Science.gov

Sample records for drying cycle loveday

  1. Dry process dependency of dupic fuel cycle

    SciTech Connect

    Park, Kwangheon; Whang, Juho; Kim, Yun-goo; Kim, Heemoon

    1996-12-31

    During the Dry Process, volatile and semi-volatile elements are released from the fuel. The effects of these released radioactive nuclides on DUPIC fuel cycle are analyzed from the view-point of radiation hazard, decay beat, and hazard index. Radiation hazard of fresh and spent DUPIC fuel is sensitive to the method of Dry Process. Decay beat of the fuel is also affected. Hazard index turned out not to be dependent on Dry Process.

  2. Adaptive cycles of floodplain vegetation response to flooding and drying

    NASA Astrophysics Data System (ADS)

    Thapa, R.; Thoms, M. C.; Parsons, M.; Reid, M.

    2016-02-01

    Flooding is a key driver of floodplain vegetation productivity. Adaptive cycles provide a model for examining the productivity of semi-arid floodplain vegetation in response to hydrology. We examined the response of vegetation productivity (measured as NDVI) through a hypothesised adaptive cycle to determine whether the cycle repeats over time and how it is affected by differently sized flood events. The area of floodplain inundation was associated with an adaptive cycle that repeated in four flood events through the following phases: wetting (exploitation phase), wet (conservation phase), drying (release phase) and dry (reorganisation phase). Vegetation productivity responses corresponded to these phases. The area and quality of floodplain vegetation productivity followed the hypothesised pattern of higher-quality vegetation vigour in the wetting and wet phases, lower vigour in the drying phase and lowest vigour in the dry phase. There were more transitions between NDVI classes in the wet phase, which was dominated by two-way transitions. Overall, the wetting, wet and drying phases were dominated by smaller-probability class changes, whereas in the dry phase, higher-probability class changes were more prominent. Although the four flood events exhibited an adaptive cycle the duration of the adaptive-cycle phases, and the nature of vegetation productivity response, differed with the character of the flood event. Vegetation response in two of the adaptive-cycle phases - the release and reorganisation phases - were as hypothesised, but in the exploitation and conservation phases, changes in vegetation productivity were more dynamic. The character of vegetation response through the adaptive cycle also indicates that semi-arid floodplain vegetation productivity is more vulnerable to changing state during the conservation and release phases and not during the exploitation and reorganisation phases as resilience theory suggests. Overall, the adaptive cycle represents a

  3. Water cycle of a seasonally dry tropical forest (Southern Vietnam)

    NASA Astrophysics Data System (ADS)

    Kuricheva, O. A.; Avilov, V. C.; Dinh, Duy Ba; Kurbatova, J. A.

    2015-12-01

    How does the activity of the ecosystem of monsoon tropical forest decrease during the dry season of more than 4 months? To answer this question, the dynamics of evapotranspiration is analyzed in the national park of Cát Tiên (Southern Vietnam) using continuous eddy covariance and meteorological dataset for 2012-2013. A comparison of evapotranspiration between Cát Tiên and 21 sites in different tropical forests over the world is performed. It is shown that the abundance of resources of energy and moisture in the annual cycle, as well as the storage of water from the rainy season allows monsoon ecosystem to implement the proactive vegetation during the dry season and make specificity of ecosystem energy and water fluxes in Cát Tiên forest similar to the rainforests.

  4. Thermodynamic analysis of organic Rankine cycle using dry working fluids

    SciTech Connect

    Wang, S.K.; Hung, T.C.

    1998-12-31

    Utilization of waste heat is not economically incentive to the industry once the temperature of the waste heat drops to a certain level. This is primarily due to a low efficiency when converting the energy of the waste heat to some forms of useful power. A Rankine cycle using organic fluids as working fluids, called organic Rankine cycle (ORC), is potentially feasible in recovering low-enthalpy containing heat sources. Nevertheless, an efficient operation of the ORC depends heavily on two factors: working conditions of the cycle and the thermodynamic properties of the working fluids. The main objective of this study is to investigate the effects of these two factors on the performance of the ORC. The working fluids under investigation are: benzene (C{sub 6}H), toluene (C{sub 7}H{sub 8}), p-xylene (C{sub 8}H{sub 10}), R113 and R123. Irreversibility of a system using various working fluids was studied since it represents the energy balance in recovering the waste heat. The study shows that the system efficiency increases as the inlet pressure of the turbine increases regardless of the working fluid used. Among the working fluids under investigation, p-xylene shows the highest efficiency while benzene the lowest. The study also shows that irreversibility depends on the type of heat source. Generally speaking, p-xylene has the lowest irreversibility in recovering a high temperature waste heat while R113 and R123 have a better performance in recovering a low temperature waste heat. In addition, an economic feasibility of ORC using various working fluids is given for ORC`s with commercial capacities.

  5. Shrinkage stress in concrete under dry-wet cycles: an example with concrete column

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Zhang, Jun; Luosun, Yiming

    2014-02-01

    This paper focuses on the simulation of shrinkage stress in concrete structures under dry-wet environments. In the modeling, an integrative model for autogenous and drying shrinkage predictions of concrete under dry-wet cycles is introduced first. Second, a model taking both cement hydration and moisture diffusion into account synchronously is used to calculate the distribution of interior humidity in concrete. Using the above two models, the distributions of shrinkage strain and stress in concrete columns made by normal and high strength concrete respectively under dry-wet cycles are calculated. The model results show that shrinkage gradient along the radial direction of the column from the center to outer surface increases with age as the outer circumference suffers to dry. The maximum and minimum shrinkage occur at the outer surface and the center of the column, respectively, under drying condition. As wetting starts, the shrinkage strain decreases with increase of interior humidity. The closer to the wetting face, the higher the humidity and the lower the shrinkage strain, as well as the lower the shrinkage stress. As results of the dry-wet cycles acting on the outer circumference of the column, cyclic stress status is developed within the area close to the outer surface of the column. The depth of the influencing zone of dry-wet cyclic action is influenced by concrete strength and dry-wet regime. For low strength concrete, relatively deeper influencing zone is expected compared with that of high strength concrete. The models are verified by concrete-steel composite ring tests and a good agreement between model and test results is found.

  6. Impact of Wetting/Oven-Drying Cycles on the Mechanical and Physical Properties of Birch Plywood

    NASA Astrophysics Data System (ADS)

    Sooru, M.; Kasepuu, K.; Kask, R.; Lille, H.

    2015-11-01

    The objective of this study was to explore some physical and mechanical properties and the dimensional stability of birch (Betula sp.) nine-ply veneers glued with phenol-formaldehyde (PF) after 10 cycles of soaking/oven-drying. The properties to be determined were bending strength (BS), modulus of elasticity in bending (MOE), Janka hardness (JH) and thickness swelling (TS), which were tested according to the European Standards (EN). An analytical equation was used for approximation of the change in the physical and mechanical properties of the samples depending on the number of cycles. It was shown that the values of the studied properties were affected most by the first soaking and drying cycles after which BS and MOE decreased continuously while the values of JH and TS stabilized. After 10 cycles the final values of BS, MOE, JH and TS accounted for 75-81%, 95%, 82% and 98.5% of the initial values, respectively.

  7. Moisture measurement: a new method for monitoring freeze-drying cycles.

    PubMed

    Bardat, A; Biguet, J; Chatenet, E; Courteille, F

    1993-01-01

    Quality of the final product largely depends on the freeze-drying process. In turn this largely depends on an adequate control of the amount of residual moisture after freeze-drying. Measuring this amount in the chamber of the freeze-dryer to determine the end point of sublimation and the end point of secondary drying provides a reliable control with regard to the methods traditionally used (for example rapid increase in product temperature). The purpose of this study is to evaluate the benefits and disadvantages of the different methods recommended for the monitoring of a freeze-drying cycle. Two systems for the measurement of the moisture in the freeze dryer are evaluated here: the Pirani vacuum gauge, and the moisture sensor. The moisture sensor appears to be the most sensitive and reliable way of determining both the end of sublimation and the end of secondary drying of the full load batch when placed on a freeze-dryer. The immediate benefit for the industry is to allow to scale-up without the risks of under or over estimating the freeze-drying cycle. PMID:8120734

  8. Effect of drying-wetting cycles on leaching behavior of cement solidified lead-contaminated soil.

    PubMed

    Li, Jiang-Shan; Xue, Qiang; Wang, Ping; Li, Zhen-Ze; Liu, Lei

    2014-12-01

    Lead contaminated soil was treated by different concentration of ordinary Portland cement (OPC). Solidified cylindrical samples were dried at 40°C in oven for 48 h subsequent to 24h of immersing in different solution for one drying-wetting. 10 cycles were conducted on specimens. The changes in mass loss of specimens, as well as leaching concentration and pH of filtered leachates were studied after each cycle. Results indicated that drying-wetting cycles could accelerate the leaching and deterioration of solidified specimens. The cumulative leached lead with acetic acid (pH=2.88) in this study was 109, 83 and 71 mg respectively for solidified specimens of cement-to-dry soil (C/Sd) ratios 0.2, 0.3 and 0.4, compared to 37, 30, and 25mg for a semi-dynamic leaching test. With the increase of cycle times, the cumulative mass loss of specimens increased linearly, but pH of filtered leachates decreased. The leachability and deterioration of solidified specimens increased with acidity of solution. Increases of C/Sd clearly reduced the leachability and deterioration behavior. PMID:25433988

  9. Effect of wet-dry cycling on swelling and hydraulic conductivity of GCLs

    SciTech Connect

    Lin, L.C.; Benson, C.H.

    2000-01-01

    Atterberg limits, free swell, and hydraulic conductivity tests were conducted to assess how wet-dry cycling affects the plasticity and swell of bentonite, and the hydraulic conductivity of geosynthetic clay liners (GCLs) hydrated with deionized (DI) water (pH 6.5), tap water (pH 6.8), and 0.0125-M CaCl{sub 2} solution (pH 6.2). The plasticity of bentonite hydrated with DI water increased during each wetting cycle, whereas the plasticity of bentonite hydrated with tap water and CaCl{sub 2} decreased during each wetting cycle. Wet-dry cycling in DI water and tap water had little effect on swelling of the bentonite, even after seven wet-dry cycles. However, swelling decreased dramatically after two wetting cycles with CaCl{sub 2} solution. Hydraulic conductivity of GCL specimens remained low during the first four wetting cycles ({approximately}1 x 10{sup {minus}9} cm/s). However, within five to eight cycles, the hydraulic conductivity of all specimens permeated with the 0.0125-M CaCl{sub 2} solution increased dramatically, to as high as 7.6 x 10{sup {minus}6} cm/s. the hydraulic conductivity increased because cracks, formed during desiccation, did not fully heal when the bentonite rehydrated. In contrast, a specimen continuously permeated for 10 months with the 0.0125-M CaCl{sub 2} solution had low hydraulic conductivity ({approximately}1 x 10{sup {minus}9} cm/s), even after eight pore volumes of flow.

  10. Do drying and rewetting cycles modulate effects of sulfadiazine spiked manure in soil?

    PubMed

    Jechalke, Sven; Radl, Viviane; Schloter, Michael; Heuer, Holger; Smalla, Kornelia

    2016-05-01

    Naturally occurring drying-rewetting events in soil have been shown to affect the dissipation of veterinary antibiotics entering soil by manure fertilization. However, knowledge of effects on the soil microbial community structure and resistome is scarce. Here, consequences of drying-rewetting cycles on effects of sulfadiazine (SDZ) in soil planted with Dactylis glomerata L. were investigated in microcosms. Manure containing SDZ or not was applied to the pregrown grass and incubated for 56 days in a climate chamber. Water was either added daily or reduced during two drying events of 7 days, each followed by a recovery phase. Total community DNA was analyzed to reveal the effects on the bacterial community structure and on the abundance of sul1, sul2, intI1 ,intI2, qacE+qacEΔ1, traN and korB genes relative to 16S rRNA genes. 16S rRNA gene-based DGGE fingerprints indicated that drying-rewetting cycles modulated the effects of SDZ on the bacterial community structure in the soil. Furthermore, the SDZ treatment increased the relative abundance of sulfonamide resistance and integrase genes compared to the control. However, this increase was not different between moisture regimes, indicating that drying-rewetting had only a negligible effect on the selection of the resistome by SDZ in the manured soil. PMID:27053757

  11. Investigation of design space for freeze-drying: use of modeling for primary drying segment of a freeze-drying cycle.

