antennas are designed to operate in the short range devices frequency band (863–870 MHz) and are compatible with a deeply implanted cardiovascular pressure sensor. The measurements recorded over 27 seconds capture the effects of the beating heart on the frequency tuning of the implantable antennas. When looked at in the time domain, these effects are clearly physiological and a combination of numerical study and posthumous autopsy proves this to be the case, while retrospective simulation confirms this hypothesis. The impact of pulsating anatomy on antenna design and the need for wideband implantable antennas is highlighted. PMID:26609377

  1. Fabrication and Characterization of Thin Film Ion Implanted Composite Materials for Integrated Nonlinear Optical Devices

    NASA Technical Reports Server (NTRS)

    Sarkisov, S.; Curley, M.; Williams, E. K.; Wilkosz, A.; Ila, D.; Poker, D. B.; Hensley, D. K.; Smith, C.; Banks, C.; Penn, B.; Clark, R.

    1998-01-01

    Ion implantation has been shown to produce a high density of metal colloids within the layer regions of glasses and crystalline materials. The high-precipitate volume fraction and small size of metal nanoclusters formed leads to values for the third-order susceptibility much greater than those for metal doped solids. This has stimulated interest in use of ion implantation to make nonlinear optical materials. On the other side, LiNbO3 has proved to be a good material for optical waveguides produced by MeV ion implantation. Light confinement in these waveguides is produced by refractive index step difference between the implanted region and the bulk material. Implantation of LiNbO3 with MeV metal ions can therefore result into nonlinear optical waveguide structures with great potential in a variety of device applications. We describe linear and nonlinear optical properties of a waveguide structure in LiNbO3-based composite material produced by silver ion implantation in connection with mechanisms of its formation.

  2. Safe use of MRI in people with cardiac implantable electronic devices.

    PubMed

    Lowe, Martin D; Plummer, Christopher J; Manisty, Charlotte H; Linker, Nicholas J

    2015-12-01

    MR scanning in patients with cardiac implantable electronic devices (CIEDs) was formerly felt to be contraindicated, but an increasing number of patients have an implanted MR conditional device, allowing them to safely undergo MR scanning, provided the manufacturer's guidance is adhered to. In addition, some patients with non-MR conditional devices may undergo MR scanning if no other imaging modality is deemed suitable and there is a clear clinical indication for scanning which outweighs the potential risk. The following guidance has been formulated by the British Heart Rhythm Society and endorsed by the British Cardiovascular Society and others. It describes protocols that should be followed for patients with CIEDs undergoing MR scanning. The recommendations, principles and conclusions are supported by the Royal College of Radiologists. PMID:26420818

  3. Development of a highly efficient implanted thermal ablation device: in vivo experiment in rat liver

    PubMed Central

    Matsui, H; Hamuro, M; Nakamura, K; Kayahara, H; Murano, K; Kotsuka, Y; Miki, Y

    2012-01-01

    Objectives To evaluate an implanted thermal ablation device that can be heated with high efficiency using a resonant circuit as the implant. Methods 16 rats were used. The implants, adjusted at a resonance frequency of 4 MHz, were fixed on the surface of the liver of rats under laparotomy. In 14 of 16 rats, an alternating magnetic field (AMF) was applied for 6 min with an output of 300 W from outside the body using a ferrite core applicator. The implant temperature during AMF exposure was measured. The 14 rats were divided into 5 groups, depending on time from AMF application until they were sacrificed (1 h, 1 day, 3 days, 7 days and 1 month after application). Two rats not exposed to AMF were used as controls. Livers were removed and evaluated; the cross-sectional area and width of the ablated region were measured. Results During AMF exposure, the implant temperature rose to 127.8±39.3 °C (mean±standard deviation). The cross-sectional area of the ablated region was largest after 1 day and tended to decrease with time. The widths of the ablated region were 4.87±0.22 mm, 4.15±0.36 mm, 3.67±0.58 mm and 3.24±0.16 mm in the 1 day, 3 day, 7 day and 1 month groups, respectively. No significant differences (p<0.05) were seen in either cross-sectional area or width of the ablated region. Conclusion Sufficient heat for ablation was obtained in vivo using a newly developed implanted thermal ablation device. This device may be a new option for thermal ablation therapy. PMID:22422380

  4. Ion implantation challenges in the drive towards 64 Mb and 256 Mb memory cell type devices

    NASA Astrophysics Data System (ADS)

    Giles, Alan D.; van der Steege, Anton

    1991-04-01

    Ion implantation techniques will be critical in the production of evermore complex devices, with major challenges for the device designer in utilising available techniques and those that are potentially available. Equally difficult challenges face the equipment designer in judging which technologies are required for future devices and welding these requirements into a reliable, productionworthy fabrication tool, capable of meeting or exceeding the automation and up-time expectations of the wafer fabrication managers. High yield and consistent performance on the wafer continue to be paramount. This paper will review these challenges from the equipment suppliers' viewpoint and in particular the new technology needs and cost of ownership issues.

  5. A wireless power transmission system for implantable devices in freely moving rodents.

    PubMed

    Eom, Kyungsik; Jeong, Joonsoo; Lee, Tae Hyung; Kim, Jinhyung; Kim, Junghoon; Lee, Sung Eun; Kim, Sung June

    2014-08-01

    Reliable wireless power delivery for implantable devices in animals is highly desired for safe and effective experimental use. Batteries require frequent replacement; wired connections are inconvenient and unsafe, and short-distance inductive coupling requires the attachment of an exterior transmitter to the animal's body. In this article, we propose a solution by which animals with implantable devices can move freely without attachments. Power is transmitted using coils attached to the animal's cage and is received by a receiver coil implanted in the animal. For a three-dimensionally uniform delivery of power, we designed a columnar dual-transmitter coil configuration. A resonator-based inductive link was adopted for efficient long-range power delivery, and we used a novel biocompatible liquid crystal polymer substrate as the implantable receiver device. Using this wireless power delivery system, we obtain an average power transfer efficiency of 15.2% (minimum efficiency of 10% and a standard deviation of 2.6) within a cage of 15×20×15 cm3. PMID:24946939

  6. Solute diffusion through fibrotic tissue formed around protective cage system for implantable devices.

    PubMed

    Prihandana, Gunawan Setia; Ito, Hikaru; Tanimura, Kohei; Yagi, Hiroshi; Hori, Yuki; Soykan, Orhan; Sudo, Ryo; Miki, Norihisa

    2015-08-01

    This article presents the concept of an implantable cage system that can house and protect implanted biomedical sensing and therapeutic devices in the body. Cylinder-shaped cages made of porous polyvinyl alcohol (PVA) sheets with an 80-µm pore size and/or stainless steel meshes with 0.54-mm openings were implanted subcutaneously in the dorsal region of rats for 5 weeks. Analysis of the explanted cages showed the formation of fibrosis tissue around the cages. PVA cages had fibrotic tissue growing mostly along the outer surface of cages, while stainless steel cages had fibrotic tissue growing into the inside surface of the cage structure, due to the larger porosity of the stainless steel meshes. As the detection of target molecules with short time lags for biosensors and mass transport with low diffusion resistance into and out of certain therapeutic devices are critical for the success of such devices, we examined whether the fibrous tissue formed around the cages were permeable to molecules of our interest. For that purpose, bath diffusion and microfluidic chamber diffusion experiments using solutions containing the target molecules were performed. Diffusion of sodium, potassium and urea through the fibrosis tissue was confirmed, thus suggesting the potential of these cylindrical cages surrounded by fibrosis tissue to successfully encase implantable sensors and therapeutic apparatus. PMID:25303239

  7. Preferred tools and techniques for implantation of cardiac electronic devices in Europe: results of the European Heart Rhythm Association survey.

    PubMed

    Bongiorni, Maria Grazia; Proclemer, Alessandro; Dobreanu, Dan; Marinskis, Germanas; Pison, Laurent; Blomstrom-Lundqvist, Carina

    2013-11-01

    The aim of this European Heart Rhythm Association (EHRA) survey was to assess clinical practice in relation to the tools and techniques used for cardiac implantable electronic devices procedures in the European countries. Responses to the questionnaire were received from 62 members of the EHRA research network. The survey involved high-, medium-, and low-volume implanting centres, performing, respectively, more than 200, 100-199 and under 100 implants per year. The following topics were explored: the side approach for implantation, surgical techniques for pocket incision, first venous access for lead implantation, preference of lead fixation, preferred coil number for implantable cardioverter-defibrillator (ICD) leads, right ventricular pacing site, generator placement site, subcutaneous ICD implantation, specific tools and techniques for cardiac resynchronization therapy (CRT), lead implantation sequence in CRT, coronary sinus cannulation technique, target site for left ventricular lead placement, strategy in left ventricular lead implant failure, mean CRT implantation time, optimization of the atrioventricular (AV) and ventriculo-ventricular intervals, CRT implants in patients with permanent atrial fibrillation, AV node ablation in patients with permanent AF. This panoramic view allows us to find out the operator preferences regarding the techniques and tools for device implantation in Europe. The results showed different practices in all the fields we investigated, nevertheless the survey also outlines a good adherence to the common standards and recommendations. PMID:24170423

  8. The Jarvik-2000 ventricular assist device implantation: how we do it

    PubMed Central

    Tarzia, Vincenzo; Bottio, Tomaso; Gerosa, Gino

    2014-01-01

    The Jarvik-2000 is a non-pulsatile axial-flow left ventricular assist device (LVAD) that is largely used in patients who present in end-stage heart failure, as a bridge to transplant support or destination therapy. From its first utilization, several implantation techniques have been elaborated, starting from a median sternotomy with cardiopulmonary bypass (CPB) support and moving towards a minimally invasive access with an off-pump strategy. Here we present the favored surgical technique used in our department to implant the Jarvik-2000, in a step-by-step fashion. PMID:25452914

  9. Current Trends in Implantable Left Ventricular Assist Devices

    PubMed Central

    Garbade, Jens; Bittner, Hartmuth B.; Barten, Markus J.; Mohr, Friedrich-Wilhelm

    2011-01-01

    The shortage of appropriate donor organs and the expanding pool of patients waiting for heart transplantation have led to growing interest in alternative strategies, particularly in mechanical circulatory support. Improved results and the increased applicability and durability with left ventricular assist devices (LVADs) have enhanced this treatment option available for end-stage heart failure patients. Moreover, outcome with newer pumps have evolved to destination therapy for such patients. Currently, results using nonpulsatile continuous flow pumps document the evolution in outcomes following destination therapy achieved subsequent to the landmark Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure Trial (REMATCH), as well as the outcome of pulsatile designed second-generation LVADs. This review describes the currently available types of LVADs, their clinical use and outcomes, and focuses on the patient selection process. PMID:21822483

  10. Management of Cardiovascular Implantable Electronic Devices Infections in High-Risk Patients

    PubMed Central

    Kennergren, Charles

    2015-01-01

    The incidence of infection following implantation of cardiovascular implantable electronic devices (CIEDs) is increasing, as is the number of pulse generator replacements and upgrades. The rate of infections is rising faster than the rate of device implantation, mainly due to the increasing age and number of comorbidities of patients receiving the devices. Patients with a CIED infection usually require hospitalisation, multiple consultations, prolonged intravenous antibiotics and, in the majority of cases, CIED explantation and replacement. A significant proportion die of their infection. CIED infection therefore represents a substantial health and economic burden, and management of infections is critical. Numerous risk factors have been identified including host, procedure and device-related factors. Established strategies for preventing CIED infections include intravenous antibiotics and aseptic techniques. The TYRX™ Absorbable Antibacterial Envelope offers potential as an effective method to reduce CIED infections. Several studies have found a statistically significant association between antibacterial envelope use and reduced incidence of CIED infection in high-risk patients. A prospective, randomised trial to further evaluate this potentially important strategy for CIED infection prophylaxis is underway. PMID:26835101

  11. In-situ photopolymerization and monitoring device for controlled shaping of tissue fillers, replacements, or implants

    NASA Astrophysics Data System (ADS)

    Schmocker, Andreas M.; Khoushabi, Azadeh; Bourban, Pierre-Etienne; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe

    2015-03-01

    Photopolymerization is a common tool to harden materials initially in a liquid state. A surgeon can directly trigger the solidification of a dental implant or a bone or tissue filler simply by illumination. Traditionally, photopolymerization has been used mainly in dentistry. Over the last decade advances in material development including a wide range of biocompatible gel- and cement-systems open up a new avenue for in-situ photopolymerization. However, at the device level, surgical endoscopic probes are required. We present a miniaturized light probe where a photoactive material can be 1) mixed, pressurized and injected 2) photopolymerized or photoactivated and 3) monitored during the chemical reaction. The device enables surgeries to be conducted through a hole smaller than 1 mm in diameter. Beside basic injection mechanics, the tool consists of an optical fiber guiding the light required for photopolymerization and for chemical analysis. Combining photorheology and fluorescence spectroscopy, the current state of the photopolymerization is inferred and monitored in real time. Biocompatible and highly tuneable Poly-Ethylene-Glycol (PEG) hydrogels were used as the injection material. The device was tested on a model for intervertebral disc replacement. Gels were successfully implanted into a bovine caudal model and mechanically tested in-vitro during two weeks. The photopolymerized gel was evaluated at the tissue level (adherence and mechanical properties of the implant), at the cellular level (biocompatibility and cytotoxicity) and ergonomic level (sterilization procedure and feasibility study). This paper covers the monitoring aspect of the device.

  12. Electromagnetic immunity of implantable pacemakers exposed to wi-fi devices.

    PubMed

    Mattei, Eugenio; Censi, Federica; Triventi, Michele; Calcagnini, Giovanni

    2014-10-01

    The purpose of this study is to evaluate the potential for electromagnetic interference (EMI) and to assess the immunity level of implantable pacemakers (PM) when exposed to the radiofrequency (RF) field generated by Wi-Fi devices. Ten PM from five manufacturers, representative of what today is implanted in patients, have been tested in vitro and exposed to the signal generated by a Wi-Fi transmitter. An exposure setup that reproduces the actual IEEE 802.11b/g protocol has been designed and used during the tests. The system is able to amplify the Wi-Fi signal and transmits at power levels higher than those allowed by current international regulation. Such approach allows one to obtain, in case of no EMI, a safety margin for PM exposed to Wi-Fi signals, which otherwise cannot be derived if using commercial Wi-Fi equipment. The results of this study mitigate concerns about using Wi-Fi devices close to PM: none of the PM tested exhibit any degradation of their performance, even when exposed to RF field levels five times higher than those allowed by current international regulation (20 W EIRP). In conclusion, Wi-Fi devices do not pose risks of EMI to implantable PM. The immunity level of modern PM is much higher than the transmitting power of RF devices operating at 2.4 GHz. PMID:25162422

  13. Miniscrew implants as temporary anchorage devices in orthodontics: a comprehensive review.

    PubMed

    Jasoria, Gaurav; Shamim, Wamiq; Rathore, Saurabh; Kalra, Amit; Manchanda, Mona; Jaggi, Nitin

    2013-01-01

    In recent times, the use of miniscrew implants to obtain absolute anchorage has gained momentum in clinical orthodontics as rigid anchorage modality. Miniscrew implants offers many advantages when used as temporary anchorage devices like, easy placement and removal, immediate loading, can be used in a variety of locations, provide absolute anchorage, economic and requires less patient cooperation. This makes them as a necessary treatment option in cases with critical anchorage that would have otherwise resulted in anchorage loss if treated with conventional means of anchorage. The aim of this comprehensive review is to highlight the gradual evolution, clinical use, advantages and disadvantages of the miniscrew implants when used to obtain a temporary but absolute skeletal anchorage for orthodontic applications. PMID:24685811

  14. Robotic Left Ventricular Assist Device Implantation Using Left Thoracotomy Approach in Patients with Previous Sternotomies.

    PubMed

    Khalpey, Zain; Bin Riaz, Irbaz; Marsh, Katherine M; Ansari, Muhammad Zubair Ahmad; Bilal, Jawad; Cooper, Anthony; Paidy, Samata; Schmitto, Jan D; Smith, Richard; Friedman, Mark; Slepian, Marvin J; Poston, Robert

    2015-01-01

    Left ventricular assist devices (LVADs) are commonly used as either a bridge-to-transplant or a destination therapy. The traditional approach for LVAD implantation is via median sternotomy, but many candidates for this procedure have a history of failed cardiac surgeries and previous sternotomy. Redo sternotomy increases the risk of heart surgery, particularly in the setting of advanced heart failure. Robotics facilitates a less invasive approach to LVAD implantation that circumvents some of the morbidity associated with a redo sternotomy. We compared the outcomes of all patients at our institution who underwent LVAD implantation via either a traditional sternotomy or using robotic assistance. The robotic cohort showed reduced resource utilization including length of hospital stay and use of blood products. As the appropriate candidates become elucidated, robotic assistance may improve the safety and cost-effectiveness of reoperative LVAD surgery. PMID:25914953

  15. Catalyst-dependent drug loading of LDI-glycerol polyurethane foams leads to differing controlled release profiles.

    PubMed

    Sivak, Wesley N; Pollack, Ian F; Petoud, Stéphane; Zamboni, William C; Zhang, Jianying; Beckman, Eric J

    2008-09-01

    The purpose of the present study was to develop biodegradable and biocompatible polyurethane foams based on lysine diisocyanate (LDI) and glycerol to be used as drug-delivery systems for the controlled release of 7-tert-butyldimethylsilyl-10-hydroxy-camptothecin (DB-67). The impact of urethane catalysts on cellular proliferation was assessed in an attempt to enhance the biocompatibility of our polyurethane materials. DB-67, a potent camptothecin analog, was then incorporated into LDI-glycerol polyurethane foams with two different amine urethane catalysts: 1,4-diazobicyclo[2.2.2]-octane (DABCO) and 4,4'-(oxydi-2,1-ethane-diyl)bismorpholine (DMDEE). The material morphologies of the polyurethane foams were analyzed via scanning electron microscopy, and DB-67 distribution was assessed by way of fluorescence microscopy. Both foam morphology and drug distribution were found to correlate to the amine catalyst used. Hydrolytic release rates of DB-67 from the polyurethane foams were catalyst dependent and also demonstrated greater drug loads being released at higher temperatures. The foams were capable of delivering therapeutic concentrations of DB-67 in vitro over an 11week test period. Cellular proliferation assays demonstrate that empty LDI-glycerol foams did not significantly alter the growth of malignant human glioma cell lines (P<0.05). DB-67 loaded LDI-glycerol polyurethane foams were found to inhibit cellular proliferation by at least 75% in all the malignant glioma cell lines tested (P<1.0x10(-8)). These results clearly demonstrate the long-term, catalyst-dependent release of DB-67 from LDI-glycerol polyurethane foams, indicating their potential for use in implantable drug-delivery devices. PMID:18440884

  16. Adhoc electromagnetic compatibility testing of non-implantable medical devices and radio frequency identification

    PubMed Central

    2013-01-01

    Background The use of radiofrequency identification (RFID) in healthcare is increasing and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have documented that RFID can interfere with medical devices. The majority of past studies have concentrated on implantable medical devices such as implantable pacemakers and implantable cardioverter defibrillators (ICDs). This study examined EMC between RFID systems and non-implantable medical devices. Methods Medical devices were exposed to 19 different RFID readers and one RFID active tag. The RFID systems used covered 5 different frequency bands: 125–134 kHz (low frequency (LF)); 13.56 MHz (high frequency (HF)); 433 MHz; 915 MHz (ultra high frequency (UHF])) and 2.4 GHz. We tested three syringe pumps, three infusion pumps, four automatic external defibrillators (AEDs), and one ventilator. The testing procedure is modified from American National Standards Institute (ANSI) C63.18, Recommended Practice for an On-Site, Ad Hoc Test Method for Estimating Radiated Electromagnetic Immunity of Medical Devices to Specific Radio-Frequency Transmitters. Results For syringe pumps, we observed electromagnetic interference (EMI) during 13 of 60 experiments (22%) at a maximum distance of 59 cm. For infusion pumps, we observed EMI during 10 of 60 experiments (17%) at a maximum distance of 136 cm. For AEDs, we observed EMI during 18 of 75 experiments (24%) at a maximum distance of 51 cm. The majority of the EMI observed was classified as probably clinically significant or left the device inoperable. No EMI was observed for all medical devices tested during exposure to 433 MHz (two readers, one active tag) or 2.4 GHz RFID (two readers). Conclusion Testing confirms that RFID has the ability to interfere with critical medical equipment. Hospital staff should be aware of the potential for medical device EMI caused by RFID systems and should be encouraged to

  17. Intrinsic signal imaging of brain function using a small implantable CMOS imaging device

    NASA Astrophysics Data System (ADS)

    Haruta, Makito; Sunaga, Yoshinori; Yamaguchi, Takahiro; Takehara, Hironari; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2015-04-01

    A brain functional imaging technique over a long period is important to understand brain functions related to animal behavior. We have developed a small implantable CMOS imaging device for measuring brain activity in freely moving animals. This device is composed of a CMOS image sensor chip and LEDs for illumination. In this study, we demonstrated intrinsic signal imaging of blood flow using the device with a green LED light source at a peak wavelength of 535 nm, which corresponds to one of the absorption spectral peaks of blood cells. Brain activity increases regional blood flow. The device light weight of about 0.02 g makes it possible to stably measure brain activity through blood flow over a long period. The device has successfully measured the intrinsic signal related to sensory stimulation on the primary somatosensory cortex.

  18. Home Monitoring for Cardiovascular Implantable Electronic Devices: Benefits to Patients and to Their Follow-up Clinic.

    PubMed

    Leahy, Robin A; Davenport, Elizabeth E

    2015-01-01

    Recent technological advances in the management of patients with cardiovascular implantable electronic devices (CIEDs) have expanded clinicians' ability to remotely monitor patients with CIEDs. Remote monitoring, in addition to periodic in-person device evaluation, provides many advantages to patients and clinicians. Aside from the therapeutic and diagnostic benefits of pacemakers, implantable cardioverter-defibrillators, cardiac resynchronization therapy devices, and implantable loop recorders, improvement in clinical outcomes, clinical efficiencies, and patient experience can be realized with the adoption of remote CIED monitoring. These advantages create significant value to both patients and CIED follow-up centers. PMID:26484995

  19. Active implantable medical device EMI assessment for wireless power transfer operating in LF and HF bands.

    PubMed

    Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi

    2016-06-21

    The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz-460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich's flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs. PMID:27224201

  20. Active implantable medical device EMI assessment for wireless power transfer operating in LF and HF bands

    NASA Astrophysics Data System (ADS)

    Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi

    2016-06-01

    The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz–460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich’s flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs.

  1. Effect of Continued Cardiac Resynchronization Therapy on Ventricular Arrhythmias After Left Ventricular Assist Device Implantation.

    PubMed

    Schleifer, John William; Mookadam, Farouk; Kransdorf, Evan P; Nanda, Udai; Adams, Jonathon C; Cha, Stephen; Pajaro, Octavio E; Steidley, David Eric; Scott, Robert L; Carvajal, Tomas; Saadiq, Rayya A; Srivathsan, Komandoor

    2016-08-15

    Cardiac resynchronization therapy (CRT) reduces ventricular arrhythmia (VA) burden in some patients with heart failure, but its effect after left ventricular assist device (LVAD) implantation is unknown. We compared VA burden in patients with CRT devices in situ who underwent LVAD implantation and continued CRT (n = 39) to those who had CRT turned off before discharge (n = 26). Implantable cardioverter-defibrillator (ICD) shocks were significantly reduced in patients with continued CRT (1.5 ± 2.7 shocks per patient vs 5.5 ± 9.3 with CRT off, p = 0.014). There was a nonsignificant reduction in cumulative VA episodes per patient with CRT continued at discharge (42 ± 105 VA per patient vs 82 ± 198 with CRT off, p = 0.29). On-treatment analysis by whether CRT was on or off identified a significantly lower burden of VA (17 ± 1 per patient-year CRT on vs 37 ± 1 per patient-year CRT off, p <0.0001) and ICD shocks (1.2 ± 0.3 per patient-year CRT on vs 1.7 ± 0.3 per patient-year CRT off, p = 0.018). In conclusion, continued CRT is associated with significantly reduced ICD shocks and VA burden after LVAD implantation. PMID:27328958

  2. A New Trans-Tympanic Microphone Approach for Fully Implantable Hearing Devices

    PubMed Central

    Woo, Seong Tak; Shin, Dong Ho; Lim, Hyung-Gyu; Seong, Ki-Woong; Gottlieb, Peter; Puria, Sunil; Lee, Kyu-Yup; Cho, Jin-Ho

    2015-01-01

    Fully implantable hearing devices (FIHDs) have been developed as a new technology to overcome the disadvantages of conventional acoustic hearing aids. The implantable microphones currently used in FIHDs, however, have difficulty achieving high sensitivity to environmental sounds, low sensitivity to body noise, and ease of implantation. In general, implantable microphones may be placed under the skin in the temporal bone region of the skull. In this situation, body noise picked up during mastication and touching can be significant, and the layer of skin and hair can both attenuate and distort sounds. The new approach presently proposed is a microphone implanted at the tympanic membrane. This method increases the microphone’s sensitivity by utilizing the pinna’s directionally dependent sound collection capabilities and the natural resonances of the ear canal. The sensitivity and insertion loss of this microphone were measured in human cadaveric specimens in the 0.1 to 16 kHz frequency range. In addition, the maximum stable gain due to feedback between the trans-tympanic microphone and a round-window-drive transducer, was measured. The results confirmed in situ high-performance capabilities of the proposed trans-tympanic microphone. PMID:26371007

  3. Safety of anticoagulation with uninterrupted warfarin vs. interrupted dabigatran in patients requiring an implantable cardiac device

    PubMed Central

    Madan, Shivanshu; Muthusamy, Purushothaman; Mowers, Katie L.; Elmouchi, Darryl A.; Finta, Bohuslav; Gauri, Andre J.; Woelfel, Alan K.; Fritz, Timothy D.; Davis, Alan T.

    2016-01-01

    Background The optimal strategy of peri-procedural anticoagulation in patients undergoing permanent cardiac device implantation is controversial. Our objective was to compare the major bleeding and thromboembolic complications in patients managed with uninterrupted warfarin (UW) vs. interrupted dabigatran (ID) during permanent pacemaker (PPM) or implantable cardioverter defibrillators (ICD) implantation. Methods A retrospective cohort study of all eligible patients from July 2011 through January 2012 was performed. UW was defined as patients who had maintained a therapeutic international normalized ratio (INR) on the day of the procedure. ID was defined as stopping dabigatran ≥12 hours prior to the procedure and then resuming after implantation. Major bleeding events included hemothorax, hemopericardium, intracranial hemorrhage, gastrointestinal bleed, epistaxis, or pocket hematoma requiring surgical intervention. Thromboembolic complications included stroke, transient ischemic attack, deep venous thrombosis, pulmonary embolism, or arterial embolism. Results Of the 133 patients (73.4±11.0 years; 91 males) in the study, 86 received UW and 47 received ID. One (1.2%) patient in the UW group sustained hemopericardium perioperatively and died. In comparison, the ID patients had no complications. As compared to the ID group, the UW group had a higher median CHADS2 score (2 vs. 3, P=0.04) and incidence of Grade 1 pocket hematoma (0% vs. 7%, P=0.09). Neither group developed any thromboembolic complications. Conclusions Major bleeding rates were similar among UW and ID groups. Perioperative ID appears to be a safe anticoagulation strategy for patients undergoing PPM or ICD implantation. PMID:26885486

  4. Revision total hip and knee arthroplasty implant identification: implications for use of Unique Device Identification 2012 AAHKS member survey results.

    PubMed

    Wilson, Natalia A; Jehn, Megan; York, Sally; Davis, Charles M

    2014-02-01

    FDA's Unique Device Identification (UDI) Rule will mandate manufacturers to assign unique identifiers to their marketed devices. UDI use is expected to improve implant documentation and identification. A 2012 American Association of Hip and Knee Surgeons membership survey explored revision total hip and knee arthroplasty implant identification processes. 87% of surgeons reported regularly using at least 3 methods to identify failed implants pre-operatively. Median surgeon identification time was 20 min; median staff time was 30 min. 10% of implants could not be identified pre-operatively. 2% could not be identified intra-operatively. UDI in TJA registry and UDI in EMR were indicated practices to best support implant identification and save time. FDA's UDI rule sets the foundation for UDI use in patient care settings as standard practice for implant documentation. PMID:23890830

  5. Columnar transmitter based wireless power delivery system for implantable device in freely moving animals.

    PubMed

    Eom, Kyungsik; Jeong, Joonsoo; Lee, Tae Hyung; Lee, Sung Eun; Jun, Sang Bum; Kim, Sung June

    2013-01-01

    A wireless power delivery system is developed to deliver electrical power to the neuroprosthetic devices that are implanted into animals freely moving inside the cage. The wireless powering cage is designed for long-term animal experiments without cumbersome wires for power supply or the replacement of batteries. In the present study, we propose a novel wireless power transmission system using resonator-based inductive links to increase power efficiency and to minimize the efficiency variations. A columnar transmitter coil is proposed to provide lateral uniformity of power efficiency. Using this columnar transmitter coil, only 7.2% efficiency fluctuation occurs from the maximum transmission efficiency of 25.9%. A flexible polymer-based planar type receiver coil is fabricated and assembled with a neural stimulator and an electrode. Using the designed columnar transmitter coil, the implantable device successfully operates while it moves freely inside the cage. PMID:24110073

  6. Performance Enhancement of PFET Planar Devices by Plasma Immersion Ion Implantation (P3I)

    SciTech Connect

    Ortolland, Claude; Horiguchi, Naoto; Kerner, Christoph; Chiarella, Thomas; Eyben, Pierre; Everaert, Jean-Luc; Hoffmann, Thomas; Del Agua Borniquel, Jose Ignacio; Poon, Tze; Santhanam, Kartik; Porshnev, Peter; Foad, Majeed; Schreutelkamp, Robert; Absil, Philippe; Vandervorst, Wilfried; Felch, Susan

    2008-11-03

    A study of doping the pMOS Lightly Doped Drain (LDD) by Plasma Immersion Ion Implantation (P3i) with BF3 is presented which demonstrates a better transistor performance compared to standard beam line Ion Implantation (I/I). The benefit of P3i comes from the broad angular distribution of the impinging ions thereby doping the poly-silicon gate sidewall as well. Gate capacitance of short channel devices has been measured and clearly shows this improvement. This model is clearly supported by high resolution 2D-carrier profiles using Scanning Spreading Resistance Microscopy (SSRM) which shows this gate sidewall doping. The broad angular distribution also implies a smaller directional sensitivity (to for instance the detailed gate edge shape) and leads to devices which are perfectly balanced, when Source and Drain electrode are switched.

  7. Processing of Silver-Implanted Aluminum Nitride for Energy Harvesting Devices

    NASA Astrophysics Data System (ADS)

    Alleyne, Fatima Sierre

    One of the more attractive sources of green energy has roots in the popular recycling theme of other green technologies, now known by the term "energy scavenging." In its most promising conformation, energy scavenging converts cyclic mechanical vibrations in the environment or random mechanical pressure pulses, caused by sources ranging from operating machinery to human footfalls, into electrical energy via piezoelectric transducers. While commercial piezoelectrics have evolved to favor lead zirconate titanate (PZT) for its combination of superior properties, the presence of lead in these ceramic compounds raises resistance to their application in anything "green" due to potential health implications during their manufacturing, recycling, or in-service application, if leaching occurs. Therefore in this study we have pursued the application of aluminum nitride (AlN) as a non-toxic alternative to PZT, seeking processing pathways to augment the modest piezoelectric performance of AlN and exploit its compatibility with complementary-metal-oxide semiconductor (CMOS) manufacturing. Such piezoelectric transducers have been categorized as microelectromechanical systems (MEMS), which despite more than a decade of research in this field, is plagued by delamination at the electrode/piezoelectric interface. Consequently the electric field essential to generate and sustain the piezoelectric response of these devices is lost, resulting in device failure. Working on the hypothesis that buried conducting layers can both mitigate the delamination problem and generate sufficient electric field to engage the operation of resonator devices, we have undertaken a study of silver ion implantation to experimentally assess its feasibility. As with most ion implantation procedures employed in semiconductor fabrication, the implanted sample is subjected to a thermal treatment, encouraging diffusion-assisted precipitation of the implanted species at high enough concentrations. The objective

  8. Processing of Silver-Implanted Aluminum Nitride for Energy Harvesting Devices

    NASA Astrophysics Data System (ADS)

    Alleyne, Fatima Sierre

    One of the more attractive sources of green energy has roots in the popular recycling theme of other green technologies, now known by the term "energy scavenging." In its most promising conformation, energy scavenging converts cyclic mechanical vibrations in the environment or random mechanical pressure pulses, caused by sources ranging from operating machinery to human footfalls, into electrical energy via piezoelectric transducers. While commercial piezoelectrics have evolved to favor lead zirconate titanate (PZT) for its combination of superior properties, the presence of lead in these ceramic compounds raises resistance to their application in anything "green" due to potential health implications during their manufacturing, recycling, or in-service application, if leaching occurs. Therefore in this study we have pursued the application of aluminum nitride (AlN) as a non-toxic alternative to PZT, seeking processing pathways to augment the modest piezoelectric performance of AlN and exploit its compatibility with complementary-metal-oxide semiconductor (CMOS) manufacturing. Such piezoelectric transducers have been categorized as microelectromechanical systems (MEMS), which despite more than a decade of research in this field, is plagued by delamination at the electrode/piezoelectric interface. Consequently the electric field essential to generate and sustain the piezoelectric response of these devices is lost, resulting in device failure. Working on the hypothesis that buried conducting layers can both mitigate the delamination problem and generate sufficient electric field to engage the operation of resonator devices, we have undertaken a study of silver ion implantation to experimentally assess its feasibility. As with most ion implantation procedures employed in semiconductor fabrication, the implanted sample is subjected to a thermal treatment, encouraging diffusion-assisted precipitation of the implanted species at high enough concentrations. The objective

  9. A practical approach to perioperative management of cardiac implantable electronic devices

    PubMed Central

    Chia, Pow-Li; Foo, David

    2015-01-01

    With the increased use of cardiac implantable electronic devices (CIEDs), it is increasingly important to recognise the unique challenges involved in the management of patients with CIEDs who are undergoing surgery. Practice advisories and consensus statements have been issued by the American Society of Anesthesiologists and the Heart Rhythm Society, advocating a multidisciplinary approach. This review discusses and presents a practical approach to perioperative CIED management in the Singapore context. PMID:26512144

  10. A practical approach to perioperative management of cardiac implantable electronic devices.

    PubMed

    Chia, Pow-Li; Foo, David

    2015-10-01

    With the increased use of cardiac implantable electronic devices (CIEDs), it is increasingly important to recognise the unique challenges involved in the management of patients with CIEDs who are undergoing surgery. Practice advisories and consensus statements have been issued by the American Society of Anesthesiologists and the Heart Rhythm Society, advocating a multidisciplinary approach. This review discusses and presents a practical approach to perioperative CIED management in the Singapore context. PMID:26512144

  11. Detection of deeply implanted impedance-switching devices using ultrasound doppler.

    PubMed

    Mari, Jean Martial; Lafon, Cyril; Chapelon, Jean Yves

    2013-06-01

    Communication with and transmission of energy to remote devices, such as deeply-implanted physiological recorders, using ultrasound presents several technical problems. In particular, device detection and piezoelectric sensor targeting remains difficult. Both tasks require differentiating the device from the surrounding fully passive tissues. Like radiofrequency identification devices, ultrasonic transponders have the capacity to rapidly change the impedance of their piezoelectric elements, which modulates their backscattering coefficient and allows the device to "flash" periodically at a very low energy cost, and, in particular situations, to communicate with an external device. A method for localizing the device by interpreting this flashing as movement is presented here. An ultrasound Doppler scan sequence is implemented using a programmable scanner, and radio-frequency data are collected and processed. The data are then analyzed for different excitation lengths and flashing frequencies to determine the optimum detection parameters. Measurements show that 1) detection can be achieved and is maximal when the excitation length reaches that of the Doppler processing window, and 2) when the flashing frequency is in a specific range. A study of the incidence angle also showed that 3) the sensor of the device can be detected over a given angular window. The conclusion is that by using ultrasound color Doppler sequences, impedance-switching piezoelectric devices can be detected under the conditions provided in the present study, and can be distinguished from fully passive structures. PMID:25004471

  12. Surgical Considerations and Challenges for Bilateral Continuous-Flow Durable Device Implantation.

    PubMed

    Maltais, Simon; Womack, Sara; Davis, Mary E; Danter, Matthew R; Kushwaha, Sudhir S; Stulak, John M; Haglund, Nicholas

    2016-01-01

    The concept of biventricular support with durable centrifugal pumps is evolving, and the surgical strategy and best practice guidelines for implantation of right-sided devices are still unknown. We present optimal strategy for bilateral HeartWare continuous-flow ventricular assist device (HVAD) implantation in a series of four patients. Patients were implanted with the HVAD pumps simultaneously or sequentially. This report offers a perspective on surgical considerations such as right ventricular positioning, implications related to potential risks of obstruction from the tricuspid apparatus, the role if any of downsizing the outflow anastomosis, and considerations for speed adjustments. In this series, one patient died on support and three patients experienced pump thrombosis requiring device revision. All other patients survived until orthotopic heart transplantation, although one of these patients died from perioperative complications, 2 days posttransplantation. Surgical management of patients with medically refractory biventricular heart failure remains challenging and associated with a high incidence of pump thrombosis. Best practice guidelines from experts' consensus are still needed to address this challenging population. PMID:26479465

  13. A flexible super-capacitive solid-state power supply for miniature implantable medical devices.

    PubMed

    Meng, Chuizhou; Gall, Oren Z; Irazoqui, Pedro P

    2013-12-01

    We present a high-energy local power supply based on a flexible and solid-state supercapacitor for miniature wireless implantable medical devices. Wireless radio-frequency (RF) powering recharges the supercapacitor through an antenna with an RF rectifier. A power management circuit for the super-capacitive system includes a boost converter to increase the breakdown voltage required for powering device circuits, and a parallel conventional capacitor as an intermediate power source to deliver current spikes during high current transients (e.g., wireless data transmission). The supercapacitor has an extremely high area capacitance of ~1.3 mF/mm(2), and is in the novel form of a 100 μm-thick thin film with the merit of mechanical flexibility and a tailorable size down to 1 mm(2) to meet various clinical dimension requirements. We experimentally demonstrate that after fully recharging the capacitor with an external RF powering source, the supercapacitor-based local power supply runs a full system for electromyogram (EMG) recording that consumes ~670 μW with wireless-data-transmission functionality for a period of ~1 s in the absence of additional RF powering. Since the quality of wireless powering for implantable devices is sensitive to the position of those devices within the RF electromagnetic field, this high-energy local power supply plays a crucial role in providing continuous and reliable power for medical device operations. PMID:23832644

  14. Current Approaches to Device Implantation in Pediatric and Congenital Heart Disease Patients

    PubMed Central

    Miller, Jacob R; Lancaster, Timothy S; Eghtesady, Pirooz

    2015-01-01

    Summary The pediatric ventricular assist device (VAD) has recently shown substantial improvements in survival as a bridge to heart transplant for patients with end-stage heart failure. Since that time, its use has become much more frequent. With increasing utilization, additional questions have arisen including patient selection, timing of VAD implantation and device selection. These challenges are amplified by the uniqueness of each patient, the recent abundance of literature surrounding VAD use, as well as the technological advancements in the devices themselves. Ideal strategies for device placement must be sought, for not only improved patient care, but for optimal resource utilization. Here, we review the most relevant literature to highlight some of the challenges facing the heart failure specialist, and any physician, who will care for a child with a VAD. PMID:25732410

  15. A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices.

    PubMed

    Schendel, Amelia A; Thongpang, Sanitta; Brodnick, Sarah K; Richner, Thomas J; Lindevig, Bradley D B; Krugner-Higby, Lisa; Williams, Justin C

    2013-08-15

    Implantable neural micro-electrode arrays have the potential to restore lost sensory or motor function to many different areas of the body. However, the invasiveness of these implants often results in scar tissue formation, which can have detrimental effects on recorded signal quality and longevity. Traditional histological techniques can be employed to study the tissue reaction to implanted micro-electrode arrays, but these techniques require removal of the brain from the skull, often causing damage to the meninges and cortical surface. This is especially unfavorable when studying the tissue response to electrode arrays such as the micro-electrocorticography (micro-ECoG) device, which sits on the surface of the cerebral cortex. In order to better understand the biological changes occurring around these types of devices, a cranial window implantation scheme has been developed, through which the tissue response can be studied in vivo over the entire implantation period. Rats were implanted with epidural micro-ECoG arrays, over which glass coverslips were placed and sealed to the skull, creating cranial windows. Vascular growth around the devices was monitored for one month after implantation. It was found that blood vessels grew through holes in the micro-ECoG substrate, spreading over the top of the device. Micro-hematomas were observed at varying time points after device implantation in every animal, and tissue growth between the micro-ECoG array and the window occurred in several cases. Use of the cranial window imaging technique with these devices enabled the observation of tissue changes that would normally go unnoticed with a standard device implantation scheme. PMID:23769960

  16. Mechanical Reliability of Devices Subdermally Implanted into the Young of Long-Lived and Endangered Wildlife

    NASA Astrophysics Data System (ADS)

    Hori, Bryan; Petrell, Royann J.; Fernlund, Goran; Trites, Andrew

    2012-09-01

    Service data does not exist for the strength of enclosures for subdermally implanted biotelemetry devices intended for young wild animals. Developing adequate tests especially for implants intended for endangered species is difficult due to the very limited availability of live animals and cadaverous tissue, ethical concerns about using them, and high enclosure costs. In this research, these limitations were overcome by taking a conservative approach to design and testing. Reliability tests were developed and performed to establish the likelihood that a thin subdermally and cranially implanted alumina enclosure would fail due to typical external forces related to diving, fights, and falls over the expected 30-year life time of sea lions. Cyclic fatigue tests indicative of deep dives performed out of tissue and at the 90% reliability level indicated no failure after 70,000 stress cycles at stresses of approximately 15 MPa; dynamic fatigue tests indicated a 5% probability of failure at 250 MPa; and puncture tests indicative of fight bites showed a 5% probability of failure at 1500 N. These values were far outside of what the animals might expect to encounter in real life. On the other hand, the response of the enclosure to impact outside of the tissue was failure at a mean energy level of 6.7 J. Modeling results predict that head impacts due to trampling by fighting sea lion males and falls over 1 m onto a rocky ledge typical of haul out environments would likely fracture an infant's head as well as the implant. The device can be implanted under an impact absorbing 1 cm blubber layer for extra protection. More service data for enclosures can be made more available despite limited availability of test animals if a conservative approach to testing is taken.

  17. Usefulness of Sonication of Cardiovascular Implantable Electronic Devices to Enhance Microbial Detection

    PubMed Central

    Nagpal, Avish; Patel, Robin; Greenwood-Quaintance, Kerryl E.; Baddour, Larry M.; Lynch, David T.; Lahr, Brian D.; Maleszewski, Joseph J.; Friedman, Paul A.; Hayes, David L.; Sohail, M. Rizwan

    2015-01-01

    The cardiovascular implantable electronic device (CIED) infection rate is rising disproportionately to the rate of device implantation. Identification of microorganisms that cause CIED infections is not always achieved using present laboratory techniques. We conducted a prospective study to determine whether device vortexing-sonication followed by culture of the resulting sonicate fluid would enhance microbial detection compared with traditional swab or pocket tissue cultures. Forty-two subjects with noninfected and 35 with infected CIEDs were prospectively enrolled over 12 months. One swab each from the device pocket and device surface, pocket tissue, and the CIED were collected from each patient. Swabs and tissues were cultured using routine methods. The CIED was processed in Ringer’s solution using vortexing-sonication and the resultant fluid semiquantitatively cultured. Tissue and swab growth was considered significant when colonies grew on ≥2 quadrants of the culture plate and device was considered significant when ≥20 colonies were isolated from 10 ml of sonicate fluid. In noninfected group, 5% of sonicate fluids yielded significant bacterial growth, compared with 5% of tissue cultures (p = 1.00) and 2% of both pocket and device swab cultures (p = 0.317 each). In infected group, significant bacterial growth was observed in 54% of sonicate fluids, significantly greater than the sensitivities of pocket swab (20%, p = 0.001), device swab (9%, p <0.001), or tissue (9%, p <0.001) culture. In conclusion, vortexing-sonication of CIEDs with semiquantitative culture of the resultant sonicate fluid results in a significant increase in the sensitivity of culture results, compared with swab or tissue cultures. PMID:25779615

  18. [Comparative test on puncture coring of two different needles used with the implantable drug-supplying device].

    PubMed

    Wan, Min; Wu, Ping; Song, Jinzi; Yu, Xin; Mou, Pengtao

    2010-11-01

    A comparison test on the number of puncture coring is conducted using the normal needle and the Huber needle in the injection area of the implantable drug-supplying device separately. The result indicates that the number of coring using the Huber needle is much less than that using the normal needle during the puncturing. So it is suggested to popularize the Huber needle in the drug transfusion of the implantable drug-supplying device. PMID:21360986

  19. Constraining OCT with Knowledge of Device Design Enables High Accuracy Hemodynamic Assessment of Endovascular Implants

    PubMed Central

    Brown, Jonathan; Lopes, Augusto C.; Kunio, Mie; Kolachalama, Vijaya B.; Edelman, Elazer R.