    PubMed

    Koganti, Venkat Rao; Shalaev, Evgenyi Y; Berry, Mark R; Osterberg, Thomas; Youssef, Maickel; Hiebert, David N; Kanka, Frank A; Nolan, Martin; Barrett, Rosemary; Scalzo, Gioval; Fitzpatrick, Gillian; Fitzgibbon, Niall; Luthra, Sumit; Zhang, Liling

    2011-09-01

    In this work, we explore the idea of using mathematical models to build design space for the primary drying portion of freeze-drying process. We start by defining design space for freeze-drying, followed by defining critical quality attributes and critical process parameters. Then using mathematical model, we build an insilico design space. Input parameters to the model (heat transfer coefficient and mass transfer resistance) were obtained from separate experimental runs. Two lyophilization runs are conducted to verify the model predictions. This confirmation of the model predictions with experimental results added to the confidence in the insilico design space. This simple step-by-step approach allowed us to minimize the number of experimental runs (preliminary runs to calculate heat transfer coefficient and mass transfer resistance plus two additional experimental runs to verify model predictions) required to define the design space. The established design space can then be used to understand the influence of critical process parameters on the critical quality attributes for all future cycles. PMID:21710335

  12. Impact of repeated dry-wet cycles on soil CO2 efflux in a beech forest

    NASA Astrophysics Data System (ADS)

    Leitner, Sonja; Saronjic, Nermina; Kobler, Johannes; Holtermann, Christian; Zechmeister-Boltenstern, Sophie; Zimmermann, Michael

    2015-04-01

    Climate change research predicts that both frequency and intensity of weather extremes such as severe droughts and heavy rainfall events will increase in mid Europe over the next decades. Because soil moisture is one of the major factors controlling microbially-driven soil processes, a changed moisture regime will impact soil organic matter (SOM) decomposition and nutrient cycling. This in turn can lead to feedback effects between altered precipitation and changed soil CO2 fluxes which can intensify climate change. Soil microorganisms can go into a state of dormancy or form inactive cysts to protect themselves from osmotic stress during soil drying. However, severe droughts increase microbial mortality which slows down SOM decomposition and decreases soil CO2 efflux. The rewetting of dry soil, on the other hand, causes large CO2 emissions, which is also known as the "Birch effect". Until today it is not clear whether these CO2 peaks outweigh the drought-induced decrease of total CO2 efflux. To investigate the impact of repeated dry-wet cycles on soil CO2 efflux we are conducting a precipitation manipulation experiment in a temperate Austrian beech forest. Roofs exclude rainfall and simulate drought periods, and heavy rainfall events are simulated with a sprinkler system. We apply repeated dry-wet cycles in two intensities: one treatment receives 6 cycles of 1 month drought followed by 75mm irrigation, and a parallel treatment receives 3 cycles of 2 months drought followed by 150mm irrigation. Soil CO2 efflux is constantly monitored with an automated flux chamber system, and environmental parameters are recorded via dataloggers. Our results show that droughts significantly reduce soil CO2 effluxes, and that the reductions depend on the length of the drought periods, with longer droughts leading to stronger reductions of CO2 effluxes. In the first 24 to 48h after rewetting, CO2 emissions strongly increased, and then slowly decreased again. Soil CO2 efflux was

  13. Reducing drying/preheat cycle time to increase pellet production at the BHP Whyalla Pellet Plant

    SciTech Connect

    Teo, C.S.; Reynolds, G.; Haines, B.

    1997-12-31

    The feasibility of changing the Whyalla Pellet Plant drying/preheat pattern to reduce the cycle time without causing extra spalling of the preheated balls was investigated using both plant and laboratory produced green balls in the BHP Research pot grate facility. It was found that the results were consistent for both plant and laboratory produced balls in that for the pellet production at 5,000t/d, spalling of the preheated balls was mainly caused by the remaining bound water in the balls. Removing the bound water resulted in a dramatic reduction in spalling. At the plant, the balls were dried at less than 350 C for less than 6 min, which was insufficient heat to drive off all the bound water. The balls then entered the preheat furnace at over 1,000 C. The bound water rapidly vaporized causing the balls to spall. Introducing a dehydration step would involve recouping air from the cooler at 600 C and directing this hot air to the hotter end of the drying furnace to remove most of the bound water. For increased pellet production at 5,800t/d, it was found that an extended dehydration (1/3 drying, 2/3 dehydration) step in the shorter drying/preheat cycle under a higher suction was necessary to have minimum spalling. Implementing this finding required mass and energy balance, a task undertaken by Robert Cnare of Davy John Brown, to allow recommendations to be made for an optimum configuration for plant modifications.

  14. Understanding spatial heterogeneity in soil carbon and nitrogen cycling in regenerating tropical dry forests

    NASA Astrophysics Data System (ADS)

    Waring, B. G.; Powers, J. S.; Branco, S.; Adams, R.; Schilling, E.

    2015-12-01

    Tropical dry forests (TDFs) currently store significant amounts of carbon in their biomass and soils, but these highly seasonal ecosystems may be uniquely sensitive to altered climates. The ability to quantitatively predict C cycling in TDFs under global change is constrained by tremendous spatial heterogeneity in soil parent material, land-use history, and plant community composition. To explore this variation, we examined soil carbon and nitrogen dynamics in 18 permanent plots spanning orthogonal gradients of stand age and soil fertility. Soil C and N pools, microbial biomass, and microbial extracellular enzyme activities were most variable at small (m2) spatial scales. However, the ratio of organic vs. inorganic N cycling was consistently higher in forest stands dominated by slow-growing, evergreen trees that associate with ectomycorrhizal fungi. Similarly, although bulk litter stocks and turnover rates varied greatly among plots, litter decomposition tended to be slower in ectomycorrhizae-dominated stands. Soil N cycling tended to be more conservative in older plots, although the relationship between stand age and element cycling was weak. Our results emphasize that microscale processes, particularly interactions between mycorrhizal fungi and free-living decomposers, are important controls on ecosystem-scale element cycling.

  15. The Resilience of Microbial Community under Drying and Rewetting Cycles of Three Forest Soils.

    PubMed

    Zhou, Xue; Fornara, Dario; Ikenaga, Makoto; Akagi, Isao; Zhang, Ruifu; Jia, Zhongjun

    2016-01-01

    Forest soil ecosystems are associated with large pools and fluxes of carbon (C) and nitrogen (N), which could be strongly affected by variation in rainfall events under current climate change. Understanding how dry and wet cycle events might influence the metabolic state of indigenous soil microbes is crucial for predicting forest soil responses to environmental change. We used 454 pyrosequencing and quantitative PCR to address how present (DNA-based) and potentially active (RNA-based) soil bacterial communities might response to the changes in water availability across three different forest types located in two continents (Africa and Asia) under controlled drying and rewetting cycles. Sequencing of rRNA gene and transcript indicated that Proteobacteria, Actinobacteria, and Acidobacteria were the most responsive phyla to changes in water availability. We defined the ratio of rRNA transcript to rRNA gene abundance as a key indicator of potential microbial activity and we found that this ratio was increased following soil dry-down process whereas it decreased after soil rewetting. Following rewetting Crenarchaeota-like 16S rRNA gene transcript increased in some forest soils and this was linked to increases in soil nitrate levels suggesting greater nitrification rates under higher soil water availability. Changes in the relative abundance of (1) different microbial phyla and classes, and (2) 16S and amoA genes were found to be site- and taxa-specific and might have been driven by different life-strategies. Overall, we found that, after rewetting, the structure of the present and potentially active bacterial community structure as well as the abundance of bacterial (16S), archaeal (16S) and ammonia oxidizers (amoA), all returned to pre-dry-down levels. This suggests that microbial taxa have the ability to recover from desiccation, a critical response, which will contribute to maintaining microbial biodiversity in harsh ecosystems under environmental perturbations

  16. The Resilience of Microbial Community under Drying and Rewetting Cycles of Three Forest Soils

    PubMed Central

    Zhou, Xue; Fornara, Dario; Ikenaga, Makoto; Akagi, Isao; Zhang, Ruifu; Jia, Zhongjun

    2016-01-01

    Forest soil ecosystems are associated with large pools and fluxes of carbon (C) and nitrogen (N), which could be strongly affected by variation in rainfall events under current climate change. Understanding how dry and wet cycle events might influence the metabolic state of indigenous soil microbes is crucial for predicting forest soil responses to environmental change. We used 454 pyrosequencing and quantitative PCR to address how present (DNA-based) and potentially active (RNA-based) soil bacterial communities might response to the changes in water availability across three different forest types located in two continents (Africa and Asia) under controlled drying and rewetting cycles. Sequencing of rRNA gene and transcript indicated that Proteobacteria, Actinobacteria, and Acidobacteria were the most responsive phyla to changes in water availability. We defined the ratio of rRNA transcript to rRNA gene abundance as a key indicator of potential microbial activity and we found that this ratio was increased following soil dry-down process whereas it decreased after soil rewetting. Following rewetting Crenarchaeota-like 16S rRNA gene transcript increased in some forest soils and this was linked to increases in soil nitrate levels suggesting greater nitrification rates under higher soil water availability. Changes in the relative abundance of (1) different microbial phyla and classes, and (2) 16S and amoA genes were found to be site- and taxa-specific and might have been driven by different life-strategies. Overall, we found that, after rewetting, the structure of the present and potentially active bacterial community structure as well as the abundance of bacterial (16S), archaeal (16S) and ammonia oxidizers (amoA), all returned to pre-dry-down levels. This suggests that microbial taxa have the ability to recover from desiccation, a critical response, which will contribute to maintaining microbial biodiversity in harsh ecosystems under environmental perturbations

  17. Release of aged 14C-atrazine residues from soil facilitated by dry-wet cycles

    NASA Astrophysics Data System (ADS)

    Jablonowski, N. D.; Yu, K.; Koeppchen, S.; Burauel, P.

    2012-04-01

    Intermittent dry-wet cycles may have an important effect on soil structure and aged pesticide residues release (1). A laboratory study was conducted to assess the maximum potential of water extractable aged atrazine residues influenced by soil drying and wetting. The used soil was obtained from an outdoor lysimeter (gleyic cambisol; Corg: 1.45%), containing environmentally aged (22 years) 14C-atrazine residues. For the experiment, soil from 0-10 cm depth was used since most residual 14C activity was previously found in this layer (2,3). Triplicate soil samples with a residual water content of approx. 8% were either dried (45° C) prior water addition or directly mixed with distilled water (soil+water: 1+2, w:w). The samples were shaken (150 rmp, 60 min, at 21° C), centrifuged (approx. 2000 g), and the supernatants were filtered. Water-extracted residual 14C activity was detected via liquid scintillation counter. The total water-extracted 14C activity (the amount of residual 14C activity in a sample equals 100%) was significantly higher (p

  18. Wet-dry cycles effect on ash water repellency. A laboratory experiment.

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Cerdà, Artemi; Oliva, Marc; Mataix, Jorge; Jordán, Antonio

    2014-05-01

    In the immediate period after the fire, the ash layer has a strong influence on soil hydrological processes, as runoff, infiltration and erosion. Ash is very dynamic in the space and time. Until the first rainfall periods, ash is (re)distributed by the wind. After it can cover the soil surface, infiltrate or transported to other areas by water transport (Pereira et al., 2013a, b). This will have strong implications on nutrient redistribution and vegetation recovery. Ash layer may affect soil water repellency in different ways, depending on fire severity, soil properties and vegetation. Ash produced at low temperatures after low-severity burning is usually hydrophobic (Bodi et al., 2011, 2012). Wet-dry cycles have implications on ash physical and chemical properties, changing their effects in space and time. The aim of this study is to analyse the effects of fire temperature and severity on ash water repellency. Pinus sylvestris needles were collected in a Lithuania forest in Dzukija National Park (53º 54' N and 24º 22' E), transported to laboratory and washed with deionized water to remove soil particles and other residues. Needle samples were dried during 24 hours and exposed to different temperatures: 200, 300, 400 and 500 ºC, during 2 hours. Ash colour was analysed according to the Munsell Soil Color charts. Ash was black (10 YR 2/1) at 200 ºC, very dark grey (10YR 3/1) at 300 ºC, gray (10YR 5/1) at 400 ºC and light gray (10YR 7/1) at 500 ºC. Ten samples of ash released after each treatment were placed in plastic dishes (50 mm in diameter) in an amount enough to form a 5 mm thick layer, and ash water repellency was measured according to the Water Drop Penetration Test. Later, ash was carefully wetted with 15 ml of deionized water and placed in an oven during 4 days (96 hours), as in Bodí et al. (2012). This procedure was repeated 5 times in order to observe the effects of wet-dry cycles in ash water repellency. The results showed significant differences

  19. Brittle-viscous deformation cycles in the dry lower continental crust

    NASA Astrophysics Data System (ADS)

    Menegon, Luca; Pennacchioni, Giorgio

    2015-04-01

    Many rheological models of the lithosphere (based on "strength envelopes") predict a weak aseismic lower crust below the strong brittle upper crust. An alternative view, based on the distribution of crustal seismicity, is that the lower crust could also be strong and seismic. It has been suggested that a strong, seismogenic lower crust results from the dry conditions of granulite facies rocks, which inhibit crystal plastic flow. This study investigates exhumed networks of shear zones from Nusfjord (Lofoten, northern Norway) to understand initiation and localization of viscous shearing in the dry lower crust. In the study area, different sets of ultramylonitic shear zones are hosted in the massive coarse-grained anorthosite. Metamorphic conditions of 720 °C, 0.9 GPa have been estimated for ductile deformation using amphibole-plagioclase geothermobarometry. Field evidence indicates that ductile shearing exploited pseudotachylyte veins and the associated damage zone of extensive fracturing. Undeformed pseudotachylyte veins locally overprint mylonitic pseudotachylytes suggesting that frictional melting occurred at the same metamorphic conditions of mylonitization. The deep crustal origin of the pseudotachylytes is also indicated by (1) the presence of microlites of labradoritic plagioclase and clinopyroxene, and of dendritic garnet, and (2) the recrystallization of clinopyroxene in the damage zone flanking the pseudotachylyte veins. Therefore the association of pseudotachylytes and mylonites records brittle-viscous deformation cycles under lower crustal conditions. The ultramylonites show phase mixing, fine grain size (5-20 μm) and equant shape of all minerals. Nucleation of amphibole in triple junctions and dilatant sites is common. EBSD analysis indicates that the minerals in the matrix are internally strain free and do not show a crystallographic preferred orientation. Taken together, these observations suggest that diffusion creep and grain boundary sliding were

  20. Rainfall and wet and dry cycle's impact on ash thickness. A laboratory experiment

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Keestra, Saskia; Peters, Piet; Cerdà, Artemi

    2016-04-01

    Ash is the most important and effective soil protection in the immediate period after the fire (Cerda and Doerr, 2008; Pereira et al., 2015a). This protection can last for days or weeks depending on the fire severity, topography of the burned area and post-fire meteorological conditions. In the initial period after the fire, ash is easily transported by wind. However after the first rainfalls, ash is eroded, or bind in soil surface (Pereira et al., 2013, 2015a). Ash thickness has implications on soil protection. The soil protection against the erosion and the ash capacity to retain water increases with the ash thickness (Bodi et al., 2014). Ash cover is very important after fire because store water and releases into soil a large amount of nutrients, fundamental to vegetation recuperation (Pereira et al., 2014). Despite the importance of ash thickness in post fire environments, little information is available about the effects of rainfall and wet and dry cycle's effects on ash thickness. This work aims to fill this gap. The objective of this study is to investigate the impacts of rainfall and wet and dry cycles in the ash thickness of two different under laboratory conditions. Litter from Oak (Quercus robur) and Spruce (Picea abis) were collected to and exposed during 2 hours to produce ash at 200 and 400 C. Subsequently a layer of 15 mm ash was spread on soil surface in small boxes (24x32 cm) and then subjected to rainfall simulation. Boxes were placed at a 17% of inclination and a rainfall intensity of 55 mm/h during 40 minutes was applied. After the rainfall simulation the plots were stored in an Oven at the temperature of 25 C during four days, in order to identify the effects of wet and dry cycles (Bodi et al., 2013). Ash thickness was measured after the first rainfall (AFR), before the second rainfall (BSR) - after the dry period of 4 days - and after the second rainfall (ASR). In each box a grid with 57 points was designed in order to analyse ash thickness

  1. Effects of repeated wet/dry cycling on the structure and performance of sulfonated pentablock copolymer membranes

    NASA Astrophysics Data System (ADS)

    Truong, Phuc; Stein, Gila

    Sulfonated block copolymers have shown potential as membranes for water purification. However, the performance of these materials under cyclic wet/dry conditions is not well understood. We measured the membrane structure, mechanical properties, and water vapor transport rates in a sulfonated pentablock copolymer as a function of the number of wet/dry cycles. The polymer is synthesized with an ABCBA block sequence, where A is poly(t-butyl styrene), B is poly(hydrogenated isoprene), and C is poly(styrene sulfonate). The ion exchange capacity is 2 meq, and membranes were prepared by coating from a solution. Using small angle X-ray scattering, we find the structure in as-prepared membranes resembles disordered micelles, and the characteristic length scale swells slightly with each wet/dry cycle. This lattice swelling is likely constrained by the glassy end-blocks. We also detect a lower yield point and less overall tensile strength with repeated cycling. Water vapor transport rates vary with the number of wet/dry cycle, however no specific trend was observed.