    2016-01-01

    Background Stacking cross-sectional intravascular images permits three-dimensional rendering of endovascular implants, yet introduces between-frame uncertainties that limit characterization of device placement and the hemodynamic microenvironment. In a porcine coronary stent model, we demonstrate enhanced OCT reconstruction with preservation of between-frame features through fusion with angiography and a priori knowledge of stent design. Methods and Results Strut positions were extracted from sequential OCT frames. Reconstruction with standard interpolation generated discontinuous stent structures. By computationally constraining interpolation to known stent skeletons fitted to 3D ‘clouds’ of OCT-Angio-derived struts, implant anatomy was resolved, accurately rendering features from implant diameter and curvature (n = 1 vessels, r2 = 0.91, 0.90, respectively) to individual strut-wall configurations (average displacement error ~15 μm). This framework facilitated hemodynamic simulation (n = 1 vessel), showing the critical importance of accurate anatomic rendering in characterizing both quantitative and basic qualitative flow patterns. Discontinuities with standard approaches systematically introduced noise and bias, poorly capturing regional flow effects. In contrast, the enhanced method preserved multi-scale (local strut to regional stent) flow interactions, demonstrating the impact of regional contexts in defining the hemodynamic consequence of local deployment errors. Conclusion Fusion of planar angiography and knowledge of device design permits enhanced OCT image analysis of in situ tissue-device interactions. Given emerging interests in simulation-derived hemodynamic assessment as surrogate measures of biological risk, such fused modalities offer a new window into patient-specific implant environments. PMID:26906566

  20. Implantation of venous access devices under local anesthesia: patients’ satisfaction with oral lorazepam

    PubMed Central

    Chang, De-Hua; Hiss, Sonja; Herich, Lena; Becker, Ingrid; Mammadov, Kamal; Franke, Mareike; Mpotsaris, Anastasios; Kleinert, Robert; Persigehl, Thorsten; Maintz, David; Bangard, Christopher

    2015-01-01

    Objective The aim of the study reported here was to evaluate patients’ satisfaction with implantation of venous access devices under local anesthesia (LA) with and without additional oral sedation. Materials and methods A total of 77 patients were enrolled in the prospective descriptive study over a period of 6 months. Subcutaneous implantable venous access devices through the subclavian vein were routinely implanted under LA. Patients were offered an additional oral sedative (lorazepam) before each procedure. The level of anxiety/tension, the intensity of pain, and patients’ satisfaction were evaluated before and immediately after the procedure using a visual analog scale (ranging from 0 to 10) with a standardized questionnaire. Results Patients’ satisfaction with the procedure was high (mean: 1.3±2.0) with no significant difference between the group with premedication and the group with LA alone (P=0.54). However, seven out of 30 patients (23.3%) in the group that received premedication would not undergo the same procedure without general anesthesia. There was no significant influence of lorazepam on the intensity of pain (P=0.88). In 12 out of 30 patients (40%) in the premedication group, the level of tension was higher than 5 on the visual analog scale during the procedure. In 21 out of 77 patients (27.3%), the estimate of the level of tension differed between the interventionist and the patient by 3 or more points in 21 out of 77 patients (27.3%). Conclusion Overall patient satisfaction is high for implantation of venous access devices under LA. A combination of LA with lorazepam administered orally might not be adequate for patients with a high level of anxiety and tension. The level of tension is often underestimated by the interventionist. Pre-procedural standardized questionnaires could be used to identify patients for whom a gradual approach of individualized sedation may be more effective. PMID:26185424

  1. Blood Product Utilization with Left Ventricular Assist Device Implantation: A Decade of Statewide Data.

    PubMed

    Quader, Mohammed; LaPar, Damien J; Wolfe, Luke; Ailawadi, Gorav; Rich, Jeffrey; Speir, Alan; Fonner, Clifford; Kasirajan, Vigneshwar

    2016-01-01

    Blood transfusion rates with cardiac surgery over time have decreased, this trend has not been examined for patients undergoing left ventricular assist device (LVAD) implantation. We investigated blood transfusion trends with LVAD implantation in a statewide database. Between July 2004 and June 2014, 666 LVADs were implanted (age 54.5 ± 12.6 years. 77% men). Reoperation for bleeding was required in 22% of cases. Postoperative mortality was 13.2%. Over the decade, use of any blood products with LVAD surgery by year ranged from 83% to 100% (92 ± 5.3%). Intraoperative and postoperative blood products use was 71.8% and 73%, respectively. Only 7.4% of patients did not receive any blood products. Blood transfusion during surgery consisted of plasma (60%), platelets (56%), red blood cells (RBCs) (44.3%), and cryoprecipitate (32%), whereas after surgery RBC use was more frequent (68%). Compared with the initial 5 years (2005-2009), the units of blood transfused in the second 5 years (2010-2014) were significantly less, 21 ± 23 units vs. 16.6 ± 20.5 units, p = 0.0038. By multivariable analysis, preoperative factors predictive of blood transfusion are lower hematocrit, lower BMI, reoperative surgery, requirement for intraaortic balloon pump (IABP), and nonelective surgery. Blood transfusion with LVAD implantation remains very high. However, the amount of blood product transfused has decreased in the last 5 years. PMID:26809087

  2. Corrosion of silicon integrated circuits and lifetime predictions in implantable electronic devices.

    PubMed

    Vanhoestenberghe, A; Donaldson, N

    2013-06-01

    Corrosion is a prime concern for active implantable devices. In this paper we review the principles underlying the concepts of hermetic packages and encapsulation, used to protect implanted electronics, some of which remain widely overlooked. We discuss how technological advances have created a need to update the way we evaluate the suitability of both protection methods. We demonstrate how lifetime predictability is lost for very small hermetic packages and introduce a single parameter to compare different packages, with an equation to calculate the minimum sensitivity required from a test method to guarantee a given lifetime. In the second part of this paper, we review the literature on the corrosion of encapsulated integrated circuits (ICs) and, following a new analysis of published data, we propose an equation for the pre-corrosion lifetime of implanted ICs, and discuss the influence of the temperature, relative humidity, encapsulation and field-strength. As any new protection will be tested under accelerated conditions, we demonstrate the sensitivity of acceleration factors to some inaccurately known parameters. These results are relevant for any application of electronics working in a moist environment. Our comparison of encapsulation and hermetic packages suggests that both concepts may be suitable for future implants. PMID:23685410

  3. Dental management of a patient fitted with subcutaneous Implantable Cardioverter Defibrillator device and concomitant warfarin treatment

    PubMed Central

    Shah, Altaf Hussain; Khalil, Hesham Saleh; Kola, Mohammed Zaheer

    2015-01-01

    Automated Implantable Cardioverter Defibrillators (AICD), simply known as an Implantable Cardioverter Defibrillator (ICD), has been used in patients for more than 30 years. An Implantable Cardioverter Defibrillator (ICD) is a small battery-powered electrical impulse generator that is implanted in patients who are at a risk of sudden cardiac death due to ventricular fibrillation, ventricular tachycardia or any such related event. Typically, patients with these types of occurrences are on anticoagulant therapy. The desired International Normalized Ratio (INR) for these patients is in the range of 2–3 to prevent any subsequent cardiac event. These patients possess a challenge to the dentist in many ways, especially during oral surgical procedures, and these challenges include risk of sudden death, control of post-operative bleeding and pain. This article presents the dental management of a 60 year-old person with an ICD and concomitant anticoagulant therapy. The patient was on multiple medications and was treated for a grossly neglected mouth with multiple carious root stumps. This case report outlines the important issues in managing patients fitted with an ICD device and at a risk of sudden cardiac death. PMID:26236132

  4. Implantable Port Devices, Complications and outcome in Pediatric Cancer, a Retrospective Study

    PubMed Central

    Esfahani, H; Ghorbanpor, M; Tanasan, A

    2016-01-01

    Background Peripheral blood vessels, due to availability are used for many years in cancer patients, however in patients with potentially harmful drugs to skin (vesicant drugs) or difficult accessibility to vessels, the use of implantable port (totally implantable venous access port-TIVAP) devices with central vascular access are important. Materials and Methods In this retrospective study, 85 pediatric cancer patients younger than 16 years, with TIVAP implantation, were followed for their complications and outcome. In addition to demographic data, patients’ port complications were assessed and compared with published articles. Results Mean days of implanted port usage were 531 ± 358 days in all patients. This period was 287 ±194 days in complicated patients. Complications included as infection (tunnel infection and catheter related blood-stream infection), malfunction and thrombosis, skin erosion, tube avulsion, and tube adhesion to the adjacent vessels were seen in 30.6% of patients. Conclusion According to the published data and this experience, the most common complications in TIVAP are infection and catheter malfunction. It is important to notice that in order to prolong its efficacious life, effective sterilization methods, prevention of clot formation and trauma, are the most useful measures. PMID:27222696

  5. Relationship of Tricuspid Repair at the time of Left Ventricular Assist Device Implantation and Survival

    PubMed Central

    Brewer, Robert J.; Cabrera, Rafael; El-Atrache, Mazen; Zafar, Amna; Hrobowski, Tara N.; Nemeh, Hassan M.; Selektor, Yelena; Paone, Gaetano; Williams, Celeste T.; Velez, Mauricio; Tita, Cristina; Morgan, Jeffrey A.; Lanfear, David E.

    2015-01-01

    Purpose Tricuspid regurgitation contributes to right ventricular failure (RVF) and is associated with worse clinical outcomes in patients undergoing Left Ventricular Assist Device (LVAD). However, whether tricuspid valve repair (TVR) at the time of LVAD implantation improves outcomes is not clear. Methods We identified all patients undergoing initial implantation of a long-term continuous flow LVAD at our institution from 3/2006 to 8/2011. We assessed the impact of TVR on survival and incidence of RVF using Kaplan-Meier curves and proportional hazards regression adjusted for age, gender, baseline tricuspid regurgitation, RV function, MELD score, albumin, and indication (bridge vs. destination). Results A total of 101 patients were included in the analysis, of which 14 patients underwent TVR concomitant LVAD. All TVR patients had moderate or severe baseline regurgitation. Crude survival was not different between groups. In multivariable models adjusted for confounding factors, TVR showed a significant association with improved survival (HR=0.1, p=0.049). Adjusted models showed no difference in RVF. Conclusions In this cohort of patients TVR at the time of LVAD implantation appears associated with better survival. Additional larger studies are needed to verify the effect of TVR at the time of LVAD implantation, and whether it should be utilized more frequently. PMID:25450319

  6. Inductive coupling links for lowest misalignment effects in transcutaneous implanted devices.

    PubMed

    Abbas, Saad Mutashar; Hannan, Mahammad A; Samad, Salina A; Hussain, Aini

    2014-06-01

    Use of transcutaneous inductive links is a widely known method for the wireless powering of bio-implanted devices such as implanted microsystems. The design of the coil for inductive links is generally not optimal. In this study, inductive links were used on the basis of the small loop antenna theory to reduce the effects of lateral coil misalignments on the biological human tissue model at 13.56 MHz. The tissue, which measures 60 mm×70 mm×5 mm, separates the reader and the implanted coils. The aligned coils and the lateral misalignment coils were investigated in different parametric x-distance misalignments. The optimal coil layout was developed on the basis of the layout rules presented in previous studies. Results show that the gain around the coils, which were separated by wet and dry skin, was constant and confirmed the omnidirectional radiation pattern even though the lateral misalignment between coils was smaller or greater than the implanted coil radius. This misalignment can be <4 mm or >6 mm up to 8 mm. Moreover, coil misalignments and skin condition do not affect the efficient performance of the coil. PMID:24445231

  7. Speech Intelligibility of Pediatric Cochlear Implant Recipients With 7 Years of Device Experience

    PubMed Central

    Peng, Shu-Chen; Spencer, Linda J.; Tomblin, J. Bruce

    2011-01-01

    Speech intelligibility of 24 prelingually deaf pediatric cochlear implant (CI) recipients with 84 months of device experience was investigated. Each CI participant's speech samples were judged by a panel of 3 listeners. Intelligibility scores were calculated as the average of the 3 listeners' responses. The average write-down intelligibility score was 71.54% (SD = 29.89), and the average rating-scale intelligibility score was 3.03 points (SD = 1.01). Write-down and rating-scale intelligibility scores were highly correlated (r = .91, p < .001). Linear regression analyses revealed that both age at implantation and different speech-coding strategies contribute to the variability of CI participants' speech intelligibility. Implantation at a younger age and the use of the spectral-peak speech-coding strategy yielded higher intelligibility scores than implantation at an older age and the use of the multipeak speech-coding strategy. These results serve as indices for clinical applications when long-term advancements in spoken-language development are considered for pediatric CI recipients. PMID:15842006

  8. A phone-assistive device based on Bluetooth technology for cochlear implant users.

    PubMed

    Qian, Haifeng; Loizou, Philipos C; Dorman, Michael F

    2003-09-01

    Hearing-impaired people, and particularly hearing-aid and cochlear-implant users, often have difficulty communicating over the telephone. The intelligibility of telephone speech is considerably lower than the intelligibility of face-to-face speech. This is partly because of lack of visual cues, limited telephone bandwidth, and background noise. In addition, cellphones may cause interference with the hearing aid or cochlear implant. To address these problems that hearing-impaired people experience with telephones, this paper proposes a wireless phone adapter that can be used to route the audio signal directly to the hearing aid or cochlear implant processor. This adapter is based on Bluetooth technology. The favorable features of this new wireless technology make the adapter superior to traditional assistive listening devices. A hardware prototype was built and software programs were written to implement the headset profile in the Bluetooth specification. Three cochlear implant users were tested with the proposed phone-adapter and reported good speech quality. PMID:14518792

  9. [Remote monitoring for follow-up of patients with implantable cardiac devices].

    PubMed

    Oliveira, Mário; Silva Cunha, Pedro; da Silva, Nogueira

    2013-03-01

    With a widening of indications for cardiac devices, especially in view of the clinical benefits of implantable cardioverter-defibrillators and cardiac resynchronization therapy, the number of patients with such devices is growing steadily. However, the resources required, and the need for long-term regular interrogation in dedicated clinics, represent a significant burden for already overstretched electrophysiology teams and hospital services. Remote telemonitoring is increasingly used for such follow-up, as it is a safe and effective alternative to conventional follow-up programs in outpatient clinics. This technology has been shown to be technically reliable, enabling early identification of device malfunction, arrhythmic events and heart failure decompensation, while reducing the risk of under-reporting, the number of outpatient clinic visits and hospitalizations due to cardiac events, and healthcare costs. Further studies are needed to determine how best to implement this new technology in a cost-effective manner, and what new legislation governing the use of remote monitoring in clinical practice may be required. In this article, we describe current systems, review the technical and clinical evidence in the literature regarding remote monitoring of implantable cardiac devices, and expand on outstanding questions. PMID:23415739

  10. An implantable active-targeting micelle-in-nanofiber device for efficient and safe cancer therapy.

    PubMed

    Yang, Guang; Wang, Jie; Wang, Yi; Li, Long; Guo, Xing; Zhou, Shaobing

    2015-02-24

    Nanocarriers have attracted broad attention in cancer therapy because of their ability to carry drugs preferentially into cancer tissue, but their application is still limited due to the systemic toxicity and low delivery efficacy of intravenously delivered chemotherapeutics. In this study, we develop a localized drug delivery device with combination of an active-targeting micellar system and implantable polymeric nanofibers. This device is achieved first by the formation of hydrophobic doxorubicin (Dox)-encapsulated active-targeting micelles assembled from a folate-conjugated PCL-PEG copolymer. Then, fabrication of the core-shell polymeric nanofibers is achieved with coaxial electrospinning in which the core region consists of a mixture of poly(vinyl alcohol) and the micelles and the outer shell layer consists of cross-linked gelatin. In contrast to the systematic administration of therapeutics via repeatedly intravenous injections of micelles, this implantable device has these capacities of greatly reducing the drug dose, the frequency of administration and side effect of chemotherapeutic agents while maintaining highly therapeutic efficacy against artificial solid tumors. This micelle-based nanofiber device can be developed toward the next generation of nanomedicine for efficient and safe cancer therapy. PMID:25602381

  11. A Computational Model for Thrombus Formation in Response to Cardiovascular Implantable Devices

    NASA Astrophysics Data System (ADS)

    Horn, John; Ortega, Jason; Maitland, Duncan

    2014-11-01

    Cardiovascular implantable devices elicit complex physiological responses within blood. Notably, alterations in blood flow dynamics and interactions between blood proteins and biomaterial surface chemistry may lead to the formation of thrombus. For some devices, such as stents and heart valves, this is an adverse outcome. For other devices, such as embolic aneurysm treatments, efficient blood clot formation is desired. Thus a method to study how biomedical devices induce thrombosis is paramount to device development and optimization. A multiscale, multiphysics computational model is developed to predict thrombus formation within the vasculature. The model consists of a set of convection-diffusion-reaction partial differential equations for blood protein constituents involved in the progression of the clotting cascades. This model is used to study thrombus production from endovascular devices with the goal of optimizing the device design to generate the desired clotting response. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Progress of drug-loaded polymeric micelles into clinical studies.

    PubMed

    Cabral, Horacio; Kataoka, Kazunori

    2014-09-28

    Targeting tumors with long-circulating nano-scaled carriers is a promising strategy for systemic cancer treatment. Compared with free small therapeutic agents, nanocarriers can selectively accumulate in solid tumors through the enhanced permeability and retention (EPR) effect, which is characterized by leaky blood vessels and impaired lymphatic drainage in tumor tissues, and achieve superior therapeutic efficacy, while reducing side effects. In this way, drug-loaded polymeric micelles, i.e. self-assemblies of amphiphilic block copolymers consisting of a hydrophobic core as a drug reservoir and a poly(ethylene glycol) (PEG) hydrophilic shell, have demonstrated outstanding features as tumor-targeted nanocarriers with high translational potential, and several micelle formulations are currently under clinical evaluation. This review summarizes recent efforts in the development of these polymeric micelles and their performance in human studies, as well as our recent progress in polymeric micelles for the delivery of nucleic acids and imaging. PMID:24993430

  13. Novel Methods of Lipidic Nanoparticle Preparation and Drug Loading

    NASA Astrophysics Data System (ADS)

    Maitani, Y.

    2013-09-01

    In improving cancer chemotherapy, lipidic nanoparticle systems for drug delivery, such as liposomes and emulsions, have received much attention because they are capable of delivering their drug payload selectively to cancer cells and of circulating for a long period in the bloodstream. In addition, lipidic nanoparticles have been examined for use in gene delivery as a non-viral vector. Preparation methods of particles and drug loading methods are crucial for the physicochemical properties of nanoparticles, which are the key aspects for pharmaceutical applications. This review describes new preparation methods for nanoparticles and a loading method for drugs using nanotechnology, including an evaluation of nanoparticles from the point of drug release for applications in cancer therapy and gene delivery.

  14. BION microstimulators: a case study in the engineering of an electronic implantable medical device.

    PubMed

    Kane, Michael J; Breen, Paul P; Quondamatteo, Fabio; ÓLaighin, Gearóid

    2011-01-01

    The BION (Bionic Neuron) is a single channel implantable neurostimulator of unique design that can be delivered by injection. The development of the BION injectable neurostimulators exemplifies a challenging, but well posed medical design problem addressed with a successful strategy for prioritizing and resolving the biomedical and technological challenges. Though some performance requirements required post-evaluation revision, all fundamental goals were realized. A small number of significant design corrections occurred because the device requirements did not include the full scope of environmental demands. The design has spawned a number of variants optimized for diverse biomedical applications, and its clinical applications continue to evolve. The BION development history demonstrates design successes worth emulating and design pitfalls that may be avoidable for future medical device development teams. This paper serves as an introduction to the BION microstimulator technology and as an analysis of the design process used to develop the early clinical devices. PMID:21087890

  15. Recent Advances in Transcatheter Aortic Valve Implantation: Novel Devices and Potential Shortcomings

    PubMed Central

    Blumenstein, J.; Liebetrau, C.; Linden, A. Van; Moellmann, H.; Walther, T.; Kempfert, J.

    2013-01-01

    During the past years transcatheter aortic valve implantation (TAVI) has evolved to a standard technique for the treatment of high risk patients suffering from severe aortic stenosis. Worldwide the number of TAVI procedures is increasing exponentially. In this context both the transapical antegrade (TA) and the transfemoral retrograde (TF) approach are predominantly used and can be considered as safe and reproducible access sites for TAVI interventions. As a new technology TAVI is in a constant progress regarding the development of new devices. While in the first years only the Edwards SAPIEN™ and the Medtronic CoreValve™ prostheses were commercial available, recently additional devices obtained CE-mark approval and others have entered initial clinical trials. In addition to enhance the treatment options in general, the main driving factor to further develop new device iterations is to solve the drawbacks of the current TAVI systems: paravalvular leaks, occurrence of AV-blocks and the lack of full repositionability. PMID:24313644

  16. Implantable micro-optical semiconductor devices for optical theranostics in deep tissue

    NASA Astrophysics Data System (ADS)

    Takehara, Hiroaki; Katsuragi, Yuji; Ohta, Yasumi; Motoyama, Mayumi; Takehara, Hironari; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2016-04-01

    Optical therapy and diagnostics using photoactivatable molecular tools are promising approaches in medical applications; however, a method for the delivery of light deep inside biological tissues remains a challenge. Here, we present a method of illumination and detection of light using implantable micro-optical semiconductor devices. Unlike in conventional transdermal light delivery methods using low-energy light (>620 nm or near-infrared light), in our method, high-energy light (470 nm) can also be used for illumination. Implanted submillimeter-sized light-emitting diodes were found to provide sufficient illumination (0.6-4.1 mW/cm2), and a complementary metal-oxide-semiconductor image sensor enabled the detection of fluorescence signals.

  17. Feasibility evaluation of a remote monitoring system for implantable cardiac devices in Japan.

    PubMed

    Ando, Kenji; Koyama, Junjiroh; Abe, Yoshihisa; Sato, Toshiaki; Shoda, Morio; Soga, Yoshimitsu; Nobuyoshi, Masakiyo; Honda, Toshihiro; Nakao, Koichi; Terata, Ken; Kadowaki, Ken; Maeda, Akiko; Ogawa, Satoshi; Manaka, Tetsuyuki; Hagiwara, Nobuhisa; Doi, Kentaro

    2011-01-01

    The number of implanted cardiac devices has been growing steadily over the last several years. Systems to monitor device data remotely have been introduced with the goal of reducing follow-up burden for both patients and physicians. Since the introduction of telemedicine depends greatly on the situations that are unique to each country, the acceptance of cardiac device remote monitoring in Japan was analyzed.A total of 203 patients who had previously undergone cardiac device implantation were enrolled. The subjects were provided with a CareLink Monitor that performed interrogation and transmission of device data at home, and then the physicians reviewed the data via a website at one and 3 months after baseline visits. A total of 470 transmissions were made. Questionnaires were completed by subjects and physicians to evaluate acceptance, ease of use, and satisfaction with the system. More than 87% of the subjects felt the Monitor was easy to use and nearly all of the physicians were satisfied with the system. A majority of patients felt reassured by having their devices assessed from a remote location and preferred the decreased number of clinic visits that were possible when using the Monitor. The patients spent an average of 168.2 minutes per clinic visit, whereas follow-up time was reduced to 13.0 minutes by remote monitoring. Physician consultation time was reduced by 2.7 minutes.The CareLink Network was well accepted by both the patients and physicians. Underlying issues did emerge, but once they are overcome, the system appears to have great potential to improve the quality of care given by healthcare providers. PMID:21321467

  18. A novel implantable device for a minimally invasive surgical treatment of obstructive sleep apnea: design and preclinical safety assessment

    PubMed Central

    Gillis, Edward; Rampersaud, Charles; Pease, Emmanuelle; Buscemi, Paul

    2016-01-01

    Background In obstructive sleep apnea (OSA), occlusion of the upper airway by soft tissue causes intermittent hypoxemia and can have serious sequelae. A novel implantable medical device for OSA is composed of a linear silicone elastic element held in an extended state by a bioabsorbable external sheath. The implant is delivered to the tongue base or soft palate via a minimally invasive approach. Normal tissue healing anchors the device at the attachment points before the bioabsorbable material dissolves and the elastic element contracts to stabilize the surrounding tissue. Methods Device prototypes were evaluated in multiple investigations: 1) a finite elements analysis model simulated the movement of the tongue base during sleep with and without the implant; 2) dynamic mechanical testing simulated 10 years’ normal use; 3) cadaveric implantations were conducted; 4) an ovine study in which implants of varying design were evaluated via gross pathology and histological assessment; and 5) a canine study in which implants of varying design in the tongue base and soft palate were evaluated via gross pathology and histological assessment. Results 1) The implant was capable of reducing ~95% of tongue base movement during simulated sleep; 2) implants remained intact throughout the testing with no evidence of creep fatigue or change in dynamic modulus; 3) the device could be reliably deployed in the desired placement locations and was appropriate for various anatomies; and 4) all implants were well tolerated through 1 year, with minimal inflammatory responses. Conclusion This new minimally invasive device for OSA has been demonstrated, through various bench and animal testing, to be safe, well tolerated, suitable for long-term use, and to function as intended. No adverse health consequences were observed in the animals, and histological evaluation indicated good healing. This study establishes proof of concept and supports human trials. PMID:27499652

  19. Computational analysis of pediatric ventricular assist device implantation to decrease cerebral particulate embolization.

    PubMed

    Nguyen, ThuyTien; Argueta-Morales, I Ricardo; Guimond, Stephen; Clark, William; Ceballos, Andres; Osorio, Ruben; Divo, Eduardo A; De Campli, William M; Kassab, Alain J

    2016-01-01

    Stroke is the most devastating complication after ventricular assist device (VAD) implantation with a 19% incidence and 65% mortality in the pediatric population. Current pediatric VAD technology and anticoagulation strategies alone are suboptimal. VAD implantation assisted by computational methods (CFD) may contribute reducing the risk of cerebral embolization. Representative three-dimensional aortic arch models of an infant and a child were generated. An 8 mm VAD outflow-graft (VAD-OG) anastomosed to the aorta was rendered and CFD was applied to study blood flow patterns. Particle tracks, originating in the VAD, were computed with a Lagrangian phase model and the percentage of particles entering the cerebral vessels was calculated. Eight implantation configurations (infant = 5 and child = 3) and 5 particle sizes (0.5, 1, 2, 3, and 4 mm) were considered. For the infant model, percentage of particles entering the cerebral vessels ranged from 15% for a VAD-OG anastomosed at 90° to the aorta, to 31% for 30° VAD-OG anastomosis (overall percentages: X(2) = 10,852, p < 0.0001). For the child model, cerebral embolization ranged from 9% for the 30° VAD-OG anastomosis to 15% for the 60° anastomosis (overall percentages: χ(2) = 10,323, p < 0.0001). Using detailed CFD calculations, we demonstrate that the risk of stroke depends significantly on the VAD implantation geometry. In turn, the risk probably depends on patient-specific anatomy. CFD can be used to optimize VAD implantation geometry to minimize stroke risk. PMID:26214744

  20. A Prospective Evaluation of a Protocol for Magnetic Resonance Imaging of Patients With Implanted Cardiac Devices

    PubMed Central

    Nazarian, Saman; Hansford, Rozann; Roguin, Ariel; Goldsher, Dorith; Zviman, Menekhem M.; Lardo, Albert C.; Caffo, Brian S.; Frick, Kevin D.; Kraut, Michael A.; Kamel, Ihab R.; Calkins, Hugh; Berger, Ronald D.; Bluemke, David A.; Halperin, Henry R.

    2015-01-01

    Background Magnetic resonance imaging (MRI) is avoided in most patients with implanted cardiac devices because of safety concerns. Objective To define the safety of a protocol for MRI at the commonly used magnetic strength of 1.5 T in patients with implanted cardiac devices. Design Prospective nonrandomized trial. (ClinicalTrials.gov registration number: NCT01130896) Setting One center in the United States (94% of examinations) and one in Israel. Patients 438 patients with devices (54% with pacemakers and 46% with defibrillators) who underwent 555 MRI studies. Intervention Pacing mode was changed to asynchronous for pacemaker-dependent patients and to demand for others. Tachy-arrhythmia functions were disabled. Blood pressure, electrocardiography, oximetry, and symptoms were monitored by a nurse with experience in cardiac life support and device programming who had immediate backup from an electrophysiologist. Measurements Activation or inhibition of pacing, symptoms, and device variables. Results In 3 patients (0.7% [95% CI, 0% to 1.5%]), the device reverted to a transient back-up programming mode without long-term effects. Right ventricular (RV) sensing (median change, 0 mV [interquartile range {IQR}, −0.7 to 0 V]) and atrial and right and left ventricular lead impedances (median change, −2 Ω[IQR, −13 to 0 Ω], −4 Ω [IQR, −16 to 0 Ω], and −11 Ω [IQR, −40 to 0 Ω], respectively) were reduced immediately after MRI. At long-term follow-up (61% of patients), decreased RV sensing (median, 0 mV, [IQR, −1.1 to 0.3 mV]), decreased RV lead impedance (median, −3 Ω, [IQR, −29 to 15 Ω]), increased RV capture threshold (median, 0 V, IQR, [0 to 0.2 Ω]), and decreased battery voltage (median, −0.01 V, IQR, −0.04 to 0 V) were noted. The observed changes did not require device revision or reprogramming. Limitations Not all available cardiac devices have been tested. Long-term in-person or telephone follow-up was unavailable in 43 patients (10%), and

  1. Cochlear Implants

    MedlinePlus

    ... electrodes are inserted. The electronic device at the base of the electrode array is then placed under ... FDA approval for implants The Food and Drug Administration (FDA) regulates cochlear implant devices for both adults ...

  2. Regulatory Considerations in the Design and Manufacturing of Implantable 3D-Printed Medical Devices.

    PubMed

    Morrison, Robert J; Kashlan, Khaled N; Flanangan, Colleen L; Wright, Jeanne K; Green, Glenn E; Hollister, Scott J; Weatherwax, Kevin J

    2015-10-01

    Three-dimensional (3D) printing, or additive manufacturing, technology has rapidly penetrated the medical device industry over the past several years, and innovative groups have harnessed it to create devices with unique composition, structure, and customizability. These distinctive capabilities afforded by 3D printing have introduced new regulatory challenges. The customizability of 3D-printed devices introduces new complexities when drafting a design control model for FDA consideration of market approval. The customizability and unique build processes of 3D-printed medical devices pose unique challenges in meeting regulatory standards related to the manufacturing quality assurance. Consistent material powder properties and optimal printing parameters such as build orientation and laser power must be addressed and communicated to the FDA to ensure a quality build. Postprinting considerations unique to 3D-printed devices, such as cleaning, finishing and sterilization are also discussed. In this manuscript we illustrate how such regulatory hurdles can be navigated by discussing our experience with our group's 3D-printed bioresorbable implantable device. PMID:26243449

  3. A 100-channel hermetically sealed implantable device for chronic wireless neurosensing applications.

    PubMed

    Yin, Ming; Borton, David A; Aceros, Juan; Patterson, William R; Nurmikko, Arto V

    2013-04-01

    A 100-channel fully implantable wireless broadband neural recording system was developed. It features 100 parallel broadband (0.1 Hz-7.8 kHz) neural recording channels, a medical grade 200 mAh Li-ion battery recharged inductively at 150 kHz , and data telemetry using 3.2 GHz to 3.8 GHz FSK modulated wireless link for 48 Mbps Manchester encoded data. All active electronics are hermetically sealed in a titanium enclosure with a sapphire window for electromagnetic transparency. A custom, high-density configuration of 100 individual hermetic feedthrough pins enable connection to an intracortical neural recording microelectrode array. A 100 MHz bandwidth custom receiver was built to remotely receive the FSK signal and achieved -77.7 dBm sensitivity with 10(-8) BER at 48 Mbps data rate. ESD testing on all the electronic inputs and outputs has proven that the implantable device satisfies the HBM Class-1B ESD Standard. In addition, the evaluation of the worst-case charge density delivered to the tissue from each I/O pin verifies the patient safety of the device in the event of failure. Finally, the functionality and reliability of the complete device has been tested on-bench and further validated chronically in ongoing freely moving swine and monkey animal trials for more than one year to date. PMID:23853294

  4. Design and finite element analysis of a novel sliding rod microscrew implantation device for mandibular prognathism

    PubMed Central

    Li, Yanfeng; Lv, Yuan; Lu, Yongjin; Zeng, Pan; Zeng, Xianglong; Guo, Xiaoqian; Han, Weili

    2015-01-01

    Tooth distalization is an effective approach for mandibular prognathism. Current distalization devices are bulky and clinically complicated. Here, we designed a novel molar distalization device by using a sliding rod and a microscrew and performed a mechanical analysis and finite element model (FEM) analysis of force distribution and displacement of the upper canine, first and second premolar and first molar. A 2D FEM was constructed using the Beam3 element and a 3D FEM was constructed of the mandibular teeth, the periodontal membrane, and the alveolar bones using the UG software. The upper first molar was divided into 12 points on the dental surface to facilitate stress analysis. Force analysis using the ANSYS WORKBECNH revealed that, both horizontally and vertically, the traction force causing distalization of the first molar decreased when the spring coil moved down the L shaped sliding rod. The 3D FEM force analysis revealed distomedial displacement of the upper first molar when the sliding rod microscrew implantation device caused distalization of the molar. These findings support further exploration for the use of the sliding rod microscrew implants as an anchorage for group distal movement of the teeth of patients with mandibular prognathism. PMID:26379860

  5. Position Estimation Method of Medical Implanted Devices Using Estimation of Propagation Velocity inside Human Body

    NASA Astrophysics Data System (ADS)

    Kawasaki, Makoto; Kohno, Ryuji

    Wireless communication devices in the field of medical implant, such as cardiac pacemakers and capsule endoscopes, have been studied and developed to improve healthcare systems. Especially it is very important to know the range and position of each device because it will contribute to an optimization of the transmission power. We adopt the time-based approach of position estimation using ultra wideband signals. However, the propagation velocity inside the human body differs in each tissue and each frequency. Furthermore, the human body is formed of various tissues with complex structures. For this reason, propagation velocity is different at a different point inside human body and the received signal so distorted through the channel inside human body. In this paper, we apply an adaptive template synthesis method in multipath channel for calculate the propagation time accurately based on the output of the correlator between the transmitter and the receiver. Furthermore, we propose a position estimation method using an estimation of the propagation velocity inside the human body. In addition, we show by computer simulation that the proposal method can perform accurate positioning with a size of medical implanted devices such as a medicine capsule.

  6. A 100-Channel Hermetically Sealed Implantable Device for Chronic Wireless Neurosensing Applications

    PubMed Central

    Yin, Ming; Borton, David A.; Aceros, Juan; Patterson, William R.; Nurmikko, Arto V.

    2014-01-01

    A 100-channel fully implantable wireless broadband neural recording system was developed. It features 100 parallel broadband (0.1 Hz–7.8 kHz) neural recording channels, a medical grade 200 mAh Li-ion battery recharged inductively at 150 kHz, and data telemetry using 3.2 GHz to 3.8 GHz FSK modulated wireless link for 48 Mbps Manchester encoded data. All active electronics are hermetically sealed in a titanium enclosure with a sapphire window for electromagnetic transparency. A custom, high-density configuration of 100 individual hermetic feedthrough pins enable connection to an intracortical neural recording microelectrode array. A 100 MHz bandwidth custom receiver was built to remotely receive the FSK signal and achieved −77.7 dBm sensitivity with 10−8 BER at 48 Mbps data rate. ESD testing on all the electronic inputs and outputs has proven that the implantable device satisfies the HBM Class-1B ESD Standard. In addition, the evaluation of the worst-case charge density delivered to the tissue from each I/O pin verifies the patient safety of the device in the event of failure. Finally, the functionality and reliability of the complete device has been tested on-bench and further validated chronically in ongoing freely moving swine and monkey animal trials for more than one year to date. PMID:23853294

  7. Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth

    PubMed Central

    Zhu, Wei; Lee, Se-Jun; Castro, Nathan J.; Yan, Dayun; Keidar, Michael; Zhang, Lijie Grace

    2016-01-01

    Nano-based drug delivery devices allowing for effective and sustained targeted delivery of therapeutic agents to solid tumors have revolutionized cancer treatment. As an emerging biomedical technique, cold atmospheric plasma (CAP), an ionized non-thermal gas mixture composed of various reactive oxygen species, reactive nitrogen species, and UV photons, shows great potential for cancer treatment. Here we seek to develop a new dual cancer therapeutic method by integrating promising CAP and novel drug loaded core-shell nanoparticles and evaluate its underlying mechanism for targeted breast cancer treatment. For this purpose, core-shell nanoparticles were synthesized via co-axial electrospraying. Biocompatible poly (lactic-co-glycolic acid) was selected as the polymer shell to encapsulate anti-cancer therapeutics. Results demonstrated uniform size distribution and high drug encapsulation efficacy of the electrosprayed nanoparticles. Cell studies demonstrated the effectiveness of drug loaded nanoparticles and CAP for synergistic inhibition of breast cancer cell growth when compared to each treatment separately. Importantly, we found CAP induced down-regulation of metastasis related gene expression (VEGF, MTDH, MMP9, and MMP2) as well as facilitated drug loaded nanoparticle uptake which may aid in minimizing drug resistance-a major problem in chemotherapy. Thus, the integration of CAP and drug encapsulated nanoparticles provides a promising tool for the development of a new cancer treatment strategy. PMID:26917087

  8. Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth.

    PubMed

    Zhu, Wei; Lee, Se-Jun; Castro, Nathan J; Yan, Dayun; Keidar, Michael; Zhang, Lijie Grace

    2016-01-01

    Nano-based drug delivery devices allowing for effective and sustained targeted delivery of therapeutic agents to solid tumors have revolutionized cancer treatment. As an emerging biomedical technique, cold atmospheric plasma (CAP), an ionized non-thermal gas mixture composed of various reactive oxygen species, reactive nitrogen species, and UV photons, shows great potential for cancer treatment. Here we seek to develop a new dual cancer therapeutic method by integrating promising CAP and novel drug loaded core-shell nanoparticles and evaluate its underlying mechanism for targeted breast cancer treatment. For this purpose, core-shell nanoparticles were synthesized via co-axial electrospraying. Biocompatible poly (lactic-co-glycolic acid) was selected as the polymer shell to encapsulate anti-cancer therapeutics. Results demonstrated uniform size distribution and high drug encapsulation efficacy of the electrosprayed nanoparticles. Cell studies demonstrated the effectiveness of drug loaded nanoparticles and CAP for synergistic inhibition of breast cancer cell growth when compared to each treatment separately. Importantly, we found CAP induced down-regulation of metastasis related gene expression (VEGF, MTDH, MMP9, and MMP2) as well as facilitated drug loaded nanoparticle uptake which may aid in minimizing drug resistance-a major problem in chemotherapy. Thus, the integration of CAP and drug encapsulated nanoparticles provides a promising tool for the development of a new cancer treatment strategy. PMID:26917087

  9. Skirted Cannula Technique for Apical Cannulation in Implantation of Centrimag Left Ventricular Assist Device.

    PubMed

    Shen, Ta-Chung; Tsai, Kuei-Ton; Hu, Chin-Yuan; Chen, Robert Jeen-Chen

    2016-06-01

    The CentriMag, an extracorporeal short-term ventricular assist device designed for treatment of patients with acute cardiogenic shock, is Conformité Européenne-marked in Europe for use up to 30 days. Extended use beyond the licensed period is not uncommon, however. We have developed a skirted cannula technique for apical cannulation in implantation of the Centrimag. This technique allows easy positioning of the cannula and excellent hemostasis. It also offers secure fixation of the cannula so that patients can ambulate and attend rehabilitation programs should extended use be anticipated. PMID:27211964

  10. [Magnetic urethral closure device. Negative outcome after implantation for the treatment of female urinary incontinence].

    PubMed

    Anding, R; van Ahlen, H; Müller, S C; Latz, S

    2015-07-01

    We report on a negative outcome after implantation of a magnetic urethral closure device, consisting of one part screwed into the pubic bone and one part as a vaginal cone, for the treatment of urinary stress incontinence grade III. Continence was never achieved for the patient. The urethra narrowed over time due to erosion and scarring and the patient started intermittent catheterization, because spontaneous micturition was not possible. The magnet was broken, the bladder neck was eroded, several fragments were found in the bladder, and numerous fragments were scattered throughout the small pelvis. Surgery consisted of removing most of the fragments, followed by bladder neck closure and suprapubic diversion. PMID:25989875

  11. Analysis of intellectual properties on animal-derived regenerative, implantable medical devices.

    PubMed

    Wang, Hongman; Li, Chunying

    2016-03-01

    This article analyses and summarizes issues of intellectual property involved in animal-derived regenerative, implantable medical devices (ADRIMD) in order to better understand global trends in patent applications and disclosures, the legal status of patent families (i.e. sets of patents filed in various countries to protect a single invention), and International Patent Classification topics such as main assignee and core expertise. Analysis of research trends will enhance and inform the decision-making capacity of researchers, investors, government regulators and other stake-holders as they undertake to develop, deploy, invest in or regulate ADRIMD. PMID:26816653

  12. Effect of Preoperative Albumin Levels on Outcomes in Patients Undergoing Left Ventricular Device Implantation.

    PubMed

    Go, Pauline H; Hodari, Arielle; Nemeh, Hassan W; Borgi, Jamil; Lanfear, David E; Williams, Celeste T; Paone, Gaetano; Morgan, Jeffrey A

    2015-01-01

    Hypoalbuminemia is a well-known predictor of morbidity and mortality in cardiac surgery. Our aim was to establish the impact of serum albumin on outcomes after left ventricular assist device (LVAD) implantation. This was a single-institution retrospective review, including all patients who underwent LVAD implantation between March 2006 and June 2014. Two hundred patients were included in the analysis. Mean serum albumin was 3.27 ± 0.47 g/dl, with 7% in the low albumin group (<2.5 mg/dl), 67.5% in the mid-range (2.5-3.5 mg/dl), and 25.5% in the normal albumin groups (> 3.5 mg/dl). Lower albumin was associated with a significant increase in postoperative renal failure (42.9 vs. 16.5 vs. 17.3%; p = 0.05) and prolonged hospitalization (median 28.5 vs. 16 vs. 15.5 days; p = 0.008). Six month, 1 year, and 5 year survival was 79%, 79%, and 49% with low, 84%, 78%, and 51% with mid-range, and 94%, 88%, and 60% with normal albumin, respectively (p = 0.22). Preoperative hypoalbuminemia is associated with postoperative acute renal failure (ARF) and prolonged hospitalization after LVAD implantation, with no effect on overall survival. Hypoalbuminemia is most likely a marker of advanced disease and should not, in itself, be considered a contraindication to LVAD candidacy. PMID:26262585

  13. Our experience with implantation of VentrAssist left ventricular assist device

    PubMed Central

    Jayanthkumar, Hiriyur Shivalingappa; Murugesan, Chinnamuthu; Rajkumar, John; Harish, Bandlapally Ramanjaneya Gupta; Muralidhar, Kanchi

    2013-01-01

    Perioperative anaesthetic management of the VentrAssist™ left ventricular assist device (LVAD) is a challenge for anaesthesiologists because patients presenting for this operation have long-standing cardiac failure and often have associated hepatic and renal impairment, which may significantly alter the pharmacokinetics of administered drugs and render the patients coagulopathic. The VentrAssist is implanted by midline sternotomy. A brief period of cardiopulmonary bypass (CPB) for apical cannulation of left ventricle is needed. The centrifugal pump, which produces non-pulsatile, continuous flow, is positioned in the left sub-diaphragmatic pocket. This LVAD is preload dependent and afterload sensitive. Transoesophageal echocardiography is an essential tool to rule out contraindications and to ensure proper inflow cannula position, and following the implantation of LVAD, to ensure right ventricular (RV) function. The anaesthesiologist should be prepared to manage cardiac decompensation and acute desaturation before initiation of CPB, as well as RV failure and severe coagulopathic bleeding after CPB. Three patients had undergone implantation of VentrAssist in our hospital. This pump provides flow of 5 l/min depending on preload, afterload and pump speed. All the patients were discharged after an average of 30 days. There was no perioperative mortality. PMID:23716768

  14. Results of a New Technique for Implantation of Nonrestrictive Glaucoma Devices

    PubMed Central

    Peña Valderrama, Cristina Del Pilar; Albis-Donado, Oscar

    2013-01-01

    ABSTRACT Objective: To describe and present results of an original technique for nonvalved glaucoma implants. Patients and methods: Thirty-five eyes of 34 patients with aggressive and/or advanced glaucomas of different causes were included. A Baerveldt implant was used in all cases, using an absorbable ligature that had been titrated to allow fow from day 1, but avoiding hypotony. Intraocular pressure (IOP) during the first 8 weeks, final IOP, visual acuity and complications were analyzed. Results: Mean preoperative IOP was 42.8 mm Hg (range: 24-64 mm Hg). IOP was 14.4, 17.2, 18.6, 19 and 16.4 mm Hg during the 1, 2, 4, 6 and 8 postoperative weeks. Mean final IOP was 13.8 ± 4.25 mm Hg, a 67.8% reduction, after a mean follow-up time of 13 months (range: 8-29 months). Twenty-nine eyes (82.9%) had complete success, two had qualifed success (5.7%) and four were failures (11.4%). Choroidal detachments and transient tube obstructions were the most frequent complications. Conclusion: Titrated ligature of Baerveldt tubes was effective for controlling IOP during both the early and late postoperative phases in eyes with severe glaucomas. How to cite this article: Arismendi GEO, del Pilar Peña Valderrama C, Albis-Donado O. Results of a New Technique for Implantation of Nonrestrictive Glaucoma Devices. J Current Glau Prac 2013;7(3):130-135. PMID:26997797

  15. Anesthetic management for implantation of a treatment device: the Rheos Baroreflex Hypertensive Therapy System.

    PubMed

    Thai, Nina N

    2012-02-01

    Resistant hypertension is a prevalent dilemma. Despite all available antihypertensive medications and multiple strategies such as healthier diets and exercise programs, many patients are still unable to maintain or reach a therapeutic goal for systolic blood pressure. Because of this major health concern, CVRx, Inc has developed a treatment involving baroreflex activation therapy (Rheos Baroreflex Hypertension Therapy System) to treat patients with uncontrolled high blood pressure. The surgical implantation of this system is similar to a carotid endarterectomy procedure; however, the anesthetic management for this procedure is unique and challenging. This case report describes a 45-year-old African American woman with a history of hypertension who was receiving multiple antihypertensive medications and, thus, was a qualified candidate for implantation of this device. The goal of anesthetic management during implantation of this hypertension therapy system is to preserve the carotid sinus baroreceptor sensitivity by avoiding administering anesthetic agents that inhibit the baroreceptor reflex during electrode placement and the testing period. Because of the restriction of some of the anesthetic agents that an anesthesia provider can use, this procedure poses major challenges to the anesthesia provider in planning for anesthesia care and managing risks to the patient. PMID:22474800

  16. Sleep, Psychosocial Functioning, and Device-Specific Adjustment in Patients with Implantable Cardioverter Defibrillators (ICDs).

    PubMed

    McCrae, Christina S; Roth, Alicia J; Ford, Jessica; Crew, Earl C; Conti, Jamie B; Berry, Richard B; Sears, Samuel F

    2016-01-01

    Rates of sleep disorders and associated adjustment were examined in patients with implantable cardioverter defibrillators (ICDs; n = 42; Mage = 61.57, SD = 12.60). One night of ambulatory polysomnography, 14 days of sleep diaries, and questionnaires (mood, sleepiness, fatigue, device acceptance) were administered. Controlling for ischemia, MANCOVA examined adjustment by sleep diagnosis. Apnea was most common (28.6%), followed by Insomnia (16.7%) and Comorbid Insomnia/Apnea (11.9%). Patients with insomnia reported poorer mood, greater sleepiness, and lower device acceptance than good sleepers; they also demonstrated poorer mood and less ICD device acceptance than patients with sleep apnea. Patients with comorbid insomnia/apnea also exhibited poorer mood and less ICD device acceptance than good sleepers; however, comorbid patients did not significantly differ from insomnia or apnea patients on any measure. Those with disordered sleep (regardless of type) reported greater fatigue than good sleepers. Assessment (and treatment) of difficulties with sleep, mood, fatigue, and device acceptance may be important for the comprehensive clinical management of ICD patients. Further research appears warranted. PMID:25174823

  17. Remote Monitoring for Follow-up of Patients with Cardiac Implantable Electronic Devices

    PubMed Central

    Morichelli, Loredana; Varma, Niraj

    2014-01-01

    Follow-up of patients with cardiac implantable electronic devices is challenging due to the increasing number and technical complexity of devices coupled to increasing clinical complexity of patients. Remote monitoring (RM) offers the opportunity to optimise clinic workflow and to improve device monitoring and patient management. Several randomised clinical trials and registries have demonstrated that RM may reduce number of hospital visits, time required for patient follow-up, physician and nurse time, hospital and social costs. Furthermore, patient retention and adherence to follow-up schedule are significantly improved by RM. Continuous wireless monitoring of data stored in the device memory with automatic alerts allows early detection of device malfunctions and of events requiring clinical reaction, such as atrial fibrillation, ventricular arrhythmias and heart failure. Early reaction may improve patient outcome. RM is easy to use and patients showed a high level of acceptance and satisfaction. Implementing RM in daily practice may require changes in clinic workflow. To this purpose, new organisational models have been introduced. In spite of a favourable cost:benefit ratio, RM reimbursement still represents an issue in several European countries. PMID:26835079

  18. Remote Monitoring for Follow-up of Patients with Cardiac Implantable Electronic Devices.

    PubMed

    Ricci, Renato Pietro; Morichelli, Loredana; Varma, Niraj

    2014-08-01

    Follow-up of patients with cardiac implantable electronic devices is challenging due to the increasing number and technical complexity of devices coupled to increasing clinical complexity of patients. Remote monitoring (RM) offers the opportunity to optimise clinic workflow and to improve device monitoring and patient management. Several randomised clinical trials and registries have demonstrated that RM may reduce number of hospital visits, time required for patient follow-up, physician and nurse time, hospital and social costs. Furthermore, patient retention and adherence to follow-up schedule are significantly improved by RM. Continuous wireless monitoring of data stored in the device memory with automatic alerts allows early detection of device malfunctions and of events requiring clinical reaction, such as atrial fibrillation, ventricular arrhythmias and heart failure. Early reaction may improve patient outcome. RM is easy to use and patients showed a high level of acceptance and satisfaction. Implementing RM in daily practice may require changes in clinic workflow. To this purpose, new organisational models have been introduced. In spite of a favourable cost:benefit ratio, RM reimbursement still represents an issue in several European countries. PMID:26835079

  19. An implantable remote-powered optoelectronic MEMS device for in vivo spectral analysis and biochemical tests

    NASA Astrophysics Data System (ADS)

    Nicolau, Dan V., Jr.; Livingston, Peter; Jahshan, David; Evans, Rob

    2004-03-01

    The non-invasive or minimally invasive real-time spectral analysis of tissue and biological fluids in vivo would be of great assistance for diagnosis and monitoring of a wide range of diseases. We propose here a novel microdevice capable of determining the reflectance spectrum of a sample using a set of micrometer-sized light emitting diodes and a patch of photosensitive material. The purported device would be wireless and remote-powered via RF magnetic fields and due to its dimensions would be suitable as a long-term implant, for example for monitoring glucose levels in diabetics. We present a design for this device, discuss its limitations and suggest some applications, including its use for in vivo biochemical assays.