  2. Life cycle assessment of fuel ethanol derived from corn grain via dry milling.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-08-01

    Life cycle analysis enables to investigate environmental performance of fuel ethanol used in an E10 fueled compact passenger vehicle. Ethanol is derived from corn grain via dry milling. This type of analysis is an important component for identifying practices that will help to ensure that a renewable fuel, such as ethanol, may be produced in a sustainable manner. Based on data from eight counties in seven Corn Belt states as corn farming sites, we show ethanol derived from corn grain as E10 fuel would reduce nonrenewable energy and greenhouse gas emissions, but would increase acidification, eutrophication and photochemical smog, compared to using gasoline as liquid fuel. The ethanol fuel systems considered in this study offer economic benefits, namely more money returned to society than the investment for producing ethanol. The environmental performance of ethanol fuel system varies significantly with corn farming sites because of different crop management practices, soil properties, and climatic conditions. The dominant factor determining most environmental impacts considered here (i.e., greenhouse gas emissions, acidification, eutrophication, and photochemical smog formation) is soil related nitrogen losses (e.g., N2O, NOx, and NO3-). The sources of soil nitrogen include nitrogen fertilizer, crop residues, and air deposition. Nitrogen fertilizer is probably the primary source. Simulations using an agro-ecosystem model predict that planting winter cover crops would reduce soil nitrogen losses and increase soil organic carbon levels, thereby greatly improving the environmental performance of the ethanol fuel system. PMID:17964144

  3. Weathering of expansive sedimentary rock due to cycles of wetting and drying

    SciTech Connect

    Day, R.W. )

    1994-09-01

    There are several different mechanisms by which sedimentary rock can weather, such as: (1) Rebound: for cut areas, where the overburden has been removed by erosion or during mass-grading operations, the sedimentary rock will rebound due to the release in overburden pressure, the rebound can cause the opening or widening of cracks and joints; (2) Physical Weathering: sedimentary rock can be broken apart by the physical growth of plant roots or by the freezing of water in rock cracks or joints. Studies have also shown that precipitation of gypsum in rock pores, cracks, and joints can cause rock expansion and disintegration. Such conditions occur in arid climates where subsurface moisture evaporates at ground surface, precipitating the minerals in the rock pores. Acicular gypsum crystals have been observed to grow perpendicular to structures and are believed to exert the most force at their growing end (Hawkins and Pinces, 1987). Acicular gypsum growth has even been observed in massive sandstone, which resulted in significant heave (Hollingsworth and Grover, 1992); (3) Chemical Weathering: weathering of sedimentary rock can be due to oxidation, hydration of clay minerals, and the chemical alteration of the silt-size particles to clay. Factors affecting oxidation include the presence of moisture and oxygen (aerobic conditions), biological activity, acidic environment, and temperature (Hollingsworth and Grover, 1992). The purpose of this study was to investigate the weathering of expansive sedimentary rock due to cycles of wetting and drying at temperatures representative of field conditions.

  4. Rainfall and wet and dry cycle's impact on ash thickness. A laboratory experiment

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Keestra, Saskia; Peters, Piet; Cerdà, Artemi

    2016-04-01

    Ash is the most important and effective soil protection in the immediate period after the fire (Cerda and Doerr, 2008; Pereira et al., 2015a). This protection can last for days or weeks depending on the fire severity, topography of the burned area and post-fire meteorological conditions. In the initial period after the fire, ash is easily transported by wind. However after the first rainfalls, ash is eroded, or bind in soil surface (Pereira et al., 2013, 2015a). Ash thickness has implications on soil protection. The soil protection against the erosion and the ash capacity to retain water increases with the ash thickness (Bodi et al., 2014). Ash cover is very important after fire because store water and releases into soil a large amount of nutrients, fundamental to vegetation recuperation (Pereira et al., 2014). Despite the importance of ash thickness in post fire environments, little information is available about the effects of rainfall and wet and dry cycle's effects on ash thickness. This work aims to fill this gap. The objective of this study is to investigate the impacts of rainfall and wet and dry cycles in the ash thickness of two different under laboratory conditions. Litter from Oak (Quercus robur) and Spruce (Picea abis) were collected to and exposed during 2 hours to produce ash at 200 and 400 C. Subsequently a layer of 15 mm ash was spread on soil surface in small boxes (24x32 cm) and then subjected to rainfall simulation. Boxes were placed at a 17% of inclination and a rainfall intensity of 55 mm/h during 40 minutes was applied. After the rainfall simulation the plots were stored in an Oven at the temperature of 25 C during four days, in order to identify the effects of wet and dry cycles (Bodi et al., 2013). Ash thickness was measured after the first rainfall (AFR), before the second rainfall (BSR) - after the dry period of 4 days - and after the second rainfall (ASR). In each box a grid with 57 points was designed in order to analyse ash thickness

  5. Belowground in situ redox dynamics and methanogenesis recovery in a degraded fen during dry-wet cycles and flooding

    NASA Astrophysics Data System (ADS)

    Estop-Aragonés, C.; Knorr, K.-H.; Blodau, C.

    2013-01-01

    Climate change induced drying and flooding may alter the redox conditions of organic matter decomposition in peat soils. The seasonal and intermittent changes in pore water solutes (NO3-, Fe2+, SO42-, H2S, acetate) and dissolved soil gases (CO2, O2, CH4, H2) under natural water table fluctuations were compared to the response under a reinforced drying and flooding in fen peats. Oxygen penetration during dryings led to CO2 and CH4 degassing and to a regeneration of dissolved electron acceptors (NO3-, Fe3+ and SO42-). Drying intensity controlled the extent of the electron acceptor regeneration. Iron was rapidly reduced and sulfate pools ~ 1 mM depleted upon rewetting and CH4 did not substantially accumulate until sulfate levels declined to ~ 100 μmol L-1. The post-rewetting recovery of soil methane concentrations to levels ~ 80 μmol L-1 needed 40-50 days after natural drought. This recovery was prolonged after experimentally reinforced drought. A greater regeneration of electron acceptors during drying was not related to prolonged methanogenesis suppression after rewetting. Peat compaction, solid phase content of reactive iron and total reduced inorganic sulfur and organic matter content controlled oxygen penetration, the regeneration of electron acceptors and the recovery of CH4 production, respectively. Methane production was maintained despite moderate water table decline of 20 cm in denser peats. Flooding led to accumulation of acetate and H2, promoted CH4 production and strengthened the co-occurrence of iron and sulfate reduction and methanogenesis. Mass balances during drying and flooding indicated that an important fraction of the electron flow must have been used for the generation and consumption of electron acceptors in the solid phase or other mechanisms. In contrast to flooding, dry-wet cycles negatively affect methane production on a seasonal scale, but this impact might strongly depend on drying intensity and on the peat matrix, of which structure and

  6. Mitigation of prion infectivity and conversion capacity by a simulated natural process--repeated cycles of drying and wetting.

    PubMed

    Yuan, Qi; Eckland, Thomas; Telling, Glenn; Bartz, Jason; Bartelt-Hunt, Shannon

    2015-02-01

    Prions enter the environment from infected hosts, bind to a wide range of soil and soil minerals, and remain highly infectious. Environmental sources of prions almost certainly contribute to the transmission of chronic wasting disease in cervids and scrapie in sheep and goats. While much is known about the introduction of prions into the environment and their interaction with soil, relatively little is known about prion degradation and inactivation by natural environmental processes. In this study, we examined the effect of repeated cycles of drying and wetting on prion fitness and determined that 10 cycles of repeated drying and wetting could reduce PrP(Sc) abundance, PMCA amplification efficiency and extend the incubation period of disease. Importantly, prions bound to soil were more susceptible to inactivation by repeated cycles of drying and wetting compared to unbound prions, a result which may be due to conformational changes in soil-bound PrP(Sc) or consolidation of the bonding between PrP(Sc) and soil. This novel finding demonstrates that naturally-occurring environmental process can degrade prions. PMID:25665187

  7. Mitigation of Prion Infectivity and Conversion Capacity by a Simulated Natural Process—Repeated Cycles of Drying and Wetting

    PubMed Central

    Yuan, Qi; Eckland, Thomas; Telling, Glenn; Bartz, Jason; Bartelt-Hunt, Shannon

    2015-01-01

    Prions enter the environment from infected hosts, bind to a wide range of soil and soil minerals, and remain highly infectious. Environmental sources of prions almost certainly contribute to the transmission of chronic wasting disease in cervids and scrapie in sheep and goats. While much is known about the introduction of prions into the environment and their interaction with soil, relatively little is known about prion degradation and inactivation by natural environmental processes. In this study, we examined the effect of repeated cycles of drying and wetting on prion fitness and determined that 10 cycles of repeated drying and wetting could reduce PrPSc abundance, PMCA amplification efficiency and extend the incubation period of disease. Importantly, prions bound to soil were more susceptible to inactivation by repeated cycles of drying and wetting compared to unbound prions, a result which may be due to conformational changes in soil-bound PrPSc or consolidation of the bonding between PrPSc and soil. This novel finding demonstrates that naturally-occurring environmental process can degrade prions. PMID:25665187

  8. Life Cycle Cost of Solar Biomass Hybrid Dryer Systems for Cashew Drying of Nuts in India

    NASA Astrophysics Data System (ADS)

    Dhanushkodi, Saravanan; Wilson, Vincent H.; Sudhakar, Kumarasamy

    2015-12-01

    Cashew nut farming in India is mostly carried out in small and marginal holdings. Energy consumption in the small scale cashew nut processing industry is very high and is mainly due to the high energy consumption of the drying process. The drying operation provides a lot of scope for energy saving and substitutions of other renewable energy sources. Renewable energy-based drying systems with loading capacity of 40 kg were proposed for application in small scale cashew nut processing industries. The main objective of this work is to perform economic feasibility of substituting solar, biomass and hybrid dryer in place of conventional steam drying for cashew drying. Four economic indicators were used to assess the feasibility of three renewable based drying technologies. The payback time was 1.58 yr. for solar, 1.32 for biomass and 1.99 for the hybrid drying system, whereas as the cost-benefit estimates were 5.23 for solar, 4.15 for biomass and 3.32 for the hybrid system. It was found that it is of paramount importance to develop solar biomass hybrid dryer for small scale processing industries.

  9. Rapid freeze-drying cycle optimization using computer programs developed based on heat and mass transfer models and facilitated by tunable diode laser absorption spectroscopy (TDLAS).

    PubMed

    Kuu, Wei Y; Nail, Steven L

    2009-09-01

    Computer programs in FORTRAN were developed to rapidly determine the optimal shelf temperature, T(f), and chamber pressure, P(c), to achieve the shortest primary drying time. The constraint for the optimization is to ensure that the product temperature profile, T(b), is below the target temperature, T(target). Five percent mannitol was chosen as the model formulation. After obtaining the optimal sets of T(f) and P(c), each cycle was assigned with a cycle rank number in terms of the length of drying time. Further optimization was achieved by dividing the drying time into a series of ramping steps for T(f), in a cascading manner (termed the cascading T(f) cycle), to further shorten the cycle time. For the purpose of demonstrating the validity of the optimized T(f) and P(c), four cycles with different predicted lengths of drying time, along with the cascading T(f) cycle, were chosen for experimental cycle runs. Tunable diode laser absorption spectroscopy (TDLAS) was used to continuously measure the sublimation rate. As predicted, maximum product temperatures were controlled slightly below the target temperature of -25 degrees C, and the cascading T(f)-ramping cycle is the most efficient cycle design. In addition, the experimental cycle rank order closely matches with that determined by modeling. PMID:19504575

  10. Effect of wetting-drying cycles and fire conditions on runoff and soil loss of a Mediterranean Pale Rendzina

    NASA Astrophysics Data System (ADS)

    Lado, Marcos; Inbar, Assaf; Tenaw, Haim; Stenberg, Marcelo; Ben-Hur, Meni

    2013-04-01

    Wetting and drying cycles have been reported to have a positive effect on soil aggregation and improve the recovery of soil structure after a disturbance. Therefore, after wildfires, it is expected that drying periods between consecutive storms could modify runoff and soil loss patterns. At the same time, different fire conditions may coexist in a location during a wildfire, creating a mosaic of soils affected to different degrees. The objective of this study was to analyze the effect of wetting-drying cycles and various fire conditions on infiltration rate, runoff and soil loss of a Mediterranean soil. Samples from a Pale Rendzina from Birya forest in Northern Israel were subjected to treatments representing some of the soil disturbances that may coexist after a wildfire: unburnt (UB-soil, i.e. not affected by fire); low-moderate severity direct fire (direct fire-DF soil) and; prolonged heating under moderate temperature without direct contact with the flames (oven heated-HT soil). Each soil was placed under a rainfall simulator and exposed to three 80-mm storms separated by drying periods of 72h. Significant differences were found between fire conditions in infiltration rate, runoff and soil loss. Runoff and soil loss were in the following order :HTdrying cycles did not have a positive effect on runoff or soil loss. Total runoff and soil loss from the UB soil remained relatively constant in the three rainstorms, while those of DF and HT soils increased significantly from one rainstorm to the next. Therefore, the differences between fire conditions became smaller as the number of

  11. Abundance, Distribution and Cycling of Organic Carbon and Nitrogen in University Valley (McMurdo Dry Valleys of Antarctica) Permafrost Soils with Differing Ground Thermal and Moisture Conditions: Analogue to C-N Cycle on Mars

    NASA Astrophysics Data System (ADS)

    Faucher, B. F.; Lacelle, D. L.; Davila, A. D.; Pollard, W. P.; McKay, C. P. M.

    2016-05-01

    High elevation McMurdo Dry Valleys of Antarctica are key Mars analogue sites. Our investigation focuses on the link between ground ice origin, distribution and cycling of organic carbon and nitrogen in University Valley, and its soil habitability.

  12. Three Gorges Dam alters the Changjiang (Yangtze) river water cycle in the dry seasons: Evidence from H-O isotopes.

    PubMed

    Deng, Kai; Yang, Shouye; Lian, Ergang; Li, Chao; Yang, Chengfan; Wei, Hailun

    2016-08-15

    As the largest hydropower project in the world, the Three Gorges Dam (TGD) has attracted great concerns in terms of its impact on the Changjiang (Yangtze) River and coastal marine environments. In this study, we measured or collected the H-O isotopic data of river water, groundwater and precipitation in the mid-lower Changjiang catchment during the dry seasons of recent years. The aim was to investigate the changes of river water cycle in response to the impoundment of the TGD. Isotopic evidences suggested that the mid-lower Changjiang river water was ultimately derived from precipitation, but dominated by the mixing of different water masses with variable sources and isotopic signals as well. The isotopic parameter "deuterium excess" (d-excess) yielded large fluctuations along the mid-lower mainstream during the initial stage of the TGD impoundment, which was inherited from the upstream water with inhomogeneous isotopic signals. However, as the reservoir water level rising to the present stage, small variability of d-excess was observed along the mid-lower mainstream. This discrepancy could be explained that the TGD impoundment had significantly altered the water cycle downstream the dam, with the rising water level increasing the residence time and enhancing the mixing of reservoir water derived from upstream. This eventually resulted in the homogenization of reservoir water, and thus small fluctuations of d-excess downstream the dam after the quasi-normal stage (2008 to present). We infer that the retention effect of large reservoirs has greatly buffered the d-excess natural variability of water cycle in large river systems. Nevertheless, more research attention has to be paid to the damming effect on the water cycle in the river, estuarine and coastal areas, especially during the dry seasons. PMID:27096630

  13. Superior cycle stability of graphene nanosheets prepared by freeze-drying process as anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Cai, Dandan; Wang, Suqing; Ding, Liangxin; Lian, Peichao; Zhang, Shanqing; Peng, Feng; Wang, Haihui

    2014-05-01

    Graphene nanosheets are synthesized by a novel facile method involving freeze-drying technology and thermal reduction. The microstructure and morphologies are characterized by X-ray diffraction, Brunauer-Emmett-Teller measurements, Fourier transform infrared spectroscopy, and high resolution transmission electron microscope. The results indicate that graphene nanosheets with high specific surface area (358.3 m2 g-1) and increased interlayer distance (0.385 nm) are successfully obtained through the freeze-drying process. The electrochemical performances are evaluated by using coin-type cells versus lithium. A high initial reversible capacity of 1132.9 mAh g-1 is obtained at a current density of 100 mA g-1. More importantly, even after 300 cycles at a high current density of 1000 mA g-1, a stable specific capacity of 556.9 mAh g-1 can be achieved, suggesting the graphene nanosheets exhibit superior cycle stability. The fascinating electrochemical performance could be ascribed to the high specific surface area and the increased layer distance between the graphene nanosheets.

  14. Nitrogen supply modulates the effect of changes in drying-rewetting frequency on soil C and N cycling and greenhouse gas exchange.

    PubMed

    Morillas, Lourdes; Durán, Jorge; Rodríguez, Alexandra; Roales, Javier; Gallardo, Antonio; Lovett, Gary M; Groffman, Peter M

    2015-10-01

    Climate change and atmospheric nitrogen (N) deposition are two of the most important global change drivers. However, the interactions of these drivers have not been well studied. We aimed to assess how the combined effect of soil N additions and more frequent soil drying-rewetting events affects carbon (C) and N cycling, soil:atmosphere greenhouse gas (GHG) exchange, and functional microbial diversity. We manipulated the frequency of soil drying-rewetting events in soils from ambient and N-treated plots in a temperate forest and calculated the Orwin & Wardle Resistance index to compare the response of the different treatments. Increases in drying-rewetting cycles led to reductions in soil NO3- levels, potential net nitrification rate, and soil : atmosphere GHG exchange, and increases in NH4+ and total soil inorganic N levels. N-treated soils were more resistant to changes in the frequency of drying-rewetting cycles, and this resistance was stronger for C- than for N-related variables. Both the long-term N addition and the drying-rewetting treatment altered the functionality of the soil microbial population and its functional diversity. Our results suggest that increasing the frequency of drying-rewetting cycles can affect the ability of soil to cycle C and N and soil : atmosphere GHG exchange and that the response to this increase is modulated by soil N enrichment. PMID:25916277

  15. A comparative life cycle assessment of conventional hand dryer and roll paper towel as hand drying methods.

    PubMed

    Joseph, Tijo; Baah, Kelly; Jahanfar, Ali; Dubey, Brajesh

    2015-05-15

    A comparative life cycle assessment, under a cradle to gate scope, was carried out between two hand drying methods namely conventional hand dryer use and dispenser issued roll paper towel use. The inventory analysis for this study was aided by the deconstruction of a hand dryer and dispenser unit besides additional data provided by the Physical Resources department, from the product system manufacturers and information from literature. The LCA software SimaPro, supported by the ecoinvent and US-EI databases, was used towards establishing the environmental impacts associated with the lifecycle stages of both the compared product systems. The Impact 2002+ method was used for classification and characterization of these environmental impacts. An uncertainty analysis addressing key input data and assumptions made, a sensitivity analysis covering the use intensity of the product systems and a scenario analysis looking at a US based use phase for the hand dryer were also conducted. Per functional unit, which is to achieve a pair of dried hands, the dispenser product system has a greater life cycle impact than the dryer product system across three of four endpoint impact categories. The use group of lifecycle stages for the dispenser product system, which represents the cradle to gate lifecycle stages associated with the paper towels, constitutes the major portion of this impact. For the dryer product system, the use group of lifecycle stages, which essentially covers the electricity consumption during dryer operation, constitutes the major stake in the impact categories. It is evident from the results of this study that per dry, for a use phase supplied by Ontario's grid (2010 grid mix scenario) and a United States based manufacturing scenario, the use of a conventional hand dryer (rated at 1800 W and under a 30s use intensity) has a lesser environmental impact than with using two paper towels (100% recycled content, unbleached and weighing 4 g) issued from a roll

  16. A mesocosm study of the effects of wet-dry cycles on nutrient release from constructed wetlands in agricultural landscapes.

    PubMed

    Smith, Allyson S; Jacinthe, Pierre-Andre

    2014-01-01

    Given the projection that wet-dry periods will be more frequent in the US Midwest, a study was conducted to understand the impact of these hydro-climatic alterations on nutrient dynamics in wetlands constructed on former croplands in the region. Soil cores were collected from two constructed wetlands and a wooded riparian area (surface: 0-20 cm; subsurface: 40-60 cm) downslope from an agricultural field. Cores were either kept moist or subjected to a 5-week drying treatment, after which all cores were flooded for 36 days. Initial nitrate flux was significantly (p < 0.001) higher in the dry than in the moist treatment (44.5 vs. 1.9 mg N m(-2) per day), likely due to mineralization of organic matter. The NO3(-) released was rapidly denitrified (N2O flux: 18.9 mg N m(-2) per day), except in the subsurface soil cores in which processing of available N (N2O flux: 0.33 mg N m(-2) per day) was limited by low microbial activity (4 times lower CO2 production rate). The dry treatment also resulted in significantly (p < 0.01) higher inorganic P (Pi) flux (3.1 versus 1 mg P m(-2) per day in moist cores), with water-extractable soil P being the best predictor (r(2): 0.93, p < 0.03) of that flux. Despite a decline in redox potential (as low as -36.4 mv) and progressive increase in pore-water dissolved Fe, no relationship between floodwater Pi and dissolved Fe was observed, suggesting either limited contribution of reductive dissolution to Pi dynamics or rapid adsorption of the Pi released within the cores. Compared to the moist cores, geochemical modeling showed a consistent shift toward greater solubility of the calcium-phosphate minerals controlling pore-water Pi concentration in the dry treatment cores. These results suggest that dissolution of Ca-phosphate minerals could be a key factor controlling Pi mobility in constructed wetlands subjected to wet-dry cycles. PMID:24270400

  17. Impact of repeated dry-wet cycles on soil greenhouse gas emissions, extracellular enzyme activity and nutrient cycling in a temperate forest

    NASA Astrophysics Data System (ADS)

    Leitner, Sonja; Zimmermann, Michael; Bockholt, Jan; Schartner, Markus; Brugner, Paul; Holtermann, Christian; Zechmeister-Boltenstern, Sophie

    2014-05-01

    Climate change research predicts that both frequency and intensity of weather extremes such as long drought periods and heavy rainfall events will increase in mid Europe over the next decades. Soil moisture is one of the major factors controlling microbial soil processes, and it has been widely agreed that feedback effects between altered precipitation and changed soil fluxes of the greenhouse gases CO2, CH4 and N2O could intensify climate change. In a field experiment in an Austrian beech forest, we established a precipitation manipulation experiment, which will be conducted for 3 years. We use roofs to exclude rainfall from reaching the forest soil and simulate drought periods, and a sprinkler system to simulate heavy rainfall events. We applied repeated dry-wet cycles in two intensities: one treatment received 6 cycles of 1 month drought followed by 75mm irrigation within 2 hours, and a parallel treatment received 3 cycles of 2 months drought followed by 150mm irrigation within 3 hours. We took soil samples 1 day before, 1 day after and 1 week after rewetting events and analyzed them for soil nutrients and extracellular enzyme activities. Soil fluxes of CO2, N2O and CH4 were constantly monitored with an automated flux chamber system, and environmental parameters were recorded via dataloggers. In addition, we determined fluxes and nutrient concentrations of bulk precipitation, throughfall, stemflow, litter percolate and soil water. Next we plan to analyze soil microbial community composition via PLFAs to investigate microbial stress resistance and resilience, and we will use ultrasonication to measure soil aggregate stability and protection of soil organic matter in stressed and control plots. The results of the first year show that experimental rainfall manipulation has influenced soil extracellular enzymes. Potential phenoloxidase activity was significantly reduced in stressed treatments compared to control plots. All measured hydrolytic enzymes (cellulase

  18. Isotopic composition of Antarctic Dry Valley nitrate: Implications for NOy sources and cycling in Antarctica

    USGS Publications Warehouse

    Michalski, G.; Bockheim, J.G.; Kendall, C.; Thiemens, M.

    2005-01-01

    Nitrates minerals from the Dry Valleys of Antarctica have been analyzed for their oxygen and nitrogen isotopic compositions. The 15N was depleted with ??15N values ranging from -9.5 to -26.2???, whereas the 17O and 18O isotopes were highly enriched (with excess 17O) with ?? 18O values spanning 62-76??? and ?? 17O values from 28.9 to 32.7???. These are the largest 17O enrichments observed in any known mineral. The oxygen isotopes indicate that nitrate is from a combination of tropospheric transport of photochemically produced HNO3 and HNO3 formed in the stratosphere. Copyrigbt 2005 by the American Geophysical Union.

  19. The Effect of Limited Diffusion and Wet-Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids.

    PubMed

    Higgs, Paul G

    2016-01-01

    A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction. PMID:27338479

  20. The Effect of Limited Diffusion and Wet–Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids

    PubMed Central

    Higgs, Paul G.

    2016-01-01

    A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction. PMID:27338479

  1. Modeling the grazing effect on dry grassland carbon cycling with modified Biome-BGC grazing model

    NASA Astrophysics Data System (ADS)

    Luo, Geping; Han, Qifei; Li, Chaofan; Yang, Liao

    2014-05-01

    Identifying the factors that determine the carbon source/sink strength of ecosystems is important for reducing uncertainty in the global carbon cycle. Arid grassland ecosystems are a widely distributed biome type in Xinjiang, Northwest China, covering approximately one-fourth the country's land surface. These grasslands are the habitat for many endemic and rare plant and animal species and are also used as pastoral land for livestock. Using the modified Biome-BGC grazing model, we modeled carbon dynamics in Xinjiang for grasslands that varied in grazing intensity. In general, this regional simulation estimated that the grassland ecosystems in Xinjiang acted as a net carbon source, with a value of 0.38 Pg C over the period 1979-2007. There were significant effects of grazing on carbon dynamics. An over-compensatory effect in net primary productivity (NPP) and vegetation carbon (C) stock was observed when grazing intensity was lower than 0.40 head/ha. Grazing resulted in a net carbon source of 23.45 g C m-2 yr-1, which equaled 0.37 Pg in Xinjiang in the last 29 years. In general, grazing decreased vegetation C stock, while an increasing trend was observed with low grazing intensity. The soil C increased significantly (17%) with long-term grazing, while the soil C stock exhibited a steady trend without grazing. These findings have implications for grassland ecosystem management as it relates to carbon sequestration and climate change mitigation, e.g., removal of grazing should be considered in strategies that aim to increase terrestrial carbon sequestrations at local and regional scales. One of the greatest limitations in quantifying the effects of herbivores on carbon cycling is identifying the grazing systems and intensities within a given region. We hope our study emphasizes the need for large-scale assessments of how grazing impacts carbon cycling. Most terrestrial ecosystems in Xinjiang have been affected by disturbances to a greater or lesser extent in the past

  2. The impacts of drying and rewetting cycles on potential methanogenesis in wetland soils

    NASA Astrophysics Data System (ADS)

    Kannenberg, S.; Ludwig, S.; Nelson, L.; Rich, H.; Spawn, S.; Porterfield, J.; Schade, J. D.