  20. Remote Monitoring of Cardiac Implantable Devices: Ontology Driven Classification of the Alerts.

    PubMed

    Rosier, Arnaud; Mabo, Philippe; Temal, Lynda; Van Hille, Pascal; Dameron, Olivier; Deleger, Louise; Grouin, Cyril; Zweigenbaum, Pierre; Jacques, Julie; Chazard, Emmanuel; Laporte, Laure; Henry, Christine; Burgun, Anita

    2016-01-01

    The number of patients that benefit from remote monitoring of cardiac implantable electronic devices, such as pacemakers and defibrillators, is growing rapidly. Consequently, the huge number of alerts that are generated and transmitted to the physicians represents a challenge to handle. We have developed a system based on a formal ontology that integrates the alert information and the patient data extracted from the electronic health record in order to better classify the importance of alerts. A pilot study was conducted on atrial fibrillation alerts. We show some examples of alert processing. The results suggest that this approach has the potential to significantly reduce the alert burden in telecardiology. The methods may be extended to other types of connected devices. PMID:27071877

  1. Malfunctions of Implantable Cardiac Devices in Patients Receiving Proton Beam Therapy: Incidence and Predictors

    SciTech Connect

    Gomez, Daniel R.; Poenisch, Falk; Pinnix, Chelsea C.; Sheu, Tommy; Chang, Joe Y.; Memon, Nada; Mohan, Radhe; Rozner, Marc A.; Dougherty, Anne H.

    2013-11-01

    Purpose: Photon therapy has been reported to induce resets of implanted cardiac devices, but the clinical sequelae of treating patients with such devices with proton beam therapy (PBT) are not well known. We reviewed the incidence of device malfunctions among patients undergoing PBT. Methods and Materials: From March 2009 through July 2012, 42 patients with implanted cardiac implantable electronic devices (CIED; 28 pacemakers and 14 cardioverter-defibrillators) underwent 42 courses of PBT for thoracic (23, 55%), prostate (15, 36%), liver (3, 7%), or base of skull (1, 2%) tumors at a single institution. The median prescribed dose was 74 Gy (relative biological effectiveness; range 46.8-87.5 Gy), and the median distance from the treatment field to the CIED was 10 cm (range 0.8-40 cm). Maximum proton and neutron doses were estimated for each treatment course. All CIEDs were checked before radiation delivery and monitored throughout treatment. Results: Median estimated peak proton and neutron doses to the CIED in all patients were 0.8 Gy (range 0.13-21 Gy) and 346 Sv (range 11-1100 mSv). Six CIED malfunctions occurred in 5 patients (2 pacemakers and 3 defibrillators). Five of these malfunctions were CIED resets, and 1 patient with a defibrillator (in a patient with a liver tumor) had an elective replacement indicator after therapy that was not influenced by radiation. The mean distance from the proton beam to the CIED among devices that reset was 7.0 cm (range 0.9-8 cm), and the mean maximum neutron dose was 655 mSv (range 330-1100 mSv). All resets occurred in patients receiving thoracic PBT and were corrected without clinical incident. The generator for the defibrillator with the elective replacement indicator message was replaced uneventfully after treatment. Conclusions: The incidence of CIED resets was about 20% among patients receiving PBT to the thorax. We recommend that PBT be avoided in pacing-dependent patients and that patients with any type of CIED receiving

  2. Malfunctions of implantable cardiac devices in patients receiving proton beam therapy: incidence and predictors

    PubMed Central

    Gomez, Daniel R.; Poenisch, Falk; Pinnix, Chelsea C.; Sheu, Tommy; Chang, Joe Y.; Memon, Nada; Mohan, Radhe; Rozner, Marc A.; Dougherty, Anne H.

    2014-01-01

    Purpose Photon therapy has been reported to induce resets of implanted cardiac devices, but the clinical sequelae of treating patients with such devices with proton beam therapy (PBT) are not well known. We reviewed the incidence of device malfunctions among patients undergoing PBT. Methods From March 2009 through July 2012, 42 patients with implanted cardiac implantable electronic devices (CIEDs) (28 pacemakers and 14 cardioverter-defillibrators) underwent 42 courses of PBT for thoracic (23 [55%]), prostate (15 [36%]), liver (3[7%]), or base of skull (1 [2%]) tumors at a single institution. The median prescribed dose was 74 Gy(RBE) [range 46.8–87.5 Gy(RBE)], and the median distance from the treatment field to the CIED was 10 cm (range 0.8–40 cm). Maximum proton and neutron doses were estimated for each treatment course. All CIEDs were checked before radiation delivery and monitored throughout treatment. Results Median estimated peak proton and neutron doses to the CIED in all patients were 0.8 Gy (range 0.13–21 Gy) and 346 Sv (range 11–1100 mSv). Six CIED malfunctions occurred in five patients (2 pacemakers and 3 defibrillators). Five of these malfunctions were CIED resets, and one patient with a defibrillator (in a patient with a liver tumor) had an elective replacement indicator (ERI) after therapy that was not influenced by radiation. The mean distance from the proton beam to the CIED among devices that reset was 7.0 cm (range 0.9–8 cm), and the mean maximum neutron dose was 655 mSv (range 330–1100 mSv). All resets occurred in patients receiving thoracic PBT and were corrected without clinical incident. The generator for the defibrillator with the ERI message was replaced uneventfully after treatment. Conclusions The incidence of CIED resets was about 20% among patients receiving PBT to the thorax. We recommend that PBT be avoided in pacing-dependent patients and that patients with any type of CIED receiving thoracic PBT be followed closely. PMID

  3. Health Care Utilization and Expenditures Associated With Remote Monitoring in Patients With Implantable Cardiac Devices.

    PubMed

    Ladapo, Joseph A; Turakhia, Mintu P; Ryan, Michael P; Mollenkopf, Sarah A; Reynolds, Matthew R

    2016-05-01

    Several randomized trials and decision analysis models have found that remote monitoring may reduce health care utilization and expenditures in patients with cardiac implantable electronic devices (CIEDs), compared with in-office monitoring. However, little is known about the generalizability of these findings to unselected populations in clinical practice. To compare health care utilization and expenditures associated with remote monitoring and in-office monitoring in patients with CIEDs, we used Truven Health MarketScan Commercial Claims and Medicare Supplemental Databases. We selected patients newly implanted with an implantable cardioverter defibrillators (ICD), cardiac resynchronization therapy defibrillator (CRT-D), or permanent pacemaker (PPM), in 2009, who had continuous health plan enrollment 2 years after implantation. Generalized linear models and propensity score matching were used to adjust for confounders and estimate differences in health care utilization and expenditures in patients with remote or in-office monitoring. We identified 1,127; 427; and 1,295 pairs of patients with a similar propensity for receiving an ICD, CRT-D, or PPM, respectively. Remotely monitored patients with ICDs experienced fewer emergency department visits resulting in discharge (p = 0.050). Remote monitoring was associated with lower health care expenditures in office visits among patients with PPMs (p = 0.025) and CRT-Ds (p = 0.006) and lower total inpatient and outpatient expenditures in patients with ICDs (p <0.0001). In conclusion, remote monitoring of patients with CIEDs may be associated with reductions in health care utilization and expenditures compared with exclusive in-office care. PMID:26996767

  4. Speech perception with a single-channel cochlear implant: a comparison with a single-channel tactile device.

    PubMed

    Carney, A E; Kienle, M; Miyamoto, R T

    1990-06-01

    Suprasegmental and segmental speech perception tasks were administered to 8 patients with single-channel cochlear implants. Suprasegmental tasks included the recognition of syllable number, syllabic stress, and intonation. Segmental tasks included the recognition of vowels and consonants in three modalities: visual only, implant only, and visual + implant. Results were compared to those obtained from artificially deafened adults using a single-channel vibrotactile device. The patterns of responses for both suprasegmental and segmental tasks were highly similar for both groups of subjects, despite differences between the characteristics of the subject samples. These results suggest that single-channel sensory devices, whether they be cochlear implants or vibrotactile aids, produce similar patterns of speech perception errors, even when differences are observed in overall performance level. PMID:2141660

  5. Infections of cardiovascular implantable electronic devices: 14 years of experience in an Italian hospital.

    PubMed

    Salmeri, Mario; Sorbello, Maria Grazia; Mastrojeni, Silvana; Santanocita, Angela; Milazzo, Marina; Di Stefano, Giuseppe; Scalia, Marina; Addamo, Alessandro; Toscano, Maria Antonietta; Stefani, Stefania; Mezzatesta, Maria Lina

    2016-06-01

    The aim of the study was to describe the microbial aetiology of infections from cardiovascular implantable electronic devices (CIEDs) between 2001 and 2014 at The Centro Cuore Morgagni Hospital (Catania, Italy). In this 14-year retrospective study on pacemaker isolates 1,366 patients were evaluated and clinical data were collected. CIEDs were analyzed and isolates tested by routine microbiological techniques. The presence of bacterial biofilm was assessed by means of scanning electron microscopy. Of the patients, fifty-three had catheter-related infections (3.9%), mainly resulting from Staphylococci (4 S. aureus, 32 S. epidermidis, 15 S. hominis, 3 S. haemolyticus, 1 S. warnerii, 1 S. schleiferi, 1 S. lentus and 1 S. capitis) that covered the cardiac catheter with biofilm. Overall, oxacillin-resistance was 55.1%, especially among S. epidermidis, while all isolates were susceptible to vancomycin, teicoplanin, tigecyclin, rifampin, trimethoprim/sulfamethoxazole, linezolid, moxifloxacin, tobramycin and gentamicin. Coagulase-negative staphylococci were the most frequently isolated and S. epidermidis was largely the main single agent. Only four Gram negatives caused polymicrobial infections with Staphylococci. Despite improvements in CIED design and implantation techniques, infection of cardiac devices remains a serious problem. PMID:27367323

  6. Subclinical atrial fibrillation and stroke: insights from continuous monitoring by implanted cardiac electronic devices.

    PubMed

    Lau, Chu-Pak; Siu, Chung-Wah; Yiu, Kai-Hang; Lee, Kathy Lai-Fun; Chan, Yap-Hang; Tse, Hung-Fat

    2015-10-01

    Nearly one out of five strokes is associated with atrial fibrillation (AF). Atrial fibrillation is often intermittent and asymptomatic. Detection of AF after cryptogenic stroke will likely change therapy from antiplatelet to oral anticoagulation agents for secondary stroke prevention. A critical step is to convert 'covert' AF into electrocardiogram documented AF. External rhythm recording devices have registered a high incidence of AF to occur after a cryptogenic stroke, but are limited by short duration of continuous recordings. Invasive cardiac monitoring using insertable leadless cardiac monitors are sensitive means to identify subclinical AF (SCAF) after cryptogenic stroke, and AF has been reported to occur in 8.9% of these patients by 6 months in one study. It will be more attractive to identify SCAF before a stroke occurs. Recent series in pacemaker and implantable cardioverter-defibrillator (ICD) recipients showed that short episodes of SCAF increased stroke risk, with odds ratio ∼2.2-3.1 compared with those without SCAF recorded. However, temporal sequence of recorded SCAF and stroke occurrence was uncertain, and the overall stroke risk was lower compared with patients with clinical AF at similar risk scores. This article reviews the incidence and clinical role of using implanted devices to detect SCAF and discusses the implication of SCAF so detected in primary and secondary stroke prevention. PMID:26842114

  7. Carina® and Esteem®: A Systematic Review of Fully Implantable Hearing Devices

    PubMed Central

    Pulcherio, Janaina Oliveira Bentivi; Bittencourt, Aline Gomes; Burke, Patrick Rademaker; Monsanto, Rafael da Costa; de Brito, Rubens; Tsuji, Robinson Koji; Bento, Ricardo Ferreira

    2014-01-01

    Objective To review the outcomes of the fully implantable middle ear devices Carina and Esteem regarding the treatment of hearing loss. Data Sources PubMed, Embase, Scielo, and Cochrane Library databases were searched. Study Selection Abstracts of 77 citations were screened, and 43 articles were selected for full review. From those, 22 studies and two literature reviews in English directly demonstrating the results of Carina and Esteem were included. Data Extraction There were a total of 244 patients ranging from 18 to 88 years. One hundred and 10 patients were implanted with Carina and with 134 Esteem. There were registered 92 males and 67 females. Five studies provided no information about patients’ age or gender. From the data available, the follow-up ranged from 2 to 29.4 months. Data Synthesis The comparison of the results about word recognition is difficult as there was no standardization of measurement. The results were obtained from various sound intensities and different frequencies. The outcomes comparing to conventional HAs were conflicting. Nevertheless, all results comparing to unaided condition showed improvement and showed a subjective improvement of quality of life. Conclusion There are still some problems to be solved, mainly related to device functioning and price. Due to the relatively few publications available and small sample sizes, we must be careful in extrapolating these results to a broader population. Additionally, none of all these studies represented level high levels of evidence (i.e. randomized controlled trials). PMID:25329463

  8. Update on Renal Replacement Therapy: Implantable Artificial Devices and Bioengineered Organs.

    PubMed

    Attanasio, Chiara; Latancia, Marcela T; Otterbein, Leo E; Netti, Paolo A

    2016-08-01

    Recent advances in the fields of artificial organs and regenerative medicine are now joining forces in the areas of organ transplantation and bioengineering to solve continued challenges for patients with end-stage renal disease. The waiting lists for those needing a transplant continue to exceed demand. Dialysis, while effective, brings different challenges, including quality of life and susceptibility to infection. Unfortunately, the majority of research outputs are far from delivering satisfactory solutions. Current efforts are focused on providing a self-standing device able to recapitulate kidney function. In this review, we focus on two remarkable innovations that may offer significant clinical impact in the field of renal replacement therapy: the implantable artificial renal assist device (RAD) and the transplantable bioengineered kidney. The artificial RAD strategy utilizes micromachining techniques to fabricate a biohybrid system able to mimic renal morphology and function. The current trend in kidney bioengineering exploits the structure of the native organ to produce a kidney that is ready to be transplanted. Although these two systems stem from different technological approaches, they are both designed to be implantable, long lasting, and free standing to allow patients with kidney failure to be autonomous. However, for both of them, there are relevant issues that must be addressed before translation into clinical use and these are discussed in this review. PMID:26905099

  9. Pirfenidone inhibits fibrosis in foreign body reaction after glaucoma drainage device implantation

    PubMed Central

    Jung, Kyoung In; Park, Chan Kee

    2016-01-01

    Background The aim of this study was to investigate the antiscarring effects of pirfenidone on foreign body reaction in a rabbit model of glaucoma drainage implant surgery. Methods Adult New Zealand White rabbits had glaucoma drainage device implantation using Model FP8 Ahmed glaucoma valves. One eye was randomly assigned to receive postoperative intrableb injection of pirfenidone followed by topical treatment. The other eye underwent the same procedure but without the addition of pirfenidone. Histochemical staining and immunohistochemistry for blebs were performed. Results The degree of cellularity was smaller in the pirfenidone group than in the control group at 2 weeks post operation (P=0.005). A few foreign body giant cells were detected in the inner border of the capsule, and their numbers were similar in the control and pirfenidone groups (P>0.05). Using Masson’s trichrome stain, the inner collagen-rich layer was found to be thinner in the pirfenidone group than the control group at 4 weeks (P=0.031) and 8 weeks (P=0.022) post operation. The percentage of proliferating cell nuclear antigen-positive cells was lower in the pirfenidone group than in the control group at 2 weeks post operation (total bleb, P=0.022; inner bleb, P=0.036). Pirfenidone treatment decreased the immunoreactivity of connective tissue growth factor at 2 weeks post operation (total bleb, P=0.029; inner bleb, P=0.018). The height and area of α-smooth muscle actin expression were lower in the pirfenidone group than the control group at 2 weeks, 4 weeks, and 8 weeks post operation (all P<0.05). Conclusion Postoperative intrableb injection of pirfenidone followed by topical administration reduced fibrosis following glaucoma drainage device implantation. These findings suggest that pirfenidone may function as an antiscarring treatment in foreign body reaction after tube-shunt surgery. PMID:27143855

  10. Feasibility and Safety of Endovascular Stripping of Totally Implantable Venous Access Devices

    SciTech Connect

    Heye, Sam Maleux, Geert; Goossens, G. A.; Vaninbroukx, Johan; Jerome, M.; Stas, M.

    2012-06-15

    Purpose: To evaluate the safety and feasibility of percutaneous stripping of totally implantable venous access devices (TIVAD) in case of catheter-related sleeve and to report a technique to free the catheter tip from vessel wall adherence. Materials and Methods: A total of 37 stripping procedures in 35 patients (14 men, 40%, and 21 women, 60%, mean age 53 {+-} 14 years) were reviewed. Totally implantable venous access devices were implanted because of malignancy in most cases (85.7%). Catheter-related sleeve was confirmed as cause of persistent catheter dysfunction despite instillation of thrombolytics. A technique to mobilize the catheter tip from the vessel wall was used when stripping with the snare catheter was impossible. Technical success, complication rate, and outcome were noted. Results: A total of 55.9% (n = 19) of the 34 technically successful procedures (91.9%) could be done with the snare catheter. In 15 cases (44.1%), additional maneuvers to free the TIVAD's tip from the vessel wall were needed. Success rate was not significantly lower before (72.4%) than after (96.7%) implementation of the new technique (P = 0.09). No complications were observed. Follow-up was available in 67.6% of cases. Recurrent catheter dysfunction was found in 17 TIVADs (78.3%) at a mean of 137.7 days and a median of 105 days. Conclusions: Stripping of TIVADs is technically feasible and safe, with an overall success rate of 91.9%. Additional endovascular techniques to mobilize the distal catheter tip from the wall of the superior vena cava or right atrium to allow encircling the TIVAD tip with the snare catheter may be needed in 44.1% of cases.

  11. Drug-loaded erythrocytes: on the road toward marketing approval

    PubMed Central

    Bourgeaux, Vanessa; Lanao, José M; Bax, Bridget E; Godfrin, Yann

    2016-01-01

    Erythrocyte drug encapsulation is one of the most promising therapeutic alternative approaches for the administration of toxic or rapidly cleared drugs. Drug-loaded erythrocytes can operate through one of the three main mechanisms of action: extension of circulation half-life (bioreactor), slow drug release, or specific organ targeting. Although the clinical development of erythrocyte carriers is confronted with regulatory and development process challenges, industrial development is expanding. The manufacture of this type of product can be either centralized or bedside based, and different procedures are employed for the encapsulation of therapeutic agents. The major challenges for successful industrialization include production scalability, process validation, and quality control of the released therapeutic agents. Advantages and drawbacks of the different manufacturing processes as well as success key points of clinical development are discussed. Several entrapment technologies based on osmotic methods have been industrialized. Companies have already achieved many of the critical clinical stages, thus providing the opportunity in the future to cover a wide range of diseases for which effective therapies are not currently available. PMID:26929599

  12. Drug-loaded erythrocytes: on the road toward marketing approval.

    PubMed

    Bourgeaux, Vanessa; Lanao, José M; Bax, Bridget E; Godfrin, Yann

    2016-01-01

    Erythrocyte drug encapsulation is one of the most promising therapeutic alternative approaches for the administration of toxic or rapidly cleared drugs. Drug-loaded erythrocytes can operate through one of the three main mechanisms of action: extension of circulation half-life (bioreactor), slow drug release, or specific organ targeting. Although the clinical development of erythrocyte carriers is confronted with regulatory and development process challenges, industrial development is expanding. The manufacture of this type of product can be either centralized or bedside based, and different procedures are employed for the encapsulation of therapeutic agents. The major challenges for successful industrialization include production scalability, process validation, and quality control of the released therapeutic agents. Advantages and drawbacks of the different manufacturing processes as well as success key points of clinical development are discussed. Several entrapment technologies based on osmotic methods have been industrialized. Companies have already achieved many of the critical clinical stages, thus providing the opportunity in the future to cover a wide range of diseases for which effective therapies are not currently available. PMID:26929599

  13. Drug loading to lipid-based cationic nanoparticles

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Leide P.; Konovalov, Oleg; Torriani, Iris L.; Haas, Heinrich

    2005-08-01

    Lipid-based cationic nanoparticles are a new promising option for tumor therapy, because they display enhanced binding and uptake at the neo-angiogenic endothelial cells, which a tumor needs for its nutrition and growth. By loading suitable cytotoxic compounds to the cationic carrier, the tumor endothelial and consequently also the tumor itself can be destroyed. For the development of such novel anti-tumor agents, the control of drug loading and drug release from the carrier matrix is essential. We have studied the incorporation of the hydrophobic anti-cancer agent Paclitaxel (PXL) into a variety of lipid matrices by X-Ray reflectivity measurements. Liposome suspensions from cationic and zwitterionic lipids, comprising different molar fractions of Paclitaxel, were deposited on planar glass substrates. After drying at controlled humidity, well ordered, oriented multilayer stacks were obtained, as proven by the presence of bilayer Bragg peaks to several orders in the reflectivity curves. The presence of the drug induced a decrease of the lipid bilayer spacing, and with an excess of drug, also Bragg peaks of drug crystals could be observed. From the results, insight into the solubility of Paclitaxel in the model membranes was obtained and a structural model of the organization of the drug in the membrane was derived. Results from subsequent pressure/area-isotherm and grazing incidence diffraction (GID) measurements performed with drug/lipid Langmuir monolayers were in accordance with these conjectures.

  14. Cancer Therapy Using Ultrahigh Hydrophobic Drug-Loaded Graphene Derivatives

    PubMed Central

    Some, Surajit; Gwon, A-Ryeong; Hwang, Eunhee; Bahn, Ga-hee; Yoon, Yeoheung; Kim, Youngmin; Kim, Seol-Hee; Bak, Sora; Yang, Junghee; Jo, Dong-Gyu; Lee, Hyoyoung

    2014-01-01

    This study aimed to demonstrate that curcumin (Cur)-containing graphene composites have high anticancer activity. Specifically, graphene-derivatives were used as nanovectors for the delivery of the hydrophobic anticancer drug Cur based on pH dependence. Different Cur-graphene composites were prepared based on polar interactions between Cur and the number of oxygen-containing functional groups of respective starting materials. The degree of drug-loading was found to be increased by increasing the number of oxygen-containing functional groups in graphene-derivatives. We demonstrated a synergistic effect of Cur-graphene composites on cancer cell death (HCT 116) both in vitro and in vivo. As-prepared graphene quantum dot (GQD)-Cur composites contained the highest amount of Cur nano-particles and exhibited the best anticancer activity compared to the other composites including Cur alone at the same dose. This is the first example of synergistic chemotherapy using GQD-Cur composites simultaneous with superficial bioprobes for tumor imaging. PMID:25204358

  15. Totally implantable venous access devices: retrospective analysis of different insertion techniques and predictors of complications in 796 devices implanted in a single institution

    PubMed Central

    2014-01-01

    Background The aim of this study was to assess the efficacy and safety of totally implanted vascular devices (TIVAD) using different techniques of insertion. Methods We performed a retrospective study using a prospective collected database of 796 consecutive oncological patients in which TIVADs were inserted. We focused on early and late complications following different insertion techniques (surgical cutdown, blind and ultrasound guided percutaneous) according to different techniques. Results Ultrasound guided technique was used in 646 cases, cephalic vein cutdown in 102 patients and percutaneous blind technique in 48 patients. The overall complication rate on insertion was 7.2% (57 of 796 cases). Early complications were less frequent using the ultrasound guided technique: arterial puncture (p = 0.009), technical failure (p = 0.009), access site change after first attempt (p = 0.002); pneumothorax occurred in 4 cases, all using the blind percutaneus technique. Late complications occurred in 49 cases (6.1%) which required TIVAD removal in 43 cases and included: sepsis (29 cases), thrombosis (3 cases), dislocation (7 cases), skin dehiscence (3 cases), and severe pain (1 case). Conclusion Ultrasound guided technique is the safest option for TIVAD insertion, with the lowest rates of immediate complications. PMID:24886342

  16. The channeling effect of Al and N ion implantation in 4H-SiC during JFET integrated device processing

    NASA Astrophysics Data System (ADS)

    Lazar, M.; Laariedh, F.; Cremillieu, P.; Planson, D.; Leclercq, J.-L.

    2015-12-01

    A strong channeling effect is observed for the ions of Al and N implanted in 4H-SiC due to its crystalline structure. This effect causes difficulties in subsequent accurate estimation of the depth of junctions formed by multiple ion implantation steps. A variety of lateral JFET transistors integrated on the same 4H-SiC wafer have been fabricated. Secondary Ion Mass Spectrometry measurements and Monte-Carlo simulations were performed in order to quantify and control the channeling effect of the implanted ions. A technological process was established enabling to obtain devices working with the presence of the channeling effect.

  17. Single ion implantation for single donor devices using Geiger mode detectors

    NASA Astrophysics Data System (ADS)

    Bielejec, E.; Seamons, J. A.; Carroll, M. S.

    2010-02-01

    Electronic devices that are designed to use the properties of single atoms such as donors or defects have become a reality with recent demonstrations of donor spectroscopy, single photon emission sources, and magnetic imaging using defect centers in diamond. Ion implantation, an industry standard for atom placement in materials, requires augmentation for single ion capability including a method for detecting a single ion arrival. Integrating single ion detection techniques with the single donor device construction region allows single ion arrival to be assured. Improving detector sensitivity is linked to improving control over the straggle of the ion as well as providing more flexibility in lay-out integration with the active region of the single donor device construction zone by allowing ion sensing at potentially greater distances. Using a remotely located passively gated single ion Geiger mode avalanche diode (SIGMA) detector we have demonstrated 100% detection efficiency at a distance of >75 µm from the center of the collecting junction. This detection efficiency is achieved with sensitivity to ~600 or fewer electron-hole pairs produced by the implanted ion. Ion detectors with this sensitivity and integrated with a thin dielectric, for example a 5 nm gate oxide, using low energy Sb implantation would have an end of range straggle of <2.5 nm. Significant reduction in false count probability is, furthermore, achieved by modifying the ion beam set-up to allow for cryogenic operation of the SIGMA detector. Using a detection window of 230 ns at 1 Hz, the probability of a false count was measured as ~10-1 and 10-4 for operation temperatures of ~300 K and ~77 K, respectively. Low temperature operation and reduced false, 'dark', counts are critical to achieving high confidence in single ion arrival. For the device performance in this work, the confidence is calculated as a probability of >98% for counting one and only one ion for a false count probability of 10-4 at

  18. Perspectives of Patients With Cardiovascular Implantable Electronic Devices Who Received Advisory Warnings

    PubMed Central

    Ottenberg, Abigale L.; Mueller, Luke A.; Mueller, Paul S.

    2013-01-01

    Objective To learn the perspectives of patients with cardiovascular implantable electronic devices (CIEDs) who received device-related advisories. Background CIEDs are placed under advisory because of potential malfunctions. Methods Qualitative methods were used. Focus groups were conducted of 10 patients who had CIEDs under advisory. Audio recordings of the focus group discussions were transcribed and analyzed for content in accordance with qualitative analysis methods, specifically thematic analysis. Results Major themes were identified: patients’ attitudes toward their devices under advisory, education about advisories, emotional responses to advisories, impact on loved ones, and what affected patients would say to the chief executive officers of CIED manufacturers. Although the patients felt “fortunate and blessed” to have their devices, they reported a range of emotional responses to the advisories (from no concern to “outrage”). Patients preferred to learn about advisories from their physicians, not from news media. Loved ones had as many, if not more, advisory-related concerns than the patients. Patients had recommendations for chief executive officers of CIED manufacturers regarding advisories, including providing timely and comprehensible information and emotional support, taking responsibility, and collaborating with health care providers. Patients wanted to know what prompted the advisory and what will be done to fix the problem. Conclusions The experiences and perspectives of patients with CIEDs under advisory not only encompass their emotional responses to advisories, but also their views on how the advisory notification process can be improved. These findings should be informative to CIED manufacturers and clinicians. PMID:23305915

  19. Full fabrication and packaging of an implantable multi-panel device for monitoring of metabolites in small animals.

    PubMed

    Baj-Rossi, Camilla; Kilinc, Enver G; Ghoreishizadeh, Sara S; Casarino, Daniele; Jost, Tanja Rezzonico; Dehollain, Catherine; Grassi, Fabio; Pastorino, Laura; De Micheli, Giovanni; Carrara, Sandro

    2014-10-01

    In this work, we show the realization of a fully-implantable device for monitoring free-moving small animals. The device integrates a microfabricated sensing platform, a coil for power and data transmission and two custom designed integrated circuits. The device is intended to be implanted in mice, free to move in a cage, to monitor the concentration of metabolites. We show the system level design of each block of the device, and we present the fabrication of the passive sensing platform and its employment for the electrochemical detection of endogenous and exogenous metabolites. Moreover, we describe the assembly of the device to test the biocompatibility of the materials used for the microfabrication. To ensure biocompatibility, an epoxy enhanced polyurethane membrane was used to cover the device. We proved through an in-vitro characterization that the membrane was capable to retain enzyme activity up to 35 days. After 30 days of implant in mice, in-vivo experiments proved that the membrane promotes the integration of the sensor with the surrounding tissue, as demonstrated by the low inflammation level at the implant site. PMID:25314709

  20. Superhydrophobic coating to delay drug release from drug-loaded electrospun fibrous materials

    NASA Astrophysics Data System (ADS)

    Song, Botao; Xu, Shichen; Shi, Suqing; Jia, Pengxiang; Xu, Qing; Hu, Gaoli; Zhang, Hongxin; Wang, Cuiyu

    2015-12-01

    The drug-loaded electrospun fibrous materials showed attractive applications in biomedical fields; however, the serve burst release of drug from this kind of drug carrier limited its further applications. In this study, inspired by water strong repellency of superhydrophobic surface, the drug-loaded electrospun fibrous mat coated with superhydrophobic layer was constructed to retard and control drug release. The results indicated that the superhydrophobic coating could be simply fabricated on the drug-loaded electrospun mat by the electrospray approach, and the thickness of the superhydrophobic coating could be finely controlled by varying the deposition time. It was further found that, as compared with drug-loaded electrospun mats, drug released sustainably from the samples coated with superhydrophobic layer, and the drug release rate could be controlled by the thickness of superhydrophobic layer. In summary, the current approach of coating a superhydrophobic layer on the drug-loaded electrospun fibrous materials offered a fundament for drug sustained release.

  1. Critical factors in the translation of improved antimicrobial strategies for medical implants and devices.

    PubMed

    Grainger, David W; van der Mei, Henny C; Jutte, Paul C; van den Dungen, Jan J A M; Schultz, Marcus J; van der Laan, Bernard F A M; Zaat, Sebastian A J; Busscher, Henk J

    2013-12-01

    Biomaterials-associated infection incidence represents an increasing clinical challenge as more people gain access to medical device technologies worldwide and microbial resistance to current approaches mounts. Few reported antimicrobial approaches to implanted biomaterials ever get commercialized for physician use and patient benefit. This is not for lack of ideas since many thousands of claims to new approaches to antimicrobial efficacy are reported. Lack of translation of reported ideas into medical products approved for use, results from conflicting goals and purposes between the various participants involved in conception, validation, development, commercialization, safety and regulatory oversight, insurance reimbursement, and legal aspects of medical device innovation. The scientific causes, problems and impressive costs of the limiting clinical options for combating biomaterials-associated infection are well recognized. Demands for improved antimicrobial technologies constantly appear. Yet, the actual human, ethical and social costs and consequences of their occurrence are less articulated. Here, we describe several clinical cases of biomaterials-associated infections to illustrate the often-missing human elements of these infections. We identify the current societal forces at play in translating antimicrobial research concepts into clinical implant use and their often-orthogonal constituencies, missions and policies. We assert that in the current complex environment between researchers, funding agencies, physicians, patients, providers, producers, payers, regulatory agencies and litigators, opportunities for translatable successes are minimized under the various risks assumed in the translation process. This argues for an alternative approach to more effectively introduce new biomaterials and device technologies that can address the clinical issues by providing patients and medical practitioners new options for desperate clinical conditions ineffectively

  2. Development of an implantable undulation type ventricular assist device for control of organ circulation.

    PubMed

    Yambe, Tomoyuki; Abe, Yusuke; Imachi, Kou; Shiraishi, Yasuyuki; Shibata, Mune-Ichi; Yamaguchi, Tasuku; Wang, Quintian; Duan, Xudong; Liu, Hongjian; Yoshizawa, Makoto; Tanaka, Akira; Matsuki, Hidetoshi; Sato, Fumihiro; Haga, You-Ichi; Esashi, Masayoshi; Tabayashi, Kouichi; Mitamura, Yoshinori; Sasada, Hiroshi; Umezu, Mitsuo; Matsuda, Takehisa; Nitta, Shin-Ichi

    2004-10-01

    It is well known that a rotary blood pump (RP) is effective as a small ventricular assist device (VAD). It might be still more effective if pulsation was available. The undulation pump (UP), which is a type of small RP, can also produce pulsation. In Japan, a development project for an implantable type UP ventricular assist device (UPVAD) is now advanced. Six universities and some companies together have been in charge of the development project for 5 years. In this study, the influence which the UP under development has on circulation in internal organs was investigated. Goats with the same weight as an average Asian person were used for the experiment. The left chest cavity was opened after resection of the fourth rib and the heart was approached. A cannula was inserted in the left ventricle from the apex. An outflow cannula was inserted into the left descending aorta. Heart muscle was excised using a newly developed puncher. The UPVAD was implanted using a left-heart bypass system. The myocardial blood flow, carotid arterial blood flow, and the kidney blood flow were recorded together with an electrocardiogram, blood pressure, and the flow rate. In these animal experiments, the blood circulation dynamic state was stabilized and sufficient support of the left heart was observed. Myocardial blood flow, carotid arterial flow, and a kidney blood flow increase resulting from UPVAD support was observed. Often the problem of multiple organ failure is important at the time of clinical application of a ventricular assist device. Assisting circulation to internal organs is important for prevention of multiple organ failure. It was concluded that the UPVAD might be useful for prevention of multiple organ failure. PMID:15385002

  3. Do we need to establish guidelines for patients with neuromodulation implantable devices, including spinal cord stimulators undergoing nonspinal surgeries?

    PubMed Central

    Ghaly, Ramsis F.; Tverdohleb, Tatiana; Candido, Kenneth D.; Knezevic, Nebojsa Nick

    2016-01-01

    Background: Spinal cord stimulation is currently approved to treat chronic intractable pain of the trunk and limbs. However, such implantable electronic devices are vulnerable to external electrical currents and magnetic fields. Within the hospitals and modern operating rooms (ORs), there is an abundance of electrical devices and other types of equipment that could interfere with such devices. Despite the increasing number of patients with neuromodulation implantable devices, there are no written guidelines available or consensus of cautions for such patients undergoing unrelated surgery. Case Descriptions: A 60-year-old female with a permanent St. Jude's spinal cord stimulator (SCS) presented for open total abdominal hysterectomy. Both the anesthesia and gynecology staffs were aware of the device presence, but were unaware of any precautions regarding intraoperative management. The device was found to be nonmagnetic resonance imaging compatible, and bipolar cautery was used instead of monopolar cautery. A 59-year-old female with a 9-year-old permanent Medtronic SCS, presented for right total hip arthroplasty. The device was switched off prior to entering the OR, bipolar cautery was used, and grounding pads were placed away from her battery site. In each case, the manufacturer's representative was contacted preoperative. Both surgeries proceeded uneventfully. Conclusions: The Food and Drug Administration safety information manual warns about the use of diathermy, concomitant implanted stimulation devices, lithotripsy, external defibrillation, radiation therapy, ultrasonic scanning, and high-output ultrasound, all of which can lead to permanent implant damage if not turned off prior to undertaking procedures. Lack of uniform guidelines makes intraoperative management, as well as remote anesthesia care of patients with previously implanted SCSs unsafe. PMID:26958424

  4. Gastroenterology and urology devices; effective date of requirement for premarket approval of the implanted mechanical/hydraulic urinary continence device. Food and Drug Administration, HHS. Final rule.

    PubMed

    2000-09-26

    The Food and Drug Administration (FDA) is issuing a final rule to require the filing of a premarket approval application (PMA) or a notice of completion of a product development protocol (PDP) for the implanted mechanical/hydraulic urinary continence device, a generic type of medical device intended for the treatment of urinary incontinence. This action is being taken under the Federal Food, Drug, and Cosmetic Act (the act), as amended by the Medical Device Amendments of 1976 (the amendments), the Safe Medical Devices Act of 1990 (the SMDA), and the Food and Drug Administration Modernization Act of 1997. PMID:11503643

  5. Atomic layer deposited aluminum oxide and Parylene C bi-layer encapsulation for biomedical implantable devices

    NASA Astrophysics Data System (ADS)

    Xie, Xianzong

    Biomedical implantable devices have been developed for both research and clinical applications, to stimulate and record physiological signals in vivo. Chronic use of biomedical devices with thin-film-based encapsulation in large scale is impeded by their lack of long-term functionality and stability. Biostable, biocompatible, conformal, and electrically insulating coatings that sustain chronic implantation are essential for chip-scale implantable electronic systems. Even though many materials have been studied to for this purpose, to date, no encapsulation method has been thoroughly characterized or qualified as a broadly applicable long-term hermetic encapsulation for biomedical implantable devices. In this work, atomic layer deposited Al2O3 and Parylene C bi-layer was investigated as encapsulation for biomedical devices. The combination of ALD Al2O3 and CVD Parylene C encapsulation extended the lifetime of coated interdigitated electrodes (IDEs) to up to 72 months (to date) with low leakage current of ~ 15 pA. The long lifetime was achieved by significantly reducing moisture permeation due to the ALD Al2O3 layer. Moreover, the bi-layer encapsulation separates the permeated moisture (mostly at the Al2O3 and Parylene interface) from the surface contaminants (mostly at the device and Al 2O3 interface), preventing the formation of localized electrolyte through condensation. Al2O3 works as an inner moisture barrier and Parylene works as an external ion barrier, preventing contact of Al2O3 with liquid water, and slowing the kinetics of alumina corrosion. Selective removal of encapsulation materials is required to expose the active sites for interacting with physiological environment. A self-aligned mask process with three steps was developed to expose active sites, composed of laser ablation, oxygen plasma etching, and BOE etching. Al2O 3 layer was found to prevent the formation of microcracks in the iridium oxide film during laser ablation. Bi-layer encapsulated

  6. Antibacterial Peptide-Based Gel for Prevention of Medical Implanted-Device Infection

    PubMed Central

    Mateescu, Mihaela; Baixe, Sébastien; Garnier, Tony; Jierry, Loic; Ball, Vincent; Haikel, Youssef; Metz-Boutigue, Marie Hélène; Nardin, Michel; Schaaf, Pierre; Etienne, Olivier; Lavalle, Philippe

    2015-01-01

    Implanted medical devices are prone to infection. Designing new strategies to reduce infection and implant rejection are an important challenge for modern medicine. To this end, in the last few years many hydrogels have been designed as matrices for antimicrobial molecules destined to fight frequent infection found in moist environments like the oral cavity. In this study, two types of original hydrogels containing the antimicrobial peptide Cateslytin have been designed. The first hydrogel is based on alginate modified with catechol moieties (AC gel). The choice of these catechol functional groups which derive from mussel’s catechol originates from their strong adhesion properties on various surfaces. The second type of gel we tested is a mixture of alginate catechol and thiol-terminated Pluronic (AC/PlubisSH), a polymer derived from Pluronic, a well-known biocompatible polymer. This PlubisSH polymer has been chosen for its capacity to enhance the cohesion of the composition. These two gels offer new clinical uses, as they can be injected and jellify in a few minutes. Moreover, we show these gels strongly adhere to implant surfaces and gingiva. Once gelled, they demonstrate a high level of rheological properties and stability. In particular, the dissipative energy of the (AC/PlubisSH) gel detachment reaches a high value on gingiva (10 J.m-2) and on titanium alloys (4 J.m-2), conferring a strong mechanical barrier. Moreover, the Cateslytin peptide in hydrogels exhibited potent antimicrobial activities against P. gingivalis, where a strong inhibition of bacterial metabolic activity and viability was observed, indicating reduced virulence. Gel biocompatibility tests indicate no signs of toxicity. In conclusion, these new hydrogels could be ideal candidates in the prevention and/or management of periimplant diseases. PMID:26659616

  7. Mechanical Properties of Plasma Immersion Ion Implanted PEEK for Bioactivation of Medical Devices.

    PubMed

    Wakelin, Edgar A; Fathi, Ali; Kracica, Masturina; Yeo, Giselle C; Wise, Steven G; Weiss, Anthony S; McCulloch, Dougal G; Dehghani, Fariba; Mckenzie, David R; Bilek, Marcela M M

    2015-10-21

    Plasma immersion ion implantation (PIII) is used to modify the surface properties of polyether ether ketone for biomedical applications. Modifications to the mechanical and chemical properties are characterized as a function of ion fluence (treatment time) to determine the suitability of the treated surfaces for biological applications. Young's modulus and elastic recovery were found to increase with respect to treatment time at the surface from 4.4 to 5.2 MPa and from 0.49 to 0.68, respectively. The mechanical properties varied continuously with depth, forming a graded layer where the mechanical properties returned to untreated values deep within the layer. The treated surface layer exhibited cracking under cyclical loads, associated with an increased modulus due to dehydrogenation and cross-linking; however, it did not show any sign of delamination, indicating that the modified layer is well integrated with the substrate, a critical factor for bioactive surface coatings. The oxygen concentration remained unchanged at the surface; however, in contrast to ion implanted polymers containing only carbon and hydrogen, the oxygen concentration within the treated layer was found to decrease. This effect is attributed to UV exposure and suggests that PIII treatments can modify the surface to far greater depths than previously reported. Protein immobilization on PIII treated surfaces was found to be independent of treatment time, indicating that the surface mechanical properties can be tuned for specific applications without affecting the protein coverage. Our findings on the mechanical properties demonstrate such treatments render PEEK well suited for use in orthopedic implantable devices. PMID:26366514

  8. Antibacterial Peptide-Based Gel for Prevention of Medical Implanted-Device Infection.

    PubMed

    Mateescu, Mihaela; Baixe, Sébastien; Garnier, Tony; Jierry, Loic; Ball, Vincent; Haikel, Youssef; Metz-Boutigue, Marie Hélène; Nardin, Michel; Schaaf, Pierre; Etienne, Olivier; Lavalle, Philippe

    2015-01-01

    Implanted medical devices are prone to infection. Designing new strategies to reduce infection and implant rejection are an important challenge for modern medicine. To this end, in the last few years many hydrogels have been designed as matrices for antimicrobial molecules destined to fight frequent infection found in moist environments like the oral cavity. In this study, two types of original hydrogels containing the antimicrobial peptide Cateslytin have been designed. The first hydrogel is based on alginate modified with catechol moieties (AC gel). The choice of these catechol functional groups which derive from mussel's catechol originates from their strong adhesion properties on various surfaces. The second type of gel we tested is a mixture of alginate catechol and thiol-terminated Pluronic (AC/PlubisSH), a polymer derived from Pluronic, a well-known biocompatible polymer. This PlubisSH polymer has been chosen for its capacity to enhance the cohesion of the composition. These two gels offer new clinical uses, as they can be injected and jellify in a few minutes. Moreover, we show these gels strongly adhere to implant surfaces and gingiva. Once gelled, they demonstrate a high level of rheological properties and stability. In particular, the dissipative energy of the (AC/PlubisSH) gel detachment reaches a high value on gingiva (10 J.m-2) and on titanium alloys (4 J.m-2), conferring a strong mechanical barrier. Moreover, the Cateslytin peptide in hydrogels exhibited potent antimicrobial activities against P. gingivalis, where a strong inhibition of bacterial metabolic activity and viability was observed, indicating reduced virulence. Gel biocompatibility tests indicate no signs of toxicity. In conclusion, these new hydrogels could be ideal candidates in the prevention and/or management of periimplant diseases. PMID:26659616

  9. Testing the immunity of active implantable medical devices to CW magnetic fields up to 1 MHz by an immersion method.

    PubMed

    Buzduga, Valentin; Witters, Donald M; Casamento, Jon P; Kainz, Wolfgang

    2007-09-01

    This paper presents a magnetic-field system and the method developed for testing the immunity of the active implantable medical devices to continuous-wave magnetic fields in the frequency range up to 1 MHz. The system is able to produce magnetic fields of 150 A/m for frequencies up to 100 kHz and strengths decreasing as 1/f between 100 kHz and 1 MHz, with uniformity of the field within +/-2.5% in the volume for tests. To simulate human tissue, the medical device, together with its leads, is placed on a plastic grid in a saline tank that is introduced in the magnetic field of the induction coil. This paper offers an alternative for the injection voltage methods provided in the actual standards for assessing the protection of the implantable medical devices from the effects of the magnetic fields up to 1 MHz. This paper presents the equipment and signals used, the test procedure, and results from the preliminary tests performed at the Food and Drug Administration-Center for Devices and Radiological Health on implantable pacemakers and neurostimulators. The new system and test method are useful for the EMC research on the implantable medical devices. PMID:17867360

  10. BAYESIAN META-ANALYSIS ON MEDICAL DEVICES: APPLICATION TO IMPLANTABLE CARDIOVERTER DEFIBRILLATORS

    PubMed Central

    Youn, Ji-Hee; Lord, Joanne; Hemming, Karla; Girling, Alan; Buxton, Martin

    2012-01-01

    Objectives: The aim of this study is to describe and illustrate a method to obtain early estimates of the effectiveness of a new version of a medical device. Methods: In the absence of empirical data, expert opinion may be elicited on the expected difference between the conventional and modified devices. Bayesian Mixed Treatment Comparison (MTC) meta-analysis can then be used to combine this expert opinion with existing trial data on earlier versions of the device. We illustrate this approach for a new four-pole implantable cardioverter defibrillator (ICD) compared with conventional ICDs, Class III anti-arrhythmic drugs, and conventional drug therapy for the prevention of sudden cardiac death in high risk patients. Existing RCTs were identified from a published systematic review, and we elicited opinion on the difference between four-pole and conventional ICDs from experts recruited at a cardiology conference. Results: Twelve randomized controlled trials were identified. Seven experts provided valid probability distributions for the new ICDs compared with current devices. The MTC model resulted in estimated relative risks of mortality of 0.74 (0.60–0.89) (predictive relative risk [RR] = 0.77 [0.41–1.26]) and 0.83 (0.70–0.97) (predictive RR = 0.84 [0.55–1.22]) with the new ICD therapy compared to Class III anti-arrhythmic drug therapy and conventional drug therapy, respectively. These results showed negligible differences from the preliminary results for the existing ICDs. Conclusions: The proposed method incorporating expert opinion to adjust for a modification made to an existing device may play a useful role in assisting decision makers to make early informed judgments on the effectiveness of frequently modified healthcare technologies. PMID:22559753

  11. Security mechanism based on Hospital Authentication Server for secure application of implantable medical devices.

    PubMed

    Park, Chang-Seop

    2014-01-01

    After two recent security attacks against implantable medical devices (IMDs) have been reported, the privacy and security risks of IMDs have been widely recognized in the medical device market and research community, since the malfunctioning of IMDs might endanger the patient's life. During the last few years, a lot of researches have been carried out to address the security-related issues of IMDs, including privacy, safety, and accessibility issues. A physician accesses IMD through an external device called a programmer, for diagnosis and treatment. Hence, cryptographic key management between IMD and programmer is important to enforce a strict access control. In this paper, a new security architecture for the security of IMDs is proposed, based on a 3-Tier security model, where the programmer interacts with a Hospital Authentication Server, to get permissions to access IMDs. The proposed security architecture greatly simplifies the key management between IMDs and programmers. Also proposed is a security mechanism to guarantee the authenticity of the patient data collected from IMD and the nonrepudiation of the physician's treatment based on it. The proposed architecture and mechanism are analyzed and compared with several previous works, in terms of security and performance. PMID:25276797

  12. Genetic Identification and Risk Factor Analysis of Asymptomatic Bacterial Colonization on Cardiovascular Implantable Electronic Devices

    PubMed Central

    Chu, Xian-Ming; An, Yi; Li, Xue-Bin; Guo, Ji-Hong

    2014-01-01

    Asymptomatic bacterial colonization of cardiovascular implantable electronic devices (CIEDs) is widespread and increases the risk of clinical CIED infection. The aim of the study was to evaluate the incidence of bacterial colonization of generator pockets in patients without signs of infection and to analyze the relationship with clinical infection and risk factors. From June 2011 to December 2012, 78 patients underwent CIED replacement or upgrade. Exclusion criteria included a clinical diagnosis of CIED infection, bacteremia, or infective endocarditis. All patients were examined for evidence of bacterial 16S rDNA on the device and in the surrounding tissues. Infection cases were recorded during follow-up. The bacterial-positive rate was 38.5% (30 cases); the coagulase-negative Staphylococcus detection rate was the highest (9 cases, 11.5%). Positive bacterial DNA results were obtained from pocket tissue in 23.1% of patients (18 cases), and bacterial DNA was detected on the device in 29.5% of patients (23 cases). During follow-up (median 24.6 months), two patients (6.7%, 2/30) became symptomatic with the same species of microorganism, S. aureus and S. epidermidis. Multivariable logistic regression analysis found that the history of bacterial infection, use of antibiotics, application of antiplatelet drugs, replacement frequency, and renal insufficiency were independent risk factors for asymptomatic bacterial colonization. PMID:25530969

  13. Predicting heart failure decompensation using cardiac implantable electronic devices: a review of practices and challenges.