    2012-12-01

    Wetlands are currently the world's largest natural emitter of methane, a greenhouse gas that is over 20 times more effective at trapping heat than carbon dioxide. The magnitude of expansion and contraction of wetlands is likely to increase in response to greater severity of precipitation and drought events predicted by climate change models. Increased severity of precipitation and drought events will result in greater variability in size and ephemerality of wetlands. One possible outcome of these size fluctuations is the increase in the anoxic areas preferred by methanogens. Thus, it is becoming increasingly important to discover how production of methane may change as conditions vary. Our objective was to investigate how wetland dynamics, including variability in size and ephemerality, affect methanogenesis and influence the underlying microbial community. We sampled soil from three wetlands of differing ephemerality on the St. Olaf Natural Lands. We measured water and KCl-extractable NO3 and NH4 and used chloroform-fumigation direct-extraction (CFDE) to estimate microbial biomass in each soil sample. Subsamples of each core were incubated in bottles under anoxic conditions in the dark to measure rate of methane production. Bottles were incubated for 9 weeks and headspace samples were collected after 2, 24, and 48 hours and 1 week, and then weekly thereafter. Headspace samples were analyzed for CH4 to calculate rates of methanogenesis. The rate of methane production over the first 48 hours was positively correlated with soil moisture, and negatively correlated with nitrate levels. At the end of the incubation period, methane production was not related to moisture and nitrate, and was positively correlated with soil organic matter. In addition, we observed a lag time before the onset of significant methane flux, followed by a rapid increase in concentration. This lag time was shorter in wet soils than in dry soils. These data suggest that wet, low-nitrate soils

  3. The repeated drying-wetting and freezing-thawing cycles affect only the active pool of soil organic matter

    NASA Astrophysics Data System (ADS)

    Semenov, Vyacheslav; Zinyakova, Natalya; Tulina, Anastasiya

    2016-04-01

    The decrease in the content of soil organic carbon, particularly in active form, is one of the major problems of the 21st century, which is closely related to the disturbance of the biogeochemical carbon cycle and to the increase in the emission of carbon dioxide into the atmosphere. The main reasons for the SOM losses are the surplus of the SOM active pool losses due to mineralization, erosion, and infiltration over the input of fresh organic matter to the soil, as well as the changes in the soil conditions and processes due to natural and anthropogenic disturbing impacts. Experiments were carried out with mixed samples from the upper layers of soddy-podzolic soil, gray forest soil, and typical chernozems. Soil samples as controls were incubated after wetting for 150 days. The dynamics and cumulative production of C-CO2 under stable temperature (22°C) and moisture conditions were determined; the initial content of potentially mineralizable organic matter (C0) in the soil at the beginning of the incubation was then calculated to use these data as the control. Other soil samples were exposed in flasks to the following successive treatments: wetting →incubation → freezing → thawing → incubation →drying. Six repeated cycles of disturbing impacts were performed for 140 days of the experiment. After six cycles, the soil samples were incubated under stable temperature and moisture conditions for 150 days. The wetting of dried soils and the thawing of frozen soils are accompanied by the pulsed dynamics of the C-CO2 production with an abrupt increase in the rate of the C-CO2 emission within several days by 2.7-12.4 and 1.6-2.7 times, respectively, compared to the stable incubation conditions. The rate of the C-CO2 production pulses under each subsequent impact decreased compared to the preceding one similarly for all studied soils, which could be due to the depletion in potentially mineralizable soil organic matter (C0). The cumulative extra C-CO2 production by

  4. Sun-dried raisins are a cost-effective alternative to Sports Jelly Beans in prolonged cycling.

    PubMed

    Rietschier, Helena L; Henagan, Tara M; Earnest, Conrad P; Baker, Birgitta L; Cortez, Cory C; Stewart, Laura K

    2011-11-01

    The purpose of this study was to examine the effects of a natural carbohydrate (CHO) source in the form of sun-dried raisins (SDRs) vs. Sports Jelly Beans™ (SJBs) on endurance performance in trained cyclists and triathletes. Ten healthy men (18-33 years) completed 1 water-only acclimatization exercise trial and 2 randomized exercise trials administered in a crossover fashion. Each trial consisted of a 120-minute constant-intensity glycogen depletion period followed by a 10-km time trial (TT). During each experimental trial, participants consumed isocaloric amounts of SDRs or SJBs in 20-minute intervals. Measurements included time to complete 10-km TT, power output during 10-km TT, blood glucose levels and respiratory exchange ratio during glycogen depletion period, rate of perceived exertion (RPE), 'flow' questionnaire responses, and a hedonic (i.e., pleasantness) sensory acceptance test. There were no significant differences in endurance performance for TT time (SDRs vs. SJBs, 17.3 ± 0.4 vs. 17.3 ± 0.4 seconds) or power (229.3 ± 13.0 vs. 232.0 ± 13.6 W), resting blood glucose levels (5.8 ± 04 mmol·L(-1) for SDRs and 5.4 ± 0.2 mmol·L(-1) for SJBs), RPE, or flow experiences between SDR and SJB trials. However, the mean sensory acceptance scores were significantly higher for the SDRs compared to the SJBs (50.7 ± 1.7 vs. 44.3 ± 2.7). Consuming SDRs or SJBs during 120 minutes of intense cycling results in similar subsequent TT performances and are equally effective in maintaining blood glucose levels during exercise. Therefore, SDRs are a natural, pleasant, cost-effective CHO alternative to commercial SJBs that can be used during moderate- to high-intensity endurance exercise. PMID:21881533

  5. Modeling the dry-weather tidal cycling of fecal indicator bacteria in surface waters of an intertidal wetland.

    PubMed

    Sanders, Brett F; Arega, Feleke; Sutula, Martha

    2005-09-01

    Recreational water quality at beaches in California and elsewhere is often poor near the outlets of rivers, estuaries, and lagoons. This condition has prompted interest in the role of wetlands in modulating surface water concentrations of fecal indicator bacteria (FIB), the basis of water quality standards internationally. A model was developed and applied to predict the dry-weather tidal cycling of FIB in Talbert Marsh, an estuarine, intertidal wetland in Huntington Beach, California, in response to loads from urban runoff, bird feces, and resuspended sediments. The model predicts the advection, dispersion and die-off of total coliform, Escherichia coli, and enterococci using a depth-integrated formulation. We find that urban runoff and resuspension of contaminated wetland sediments are responsible for surface water concentrations of FIB in the wetland. Model predictions show that urban runoff controls surface water concentrations at inland sites and sediment resuspension controls surface water concentrations near the mouth. Direct wash-off of bird feces into the surface water is not a significant contributor, although bird feces can contribute to the sediment bacteria load. The key parameters needed to accurately predict FIB concentrations, using a validated hydrodynamic model, are: the load due to urban runoff, sediment erodibility parameters, and sediment concentrations and surface water die-off rates of enteric bacteria. In the present study, literature values for sediment erodibility and water column die-off rates are used and average concentrations of FIB are predicted within 1/2 log unit of measurements. Total coliform are predicted more accurately than E. coli or enterococci, both in terms of magnitude and tidal variability. Since wetland-dependent animals are natural sources of FIB, and FIB survive for long periods of time and may multiply in wetland sediments, these results highlight limitations of FIB as indicators of human fecal pollution in and near

  6. Carbon and nitrogen cycle dynamics during forest regrowth in the dry tropical Miombo Woodlands of western Tanzania

    NASA Astrophysics Data System (ADS)

    Mayes, Marc; Melillo, Jerry; Mustard, John; Neill, Christopher; Nyadzi, Gerson

    2015-04-01

    Extensive regions of dry tropical forests, such as the Miombo woodlands of sub-Saharan Africa, are experiencing high rates of both deforestation and forest regrowth on abandoned agricultural lands. Changes in the cycles of key elements such as carbon (C) and nitrogen (N) in the regrowing woodlands are not well understood. This study examines the plant and soil C and N dynamics along a chronosequence of regrowing Miombo woodland sites in western Tanzania following abandonment from cultivation. Our primary goals were to address two questions: (1) what are the timescales over which aboveground tree C stocks recover and soil mineral N stocks change during regrowth; (2) when, and/or to what degree, do tree C stocks and soil mineral N reach conditions of mature forests at decadal timescales? We established a chronosequence of 18 sites ranging in age from 3 to >40 years since abandonment. At each site, we conducted tree surveys and made measurements to quantify the aboveground tree C stocks using multiple sets of Miombo-specific allometric equations. In addition, we sampled soils at each site to a depth of 100 cm, and determined total and mineral N standing stocks. We also conducted short-term soil incubations to determine nitrogen mineralization potentials for the surface soils at each site. Aboveground tree C stocks ranged from 0.4 ± 0.1 Mg C ha-1 for 3-4 year sites (n = 3) to 27.2 ± 5.2 Mg C ha-1 (n = 3) for 30-40 year sites, and were 44.5 ± 7.4 Mg C ha-1 for mature forest sites (n = 6) . Annualized rates of aboveground tree C stock changes (0.68 - 0.89 Mg C ha-1 yr-1) were comparable to the few published for Miombo forests. However, tree C stocks of regrowth sites between 10 - 24 years (5.2 ± 1.1 Mg C ha -1 (n=3)) were much lower than those reported at similarly aged sites in other comparable studies. Across this study's chronosequence, only the regrowth sites older than three decades (30-40 year sites) had C stocks approaching those of mature forests. Further

  7. Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests.

    PubMed

    Waring, Bonnie G; Adams, Rachel; Branco, Sara; Powers, Jennifer S

    2016-01-01

    Rates of ecosystem nitrogen (N) cycling may be mediated by the presence of ectomycorrhizal fungi, which compete directly with free-living microbes for N. In the regenerating tropical dry forests of Central America, the distribution of ectomycorrhizal trees is affected by succession and soil parent material, both of which may exert independent influence over soil N fluxes. In order to quantify these interacting controls, we used a scale-explicit sampling strategy to examine soil N cycling at scales ranging from the microsite to ecosystem level. We measured fungal community composition, total and inorganic N pools, gross proteolytic rate, net N mineralization and microbial extracellular enzyme activity at multiple locations within 18 permanent plots that span dramatic gradients of soil N concentration, stand age and forest composition. The ratio of inorganic to organic N cycling was correlated with variation in fungal community structure, consistent with a strong influence of ectomycorrhiza on ecosystem-scale N cycling. However, on average, > 61% of the variation in soil biogeochemistry occurred within plots, and the effects of forest composition were mediated by this local-scale heterogeneity in total soil N concentrations. These cross-scale interactions demonstrate the importance of a spatially explicit approach towards an understanding of controls on element cycling. PMID:26390155

  8. Priming effect of (13)C-labelled wheat straw in no-tillage soil under drying and wetting cycles in the Loess Plateau of China.

    PubMed

    Liu, Enke; Wang, Jianbo; Zhang, Yanqing; Angers, Denis A; Yan, Changrong; Oweis, Theib; He, Wenqing; Liu, Qin; Chen, Baoqing

    2015-01-01

    The objectives of this study were to determine the effects of drying and wetting (DW) cycles on soil organic carbon (SOC) mineralisation and on the priming effect (PE) induced by the addition of (13)C-labelled wheat straw to long-term no-tillage (NT) and conventional-tillage (CT) soils. We observed that the SOC mineralisation rate in rewetted soils was greater than that in soils that were kept at constant water content. The proportion of CO2 derived from the straw declined dramatically during the first 10 days. The priming direction was first positive, and then became slightly negative. The PE was higher under DW cycles than under constant water content. There was no significant effect of the tillage system on the SOC mineralisation rate or PE. The data indicate that the DW cycles had a significant effect on the SOC mineralisation rate and on the PE, demonstrating a positive combined effect between wheat straw and moisture fluctuations. Further research is needed to study the role of microbial communities and C pools in affecting the SOC mineralisation response to DW cycles. PMID:26345303

  9. Priming effect of 13C-labelled wheat straw in no-tillage soil under drying and wetting cycles in the Loess Plateau of China

    PubMed Central

    Liu, Enke; Wang, Jianbo; Zhang, Yanqing; Angers, Denis A.; Yan, Changrong; Oweis, Theib; He, Wenqing; Liu, Qin; Chen, Baoqing

    2015-01-01

    The objectives of this study were to determine the effects of drying and wetting (DW) cycles on soil organic carbon (SOC) mineralisation and on the priming effect (PE) induced by the addition of 13C-labelled wheat straw to long-term no-tillage (NT) and conventional-tillage (CT) soils. We observed that the SOC mineralisation rate in rewetted soils was greater than that in soils that were kept at constant water content. The proportion of CO2 derived from the straw declined dramatically during the first 10 days. The priming direction was first positive, and then became slightly negative. The PE was higher under DW cycles than under constant water content. There was no significant effect of the tillage system on the SOC mineralisation rate or PE. The data indicate that the DW cycles had a significant effect on the SOC mineralisation rate and on the PE, demonstrating a positive combined effect between wheat straw and moisture fluctuations. Further research is needed to study the role of microbial communities and C pools in affecting the SOC mineralisation response to DW cycles. PMID:26345303

  10. Using Multiple Tracer Approaches to Investigate the Influence of Stream-Groundwater Exchange on Biogeochemical Cycling in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Gooseff, M. N.; Bernzott, E.; McKnight, D. M.; Lyons, W. B.