    PubMed

    Hawkins, Nathaniel M; Virani, Sean A; Sperrin, Matthew; Buchan, Iain E; McMurray, John J V; Krahn, Andrew D

    2016-08-01

    Cardiac implantable electronic devices include remote monitoring tools intended to guide heart failure management. The monitoring focus has been on averting hospitalizations by predicting worsening heart failure. However, although device measurements including intrathoracic impedance correlate with risk of decompensation, they individually predict hospitalizations with limited accuracy. Current 'crisis detection' methods involve repeatedly screening for impending decompensation, and do not adhere to the principles of diagnostic testing. Complex substrate, limited test performance, low outcome incidence, and long test to outcome times inevitably generate low positive and high negative predictive values. When combined with spectrum bias, the generalizability, incremental value, and cost-effectiveness of device algorithms are questionable. To avoid these pitfalls, remote monitoring may need to shift from crisis detection to health maintenance, keeping the patient within an ideal physiological range through continuous 'closed loop' interaction and dynamic therapy adjustment. Test performance must also improve, possibly through combination with physiological sensors in different dimensions, static baseline characteristics, and biomarkers. Complex modelling may tailor monitoring to individual phenotypes, and thus realize a personalized medicine approach. Future randomized controlled trials should carefully consider these issues, and ensure that the interventions tested are generalizable to clinical practice. PMID:26663507

  14. Security Mechanism Based on Hospital Authentication Server for Secure Application of Implantable Medical Devices

    PubMed Central

    2014-01-01

    After two recent security attacks against implantable medical devices (IMDs) have been reported, the privacy and security risks of IMDs have been widely recognized in the medical device market and research community, since the malfunctioning of IMDs might endanger the patient's life. During the last few years, a lot of researches have been carried out to address the security-related issues of IMDs, including privacy, safety, and accessibility issues. A physician accesses IMD through an external device called a programmer, for diagnosis and treatment. Hence, cryptographic key management between IMD and programmer is important to enforce a strict access control. In this paper, a new security architecture for the security of IMDs is proposed, based on a 3-Tier security model, where the programmer interacts with a Hospital Authentication Server, to get permissions to access IMDs. The proposed security architecture greatly simplifies the key management between IMDs and programmers. Also proposed is a security mechanism to guarantee the authenticity of the patient data collected from IMD and the nonrepudiation of the physician's treatment based on it. The proposed architecture and mechanism are analyzed and compared with several previous works, in terms of security and performance. PMID:25276797

  15. Implantable drug delivery device using frequency-controlled wireless hydrogel microvalves.

    PubMed

    Rahimi, Somayyeh; Sarraf, Elie H; Wong, Gregory K; Takahata, Kenichi

    2011-04-01

    This paper reports a micromachined drug delivery device that is wirelessly operated using radiofrequency magnetic fields for implant applications. The controlled release from the drug reservoir of the device is achieved with the microvalves of poly(N-isopropylacrylamide) thermoresponsive hydrogel that are actuated with a wireless resonant heater, which is activated only when the field frequency is tuned to the resonant frequency of the heater circuit. The device is constructed by bonding a 1-mm-thick polyimide component with the reservoir cavity to the heater circuit that uses a planar coil with the size of 5-10 mm fabricated on polyimide film, making all the outer surfaces to be polyimide. The release holes created in a reservoir wall are opened/closed by the hydrogel microvalves that are formed inside the reservoir by in-situ photolithography that uses the reservoir wall as a photomask, providing the hydrogel structures self-aligned to the release holes. The wireless heaters exhibit fast and strong response to the field frequency, with a temperature increase of up to 20°C for the heater that has the 34-MHz resonant frequency, achieving 38-% shrinkage of swelled hydrogel when the heater is excited at its resonance. An active frequency range of ~2 MHz is observed for the hydrogel actuation. Detailed characteristics in the fabrication and actuation of the hydrogel microvalves as well as experimental demonstrations of frequency-controlled temporal release are reported. PMID:21161600

  16. Genetic identification and risk factor analysis of asymptomatic bacterial colonization on cardiovascular implantable electronic devices.

    PubMed

    Chu, Xian-Ming; Li, Bing; An, Yi; Li, Xue-Bin; Guo, Ji-Hong

    2014-01-01

    Asymptomatic bacterial colonization of cardiovascular implantable electronic devices (CIEDs) is widespread and increases the risk of clinical CIED infection. The aim of the study was to evaluate the incidence of bacterial colonization of generator pockets in patients without signs of infection and to analyze the relationship with clinical infection and risk factors. From June 2011 to December 2012, 78 patients underwent CIED replacement or upgrade. Exclusion criteria included a clinical diagnosis of CIED infection, bacteremia, or infective endocarditis. All patients were examined for evidence of bacterial 16S rDNA on the device and in the surrounding tissues. Infection cases were recorded during follow-up. The bacterial-positive rate was 38.5% (30 cases); the coagulase-negative Staphylococcus detection rate was the highest (9 cases, 11.5%). Positive bacterial DNA results were obtained from pocket tissue in 23.1% of patients (18 cases), and bacterial DNA was detected on the device in 29.5% of patients (23 cases). During follow-up (median 24.6 months), two patients (6.7%, 2/30) became symptomatic with the same species of microorganism, S. aureus and S. epidermidis. Multivariable logistic regression analysis found that the history of bacterial infection, use of antibiotics, application of antiplatelet drugs, replacement frequency, and renal insufficiency were independent risk factors for asymptomatic bacterial colonization. PMID:25530969

  17. The insulation performance of reactive parylene films in implantable electronic devices

    PubMed Central

    Seymour, John P.; Elkasabi, Yaseen; Chen, Hsien-yeh; Lahann, Joerg; Kipke, Daryl R.

    2009-01-01

    Parylene-C (poly-chloro-p-xylylene) is an appropriate material for use in an implantable, microfabricated device. It is hydrophobic, conformally deposited, has a low dielectric constant, and superb biocompatibility. Yet for many bioelectrical applications, its poor wet adhesion may be an impassable shortcoming. This research contrasts parylene-C and poly(p-xylylene) functionalized with reactive group X (PPX-X) layers using long-term electrical soak and adhesion tests. The reactive parylene was made of complementary derivatives having aldehyde and aminomethyl side groups (PPX-CHO and PPX-CH2NH2 respectively). These functional groups have previously been shown to covalently react together after heating. Electrical testing was conducted in saline at 37°C on interdigitated electrodes with either parylene-C or reactive parylene as the metal layer interface. Results showed that reactive parylene devices maintained the highest impedance. Heat-treated PPX-X device impedance was 800% greater at 10 kHz and 70% greater at 1Hz relative to heated parylene-C controls after 60 days. Heat treatment proved to be critical for maintaining high impedance of both parylene-C and the reactive parylene. Adhesion measurements showed improved wet metal adhesion for PPX-X, which corresponds well with its excellent high frequency performance. PMID:19703712

  18. Cochlear implantation in the world's largest medical device market: Utilization and awareness of cochlear implants in the United States

    PubMed Central

    Sorkin, Donna L.

    2013-01-01

    Provision of cochlear implants (CIs) for those within the criteria for implantation remains lower in the United States than in some other developed nations. When adults and children are grouped together, the rate of utilization/provision remains low at around 6%. For children, the provision rate is about 50% of those who could benefit from an implant, compared with figures of about 90% for the Flanders part of Belgium, the United Kingdom and other European countries. The probable reasons for this underprovision include: low awareness of the benefits of CIs among the population; low awareness among health-care professionals; the lack of specific referral pathways; some political issues relating to the Deaf Community; and financial issues related to health provision. Such financial issues result in situations which either fail to provide for access to implants or provide too low a level of the necessary funding, especially for low-income individuals covered by public health-care programs such as Medicaid. These issues might be mitigated by adoption and publication of standards for best clinical practices for CI provision, availability of current cost-effectiveness data, and the existence of an organization dedicated to cochlear implantation. Such an organization, the American Cochlear Implant Alliance (ACI Alliance), was recently organized and is described in the paper by Niparko et al. in this Supplement. PMID:23453146

  19. Packaging and Non-Hermetic Encapsulation Technology for Flip Chip on Implantable MEMS Devices

    PubMed Central

    Sutanto, Jemmy; Anand, Sindhu; Sridharan, Arati; Korb, Robert; Zhou, Li; Baker, Michael S.; Okandan, Murat; Muthuswamy, Jit

    2013-01-01

    We report here a successful demonstration of a flip-chip packaging approach for a microelectromechanical systems (MEMS) device with in-plane movable microelectrodes implanted in a rodent brain. The flip-chip processes were carried out using a custom-made apparatus that was capable of the following: 1) creating Ag epoxy microbumps for first-level interconnect; 2) aligning the die and the glass substrate; and 3) creating non-hermetic encapsulation (NHE). The completed flip-chip package had an assembled weight of only 0.5 g significantly less than the previously designed wire-bonded package of 4.5 g. The resistance of the Ag bumps was found to be negligible. The MEMS micro-electrodes were successfully tested for its mechanical movement with microactuators generating forces of 450 μN with a displacement resolution of 8.8 μm/step. An NHE on the front edge of the package was created by patterns of hydrophobic silicone microstructures to prevent contamination from cerebrospinal fluid while simultaneously allowing the microelectrodes to move in and out of the package boundary. The breakdown pressure of the NHE was found to be 80 cm of water, which is significantly (4.5–11 times) larger than normal human intracranial pressures. Bench top tests and in vivo tests of the MEMS flip-chip packages for up to 75 days showed reliable NHE for potential long-term implantation. PMID:24431925

  20. The implantable fuzzy controlled Helmholtz-left ventricular assist device: first in vitro testing.

    PubMed

    Kaufmann, R; Nix, C; Klein, M; Reul, H; Rau, G

    1997-02-01

    To perform first experimental tests for validation of a new left ventricular assist device (LVAD) with a high efficiency energy converter, a new pump design and a novel type of perfusion control, a functional labtype, were manufactured. With a stroke volume of 65 ml, a total pump housing volume of 450 ml (including valves and connectors), and a weight of 430 g, it is one of the smallest and lightest implantable pulsatile electromechanical LVADs. Pulsatile operation is generated by a special reduction and displacement gear which transforms a uniform rotational movement of a sensorless, electronically commutated DC motor into a translatory pusher plate movement. A prolonged duration for filling (60% of the cycle time) supports full-empty pumping and consequently a high overall pump efficiency. Active adaptation of output flow to organ perfusion demand is achieved by changing the rotational speed of the motor by means of a sensorless fuzzy controller, which detects preload and afterload induced effects at the motor current input. First in vitro test results obtained within a circulatory mock loop that simulates physiological preloads and afterloads are presented. They comprise preload sensitivity and the function of the novel perfusion controller as well as preload and afterload related flow data. The results prove the feasability of the energy conversion with the novel gear and control concept for an implantable electromechanical pulsatile LVAD. PMID:9028495

  1. DEGRO/DGK guideline for radiotherapy in patients with cardiac implantable electronic devices.

    PubMed

    Gauter-Fleckenstein, Benjamin; Israel, Carsten W; Dorenkamp, Marc; Dunst, Jürgen; Roser, Mattias; Schimpf, Rainer; Steil, Volker; Schäfer, Jörg; Höller, Ulrike; Wenz, Frederik

    2015-05-01

    An increasing number of patients undergoing radiotherapy (RT) have cardiac implantable electronic devices [CIEDs, cardiac pacemakers (PMs) and implanted cardioverters/defibrillators (ICDs)]. Ionizing radiation can cause latent and permanent damage to CIEDs, which may result in loss of function in patients with asystole or ventricular fibrillation. Reviewing the current literature, the interdisciplinary German guideline (DEGRO/DGK) was developed reflecting patient risk according to type of CIED, cardiac condition, and estimated radiation dose to the CIED. Planning for RT should consider the CIED specifications as well as patient-related characteristics (pacing-dependent, previous ventricular tachycardia/fibrillation). Antitachyarrhythmia therapy should be suspended in patients with ICDs, who should be under electrocardiographic monitoring with an external defibrillator on stand-by. The beam energy should be limited to 6 (to 10) MV CIEDs should never be located in the beam, and the cumulative scatter radiation dose should be limited to 2 Gy. Personnel must be able to respond adequately in the case of a cardiac emergency and initiate basic life support, while an emergency team capable of advanced life support should be available within 5 min. CIEDs need to be interrogated 1, 3, and 6 months after the last RT due to the risk of latent damage. PMID:25739476

  2. Power loss measurement of implantable wireless power transfer components using a Peltier device balance calorimeter

    NASA Astrophysics Data System (ADS)

    Leung, Ho Yan; Budgett, David M.; Taberner, Andrew; Hu, Patrick

    2014-09-01

    Determining heat losses in power transfer components operating at high frequencies for implantable inductive power transfer systems is important for assessing whether the heat dissipated by the component is acceptable for implantation and medical use. However, this is a challenge at high frequencies and voltages due to limitations in electronic instrumentation. Calorimetric methods of power measurement are immune to the effects of high frequencies and voltages; hence, the measurement is independent of the electrical characteristics of the system. Calorimeters have been widely used to measure the losses of high power electrical components (>50 W), however it is more difficult to perform on low power components. This paper presents a novel power measurement method for components dissipating anywhere between 0.2 W and 1 W of power based on a heat balance calorimeter that uses a Peltier device as a balance sensor. The proposed balance calorimeter has a single test accuracy of ±0.042 W. The experimental results revealed that there was up to 35% difference between the power measurements obtained with electrical methods and the proposed calorimeter.

  3. A Comparative Study of Small Voltage Rectification Circuits for Implanted Devices

    NASA Astrophysics Data System (ADS)

    Haider, Samnan; Mansor, Hasmah; Khan, Sheroz; Arshad, Atika; Shobaki, Mohammed M.; Tasnim, Rumana

    2013-12-01

    Biomedical implants have acquired an invulnerable and significant importance over the recent years due to their low voltage requirements and trifling dimensions. Biomedical implants are being widely employed for the continuous monitoring of intended parameters as well as stimulation of target organs in patient's body. Being low power devices, the continuous powering without using battery dependent sources necessitates the alternative sources such as energy harvesting from the surroundings. Harvested output needs to be processed before using it for powering purposes, particularly in harsh and challenging premises. Even after processing, it needs to be made robust against the contiguous hazards so that maximum power is transferred to the load. A rectifier is employed to make this harvested energy usable. This paper compares the rectifier circuits, comparing their simulation output in terms of regulation, stability and power transferred. The rectification of small voltages is usually confronted by the threshold voltage drops that affect the output causing an effective drop in the power transfer efficiency and other parameters related. The solution to this problem has been suggested comparing the previous approaches with some modifications. Obtained results have been plotted in terms of ripple factor comparing them with the analytical calculations in order to show the role of capacitance in the reduction of ripple factor.

  4. Optimal position of the transmitter coil for wireless power transfer to the implantable device.

    PubMed

    Jinghui Jian; Stanaćević, Milutin

    2014-01-01

    The maximum deliverable power through inductive link to the implantable device is limited by the tissue exposure to the electromagnetic field radiation. By moving away the transmitter coil from the body, the maximum deliverable power is increased as the magnitude of the electrical field at the interface with the body is kept constant. We demonstrate that the optimal distance between the transmitter coil and the body is on the order of 1 cm when the current of the transmitter coil is limited to 1 A. We also confirm that the conditions on the optimal frequency of the power transmission and the topology of the transmission coil remain the same as if the coil was directly adjacent to the body. PMID:25571496

  5. The Burden of Ventricular Arrhythmias Following Left Ventricular Assist Device Implantation

    PubMed Central

    Griffin, Jan M

    2014-01-01

    Few innovations in medicine have so convincingly and expeditiously improved patient outcomes more than the development of the left ventricular assist device (LVAD). Where optimal pharmacotherapy once routinely failed those with end-stage disease, the LVAD now offers considerable hope for the growing advanced heart failure population. Despite improvements in mortality, however, mechanical circulatory support is not without its limitations. Those supported with an LVAD are at increased risk of several complications, including infection, bleeding, stroke and arrhythmic events. While once considered benign, ventricular arrhythmias in the LVAD patient are being increasingly recognised for their deleterious influence on patient morbidity and quality of life. In addition, the often multifactorial aetiology to these episodes makes treatment difficult and optimal therapeutic management controversial. Novel strategies are clearly needed to better predict, prevent, and eradicate these arrhythmias in order to allow future generations of heart failure patients to reap the full benefits of LVAD implantation. PMID:26835082

  6. Current status of third-generation implantable left ventricular assist devices in Japan, Duraheart and HeartWare.

    PubMed

    Sawa, Yoshiki

    2015-06-01

    Recently, left ventricular assist devices (LVADs) have become a viable therapeutic approach as a bridge to cardiac transplantation, as well as destination therapy or as part of the bridge to recovery. In Japan, paracorporeal pneumatic devices are the only choice for such therapy, as implantable LVADs are not yet generally available due to device lag, which represents a serious problem in this field. Clinical trials of four different continuous-flow pumps, both axial and centrifugal flow types, were completed at about the same time, and two of those devices, DuraHeart and EVAHEART, have already been approved for use in Japan. Thus, reports of advanced treatment for severe heart failure with these devices are expected. The DuraHeart (Terumo Heart, Ann Arbor, MI, USA) and another device named the HeartWare (HeartWare Inc, Miami Lakes, FL, USA) are so-called third-generation devices, as they have achieved miniaturization and improvements in performance from the use of magnetic levitation. Based on our experiences from both clinical research and experimental use, we herein discuss the DuraHeart and HeartWare devices, with a focus on the clinical outcomes and management strategies. Because of the long waiting period for heart transplantation in Japan, these two devices are considered to have important roles in the near future for the treatment of severe heart failure, and a comprehensive strategy for LVAD therapy including such third-generation implantable devices is expected. PMID:25139211

  7. Limitation of motion and shoulder disabilities in patients with cardiac implantable electronic devices.

    PubMed

    Findikoglu, Gulin; Yildiz, Bekir S; Sanlialp, Musa; Alihanoglu, Yusuf I; Kilic, Ismail D; Evregul, Harun; Senol, Hande

    2015-12-01

    The aim of this study is to investigate the presence of limitations in the shoulder range of motion (ROM) or the loss of upper extremity function on the affected side in patients with cardiac implantable electronic devices (CIEDs) with respect to the implantation time. Forty-nine patients (30 men and 19 women), mean age 64.84±11.18 years, who had been living with a CIED for less than 3 months were included in the short-term recipient (STR) group and 127 patients (85 men and 42 women), mean age 64.91±14.70 years, and with the device for longer than 3 months were included in the long-term recipients group. Shoulder ROMs were measured using a digital goniometer. The other arm was used as the control. The Constant-Murler Score, Shoulder Pain Disability Index, and Shoulder Disability Questionnaire were used to assess the functional status. Limitations of ROM for flexion, abduction, and internal rotation were found to be significantly lower in the arm on the side of CIED compared with the control arm. Significant differences in shoulder flexion, abduction, and external rotation in STRs were found compared with long-term recipient (P<0.05). However, the functional comparison of groups by the Constant-Murler Score was not significant. A low to moderate amount of shoulder disability measured by Shoulder Pain Disability Index and Shoulder Disability Questionnaire was found in patients with CIEDs, which was more prominent in STRs (P<0.05). Pain, association of CIED with pectoral muscles, a possible subtle ongoing capsular pathology, and avoidance behaviors of patients to minimize the risk of lead dislodgement might be related to restriction of motion and function in the shoulder joint in patients with CIEDs. PMID:26164799

  8. Fundus fluorescein angiographic findings in patients who underwent ventricular assist device implantation.

    PubMed

    Ozturk, Taylan; Nalcaci, Serhad; Ozturk, Pelin; Engin, Cagatay; Yagdi, Tahir; Akkin, Cezmi; Ozbaran, Mustafa

    2013-09-01

    Disruption of microcirculation in various tissues as a result of deformed blood rheology due to ventricular assist device (VAD) implantation causes novel arteriovenous malformations. Capillary disturbances and related vascular leakage in the retina and choroidea may also be seen in patients supported by VADs. We aimed to evaluate retinal vasculature deteriorations after VAD implantation. The charts of 17 patients who underwent VAD implantation surgery for the treatment of end-stage heart failure were retrospectively reviewed. Eight cases (47.1%) underwent pulsatile pump implantation (Berlin Heart EXCOR, Berlin Heart Mediprodukt GmbH, Berlin, Germany); however, nine cases (52.9%) had continuous-flow pump using centrifugal design (HeartWare, HeartWare Inc., Miramar, FL, USA). Study participants were selected among the patients who had survived with a VAD for at least 6 months, and results of detailed ophthalmologic examinations including optic coherence tomography (OCT) and fundus fluorescein angiography (FA) were documented. All of the 17 patients were male, with a mean age of 48.5 ± 14.8 years (15-67 years). Detailed ophthalmologic examinations including the evaluation of retinal vascular deteriorations via FA were performed at a mean of 11.8 ± 3.7 months of follow-up (6-18 months). Mean best-corrected visual acuity and intraocular pressure were found as logMAR 0.02 ± 0.08 and 14.6 ± 1.9 mm Hg, respectively in the study population. Dilated fundoscopy revealed severe focal arteriolar narrowing in two patients (11.8%), and arteriovenous crossing changes in four patients (23.5%); however, no pathological alteration was present in macular OCT scans. In patients with continuous-flow blood pumps, mean arm-retina circulation time (ARCT) and arteriovenous transit time (AVTT) were found to be 16.8 ± 3.0 and 12.4 ± 6.2 s, respectively; whereas those with pulsatile-flow blood pumps were found to be 17.4 ± 3.6 and 14.0 ± 2.1 s in patients (P=0.526 and P=0

  9. Design and simulation of printed spiral coil used in wireless power transmission systems for implant medical devices.

    PubMed

    Wu, Wei; Fang, Qiang

    2011-01-01

    Printed Spiral Coil (PSC) is a coil antenna for near-field wireless power transmission to the next generation implant medical devices. PSC for implant medical device should be power efficient and low electromagnetic radiation to human tissues. We utilized a physical model of printed spiral coil and applied our algorithm to design PSC operating at 13.56 MHz. Numerical and electromagnetic simulation of power transfer efficiency of PSC in air medium is 77.5% and 71.1%, respectively. The simulation results show that the printed spiral coil which is optimized for air will keep 15.2% power transfer efficiency in human subcutaneous tissues. In addition, the Specific Absorption Ratio (SAR) for this coil antenna in subcutaneous at 13.56 MHz is below 1.6 W/Kg, which suggests this coil is implantable safe based on IEEE C95.1 safety guideline. PMID:22255221

  10. [Percutaneous implantation of a left ventricular restoration device [Parachute(TM)] for the treatment of ischemic heart failure].

    PubMed

    Ielasi, Alfonso; Tespili, Maurizio; Repossini, Alberto; Scopelliti, Pasquale; Paganoni, Silvia; Cafro, Andrea; Silvestro, Antonio; Personeni, Davide; Saino, Antonio; Muneretto, Claudio

    2015-01-01

    Congestive heart failure secondary to myocardial infarction is associated with significant morbidity and mortality despite currently available therapies. A novel catheter-based left ventricular partitioning device (ParachuteTM, CardioKinetix, Inc., Menlo Park, CA) is currently available for the treatment of patients with severe systolic dysfunction after antero-apical myocardial infarction with regional wall motion abnormalities. Preliminary clinical data showed that the ParachuteTM implantation could be associated with favorable clinical and left ventricular hemodynamic improvements post-implantation. Here, we present the case of a patient with symptomatic congestive heart failure after myocardial infarction implanted with the ParachuteTM device and we briefly review the current literature on this left ventricular partitioning system. PMID:25689752

  11. Update on bariatric surgical procedures and an introduction to the implantable weight loss device: the Maestro Rechargeable System.

    PubMed

    Hwang, Stephanie S; Takata, Mark C; Fujioka, Ken; Fuller, William

    2016-01-01

    There are many different methods of treating obesity, ranging from various medical options to several surgical therapies. This paper briefly summarizes current surgical options for weight loss with a focus on one of the newest US Food and Drug Administration-approved devices for surgical weight loss therapy, the Maestro Rechargeable System. Also known as the vagal blocking for obesity control implantable device, this tool blocks vagal nerve activity to induce weight loss. PMID:27574473

  12. Update on bariatric surgical procedures and an introduction to the implantable weight loss device: the Maestro Rechargeable System

    PubMed Central

    Hwang, Stephanie S; Takata, Mark C; Fujioka, Ken; Fuller, William

    2016-01-01

    There are many different methods of treating obesity, ranging from various medical options to several surgical therapies. This paper briefly summarizes current surgical options for weight loss with a focus on one of the newest US Food and Drug Administration-approved devices for surgical weight loss therapy, the Maestro Rechargeable System. Also known as the vagal blocking for obesity control implantable device, this tool blocks vagal nerve activity to induce weight loss. PMID:27574473

  13. Initial experience with implantation of novel dual layer flow-diverter device FRED

    PubMed Central

    Sagan, Leszek; Safranow, Krzysztof; Rać, Monika

    2013-01-01

    Flow-diverting stents can help treat complex and wide-necked cerebral aneurysms. The aim of the study was to evaluate initial experiences related to the safety and effectiveness of eight aneurysms treated with a new dual layer coverage designed flow-diverter device. In 2012 Fred flow-diverter devices were used to treat 8 unruptured wide neck (dome-neck ratio ≤ 1.5) and sidewall aneurysms in 6 patients. All aneurysms were located in the anterior circulation on the internal carotid artery (ICA). In 4 larger aneurysms (> 10 mm) one 3D coil in association with Fred was used to reduce potential incidence of postoperative subarachnoid haemorrhage (SAH). Dual antiplatelet therapy was administered before the procedure and continued for 3 months after it. Clinical parameters, aneurysm features and 3-month follow-up angiograms are presented. All 6 patients with 8 aneurysms were successfully stented with the Fred flow-diverter device and were discharged in generally good condition on dual-antiplatelet therapy. No complications were related to the procedure. In 5 cases digital subtraction angiography (DSA) control examination was performed after 3 months, showing complete occlusion of the aneurysms with patency of the parent artery. In 1 case thrombosis of the Fred occurred but without any clinical consequences because of cross-flow from the other side. Use of the Fred flow-diverter device was efficacious in all 8 treated cerebral aneurysms. The system seems to be promising as a flow diverter with certain characteristics, which allow for easy delivery and implantation. Further clinical evaluation with a larger group of patients is needed. PMID:24130644

  14. Initial experience with implantation of novel dual layer flow-diverter device FRED.

    PubMed

    Poncyljusz, Wojciech; Sagan, Leszek; Safranow, Krzysztof; Rać, Monika

    2013-09-01

    Flow-diverting stents can help treat complex and wide-necked cerebral aneurysms. The aim of the study was to evaluate initial experiences related to the safety and effectiveness of eight aneurysms treated with a new dual layer coverage designed flow-diverter device. In 2012 Fred flow-diverter devices were used to treat 8 unruptured wide neck (dome-neck ratio ≤ 1.5) and sidewall aneurysms in 6 patients. All aneurysms were located in the anterior circulation on the internal carotid artery (ICA). In 4 larger aneurysms (> 10 mm) one 3D coil in association with Fred was used to reduce potential incidence of postoperative subarachnoid haemorrhage (SAH). Dual antiplatelet therapy was administered before the procedure and continued for 3 months after it. Clinical parameters, aneurysm features and 3-month follow-up angiograms are presented. All 6 patients with 8 aneurysms were successfully stented with the Fred flow-diverter device and were discharged in generally good condition on dual-antiplatelet therapy. No complications were related to the procedure. In 5 cases digital subtraction angiography (DSA) control examination was performed after 3 months, showing complete occlusion of the aneurysms with patency of the parent artery. In 1 case thrombosis of the Fred occurred but without any clinical consequences because of cross-flow from the other side. Use of the Fred flow-diverter device was efficacious in all 8 treated cerebral aneurysms. The system seems to be promising as a flow diverter with certain characteristics, which allow for easy delivery and implantation. Further clinical evaluation with a larger group of patients is needed. PMID:24130644

  15. 34 CFR 300.113 - Routine checking of hearing aids and external components of surgically implanted medical devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false Routine checking of hearing aids and external... Eligibility Other Fape Requirements § 300.113 Routine checking of hearing aids and external components of surgically implanted medical devices. (a) Hearing aids. Each public agency must ensure that hearing aids...

  16. 34 CFR 300.113 - Routine checking of hearing aids and external components of surgically implanted medical devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Routine checking of hearing aids and external components... Eligibility Other Fape Requirements § 300.113 Routine checking of hearing aids and external components of surgically implanted medical devices. (a) Hearing aids. Each public agency must ensure that hearing aids...

  17. 34 CFR 300.113 - Routine checking of hearing aids and external components of surgically implanted medical devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Routine checking of hearing aids and external... Eligibility Other Fape Requirements § 300.113 Routine checking of hearing aids and external components of surgically implanted medical devices. (a) Hearing aids. Each public agency must ensure that hearing aids...

  18. 34 CFR 300.113 - Routine checking of hearing aids and external components of surgically implanted medical devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true Routine checking of hearing aids and external components... Eligibility Other Fape Requirements § 300.113 Routine checking of hearing aids and external components of surgically implanted medical devices. (a) Hearing aids. Each public agency must ensure that hearing aids...

  19. 34 CFR 300.113 - Routine checking of hearing aids and external components of surgically implanted medical devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false Routine checking of hearing aids and external... Eligibility Other Fape Requirements § 300.113 Routine checking of hearing aids and external components of surgically implanted medical devices. (a) Hearing aids. Each public agency must ensure that hearing aids...

  20. Cochlear Implants

    MedlinePlus

    A cochlear implant is a small, complex electronic device that can help to provide a sense of sound. People who are ... of-hearing can get help from them. The implant consists of two parts. One part sits on ...

  1. Cochlear implant

    MedlinePlus

    ... antenna. This part of the implant receives the sound, converts the sound into an electrical signal, and sends it to ... implants allow deaf people to receive and process sounds and speech. However, these devices do not restore ...

  2. Introduction of new industry standards for cardiac implantable electronic devices: balancing benefits and unexpected risks

    PubMed Central

    Sticherling, Christian; Burri, Haran

    2012-01-01

    The DF-4 connector is a novel industry standard for the connection of a defibrillator lead to the generator. It aims at reducing the bulk created by two or three pins at the proximal end of the defibrillator lead and its corresponding ports at the header of the device. Having only one connection port between the lead and the device reduces the material in the pocket, the risk of lead-to-port mismatch, may lower the risk of lead abrasion, and probably makes the implantation procedure a little easier since only one set screw is required. However, all these conceived benefits are related to convenience rather than to a medical need. After the recent experiences with the possible negative clinical impact of ‘minor’ changes like simply downsizing a defibrillator lead, a word of caution is warranted. The lead is the weakest part of the defibrillator system, complex in design and undergoing constant stress through movement. It is very hard to predict which issues may evolve over time with the changes in lead design. Does the perceived benefit really outweigh an unpredictable risk in a sensitive medical product like a defibrillator? This article tries to address the possible issues of the new spring contacts instead of set screws, the proximity of the low- and high-voltage connections as well as the inability of adding a pace/sense or an additional shock lead without a special adaptor, and advocates a measured speed in the introduction of this technology. PMID:22389420

  3. Introduction of new industry standards for cardiac implantable electronic devices: balancing benefits and unexpected risks.

    PubMed

    Sticherling, Christian; Burri, Haran

    2012-08-01

    The DF-4 connector is a novel industry standard for the connection of a defibrillator lead to the generator. It aims at reducing the bulk created by two or three pins at the proximal end of the defibrillator lead and its corresponding ports at the header of the device. Having only one connection port between the lead and the device reduces the material in the pocket, the risk of lead-to-port mismatch, may lower the risk of lead abrasion, and probably makes the implantation procedure a little easier since only one set screw is required. However, all these conceived benefits are related to convenience rather than to a medical need. After the recent experiences with the possible negative clinical impact of 'minor' changes like simply downsizing a defibrillator lead, a word of caution is warranted. The lead is the weakest part of the defibrillator system, complex in design and undergoing constant stress through movement. It is very hard to predict which issues may evolve over time with the changes in lead design. Does the perceived benefit really outweigh an unpredictable risk in a sensitive medical product like a defibrillator? This article tries to address the possible issues of the new spring contacts instead of set screws, the proximity of the low- and high-voltage connections as well as the inability of adding a pace/sense or an additional shock lead without a special adaptor, and advocates a measured speed in the introduction of this technology. PMID:22389420

  4. Implantable controlled release devices for BMP-7 delivery and suppression of glioblastoma initiating cells.

    PubMed

    Reguera-Nuñez, Elaine; Roca, Carlota; Hardy, Eugenio; de la Fuente, Maria; Csaba, Noemi; Garcia-Fuentes, Marcos

    2014-03-01

    Designing therapeutic devices capable of manipulating glioblastoma initiating cells (GICs) is critical to stop tumor recurrence and its associated mortality. Previous studies have indicated that bone morphogenetic protein-7 (BMP-7) acts as an endogenous suppressor of GICs, and thus, it could become a treatment for this cancer. In this work, we engineer an implantable microsphere system optimized for the controlled release of BMP-7 as a bioinspired therapeutic device against GICs. This microsphere delivery system is based on the formation of a heparin-BMP-7 nanocomplex, first coated with Tetronic(®) and further entrapped in a biodegradable polyester matrix. The obtained microspheres can efficiently encapsulate BMP-7, and release it in a controlled manner with minimum burst effect for over two months while maintaining protein bioactivity. Released BMP-7 showed a remarkable capacity to stop tumor formation in a GICs cell culture model, an effect that could be mediated by forced reprogramming of tumorigenic cells towards a non-tumorigenic astroglial lineage. PMID:24406213

  5. Radiation exposure to operator and patients during cardiac electrophysiology study, radiofrequency catheter ablation and cardiac device implantation procedures

    NASA Astrophysics Data System (ADS)

    Lee, C. H.; Cho, J. H.; Park, S. J.; Kim, J. S.; On, Y. K.; Huh, J.

    2015-10-01

    The purpose of this study was to measure the radiation exposure to operator and patient during cardiac electrophysiology study, radiofrequency catheter ablation and cardiac device implantation procedures and to calculate the allowable number of cases per year. We carried out 9 electrophysiology studies, 40 radiofrequency catheter ablation and 11 cardiac device implantation procedures. To measure occupational radiation dose and dose-area product (DAP), 13 photoluminescence glass dosimeters were placed at eyes (inside and outside lead glass), thyroids (inside and outside thyroid collar), chest (inside and outside lead apron), wrists, genital of the operator (inside lead apron), and 6 of photoluminescence glass dosimeters were placed at eyes, thyroids, chest and genital of the patient. Exposure time and DAP values were 11.7 ± 11.8 min and 23.2 ± 26.2 Gy cm2 for electrophysiology study; 36.5 ± 42.1 min and 822.4 ± 125.5 Gy cm2 for radiofrequency catheter ablation; 16.2 ± 9.3 min and 27.8 ± 16.5 Gy cm2 for cardiac device implantation procedure, prospectively. 4591 electrophysiology studies can be conducted within the occupational exposure limit for the eyes (150 mSv), and 658-electrophysiology studies with radiofrequency catheter ablation can be carried out within the occupational exposure limit for the hands (500 mSv). 1654 cardiac device implantation procedure can be conducted within the occupational exposure limit for the eyes (150 mSv). The amounts of the operator and patient's radiation exposure were comparatively small. So, electrophysiology study, radio frequency catheter ablation and cardiac device implantation procedures are safe when performed with modern equipment and optimized protective radiation protect equipment.

  6. Minimally invasive implantation of an extracorporeal membrane oxygenation circuit used as a temporary left ventricular assist device: a new concept for bridging to permanent cardiac support.

    PubMed

    Saito, Shunsuke; Fleischer, Bernhard; Maeß, Christoph; Baraki, Hassina; Kutschka, Ingo

    2015-03-01

    The implantation of cardiac assist devices is associated with poor outcome in patients with multiple organ failure and unknown neurologic status. Therefore, temporary left ventricular assist devices (LVAD) using, for example, extracorporeal centrifugal pumps may provide the chance to further evaluate the patient's clinical course and a potential qualification for implantable LVAD therapy. On the other hand, a main disadvantage of the temporary LVAD implantation is the need for redo surgery, increasing the risk of the final LVAD Implantation. To minimize this drawback of the temporary LVAD implantation, we implanted the temporary LVAD using a minimally invasive technique. The operation was done without cardiopulmonary bypass support, and the temporary LVAD was implanted through upper hemisternotomy and left anterior mini-thoracotomy. The patient recovered from multiple organ failure and was successfully bridged to a permanent LVAD therapy. PMID:25370719

  7. Design method of a foldable ventricular assist device for minimally invasive implantation.

    PubMed

    Hsu, Po-Lin; Wang, Yaxin; Amaral, Felipe; Parker, Jack; Schmitz-Rode, Thomas; Autschbach, Rüdiger; Steinseifer, Ulrich

    2014-04-01

    To date, ventricular assist devices (VADs) have become accepted as a therapeutic solution for end-stage heart failure patients when a donor heart is not available. Newer generation VADs allow for a significant reduction in size and an improvement in reliability. However, the invasive implantation still limits this technology to critically ill patients. Recently, expandable/deployable devices have been investigated as a potential solution for minimally invasive insertion. Such a device can be inserted percutaneously via peripheral vessels in a collapsed form and operated in an expanded form at the desired location. A common structure of such foldable pumps comprises a memory alloy skeleton covered by flexible polyurethane material. The material properties allow elastic deformation to achieve the folded position and withstand the hydrodynamic forces during operation; however, determining the optimal geometry for such a structure is a complex challenge. The numerical finite element method (FEM) is widely used and provides accurate structural analysis, but computation time is considerably high during the initial design stage where various geometries need to be examined. This article details a simplified two-dimensional analytical method to estimate the mechanical stress and deformation of memory alloy skeletons. The method was applied in design examples including two popular types of blade skeletons of a foldable VAD. Furthermore, three force distributions were simulated to evaluate the strength of the structures under different loading conditions experienced during pump operation. The results were verified with FEM simulations. The proposed two-dimensional method gives a close stress and deformation estimation compared with three-dimensional FEM simulations. The results confirm the feasibility of such a simplified analytical approach to reveal priorities for structural optimization before time-consuming FEM simulations, providing an effective tool in the initial

  8. Outcomes of patients implanted with a left ventricular assist device at nontransplant mechanical circulatory support centers.

    PubMed

    Katz, Marc R; Dickinson, Michael G; Raval, Nirav Y; Slater, James P; Dean, David A; Zeevi, Gary R; Horn, Evelyn M; Salemi, Arash

    2015-05-01

    The goal of this study was to assess outcomes of patients who underwent implantation of left ventricular assist devices (LVADs) at nontransplantation mechanical circulatory support centers. As the availability of LVADs for advanced heart failure has expanded to nontransplantation mechanical circulatory support centers, concerns have been expressed about maintaining good outcomes. Demographics and outcomes were evaluated in 276 patients with advanced heart failure who underwent implantation of LVADs as bridge to transplantation or destination therapy at 27 open-heart centers. Baseline characteristics, operative mortality, length of stay, readmission rate, adverse events, quality of life, and survival were analyzed. The overall 30-day mortality was 3% (8 of 276), and survival rates at 6, 12, and 24 months, respectively, were 92±2%, 88±3%, and 84±4% for the bridge-to-transplantation group and 81±3%, 70±5%, and 63±6% for the destination therapy group, comparable with results published by the national Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS). The median length of stay for all patients was 21 days. Bleeding was the most frequent adverse event. Stroke occurred in 4% (bridge to transplantation) and 6% (destination therapy) of patients. Quality-of-life measures and 6-minute walk distances showed sustained improvements throughout support. In conclusion, outcomes with LVAD support at open-heart centers are acceptable and comparable with results from the INTERMACS registry. With appropriate teams, training, center commitment, and certification, LVAD therapy is being disseminated in a responsible way to open-heart centers. PMID:25772738

  9. PRE-OPERATIVE HEALTH STATUS AND OUTCOMES FOLLOWING CONTINUOUS-FLOW LEFT VENTRICULAR ASSIST DEVICE IMPLANTATION

    PubMed Central

    Flint, Kelsey M.; Matlock, Daniel D.; Sundareswaran, Kartik; Lindenfeld, JoAnn; Spertus, John A.; Farrar, David J.; Allen, Larry A.

    2013-01-01

    Background Health status predicts adverse outcomes in heart failure and cardiac surgery patients, but its prognostic value in left ventricular assist device (LVAD) placement is unknown. Methods We examined the association of pre-operative health status, as measured by the Kansas City Cardiomyopathy Questionnaire (KCCQ), with survival and hospitalization after LVAD using KCCQ as a continuous variable and stratified by KCCQ score quartile plus missing KCCQ in 1125 clinical trial participants receiving the HeartMate II as either destination therapy (n=635) or bridge to transplantation (n=490). Results Mean pre-operative KCCQ score was 29.4±18.7 among survivors (n=719), and 27.1±18.3 (n=406) in those who died. In time-to-event analysis for all available follow up using health status as a continuous variable, pre-operative KCCQ score did not correlate with overall mortality after LVAD implantation (p=0.178). Small absolute differences were seen between pre-operative KCCQ quartile and 30-day survival (Q4 95% vs. Q1 89% vs. missing 87%; p=0.0009 for trend), 180-day survival (Q4 83% vs. Q1 76% vs. missing 79%; p=0.060 for trend), and days hospitalized at 180 days (Q4 29.8±25.6 vs. Q1 34.1±27.1 vs. missing 36.5±29.9; p=0.009 for trend). Conclusion Our findings suggest that pre-operative health status has limited association with outcomes after LVAD implantation. Although these data require further study in a diverse population, mechanical circulatory support may represent a relatively unique clinical situation, distinct from heart failure and other cardiac surgeries, in which heart failure-specific health status measures may be largely reversed. PMID:24119729

  10. “It's Not Broke, So Let's Not Try to Fix It”: Why Patients Decline a Cardiovascular Implantable Electronic Device

    PubMed Central

    Ottenberg, Abigale L.; Mueller, Paul S.; Topazian, Rachel J.; Kaufman, Sharon; Swetz, Keith M.

    2014-01-01

    Background Few patients decline therapy of a cardiovascular implantable electronic device (CIED), and little is known about the characteristics or reasoning of those who do. Our objective was to describe the reasons why patients decline CIED implantation using qualitative methods. Methods Qualitative, engaging thematic analysis. Three patient focus groups led by 2 trained facilitators and 1 semistructured interview guide. Results Of the 13 patients, 2 were women and all were white (median age [range], 65 [44-88] years). Five themes emerged: 1) don't mess with a good thing, 2) my health is good enough, 3) independent decision making, 4) it's your job, but it's my choice, and 5) gaps in learning. Most patients who decline CIEDs are asymptomatic. Other reasons to decline included feeling well, enjoying life, acceptance of the future, desire to try to improve health through diet and exercise, hearing of negative CIED experiences, and unwillingness to take on associated risks of CIED implantation. A medical record review showed that clinicians understand patients’ reasons for declining CIED treatment. However, focus group data suggest that gaps in patients’ knowledge around the purpose and function of CIEDs exist and patients may benefit from targeted education. Conclusions Patients decline implantation of CIEDs for various reasons. Most patients who decline therapy are asymptomatic at the time of their device consult. Focus group information show data suggestive that device consultations should be enhanced to address gaps in patient learning and confirm knowledge transfer. Clinicians should revisit treatment options iteratively. PMID:24889010

  11. Design of a pulsatile flow facility to evaluate thrombogenic potential of implantable cardiac devices.

    PubMed

    Arjunon, Sivakkumar; Ardana, Pablo Hidalgo; Saikrishnan, Neelakantan; Madhani, Shalv; Foster, Brent; Glezer, Ari; Yoganathan, Ajit P

    2015-04-01

    Due to expensive nature of clinical trials, implantable cardiac devices should first be extensively characterized in vitro. Prosthetic heart valves (PHVs), an important class of these devices, have been shown to be associated with thromboembolic complications. Although various in vitro systems have been designed to quantify blood-cell damage and platelet activation caused by nonphysiological hemodynamic shear stresses in these PHVs, very few systems attempt to characterize both blood damage and fluid dynamics aspects of PHVs in the same test system. Various numerical modeling methodologies are also evolving to simulate the structural mechanics, fluid mechanics, and blood damage aspects of these devices. This article presents a completely hemocompatible small-volume test-platform that can be used for thrombogenicity studies and experimental fluid mechanics characterization. Using a programmable piston pump to drive freshly drawn human blood inside a cylindrical column, the presented system can simulate various physiological and pathophysiological conditions in testing PHVs. The system includes a modular device-mounting chamber, and in this presented case, a 23 mm St. Jude Medical (SJM) Regents® mechanical heart valve (MHV) in aortic position was used as the test device. The system was validated for its capability to quantify blood damage by measuring blood damage induced by the tester itself (using freshly drawn whole human blood). Blood damage levels were ascertained through clinically relevant assays on human blood while fluid dynamics were characterized using time-resolved particle image velocimetry (PIV) using a blood-mimicking fluid. Blood damage induced by the tester itself, assessed through Thrombin-anti-Thrombin (TAT), Prothrombin factor 1.2 (PF1.2), and hemolysis (Drabkins assay), was within clinically accepted levels. The hydrodynamic performance of the tester showed consistent, repeatable physiological pressure and flow conditions. In addition, the

  12. An Implantable Device for Manipulation of the in vivo Tumor Microenvironment

    NASA Astrophysics Data System (ADS)

    Williams, James K.

    In the past decade, it has become increasingly recognized that interactions between cancer cells and the tumor microenvironment (TME) regulate metastasis. One such interaction is the paracrine loop between macrophages and cancer cells which drives metastatic invasion in mammary tumors. Tumor associated macrophages release epidermal growth factor (EGF), a chemoattractant which induces the migration of cancer cells toward the blood vessels. The cancer cells reciprocate by releasing a macrophage chemoattractant, colony-stimulating factor 1 (CSF-1), resulting in the co-migration of both cell types and subsequent intravasation. In this work, a new technology has been developed for studying the mechanisms by which invasive tumor cells migrate in vivo toward gradients of EGF. Conventional in vitro methods used for studying tumor cell migration lack the complexity found in the TME and are therefore of limited relevance to in vivo metastasis. The Nano Intravital Device (NANIVID) has been designed as an implantable tool to manipulate the TME through the generation of soluble factor gradients. The NANIVID consists of two etched glass substrates, loaded with a hydrogel containing EGF, and sealed together using a polymer membrane. When implanted in vivo, the hydrogel will swell and release the entrapped EGF, forming a diffusion gradient in the tumor over many hours. The NANIVID design has been optimized for use with multiphoton-based intravital imaging, to monitor migration toward the device at single-cell resolution. Stabilization techniques have been developed to minimize imaging artifacts caused by breathing and specimen movement over the course of the experiment. The NANIVID has been validated in vivo using a mouse model of metastasis. When implanted in MDA-MB-231 xenograft tumors grown in SCID mice, chemotaxis of tumor cells was induced by the EGF gradient generated by the device. Cell motility parameters including velocity, directionality, and chemotactic index were

  13. Sinus implants stabilization in Misch IV Class by means of S.I.S. device: A Clinical Study

    PubMed Central

    GRANDI, C.; PACIFICI, L.