    2012-04-01

    Streams in the McMurdo Dry Valleys of Antarctica are connected to extensive hyporheic zones through which stream water exchanges during the 10-12 week flow season. We have used a variety of study designs and techniques to determine how hyporheic exchange influences biogeochemical cycling in these glacial meltwater streams. Synoptic sampling campaigns and subsequent simulation of major ion concentration changes downstream have provided evidence that hyporheic exchange is responsible for the very high chemical weathering rates we observe in these streams. Data from stream tracer experiments, including nutrient additions, and subsequent transport modeling have indicated that nitrogen and phosphorous uptake occur both in the channel and within the hyporheic zone, under enriched nutrient conditions. Furthermore, these experiments indicate incomplete denitrification in the algal mats that cover these streambeds. Long timescale (i.e. on the order of weeks) hyporheic exchange has been observed using stable isotopes as a natural tracer of exchange and mixing of surface and hyporheic waters. We have also recently made use of high temporal frequency electrical conductivity measurements from glacier sources to stream outflows to determine the intensity of hyporheic exchange in theses streams continuously. Our findings from these different approaches indicate that Dry Valley streams are intimately linked with their hyporheic zones, which are hot spots for biogeochemical cycling within this desert landscape.

  11. Understanding the Basin-Wide Impact of Agricultural Irrigation on the Water Cycle in Dry Inland Areas: An Integrated Modeling Approach

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Tian, Y.; Wu, B.; Wu, X.; Li, J.; Zheng, C.; Liu, J.

    2014-12-01

    Irrigation is indispensable to the agriculture in dry inland river basins, and may significantly alter the regional water cycle which is often featured by complicated surface water-groundwater (SW-GW) interaction. Although field-scale processes of irrigation water are clearly understood, the hydrological impact of irrigation at a large basin scale has not well examined. It poses a challenge to the water resources management. Our studies presented a modeling approach to address this challenge. GSFLOW, an integrated SW-GW model, was improved to represent irrigation practices in the model simulation, and applied to the HeiHe River Basin (HRB), the second largest inland river basin in China. The mid-stream area of HRB is a semi-arid region with extensive oasis agriculture, typical of western China. A series of studies have been conducted. First, the model was applied to fuse the limited hydrological observations in the area and generate a coherent understanding of the regional water cycle. Spatially and temporally detailed information on the impact of irrigation was then achieved. Second, an innovative optimization approach, coupling the Support Vector Machine (SVM) and SCE-UA algorithms, was proposed for the complex model. Allocation of surface water and groundwater for the irrigation was optimized under different management scenarios. The optimization results not only helped understand the hydrological processes, but provided insights into the water resources management. Third, the Probabilistic Collocation Method (PCM) was implemented to systematically address the modeling uncertainty. Spatial variation and temporal dynamics of the uncertainty associated with the irrigation practice in this area were revealed. The uncertainty results shed light on further data collection and model improvement. Overall, our study demonstrated the applicability and significant value of the integrated modeling approach in understanding the basin-wide impact of irrigation on the water

  12. Dynamic effects of wet-dry cycles and crust formation on the saturated hydraulic conductivity of surface soils in the constructed Hühnerwasser ("Chicken Creek") catchment

    NASA Astrophysics Data System (ADS)

    Hinz, Christoph; Schümberg, Sabine; Kubitz, Anita; Frank, Franzi; Cheng, Zhang; Nanu Frechen, Tobias; Pohle, Ina

    2016-04-01

    Highly disturbed soils and substrates used in land rehabilitation undergo rapid changes after the first wetting events which in turn can lead to ecosystem degradation. Such changes were detected during the early development of the constructed Hühnerwasser ("Chicken Creek") catchment in Lusatia, Germany. Surface substrates consisting of quaternary sandy sediments formed surface seals during the first rainfall events leading to reduced infiltration and substantially increased surface runoff. Subsequently biological soil crusts formed and stabilised the surface. The aim of this study is to investigate the factors that cause the hydraulic conductivity to decrease using undisturbed and disturbed soil samples. Based on the hypothesis that physical and biological crusts lower the hydraulic conductivity, the first set of experiments with undisturbed soil cores from the Hühnerwasser catchment were carried out to measure the saturated hydraulic conductivity using the constant head method. Measurements were done with intact cores and repeated after the surface crust was removed. As the quaternary glacial sediments tend to display hard setting behaviour, we further hypothesised that the mobilisation of fine particles within the cores lead to pore clogging and that wet-dry cycles will therefore decrease hydraulic conductivity. A second set of experiments using the same methodology consisted of five repeated measurements of hydraulic conductivity after each drying cycle. These measurements were done with undisturbed core samples as well as repacked cores in order to assess how dry packing affects the dynamics of the hydraulic conductivity somewhat similar to the situation during the first wetting after completion of the catchment construction. For all experiments, the temporal evolution of hydraulic conductivity was measured and the turbidity of the effluent was recorded. The results clearly demonstrated that the substrate is highly unstable. The first set of experiments

  13. Dry Mouth

    MedlinePlus

    ... of this page please turn Javascript on. Dry Mouth What Is Dry Mouth? Dry mouth is the feeling that there is ... when a person has dry mouth. How Dry Mouth Feels Dry mouth can be uncomfortable. Some people ...

  14. Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth.

    PubMed

    Forsythe, Jay G; Yu, Sheng-Sheng; Mamajanov, Irena; Grover, Martha A; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Hud, Nicholas V

    2015-08-17

    Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α-amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α-hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α-hydroxy acids and α-amino acids form depsipeptides-oligomers with a combination of ester and amide linkages-in model prebiotic reactions that are driven by wet-cool/dry-hot cycles. Through a combination of ester-amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long-standing hypothesis that peptides might have arisen from ester-based precursors. PMID:26201989

  15. Moving-bed gasification - combined-cycle control study. Volume 1: results and conclusions, Case 1 - air-blown dry-ash operation. Final report

    SciTech Connect

    Ahner, D.J.; Brower, A.S.; Dawes, M.H.; Patel, A.S.

    1981-03-01

    A simulation study has been conducted to investigate the inherent process dynamics and required control strategies for an integrated coal gasification/combined cycle (GCC) power plant to operate successfully under load-changing conditions to meet power system requirements. The simulated GCC plant configuration is similar to the flowsheet developed in earlier EPRI economic studies (RP239), based on an air-blown, dry-ash, moving-bed gasifier of the Lurgi-type. A following GCC plant control study will be based on a Lurgi-type gasifier modified for oxygen-blown, slagging operations such as that being developed by British Gas Corporation. A large ditial computer simulation model of the GCC plant operating on a large utility power system network was developed to examine alternate plant control strategies. Gas turbine-lead and gasifier-lead control modes were evaluated with respect to power system requirements for daily load following, tie-line flow regulation with thermal backup, and frequency regulation. Inherent features of the gasifier led to unique process dynamics for the GCC plant. Sizeable transients were observed during load-changing operations, both in the fuel process and the steam system. However, the plant compensated effectively for such transients with a modified gas turbine-lead control strategy, by making use of fast-responding gas turbine controls and the large inherent volume of the fuel process. The results verify the capability of the GCC plant to operate with the fuel process closely integrated with the combined cycle plant under rapidly changing conditions. Furthermore, a GCC plant control strategy was developed which can successfully meet power sytem requirements within fuel system limitations, allowing an overall plant response rate of four (4) percent per minute.

  16. Dry hair

    MedlinePlus

    ... or using harsh soaps or alcohols Excessive blow-drying Dry air Menkes kinky hair syndrome Malnutrition Underactive ... or twice a week Add conditioners Avoid blow drying and harsh styling products

  17. Dry hair

    MedlinePlus

    Some causes of dry hair are: Anorexia nervosa Excessive hair washing, or using harsh soaps or alcohols Excessive blow-drying Dry air Menkes kinky hair syndrome Malnutrition Underactive parathyroid ( ...

  18. Dry Mouth

    MedlinePlus

    Dry mouth is the feeling that there is not enough saliva in your mouth. Everyone has a dry mouth once in a while - if they are nervous, ... or under stress. But if you have a dry mouth all or most of the time, it can ...

  19. Dry Mouth

    MedlinePlus

    Dry mouth is the feeling that there is not enough saliva in your mouth. Everyone has a dry mouth once in a while - if they are nervous, ... under stress. But if you have a dry mouth all or most of the time, it can ...

  20. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin.

    PubMed

    Maliki, Raphiou; Sinsin, Brice; Floquet, Anne; Cornet, Denis; Malezieux, Eric; Vernier, Philippe

    2016-01-01

    Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders' traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0-10 and 10-20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems. PMID:27446635

  1. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin

    PubMed Central

    Sinsin, Brice; Floquet, Anne; Cornet, Denis; Malezieux, Eric; Vernier, Philippe

    2016-01-01

    Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders' traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0–10 and 10–20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems. PMID:27446635

  2. Dry socket

    MedlinePlus

    ... care for the dry socket at home: Take pain medicine and antibiotics as directed Apply a cold pack to the outside of your jaw Carefully rinse the dry socket as directed by your dentist If taking antibiotics, avoid smoking or using tobacco and alcohol

  3. Use of a sub-gasket and soft gas diffusion layer to mitigate mechanical degradation of a hydrocarbon membrane for polymer electrolyte fuel cells in wet-dry cycling

    NASA Astrophysics Data System (ADS)

    Ishikawa, Hiroshi; Teramoto, Takeshi; Ueyama, Yasuhiro; Sugawara, Yasushi; Sakiyama, Yoko; Kusakabe, Masato; Miyatake, Kenji; Uchida, Makoto

    2016-09-01

    The mechanical durability of hydrocarbon (HC) membranes, used for polymer electrolyte fuel cells (PEFCs), was evaluated by the United States Department of Energy (USDOE) stress protocol involving wet-dry cycling, and the degradation mechanism is discussed. The HC membrane ruptured in the edge region of the membrane electrode assembly (MEA) after 300 cycles due to a concentration of the mechanical stress. Post-test analysis of stress-strain measurements revealed that the membrane mechanical strain decreased more than 80% in the edge region of the MEA and about 50% in the electrode region, compared with the pristine condition. Size exclusion chromatography (SEC) indicated that the average molecular weight of the HC polymer increased slightly, indicating some cross-linking, while the IEC decreased slightly, indicating ionomer degradation. As a result of two types of modifications, a sub-gasket (SG) and a soft gas diffusion layer (GDL) in the MEA edge region, the mechanical stress decreased, and the durability increased, the membrane lasting more than 30,000 cycles without mechanical failure.

  4. Peat porewater chloride concentration profiles in the Everglades during wet/dry cycles from January 1996 to June 1998: Field measurements and theoretical analysis

    USGS Publications Warehouse

    Reddy, M.M.; Reddy, M.B.; Kipp, K.L.; Burman, A.; Schuster, P.; Rawlik, P.S., Jr.

    2008-01-01

    Water quality is a key aspect of the Everglades Restoration Project, the largest water reclamation and ecosystem management project proposed in the United States. Movement of nutrients and contaminants to and from Everglades peat porewater could have important consequences for Everglades water quality and ecosystem restoration activities. In a study of Everglades porewater, we observed complex, seasonally variable peat porewater chloride concentration profiles at several locations. Analyses and interpretation of these changing peat porewater chloride concentration profiles identifies processes controlling conservative solute movement at the peat-surface water interface, that is, solutes whose transport is minimally affected by chemical and biological reactions. We examine, with an advection-diffusion model, how alternating wet and dry climatic conditions in the Florida Everglades mediate movement of chloride between peat porewater and marsh surface water. Changing surface water-chloride concentrations alter gradients at the interface between peat and overlying water and hence alter chloride flux across that interface. Surface water chloride concentrations at two frequently monitored sites vary with marsh water depth, and a transfer function was developed to describe daily marsh surface water chloride concentration as a function of marsh water depth. Model results demonstrate that porewater chloride concentrations are driven by changing surface water chloride concentrations, and a sensitivity analysis suggests that inclusion of advective transport in the model improves the agreement between the calculated and the observed chloride concentration profiles. Copyright ?? 2007 John Wiley & Sons, Ltd.

  5. Ester-Mediated Amide Bond Formation Driven by Wet–Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth**

    PubMed Central

    Forsythe, Jay G; Yu, Sheng-Sheng; Mamajanov, Irena; Grover, Martha A; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Hud, Nicholas V

    2015-01-01

    Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α-amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α-hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α-hydroxy acids and α-amino acids form depsipeptides—oligomers with a combination of ester and amide linkages—in model prebiotic reactions that are driven by wet–cool/dry–hot cycles. Through a combination of ester–amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long-standing hypothesis that peptides might have arisen from ester-based precursors. PMID:26201989

  6. Phosphorus Cycling in an Extreme Environment: Grain-scale Investigation of Apatite Weathering in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Heindel, R. C.; Spickard, A. M.; Virginia, R. A.

    2014-12-01

    Phosphorus (P) availability varies considerably throughout Taylor Valley, Antarctica. As an essential nutrient, P content and weathering have significant implications for the diversity and functioning of biota in soils, streams, and lakes. In upper Taylor Valley (Bonney Basin), soils have much lower total P content than in lower Taylor Valley (Fryxell Basin), 0.4 versus 1.5 g/kg soil. We hypothesize that this striking contrast is related to differences in glacial drift source and weathering rates. We investigated the primary source of mineral P (apatite) and the grain-scale weathering processes resulting in the release of P into streams and adjacent soils in the Bonney and Fryxell Basins. Physical erosion, chemical weathering, and biological weathering all leave distinctive patterns on the surface of individual apatite grains. By inspecting these surfaces, we determined the relative importance of weathering processes for P cycling. Apatite grains were separated from loose glacial drift using heavy-liquid and magnetic techniques. Individual grains were analyzed using SEM-EDS. We observe significant differences between the grains collected from the two basins. Grains from the Bonney Basin are more elongated and have a higher proportion of crystal faces. These results suggest that rates of physical weathering have been lower in the Bonney Basin than in the Fryxell Basin. In addition, we will present results on grain surface morphologies, indicative of chemical and biological weathering. As the climate warms, more liquid water is expected to be available within the Taylor Valley system. This increase in water will likely lead to higher rates of P weathering, potentially altering nutrient limitation in this environment. Understanding how the P cycle will respond to a changing climate is contingent on understanding the current weathering processes and controls on P availability.

  7. Process-based modeling of coupled energy and water cycle under dry tropical conditions: an experiment at local scale in the cultivated Sahel (South-West Niger)

    NASA Astrophysics Data System (ADS)

    Velluet, C.; Demarty, J.; Cappelaere, B.; Braud, I.; Boulain, N.; Charvet, G.; Chazarin, J.-P.; Mainassara, I.; Boucher, M.; Issoufou, H. B.-A.; Ibrahim, M.; Oi, M.; Ramier, D.; Benarrosh, N.; Yahou, H.

    2012-04-01

    In the dry tropics in general and, particularly in the African Sahel, agro-ecosystems and hydrosystems are very sensitive to climate variability and land management. In turn, it has been shown that soil moisture, vegetation and surface fluxes produce substantial feedback effects on rainfall-producing atmospheric convection. Therefore, it is of prime importance to understand and to model the dynamics of the soil-plant-atmosphere continuum in response to contrasted meteorological and terrestrial conditions for this area. The objective of this study is to produce a process-based model of water and energy transfers in the soil and land-atmosphere interface over an entire 5-year period, at local scale, for the two main land cover types of South-West Niger: millet-crop and fallow savannah. A comprehensive dataset is available over that whole period in two such fields of the Wankama catchment, making it a rather unique asset for West Africa. This area is typical of the central Sahel conditions, with ~400-600 mm annual rainfall concentrated in the 4-5 months wet season, followed by the 7-8 months dry season. Soils are essentially sandy and prone to surface crusting, which induces a strong vertical contrast in hydrodynamic properties. The dataset used here includes 5 years of atmospheric forcing (rainfall, wind speed, sun and atmosphere radiation, air temperature and moisture) and validation variables (net radiation, turbulent fluxes and soil temperature and moisture profiles), recorded every 30 min. The seasonal course of vegetation phenology (LAI, height, biomass) and soil characteristics (particle size and density profiles) are also available. The SiSPAT (Simple Soil-Plant-Atmosphere Transfer, Braud et al., 1995) physically-based model is used for this study. It solves the mass and heat transfer system of equations in the soil, with vapour phase, coupled with a two-component (bare soil and one vegetation layer) water and energy budget at the surface-atmosphere interface

  8. century drying

    NASA Astrophysics Data System (ADS)

    Cook, Benjamin I.; Smerdon, Jason E.; Seager, Richard; Coats, Sloan

    2014-11-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twenty-first century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman-Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  9. Chemical Engineering Division fuel cycle programs. Quarterly progress report, April-June 1979. [Pyrochemical/dry processing; waste encapsulation in metal; transport in geologic media

    SciTech Connect

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1980-09-01

    For pyrochemical and dry processing materials development included exposure to molten metal and salt of Mo-0.5% Ti-0.07% Ti-0.01% C, Mo-30% W, SiC, Si/sub 2/ON/sub 2/, ZrB/sub 2/-SiC, MgAl/sub 2/O/sub 4/, Al/sub 2/O/sub 3/, AlN, HfB/sub 2/, Y/sub 2/O/sub 3/, BeO, Si/sub 3/N/sub 4/, nickel nitrate-infiltrated W, W-coated Mo, and W-metallized alumina-yttria. Work on Th-U salt transport processing included solubility of Th in liquid Cd, defining the Cd-Th and Cd-Mg-Th phase diagrams, ThO/sub 2/ reduction experiments, and electrolysis of CaO in molten salt. Work on pyrochemical processes and associated hardware for coprocessing U and Pu in spent FBR fuels included a second-generation computer model of the transport process, turntable transport process design, work on the U-Cu-Mg system, and U and Pu distribution coefficients between molten salt and metal. Refractory metal vessels are being service-life tested. The chloride volatility processing of Th-based fuel was evaluated for its proliferation resistance, and a preliminary ternary phase diagram for the Zn-U-Pu system was computed. Material characterization and process analysis were conducted on the Exportable Pyrochemical process (Pyro-Civex process). Literature data on oxidation of fissile metals to oxides were reviewed. Work was done on chemical bases for the reprocessing of actinide oxides in molten salts. Flowsheets are being developed for the processing of fuel in molten tin. Work on encapsulation of solidified radioactive waste in metal matrix included studies of leach rate of crystalline waste materials and of the impact resistance of metal-matrix waste forms. In work on the transport properties of nuclear waste in geologic media, adsorption of Sr on oolitic limestone was studied, as well as the migration of Cs in basalt. Fitting of data on the adsorption of iodate by hematite to a mathematical model was attempted.

  10. Dry cell battery poisoning

    MedlinePlus

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  11. Colorful drying.

    PubMed

    Lakio, Satu; Heinämäki, Jyrki; Yliruusi, Jouko

    2010-03-01

    Drying is one of the standard unit operations in the pharmaceutical industry and it is important to become aware of the circumstances that dominate during the process. The purpose of this study was to test microcapsulated thermochromic pigments as heat indicators in a fluid bed drying process. The indicator powders were manually granulated with alpha-lactose monohydrate resulting in three particle-size groups. Also, pellets were coated with the indicator powders. The granules and pellets were fluidized in fluid bed dryer to observe the progress of the heat flow in the material and to study the heat indicator properties of the indicator materials. A tristimulus colorimeter was used to measure CIELAB color values. Color indicator for heat detection can be utilized to test if the heat-sensitive API would go through physical changes during the pharmaceutical drying process. Both the prepared granules and pellets can be used as heat indicator in fluid bed drying process. The colored heat indicators give an opportunity to learn new aspects of the process at real time and could be exploded, for example, for scaling-up studies. PMID:20039220

  12. Dry Eye

    MedlinePlus

    ... surgery, called punctal cautery, is recommended to permanently close the drainage holes. The procedure helps keep the limited volume of tears on the eye for a longer period of time. In some patients with dry eye, supplements or dietary sources (such as tuna fish) of omega-3 fatty ...

  13. Carbon, nitrogen cycling and land cover changes during regrowth in African dry tropical forests: integrating perspectives from field and satellite data across a chronosequence in the Miombo Woodlands of western Tanzania

    NASA Astrophysics Data System (ADS)

    Mayes, M. T.; Melillo, J. M.; Mustard, J. F.; Neill, C.; Nyadzi, G.

    2015-12-01

    Seasonally dry tropical forests in Africa (SDTFs), such as forests in Miombo Woodlands, are experiencing high rates of deforestation, degradation and regrowth. Increasing proportions of forest are disturbed or composed of young regrowth stands (<40 yr), yet the degree and dynamics of how forest structure, biogeochemical and hydrological cycling recover with regrowth are poorly understood. Here, we examine how forest structure, carbon (C) and nitrogen (N) cycling change with regrowth following cultivation in forests of western Tanzania's Miombo. This work addresses 3 questions: (1) What are the timescales of aboveground tree C stock recovery and patterns of soil mineral N availability with regrowth; (2) How does N demand for tree leaf production compare to indicators of available mineral N in surface soils from young to mature forest sites; (3) How does canopy structure vary with regrowth and disturbance and scale to Landsat-style satellite data? We established a chronosequence of 18 sites with ages 3 to >40 years since abandonment. At each, we inventoried trees to quantify aboveground tree C stocks, sampled soils to 100 cm to measure C, total and mineral N (NH4+, NO3-), and surveyed canopy cover with point-line transects, spherical densiometer and photometric leaf area measures. We also conducted soil incubations to determine nitrogen mineralization potentials. Tree C stocks ranged from 0.4 ± 0.1 Mg C ha-1 for 3-4 year sites to 27.2 ± 5.2 Mg C ha-1 for 30-40 year sites, and were 44.5 ± 7.4 Mg C ha-1 for mature forest sites. Rates of aboveground tree C stock changes (0.78 - 0.89 Mg C ha-1 yr-1) were comparable to the few published for Miombo forests. However, tree C stocks at 10 - 24 year sites (5.2 ± 1.1 Mg C ha -1) were much lower than those reported in comparable studies. Only sites > 30-40 years had C stocks approaching mature forests. Further analyses will compare N dynamics from leaves and soil across the chronosequence, and relate them to the trends in

  14. Drying Thermoplastics

    NASA Technical Reports Server (NTRS)

    1976-01-01

    In searching for an improved method of removing water from polyester type resins without damaging the materials, Conair Inc. turned to the NASA Center at the University of Pittsburgh for assistance. Taking an organized, thorough look at existing technology before beginning research has helped many companies save significant time and money. They searched the NASA and other computerized files for microwave drying of thermoplastics. About 300 relevant citations were retrieved - eight of which were identified as directly applicable to the problem. Company estimates it saved a minimum of a full year in compiling research results assembled by the information center.

  15. Infrared Drying Parameter Optimization

    NASA Astrophysics Data System (ADS)

    Jackson, Matthew R.

    control system to ensure that prints continuously dry the same way. In addition to the repeatability study, experimenting with the feasibility of using single pass prints with repeatable performance would also be a worthwhile study. A single print pass will reduce cycle time, and will reduce ink consumption when compared with double pass prints.

  16. Dry Mouth or Xerostomia

    MedlinePlus

    ... or Xerostomia Request Permissions Print to PDF Dry Mouth or Xerostomia Approved by the Cancer.Net Editorial ... a dry mouth. Signs and symptoms of dry mouth The signs and symptoms of dry mouth include ...

  17. Solar drying in the Caribbean

    SciTech Connect

    Headley, O. )

    1992-03-01

    The United Nations Food and Agricultural Organisation (FAO) has estimated that a quarter of crops are lost through inadequate handling after harvesting. The use of solar dryers can reduce these losses and improve the quality of food. Oliver Headley of the University of the West Indies overviews a range of dryers developed in the Caribbean region. Solar dryers have been used in various parts of the Caribbean for the past eighteen years. The main types are: closed cycle dryers with separate flat plate collector; open cycle dryers with roof vanes against direct sunlight; open cycle dryers with rockbed heat storage units; open cycle dryers with chimneys for air circulation; wire basket dryers with flow through ventilation; barn roof collectors feeding packed bed dryers. During the dry season (January to April), mean daily insolation in a typical Caribbean island is about 25 MJ/m{sup 2}. With such an abundant resource, solar crop drying emerged as a preferred method for the preservation of perishable commodities. In territories without fossil fuel reserves solar energy is an obvious alternative since it does not involve expenditure of scarce foreign exchange. Research and development work in solar crop drying was conducted both at experimental sites in the University and in rural districts throughout the region. Several types of dryer were designed and tested.

  18. Self-protection in dry recycle technologies

    SciTech Connect

    Hannum, W.H.; Wade, D.; Stanford, G.

    1995-12-01

    In response to the INFCE conclusions, the U.S. undertook development of a new dry fuel cycle. Dry recycle processes have been demonstrated to be feasible. Safeguarding such fuel cycles will be dramatically simpler than the PUREX fuel cycle. At every step of the processes, the materials meet the {open_quotes}spent-fuel standard.{close_quotes} The scale is compatible with collocation of power reactors and their recycle facility, eliminating off-site transportation and storage of plutonium-bearing materials. Material diverted either covertly or overtly would be difficult (relative to material available by other means) to process into weapons feedstock.

  19. Cumulative ventilation air drying potential as an indication of dry mass content in wastewater sludge in a thin-layer solar drying facility

    NASA Astrophysics Data System (ADS)

    Krawczyk, Piotr

    2013-12-01

    Controlling low-temperature drying facilities which utilise nonprepared air is quite difficult, due to very large variability of ventilation air parameters - both in daily and seasonal cycles. The paper defines the concept of cumulative drying potential of ventilation air and presents experimental evidence that there is a relation between this parameter and condition of the dried matter (sewage sludge). Knowledge on current dry mass content in the dried matter (sewage sludge) provides new possibilities for controlling such systems. Experimental data analysed in the paper was collected in early 2012 during operation of a test solar drying facility in a sewage treatment plant in Błonie near Warsaw, Poland.

  20. Thermochemical cycles

    NASA Technical Reports Server (NTRS)

    Funk, J. E.; Soliman, M. A.; Carty, R. H.; Conger, W. L.; Cox, K. E.; Lawson, D.

    1975-01-01

    The thermochemical production of hydrogen is described along with the HYDRGN computer program which attempts to rate the various thermochemical cycles. Specific thermochemical cycles discussed include: iron sulfur cycle; iron chloride cycle; and hybrid sulfuric acid cycle.

  1. Drying temperature effects on fish dry mass measurements

    USGS Publications Warehouse

    Lantry, B.F.; O'Gorman, R.

    2007-01-01

    Analysis of tissue composition in fish often requires dry samples. Time needed to dry fish decreases as temperature is increased, but additional volatile material may be lost. Effects of 10??C temperature increases on percentage dry mass (%DM) were tested against 60??C controls for groups of lake trout Salvelinus namaycush, rainbow smelt Osmerus mordax, slimy sculpin Cottus cognatus, and alewife Alosa pseudoharengus. Lake trout %DMs were lower at greater temperatures, but not significantly different from 60??C controls. Rainbow smelt and slimy sculpin %DMs were lower at greater temperatures and differences were significant when test temperatures reached 90??C. Significant differences were not found in tests using alewives because variability in %DM was high between fish. To avoid inter-fish variability, 30 alewives were each dried successively at 60, 70, 80, and then 90??C and for all fish %DM declined at each higher temperature. In general, %DMs were lower at greater temperatures and after reaching a stable dry weight, fish did not lose additional mass if temperature remained constant. Results indicate that caution should be used when comparing dry mass related indices from fish dried at different temperatures because %DM was negatively related to temperature. The differences in %DM observed with rising temperature could account for substantial portions of the variability in reported energy values for the species tested. Differences in %DM means for the 60 vs. 80??C and 60 vs. 90??C tests for rainbow smelt and alewife could represent of from 8 to 38% of observed annual energy cycles for Lakes Ontario and Michigan.