    2010-01-01

    SUMMARY Aims. In Misch Class IV dental implants are not normally placed at the same time as the sinus lift procedure. For this type of situation the use of several devices to immediately stabilise implants lacking in primary stability is proposed. Among these, the titanium S.I.S. plate results as being the most straightforward. This study proposes the evaluation of the effectiveness and stability of the results of this method in the short term on a greater number of patients, monitoring bones levels and implant stability. Method. 14 patients were selected, 9 males and 5 females, aged between 43 and 75 years of age. Overall, 42 implants were placed in the upper posterior edentulous zones with Misch Class IV atrophy including first and second premolars and first molars, opposite fixed teeth, and were stabilised using the S.I.S. plate. Results. Radiographic controls and ISQ measurements with AFR at 1, 6 and 12 months after loading testify to the stability of the bone levels which concur with success criteria found in literature. The technique described seems to be able to ensure success in cases of Misch Class IV with contemporaneous placement of the osseo-integrated implants. Conclusion. This clinical study, even if carried out on a small number of patients (14) and implants (42) represents the largest case history published. The technique described seems to ensure the success of cases of Misch Class IV with contemporaneous placement of osseo-integrated implants. The technique is straightforward and reproducible and does not cause further trauma. The S.I.S. allows for the stabilisation of the dental implants and the residual crest when there is a lack of primary stability. In Misch Class IV this means a considerable reduction in treatment times. PMID:23285369

  14. Evaluation of inflow cannulation site for implantation of right-sided rotary ventricular assist device.

    PubMed

    Gregory, Shaun D; Pearcy, Mark J; Fraser, John; Timms, Daniel

    2013-08-01

    Right heart dysfunction is one of the most serious complications following implantation of a left ventricular assist device, often leading to the requirement for short- or long-term right ventricular assist device (RVAD) support. The inflow cannulation site induces major hemodynamic changes and so there is a need to optimize the site used depending on the patient's condition. Therefore, this study evaluated and compared the hemodynamic influence of right atrial cannulation (RAC) and right ventricular cannulation (RVC) inflow sites. An in vitro variable heart failure mock circulation loop was used to compare RAC and RVC in mild and severe biventricular heart failure (BHF) conditions. In the severe BHF condition, higher ventricular ejection fraction (RAC: 13.6%, RVC: 32.7%) and thus improved heart chamber and RVAD washout were observed with RVC, which suggested this strategy might be preferable for long-term support (i.e., bridge-to-transplant or destination therapy) to reduce the risk of thrombus formation. In the mild BHF condition, higher pulmonary valve flow (RAC: 3.33 L/min, RVC: 1.97 L/min) and lower right ventricular stroke work (RAC: 0.10 W, RVC: 0.13 W) and volumes were recorded with RAC. These results indicate an improved potential for myocardial recovery, thus RAC should be chosen in this condition. This in vitro study suggests that RVAD inflow cannulation site should be chosen on a patient-specific basis with a view to the support strategy to promote myocardial recovery or reduce the risk of long-term complications. PMID:23621773

  15. Wireless miniature implantable devices and ASICs for monitoring, treatment, and study of glaucoma and cardiac disease

    NASA Astrophysics Data System (ADS)

    Chow, Eric Y.

    Glaucoma affects about 65 million people and is the second leading cause of blindness in the world. Although the condition is irreversible and incurable, early detection is vital to slowing and even stopping the progression of the disease. Our work focuses on the design, fabrication, and assembly of a continuous active glaucoma intraocular pressure (IOP) monitor that provides clinicians with the necessary data to more accurately diagnose and treat patients. Major benefits of an active monitoring device include the potential to develop a closed-loop treatment system and to operate independently for extended periods of time. The fully wireless operation uses gigahertzfrequency electromagnetic wave propagation, which allows for an orientation independent transfer of power and data over reasonable distances. Our system is comprised of a MEMS capacitive sensor, capacitive power storage array, ASIC, and monopole antenna assembled into a biocompatible liquid crystal polymer (LCP) package. We have performed in vivo trials on rabbits, both chronic and acute, to validate system functionality, fully wireless feasibility, and biocompatibility. Heart failure (HF) affects approximately 2% of the adult population in developed countries and 6-10% of people over the age of 65. Continuous monitoring of blood pressure, flow, and chemistry from a minimally invasive device can serve as a diagnostic and early-warning system for cardiac health. We developed a miniaturized system attached to the outer surface of an FDA approved stent, used as both the antenna for wireless telemetry/powering and structural support. The system comprises of a MEMS pressure sensor, ASIC for the sensor interface and wireless capabilities, LCP substrate, and FDA approved stent. In vivo studies on pigs validated functionality and fully wireless operation and demonstrate the feasibility of a stent-based wireless implant for continuous monitoring of blood pressure as well as other parameters including oxygen, flow

  16. New Analysis and Design of a RF Rectifier for RFID and Implantable Devices

    PubMed Central

    Liu, Dong-Sheng; Li, Feng-Bo; Zou, Xue-Cheng; Liu, Yao; Hui, Xue-Mei; Tao, Xiong-Fei

    2011-01-01

    New design and optimization of charge pump rectifiers using diode-connected MOS transistors is presented in this paper. An analysis of the output voltage and Power Conversion Efficiency (PCE) is given to guide and evaluate the new design. A novel diode-connected MOS transistor for UHF rectifiers is presented and optimized, and a high efficiency N-stage charge pump rectifier based on this new diode-connected MOS transistor is designed and fabricated in a SMIC 0.18-μm 2P3M CMOS embedded EEPROM process. The new diode achieves 315 mV turn-on voltage and 415 nA reverse saturation leakage current. Compared with the traditional rectifier, the one based on the proposed diode-connected MOS has higher PCE, higher output voltage and smaller ripple coefficient. When the RF input is a 900-MHz sinusoid signal with the power ranging from −15 dBm to −4 dBm, PCEs of the charge pump rectifier with only 3-stage are more than 30%, and the maximum output voltage is 5.5 V, and its ripple coefficients are less than 1%. Therefore, the rectifier is especially suitableto passive UHF RFID tag IC and implantable devices. PMID:22163968

  17. Management of totally implantable vascular access devices in patients with cystic fibrosis.

    PubMed

    Dal Molin, A; Gatta, C; Festini, F

    2009-10-01

    Cystic fibrosis (CF) is a genetic disease associated with recurrent lung infections, that represent a major cause of mortality and morbidity. Cystic fibrosis requires frequent antibiotic treatments, sometimes by mouth or via aerosol but often via the intravenous route. Totally implanted venous access devices (ports) allow an easy and safe vascular access for unlimited periods of time, and they can be used in CF to administer antibiotics and other i.v. infusions; if compared to external central venous catheters, ports are better tolerated, since they permit almost unlimited physical activity and do not interfere with patient's self-image. Though ports require a minimal level of care, they may be sometimes associated with relevant complications, which can be insertion-related (pneumothorax, arterial puncture, local hematoma), or management-related (infection, occlusion of the lumen, venous thrombosis). This article summarizes some recommendations on the management of ports in CF, considering the existing literature. Still, some issues remain unsolved and will need further research and studies. PMID:19794380

  18. Modified Wideband Three-Dimensional Late Gadolinium Enhancement MRI for Patients with Implantable Cardiac Devices

    PubMed Central

    Rashid, Shams; Rapacchi, Stanislas; Shivkumar, Kalyanam; Plotnik, Adam; Finn, J. Paul; Hu, Peng

    2015-01-01

    Purpose To study the effects of cardiac devices on three-dimensional (3D) late gadolinium enhancement (LGE) MRI and to develop a 3D LGE protocol for implantable cardioverter defibrillator (ICD) patients with reduced image artifacts. Theory and Methods The 3D LGE sequence was modified by implementing a wideband inversion pulse, which reduces hyperintensity artifacts, and by increasing bandwidth of the excitation pulse. The modified wideband 3D LGE sequence was tested in phantoms and evaluated in six volunteers and five patients with ICDs. Results Phantom and in vivo studies results demonstrated extended signal void and ripple artifacts in 3D LGE that were associated with ICDs. The reason for these artifacts was slab profile distortion and the subsequent aliasing in the slice-encoding direction. The modified wideband 3D LGE provided significantly reduced ripple artifacts than 3D LGE with wideband inversion only. Comparison of 3D and 2D LGE images demonstrated improved spatial resolution of the heart using 3D LGE. Conclusion Increased bandwidth of the inversion and excitation pulses can significantly reduce image artifacts associated with ICDs. Our modified wideband 3D LGE protocol can be readily used for imaging patients with ICDs given appropriate safety guidelines are followed. PMID:25772155

  19. New analysis and design of a RF rectifier for RFID and implantable devices.

    PubMed

    Liu, Dong-Sheng; Li, Feng-Bo; Zou, Xue-Cheng; Liu, Yao; Hui, Xue-Mei; Tao, Xiong-Fei

    2011-01-01

    New design and optimization of charge pump rectifiers using diode-connected MOS transistors is presented in this paper. An analysis of the output voltage and Power Conversion Efficiency (PCE) is given to guide and evaluate the new design. A novel diode-connected MOS transistor for UHF rectifiers is presented and optimized, and a high efficiency N-stage charge pump rectifier based on this new diode-connected MOS transistor is designed and fabricated in a SMIC 0.18-μm 2P3M CMOS embedded EEPROM process. The new diode achieves 315 mV turn-on voltage and 415 nA reverse saturation leakage current. Compared with the traditional rectifier, the one based on the proposed diode-connected MOS has higher PCE, higher output voltage and smaller ripple coefficient. When the RF input is a 900-MHz sinusoid signal with the power ranging from -15 dBm to -4 dBm, PCEs of the charge pump rectifier with only 3-stage are more than 30%, and the maximum output voltage is 5.5 V, and its ripple coefficients are less than 1%. Therefore, the rectifier is especially suitable to passive UHF RFID tag IC and implantable devices. PMID:22163968

  20. Optimization of data coils in a multiband wireless link for neuroprosthetic implantable devices.

    PubMed

    Uei-Ming Jow; Ghovanloo, M

    2010-10-01

    We have presented the design methodology along with detailed simulation and measurement results for optimizing a multiband transcutaneous wireless link for high-performance implantable neuroprosthetic devices. We have utilized three individual carrier signals and coil/antenna pairs for power transmission, forward data transmission from outside into the body, and back telemetry in the opposite direction. Power is transmitted at 13.56 MHz through a pair of printed spiral coils (PSCs) facing each other. Two different designs have been evaluated for forward data coils, both of which help to minimize power carrier interference in the received data carrier. One is a pair of perpendicular coils that are wound across the diameter of the power PSCs. The other design is a pair of planar figure-8 coils that are in the same plane as the power PSCs. We have compared the robustness of each design against horizontal misalignments and rotations in different directions. Simulation and measurements are also conducted on a miniature spiral antenna, designed to operate with impulse-radio ultra-wideband (IR-UWB) circuitry for back telemetry. PMID:21918679

  1. Automatic calibration of the inlet pressure sensor for the implantable continuous-flow ventricular assist device.

    PubMed

    Shi, Wei; Saito, Itsuro; Isoyama, Takashi; Nakagawa, Hidemoto; Inoue, Yusuke; Ono, Toshiya; Kouno, Akimasa; Imachi, Kou; Abe, Yusuke

    2011-06-01

    Significant progress in the development of implantable ventricular assist devices using continuous-flow blood pumps has been made recently. However, a control method has not been established. The blood pressure in the inflow cannula (inlet pressure) is one of the candidates for performing an adequate control. This could also provide important information about ventricle sucking. However, no calibration method for an inlet pressure sensor exists. In this study, an automatic calibration algorithm of the inlet pressure sensor from the pressure waveform at the condition of ventricle sucking was proposed. The calibration algorithm was constructed based on the consideration that intrathoracic pressure could be substituted for atmospheric pressure because the lung is open to air. We assumed that the inlet pressure at the releasing point of the sucking would represent the intrathoracic pressure, because the atrial pressure would be low owing to the sucking condition. A special mock circulation system that can reproduce ventricle sucking was developed to validate the calibration algorithm. The calibration algorithm worked well with a maximum SD of 2.1 mmHg for 3-min measurement in the mock circulation system. While the deviation was slightly large for an elaborate calibration, it would still be useful as a primitive calibration. The influence of the respiratory change and other factors as well as the reliability of the calibration value should be investigated with an animal experiment as a next step. PMID:21373781

  2. Exploring time series retrieved from cardiac implantable devices for optimizing patient follow-up

    PubMed Central

    Guéguin, Marie; Roux, Emmanuel; Hernández, Alfredo I; Porée, Fabienne; Mabo, Philippe; Graindorge, Laurence; Carrault, Guy

    2008-01-01

    Current cardiac implantable devices (ID) are equipped with a set of sensors that can provide useful information to improve patient follow-up and to prevent health deterioration in the postoperative period. In this paper, data obtained from an ID with two such sensors (a transthoracic impedance sensor and an accelerometer) are analyzed in order to evaluate their potential application for the follow-up of patients treated with a cardiac resynchronization therapy (CRT). A methodology combining spatio-temporal fuzzy coding and multiple correspondence analysis (MCA) is applied in order to: i) reduce the dimensionality of the data and provide new synthetic indices based on the “factorial axes” obtained from MCA, ii) interpret these factorial axes in physiological terms and iii) analyze the evolution of the patient’s status by projecting the acquired data into the plane formed by the first two factorial axes named “factorial plane”. In order to classify the different evolution patterns, a new similarity measure is proposed and validated on simulated datasets, and then used to cluster observed data from 41 CRT patients. The obtained clusters are compared with the annotations on each patient’s medical record. Two areas on the factorial plane are identified, one being correlated with a health degradation of patients and the other with a stable clinical state. PMID:18838359

  3. Survival results after implantation of intrapericardial third-generation centrifugal assist device: an INTERMACS-matched comparison analysis.

    PubMed

    Dell'Aquila, Angelo M; Schneider, Stefan R B; Stypmann, Jörg; Ellger, Björn; Redwan, Bassam; Schlarb, Dominik; Martens, Sven; Sindermann, Jürgen R

    2014-05-01

    Reports on third-generation centrifugal intrapericardial pumps (HeartWare International, Inc., Framingham, MA, USA) have shown better survival results than the previous-generation devices. However, outcomes depending on the preoperative level of stability can substantially differ, resulting in a limited analysis of potentialities and drawbacks of a given device. In the present study we sought to compare in our single-center experience the survival results of this third-generation device with previous left ventricular systems taking into account the different preoperative Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) levels. Between February 1993 and March 2012, 287 patients underwent assist device implantation in our university hospital (INTERMACS Level 1-2 = 158 patients; INTERMACS Level 3-4-5 = 129 patients). Assist devices implanted were: Group A (HVAD HeartWare, n = 52), group B (previous continuous-flow ventricular assist device [VAD], InCor [Berlin Heart, Berlin, Germany], n = 37; VentrAssist [VentraCor, Inc., Chatswood, NSW, Australia], n = 7; DeBakey [MicroMed Cardiovascular, Inc., Houston, TX, USA], n = 32), and group C (pulsatile systems, n = 159). After cumulative support duration of 54 436 days and a mean follow-up of 6.21 ± 7.46 months (range 0-45.21 months), log-rank analysis revealed a survival for group A of 82.0%, 70.4%, and 70.4%; for group B of 84.0%, 48.2%, 33.7%; and for group C of 71.6%, 46.1%, 33.8%, at 1, 12, and 24 months respectively, with a significantly (P = 0.013) better outcome for group A. When stratifying the survival on the basis of INTERMACS level, no significant survival improvement was observed among all patients who underwent VAD implantation in INTERMACS 1-2 (P = 0.47). However, among patients who underwent elective VAD implantation (INTERMACS 3-4-5), group A had a significantly better outcome (P = 0.005) compared with the other INTERMACS

  4. Autologous Cell Delivery to the Skin-Implant Interface via the Lumen of Percutaneous Devices in vitro.

    PubMed

    Peramo, Antonio

    2010-01-01

    Induced tissue regeneration around percutaneous medical implants could be a useful method to prevent the failure of the medical device, especially when the epidermal seal around the implant is disrupted and the implant must be maintained over a long period of time. In this manuscript, a novel concept and technique is introduced in which autologous keratinocytes were delivered to the interfacial area of a skin-implant using the hollow interior of a fixator pin as a conduit. Full thickness human skin explants discarded from surgeries were cultured at the air-liquid interface and were punctured to fit at the bottom of hollow cylindrical stainless steel fixator pins. Autologous keratinocytes, previously extracted from the same piece of skin and cultured separately, were delivered to the specimens thorough the interior of the hollow pins. The delivered cells survived the process and resembled undifferentiated epithelium, with variations in size and shape. Viability was demonstrated by the lack of morphologic evidence of necrosis or apoptosis. Although the cells did not form organized epithelial structures, differentiation toward a keratinocyte phenotype was evident immunohistochemically. These results suggest that an adaptation of this technique could be useful for the treatment of complications arising from the contact between skin and percutaneous devices in vivo. PMID:24955931

  5. In vivo demonstration of ultrasound power delivery to charge implanted medical devices via acute and survival porcine studies.

    PubMed

    Radziemski, Leon; Makin, Inder Raj S

    2016-01-01

    Animal studies are an important step in proving the utility and safety of an ultrasound based implanted battery recharging system. To this end an Ultrasound Electrical Recharging System (USER™) was developed and tested. Experiments in vitro demonstrated power deliveries at the battery of up to 600 mW through 10-15 mm of tissue, 50 mW of power available at tissue depths of up to 50 mm, and the feasibility of using transducers bonded to titanium as used in medical implants. Acute in vivo studies in a porcine model were used to test reliability of power delivery, temperature excursions, and cooling techniques. The culminating five-week survival study involved repeated battery charging, a total of 10.5h of ultrasound exposure of the intervening living tissue, with an average RF input to electrical charging efficiency of 20%. This study was potentially the first long term cumulative living-tissue exposure using transcutaneous ultrasound power transmission to an implanted receiver in situ. Histology of the exposed tissue showed changes attributable primarily due to surgical implantation of the prototype device, and no damage due to the ultrasound exposure. The in vivo results are indicative of the potential safe delivery of ultrasound energy for a defined set of source conditions for charging batteries within implants. PMID:26243566

  6. Ion implantation to reduce wear on polyethylene prosthetic devices. Rept. for Aug 89-Jan 91

    SciTech Connect

    Not Available

    1991-05-01

    Researchers studied the use of ion implantation to improve the wear performance of ultra high molecular weight polyethylene (UHMWPE). UHMWPE samples were implanted with high energy ions, tested for wear performance, and compared to unimplanted control samples. Surface friction and hardness measurements, Raman scattering, Rutherford backscattering (RBS), water contact angle, and film transfer tests were performed to characterize the surface property changes of implanted UHMWPE samples. Results indicated a 90% reduction in wear on implanted UHMWPE disks. Implantation increased surface microhardness and surface energy. The Raman spectrum revealed a diamond-like signature, indicting carbon bonds of a different nature than those found in unimplanted polyehtylene. Photographic analysis of pins used in wear testing revealed differences between implanted and unimplanted samples in the polyethylene film transferred in the initial stages of wear from the disk to the pin.

  7. Implantable Microimagers

    PubMed Central

    Ng, David C.; Tokuda, Takashi; Shiosaka, Sadao; Tano, Yasuo; Ohta, Jun

    2008-01-01

    Implantable devices such as cardiac pacemakers, drug-delivery systems, and defibrillators have had a tremendous impact on the quality of live for many disabled people. To date, many devices have been developed for implantation into various parts of the human body. In this paper, we focus on devices implanted in the head. In particular, we describe the technologies necessary to create implantable microimagers. Design, fabrication, and implementation issues are discussed vis-à-vis two examples of implantable microimagers; the retinal prosthesis and in vivo neuro-microimager. Testing of these devices in animals verify the use of the microimagers in the implanted state. We believe that further advancement of these devices will lead to the development of a new method for medical and scientific applications.

  8. Bibliometric analysis of the literature from the mainland of China on animal-derived regenerative implantable medical devices

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Man; Li, Fu-Yao

    2014-12-01

    Choosing animal-derived regenerative implantable medical devices based on tissue engineering technology as a research theme, this paper presents bibliometric analysis of relative literature from the mainland of China to understand such data as publication year and journal preference, authors' geographic location, research topics and core expertise to predict the research trends and provide an informed basis of decision making for researchers and clinicians.

  9. Thrombembolic occlusion of crural arteries following transcatheter aortic valve implantation--successful endovascular recanalization using a thrombus aspiration device.

    PubMed

    Malyar, Nasser M; Kaleschke, Gerrit; Reinecke, Holger

    2012-05-01

    Transcatheter aortic valve implantation (TAVI) has become an increasingly used alternative to conventional surgical valve replacement in patients with severe aortic valve stenosis (AS) and high operative risk. We here describe a case of a TAVI performed in local anesthesia causing intraprocedural thromboembolic occlusion of non-stenotic crural arteries and its immediate successful therapeutic management by means of endovascular recanalization using a thrombus aspiration device. PMID:22565625

  10. A Novel Microbubble Capable of Ultrasound-Triggered Release of Drug-Loaded Nanoparticles.

    PubMed

    Wang, Jiayu; Li, Pan; Tian, Rui; Hu, Wenjing; Zhang, Yuxia; Yuan, Pei; Tang, Yalan; Jia, Yuntao; Zhang, Liangke

    2016-03-01

    Drug-loaded microbubbles have shown attractive potential in disease treatment applications. The present work presents a unique ultrasound (US)-triggered system in which drug-loaded nanoparticles and perfluorocarbon gas are encapsulated within the internal space of microbubbles. The prepared curcumin-loaded albumin nanoparticle payload microbubbles (CcmANP-MB) exhibited a mean diameter of 4895.1 nm ± 421.2 nm and a drug-loading efficiency of 2.23% ± 0.08% (297% increase compared with the drug loading of common drug-loaded microbubbles). US allowed the release of the internal payload. In vitro US-triggered drug release experiments showed that the drug release of CcmANP-MB was delayed by lipid membranes and significantly increased after sonication. In vitro and in vivo US imaging experiments demonstrated that CcmANP-MB evidently enhances US imaging, which indicates that the microbubbles possess good acoustic properties even after encapsulation of nanoparticles. Tumor bearing mice were administered with CcmANP-MB through the tail vein and were then exposed to ultrasound, which resulted in an enhanced drug accumulation in tumor tissues and a significant increase in tumor growth inhibition rate (57.1%) compared with CcmANP-MB alone (28.8%) as well as curcumin-loaded albumin nanoparticle (26.2%). Therefore, the combination of lecithin microbubbles and albumin nanoparticles provides a platform for targeted drug delivery in clinical therapy and disease diagnosis. PMID:27280249

  11. Designing micellar nanocarriers with improved drug loading and stability based on solubility parameter.

    PubMed

    Tian, Ye; Shi, Chenjun; Sun, Yujiao; Zhu, Chengyun; Sun, Changquan Calvin; Mao, Shirui

    2015-03-01

    The objective of this study is to demonstrate the feasibility of using solubility parameter as guidance for the design and identification of a stable micellar system with a high drug loading capacity for oral drug delivery. Using hydroxycamptothecin (HCPT) as a model drug, the effect of three hydrophobic blocks (fatty glycerides) grafted onto chitosan on the drug loading and stability of HCPT-loaded micellar nanoparticles formed by pH precipitation method were studied systematically. The Flory-Huggins interaction parameter (χFH) calculated by the group contribution method (GCM) and molecular dynamics simulation (MDS) was used to assess the compatibility between HCPT and the copolymers. The predicted order of compatibility between three chitosan derivatives and HCPT was verified experimentally. A high drug loading and remarkably stable micellar system for oral administration based on succinylated glycerol monooleate-chitosan was discovered in this study. Our study suggests that the miscibility between drug and copolymer is crucial to drug loading and stability of the micellar system. Thus, the calculation of χFH using GCM and MDS methods is useful for guiding the design or screening of a suitable copolymer for preparing drug-loaded micellar nanocarrier systems. PMID:25587749

  12. Beneficial Effect of Covalently Grafted α-MSH on Endothelial Release of Inflammatory Mediators for Applications in Implantable Devices

    PubMed Central

    Le Saux, Guillaume; Plawinski, Laurent; Nlate, Sylvain; Ripoche, Jean; Buffeteau, Thierry; Durrieu, Marie-Christine

    2016-01-01

    Intravascular devices for continuous glucose monitoring are promising tools for the follow up and treatment of diabetic patients. Limiting the inflammatory response to the implanted devices in order to achieve better biocompatibility is a critical challenge. Herein we report on the production and the characterization of gold surfaces covalently derivatized with the peptide α-alpha-melanocyte stimulating hormone (α-MSH), with a quantifiable surface density. In vitro study demonstrated that the tethered α-MSH is able to decrease the expression of an inflammatory cytokine produced by endothelial cells. PMID:26939131

  13. Beneficial Effect of Covalently Grafted α-MSH on Endothelial Release of Inflammatory Mediators for Applications in Implantable Devices.

    PubMed

    Le Saux, Guillaume; Plawinski, Laurent; Nlate, Sylvain; Ripoche, Jean; Buffeteau, Thierry; Durrieu, Marie-Christine

    2016-01-01

    Intravascular devices for continuous glucose monitoring are promising tools for the follow up and treatment of diabetic patients. Limiting the inflammatory response to the implanted devices in order to achieve better biocompatibility is a critical challenge. Herein we report on the production and the characterization of gold surfaces covalently derivatized with the peptide α-alpha-melanocyte stimulating hormone (α-MSH), with a quantifiable surface density. In vitro study demonstrated that the tethered α-MSH is able to decrease the expression of an inflammatory cytokine produced by endothelial cells. PMID:26939131

  14. Psychological safety of a multiple channel cochlear implant device. Psychological aspects of a clinical trial.

    PubMed

    Haas, L J

    1990-01-01

    Fifty-three deaf patients were screened psychologically and medically for suitability to receive an intracochlear implant. After initial screening for psychological normalcy, candidates were assessed again 1 year postimplant. Isolated deleterious psychological effects were found, and certain aspects of psychological functioning were enhanced. Overall evidence suggests that the implant is not psychologically damaging. PMID:2228457

  15. The contributions of William F. House to the field of implantable auditory devices.

    PubMed

    Eisenberg, Laurie S

    2015-04-01

    William F. House was a pioneer in the evolving field of cochlear implants and auditory brainstem implants. Because of his vision, innovation and perseverance, the way was paved for future clinicians and researchers to carry on the work and advance a field that has been dedicated to serving adults and children with severe to profound hearing loss. Several of William House's contributions are highlighted in this prestigious volume to honor the recipients of the 2013 Lasker-Debakey Clinical Medical Research Award. Discussed are the early inventive years, clinical trials with the single-channel cochlear implant, the team approach, pediatric cochlear implantation, and the auditory brainstem implant. Readers may be surprised to learn that those early contributions continue to have relevance today. This article is part of a Special Issue entitled . PMID:25159272

  16. Hybrid approach of ventricular assist device and autologous bone marrow stem cells implantation in end-stage ischemic heart failure enhances myocardial reperfusion

    PubMed Central

    2011-01-01

    We challenge the hypothesis of enhanced myocardial reperfusion after implanting a left ventricular assist device together with bone marrow mononuclear stem cells in patients with end-stage ischemic cardiomyopathy. Irreversible myocardial loss observed in ischemic cardiomyopathy leads to progressive cardiac remodelling and dysfunction through a complex neurohormonal cascade. New generation assist devices promote myocardial recovery only in patients with dilated or peripartum cardiomyopathy. In the setting of diffuse myocardial ischemia not amenable to revascularization, native myocardial recovery has not been observed after implantation of an assist device as destination therapy. The hybrid approach of implanting autologous bone marrow stem cells during assist device implantation may eventually improve native cardiac function, which may be associated with a better prognosis eventually ameliorating the need for subsequent heart transplantation. The aforementioned hypothesis has to be tested with well-designed prospective multicentre studies. PMID:21247486

  17. Numerical characterization of hemodynamics conditions near aortic valve after implantation of Left Ventricular Assist Device.

    PubMed

    Quaini, Annalisa; Canić, Suncica; Paniagua, David

    2011-07-01

    Left Ventricular Assist Devices (LVADs) are implantable mechanical pumps that temporarily aid the function of the left ventricle. The use of LVADs has been associated with thrombus formation next to the aortic valve and close to the anastomosis region, especially in patients in which the native cardiac function is negligible and the aortic valve remains closed. Stagnation points and recirculation zones have been implicated as the main fluid dynamics factors contributing to thrombus formation. The purpose of the present study was to develop and use computer simulations based on a fluid-structure interaction (FSI) solver to study flow conditions corresponding to different strategies in LVAD ascending aortic anastomosis providing a scenario with the lowest likelihood of thrombus formation. A novel FSI algorithm was developed to deal with the presence of multiple structures corresponding to different elastic properties of the native aorta and of the LVAD cannula. A sensitivity analysis of different variables was performed to assess their impact of flow conditions potentially leading to thrombus formation. It was found that the location of the anastomosis closest to the aortic valve (within 4 cm away from the valve) and at the angle of 30 minimizes the likelihood of thrombus formation. Furthermore, it was shown that the rigidity of the dacron anastomosis cannula plays almost no role in generating pathological conditions downstream from the anastomosis. Additionally, the flow analysis presented in this manuscript indicates that compliance of the cardiovascular tissue acts as a natural inhibitor of pathological flow conditions conducive to thrombus formation and should not be neglected in computer simulations. PMID:21675811

  18. Practical ways to reduce radiation dose for patients and staff during device implantations and electrophysiological procedures.

    PubMed

    Heidbuchel, Hein; Wittkampf, Fred H M; Vano, Eliseo; Ernst, Sabine; Schilling, Richard; Picano, Eugenio; Mont, Lluis; Jais, Pierre; de Bono, Joseph; Piorkowski, Christopher; Saad, Eduardo; Femenia, Francisco

    2014-07-01

    Despite the advent of non-fluoroscopic technology, fluoroscopy remains the cornerstone of imaging in most interventional electrophysiological procedures, from diagnostic studies over ablation interventions to device implantation. Moreover, many patients receive additional X-ray imaging, such as cardiac computed tomography and others. More and more complex procedures have the risk to increase the radiation exposure, both for the patients and the operators. The professional lifetime attributable excess cancer risk may be around 1 in 100 for the operators, the same as for a patient undergoing repetitive complex procedures. Moreover, recent reports have also hinted at an excess risk of brain tumours among interventional cardiologists. Apart from evaluating the need for and justifying the use of radiation to assist their procedures, physicians have to continuously explore ways to reduce the radiation exposure. After an introduction on how to quantify the radiation exposure and defining its current magnitude in electrophysiology compared with the other sources of radiation, this position paper wants to offer some very practical advice on how to reduce exposure to patients and staff. The text describes how customization of the X-ray system, workflow adaptations, and shielding measures can be implemented in the cath lab. The potential and the pitfalls of different non-fluoroscopic guiding technologies are discussed. Finally, we suggest further improvements that can be implemented by both the physicians and the industry in the future. We are confident that these suggestions are able to reduce patient and operator exposure by more than an order of magnitude, and therefore think that these recommendations are worth reading and implementing by any electrophysiological operator in the field. PMID:24792380

  19. Cerebral Blood Flow Autoregulation Is Preserved After Continuous Flow Left Ventricular Assist Device Implantation

    PubMed Central

    Ono, Masahiro; Joshi, Brijen; Brady, Kenneth; Easley, R. Blaine; Kibler, Kathy; Conte, John; Shah, Ashish; Russell, Stuart D.; Hogue, Charles W.

    2012-01-01

    Objective To compare cerebral blood flow (CBF) autoregulation in patients undergoing continuous flow left ventricular assist device (LVAD) implantation with that in patients undergoing coronary artery bypass graft (CABG) surgery. Design Prospective, observational, controlled study. Setting Academic medical center. Participants Fifteen patients undergoing LVAD insertion and 10 patients undergoing CABG surgery. Measurements and Main Results Cerebral autoregulation was monitored with transcranial Doppler and near-infrared spectroscopy (NIRS). A continuous, Pearson's correlation coefficient was calculated between mean arterial pressure (MAP) and CBF velocity, and between MAP and NIRS data rendering the variables mean velocity index (Mx) and cerebral oximetry index (COx), respectively. Mx and COx approach zero when autoregulation is intact (no correlation between CBF and MAP), but approach 1 when autoregulation is impaired. Mx was lower during and immediately after cardiopulmonary bypass (CPB) in the LVAD group than it was in the CABG surgery patients, indicating better preserved autoregulation. Based on COx monitoring, autoregulation tended to be better preserved in the LVAD group than in the CABG group immediately after surgery (p=0.0906). On postoperative day 1, COx was lower in LVAD patients than in CABG surgery patients, again indicating preserved CBF autoregulation (p=0.0410). Based on COx monitoring, 3 (30%) of the CABG patients had abnormal autoregulation (COx ≥ 0.3) on the first postoperative day but none of the LVAD patients had this abnormality (p=0.037). Conclusion These data suggest that CBF autoregulation is preserved during and immediately after surgery in patients undergoing LVAD insertion. PMID:23122299

  20. Nanoparticle Drug Loading as a Design Parameter to Improve Docetaxel Pharmacokinetics and Efficacy

    PubMed Central

    Chu, Kevin S.; Schorzman, Allison N.; Finniss, Mathew C.; Bowerman, Charles J.; Peng, Lei; Luft, J. Christopher; Madden, Andrew; Wang, Andrew Z.; Zamboni, William C.; DeSimone, Joseph M.

    2013-01-01

    Nanoparticle (NP) drug loading is one of the key defining characteristics of a NP formulation. However, the effect of NP drug loading on therapeutic efficacy and pharmacokinetics has not been thoroughly evaluated. Herein, we characterized the efficacy, toxicity and pharmacokinetic properties of NP docetaxel formulations that have differential drug loading but are otherwise identical. Particle Replication in Non-wetting Templates (PRINT®), a soft-lithography fabrication technique, was used to formulate NPs with identical size, shape and surface chemistry, but with variable docetaxel loading. The lower weight loading (9%-NP) of docetaxel was found to have a superior pharmacokinetic profile and enhanced efficacy in a murine cancer model when compared to that of a higher docetaxel loading (20%-NP). The 9%-NP docetaxel increased plasma and tumor docetaxel exposure and reduced liver, spleen and lung exposure when compared to that of 20%-NP docetaxel. PMID:23899444

  1. Influence of electromagnetic interference on implanted cardiac arrhythmia devices in and around a magnetically levitated linear motor car.

    PubMed

    Fukuta, Motoyuki; Mizutani, Noboru; Waseda, Katsuhisa

    2005-01-01

    This study was designed to determine the susceptibility of implanted cardiac arrhythmia devices to electromagnetic interference in and around a magnetically levitated linear motor car [High-Speed Surface Transport (HSST)]. During the study, cardiac devices were connected to a phantom model that had similar characteristics to the human body. Three pacemakers from three manufacturers and one implantable cardioverter-defibrillator (ICD) were evaluated in and around the magnetically levitated vehicle. The system is based on a normal conductive system levitated by the attractive force of magnets and propelled by a linear induction motor without wheels. The magnetic field strength at 40 cm from the vehicle in the nonlevitating state was 0.12 mT and that during levitation was 0.20 mT. The magnetic and electric field strengths on a seat close to the variable voltage/variable frequency inverter while the vehicle was moving and at rest were 0.13 mT, 2.95 V/m and 0.04 mT, 0.36 V/m, respectively. Data recorded on a seat close to the reactor while the vehicle was moving and at rest were 0.09 mT, 2.45 V/m and 0.05 mT, 1.46 V/m, respectively. Measured magnetic and electric field strengths both inside and outside the linear motor car were too low to result in device inactivation. No sensing, pacing, or arrhythmic interactions were noted with any pacemaker or ICD programmed in either bipolar and unipolar configurations. In conclusion, our data suggest that a permanent programming change or a device failure is unlikely to occur and that the linear motor car system is probably safe for patients with one of the four implanted cardiac arrhythmia devices used in this study under the conditions tested. PMID:16235032

  2. Follow-up of Patients with New Cardiovascular Implantable Electronic Devices: Are Experts’ Recommendations Implemented in Routine Clinical Practice?

    PubMed Central

    Al-Khatib, Sana M.; Mi, Xiaojuan; Wilkoff, Bruce L.; Qualls, Laura G.; Frazier-Mills, Camille; Setoguchi, Soko; Hess, Paul L.; Curtis, Lesley H.

    2013-01-01

    Background A 2008 expert consensus statement outlined the minimum frequency of follow-up of patients with cardiovascular implantable electronic devices (CIEDs). Methods and Results We studied 38,055 Medicare beneficiaries who received a new CIED between January 1, 2005, and June 30, 2009. The main outcome measure was variation of follow-up by patient factors and year of device implantation. We determined the number of patients who were eligible for and attended an in-person CIED follow-up visit within 2 to 12 weeks, 0 to 16 weeks, and 1 year after implantation. Among eligible patients, 42.4% had an initial in-person visit within 2 to 12 weeks. This visit was significantly more common among white patients than black patients and patients of other races (43.0% vs 36.8% vs 40.5%; P < .001). Follow-up within 2 to 12 weeks improved from 40.3% in 2005 to 55.1% in 2009 (P < .001 for trend). The rate of follow-up within 0 to 16 weeks was 65.1% and improved considerably from 2005 to 2009 (62.3% to 79.6%; P < .001 for trend). Within 1 year, 78.0% of the overall population had at least 1 in-person CIED follow-up visit. Conclusions Although most Medicare beneficiaries who received a new CIED between 2005 and 2009 did not have an initial in-person CIED follow-up visit within 2 to 12 weeks after device implantation, the rate of initial follow-up improved appreciably over time. This CIED follow-up visit was significantly more common in white patients than patients of other races. PMID:23264436

  3. Platelet Activation in Ovines Undergoing Sham Surgery or Implant of the Second Generation PediaFlow™ Pediatric Ventricular Assist Device

    PubMed Central

    Johnson, Carl A.; Wearden, Peter D.; Kocyildirim, Ergin; Maul, Timothy M.; Woolley, Joshua R.; Ye, Sang-Ho; Strickler, Elise M.; Borovetz, Harvey S.; Wagner, William R.

    2011-01-01

    The PediaFlow™ pediatric ventricular assist device (VAD) is a magnetically levitated turbodynamic pump under development for circulatory support of small children with a targeted flow rate range of 0.3 - 1.5 L/min. As the design of this device is refined, ensuring high levels of blood biocompatibility is essential. In this study we characterized platelet activation during the implantation and operation of a second generation prototype of the PediaFlow VAD (PF2) and also performed a series of surgical sham studies to examine purely surgical effects on platelet activation. In addition, a newly available monoclonal antibody was characterized and shown to be capable of quantifying ovine platelet activation. The PF2 was implanted in 3 chronic ovine experiments of 16, 30, and 70 days, while surgical sham procedures were performed in 5 ovines with 30 d monitoring. Blood biocompatibility in terms of circulating activated platelets was measured by flow cytometric assays with and without exogenous agonist stimulation. Platelet activation following sham surgery returned to baseline in approximately 2 weeks. Platelets in PF2 implanted ovines returned to baseline activation levels in all three animals, and showed an ability to respond to agonist stimulation. Late term platelet activation was observed in one animal corresponding with unexpected pump stoppages related to a manufacturing defect in the percutaneous cable. The results demonstrated encouraging platelet biocompatibility for the PF2 in that basal platelet activation was achieved early in the pump implant period. Furthermore, this first characterization of the effect of a major cardiothoracic procedure on temporal ovine platelet activation provides comparative data for future cardiovascular device evaluation in the ovine model. PMID:21463346

  4. Drug-to-antibody ratio (DAR) and drug load distribution by LC-ESI-MS.

    PubMed

    Basa, Louisette

    2013-01-01

    This chapter describes an LC-ESI-MS method for the DAR and drug load distribution analysis that is suitable for lysine-linked ADCs. The ADC sample is desalted using a reversed-phase LC column with an acetonitrile gradient prior to online MS analysis. The MS spectrum is processed (deconvoluted) and converted to a series of zero charge state masses that corresponds to the increasing number of drugs in the ADC. Integration of the mass peak area allows the calculation of the DAR and drug load distribution of ADCs. PMID:23913155

  5. In vitro drug release mechanism and drug loading studies of cubic phase gels.

    PubMed

    Lara, Marilisa G; Bentley, M Vitória L B; Collett, John H

    2005-04-11

    Glyceryl monooleate/water cubic phase systems were investigated as drug delivery systems, using salicylic acid as a model drug. The liquid crystalline phases formed by the glyceryl monooleate (GMO)/water systems were characterized by polarizing microscopy. In vitro drug release studies were performed and the influences of initial water content, swelling and drug loading on the drug release properties were evaluated. Water uptake followed second-order swelling kinetics. In vitro release profiles showed Fickian diffusion control and were independent on the initial water content and drug loading, suggesting GMO cubic phase gels suitability for use as drug delivery system. PMID:15778062

  6. Advanced processing of gallium nitride and gallium nitride-based devices: Ultra-high temperature annealing and implantation incorporation

    NASA Astrophysics Data System (ADS)

    Yu, Haijiang

    into AlGaN/GaN high electron mobility transistor processing has been first demonstrated. An ultra-high temperature (1500°C) rapid thermal annealing technique was developed for the activation of Si dopants implanted in the source and drain. In comparison to control devices processed by conventional fabrication, the implanted device with nonalloyed ohmic contact showed comparable device performance with a contact resistance of 0.4 Omm Imax 730 mA/mm ft/f max; 26/62 GHz and power 3.4 W/mm on sapphire. These early results demonstrate the feasibility of implantation incorporation into GaN based device processing as well as the potential to increase yield, reproducibility and reliability in AlGaN/GaN HEMTs.

  7. Standardized MR terminology and reporting of implants and devices as recommended by the American College of Radiology Subcommittee on MR Safety.

    PubMed

    Kanal, Emanuel; Froelich, Jerry; Barkovich, A James; Borgstede, James; Bradley, William; Gimbel, J Rod; Gosbee, John; Greenberg, Todd; Jackson, Edward; Larson, Paul; Lester, James; Sebek, Elizabeth; Shellock, Frank G; Weinreb, Jefrey; Wilkoff, Bruce L; Hernandez, Dina

    2015-03-01

    Considerable confusion exists among the magnetic resonance (MR) imaging user community as to how to determine whether a patient with a metal implanted device can be safely imaged in an MR imaging unit. Although there has been progress by the device manufacturers in specifying device behavior in a magnetic field, and some MR imaging manufacturers provide maps of the "spatial gradients," there remains significant confusion because of the lack of standardized terminology and reporting guidelines. The American College of Radiology, through its Subcommittee on MR Safety, has proposed standardized terminology that will contribute to greater safety and understanding for screening metal implants and/or devices prior to MR imaging. PMID:25329683

  8. Quality of life and emotional distress early after left ventricular assist device implant: a mixed-method study.

    PubMed

    Modica, Maddalena; Ferratini, Maurizio; Torri, Anna; Oliva, Fabrizio; Martinelli, Luigi; De Maria, Renata; Frigerio, Maria

    2015-03-01

    Patients who temporarily or permanently rely on left ventricular assist devices (LVADs) for end-stage heart failure face complex psychological, emotional, and relational problems. We conducted a mixed-method study to investigate quality of life, psychological symptoms, and emotional and cognitive reactions after LVAD implant. Twenty-six patients admitted to cardiac rehabilitation were administered quality of life questionnaires (Short Form 36 of the Medical Outcomes Study and Minnesota Living with Heart Failure Questionnaire), the Hospital Anxiety and Depression Scale, and the Coping Orientation for Problem Experiences inventory, and underwent three in-depth unstructured interviews within 2 months after LVAD implant. Quality of life assessment (Short Form 36) documented persistently low physical scores whereas mental component scores almost achieved normative values. Clinically relevant depression and anxiety were observed in 18 and 18% of patients, respectively; avoidant coping scores correlated significantly with both depression and anxiety (Pearson correlation coefficients 0.732, P < 0.001 and 0.764, P < 0.001, respectively). From qualitative interviews, factors that impacted on LVAD acceptance included: device type, disease experience during transplant waiting, nature of the assisted organ, quality of patient-doctor communication, the opportunity of sharing the experience, and recipient's psychological characteristics. Quality of life improves early after LVAD implant, but emotional distress may remain high. A multidimensional approach that takes into account patients' psychological characteristics should be pursued to enhance LVAD acceptance. PMID:25205291

  9. A Rat Model of Thrombosis in Common Carotid Artery Induced by Implantable Wireless Light-Emitting Diode Device

    PubMed Central

    Huang, Kuo-Lun; Hsiao, Yung-Chin; Lin, Yun-Han; Lou, Shyh-Liang; Lee, Tsong-Hai

    2014-01-01

    This work has developed a novel approach to form common carotid artery (CCA) thrombus in rats with a wireless implantable light-emitting diode (LED) device. The device mainly consists of an external controller and an internal LED assembly. The controller was responsible for wirelessly transmitting electrical power. The internal LED assembly served as an implant to receive the power and irradiate light on CCA. The thrombus formation was identified with animal sonography, 7T magnetic resonance imaging, and histopathologic examination. The present study showed that a LED assembly implanted on the outer surface of CCA could induce acute occlusion with single irradiation with 6 mW/cm2 LED for 4 h. If intermittent irradiation with 4.3–4.5 mW/cm2 LED for 2 h was shut off for 30 min, then irradiation for another 2 h was applied; the thrombus was observed to grow gradually and was totally occluded at 7 days. Compared with the contralateral CCA without LED irradiation, the arterial endothelium in the LED-irradiated artery was discontinued. Our study has shown that, by adjusting the duration of irradiation and the power intensity of LED, it is possible to produce acute occlusion and progressive thrombosis, which can be used as an animal model for antithrombotic drug development. PMID:25045695

  10. Numerical evaluation of implantable hearing devices using a finite element model of human ear considering viscoelastic properties.

    PubMed

    Zhang, Jing; Tian, Jiabin; Ta, Na; Huang, Xinsheng; Rao, Zhushi

    2016-08-01

    Finite element method was employed in this study to analyze the change in performance of implantable hearing devices due to the consideration of soft tissues' viscoelasticity. An integrated finite element model of human ear including the external ear, middle ear and inner ear was first developed via reverse engineering and analyzed by acoustic-structure-fluid coupling. Viscoelastic properties of soft tissues in the middle ear were taken into consideration in this model. The model-derived dynamic responses including middle ear and cochlea functions showed a better agreement with experimental data at high frequencies above 3000 Hz than the Rayleigh-type damping. On this basis, a coupled finite element model consisting of the human ear and a piezoelectric actuator attached to the long process of incus was further constructed. Based on the electromechanical coupling analysis, equivalent sound pressure and power consumption of the actuator corresponding to viscoelasticity and Rayleigh damping were calculated using this model. The analytical results showed that the implant performance of the actuator evaluated using a finite element model considering viscoelastic properties gives a lower output above about 3 kHz than does Rayleigh damping model. Finite element model considering viscoelastic properties was more accurate to numerically evaluate implantable hearing devices. PMID:27276992

  11. Driveline Infection Risk with Utilization of a Temporary External Anchoring Suture After Implantation of a Left Ventricular Assist Device.

    PubMed

    Fudim, Marat; Brown, Christopher L; Davis, Mary E; Djunaidi, Monica; Danter, Matthew R; Harrell, Frank E; Stulak, John M; Haglund, Nicholas A; Maltais, Simon

    2016-01-01

    Driveline infections (DLI) are a cause of morbidity after continuous-flow left ventricular assist device (CF-LVAD) implantation. Because driveline trauma contributes to DLI, we assessed whether intraoperative placement of a temporary external anchoring suture (EAS) influenced DLI rate. We analyzed 161 consecutive patients with CF-LVAD (HMII 82; HW 79) implantation. Two groups were defined: placement of EAS (n = 85) or No EAS (n = 76). For NO EAS patients, the driveline was permanently anchored internally to the rectus fascia. Cox proportional analysis was performed to assess the effect of EAS on time to first confirmed DLI. Baseline characteristics were comparable between groups (all p = 0.3). Mean follow-up time was 0.93 years. A total of 18 (11.1%) patients developed confirmed culture positive DLI, with "first infection" rate of 0.13 events/year. Mean time to confirmed DLI was 0.69 years. Driveline infection was less likely (hazard ratio [HR] = 0.28, 0.95 confidence interval [CI] = 0.06-1.25, p = 0.056) to occur in NO EAS (2/18) then in EAS (16/18). Confirmed DLI was comparable between device types (p = 0.3). Multivariable regression adjusted for age, BMI, blood product use, device type, and diabetes showed equivocal effect of EAS (HR = 0.33, 0.95 CI = 0.07-1.54, p = 0.12). Patients with a temporary EAS may have an increased risk of confirmed DLI after device implantation. PMID:26809083

  12. Replacement of implantable cardioverter defibrillators and cardiac resynchronization therapy devices: results of the European Heart Rhythm Association survey.

    PubMed

    Tilz, Roland; Boveda, Serge; Deharo, Jean-Claude; Dobreanu, Dan; Haugaa, Kristina H; Dagres, Nikolaos

    2016-06-01

    The aim of this EP Wire was to assess the management, indications, and techniques for implantable cardioverter defibrillator (ICD) and cardiac resynchronization therapy (CRT) device replacement in Europe. A total of 24 centres in 14 European countries completed the questionnaire. All centres were members of the European Heart Rhythm Association Electrophysiology Research Network. Replacement procedures were performed by electrophysiologists in 52% of the centres, by cardiologists in 33%, and both in the remaining centres. In the majority of centres, the procedures were performed during a short hospitalization (<2 days; 61.2%), or on an outpatient basis (28%). The overwhelming majority of centres reported that they replaced ICDs at the end of battery life. Only in a small subset (<10%) of patients with ICD for primary prevention and without ventricular tachycardia (VT) since implantation, ICD was not replaced. In inherited primary arrhythmia syndromes, 80% of the centres always replaced the ICD at the end of battery life. After VT ablation, only few centres (9%) explanted or downgraded the device that was previously implanted for secondary prevention, but only in those patients without new VT episodes. Patient's life expectancy <1 year was the most commonly reported reason (61%) to downgrade from a CRT-D to a CRT-P device. While warfarin therapy was continued in 47% of the centres, non-vitamin K oral anticoagulants were discontinued without bridging 24 h prior to replacement procedures in 60%. Finally, in 65% of the centres, VT induction and shock testing during ICD and CRT-D replacement were performed only in the case of leads with a warning or with borderline measurements. This survey provides a snapshot of the perioperative management, indications, and techniques of ICD and CRT device replacement in Europe. It demonstrates some variations between participating centres, probably related to local policies and to the heterogeneity of the ICD population. PMID

  13. Ion implantation reduces radiation sensitivity of metal oxide silicon /MOS/ devices

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Implanting nitrogen ions improves hardening of silicon oxides 30 percent to 60 percent against ionizing radiation effects. Process reduces sensitivity, but retains stability normally shown by interfaces between silicon and thermally grown oxides.

  14. Study of damage formation and annealing of implanted III-nitride semiconductors for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Faye, D. Nd.; Fialho, M.; Magalhães, S.; Alves, E.; Ben Sedrine, N.; Rodrigues, J.; Correia, M. R.; Monteiro, T.; Boćkowski, M.; Hoffmann, V.; Weyers, M.; Lorenz, K.

    2016-07-01

    An n-GaN/n-AlGaN/p-GaN light emitting diode (LED) structure was implanted with Eu ions. High temperature high pressure annealing at 1400 °C efficiently decreases implantation damage and optically activates the Eu ions. However, the electrical properties of the p-n junction deteriorate possibly due to the formation of conducting paths along dislocations during the extreme annealing conditions.

  15. Where Does It Lead? Imaging Features of Cardiovascular Implantable Electronic Devices on Chest Radiograph and CT

    PubMed Central

    Lanzman, Rotem S.; Winter, Joachim; Blondin, Dirk; Fürst, Günter; Scherer, Axel; Miese, Falk R; Abbara, Suhny

    2011-01-01

    Pacemakers and implantable cardioverter defibrillators (ICDs) are being increasingly employed in patients suffering from cardiac rhythm disturbances. The principal objective of this article is to familiarize radiologists with pacemakers and ICDs on chest radiographs and CT scans. Therefore, the preferred lead positions according to pacemaker types and anatomic variants are introduced in this study. Additionally, the imaging features of incorrect lead positions and defects, as well as complications subsequent to pacemaker implantation are demonstrated herein. PMID:21927563

  16. Candida and cardiovascular implantable electronic devices: a case of lead and native aortic valve endocarditis and literature review.

    PubMed

    Glavis-Bloom, Justin; Vasher, Scott; Marmor, Meghan; Fine, Antonella B; Chan, Philip A; Tashima, Karen T; Lonks, John R; Kojic, Erna M

    2015-11-01

    Use of cardiovascular implantable electronic devices (CIED), including permanent pacemakers (PPM) and implantable cardioverter defibrillators (ICD), has increased dramatically over the past two decades. Most CIED infections are caused by staphylococci. Fungal causes are rare and their prognosis is poor. To our knowledge, there has not been a previously reported case of multifocal Candida endocarditis involving both a native left-sided heart valve and a CIED lead. Here, we report the case of a 70-year-old patient who presented with nausea, vomiting, and generalised fatigue, and was found to have Candida glabrata endocarditis involving both a native aortic valve and right atrial ICD lead. We review the literature and summarise four additional cases of CIED-associated Candida endocarditis published from 2009 to 2014, updating a previously published review of cases prior to 2009. We additionally review treatment guidelines and discuss management of CIED-associated Candida endocarditis. PMID:26403965

  17. Clinical Outcomes of Patients Treated With Pulmonary Vasodilators Early and in High Dose After Left Ventricular Assist Device Implantation.

    PubMed

    Critoph, Christopher; Green, Gillian; Hayes, Helen; Baumwol, Jay; Lam, Kaitlyn; Larbalestier, Robert; Chih, Sharon

    2016-01-01

    Right ventricular failure (RVF) is common after left ventricular assist device (LVAD) implantation and a major determinant of adverse outcomes. Optimal perioperative right ventricular (RV) management is not well defined. We evaluated the use of pulmonary vasodilator therapy during LVAD implantation. We performed a retrospective analysis of continuous-flow LVAD implants and pulmonary vasodilator use at our institution between September 2004 and June 2013. Preoperative RVF risk was assessed using recognized variables. Sixty-five patients (80% men, 50 ± 14 years) were included: 52% HeartWare ventricular assist device (HVAD), 11% HeartMate II (HMII), 17% VentrAssist, 20% Jarvik. Predicted RVF risk was comparable with contemporary LVAD populations: 8% ventilated, 14% mechanical support, 86% inotropes, 25% BUN >39 mg/dL, 23% bilirubin ≥2 mg/dL, 31% RV : LV (left ventricular) diameter ≥0.75, 27% RA : PCWP (right atrium : pulmonary capillary wedge pressure) >0.63, 36% RV stroke work index <6 gm-m/m(2)/beat. The majority (91%) received pulmonary vasodilators early and in high dose: 72% nitric oxide, 77% sildenafil (max 200 ± 79 mg/day), 66% iloprost (max 126 ± 37 μg/day). Median hospital stay was 26 (21) days. No patient required RV mechanical support. Of six (9%) patients meeting RVF criteria based on prolonged need for inotropes, four were transplanted, one is alive with an LVAD at 3 years, and one died on day 35 of intracranial hemorrhage. Two-year survival was 77% (92% for HMII/HVAD): transplanted 54%, alive with LVAD 21%, recovery/explanted 2%. A low incidence of RVF and excellent outcomes were observed for patients treated early during LVAD implantation with combination, high-dose pulmonary vasodilators. The results warrant further investigation in a randomized controlled study. PMID:25994765

  18. Telemetry and Telestimulation via Implanted Devices Necessary in Long-Term Experiments Using Conscious Untethered Animals for the Development of New Medical Treatments

    NASA Astrophysics Data System (ADS)

    Sugimachi, Masaru; Kawada, Toru; Uemura, Kazunori

    Effective countermeasures against explosive increase in healthcare expenditures are urgently needed. A paradigm shift in healthcare is called for, and academics and governments worldwide are working hard on the application of information and communication technologies (ICT) as a feasible and effective measure for reducing medical cost. The more prevalent the disease and the easier disease outcome can be improved, the more efficient is medical ICT in reducing healthcare cost. Hypertension and diabetes mellitus are such examples. Chronic heart failure is another disease in which patients may benefit from ICT-based medical practice. It is conceivable that daily monitoring of hemodynamics together with appropriate treatments may obviate the expensive hospitalization. ICT potentially permit continuous monitoring with wearable or implantable medical devices. ICT may also help accelerate the development of new therapeutic devices. Traditionally effectiveness of treatments is sequentially examined by sacrificing a number of animals at a given time point. These inefficient and inaccurate methods can be replaced by applying ICT to the devices used in chronic animal experiments. These devices allow researchers to obtain biosignals and images from live animals without killing them. They include implantable telemetric devices, implantable telestimulation devices, and imaging devices. Implanted rather than wired monitoring and stimulation devices permit experiments to be conducted under even more physiological conditions, i.e., untethered, free-moving states. Wireless communication and ICT are indispensible technologies for the development of such telemetric and telestimulation devices.

  19. Dual drug-loaded nanoparticles on self-integrated scaffold for controlled delivery

    PubMed Central

    Bennet, Devasier; Marimuthu, Mohana; Kim, Sanghyo; An, Jeongho

    2012-01-01

    Antioxidant (quercetin) and hypoglycemic (voglibose) drug-loaded poly-D,L-lactideco-glycolide nanoparticles were successfully synthesized using the solvent evaporation method. The dual drug-loaded nanoparticles were incorporated into a scaffold film using a solvent casting method, creating a controlled transdermal drug-delivery system. Key features of the film formulation were achieved utilizing several ratios of excipients, including polyvinyl alcohol, polyethylene glycol, hyaluronic acid, xylitol, and alginate. The scaffold film showed superior encapsulation capability and swelling properties, with various potential applications, eg, the treatment of diabetes-associated complications. Structural and light scattering characterization confirmed a spherical shape and a mean particle size distribution of 41.3 nm for nanoparticles in the scaffold film. Spectroscopy revealed a stable polymer structure before and after encapsulation. The thermoresponsive swelling properties of the film were evaluated according to temperature and pH. Scaffold films incorporating dual drug-loaded nanoparticles showed remarkably high thermoresponsivity, cell compatibility, and ex vivo drug-release behavior. In addition, the hybrid film formulation showed enhanced cell adhesion and proliferation. These dual drug-loaded nanoparticles incorporated into a scaffold film may be promising for development into a transdermal drug-delivery system. PMID:22888222

  20. Comparison of doxorubicin anticancer drug loading on different metal oxide nanoparticles.

    PubMed

    Javed, Khalid Rashid; Ahmad, Munir; Ali, Salamat; Butt, Muhammad Zakria; Nafees, Muhammad; Butt, Alvina Rafiq; Nadeem, Muhammad; Shahid, Abubakar

    2015-03-01

    Nanomaterials are being vigorously investigated for their use in anticancer drug delivery regimes or as biomarkers agents and are considered to be a candidate to provide a way to combat severe weaknesses of anticancer drug pharmacokinetics, such as their nonspecificity. Because of this weakness, a bigger proportion of the drug-loaded nanomaterials flow toward healthy tissues and result in undesirable side effects. It is very important to evaluate drug loading and release efficiency of various nanomaterials to find out true pharmacokinetics of these drugs.This observational study aims to evaluate various surface functionalized and naked nanomaterials for their drug loading capability and consequently strengthens the Reporting of Observational Studies in Epidemiology (STROBE). We analyzed naked and coated nanoparticles of transition metal oxides for their further loading with doxorubicin, a representative water-soluble anticancer drug.Various uncoated and polyethylene glycol-coated metal oxide nanoparticles were synthesized and loaded with anticancer drug using simple stirring of the nanoparticles in a saturated aqueous solution of the drug. Results showed that surface-coated nanoparticles have higher drug-loading capabilities; however, certain naked metal oxide nanoparticles, such as cobalt oxide nanoparticles, can load a sufficient amount of drug. PMID:25789952

  1. Comparison of Doxorubicin Anticancer Drug Loading on Different Metal Oxide Nanoparticles

    PubMed Central

    Javed, Khalid Rashid; Ahmad, Munir; Ali, Salamat; Butt, Muhammad Zakria; Nafees, Muhammad; Butt, Alvina Rafiq; Nadeem, Muhammad; Shahid, Abubakar

    2015-01-01

    Abstract Nanomaterials are being vigorously investigated for their use in anticancer drug delivery regimes or as biomarkers agents and are considered to be a candidate to provide a way to combat severe weaknesses of anticancer drug pharmacokinetics, such as their nonspecificity. Because of this weakness, a bigger proportion of the drug-loaded nanomaterials flow toward healthy tissues and result in undesirable side effects. It is very important to evaluate drug loading and release efficiency of various nanomaterials to find out true pharmacokinetics of these drugs. This observational study aims to evaluate various surface functionalized and naked nanomaterials for their drug loading capability and consequently strengthens the Reporting of Observational Studies in Epidemiology (STROBE). We analyzed naked and coated nanoparticles of transition metal oxides for their further loading with doxorubicin, a representative water-soluble anticancer drug. Various uncoated and polyethylene glycol-coated metal oxide nanoparticles were synthesized and loaded with anticancer drug using simple stirring of the nanoparticles in a saturated aqueous solution of the drug. Results showed that surface-coated nanoparticles have higher drug-loading capabilities; however, certain naked metal oxide nanoparticles, such as cobalt oxide nanoparticles, can load a sufficient amount of drug. PMID:25789952

  2. Counter-ion complexes for enhanced drug loading in nanocarriers: Proof-of-concept and beyond.

    PubMed

    Günday Türeli, Nazende; Türeli, Akif E; Schneider, Marc

    2016-09-25

    Enhanced drug loading is an important prerequisite of nanomedicines, to reach administration dose while reducing the amount of excipient. Considering biocompatible and biodegradable polymers such as PLGA, pH dependent solubility characteristics along with limited organic solvent solubility of the drug hampers nanoparticle (NP) preparation. To improve loading of such molecules, a method based on using counter ions for complex formation is proposed. Formed complex alters the intrinsic solubility of active substance via electrostatic interaction without chemical modification. A proof-of-concept study was conducted with sodium dodecyl sulfate as counter-ion to fluoroquinolone antibiotic ciprofloxacin. Complex formation resulted in suppressed pH dependent solubility over pH 1.2-9.0 and an additional -80 fold increase in organic solubility was achieved. In consequence, NPs prepared by microjet reactor technology have shown enhanced drug loading efficiencies (-78%) and drug loading of 14%. Moreover, the counter-ion concept was also demonstrated with another class of antibiotics, water soluble aminoglycosides gentamycin and tobramycin. In addition, the counter ion was substituted by degradable excipients such as phosphatidic acid derivatives. Successful implementation has proven the counter-ion concept to be a platform concept that can be successfully implemented for a variety of active substances and counter-ions to enhance drug loading in nanocarriers. PMID:27520732

  3. Hollow mesoporous silica as a high drug loading carrier for regulation insoluble drug release.

    PubMed

    Geng, Hongjian; Zhao, Yating; Liu, Jia; Cui, Yu; Wang, Ying; Zhao, Qinfu; Wang, Siling

    2016-08-20

    The purpose of this study was to develop a high drug loading hollow mesoporous silica nanoparticles (HMS) and apply for regulation insoluble drug release. HMS was synthesized using hard template phenolic resin nanoparticles with the aid of cetyltrimethyl ammonium bromide (CTAB), which was simple and inexpensive. To compare the difference between normal mesoporous silica (NMS) and hollow mesoporous silica in drug loading efficiency, drug release behavior and solid state, NMS was also prepared by soft template method. Transmission electron microscopy (TEM), specific surface area analysis, FT-IR and zeta potential were employed to characterize the morphology structure and physicochemical property of these carriers. The insoluble drugs, carvedilol and fenofibrate(Car and Fen), were chosen as the model drug to be loaded into HMS and NMS. We also chose methylene blue (MB) as a basic dye to estimate the adsorption ability of these carriers from macroscopic and microscopic view, and the drug-loaded carriers were systematically studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and UV-vis spectrophotometry. What' more, the in vivo process of HMS was also study by confocal microscopy and in vivo fluorescence imaging. In order to confirm the gastrointestinal safety of HMS, the pathological examination of stomach and intestine also be evaluated. HMS allowed a higher drug loading than NMS and exhibited a relative sustained release curve, while NMS was immediate-release. And the effect of preventing drugs crystallization was weaker than NMS. As for in vivo process, HMS was cleared relatively rapidly from the mouse gastrointestinal and barely uptake by intestinal epithelial cell in this study due to its large particle size. And the damage of HMS to gastrointestinal could be ignored. This study provided a simple method to obtain high drug loading and regulation insoluble drug release, expanded the application of inorganic carriers in drug delivery system

  4. Challenges facing academic research in commercializing event-detector implantable devices for an in-vivo biomedical subcutaneous device for biomedical analysis

    NASA Astrophysics Data System (ADS)

    Juanola-Feliu, E.; Colomer-Farrarons, J.; Miribel-Català, P.; Samitier, J.; Valls-Pasola, J.

    2011-05-01

    It is widely recognized that the welfare of the most advanced economies is at risk, and that the only way to tackle this situation is by controlling the knowledge economies and dealing with. To achieve this ambitious goal, we need to improve the performance of each dimension in the "knowledge triangle": education, research and innovation. Indeed, recent findings point to the importance of strategies of adding-value and marketing during R+D processes so as to bridge the gap between the laboratory and the market and so ensure the successful commercialization of new technology-based products. Moreover, in a global economy in which conventional manufacturing is dominated by developing economies, the future of industry in the most advanced economies must rely on its ability to innovate in those high-tech activities that can offer a differential added-value, rather than on improving existing technologies and products. It seems quite clear, therefore, that the combination of health (medicine) and nanotechnology in a new biomedical device is very capable of meeting these requisites. This work propose a generic CMOS Front-End Self-Powered In-Vivo Implantable Biomedical Device, based on a threeelectrode amperometric biosensor approach, capable of detecting threshold values for targeted concentrations of pathogens, ions, oxygen concentration, etc. Given the speed with which diabetes can spread, as diabetes is the fastest growing disease in the world, the nano-enabled implantable device for in-vivo biomedical analysis needs to be introduced into the global diabetes care devices market. In the case of glucose monitoring, the detection of a threshold decrease in the glucose level it is mandatory to avoid critic situations like the hypoglycemia. Although the case study reported in this paper is complex because it involves multiple organizations and sources of data, it contributes to extend experience to the best practices and models on nanotechnology applications and

  5. SEMICONDUCTOR DEVICES: Reducing the influence of STI on SONOS memory through optimizing added boron implantation technology

    NASA Astrophysics Data System (ADS)

    Yue, Xu; Feng, Yan; Zhiguo, Li; Fan, Yang; Yonggang, Wang; Jianguang, Chang

    2010-09-01

    The influence of shallow trench isolation (STI) on a 90 nm polysilicon-oxide-nitride-oxide-silicon structure non-volatile memory has been studied based on experiments. It has been found that the performance of edge memory cells adjacent to STI deteriorates remarkably. The compressive stress and boron segregation induced by STI are thought to be the main causes of this problem. In order to mitigate the STI impact, an added boron implantation in the STI region is developed as a new solution. Four kinds of boron implantation experiments have been implemented to evaluate the impact of STI on edge cells, respectively. The experimental results show that the performance of edge cells can be greatly improved through optimizing added boron implantation technology.

  6. Fabrication and anti-microbial evaluation of drug loaded polylactide space filler intended for ridge preservation following tooth extraction

    PubMed Central

    Thomas, Nebu George; Sanil, George P.; Rajmohan, Gopimohan; Prabhakaran, Jayachandran V.; Panda, Amulya K.

    2011-01-01

    Background: The preservation or reduction of alveolar ridge resorption following tooth extraction is important in patients especially for those intended for implants at a later stage. One way to achieve this is by using membranes, graft materials, and biodegradable space fillers to prevent alveolar bone resorption and promote regeneration. A major attraction for using biodegradable and biocompatible polymers as space fillers for ridge preservation is their safety profile in comparison to xenograft materials like lyophilized bone and collagen. Materials and Methods: Biocompatible polylactide space fillers were fabricated by fusing porous polylactide particles. The sponges were loaded with drugs by placing them in the respective solutions. Pseudomonas aeruginosa was isolated from a chronic periodontitis patient and in vitro anti-microbial evaluation was done with the drug loaded sponges. Results: Chlorhexidine loaded space filler showed significant anti microbial effect against multiple drug resistant Pseudomonas aeruginosa isolated from a patient with chronic periodontitis. Conclusion: The results of this study indicate that biodegradable drug releasing polylactide space fillers has the potential to be used for ridge preservation following tooth extraction. Release of drugs in the socket may prove useful in preventing development of alveolar osteitis post extraction which can interfere with normal healing of the socket. Synthetic biodegradable polymers also exhibit a controlled degradation rate to achieve complete resorption within the intended time. PMID:22028514

  7. In vivo biostability of polymeric spine implants: retrieval analyses from a United States investigational device exemption study.

    PubMed

    Shen, Ming; Zhang, Kai; Koettig, Petra; Welch, William C; Dawson, John M

    2011-11-01

    The Dynesys System for stabilizing the lumbar spine was first surgically implanted in Europe in 1994. In 2003, a prospective, randomized, investigational device exemption clinical trial of the system for non-fusion dynamic stabilization began. Polycarbonate urethane (PCU) and polyethylene terephthalate (PET) components explanted from four patients who had participated in the study were analyzed for biostability. Components had been implanted 9-19 months. The explanted components were visually inspected and digitally photographed. Scanning electron microscopy was used to analyze the surface of the spacers. The chemical and molecular properties of the retrieved spacers and cords were quantitatively compared with lot-matched, shelf-aged, components that had not been implanted using attenuated total reflection Fourier transform infrared (FTIR) and gel permeation chromatography (GPC). FTIR analyses suggested that the explanted spacers exhibited slight surface chemical changes but were chemically unchanged below the surface and in the center. New peaks that could be attributed to biodegradation of PCU were not observed. The spectral analyses for the cords revealed that the PET cords were chemically unchanged at both the surface and the interior. Peaks associated with the PET biodegradation were not detected. GPC results did not identify changes to the distributions of molecular weights that might be attributed to biodegradation of either PCU spacers or PET cords. The explanted condition of the retrieved components demonstrated the biostability of both PCU spacers and PET cords that had been in vivo for up to 19 months. PMID:21538208

  8. Use of SIG device to accurately place permanent miniature dental implants to retain mandibular overdenture. A case report.

    PubMed

    Sussman, Harold I; Goodridge, Opal F

    2006-01-01

    A case of mini-dental implant insertion for retention of a mandibular overdenture in a hospitalized patient has been documented. The additional use of the SIG (drill guide) directional device in the implant placement protocol gave the practitioner more confidence and resulted in the proper alignment of the three ball-top, one-piece fixtures. The three implants were inserted exactly 1 cm apart and parallel to each other. The distal fixtures were approximately 1 cm away from the mental foramina, thereby eliminating the risk of lip paresthesia. Keeper caps were placed in the denture's intaglio after one month. The keeper caps allowed for proper retention of the overdenture. The caps also enabled the patient to easily insert and withdraw his denture, even though he displayed limited manual dexterity. The tissue response was excellent, and oral hygiene was made easier with adequate spacing of the exposed ball-tops. The overall experience for both the operator and the patient was very positive. General dentists should be able to readily master this technique and add it to their armamentarium for the benefit of all their patients. PMID:17036584

  9. Development of an implantable wireless ECoG 128ch recording device for clinical brain machine interface.

    PubMed

    Matsushita, Kojiro; Hirata, Masayuki; Suzuki, Takafumi; Ando, Hiroshi; Ota, Yuki; Sato, Fumihiro; Morris, Shyne; Yoshida, Takeshi; Matsuki, Hidetoshi; Yoshimine, Toshiki

    2013-01-01

    Brain Machine Interface (BMI) is a system that assumes user's intention by analyzing user's brain activities and control devices with the assumed intention. It is considered as one of prospective tools to enhance paralyzed patients' quality of life. In our group, we especially focus on ECoG (electro-corti-gram)-BMI, which requires surgery to place electrodes on the cortex. We try to implant all the devices within the patient's head and abdomen and to transmit the data and power wirelessly. Our device consists of 5 parts: (1) High-density multi-electrodes with a 3D shaped sheet fitting to the individual brain surface to effectively record the ECoG signals; (2) A small circuit board with two integrated circuit chips functioning 128 [ch] analogue amplifiers and A/D converters for ECoG signals; (3) A Wifi data communication & control circuit with the target PC; (4) A non-contact power supply transmitting electrical power minimum 400[mW] to the device 20[mm] away. We developed those devices, integrated them, and, investigated the performance. PMID:24110075

  10. 78 FR 2647 - Dental Devices; Reclassification of Blade-Form Endosseous Dental Implant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    ... effectiveness of the device. II. Regulatory History of the Device On December 30, 1980 (45 FR 86025), FDA... lingual and labial bony plates of the upper and lower jaws. On August 12, 1987 (52 FR 30082), a final rule...) classifying these devices as class III. On December 7, 1989 (54 FR 50592), FDA published a proposed rule...

  11. Lab-on-a-brain: Implantable micro-optical fluidic devices for neural cell analysis in vivo

    NASA Astrophysics Data System (ADS)

    Takehara, Hiroaki; Nagaoka, Akira; Noguchi, Jun; Akagi, Takanori; Kasai, Haruo; Ichiki, Takanori

    2014-10-01

    The high-resolution imaging of neural cells in vivo has brought about great progress in neuroscience research. Here, we report a novel experimental platform, where the intact brain of a living mouse can be studied with the aid of a surgically implanted micro-optical fluidic device; acting as an interface between neurons and the outer world. The newly developed device provides the functions required for the long-term and high-resolution observation of the fine structures of neurons by two-photon laser scanning microscopy and the microfluidic delivery of chemicals or drugs directly into the brain. A proof-of-concept experiment of single-synapse stimulation by two-photon uncaging of caged glutamate and observation of dendritic spine shrinkage over subsequent days demonstrated a promising use for the present technology.

  12. A Novel Technique Using a Protection Filter During Fibrin Sheath Removal for Implanted Venous Access Device Dysfunction.

    PubMed

    Sotiriadis, Charalampos; Hajdu, Steven David; Degrauwe, Sophie; Barras, Heloise; Qanadli, Salah Dine

    2016-08-01

    With the increased use of implanted venous access devices (IVADs) for continuous long-term venous access, several techniques such as percutaneous endovascular fibrin sheath removal, have been described, to maintain catheter function. Most standard techniques do not capture the stripped fibrin sheath, which is subsequently released in the pulmonary circulation and may lead to symptomatic pulmonary embolism. The presented case describes an endovascular technique which includes stripping, capture, and removal of fibrin sheath using a novel filter device. A 64-year-old woman presented with IVAD dysfunction. Stripping was performed using a co-axial snare to the filter to capture the fibrin sheath. The captured fragment was subsequently removed for visual and pathological verification. No immediate complication was observed and the patient was discharged the day of the procedure. PMID:27016091

  13. Mechanical Behaviour of Umbrella-Shaped, Ni-Ti Memory Alloy Femoral Head Support Device during Implant Operation: A Finite Element Analysis Study

    PubMed Central

    Yi, Wei; Tian, Qing; Dai, Zhipeng; Liu, Xiaohu

    2014-01-01

    A new instrument used for treating femoral head osteonecrosis was recently proposed: the umbrella-shaped, Ni-Ti memory femoral head support device. The device has an efficacy rate of 82.35%. Traditional radiographic study provides limited information about the mechanical behaviour of the support device during an implant operation. Thus, this study proposes a finite element analysis method, which includes a 3-step formal head model construction scheme and a unique material assignment strategy for evaluating mechanical behaviour during an implant operation. Four different scenarios with different constraints, initial positions and bone qualities are analyzed using the simulation method. The max radium of the implanted device was consistent with observation data, which confirms the accuracy of the proposed method. To ensure that the device does not unexpectedly open and puncture the femoral head, the constraint on the impact device should be strong. The initial position of sleeve should be in the middle to reduce the damage to the decompression channel. The operation may fail because of poor bone quality caused by severe osteoporosis. The proposed finite element analysis method has proven to be an accurate tool for studying the mechanical behaviour of umbrella-shaped, Ni-Ti memory alloy femoral head support device during an implant operation. The 3-step construct scheme can be implemented with any kind of bone structure meshed with multiple element types. PMID:24960038

  14. Remote monitoring of patients with cardiac implantable electronic devices: a Southeast Asian, single-centre pilot study

    PubMed Central

    Lim, Paul Chun Yih; Lee, Audry Shan Yin; Chua, Kelvin Chi Ming; Lim, Eric Tien Siang; Chong, Daniel Thuan Tee; Tan, Boon Yew; Ho, Kah Leng; Teo, Wee Siong; Ching, Chi Keong

    2016-01-01

    INTRODUCTION Remote monitoring of cardiac implantable electronic devices (CIED) has been shown to improve patient safety and reduce in-office visits. We report our experience with remote monitoring via the Medtronic CareLink® network. METHODS Patients were followed up for six months with scheduled monthly remote monitoring transmissions in addition to routine in-office checks. The efficacy of remote monitoring was evaluated by recording compliance to transmissions, number of device alerts requiring intervention and time from transmission to review. Questionnaires were administered to evaluate the experiences of patients, physicians and medical technicians. RESULTS A total of 57 patients were enrolled; 16 (28.1%) had permanent pacemakers, 34 (59.6%) had implantable cardioverter defibrillators and 7 (12.3%) had cardiac resynchronisation therapy defibrillators. Overall, of 334 remote transmissions scheduled, 73.7% were on time, 14.5% were overdue and 11.8% were missed. 84.6% of wireless transmissions were on time, compared to 53.8% of non-wireless transmissions. Among all transmissions, 4.4% contained alerts for which physicians were informed and only 1.8% required intervention. 98.6% of remote transmissions were reviewed by the second working day. 73.2% of patients preferred remote monitoring. Physicians agreed that remote transmissions provided information equivalent to in-office checks 97.1% of the time. 77.8% of medical technicians felt that remote monitoring would help the hospital improve patient management. No adverse events were reported. CONCLUSION Remote monitoring of CIED is safe and feasible. It has possible benefits to patient safety through earlier detection of arrhythmias or device malfunction, permitting earlier intervention. Wireless remote monitoring, in particular, may improve compliance to device monitoring. Patients may prefer remote monitoring due to possible improvements in quality of life. PMID:27439396

  15. FDA Approval of Cardiac Implantable Electronic Devices via Original and Supplement Premarket Approval Pathways, 1979-2012

    PubMed Central

    Rome, Benjamin N.; Kramer, Daniel B.; Kesselheim, Aaron S.

    2014-01-01

    IMPORTANCE The US Food and Drug Administration (FDA) evaluates high-risk medical devices such as cardiac implantable electronic devices (CIEDs), including pacemakers, implantable cardioverter-defibrillators, and cardiac resynchronization therapy devices, via the premarket approval (PMA) process, during which manufacturers submit clinical data demonstrating safety and effectiveness. Subsequent changes to approved high-risk devices are implemented via “supplements,” which may not require additional clinical testing. OBJECTIVE To characterize the prevalence and characteristics of changes to CIEDs made through the PMA supplement process. DESIGN Using the FDA’s PMA database, we reviewed all CIEDs approved as original PMAs or supplements from 1979 through 2012. For each supplement, we collected the date approved, type of supplement (panel-track, 180-day, real-time, special, and 30-day notice), and the nature of the changes. We calculated the number of supplements approved per PMA and analyzed trends relating to different supplement regulatory categories overtime. For supplements approved via the 180-day regulatory pathway, which often involve significant design changes, from 2010-2012, we identified how often additional clinical data were collected. RESULTS From 1979-2012, the FDA approved 77 original and 5829 supplement PMA applications for CIEDs, with a median of 50 supplements per original PMA (interquartile range [IQR], 23-87). Excluding manufacturing changes that do not alter device design, the number of supplements approved each year was stable around a mean (SD) of 2.6 (0.9) supplements per PMA per year. Premarket approvals remained active via successive supplements over a median period of 15 years (IQR, 8-20), and 79% of the 77 original PMAs approved during our study period were the subject of at least 1 supplement in 2012. Thirty-seven percent of approved supplements involved a change to the device’s design. Among 180-day supplements approved from 2010

  16. Left ventricular diastolic filling with an implantable ventricular assist device: beat to beat variability with overall improvement

    NASA Technical Reports Server (NTRS)

    Nakatani, S.; Thomas, J. D.; Vandervoort, P. M.; Zhou, J.; Greenberg, N. L.; Savage, R. M.; McCarthy, P. M.

    1997-01-01

    OBJECTIVES: We studied the effects of left ventricular (LV) unloading by an implantable ventricular assist device on LV diastolic filling. BACKGROUND: Although many investigators have reported reliable systemic and peripheral circulatory support with implantable LV assist devices, little is known about their effect on cardiac performance. METHODS: Peak velocities of early diastolic filling, late diastolic filling, late to early filling ratio, deceleration time of early filling, diastolic filling period and atrial filling fraction were measured by intraoperative transesophageal Doppler echocardiography before and after insertion of an LV assist device in eight patients. A numerical model was developed to simulate this situation. RESULTS: Before device insertion, all patients showed either a restrictive or a monophasic transmitral flow pattern. After device insertion, transmitral flow showed rapid beat to beat variation in each patient, from abnormal relaxation to restrictive patterns. However, when the average values obtained from 10 consecutive beats were considered, overall filling was significantly normalized from baseline, with early filling velocity falling from 87 +/- 31 to 64 +/- 26 cm/s (p < 0.01) and late filling velocity rising from 8 +/- 11 to 32 +/- 23 cm/s (p < 0.05), resulting in an increase in the late to early filling ratio from 0.13 +/- 0.18 to 0.59 +/- 0.38 (p < 0.01) and a rise in the atrial filling fraction from 8 +/- 10% to 26 +/- 17% (p < 0.01). The deceleration time (from 112 +/- 40 to 160 +/- 44 ms, p < 0.05) and the filling period corrected by the RR interval (from 39 +/- 8% to 54 +/- 10%, p < 0.005) were also significantly prolonged. In the computer model, asynchronous LV assistance produced significant beat to beat variation in filling indexes, but overall a normalization of deceleration time as well as other variables. CONCLUSIONS: With LV assistance, transmitral flow showed rapidly varying patterns beat by beat in each patient, but

  17. Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency.

    PubMed

    Cai, Kaimin; He, Xi; Song, Ziyuan; Yin, Qian; Zhang, Yanfeng; Uckun, Fatih M; Jiang, Chen; Cheng, Jianjun

    2015-03-18

    Encapsulation of small-molecule drugs in hydrophobic polymers or amphiphilic copolymers has been extensively used for preparing polymeric nanoparticles (NPs). The loadings and loading efficiencies of a wide range of drugs in polymeric NPs, however, tend to be very low. In this Communication, we report a strategy to prepare polymeric NPs with exceptionally high drug loading (>50%) and quantitative loading efficiency. Specifically, a dimeric drug conjugate bearing a trigger-responsive domain was designed and used as the core-constructing unit of the NPs. Upon co-precipitation of the dimeric drug and methoxypoly(ethylene glycol)-block-polylactide (mPEG-PLA), NPs with a dimeric drug core and a polymer shell were formed. The high-drug-loading NPs showed excellent stability in physiological conditions. No premature drug or prodrug release was observed in PBS solution without triggering, while external triggering led to controlled release of drug in its authentic form. PMID:25741752

  18. Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone

    PubMed Central

    Niinomi, M.; Nakai, M.

    2011-01-01

    β-type titanium alloys with low Young's modulus are required to inhibit bone atrophy and enhance bone remodeling for implants used to substitute failed hard tissue. At the same time, these titanium alloys are required to have high static and dynamic strength. On the other hand, metallic biomaterials with variable Young's modulus are required to satisfy the needs of both patients and surgeons, namely, low and high Young's moduli, respectively. In this paper, we have discussed effective methods to improve the static and dynamic strength while maintaining low Young's modulus for β-type titanium alloys used in biomedical applications. Then, the advantage of low Young's modulus of β-type titanium alloys in biomedical applications has been discussed from the perspective of inhibiting bone atrophy and enhancing bone remodeling. Further, we have discussed the development of β-type titanium alloys with a self-adjusting Young's modulus for use in removable implants. PMID:21765831

  19. Wound Dehiscence and Device Migration after Subconjunctival Bevacizumab Injection with Ahmed Glaucoma Valve Implantation

    PubMed Central

    Miraftabi, Arezoo; Nilforushan, Naveed

    2016-01-01

    Purpose: To report a complication pertaining to subconjunctival bevacizumab injection as an adjunct to Ahmed Glaucoma Valve (AGV) implantation. Case Report: A 54-year-old woman with history of complicated cataract surgery was referred for advanced intractable glaucoma. AGV implantation with adjunctive subconjunctival bevacizumab (1.25 mg) was performed with satisfactory results during the first postoperative week. However, 10 days after surgery, she developed wound dehiscence and tube exposure. The second case was a 33-year-old man with history of congenital glaucoma and uncontrolled IOP who developed AGV exposure and wound dehiscence after surgery. In both cases, for prevention of endophthalmitis and corneal damage by the unstable tube, the shunt was removed and the conjunctiva was re-sutured. Conclusion: The potential adverse effect of subconjunctival bevacizumab injection on wound healing should be considered in AGV surgery. PMID:27195095

  20. Development of high drug-loading nanomicelles targeting steroids to the brain.

    PubMed

    Zheng, Sijia; Xie, Yanqi; Li, Yuan; Li, Ling; Tian, Ning; Zhu, Wenbo; Yan, Guangmei; Wu, Chuanbin; Hu, Haiyan

    2014-01-01

    The objective of this research was to develop and evaluate high drug-loading ligand-modified nanomicelles to deliver a steroidal compound to the brain. YC1 (5α-cholestane-24-methylene-3β, 5α, 6β, 19-tetraol), with poor solubility and limited access to the brain, for the first time, has been proved to be an effective neuroprotective steroid by our previous studies. Based on the principle of 'like dissolves like', cholesterol, which shares the same steroidal parent nucleus with YC1, was selected to react with sodium alginate, producing amphiphilic sodium alginate- cholesterol derivatives (SACDs). To increase the grafting ratio and drug loading, cholesterol was converted to cholesteryl chloroformate, for the first time, before reacting with sodium alginate. Further, lactoferrin was conjugated on SACDs to provide lactoferrin-SACDs (Lf-SACD), which was established by immune electron microscopy (IEM) and self-assembled into brain-targeting nanomicelles. These nanomicelles were negatively charged and spherical in nature, with an average size of <200 nm. The YC1 drug loading was increased due to the cholesteryl inner cores of the nanomicelles, and the higher the grafting ratio was, the lower the critical micelle concentration (CMC) value of SACD, and the higher drug loading. The in vitro drug release, studied by bulk-equilibrium dialysis in 20 mL of 6% hydroxypropyl-β-cyclodextrin solution at 37°C, indicated a prolonged release profile. The YC1 concentration in mouse brain delivered by lactoferrin-modified nanomicelles was higher than in those delivered by non-modified nanomicelles and YC1 solution. The unique brain-targeting nanomicelle system may provide a promising carrier to deliver hydrophobic drugs across the blood-brain barrier for the treatment of brain diseases. PMID:24379663

  1. Biocompatibility and cytotoxic evaluation of drug-loaded biodegradable guided tissue regeneration membranes

    PubMed Central

    Thomas, Nebu G.; Sanil, George P.; Gopimohan, Rajmohan; Prabhakaran, Jayachandran V.; Thomas, George; Panda, Amulya K.

    2012-01-01

    Background: In periodontology, Guided Tissue Regeneration (GTR) is based on the concept of providing a space for entry of cells with regenerative potential into the wound environment to initiate the regeneration of structures lost due to periodontal disease. First generation GTR membranes were primarily non-absorbable membranes like expanded polytetrafluorethylene which required a second surgery for its removal. This led researchers to explore absorbable materials like collagen and synthetic biodegradable polymers to fabricate GTR membranes. In the present study, biodegradable Polylactic acid (PLA) is used to fabricate membranes with the potential to be used for GTR therapy. Materials and Methods: Biocompatibility of the PLA membranes were evaluated in a subcutaneous guinea pig model. Antimicrobial effect of the drug-loaded PLA membranes were assessed against a drug-resistant Staphylococcus aureus bacterial isolate. The cytocompatibility of the drug-loaded membranes were evaluated using HeLa cell lines. Results: The PLA membranes were shown to be biocompatible. The drug-loaded PLA membranes showed significant activity against the bacterial isolate. Among the drug-loaded membranes, tetracycline-loaded membrane showed minimal cellular toxicity. Conclusion: The results of this study indicate that biodegradable drug-releasing polylactide membranes have the potential to be used for periodontal regeneration. It has the necessary characteristics of a GTR membrane like biocompatibility, space maintaining ability, and tissue integration. Among the various antimicrobial agents loaded in the PLA membranes, tetracycline-loaded membranes exhibited minimal cellular toxicity against HeLa cells; at the same time showing significant activity against a pathogenic bacterium. PMID:23492817

  2. Implantable devices having ceramic coating applied via an atomic layer deposition method

    DOEpatents

    Liang, Xinhua; Weimer, Alan W.; Bryant, Stephanie J.

    2016-03-08

    Substrates coated with films of a ceramic material such as aluminum oxides and titanium oxides are biocompatible, and can be used in a variety of applications in which they are implanted in a living body. The substrate is preferably a porous polymer, and may be biodegradable. An important application for the ceramic-coated substrates is as a tissue engineering scaffold for forming artificial tissue.

  3. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability.

    PubMed

    Wang, Jake X; Smith, Joshua R; Bonde, Pramod

    2014-04-01

    Left ventricular assist device therapy has radically improved congestive heart failure survival with smaller rotary pumps. The driveline used to power today's left ventricular assist devices, however, continues to be a source of infection, traumatic damage, and rehospitalization. Previous attempts to wirelessly power left ventricular assist devices using transcutaneous energy transfer systems have been limited by restrictions on separation distance and alignment between the transmit and receive coils. Resonant electrical energy transfer allows power delivery at larger distances without compromising safety and efficiency. This review covers the efforts to wirelessly power mechanical circulatory assist devices and the progress made in enhancing their energy sources. PMID:24530103

  4. Designing medical devices for conformance with harmonized standards: a case study of non-active implants.

    PubMed

    Gogins, J A

    1995-01-01

    The European Community's Medical Devices Directives represent an ambitious effort to streamline the regulation of medical devices within the European Economic Area, an area comprising more than 380 million people. In this, the second of two special reports, Jean A. Goggins uses a case study format to demonstrate the process that would be used to gain European approval for a hypothetical medical device. In the first report, appearing on page 284, Richard C. Fries and Mark D. Graber describe the Medical Devices Directives and their effect on the product-development process. PMID:7550496

  5. POLYMERIC IMPLANTS FOR DELIVERY OF GREEN TEA POLYPHENOLS

    PubMed Central

    Cao, Pengxiao; Aqil, Farrukh; Ravoori, Srivani; Gupta, Ramesh C.; Vadhanam, Manicka V.

    2014-01-01

    Polymeric implants (millirods) have been tested for local delivery of chemotherapeutic agents in cancer treatment. Modeling of drug release profiles is critical as it may provide theoretical insights on rational implant design. In this study, a biodegradable poly (ε-caprolactone) (PCL) polymeric implant delivery system was tested to deliver green tea polyphenols (GTPs), both in vitro and in vivo. Factors including polymer compositions, supplements, drug loads and surface area of implants were investigated. Our data showed that GTPs were released from PCL implants continuously for long durations, and drug load was the main determining factor of GTPs release. Furthermore, the rates of in vitro release and in vivo release in the rat model followed similar kinetics for up to 16 months. A mathematical model was deduced and discussed. GTPs implants have the potential to be used locally as an alternative strategy. GTP implants have the potential to be used systemically and locally at the tumor site as an alternative strategy. PMID:24464784

  6. Comparative Clinical and Histologic Assessments of Dental Implants Delivered with a Manual Torque Limiting Wrench Versus with an Electronically Controlled Torque Limiting Device.

    PubMed

    Nevins, Myron; Nevins, Marc; De Angelis, Nicola; Ghaffari, Sasan; Bassir, Hossein; Kim, David M

    2015-01-01

    The goal of this preclinical investigation was to evaluate the healing of tapered roughened surfaced dental implants that were delivered by either a manual torque limiting wrench or an electronically controlled torque limiting device. Three canines underwent bilateral extraction of third and fourth premolars and first molar. The extraction sites were allowed to heal for 2 months before two dental implants were placed bilaterally. All animals underwent a normal healing process. One animal was sacrificed at 1 month and the remaining two animals were sacrificed at 2 months to perform histologic evaluations including bone-to-implant contact (BIC) and soft tissue healing. The clinical stability and histologic osseointegration were similar when the results obtained with the manual torque limiting wrench were compared to those delivered by the electronically controlled torque limiting device. However, BIC and maintenance of the crestal bone level achieved appeared to be higher in the electronically controlled torque limiting device groups. PMID:26509985

  7. Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection.

    PubMed

    Xue, Jiajia; Niu, Yuzhao; Gong, Min; Shi, Rui; Chen, Dafu; Zhang, Liqun; Lvov, Yuri

    2015-02-24

    Guided tissue regeneration/guided bone regeneration membranes with sustained drug delivery were developed by electrospinning drug-loaded halloysite clay nanotubes doped into poly(caprolactone)/gelatin microfibers. Use of 20 wt % nanotube content in fiber membranes allowed for 25 wt % metronidazole drug loading in the membrane. Nanotubes with a diameter of 50 nm and a length of 600 nm were aligned within the 400 nm diameter electrospun fibers, resulting in membranes with doubling of tensile strength along the collector rotating direction. The halloysite-doped membranes acted as barriers against cell ingrows and have good biocompatibility. The metronidazole-loaded halloysite nanotubes incorporated in the microfibers allowed for extended release of the drugs over 20 days, compared to 4 days when directly admixed into the microfibers. The sustained release of metronidazole from the membranes prevented the colonization of anaerobic Fusobacteria, while eukaryotic cells could still adhere to and proliferate on the drug-loaded composite membranes. This indicates the potential of halloysite clay nanotubes as drug containers that can be incorporated into electrospun membranes for clinical applications. PMID:25584992

  8. Hydroxyapatite/polyurethane scaffold incorporated with drug-loaded ethyl cellulose microspheres for bone regeneration.

    PubMed

    Liu, Haohuai; Zhang, Li; Shi, Pujiang; Zou, Qin; Zuo, Yi; Li, Yubao

    2010-10-01

    The purpose of this study is to explore and develop biodegradable scaffold for bone regeneration or tissue engineering with the capacity of controlled drug delivery. Ceftazidime as a model drug was encapsulated in ethyl cellulose (EC) microspheres, which were subsequently incorporated in a hydroxyapatite/polyurethane (HA/PU) composite scaffold to generate an antibiotic drug delivery system. HA/PU scaffolds had an interconnected pore network with an average porosity of about 83%. The presence of microspheres in the composite scaffolds was confirmed by scanning electron microscopy. The drug-loaded EC microspheres were uniformly distributed in the HA/PU scaffold matrix and showed no significant effect on the pore structure of the scaffold. Incorporation of microspheres into scaffolds significantly reduced the initial burst release, and the system exhibited a sustained release of the model drug for up to 60 days. Moreover, the scaffold with drug-loaded microspheres was proved to be an effective drug delivery system with good cytocompatibility and antibacterial properties. The novel drug-loaded microsphere/scaffold composites developed in this study are promising to serve as vehicles for controlled drug delivery in bone regeneration or bone tissue engineering. PMID:20665683

  9. A Review of the Development of a Vehicle for Localized and Controlled Drug Delivery for Implantable Biosensors

    PubMed Central

    Bhardwaj, Upkar; Papadimitrakopoulos, Fotios; Burgess, Diane J.

    2008-01-01

    A major obstacle to the development of implantable biosensors is the foreign body response (FBR) that results from tissue trauma during implantation and the continuous presence of the implant in the body. The in vivo stability and functionality of biosensors are compromised by damage to sensor components and decreased analyte transport to the sensor. This paper summarizes research undertaken by our group since 2001 to control the FBR toward implanted sensors. Localized and sustained delivery of the anti-inflammatory drug, dexamethasone, and the angiogenic growth factor, vascular endothelial growth factor (VEGF), was utilized to inhibit inflammation as well as fibrosis and provide a stable tissue–device interface without producing systemic adverse effects. The drug-loaded polylactic-co-glycolic acid (PLGA) microspheres were embedded in a polyvinyl alcohol (PVA) hydrogel composite to fabricate a drug-eluting, permeable external coating for implantable devices. The composites were fabricated using the freeze–thaw cycle method and had mechanical properties similar to soft body tissue. Dexamethasone-loaded microsphere/hydrogel composites were able to provide anti-inflammatory protection, preventing the FBR. Moreover, concurrent release of dexamethasone with VEGF induced neoangiogenesis in addition to providing anti-inflammatory protection. Sustained release of dexamethasone is required for the entire sensor lifetime, as a delayed inflammatory response developed after depletion of the drug from the composites. These studies have shown the potential of PLGA microsphere/PVA hydrogel-based composites as drug-eluting external coatings for implantable biosensors. PMID:19885291

  10. High Productivity Implantation ''PARTIAL IMPLANT''

    SciTech Connect

    Hino, Masayoshi; Miyamoto, Naoki; Sakai, Shigeki; Matsumoto, Takao

    2008-11-03

    The patterned ion implantation 'PARTIAL IMPLANT' has been developed as a productivity improvement tool. The Partial Implant can form several different ion dose areas on the wafer surface by controlling the speed of wafer moving and the stepwise rotation of twist axis. The Partial Implant system contains two implant methods. One method is 'DIVIDE PARTIAL IMPLANT', that is aimed at reducing the consumption of the wafer. The Divide Partial Implant evenly divides dose area on one wafer surface into two or three different dose part. Any dose can be selected in each area. So the consumption of the wafer for experimental implantation can be reduced. The second method is 'RING PARTIAL IMPLANT' that is aimed at improving yield by correcting electrical characteristic of devices. The Ring Partial Implant can form concentric ion dose areas. The dose of wafer external area can be selected to be within plus or minus 30% of dose of wafer central area. So the electrical characteristic of devices can be corrected by controlling dose at edge side on the wafer.

  11. Outcomes and Predictors of Early Mortality After Continuous-Flow Left Ventricular Assist Device Implantation as a Bridge to Transplantation

    PubMed Central

    2014-01-01

    Left ventricular assist devices (LVADs) are fast becoming standard of care for patients with advanced heart failure. However, despite continuous improvement in VAD technology, there remains a significant early postoperative morbidity and mortality in this extreme patient group. The aim of the current study was to explore the short-term outcomes and predictors for 90 day mortality in the patients after implantation of continuous-flow LVAD. Perioperative clinical, echocardiographic, hemodynamic, and laboratory data of 90 day survivors and nonsurvivors were collected and compared retrospectively. Multivariate logistic regression analysis was performed on univariate predictors for 90 day mortality with an entry criterion of p < 0.1. Between July 2006 and May 2012, 117 patients underwent implantation of a continuous-flow LVAD as a bridge to transplantation: 71 (60.7%) HeartMate II (Thoratec Corp, Pleasanton, CA) and 46 (39.3%) HVAD (HeartWare International, Framingham, MA). All-cause 90 day mortality was 17.1%. Multivariate analysis revealed higher preoperative central venous pressure (odds ratio [OR], 1.18; 95% confidence interval [CI], 1.014–1.378; p = 0.033) and higher age (OR, 1.14; 95% CI, 1.01–1.38; p = 0.045) as the only independent predictors for 90 day mortality. Optimization of preoperative volume status, preload, and right heart function as well as age-based selection of candidates for LVAD support are the critical factors influencing early outcome after continuous-flow LVAD implantation. PMID:24399066

  12. Cost–consequence analysis of daily continuous remote monitoring of implantable cardiac defibrillator and resynchronization devices in the UK

    PubMed Central

    Burri, Haran; Sticherling, Christian; Wright, David; Makino, Koji; Smala, Antje; Tilden, Dominic

    2013-01-01

    Aims The need for ongoing and lifelong follow-up (FU) of patients with cardiac implantable electric devices (CIED) requires significant resources. Remote CIED management has been established as a safe alternative to conventional periodical in-office FU (CFU). An economic model compares the long-term cost and consequences of using daily Home Monitoring® (HM) instead of CFU. Methods and results A cost–consequence evaluation comparing HM vs. CFU was performed using a Markov cohort model and data relating to events and costs identified via a systematic review of the literature. The model is conservative, without assuming a reduction of cardiovascular events by HM such as decompensated heart failure or mortality, or considering cost savings such as for transportation. Also cost savings due to an improved timing of elective device replacement, and fewer FU visits needed in patients near device replacement are not considered. Over 10 years, HM is predicted to be cost neutral at about GBP 11 500 per patient in either treatment arm, with all costs for the initial investment into HM and fees for ongoing remote monitoring included. Fewer inappropriate shocks (−51%) reduce the need for replacing devices for battery exhaustion (−7%); the number of FU visits is predicted to be halved by HM. Conclusion From a UK National Health Service perspective, HM is cost neutral over 10 years. This is mainly accomplished by reducing the number of battery charges and inappropriate shocks, resulting in fewer device replacements, and by reducing the number of in-clinic FU visits. PMID:23599169

  13. Pre-clinical Implants of the Levitronix PediVAS® Pediatric Ventricular Assist Device – Strategy for Regulatory Approval

    PubMed Central

    Maul, Timothy M.; Kocyildirim, Ergin; Marks, John D.; Bengston, Shawn G.; Olia, Salim E.; Callahan, Patrick M.; Kameneva, Marina V.; Franklin, Stephen; Borovetz, Harvey S.; Dasse, Kurt A.; Wearden, Peter D.

    2012-01-01

    The PediVAS blood pump is a magnetically levitated centrifugal pump designed for pediatric bridge-to-decision or bridge-to-recovery in pediatric patients from 3–20kg in weight. In preparation for submission of an investigational device exemption (IDE) application, we completed a final six-animal series of pre-clinical studies. The studies were conducted under controlled conditions as prescribed by the recently released FDA guidance document for animal studies for cardiovascular devices. Three 30-day chronic left ventricular support studies were completed in a juvenile lamb model to demonstrate the safety and hemocompatibility of the PediVAS pump. Three additional 8-hour acute biventricular support studies were performed to demonstrate the feasibility of this approach from a hemodynamic and systems standpoint. It is estimated that 50% of pediatric patients who require left ventricular support also require right ventricular support. All studies were successfully completed without complications, device malfunctions, or adverse events. End-organ function was normal for the chronic studies. We noted small surface lesions on one kidney from each chronic study as well as the presence of ring thrombus on connectors, as expected for these types of studies in animal models. The strategy and challenges imposed by performing a controlled cardiovascular device study in a juvenile lamb model are discussed. We believe that these successful implants demonstrate safety and performance for the PediVAS device for support of an IDE application to initiate human clinical trials and provide a roadmap for other researchers. PMID:23494160

  14. Guideline-driven telemonitoring and follow-up of cardiovascular implantable electronic devices using IEEE 11073, HL7 & IHE profiles.

    PubMed

    Yang, Maohua; Chronaki, Catherine E; Lüpkes, Christian; Thiel, Andreas; Plössnig, Manuela; Hinterbuchner, Lynne; Arbelo, Elena; Laleci, Gokce Banu; Kabak, Yildiray; Duarte, Fernandez; Guillén, Alejandra; Navarro, Xavier; Dogac, Asuman; Eichelberg, Marco; Hein, Andreas

    2011-01-01

    For patients with Cardiovascular Implantable Electronic Devices (CIEDs), telemonitoring promises improved quality of life and safety, since events recorded by the device or observed by the patient can alert a health professional. Taking into account the latest clinical guidelines when responding to such alerts, is a topic of active research addressed by the iCARDEA project. A key technical challenge is correlating telemonitoring CIED report data in a vendor-independent format with Electronic Health Record (EHR) data collected in the hospital and Personal Health Record (PHR) data entered by the patient, in guideline-driven care processes. The iCARDEA CIED exposure service component presented in this paper employs standards specifications from ISO/IEEE 11073 (Health Informatics, Point-of-care Medical Device Communication) and HL7v2.x in the context of Integrating the Healthcare Enterprise (IHE) profiles to deliver telemonitoring CIED report data from two different CIED vendors to the adaptive care planner that implements guideline-driven care plans. Experience gained with implementation and initial component testing is discussed, while challenges and expectations for future health information standards to effectively support EHR-integrated guide-line-driven telemonitoring services are highlighted. PMID:22255018

  15. Fabrication of an inexpensive, implantable cooling device for reversible brain deactivation in animals ranging from rodents to primates

    PubMed Central

    Cooke, Dylan F.; Goldring, Adam B.; Yamayoshi, Itsukyo; Tsourkas, Phillippos; Recanzone, Gregg H.; Tiriac, Alex; Pan, Tingrui; Simon, Scott I.

    2012-01-01

    We have developed a compact and lightweight microfluidic cooling device to reversibly deactivate one or more areas of the neocortex to examine its functional macrocircuitry as well as behavioral and cortical plasticity. The device, which we term the “cooling chip,” consists of thin silicone tubing (through which chilled ethanol is circulated) embedded in mechanically compliant polydimethylsiloxane (PDMS). PDMS is tailored to compact device dimensions (as small as 21 mm3) that precisely accommodate the geometry of the targeted cortical area. The biocompatible design makes it suitable for both acute preparations and chronic implantation for long-term behavioral studies. The cooling chip accommodates an in-cortex microthermocouple measuring local cortical temperature. A microelectrode may be used to record simultaneous neural responses at the same location. Cortex temperature is controlled by computer regulation of the coolant flow, which can achieve a localized cortical temperature drop from 37 to 20°C in less than 3 min and maintain target temperature to within ±0.3°C indefinitely. Here we describe cooling chip fabrication and performance in mediating cessation of neural signaling in acute preparations of rodents, ferrets, and primates. PMID:22402651

  16. Few-Layer MoS₂ p-Type Devices Enabled by Selective Doping Using Low Energy Phosphorus Implantation.

    PubMed

    Nipane, Ankur; Karmakar, Debjani; Kaushik, Naveen; Karande, Shruti; Lodha, Saurabh

    2016-02-23

    P-type doping of MoS2 has proved to be a significant bottleneck in the realization of fundamental devices such as p-n junction diodes and p-type transistors due to its intrinsic n-type behavior. We report a CMOS compatible, controllable and area selective phosphorus plasma immersion ion implantation (PIII) process for p-type doping of MoS2. Physical characterization using SIMS, AFM, XRD and Raman techniques was used to identify process conditions with reduced lattice defects as well as low surface damage and etching, 4X lower than previous plasma based doping reports for MoS2. A wide range of nondegenerate to degenerate p-type doping is demonstrated in MoS2 field effect transistors exhibiting dominant hole transport. Nearly ideal and air stable, lateral homogeneous p-n junction diodes with a gate-tunable rectification ratio as high as 2 × 10(4) are demonstrated using area selective doping. Comparison of XPS data from unimplanted and implanted MoS2 layers shows a shift of 0.67 eV toward lower binding energies for Mo and S peaks indicating p-type doping. First-principles calculations using density functional theory techniques confirm p-type doping due to charge transfer originating from substitutional as well as physisorbed phosphorus in top few layers of MoS2. Pre-existing sulfur vacancies are shown to enhance the doping level significantly. PMID:26789206

  17. Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants.

    PubMed

    Das, Beauty; Mandal, Manabendra; Upadhyay, Aadesh; Chattopadhyay, Pronobesh; Karak, Niranjan

    2013-06-01

    The fabrication of a smart magnetically controllable bio-based polymeric nanocomposite (NC) has immense potential in the biomedical domain. In this context, magneto-thermoresponsive sunflower oil modified hyperbranched polyurethane (HBPU)/Fe3O4 NCs with different wt.% of magnetic nanoparticles (Fe3O4) were prepared by an in situ polymerization technique. Fourier-transform infrared, x-ray diffraction, vibrating sample magnetometer, scanning electron microscope, transmission electron microscope, thermal analysis and differential scanning calorimetric were used to analyze various physico-chemical structural attributes of the prepared NC. The results showed good interfacial interactions between HBPU and well-dispersed superparamagnetic Fe3O4, with an average diameter of 7.65 nm. The incorporation of Fe3O4 in HBPU significantly improved the thermo-mechanical properties along with the shape-memory behavior, antibacterial activity, biocompatibility as well as biodegradability in comparison to the pristine system. The cytocompatibility of the degraded products of the NC was also verified by in vitro hemolytic activity and MTT assay. In addition, the in vivo biocompatibility and non-immunological behavior, as tested in Wistar rats after subcutaneous implantation, show promising signs for the NC to be used as antibacterial biomaterial for biomedical device and implant applications. PMID:23532037

  18. Listening to Brain Microcircuits for Interfacing With External World—Progress in Wireless Implantable Microelectronic Neuroengineering Devices

    PubMed Central

    Nurmikko, Arto V.; Donoghue, John P.; Hochberg, Leigh R.; Patterson, William R.; Song, Yoon-Kyu; Bull, Christopher W.; Borton, David A.; Laiwalla, Farah; Park, Sunmee; Ming, Yin; Aceros, Juan

    2011-01-01

    Acquiring neural signals at high spatial and temporal resolution directly from brain microcircuits and decoding their activity to interpret commands and/or prior planning activity, such as motion of an arm or a leg, is a prime goal of modern neurotechnology. Its practical aims include assistive devices for subjects whose normal neural information pathways are not functioning due to physical damage or disease. On the fundamental side, researchers are striving to decipher the code of multiple neural microcircuits which collectively make up nature’s amazing computing machine, the brain. By implanting biocompatible neural sensor probes directly into the brain, in the form of microelectrode arrays, it is now possible to extract information from interacting populations of neural cells with spatial and temporal resolution at the single cell level. With parallel advances in application of statistical and mathematical techniques tools for deciphering the neural code, extracted populations or correlated neurons, significant understanding has been achieved of those brain commands that control, e.g., the motion of an arm in a primate (monkey or a human subject). These developments are accelerating the work on neural prosthetics where brain derived signals may be employed to bypass, e.g., an injured spinal cord. One key element in achieving the goals for practical and versatile neural prostheses is the development of fully implantable wireless microelectronic “brain-interfaces” within the body, a point of special emphasis of this paper. PMID:21654935

  19. A new cable-tie based sternal closure system: description of the device, technique of implantation and first clinical evaluation

    PubMed Central

    2012-01-01

    Background Wire closure still remains the preferred technique despite reasonable disadvantages. Associated complications, such as infection and sternal instability, cause time- and cost-consuming therapies. We present a new tool for sternal closure with its first clinical experience and results. Methods The sternal ZipFixTM System is based on the cable-tie principle. It primarily consists of biocompatible Poly-Ether-Ether-Ketone implants and is predominantly used peristernally through the intercostal space. The system provides a large implant-to-bone contact for better force distribution and for avoiding bone cut through. Results 50 patients were closed with the ZipFixTM system. No sternal instability was observed at 30 days. Two patients developed a mediastinitis that necessitated the removal of the device; however, the ZipFixTM were intact and the sternum remained stable. Conclusions In our initial evaluation, the short-term results have shown that the sternal ZipFixTM can be used safely and effectively. It is fast, easy to use and serves as a potential alternative for traditional wire closure. PMID:22731778

  20. Electronic transport and localization in nitrogen-doped graphene devices using hyperthermal ion implantation

    NASA Astrophysics Data System (ADS)

    Friedman, Adam L.; Cress, Cory D.; Schmucker, Scott W.; Robinson, Jeremy T.; van 't Erve, Olaf M. J.

    2016-04-01

    Hyperthermal ion implantation offers a controllable method of producing high-quality substitutionally doped graphene with nitrogen, an n -type dopant that has great potential for graphene electronics and spintronics applications where high carrier concentration, uniform doping, and minimal vacancy defect concentration is desired. Here we examine the transport properties of monolayer graphene sheets as a function of implantation beam energy and dose. We observe a transition from weak to strong localization that varies as a function of carrier concentration. For nominally equivalent doses, increased N ion energy results in an increasing magnetoresistance magnitude, reaching a value of approximately -5.5% at 5000 Oe, which we discuss in the context of dopant concentration and defect formation. We use a model for the temperature dependence of the conductivity that takes into account both temperature activation, due to the formation of a transport gap, and Mott variable-range hopping, due to the formation of defects, to further study the electronic properties of the doped films as a function of dose and N ion energy. We find that the temperature activation component dominates the behavior.

  1. An implantable Fabry-Pérot pressure sensor fabricated on left ventricular assist device for heart failure.

    PubMed

    Zhou, Ming-Da; Yang, Chuan; Liu, Zhiwen; Cysyk, Joshua P; Zheng, Si-Yang

    2012-02-01

    Continuous flow left ventricular assist devices (LVADs) are commonly used as bridge-to-transplantation or destination therapy for heart failure patients. However, non-optimal pumping speeds can reduce the efficacy of circulatory support or cause dangerous ventricular arrhythmias. Optimal flow control for continuous flow LVADs has not been defined and calls for an implantable pressure sensor integrated with the LVAD for real-time feedback control of pump speed based on ventricular pressure. A MEMS pressure sensor prototype is designed, fabricated and seamlessly integrated with LVAD to enable real-time control, optimize its performance and reduce its risks. The pressure sensing mechanism is based on Fabry-Pérot interferometer principle. A biocompatible parylene diaphragm with a silicon mirror at the center is fabricated directly on the inlet shell of the LVAD to sense pressure changes. The sensitivity, range and response time of the pressure sensor are measured and validated to meet the requirements of LVAD pressure sensing. PMID:21997499

  2. Multifunctional Coating Based on Hyaluronic Acid and Dopamine Conjugate for Potential Application on Surface Modification of Cardiovascular Implanted Devices.

    PubMed

    Wu, Feng; Li, Jingan; Zhang, Kun; He, Zikun; Yang, Ping; Zou, Dan; Huang, Nan

    2016-01-13

    Surface modification by conjugating biomolecules has been widely proved to enhance biocompatibility of cardiovascular implanted devices. Here, we aimed at developing a multifunctional surface that not only provides good hemocompatibility but also functions well in inducing desirable vascular cell-material interaction. In the present work, the multicoatings of hyaluronic acid (HA) and dopamine (PDA) were prepared onto 316L stainless steel (316L SS) via chemical conjugation (Michael addition, Schiff base reaction, and electrostatic adsorption). The results of platelet adhesion and activation and the whole blood tests indicated that the HA/PDA coatings obtained better hemocompatibility compared with the bare 316L SS and HA or PDA immobilized on 316L SS. The HA/PDA coatings also inhibited the proliferation of smooth muscle cells and adhesion/activation of macrophages effectively, whereas not all the HA/PDA coatings improved surface endothelialization rapidly and the effects of the multifunctional coatings on endothelial cell growth depend on the HA amounts (1.0, 2.0, and 5.0 mg/mL, labeled as PDA-HA-1, PDA-HA-2, and PDA-HA-5 respectively). Herein the PDA-HA-1 and PDA-HA-2 coatings were found to improve endothelial cell adhesion and proliferation significantly. The tissue compatibility of the HA/PDA coatings also depends on the HA amounts, and the PDA-HA-2 coating was proved to cause milder in vivo tissue response. Additionally, the mechanism of the HA molecular weight change and in vivo tissue response was also explored. These results effectively suggested that the HA/PDA coating might be promising when serving as a cardiovascular implanted device coating. PMID:26654689

  3. Titanium coated with functionalized carbon nanotubes--a promising novel material for biomedical application as an implantable orthopaedic electronic device.

    PubMed

    Przekora, Agata; Benko, Aleksandra; Nocun, Marek; Wyrwa, Jan; Blazewicz, Marta; Ginalska, Grazyna

    2014-12-01

    The aim of the study was to fabricate titanium (Ti) material coated with functionalized carbon nanotubes (f-CNTs) that would have potential medical application in orthopaedics as an implantable electronic device. The novel biomedical material (Ti-CNTs-H2O) would possess specific set of properties, such as: electrical conductivity, non-toxicity, and ability to inhibit connective tissue cell growth and proliferation protecting the Ti-CNTs-H2O surface against covering by cells. The novel material was obtained via an electrophoretic deposition of CNTs-H2O on the Ti surface. Then, physicochemical, electrical, and biological properties were evaluated. Electrical property evaluation revealed that a Ti-CNTs-H2O material is highly conductive and X-ray photoelectron spectroscopy analysis demonstrated that there are mainly COOH groups on the Ti-CNTs-H2O surface that are found to inhibit cell growth. Biological properties were assessed using normal human foetal osteoblast cell line (hFOB 1.19). Conducted cytotoxicity tests and live/dead fluorescent staining demonstrated that Ti-CNTs-H2O does not exert toxic effect on hFOB cells. Moreover, fluorescence laser scanning microscope observation demonstrated that Ti-CNTs-H2O surface retards to a great extent cell proliferation. The study resulted in successful fabrication of highly conductive, non-toxic Ti-CNTs-H2O material that possesses ability to inhibit osteoblast proliferation and thus has a great potential as an orthopaedic implantable electronic device. PMID:25491831

  4. Sonication of Explanted Cardiac Implants Improves Microbial Detection in Cardiac Device Infections

    PubMed Central

    Oliva, Alessandra; Nguyen, Bich Lien; Mascellino, Maria T.; D'Abramo, Alessandra; Iannetta, Marco; Ciccaglioni, Antonio; Vullo, Vincenzo

    2013-01-01

    The sonication technique has been shown to be a promising tool for microbiological diagnosis of device-related infections. We evaluated the usefulness of the sonication method for pathogen detection in 80 explanted cardiac components collected from 40 patients, and the results were compared with those of conventional cultures. Forty subjects undergoing cardiac device removal were studied: 20 had cardiac device infection, and 20 subjects underwent elective generator replacement or revision in the absence of infection. Sonication of explanted devices was more sensitive than traditional culture for microbial detection (67% and 50%, respectively; P = 0.0005). The bacterial count detected in sonication fluid culture was significantly higher than that detected in traditional culture in both infected (P = 0.019) and uninfected (P = 0.029) devices. In the infected patients, sonication fluid culture yielded a significantly higher rate of pathogen detection in explanted electrodes than traditional culture (65% versus 45%; P = 0.02), while no differences were found in the generators. Ten strains were detected only through sonication fluid culture: 6 Staphylococcus epidermidis strains, 1 Staphylococcus hominis strain, 2 Corynebacterium striatum strains, and 1 Brevundimonas sp. Neither the type nor the duration of antimicrobial therapy before device removal had an effect on the diagnostic performance of sonication fluid culture (P = 0.75 and P = 0.56, respectively). In the patients without infection, sonication fluid culture was positive in 8 cases (40%), whereas conventional culture was positive in only 4 (20%). In summary, the sonication technique improves the microbiological diagnosis of explanted cardiac devices. PMID:23196364

  5. Device-based local delivery of siRNA against mammalian target of rapamycin (mTOR) in a murine subcutaneous implant model to inhibit fibrous encapsulation

    PubMed Central

    Takahashi, Hironobu; Wang, Yuwei; Grainger, David W.

    2010-01-01

    Fibrous encapsulation of surgically implant devices is associated with elevated proliferation and activation of fibroblasts in tissues surrounding these implants, frequently causing foreign body complications. Here we test the hypothesis that inhibition of the expression of mammalian target of rapamycin (mTOR) in fibroblasts can mitigate the soft tissue implant foreign body response by suppressing fibrotic responses around implants. In this study, mTOR was knocked down using small interfering RNA conjugated with branched cationic polyethylenimine (bPEI) in fibroblastic lineage cells in serum-based cell culture as shown by both gene and protein analysis. This mTOR knockdown led to an inhibition in fibroblast proliferation by 70% and simultaneous down-regulation in the expression of type I collagen in fibroblasts in vitro. These siRNA/bPEI complexes were released from poly(ethylene glycol) (PEG)-based hydrogel coatings surrounding model polymer implants in a subcutaneous rodent model in vivo. No significant reduction in fibrous capsule thickness and mTOR expression in the foreign body capsules was observed. Observed siRNA inefficacy in this in vivo implant model was attributed to siRNA dosing limitations in the gel delivery system, and lack of targeting ability of the siRNA complex specifically to fibroblasts. While in vitro data supported mTOR knock-down in fibroblast cultures, in vivo siRNA delivery must be further improved to produce clinically relevant effects on fibrotic encapsulation around implants. PMID:20727922

  6. Interface and biocompatibility of polyethylene terephthalate knee ligament prostheses. A histological and ultrastructural device retrieval analysis in failed synthetic implants used for surgical repair of anterior cruciate ligaments.

    PubMed

    Kock, H J; Stürmer, K M; Letsch, R; Schmit-Neuerburg, K P

    1994-01-01

    In a prospective clinical study of 54 patients with acute anterior cruciate ligament instability, 56 artificial ligaments made of polyethylene terephthalate (Trevira hochfest) were implanted to restore knee stability. The average follow-up of these artificial knee ligaments was 40.2 (12-79) months; five implants (10%) had to be explanted due to failure after an average of 17.8 (6-50) months. All explants were examined by histological and ultrastructural methods in a device retrieval analysis. With regard to short- and medium-term artificial ligament failure in the human knee joint, a non-isometric surgical implantation technique, inappropriate strain during rehabilitation and implant fatigue and wear were responsible for ligament failures. PMID:7696041

  7. Effect of Left Ventricular Assist Device Implantation and Heart Transplantation on Habitual Physical Activity and Quality of Life☆

    PubMed Central

    Jakovljevic, Djordje G.; McDiarmid, Adam; Hallsworth, Kate; Seferovic, Petar M.; Ninkovic, Vladan M.; Parry, Gareth; Schueler, Stephan; Trenell, Michael I.; MacGowan, Guy A.

    2014-01-01

    The present study defined the short- and long-term effects of left ventricular assist device (LVAD) implantation and heart transplantation (HT) on physical activity and quality of life (QoL). Forty patients (LVAD, n = 14; HT, n = 12; and heart failure [HF], n = 14) and 14 matched healthy subjects were assessed for physical activity, energy expenditure, and QoL. The LVAD and HT groups were assessed postoperatively at 4 to 6 weeks (baseline) and 3, 6, and 12 months. At baseline, LVAD, HT, and HF patients demonstrated low physical activity, reaching only 15%, 28%, and 51% of that of healthy subjects (1,603 ± 302 vs 3,036 ± 439 vs 5,490 ± 1,058 vs 10,756 ± 568 steps/day, respectively, p <0.01). This was associated with reduced energy expenditure and increased sedentary time (p <0.01). Baseline QoL was not different among LVAD, HT, and HF groups (p = 0.44). LVAD implantation and HT significantly increased daily physical activity by 60% and 52%, respectively, from baseline to 3 months (p <0.05), but the level of activity remained unchanged at 3, 6, and 12 months. The QoL improved from baseline to 3 months in LVAD implantation and HT groups (p <0.01) but remained unchanged afterward. At any time point, HT demonstrated higher activity level than LVAD implantation (p <0.05), and this was associated with better QoL. In contrast, physical activity and QoL decreased at 12 months in patients with HF (p <0.05). In conclusion, patients in LVAD and HT patients demonstrate improved physical activity and QoL within the first 3 months after surgery, but physical activity and QoL remain unchanged afterward and well below that of healthy subjects. Strategies targeting low levels of physical activity should now be explored to improve recovery of these patients. PMID:24925802

  8. Bioacceptable and calcification-resistant membranes and interfaces for implantable sensors and devices

    NASA Astrophysics Data System (ADS)

    Galeska, Izabela Ewa

    The rational design and characterization of biocompatible, semipermeable and calcification resistant materials to serve as an outer membrane for implantable glucose biosensors, was the primary focus of this research. Multilayered films of polyanions (i.e. Nafion(TM), a perfluorinated ionomer, and Humic Acids (HAs), naturally occurring biopolymers), fabricated by layer-by-layer self-assembly with oppositely charged ferric ions were investigated as potential membranes. Spectroscopic ellipsometry and quartz crystal microbalance studies point towards a stepwise film growth, with growth rates of 47 and 24.3 nm per layer (for Nafion and HAs respectively) that can be altered depending on the pH and ionic strength of the polyanion solution. Nafion/Fe3+ assembled films exhibited an order of magnitude lower calcification as compared to dip-coated Nafion films and did not require annealing to impart insolubility. Similarly the HAs/Fe3+ films were also devoid of calcification, even after four-week immersion in DMEM cell culture media. Significantly, in vivo studies on the HAs/Fe3 films point to their biocompatibility as demonstrated by mild tissue reaction. These results, along with controllable glucose permeability, could prove vital in prolonging the lifetime of implantable biosensors. Additionally in effort to minimize tissue trauma upon implantation, novel poly(lactic-co-glycolic acid) (PLGA) microsphere/poly(vinyl alcohol) (PVA) hydrogel composites were investigated for dexamethasone delivery. A release rate of 25 to 40% over one month, following a zero order profile, was achieved by preferential adsorption of surface active polyacids (poly(acrylic acid), Nafion and HAs) on the hydrogel dispersed microspheres. Environmental scanning electron microscopy investigation on the degradation mechanism of the microspheres pointed towards their slow homogeneous degradation in the PVA hydrogels that was significantly surface-accelerated in the presence of polyacids. The physico

  9. Continuous-Flow Total Heart Replacement Device Implanted in a 55-Year-Old Man with End-Stage Heart Failure and Severe Amyloidosis

    PubMed Central

    Frazier, O. H.; Cohn, William E.

    2012-01-01

    We implanted a continuous-flow total heart replacement device in a 55-year-old man who had severe end-stage heart failure due to amyloidosis and no other options for treatment. The device was composed of 2 modified HeartMate II ventricular assist pumps. After the implantation, our patient recovered normal neurologic function and was able to converse with his family and work on his computer. He died of multisystem organ failure caused by severe amyloidosis 5 weeks after the implantation. During the past 6 years, we have been developing and testing various technological iterations for total heart replacement in our animal laboratory and have achieved survival periods as long as 90 days in calves. We describe the development, preclinical trials, and adaptation for human use of the modified HeartMate II apparatus, as well as its role in our patient's survival. PMID:22949774

  10. Fracture and atypical migration of an implantable central venous access device.

    PubMed

    Mery, Mirela; Palengat, Stéphanie; Loffroy, Romaric; Vernet, Magali; Matet, Pascal; Cherblanc, Violaine

    2016-06-01

    Distal embolization of a fractured indwelling central catheter is a rare complication. The pinch-off syndrome (POS) should be known, prevented and early detected. We present a case in which further radiological exams were required to find the fragmented catheter with an atypical migration, requiring local surgery for removing. After chest and abdominal CT scan, neck X-ray, and heart echography, the catheter was found on the lower limbs X-ray on the internal side of right knee corresponding to a location of saphenous vein. Implanted catheters should be removed after completion of treatment and the integrity of the system should be monitored. To avoid POS, a catheter must be inserted into the subclavian vein as laterally as possible. PMID:27429915

  11. Polymeric implants for the delivery of green tea polyphenols.

    PubMed

    Cao, Pengxiao; Jeyabalan, Jeyaprakash; Aqil, Farrukh; Ravoori, Srivani; Gupta, Ramesh C; Vadhanam, Manicka V

    2014-03-01

    Polymeric implants (millirods) have been tested for local delivery of chemotherapeutic agents in cancer treatment. Modeling of drug release profiles is critical as it may provide theoretical insights on rational implant design. In this study, a biodegradable poly (ε-caprolactone) (PCL) polymeric implant delivery system was tested to deliver green tea polyphenols (GTPs), both in vitro and in vivo. Factors including polymer compositions, supplements, drug loads, and surface area of implants were investigated. Our data showed that GTPs were released from PCL implants continuously for long durations, and drug load was the main determining factor of GTPs release. Furthermore, rates of in vitro release and in vivo release in the rat model followed similar kinetics for up to 16 months. A mathematical model was deduced and discussed. GTP implants have the potential to be used systemically and locally at the tumor site as an alternative strategy. PMID:24464784

  12. Chronic cortical and electromyographic recordings from a fully implantable device: preclinical experience in a nonhuman primate

    NASA Astrophysics Data System (ADS)

    Ryapolova-Webb, Elena; Afshar, Pedram; Stanslaski, Scott; Denison, Tim; de Hemptinne, Coralie; Bankiewicz, Krystof; Starr, Philip A.

    2014-02-01

    Objective. Analysis of intra- and perioperatively recorded cortical and basal ganglia local field potentials in human movement disorders has provided great insight into the pathophysiology of diseases such as Parkinson's, dystonia, and essential tremor. However, in order to better understand the network abnormalities and effects of chronic therapeutic stimulation in these disorders, long-term recording from a fully implantable data collection system is needed. Approach. A fully implantable investigational data collection system, the Activa® PC + S neurostimulator (Medtronic, Inc., Minneapolis, MN), has been developed for human use. Here, we tested its utility for extended intracranial recording in the motor system of a nonhuman primate. The system was attached to two quadripolar paddle arrays: one covering sensorimotor cortex, and one covering a proximal forelimb muscle, to study simultaneous cortical field potentials and electromyography during spontaneous transitions from rest to movement. Main results. Over 24 months of recording, movement-related changes in physiologically relevant frequency bands were readily detected, including beta and gamma signals at approximately 2.5 μV/\\sqrtHz and 0.7 μV/\\sqrt{Hz}, respectively. The system architecture allowed for flexible recording configurations and algorithm triggered data recording. In the course of physiological analyses, sensing artifacts were observed (˜1 μVrms stationary tones at fixed frequency), which were mitigated either with post-processing or algorithm design and did not impact the scientific conclusions. Histological examination revealed no underlying tissue damage; however, a fibrous capsule had developed around the paddles, demonstrating a potential mechanism for the observed signal amplitude reduction. Significance. This study establishes the usefulness of this system in measuring chronic brain and muscle signals. Use of this system may potentially be valuable in human trials of chronic brain

  13. Electrically induced energy transmission used for implantable medical devices deep inside the body: Measurement of received voltage in consideration of biological effect.

    PubMed

    Shiba, Kenji

    2015-08-01

    We proposed an electrically induced energy transmission method for implantable medical devices deep inside the body. This method makes it possible to transmit energy deep inside the body using only a couple of titanium electrodes attached to the surface of the implantable medical device. In this study, electromagnetic simulations in which the area and distance of the receiving electrodes were changed were conducted. Then, experimental measurements of the received voltage were conducted in which electric energy was transmitted from the surface of the human phantom to an implantable device inside it (transmitting distance: 12 cm). As a result of the electromagnetic simulation, the area and distance of the receiving electrodes were roughly proportional to the received voltage, respectively. As a result of the experimental measurement, a received voltage of 2460 mV could be obtained with a load resistance of 100 Ω. We confirmed that our energy transmission method could be a powerful method for transmitting energy to a deeply implanted medical device. PMID:26736844

  14. Electromagnetic interference from lasers and intense light sources in the treatment of patients with artificial pacemakers and other implantable cardiac devices.

    PubMed

    Lister, Tom; Grant, Lindsay; Lee, Siu-Man; Cole, Richard P; Jones, Anthony; Taylor, Timothy; Mayo, Angela; Wright, Philip A

    2015-07-01

    Measurements of the electric and magnetic field strengths surrounding six laser systems and one intense pulsed light system were carried out. The results were compared to exposure limits published by cardiac device manufacturers to assess the risk of electromagnetic interference to implantable cardiac devices such as pacemakers or implantable cardioverter defibrillators. The majority of lasers assessed in this study were found to produce electric and magnetic field strengths below the published exposure limits for cardiac devices. However, the low-frequency electric field and static magnetic field of both the CO2 laser and the ruby laser were found to exceed these limits. Ensuring that a small separation is maintained at all times between the laser unit and any patient with a pacemaker or implantable cardioverter defibrillator appears to be a sensible expedient in avoiding overexposure of an implantable cardiac device to electromagnetic interference. Due to the single-shot fast discharge nature of the intense pulsed light system, changes in electromagnetic field strength were too fast for some of the measuring equipment used in this study to register accurate readings during operation. PMID:24162308

  15. Evaluation of drug loading, pharmacokinetic behavior, and toxicity of a cisplatin-containing hydrogel nanoparticle

    PubMed Central

    Kai, Marc P.; Keeler, Amanda W.; Perry, Jillian L.; Reuter, Kevin G.; Luft, J. Christopher; O’Neal, Sara K.; Zamboni, William C.

    2015-01-01

    Cisplatin is a cytotoxic drug used as a first-line therapy for a wide variety of cancers. However, significant renal and neurological toxicities limits it clinical use. It has been documented that drug toxicities can be mitigated through nanoparticle formulation, while simultaneously increasing tumor accumulation through the enhanced permeation and retention effect. Circulation persistence is a key characteristic for exploiting this effect, and to that end we have developed long-circulating, PEGylated, polymeric hydrogels using the Particle Replication In Non-wetting Templates (PRINT®) platform and complexed cisplatin into the particles (PRINT-Platin). Sustained release was demonstrated, and drug loading correlated to surface PEG density. A PEG Mushroom conformation showed the best compromise between particle pharmacokinetic (PK) parameters and drug loading (16 wt %). While the PK profile of PEG Brush was superior, the loading was poor (2 wt %). Conversely, the drug loading in non-PEGylated particles was better (20 wt %), but the PK was not desirable. We also showed comparable cytotoxicity to cisplatin in several cancer cell lines (non-small cell lung, A549; ovarian, SKOV-3; breast, MDA-MB-468) and a higher MTD in mice (10 mg/kg versus 5 mg/kg). The pharmacokinetic profiles of drug in plasma, tumor, and kidney indicate improved exposure in the blood and tumor accumulation, with concurrent renal protection, when cisplatin was formulated in a nanoparticle. PK parameters were markedly improved: a 16.4-times higher area-under-the-curve (AUC), a reduction in clearance (CL) by a factor of 11.2, and a 4.20-times increase in the volume of distribution (Vd). Additionally, non-small cell lung and ovarian tumor AUC was at least twice that of cisplatin in both models. These findings suggest the potential for PRINT-Platin to improve efficacy and reduce toxicity compared to current cisplatin therapies. PMID:25744827

  16. Tuning drug loading and release properties of diatom silica microparticles by surface modifications.

    PubMed

    Bariana, Manpreet; Aw, Moom Sinn; Kurkuri, Mahaveer; Losic, Dusan

    2013-02-25

    Diatomaceous earth (DE), or diatomite silica microparticles originated from fossilized diatoms are a potential substitute for its silica-based synthetic counterparts to address limitations in conventional drug delivery. This study presents the impact of engineered surface chemistry of DE microparticles on their drug loading and release properties. Surface modifications with four silanes, including 3-aminopropyltriethoxy silane (APTES), methoxy-poly-(ethylene-glycol)-silane (mPEG-silane), 7-octadecyltrichlorosilane (OTS), 3-(glycidyloxypropyl)trimethoxysilane (GPTMS) and two phosphonic acids, namely 2-carboxyethyl-phosphonic acid (2 CEPA) and 16-phosphono-hexadecanoic acid (16 PHA) were explored in order to tune drug loading and release characteristics of water insoluble (indomethacin) and water soluble drugs (gentamicin). Successful grafting of these functional groups with different interfacial properties was confirmed using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Thermogravimetric analysis (TGA) was applied to determine the amount of loaded drugs and UV-spectrophotometry to analyse in vitro drug release from modified DE microparticles. Differences in drug release time (13-26 days) and loading capacity (14-24%) were observed depending on functional groups on the surface of DE microparticles. It was found that hydrophilic surfaces, due to the presence of polar carboxyl, amine or hydrolyzed epoxy group, favor extended release of indomethacin, while the hydrophobic DE surface modified by organic hydrocarbons gives a better sustained release profile for gentamicin. This work demonstrates that by changing surface functionalities on DE microparticles, it is possible to tune their drug loading and release characteristics for both hydrophobic and hydrophilic drugs and therefore achieve optimal drug delivery performance. PMID:23287775

  17. Late Complications Following Continuous-Flow Left Ventricular Assist Device Implantation

    PubMed Central

    Grimm, Joshua C.; Magruder, J. Trent; Kemp, Clinton D.; Shah, Ashish S.

    2015-01-01

    Left ventricular assist devices have become standard therapy for patients with end-stage heart failure. They represent potential long-term solutions for a growing public health problem. However, initial enthusiasm for this technology has been tempered by challenges posed by long-term support. This review examines these challenges and out current understanding of their etiologies. PMID:26347873

  18. Development and Evaluation of Cefadroxil Drug Loaded Biopolymeric Films Based on Chitosan-Furfural Schiff Base

    PubMed Central

    Dixit, Ritu B.; Uplana, Rahul A.; Patel, Vishnu A.; Dixit, Bharat C.; Patel, Tarosh S.

    2010-01-01

    Cefadroxil drug loaded biopolymeric films of chitosan-furfural schiff base were prepared by reacting chitosan with furfural in presence of acetic acid and perchloric acid respectively for the external use. Prepared films were evaluated for their strength, swelling index, thickness, drug content, uniformity, tensile strength, percent elongation, FTIR spectral analysis and SEM. The results of in vitro diffusion studies revealed that the films exhibited enhanced drug diffusion as compared to the films prepared using untreated chitosan. The films also demonstrated good to moderate antibacterial activities against selective gram positive and gram negative bacteria. PMID:21179325

  19. One-Step Way to Form Prodrug Micelles with High Amount Drug Loading.

    PubMed

    Zhang, Jing; Wu, Dan; Feng, Jie

    2016-06-01

    Prodrug micelles with high amount drug loading were obtained via one-step way. Antineoplastic drug doxorubicin (DOX), used as hydrophobic tail, was conjugated to hydrophilic head mPEG via hydrazone bonds, allowing drug release under intracellular condition. Free DOX was loaded into the hydrophobic core of micelles during the conjugation step simultaneously. Total drug content of the prodrug micelles was up to 61.2%. Endocytosis experiments confirmed that the prodrug micelles achieved good cellular-uptake ability. In vitro experiments indicated that the prodrug micelles showed better therapy efficacy than free drug in cancerous cells. PMID:27427600

  20. Real-time monitoring of brain tissue oxygen using a miniaturized biotelemetric device implanted in freely moving rats.

    PubMed

    Bazzu, Gianfranco; Puggioni, Giulia G M; Dedola, Sonia; Calia, Giammario; Rocchitta, Gaia; Migheli, Rossana; Desole, Maria S; Lowry, John P; O'Neill, Robert D; Serra, Pier A

    2009-03-15

    A miniaturized biotelemetric device for the amperometric detection of brain tissue oxygen is presented. The new system, derived from a previous design, has been coupled with a carbon microsensor for the real-time detection of dissolved O(2) in the striatum of freely moving rats. The implantable device consists of a single-supply sensor driver, a current-to-voltage converter, a microcontroller, and a miniaturized data transmitter. The oxygen current is converted to a digital value by means of an analog-to-digital converter integrated in a peripheral interface controller (PIC). The digital data is sent to a personal computer using a six-byte packet protocol by means of a miniaturized 434 MHz amplitude modulation (AM) transmitter. The receiver unit is connected to a personal computer (PC) via a universal serial bus. Custom developed software allows the PC to store and plot received data. The electronics were calibrated and tested in vitro under different experimental conditions and exhibited high stability, low power consumption, and good linear response in the nanoampere current range. The in vivo results confirmed previously published observations on oxygen dynamics in the striatum of freely moving rats. The system serves as a rapid and reliable model for studying the effects of different drugs on brain oxygen and brain blood flow and it is suited to work with direct-reduction sensors or O(2)-consuming biosensors. PMID:19222224

  1. Rupture of totally implantable central venous access devices (Intraports) in patients with cancer: report of four cases

    PubMed Central

    Filippou, Dimitrios K; Tsikkinis, Christoforos; Filippou, Georgios K; Nissiotis, Athanasios; Rizos, Spiros

    2004-01-01

    Background Totally implantable central venous access devices (intraports) are commonly used in cancer patients to administer chemotherapy or parenteral nutrition. Rupture of intraport is a rare complication. Patients and methods During 3 years period, a total of 245 intraports were placed in cancer patients for chemotherapy. Four of these cases (two colon cancer and one each of pancreas and breast cancer) had rupture of the intraport catheter, these forms the basis of present report. Results Mean time insitu for intraports was 164∀35 days. Median follow-up time was 290 days and total port time in situ was 40180 days. The incidence of port rupture was 1 per 10,000 port days. Three of the 4 cases were managed by successful removal of catheters. In two of these the catheter was removed under fluoroscopic control using femoral route, while in the third patient the catheter (partial rupture) was removed surgically. One of the catheters could not be removed and migrated to right ventricle on manipulations. Conclusion Port catheter rupture is a rare but dreaded complication associated with subcutaneous port catheter device placement for chemotherapy. In case of such an event the patient should be managed by an experienced vascular surgeon and interventional radiologist, as in most cases the ruptured catheter can be retrieved by non operative interventional measures. PMID:15494075

  2. Combined cardiopulmonary assessments with implantable telemetry device in conscious freely moving cynomolgus monkeys.

    PubMed

    Authier, S; Haefner, Paul; Fournier, S; Troncy, E; Moon, L B

    2010-01-01

    Female cynomolgus monkeys were surgically implanted with telemetry transmitters recording ECG (DII), arterial pressure, physical activity, body temperature, and tidal volume. Respiratory rate (RR) and tidal volume (TV) were monitored simultaneously with the telemetry transmitter using impedance. Impedance-based monitoring of RR and TV by telemetry correlated with controlled TV and with pneumotachometer (>98%) in restrained animals. Control drugs with cardiovascular and respiratory effects, including saline, medetomidine (0.01, 0.02 and 0.04mg/kg) and cocaine (0.5, 1.0 and 1.5mg/kg) were administered intravenously. An averaging epoch of 5min was used for analysis of respiratory data. Medetomidine induced significant respiratory depression with decrease in RR and TV in freely moving animals while cocaine increased TV, RR and minute ventilation (MV) with concomitant increase in heart rate when compared with time matched values from saline-treated animals. The onset, duration and magnitude of cardiovascular and respiratory changes were correlated. This highlights the dependency of the cardiovascular and respiratory systems. The use of cardiopulmonary monitoring can allow continuous monitoring including during night time when variability of respiratory parameters is lower. Monitoring of cardiovascular and respiratory parameters in the same animals could also help to decrease the number of animals used in research. PMID:20570745

  3. Lithium-manganese dioxide cells for implantable defibrillator devices-Discharge voltage models

    NASA Astrophysics Data System (ADS)

    Root, Michael J.

    The discharge potential behavior of lithium-manganese dioxide cells designed for implantable cardiac defibrillators was characterized as a function of extent of cell depletion for tests designed to discharge the cells for times between 1 and 7 years. The discharge potential curves may be separated into two segments from 0 ≤ x ≤ ∼0.51 and ∼0.51 ≤ x ≤ 1.00, where x is the dimensionless extent of discharge referenced to the rated cell capacity. The discharge potentials conform to Tafel kinetics in each segment. This behavior allows the discharge potential curves to be predicted for an arbitrary discharge load and long term discharge performance may be predicted from short term test results. The discharge potentials may subsequently be modeled by fitting the discharge curves to empirical functions like polynomials and Padé approximants. A function based on the Nernst equation that includes a term accounting for nonideal interactions between lithium ions and the cathode host material, such as the Redlich-Kister relationship, also may be used to predict discharge behavior.

  4. Non-hermetic encapsulation for implantable electronic devices based on epoxy.

    PubMed

    Boeser, Fabian; Ordonez, Juan S; Schuettler, Martin; Stieglitz, Thomas; Plachta, Dennis T T

    2015-08-01

    Hermetic and non-hermetic implant packaging are the two strategies to protect electronic systems from the humid conditions inside the human body. Within the scope of this work twelve different material combinations for a non-hermetic, high-reliable epoxy based encapsulation technique were characterized. Three EPO-TEK (ET) epoxies and one low budget epoxy were chosen for studies with respect to their processability, water vapor transmission rate (WVTR) and adhesion to two different ceramic-based substrates as well as to one standard FR4-substrate. Setups were built to analyze the mentioned properties for at least 30 days using an aging test in a moist environment. As secondary test subjects, commercially available USB flash drives (UFD) were successfully encapsulated inside the epoxies, soaked in phosphate buffered saline (PBS, pH=7.4), stored in an incubator (37°C) and tested for 256 days without failure. By means of epoxy WVTR (0.0278 g/day/m(2)) and degrease of adhesion (24.59 %) during 30 days in PBS, the combination of the standard FR4-substrate and the epoxy ET 301-2 was found to feature the best encapsulation properties. If a ceramic-based electronic system has to be used, the most promising combination consists of the alumina substrate and the epoxy ET 302-3M (WVTR: 0.0588 g/day/m(2); adhesion drop: 49.58 %). PMID:26736385

  5. Characterization of MgNd2 alloy for potential applications in bioresorbable implantable devices.

    PubMed

    Seitz, J-M; Eifler, R; Stahl, J; Kietzmann, M; Bach, Fr-W

    2012-10-01

    The aim of this study is to investigate and demonstrate the mechanical and corrosive characteristics of the neodymium-containing magnesium alloy MgNd2 (Nd2), which can be used as a resorbable implant material, especially in the field of stenting applications. To determine the mechanical characteristics of Nd2, tensile and compression tests were initially carried out in the hot extruded state. Here a unique elongation ratio (~30%) of the alloy could be observed. Subsequent T5 and T6 heat treatments were arranged to reveal their effect on the alloy's strengths and elongation values. The general degradation behaviour of Nd2 in a 0.9% NaCl solution was investigated by means of polarization curves and hydrogen evolution. In addition to this, by using various in vivo parameters, a corrosion environment was established to determine the alloy's degradation in vitro. Here, the mass loss per day in (MgF(2) and Bioglass)-coated and uncoated states and the corresponding maximum forces resulting from subsequent three-point bending tests revealed slow and steady corrosion behaviour. The cell viability and proliferation tests carried out on L-929 and MSC-P5 cells also showed good results. The mechanical and corrosive characteristics determined, as well as the in vitro test results obtained within the scope of this study, led to the development and successful in vivo testing of an MgF(2)-coated Nd2 mucosa stent which was introduced as an appropriate resorbable application. PMID:22676917

  6. A Low-Power Asynchronous Step-Down DC-DC Converter for Implantable Devices.

    PubMed

    Al-Terkawi Hasib, Omar; Sawan, M; Savaria, Y

    2011-06-01

    In this paper, we present a fully integrated asynchronous step-down switched capacitor dc-dc conversion structure suitable for supporting ultra-low-power circuits commonly found in biomedical implants. The proposed converter uses a fully digital asynchronous state machine as the heart of the control circuitry to generate the drive signals. To minimize the switching losses, the asynchronous controller scales the switching frequency of the drive signals according to the loading conditions. It also turns on additional parallel switches when needed and has a backup synchronous drive mode. This circuit regulates load voltages from 300 mV to 1.1 V derived from a 1.2-V input voltage. A total of 350 pF on-chip capacitance was implemented to support a maximum of 230-μ W load power, while providing efficiency up to 80%. The circuit validating the proposed concepts was fabricated in 0.13- μm complementary metal-oxide semiconductor technology. Experimental test results confirm the expected functionality and performance of the proposed circuit. PMID:23851480

  7. Multi-microphone adaptive noise reduction strategies for coordinated stimulation in bilateral cochlear implant devices.

    PubMed

    Kokkinakis, Kostas; Loizou, Philipos C

    2010-05-01

    Bilateral cochlear implant (BI-CI) recipients achieve high word recognition scores in quiet listening conditions. Still, there is a substantial drop in speech recognition performance when there is reverberation and more than one interferers. BI-CI users utilize information from just two directional microphones placed on opposite sides of the head in a so-called independent stimulation mode. To enhance the ability of BI-CI users to communicate in noise, the use of two computationally inexpensive multi-microphone adaptive noise reduction strategies exploiting information simultaneously collected by the microphones associated with two behind-the-ear (BTE) processors (one per ear) is proposed. To this end, as many as four microphones are employed (two omni-directional and two directional) in each of the two BTE processors (one per ear). In the proposed two-microphone binaural strategies, all four microphones (two behind each ear) are being used in a coordinated stimulation mode. The hypothesis is that such strategies combine spatial information from all microphones to form a better representation of the target than that made available with only a single input. Speech intelligibility is assessed in BI-CI listeners using IEEE sentences corrupted by up to three steady speech-shaped noise sources. Results indicate that multi-microphone strategies improve speech understanding in single- and multi-noise source scenarios. PMID:21117762

  8. Comparison of Early versus Delayed Timing of Left Ventricular Assist Device Implantation as a Bridge-to-Transplantation: An Analysis of the UNOS Dataset

    PubMed Central

    Jin, Zhezhen; Clerkin, Kevin; Homma, Shunichi; Mancini, Donna M.

    2016-01-01

    Background Placement of left ventricular assist devices (LVAD) as a bridge-to-heart transplantation (HTx) has rapidly expanded due to organ donor shortage. However, the timing of LVAD implantation is variable and it remains unclear if earlier implantation improves survival. Methods We analyzed 14,187 adult candidates from the United Network of Organ Sharing database. Patients were classified by 3 treatment strategies including patients medically treated alone (MED, n=11,009), patients on LVAD support at listing (Early-LVAD, n=1588) and patients undergoing LVAD placement while awaiting HTx (Delayed-LVAD, n=1590). Likelihood of HTx and event-free survival were assessed in patients subcategorized by clinical strategies and UNOS status at listing. Results The device support strategy, despite the timing of placement, was not associated with increased likelihood of HTx compared to MED group. However, both LVAD implantation strategies showed better survival compared to MED group (Early-LVAD: HR 0.811 and 0.633, 95% CI 0.668-0.984 and 0.507-0.789, for 1A and 1B; p=0.034 and p<0.001, Delayed-LVAD: HR 0.553 and 0.696, 95% CI 0.415-0.736 and 0.571-0.847, for 1A and 1B; both p<0.001, respectively). Furthermore, there was no significant difference in survival between these LVAD implantation strategies in patients listed as 1B (p=0.500), although Early-LVAD implantation showed worse survival in patients listed as 1A (HR 1.467, 95% CI 1.076-2.000; p=0.015). Conclusion LVAD support strategies offer a safe bridge-to-HTx. Those candidates who receive urgent upfront LVAD implantation for HTx, and improve to 1B status, would achieve competitive survival with those who receive elective LVAD implantation. PMID:26618255

  9. Simplified formulations with high drug loads for continuous twin-screw granulation.

    PubMed

    Meier, R; Thommes, M; Rasenack, N; Krumme, M; Moll, K-P; Kleinebudde, P

    2015-12-30

    As different batches of the same excipients will be intermixed during continuous processes, the traceability of batches is complicated. Simplified formulations may help to reduce problems related to batch intermixing and traceability. Twin-screw granulation with subsequent tableting was used to produce granules and tablets, containing drug, disintegrant and binder (binary and ternary mixtures), only. Drug loads up to 90% were achieved and five different disintegrants were screened for keeping their disintegration suitability after wetting. Granule size distributions were consistently mono-modal and narrow. Granule strength reached higher values, using ternary mixtures. Tablets containing croscarmellose-Na as disintegrant displayed tensile strengths up to 3.1MPa and disintegration times from 400 to 466s, resulting in the most robust disintegrant. Dissolution was overall complete and above 96% within 30 min. Na-starch glycolate offers tensile strengths up to 2.8MPa at disintegration times from 25s to 1031s, providing the broadest application window, as it corresponds in some parts to different definitions of orodispersible tablets. Tablets containing micronized crospovidone are not suitable for immediate release, but showed possibilities to produce highly drug loaded, prolonged release tablets. Tablets and granules from simplified formulations offer great opportunities to improve continuous processes, present performances comparable to more complicated formulations and are able to correspond to requirements of the authorities. PMID:26024821

  10. Inclusion of telmisartan in mesocellular foam nanoparticles: drug loading and release property.

    PubMed

    Zhang, Yanzhuo; Jiang, Tongying; Zhang, Qiang; Wang, Siling

    2010-09-01

    Spherical mesocellular foam (MCF) with a continuous 3-D pore system was synthesized using Pluronic 123 triblock polymer (P123) as a surfactant coupled with cetyltrimethyl ammonium bromide (CTAB) as a co-surfactant. The feasibility of the prepared MCF nanoparticles for oral drug delivery was studied. A model drug, telmisartan (TEL), was loaded onto MCF via a procedure involving a combination of adsorption equilibrium and solvent evaporation. The drug-release rate and the drug loading efficiency of spherical MCF were compared with those of fibrous SBA-15. Investigations using nitrogen adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), wide-angle X-ray scattering (WXRS), differential scanning calorimetry (DSC) and HPLC demonstrated the successful incorporation of TEL into the MCF host. It is found that spherical MCF has a high drug loading efficiency up to 42.9% (drug weight/total weight) and higher than that of SBA-15 with a pore diameter of 6.5 nm. It is shown that a fast release rate of TEL was obtained from MCF compared with SBA-15 and pure crystalline TEL using enzyme-free simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.8). We believe that the present study will help in the design of oral drug delivery systems for the dissolution enhancement of water-insoluble drugs. PMID:20685333

  11. Polymeric Nanoparticles with Precise Ratiometric Control over Drug Loading for Combination Therapy

    PubMed Central

    Aryal, Santosh; Hu, Che-Ming Jack; Zhang, Liangfang

    2011-01-01

    We report a novel approach for nanoparticle-based combination chemotherapy by concurrently incorporating two different types of drugs into a single polymeric nanoparticle with ratiometric control over the loading of the two drugs. By adapting metal alkoxide chemistry, we synthesize highly hydrophobic drug-poly-l-lactide (drug-PLA) conjugates, of which the polymer has the same chain length while the drug may differ. These drug-polymer conjugates are then encapsulated into lipid-coated polymeric nanoparticles through a single-step nanoprecipication method. Using doxorubicin (DOX) and camptothecin (CPT) as two model chemotherapy drugs, various ratios of DOX-PLA and CPT-PLA conjugates are loaded into the nanoparticles with over 90% loading efficiency. The resulting nanoparticles are uniform in size, size distribution and surface charge. The loading yield of DOX and CPT in the particles can be precisely controlled by simply adjusting the DOX-PLA:CPT-PLA molar ratio. Cellular cytotoxicity results show that the dual-drug loaded nanoparticles are superior to the corresponding cocktail mixtures of single-drug loaded nanoparticles. This dual-drug delivery approach offers a solution to the long-standing challenge in ratiometric control over the loading of different types of drugs onto the same drug delivery vehicle. We expect that this approach can be exploited for many types of chemotherapeutic agents containing hydroxyl groups and thus enable co-delivery of various drug combinations for combinatorial treatments of diseases. PMID:21696189

  12. Dual drug loaded chitosan nanoparticles-sugar--coated arsenal against pancreatic cancer.

    PubMed

    David, Karolyn Infanta; Jaidev, Leela Raghav; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2015-11-01

    Pancreatic cancer is an aggressive form of cancer with poor survival rates. The increased mortality due to pancreatic cancer arises due to many factors such as development of multidrug resistance, presence of cancer stem cells, development of a stromal barrier and a hypoxic environment due to hypo-perfusion. The present study aims to develop a nanocarrier for a combination of drugs that can address these multiple issues. Quercetin and 5-fluorouracil were loaded in chitosan nanoparticles, individually as well as in combination. The nanoparticles were characterized for morphology, size, zeta potential, percentage encapsulation of drugs as well as their release profiles in different media. The dual drug-loaded carrier exhibited good entrapment efficiency (quercetin 95% and 5-fluorouracil 75%) with chitosan: quercetin: 5-fluorouracil in the ratio 3:1:2. The release profiles suggest that 5-fluorouracil preferentially localized in the periphery while quercetin was located towards the core of chitosan nanoparticles. Both drugs exhibited considerable association with the chitosan matrix. The dual drug-loaded carrier system exhibited significant toxicity towards pancreatic cancer cells both in the 2D as well as in the 3D cultures. We believe that the results from these studies can open up interesting options in the treatment of pancreatic cancer. PMID:26340358

  13. [Development of biphasic drug-loading lipid emulsion of Salvia miltiorrhiza and its quality evaluation].

    PubMed

    Wang, Yin-Yan; Li, Xi; Lai, Xiu-Jun; Li, Wei; Yang, Ya-Jing; Chu, Ting; Mao, Sheng-Jun

    2014-10-01

    The feasibility of simultaneously loading both liposoluble and water-soluble components of Salvia miltiorrhiza in emulsion was discussed, in order to provide new ideas in comprehensive application of effective components in S. miltiorrhiza in terms of technology of pharmaceutics. With tanshinone II (A) and salvianolic acid B as raw materials, soybean phospholipid and poloxamer 188 as emulsifiers, and glycerin as isoosmotic regulator, the central composite design-response surface method was employed to optimize the prescription. The coarse emulsion was prepared with the high-speed shearing method and then homogenized in the high pressure homogenizer. The biphasic drug-loading intravenous emulsion was prepared to investigate its pharmaceutical properties and stability. The prepared emulsion is orange-yellow, with the average diameter of 241 nm and Zeta potential of -35.3 mV. Specifically, the drug loading capacity of tanshinone II (A) and salvianolic acid B were 0.5 g x L(-1) and 1 g x L(-1), respectively, with a good stability among long-term retention samples. According to the results, the prepared emulsion could load liposoluble tanshinone II (A) and water-soluble salvianolic acid B simultaneously, which lays a pharmaceutical foundation for giving full play to the efficacy of S. miltiorrhiza. PMID:25612433

  14. Drug-loading capacity and nuclear targeting of multiwalled carbon nanotubes grafted with anionic amphiphilic copolymers

    PubMed Central

    Tsai, Hsieh-Chih; Lin, Jeng-Yee; Maryani, Faiza; Huang, Chun-Chiang; Imae, Toyoko

    2013-01-01

    In this study, three types of hybrid nanotubes (NTs), ie, oxidized multiwalled carbon NTs (COOH MWCNTs), heparin (Hep)-conjugated MWCNTs (Hep MWCNTs), and diblock copolymer polyglycolic acid (PGA)-co-heparin conjugated to MWCNTs (PGA MWCNTs), were synthesized with improved biocompatibility and drug-loading capacity. Hydrophilic Hep substituents on MWCNTs improved biocompatibility and acted as nucleus-sensitive segments on the CNT carrier, whereas the addition of PGA enhanced drug-loading capacity. In the PGA MWCNT system, the amphiphilic copolymer (PGA-Hep) formed micelles on the side walls of CNTs, as confirmed by electron microscopy. The PGA system encapsulated the hydrophobic drug with high efficiency compared to the COOH MWCNT and Hep MWCNT systems. This is because the drug was loaded onto the PGA MWCNTs through hydrophobic forces and onto the CNTs by π–π stacking interactions. Additionally, most of the current drug-carrier designs that target cancer cells release the drug in the lysosome or cytoplasm. However, nuclear-targeted drug release is expected to kill cancer cells more directly and efficiently. In our study, PGA MWCNT carriers effectively delivered the active anticancer drug doxorubicin into targeted nuclei. This study may provide an effective strategy for the development of carbon-based drug carriers for nuclear-targeted drug delivery. PMID:24277987

  15. Microstereolithography and characterization of poly(propylene fumarate)-based drug-loaded microneedle arrays.

    PubMed

    Lu, Yanfeng; Mantha, Satya Nymisha; Crowder, Douglas C; Chinchilla, Sofia; Shah, Kush N; Yun, Yang H; Wicker, Ryan B; Choi, Jae-Won

    2015-01-01

    Drug-loaded microneedle arrays for transdermal delivery of a chemotherapeutic drug were fabricated using multi-material microstereolithography (μSL). These arrays consisted of twenty-five poly(propylene fumarate) (PPF) microneedles, which were precisely orientated on the same polymeric substrate. To control the viscosity and improve the mechanical properties of the PPF, diethyl fumarate (DEF) was mixed with the polymer. Dacarbazine, which is widely used for skin cancer, was uniformly blended into the PPF/DEF solution prior to crosslinking. Each microneedle has a cylindrical base with a height of 700 μm and a conical tip with a height of 300 μm. Compression test results and characterization of the elastic moduli of the PPF/DEF (50:50) and PPF/drug mixtures indicated that the failure force was much larger than the theoretical skin insertion force. The release kinetics showed that dacarbazine can be released at a controlled rate for five weeks. The results demonstrated that the PPF-based drug-loaded microneedles are a potential method to treat skin carcinomas. In addition, μSL is an attractive manufacturing technique for biomedical applications, especially for micron-scale manufacturing. PMID:26418306

  16. Dual Drug Loaded Biodegradable Nanofibrous Microsphere for Improving Anti-Colon Cancer Activity.

    PubMed

    Fan, Rangrang; Li, Xiaoling; Deng, Jiaojiao; Gao, Xiang; Zhou, Liangxue; Zheng, Yu; Tong, Aiping; Zhang, Xiaoning; You, Chao; Guo, Gang

    2016-01-01

    One of the approaches being explored to increase antitumor activity of chemotherapeutics is to inject drug-loaded microspheres locally to specific anatomic sites, providing for a slow, long term release of a chemotherapeutic while minimizing systemic exposure. However, the used clinically drug carriers available at present have limitations, such as their low stability, renal clearance and residual surfactant. Here, we report docetaxel (DOC) and curcumin (CUR) loaded nanofibrous microspheres (DOC + CUR/nanofibrous microspheres), self-assembled from biodegradable PLA-PEO-PPO-PEO-PLA polymers as an injectable drug carrier without adding surfactant during the emulsification process. The obtained nanofibrous microspheres are composed entirely of nanofibers and have an open hole on the shell without the assistance of a template. It was shown that these DOC + CUR/nanofibrous microspheres could release curcumin and docetaxel slowly in vitro. The slow, sustained release of curcumin and docetaxel in vivo may help maintain local concentrations of active drug. The mechanism by which DOC + CUR/nanofibrous microspheres inhibit colorectal peritoneal carcinomatosis might involve increased induction of apoptosis in tumor cells and inhibition of tumor angiogenesis. In vitro and in vivo evaluations demonstrated efficacious synergistic antitumor effects against CT26 of curcumin and docetaxel combined nanofibrous microspheres. In conclusion, the dual drug loaded nanofibrous microspheres were considered potentially useful for treating abdominal metastases of colorectal cancer. PMID:27324595

  17. Dual Drug Loaded Biodegradable Nanofibrous Microsphere for Improving Anti-Colon Cancer Activity

    PubMed Central

    Fan, Rangrang; Li, Xiaoling; Deng, Jiaojiao; Gao, Xiang; Zhou, Liangxue; Zheng, Yu; Tong, Aiping; Zhang, Xiaoning; You, Chao; Guo, Gang

    2016-01-01

    One of the approaches being explored to increase antitumor activity of chemotherapeutics is to inject drug-loaded microspheres locally to specific anatomic sites, providing for a slow, long term release of a chemotherapeutic while minimizing systemic exposure. However, the used clinically drug carriers available at present have limitations, such as their low stability, renal clearance and residual surfactant. Here, we report docetaxel (DOC) and curcumin (CUR) loaded nanofibrous microspheres (DOC + CUR/nanofibrous microspheres), self-assembled from biodegradable PLA-PEO-PPO-PEO-PLA polymers as an injectable drug carrier without adding surfactant during the emulsification process. The obtained nanofibrous microspheres are composed entirely of nanofibers and have an open hole on the shell without the assistance of a template. It was shown that these DOC + CUR/nanofibrous microspheres could release curcumin and docetaxel slowly in vitro. The slow, sustained release of curcumin and docetaxel in vivo may help maintain local concentrations of active drug. The mechanism by which DOC + CUR/nanofibrous microspheres inhibit colorectal peritoneal carcinomatosis might involve increased induction of apoptosis in tumor cells and inhibition of tumor angiogenesis. In vitro and in vivo evaluations demonstrated efficacious synergistic antitumor effects against CT26 of curcumin and docetaxel combined nanofibrous microspheres. In conclusion, the dual drug loaded nanofibrous microspheres were considered potentially useful for treating abdominal metastases of colorectal cancer. PMID:27324595

  18. Dual Drug Loaded Biodegradable Nanofibrous Microsphere for Improving Anti-Colon Cancer Activity

    NASA Astrophysics Data System (ADS)

    Fan, Rangrang; Li, Xiaoling; Deng, Jiaojiao; Gao, Xiang; Zhou, Liangxue; Zheng, Yu; Tong, Aiping; Zhang, Xiaoning; You, Chao; Guo, Gang

    2016-06-01

    One of the approaches being explored to increase antitumor activity of chemotherapeutics is to inject drug-loaded microspheres locally to specific anatomic sites, providing for a slow, long term release of a chemotherapeutic while minimizing systemic exposure. However, the used clinically drug carriers available at present have limitations, such as their low stability, renal clearance and residual surfactant. Here, we report docetaxel (DOC) and curcumin (CUR) loaded nanofibrous microspheres (DOC + CUR/nanofibrous microspheres), self-assembled from biodegradable PLA-PEO-PPO-PEO-PLA polymers as an injectable drug carrier without adding surfactant during the emulsification process. The obtained nanofibrous microspheres are composed entirely of nanofibers and have an open hole on the shell without the assistance of a template. It was shown that these DOC + CUR/nanofibrous microspheres could release curcumin and docetaxel slowly in vitro. The slow, sustained release of curcumin and docetaxel in vivo may help maintain local concentrations of active drug. The mechanism by which DOC + CUR/nanofibrous microspheres inhibit colorectal peritoneal carcinomatosis might involve increased induction of apoptosis in tumor cells and inhibition of tumor angiogenesis. In vitro and in vivo evaluations demonstrated efficacious synergistic antitumor effects against CT26 of curcumin and docetaxel combined nanofibrous microspheres. In conclusion, the dual drug loaded nanofibrous microspheres were considered potentially useful for treating abdominal metastases of colorectal cancer.

  19. Magnetic carbon nanotubes with particle-free surfaces and high drug loading capacity.

    PubMed

    Vermisoglou, Eleni C; Pilatos, George; Romanos, George E; Devlin, Eamon; Kanellopoulos, Nick K; Karanikolos, Georgios N

    2011-09-01

    Open-ended, multi-wall carbon nanotubes (CNTs) with magnetic nanoparticles encapsulated within their graphitic walls (magCNTs) were fabricated by a combined action of templated growth and a ferrofluid catalyst/carbon precursor, and tested as drug hosts. The hybrid nanotubes are stable under extreme pH conditions due to particle protection provided by the graphitic shell. The magCNTs are promising for high capacity drug loading given that the magnetic functionalization did not block any of the active sites available for drug attachment, either from the CNT internal void or on the internal and external surfaces. This is in contrast to typical approaches of loading CNTs with particles that proceed through surface attachment or capillary filling of the tube interior. Additionally, the CNTs exhibit enhanced hydrophilic character, as shown by water adsorption measurements, which make them suitable for biological applications. The morphological and structural characteristics of the hybrid CNTs are evaluated in conjunction to their magnetic properties and ability for drug loading (diaminophenothiazine). The fact that the magnetic functionality is provided from 'inside the walls' can allow for multimode functionalization of the graphitic surfaces and makes the magCNTs promising for targeted therapeutic applications. PMID:21817779

  20. Charge-Reversal APTES-Modified Mesoporous Silica Nanoparticles with High Drug Loading and Release Controllability.

    PubMed

    Wang, Yifeng; Sun, Yi; Wang, Jine; Yang, Yang; Li, Yulin; Yuan, Yuan; Liu, Changsheng

    2016-07-13

    In this study, we demonstrate a facile strategy (DL-SF) for developing MSN-based nanosystems through drug loading (DL, using doxorubicin as a model drug) followed by surface functionalization (SF) of mesoporous silica nanoparticles (MSNs) via aqueous (3-aminopropyl)triethoxysilane (APTES) silylation. For comparison, a reverse functionalization process (i.e., SF-DL) was also studied. The pre-DL process allows for an efficient encapsulation (encapsulation efficiency of ∼75%) of an anticancer drug [doxorubicin (DOX)] inside MSNs, and post-SF allows in situ formation of an APTES outer layer to restrict DOX leakage under physiological conditions. This method makes it possible to tune the DOX release rate by increasing the APTES decoration density through variation of the APTES concentration. However, the SF-DL approach results in a rapid decrease in drug loading capacity with an increase in APTES concentration because of the formation of the APTES outer layer hampers the inner permeability of the DOX drug, resulting in a burst release similar to that of undecorated MSNs. The resulting DOX-loaded DL-SF MSNs present a slightly negatively charged surface under physiological conditions and become positively charged in and extracellular microenvironment of solid tumor due to the protonation effect under acidic conditions. These merits aid their maintenance of long-term stability in blood circulation, high cellular uptake by a kind of skin carcinoma cells, and an enhanced intracellular drug release behavior, showing their potential in the delivery of many drugs beyond anticancer chemotherapeutics. PMID:27314423

  1. One-step electrohydrodynamic production of drug-loaded micro- and nanoparticles

    PubMed Central

    Enayati, Marjan; Ahmad, Zeeshan; Stride, Eleanor; Edirisinghe, Mohan

    2010-01-01

    The objective of this work was to produce drug-loaded nanometre- and micrometre-scale particles using a single-step process that provides control over particle size and size distribution. Co-axial electrohydrodynamic processing was used, at ambient temperature and pressure, with poly(lactic-co-glycolic acid) as the polymeric coating material and oestradiol as the encapsulated drug. The particle diameter was varied from less than 120 nm to a few micrometres, by simple methodical adjustments in the processing parameters (polymer concentration and applied voltage). In vitro studies were performed to determine the drug release profile from the particles during unassisted and ultrasound-stimulated degradation in simulated body fluid. An encapsulation efficiency of approximately 70% was achieved and release of the drug was sustained for a period of over 20 days. Exposing the particles to ultrasound (22.5 kHz) increased the rate of release by approximately 8 per cent. This processing method offers several advantages over conventional emulsification techniques for the preparation of drug-loaded particles. Most significantly, process efficiency and the drug's functionality are preserved, as complex multistep processing involving harsh solvents, other additives and elevated temperatures or pressures are avoided. Production rates of 1012 particles min−1 can be achieved with a single pair of co-axial needles and the process is amenable to being scaled up by using multiple sets. PMID:19828501

  2. Recurrent orthostatic syncope due to left atrial and left ventricular collapse after a continuous-flow left ventricular assist device implantation.

    PubMed

    Chandra, Avinash; Pradhan, Rajesh; Kim, Francis Y; Frisch, Daniel R; Bogar, Linda J; Bonita, Raphael; Cavarocchi, Nicholas C; Greenspon, Arnold J; Hirose, Hitoshi; Pitcher, Harrison T; Rubin, Sharon; Mather, Paul J

    2013-01-01

    Left ventricular assist devices (LVADs) have become an established treatment for patients with advanced heart failure as a bridge to transplantation or for permanent support as an alternative to heart transplantation. Continuous-flow LVADs have been shown to improve outcomes, including survival, and reduce device failure compared with pulsatile devices. Although LVADs have been shown to be a good option for patients with end-stage heart failure, unanticipated complications may occur. We describe dynamic left atrial and left ventricular chamber collapse related to postural changes in a patient with a recent continuous-flow LVAD implantation. PMID:23260713

  3. Performance of re-used pacemakers and implantable cardioverter defibrillators compared with new devices at Groote Schuur Hospital in Cape Town, South Africa

    PubMed Central

    Jama, Zimasa V; Chin, Ashley; Mayosi, Bongani M; Badri, Motasim

    2015-01-01

    Objectives Little is known about the performance of re-used pacemakers and implantable cardioverter defibrillators (ICDs) in Africa. We sought to compare the risk of infection and the rate of malfunction of re-used pacemakers and ICDs with new devices implanted at Groote Schuur Hospital in Cape Town, South Africa. Methods This was a retrospective case comparison study of the performance of re-used pacemakers and ICDs in comparison with new devices implanted at Groote Schuur Hospital over a 10-year period. The outcomes were incidence of device infection, device malfunction, early battery depletion, and device removal due to infection, malfunction, or early battery depletion. Results Data for 126 devices implanted in 126 patients between 2003 and 2013 were analysed, of which 102 (81%) were pacemakers (51 re-used and 51 new) and 24 (19%) were ICDs (12 re-used and 12 new). There was no device infection, malfunction, early battery depletion or device removal in either the re-used or new pacemaker groups over the median follow up of 15.1 months [interquartile range (IQR), 1.3–36.24 months] for the re-used pacemakers, and 55.8 months (IQR, 20.3–77.8 months) for the new pacemakers. In the ICD group, no device infection occurred over a median follow up of 35.9 months (IQR, 17.0–70.9 months) for the re-used ICDs and 45.7 months (IQR, 37.6–53.7 months) for the new ICDs. One device delivered inappropriate shocks, which resolved without intervention and with no harm to the patient. This re-used ICD subsequently needed generator replacement 14 months later. In both the pacemaker and ICD groups, there were no procedure-non-related infections documented for the respective follow-up periods. Conclusion No significant differences were found in performance between re-used and new pacemakers and ICDs with regard to infection rates, device malfunction, battery life and device removal for complications. Pacemaker and ICD re-use is feasible and safe and is a viable option for

  4. A chronically implantable, hybrid cannula-electrode device for assessing the effects of molecules on electrophysiological signals in freely behaving animals

    PubMed Central

    Greger, Bradley; Kateb, Babak; Gruen, Peter; Patterson, Paul H.

    2009-01-01

    We describe a device for assessing the effects of diffusible molecules on electrophysiological recordings from multiple neurons. This device allows for the infusion of reagents through a cannula located among an array of micro-electrodes. The device can easily be customized to target specific neural structures. It is designed to be chronically implanted so that isolated neural units and local field potentials are recorded over the course of several weeks or months. Multivariate statistical and spectral analysis of electrophysiological signals acquired using this system could quantitatively identify electrical “signatures” of therapeutically useful drugs. PMID:17499854

  5. Management of three cardiogenic pulmonary edemas occurring in a patient scheduled for left ventricular assist device implantation: indicators for determining left ventricular assist device pump speed.

    PubMed

    Toyama, Hiroaki; Takei, Yusuke; Saito, Kazutomo; Ota, Takahisa; Kurotaki, Kenji; Ejima, Yutaka; Matsuura, Takeshi; Akiyama, Masatoshi; Saiki, Yoshikatsu; Yamauchi, Masanori

    2016-08-01

    A male patient with Marfan syndrome underwent aortic root replacement and developed left ventricular (LV) failure. Four years later, he underwent aortic arch and aortic valve replacement. Thereafter, his LV failure progressed, and cardiogenic pulmonary edema (CPE) appeared, which we treated with extracorporeal LV assist device (LVAD) placement. Three months later, the patient developed aspiration pneumonia, which caused hyperdynamic right ventricle (RV) and CPE. We treated by changing his pneumatic LVAD to a high-flow centrifugal pump. A month later, he underwent thoracoabdominal aortic replacement. After four weeks, he developed septic thrombosis and LVAD failure, which caused CPE. We treated with LVAD circuit replacement and an additional membrane oxygenator. Four months later, he underwent DuraHeart(®) implantation. During this course, pulmonary artery wedge pressure (PAWP) varied markedly. Additionally, systolic pulmonary artery pressure (sPAP), left atrial diameter (LAD), RV end-diastolic diameter (RVEDD) and estimated RV systolic pressure (esRVP) changed with PAWP changes. In this patient, LV failure and hyperdynamic RV caused the CPEs, which we treated by adjusting the LVAD output to the RV output. Determining LVAD output, RV function and LV end-diastolic diameter are typically referred, and PAWP, LAD, RVEDD, and sPAP could be also referred. PMID:27001080

  6. Dynamic device properties of pulse contour cardiac output during transcatheter aortic valve implantation.

    PubMed

    Petzoldt, Martin; Riedel, Carsten; Braeunig, Jan; Haas, Sebastian; Goepfert, Matthias S; Treede, Hendrik; Baldus, Stephan; Goetz, Alwin E; Reuter, Daniel A

    2015-06-01

    This prospective single-center study aimed to determine the responsiveness and diagnostic performance of continuous cardiac output (CCO) monitors based on pulse contour analysis compared with invasive mean arterial pressure (MAP) during predefined periods of acute circulatory deterioration in patients undergoing transcatheter aortic valve implantation (TAVI). The ability of calibrated (CCO(CAL)) and self-calibrated (CCO(AUTOCAL)) pulse contour analysis to detect the hemodynamic response to 37 episodes of balloon aortic valvuloplasty enabled by rapid ventricular pacing was quantified in 13 patients undergoing TAVI. A "low" and a "high" cut-off limit were predefined as a 15 or 25 % decrease from baseline respectively. We found no significant differences between CCO(CAL) and MAP regarding mean response time [low cut-off: 8.6 (7.1-10.5) vs. 8.9 (7.3-10.8) s, p = 0.76; high cut-off: 11.4 (9.7-13.5) vs. 12.6 (10.7-14.9) s, p = 0.32] or diagnostic performance [area under the receiver operating characteristics curve (AUC): 0.99 (0.98-1.0) vs. 1.0 (0.99-1.0), p = 0.46]. But CCOCAL had a significantly higher amplitude response [95.0 (88.7-98.8) % decrease from baseline] than MAP [41.2 (30.0-52.9) %, p < 0.001]. CCOAUTOCAL had a significantly lower AUC [0.83 (0.73-0.93), p < 0.001] than MAP. Moreover, CCO(CAL) detected hemodynamic recovery significantly earlier than MAP. In conclusion, CCO(CAL) and MAP provided equivalent responsiveness and diagnostic performance to detect acute circulatory depression, whereas CCO(AUTOCAL) appeared to be less appropriate. In contrast to CCO(CAL) the amplitude response of MAP was poor. Consequently even small response amplitudes of MAP could indicate severe decreases in CO. PMID:25355556

  7. Concurrent Left Ventricular Assist Device (LVAD) Implantation and Percutaneous Temporary RVAD Support via CardiacAssist Protek-Duo TandemHeart to Preempt Right Heart Failure.

    PubMed

    Schmack, Bastian; Weymann, Alexander; Popov, Aron-Frederik; Patil, Nikhil Prakash; Sabashnikov, Anton; Kremer, Jamila; Farag, Mina; Brcic, Andreas; Lichtenstern, Christoph; Karck, Matthias; Ruhparwar, Arjang

    2016-01-01

    Right ventricular failure (RVF) is an unfortunate complication that continues to limit outcomes following durable left ventricular assist device (LVAD) implantation. Despite several 'RVF risk scores' having been proposed, preoperative prediction of post-LVAD RVF remains a guesstimate at best. Current strategies for institution of temporary RVAD support are invasive, necessitate additional re-thoracotomy, restrict postoperative mobilization, and/or entail prolonged retention of prosthetic material in-situ. The authors propose a novel surgical strategy comprising simultaneous implantation of a permanent LVAD and percutaneous TandemHeart® plus ProtekDuo® to provide temporary RVAD support and preempt RVF in patients with impaired RV function. PMID:27145697

  8. Implantable Cardioverter-Defibrillator Shock after Stenting Across the Device Leads.

    PubMed

    Mehra, Sanjay; Chelu, Mihail Gabriel

    2016-02-01

    A 45-year-old man with nonischemic cardiomyopathy and end-stage renal disease had lived uneventfully with a cardiac resynchronization therapy defibrillator (CRT-D) for 5 years. Less than a month before presenting at our institution, he had undergone stenting of his partially occluded subclavian vein, to relieve stenosis of the ipsilateral arteriovenous fistula that was used for his hemodialysis. The CRT-D subsequently discharged. Device interrogation revealed that electrical noise originating from leads damaged by the stent had caused the inappropriate shock and intermittent electrical discharges thereafter. The patient was highly traumatized by these events and insisted upon device removal, which deprived him of a potentially life-saving intervention. He later had a cardiac arrest that resulted in sustained profound hypoxic ischemic encephalopathy with minimal neurologic recovery: his family placed him in a long-term care facility on ventilator support, with a tracheostomy and feeding tube. This situation might have been avoided through collaboration between the interventional radiologist and the electrophysiologist. To our knowledge, this is the first report of a patient with nonischemic cardiomyopathy and end-stage renal disease who presented with inappropriate defibrillator discharge caused by lead damage secondary to stenting across the leads. PMID:27047295

  9. Cryogenic ion implantation near amorphization threshold dose for halo/extension junction improvement in sub-30 nm device technologies

    SciTech Connect

    Park, Hugh; Todorov, Stan; Colombeau, Benjamin; Rodier, Dennis; Kouzminov, Dimitry; Zou Wei; Guo Baonian; Khasgiwale, Niranjan; Decker-Lucke, Kurt

    2012-11-06

    We report on junction advantages of cryogenic ion implantation with medium current implanters. We propose a methodical approach on maximizing cryogenic effects on junction characteristics near the amorphization threshold doses that are typically used for halo implants for sub-30 nm technologies. BF{sub 2}{sup +} implant at a dose of 8 Multiplication-Sign 10{sup 13}cm{sup -2} does not amorphize silicon at room temperature. When implanted at -100 Degree-Sign C, it forms a 30 - 35 nm thick amorphous layer. The cryogenic BF{sub 2}{sup +} implant significantly reduces the depth of the boron distribution, both as-implanted and after anneals, which improves short channel rolloff characteristics. It also creates a shallower n{sup +}-p junction by steepening profiles of arsenic that is subsequently implanted in the surface region. We demonstrate effects of implant sequences, germanium preamorphization, indium and carbon co-implants for extension/halo process integration. When applied to sequences such as Ge+As+C+In+BF{sub 2}{sup +}, the cryogenic implants at -100 Degree-Sign C enable removal of Ge preamorphization, and form more active n{sup +}-p junctions and steeper B and In halo profiles than sequences at room temperature.

  10. Highly Sensitive and Long Term Stable Electrochemical Microelectrodes for Implantable Glucose Monitoring Devices

    NASA Astrophysics Data System (ADS)

    Qiang, Liangliang

    A miniature wireless implantable electrochemical glucose system for continuous glucose monitoring with good selectivity, sensitivity, linearity and long term stability was developed. First, highly sensitive, long-term stable and reusable planar H2O2 microelectrodes have been fabricated by microlithography. These electrodes composed of a 300 nm Pt black layer situated on a 5 um thick Au layer, provide effective protection to the underlying chromium adhesion layer. Using repeated cyclic voltammetric sweeps in flowing buffer solution, highly sensitive Pt black working electrodes were realized with five-decade linear dynamic range and low detection limit (10 nM) for H2O2 at low oxidation potentials. Second, a highly sensitive, low cost and flexible microwire biosensor was described using 25-mum thick gold wire as working electrode together with 125-mum thick Pt/Ir and Ag wires as counter and reference electrode, embedded within a PDMS-filled polyethylene tube. Surface area and activity of sensor was enhanced by converting gold electrode to nanoporous configuration followed by electrodeposition of platinum black. Glucose oxidase based biosensors by electrodeposition of poly(o-phenylenediamine) and glucose oxidase on the working electrode, displayed a higher glucose sensitivity (1.2 mA mM-1 cm-2) than highest literature reported. In addition it exhibits wide detection range (up to 20 mM) and selectivity (>95%). Third, novel miniaturized and flexible microelectrode arrays with 8 of 25 mum electrodes displayed the much needed 3D diffusion profiles similar to a single 25 mum microelectrode, but with one order increase in current levels. These microelectrode arrays displayed a H2O2 sensitivity of 13 mA mM-1 cm-2, a wide dynamic range of 100 nM to 10 mM, limit of detection of 10 nM. These microwire based edge plane microsensors incorporated flexibility, miniaturization and low operation potential are an promising approach for continuous in vivo metabolic monitoring. Fourth

  11. Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs

    NASA Astrophysics Data System (ADS)

    Taepaiboon, Pattama; Rungsardthong, Uracha; Supaphol, Pitt

    2006-05-01

    Mats of PVA nanofibres were successfully prepared by the electrospinning process and were developed as carriers of drugs for a transdermal drug delivery system. Four types of non-steroidal anti-inflammatory drug with varying water solubility property, i.e. sodium salicylate (freely soluble in water), diclofenac sodium (sparingly soluble in water), naproxen (NAP), and indomethacin (IND) (both insoluble in water), were selected as model drugs. The morphological appearance of the drug-loaded electrospun PVA mats depended on the nature of the model drugs. The 1H-nuclear magnetic resonance results confirmed that the electrospinning process did not affect the chemical integrity of the drugs. Thermal properties of the drug-loaded electrospun PVA mats were analysed by differential scanning calorimetry and thermogravimetric analysis. The molecular weight of the model drugs played a major role on both the rate and the total amount of drugs released from the as-prepared drug-loaded electrospun PVA mats, with the rate and the total amount of the drugs released decreasing with increasing molecular weight of the drugs. Lastly, the drug-loaded electrospun PVA mats exhibited much better release characteristics of the model drugs than drug-loaded as-cast films.

  12. Nanometer depth resolution in 3D topographic analysis of drug-loaded nanofibrous mats without sample preparation.

    PubMed

    Paaver, Urve; Heinämäki, Jyrki; Kassamakov, Ivan; Hæggström, Edward; Ylitalo, Tuomo; Nolvi, Anton; Kozlova, Jekaterina; Laidmäe, Ivo; Kogermann, Karin; Veski, Peep

    2014-02-28

    We showed that scanning white light interferometry (SWLI) can provide nanometer depth resolution in 3D topographic analysis of electrospun drug-loaded nanofibrous mats without sample preparation. The method permits rapidly investigating geometric properties (e.g. fiber diameter, orientation and morphology) and surface topography of drug-loaded nanofibers and nanomats. Electrospun nanofibers of a model drug, piroxicam (PRX), and hydroxypropyl methylcellulose (HPMC) were imaged. Scanning electron microscopy (SEM) served as a reference method. SWLI 3D images featuring 29 nm by 29 nm active pixel size were obtained of a 55 μm × 40 μm area. The thickness of the drug-loaded non-woven nanomats was uniform, ranging from 2.0 μm to 3.0 μm (SWLI), and independent of the ratio between HPMC and PRX. The average diameters (n=100, SEM) for drug-loaded nanofibers were 387 ± 125 nm (HPMC and PRX 1:1), 407 ± 144 nm (HPMC and PRX 1:2), and 290 ± 100 nm (HPMC and PRX 1:4). We found advantages and limitations in both techniques. SWLI permits rapid non-contacting and non-destructive characterization of layer orientation, layer thickness, porosity, and surface morphology of electrospun drug-loaded nanofibers and nanomats. Such analysis is important because the surface topography affects the performance of nanomats in pharmaceutical and biomedical applications. PMID:24378328

  13. Synthesis and characterization of drug loaded albumin mesospheres for intratumoral chemotherapy

    NASA Astrophysics Data System (ADS)

    Freeman, Shema Taian

    Conventional chemotherapy is problematic due to toxic complications. Intratumoral (IT) drug delivery, offers a new, less toxic, potentially more effective treatment concept. The objectives of this research encompassed (1) an investigation of the synthesis of BSA mesospheres (MS) employing genipin (GEN) as a novel crosslinking agent, (2) comparison with glutaraldehyde (GTA) crosslinked mesosphere, (3) a study of process parameters to define conditions for the synthesis of 1-10microm drug loaded mesospheres, and (4) investigation of the drug delivery properties of such mesospheres for IT chemotherapy. Smooth, spherical BSA-MS, crosslinked with glutaraldehyde and genipin, were prepared in a dry particle size range of 1microm to 10microm. It was shown that increasing dispersion stirring rate, crosslinking time and GEN/BSA ratio led to a decrease in particle size and a narrower particle distribution. It was also shown that increasing crosslinking time, GEN/BSA ratio, BSA concentrations, GEN concentration slowed enzymatic degradation. Post-loading and in situ drug loading methods were studied for the incorporation of cyclophosphamide and cisplatin into mesospheres. Maximum post loading of cisplatin was 3.2% (w/w) and 2.6% (w/w) with GEN and with GTA crosslinking. For cyclophosphamide 8.2% (w/w) and 7.1% (w/w) loading was achieved with GEN and GTA respectively. In situ drug loaded MS genipin and glutaraldehyde crosslinked mesospheres were also synthesized with 1.8% (w/w) cisplatin (using GEN) and 1.2% (w/w) (using GTA). Maximum loading of 13.3% (w/w) was achieved for cyclophosphamide in genipin crosslinked mesospheres. The cytotoxicity of in situ loaded genipin and glutaraldehyde crosslinked cisplatin mesospheres was evaluated using a murine Lewis lung model. Both genipin and glutaraldehyde crosslinked BSA-cisplatin mesospheres proved to be cytotoxic during a 48 hour test. Ultimately a standard set of processing parameters (BSA concentration, CAB concentration, GEN

  14. Large-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python.

    PubMed

    Rey-Villamizar, Nicolas; Somasundar, Vinay; Megjhani, Murad; Xu, Yan; Lu, Yanbin; Padmanabhan, Raghav; Trett, Kristen; Shain, William; Roysam, Badri

    2014-01-01

    In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries. PMID:24808857

  15. Gastroenterology-urology devices; effective date of requirement for premarket approval of the penile inflatable implant. Food and Drug Administration, HHS. Final rule.

    PubMed

    2000-04-12

    The Food and Drug Administration (FDA) is issuing a final rule to require the filing of a premarket approval application (PMA) or a notice of completion of a product development protocol (PDP) for the penile inflatable implant, a generic type of medical device intended for the treatment of erectile dysfunction. This regulation reflects FDA's exercise of its discretion to require PMA's or PDP's for preamendments devices and is consistent with FDA's stated priorities and Congress' requirement that class III devices are to be regulated by FDA's premarket review. This action is being taken under the Federal Food, Drug, and Cosmetic Act (the act), as amended by the Medical Device Amendments of 1976 (the amendments), the Safe Medical Devices Act of 1990, and the Food and Drug Administration Modernization Act of 1997. PMID:11010632

  16. Symbolic Dynamics Analysis of Short Data Sets: an Application to Heart Rate Variability from Implantable Defibrillator Devices

    NASA Astrophysics Data System (ADS)

    Zebrowski, Jan J.; Baranowski, Rafal; Przybylski, Andrzej

    2003-07-01

    A method is described for the assessment of the complexity of short data sets by nonlinear dynamics. The method was devised for and tested on human heart rate recordings approximately 2000 to 9000 RR intervals long which were extracted from the memory of implantable defibrillator devices (ICD). It is, however, applicable in a more general context. The ICDs are meant to control life-threatening episodes of ventricular tachycardia and/or ventricular fibrillation by applying a electric shock to the heart through intracardiac electrodes. It is well known that conventional ICD algorithms yield approximately 20--30 % of spurious interventions. The main aim of this work is to look for nonlinear dynamics methods to enhance the appropriateness of the ICD intervention. We first showed that nonlinear dynamics methods first applied to 24-hour heart rate variability analysis were able to detect the need for the ICD intervention. To be applicable to future ICD use, the methods must also be low in computational requirements. Methods to analyse the complexity of the short and non-stationary sets were devised. We calculated the Shannon entropy of symbolic words obtained in a sliding 50 beat window and analysed the dependence of this complexity measure on the time. Precursors were found extending much earlier time than the time the standard ICD algorithms span.

  17. Scientific collaboration: a social network analysis based on literature of animal-derived regenerative implantable medical devices.

    PubMed

    Yu, Shu-Yang; Wang, Hong-Man

    2016-09-01

    The collaboration network of English publications on animal-derived regenerative implantable medical devices based on tissue engineering technology and its evolving processes and current states were mapped in this paper. A total of 10 159 English papers published before 1 January 2015 were obtained in eight databases. Social network analysis was conducted on these papers by utilizing UCINET software and Statistical Analysis Software for Informatics researched and developed by Peking University. The collaboration network has evolved from scattered formation to single-core dominated, and then to a core-edge one; collaboration has become more frequent and wider; network density and centrality have decreased; USA, UK and China are the top three countries with Wake Forest University, Harvard University and Tufts University being the top three contributing institutions cooperated mostly during the period between 2010 and 2014; plenty of edge institutes exist. In conclusion, more collaboration among different institutions and countries is needed; Edge institutions and developing countries should expand their scope of collaboration. PMID:27252889

  18. Scientific collaboration: a social network analysis based on literature of animal-derived regenerative implantable medical devices

    PubMed Central

    Yu, Shu-Yang; Wang, Hong-Man

    2016-01-01

    The collaboration network of English publications on animal-derived regenerative implantable medical devices based on tissue engineering technology and its evolving processes and current states were mapped in this paper. A total of 10 159 English papers published before 1 January 2015 were obtained in eight databases. Social network analysis was conducted on these papers by utilizing UCINET software and Statistical Analysis Software for Informatics researched and developed by Peking University. The collaboration network has evolved from scattered formation to single-core dominated, and then to a core-edge one; collaboration has become more frequent and wider; network density and centrality have decreased; USA, UK and China are the top three countries with Wake Forest University, Harvard University and Tufts University being the top three contributing institutions cooperated mostly during the period between 2010 and 2014; plenty of edge institutes exist. In conclusion, more collaboration among different institutions and countries is needed; Edge institutions and developing countries should expand their scope of collaboration. PMID:27252889

  19. Perspectives from Mechanical Circulatory Support Coordinators on the Pre-Implantation Decision Process for Destination Therapy Left Ventricular Assist Devices

    PubMed Central

    McIlvennan, Colleen K.; Matlock, Daniel D.; Narayan, Madhav P.; Nowels, Carolyn; Thompson, Jocelyn S.; Cannon, Anne; Bradley, William J.; Allen, Larry A.

    2015-01-01

    Objective To understand mechanical circulatory support (MCS) coordinators’ perspectives related to destination therapy left ventricular assist devices (DT LVAD) decision making Background MCS coordinators are central to the team that interacts with patients considering DT LVAD, and are well positioned to comment upon the pre-implantation process. Methods From August 2012–January 2013, MCS coordinators were recruited to participate in semi-structured, in-depth interviews. Established qualitative approaches were used to analyze and interpret data. Results Eighteen MCS coordinators from 18 programs were interviewed. We found diversity in coordinators’ roles and high programmatic variability in how DT LVAD decisions are approached. Despite these differences, three themes were consistently recommended: 1) DT LVAD is a major patient-centered decision: “you’re your best advo