  2. High-intensity drying processes: Impulse drying

    SciTech Connect

    Orloff, D.I.

    1989-05-01

    Impulse drying is an innovative process for drying paper that holds great promise for reducing the energy consumed during manufacture of paper and similar web products. Impulse drying occurs when a wet paper web passes through a press nip where one of the rolls is heated to a very high temperature. Steam generated by contact with the hot roll expands and displaces water from the sheet in a very efficient manner. The energy required for water removal is much lower than that required for conventional evaporative drying. Tests have been completed that elucidate the unique displacement mechanism of water removal in the impulse drying process. A pilot roll press has been designed, installed and used to examine impulse drying under conditions that simulate commercial press conditions. The results of this earlier work have been reported in three previous reports. During this report period October, 1987 to September, 1988, the pilot press was equipped with a second impulse drying roll to facilitate studies of surface uniformity in impulse dried paper. Studies have also been completed which examine the origins of sheet delamination that has been been encountered during impulse drying of certain heavyweight paper grades, and which investigate approaches to prevent delamination in these grades. Finally, an experimental plan has been formalized to examine impulse drying of lightweight grades which are candidates for early commercialization. 7 refs., 30 figs., 3 tabs.

  3. BIOMASS DRYING TECHNOLOGIES

    EPA Science Inventory

    The report examines the technologies used for drying of biomass and the energy requirements of biomass dryers. Biomass drying processes, drying methods, and the conventional types of dryers are surveyed generally. Drying methods and dryer studies using superheated steam as the d...

  4. Dry mouth during cancer treatment

    MedlinePlus

    Chemotherapy - dry mouth; Radiation therapy - dry mouth; Transplant - dry mouth; Transplantation - dry mouth ... Some cancer treatments and medicines can cause dry mouth. Symptoms you may have include: Mouth sores Thick ...

  5. Dry Mouth (Xerostomia)

    MedlinePlus

    ... Gum Disease TMJ Disorders Oral Cancer Dry Mouth Burning Mouth Tooth Decay See All Oral Complications of Systemic ... mouth trouble chewing, swallowing, tasting, or speaking a burning feeling in the mouth a dry feeling in the throat cracked lips ...

  6. Dry eye syndrome

    MedlinePlus

    ... of dry eyes include: Dry environment or workplace (wind, air conditioning) Sun exposure Smoking or second-hand ... NOT smoke and avoid second-hand smoke, direct wind, and air conditioning. Use a humidifier, especially in ...

  7. Dry Skin (Xerosis)

    MedlinePlus

    ... skin, which may bleed if severe. Chapped or cracked lips. When dry skin cracks, germs can get ... cause the skin to become dry, raw, and cracked. Swimming : Some pools have high levels of chlorine, ...

  8. Experimental study on drying kinetic of cassava starch in a pneumatic drying system

    NASA Astrophysics Data System (ADS)

    Suherman, Kumoro, Andri Cahyo; Kusworo, Tutuk Djoko

    2015-12-01

    The aims of this study are to present the experimental research on the drying of cassava starch in a pneumatic dryer, to describe its drying curves, as well as to calculate its thermal efficiency. The effects of operating conditions, namely the inlet air temperature (60-100 °C) and solid-gas flow rate ratio (Ms/Mg 0.1-0.3) were studied. Heat transfer is accomplished through convection mechanism in a drying chamber based on the principle of direct contact between the heated air and the moist material. During the drying process, intensive heat and mass transfer between the drying air and the cassava starch take place. In order to meet the SNI standards on solid water content, the drying process was done in two cycles. The higher the temperature of the drying air, the lower the water content of the solids exiting the dryer. Thermal efficiency of the 2nd cycle was found to be lower than the 1st cycle.

  9. Energy-efficient regenerative liquid desiccant drying process

    DOEpatents

    Ko, Suk M.; Grodzka, Philomena G.; McCormick, Paul O.

    1980-01-01

    This invention relates to the use of desiccants in conjunction with an open oop drying cycle and a closed loop drying cycle to reclaim the energy expended in vaporizing moisture in harvested crops. In the closed loop cycle, the drying air is brought into contact with a desiccant after it exits the crop drying bin. Water vapor in the moist air is absorbed by the desiccant, thus reducing the relative humidity of the air. The air is then heated by the used desiccant and returned to the crop bin. During the open loop drying cycle the used desiccant is heated (either fossil or solar energy heat sources may be used) and regenerated at high temperature, driving water vapor from the desiccant. This water vapor is condensed and used to preheat the dilute (wet) desiccant before heat is added from the external source (fossil or solar). The latent heat of vaporization of the moisture removed from the desiccant is reclaimed in this manner. The sensible heat of the regenerated desiccant is utilized in the open loop drying cycle. Also, closed cycle operation implies that no net energy is expended in heating drying air.

  10. High-intensity drying processes: Impulse drying

    SciTech Connect

    Orloff, D.I.

    1990-09-01

    Impulse drying is an innovative process for drying paper that holds great promise for reducing the energy consumed during the manufacture of paper and similar web products. Impulse drying occurs when a wet paper web passes through a press nip in which one of the rolls is heated to a high temperature. A steam layer adjacent to the heated surface grows and displaces water from the sheet in a very efficient manner. The energy required for water removal is very much less than that required for conventional evaporative drying. Hence, it has been projected that wide commercialization of impulse drying would result in at least a 10% industry-wide energy saving. This report covers work completed between October, 1988 and September, 1989. During this period, pilot press trails demonstrated that newsprint as well as linerboard experience delamination. Hence, the major focus of the research was the resolution of the delamination problem. In order to document potential process improvements, measurement methods were developed to quantify sheet delamination. Using these methods, low thermal diffusivity ceramic roll surfaces were shown to extend the range of impulse drying operating conditions while avoiding sheet delamination. As compared to steel surfaces, ceramics were found to provide significantly higher water volume without inducing sheet delamination. 46 figs., 4 tabs.

  11. Dry deposition velocities

    SciTech Connect

    Sehmel, G.A.

    1984-03-01

    Dry deposition velocities are very difficult to predict accurately. In this article, reported values of dry deposition velocities are summarized. This summary includes values from the literature on field measurements of gas and particle dry deposition velocities, and the uncertainties inherent in extrapolating field results to predict dry deposition velocities are discussed. A new method is described for predicting dry deposition velocity using a least-squares correlation of surface mass transfer resistances evaluated in wind tunnel experiments. 14 references, 4 figures, 1 table.

  12. The carbon dioxide cycle

    USGS Publications Warehouse

    James, P.B.; Hansen, G.B.; Titus, T.N.

    2005-01-01

    The seasonal CO2 cycle on Mars refers to the exchange of carbon dioxide between dry ice in the seasonal polar caps and gaseous carbon dioxide in the atmosphere. This review focuses on breakthroughs in understanding the process involving seasonal carbon dioxide phase changes that have occurred as a result of observations by Mars Global Surveyor. ?? 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  13. Design of drying chamber and biomass furnace for sun-biomass hybrid rice-drying machine

    NASA Astrophysics Data System (ADS)

    Satria, Dhimas; Haryadi, Austin, Ruben; Kurniawan, Bobby

    2016-03-01

    In most Asian countries, rice drying is carried out manually by exposing rice to sunlight. However, problem occurs when rain season comes. Lack of sunlight deters the drying process. This paper proposes a design of mechanical rice drying machine with hybrid sun-biomass energy source. Pahl & Beitz method, which consists of four steps process: function planning and clarification, design concept, design prototype, and design details; are used as design methodology. Based on design result and calculation, in this paper propose specifications for drying machine and biomass furnace. Drying chamber is a continuous flow system with pneumatic-conveyor as blower. This hybrid utilizes two types of energy sources, sun and biomass. The proposed machine has capacity of 500 kilograms per cycle using 455 Watt of energy, which is more efficient than ordinary heater. Biomass furnace utilizes heat transfer by means of arranging 64 pieces of stainless steel pipes of 0.65 diameters in parallel.

  14. Drying low rank coal and retarding spontaneous ignition

    SciTech Connect

    Bellow, E.J. Jr.; Bixel, J.C.; Heaney, W.F.; Yan, T.Y.

    1989-05-09

    A method is described of passivating and cooling heated dried coal comprising: (a) heating particulate coal to a temperature between about 190 and about 230/sup 0/F to dry to the desired level: and (b) coating the resulting heated particulate coal with an aqueous emulsion of a hydrocarbon selected from the group consisting of petroleum resid, light cycle oil, heavy cycle oil, clarified slurry oil, durene, asphaltenes, coal tar and coal tar pitch.

  15. Ambient Dried Aerogels

    NASA Technical Reports Server (NTRS)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  16. Dephosphorization when using DRI

    SciTech Connect

    2005-09-21

    The increase in high quality steel production in electric arc furnaces (EAFs) requires the use of scrap substitute materials, such as Direct Reduced Iron (DRI) and Hot Briquetted Iron (HBI). Although DRI and HBI products have lower copper and nickel contents than most scrap materials, they can contain up to ten times more phosphorus. This project, led by Carnegie Mellon University’s Center for Iron and Steelmaking Research, improves the understanding of how phosphorus behaves when DRI and HBI melt.

  17. Fragile cycles

    NASA Astrophysics Data System (ADS)

    Bonatti, Ch.; Díaz, L. J.

    We study diffeomorphisms f with heterodimensional cycles, that is, heteroclinic cycles associated to saddles p and q with different indices. Such a cycle is called fragile if there is no diffeomorphism close to f with a robust cycle associated to hyperbolic sets containing the continuations of p and q. We construct a codimension one submanifold of Diff(S×S) that consists of diffeomorphisms with fragile heterodimensional cycles. Our construction holds for any manifold of dimension ⩾4.

  18. Dry pressing technical ceramics

    SciTech Connect

    Lewis, W.A. Jr.

    1996-04-01

    Dry pressing of technical ceramics is a fundamental method of producing high-quality ceramic components. The goals of dry pressing technical ceramics are uniform compact size and green density, consistent part-to-part green density and defect-free compact. Dry pressing is the axial compaction of loosely granulated dry ceramic powders (< 3% free moisture) within a die/punch arrangement. The powder, under pressure, conforms to the specific shape of the punch faces and die. Powder compaction occurs within a rigid-walled die and usually between a top and bottom punch. Press configurations include anvil, rotary, multiple-punch and multiple-action.

  19. To Dry Or Not To Dry

    ERIC Educational Resources Information Center

    Oaks, Audrey E.

    1977-01-01

    Perhaps one of the most frustrating problems which confront many teachers is lack of adequate drying space or facilities for prints, paintings and three-dimensional art activities. Suggests requirements necessary for an adequate storage unit and how to construct one. (Author/RK)

  20. Indiana Corn Dry Mill

    SciTech Connect

    2006-09-01

    The goal of this project is to perform engineering, project design, and permitting for the creation and commercial demonstration of a corn dry mill biorefinery that will produce fuel-grade ethanol, distillers dry grain for animal feed, and carbon dioxide for industrial use.

  1. Tray Drying of Solids.

    ERIC Educational Resources Information Center

    Afacan, Artin; Masliyah, Jacob

    1984-01-01

    Describes a drying experiment useful in presenting the concept of simultaneous heat and mass transfer. Background information, equipment requirements, experimental procedures, and results are provided. The reasonably good agreement in the calculated rate of drying and that observed experimentally makes students feel confident in applying…

  2. Dry imaging cameras

    PubMed Central

    Indrajit, IK; Alam, Aftab; Sahni, Hirdesh; Bhatia, Mukul; Sahu, Samaresh

    2011-01-01

    Dry imaging cameras are important hard copy devices in radiology. Using dry imaging camera, multiformat images of digital modalities in radiology are created from a sealed unit of unexposed films. The functioning of a modern dry camera, involves a blend of concurrent processes, in areas of diverse sciences like computers, mechanics, thermal, optics, electricity and radiography. Broadly, hard copy devices are classified as laser and non laser based technology. When compared with the working knowledge and technical awareness of different modalities in radiology, the understanding of a dry imaging camera is often superficial and neglected. To fill this void, this article outlines the key features of a modern dry camera and its important issues that impact radiology workflow. PMID:21799589

  3. Packaged kiln dried firewood

    SciTech Connect

    Cutrara, A.

    1986-07-01

    A process is described for kiln drying firewood consisting of essentially uniform lengths of split firewood pieces, the process comprising splitting essentially uniform lengths of green tree logs to form firewood pieces, placing the firewood pieces in open mesh bags to provide a plurality of bags of firewood, placing the plurality of bags of green firewood pieces in a kiln drying oven, kiln drying the pieces at temperatures in excess of 150/sup 0/F. by moving heated air over the pieces until the pieces have an overall moisture content ranging from 15% up to 30% by weight, operating the kiln at a temperature below a level which would render the structural characteristics of the bag useless and removing the kiln dried firewood pieces in the plurality of bags from the kiln drying oven.

  4. Annotated Bibliography for Drying Nuclear Fuel

    SciTech Connect

    Rebecca E. Smith

    2011-09-01

    Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most value to the commercial industry and the U. S. Department of Energy.

  5. Menstrual Cycle

    MedlinePlus

    ... Pregnancy This information in Spanish ( en español ) The menstrual cycle Day 1 starts with the first day of ... drop around Day 25 . This signals the next menstrual cycle to begin. The egg will break apart and ...

  6. Ultrasonic Drying Processing Chamber

    NASA Astrophysics Data System (ADS)

    Acosta, V.; Bon, J.; Riera, E.; Pinto, A.

    The design of a high intensity ultrasonic chamber for drying process was investigated. The acoustic pressure distribution in the ultrasonic drying chamber was simulated solving linear elastic models with attenuation for the acoustic-structure interaction. Together with the government equations, the selection of appropriate boundary conditions, mesh refinement, and configuration parameters of the calculation methods, which is of great importance to simulate adequately the process, were considered. Numerical solution, applying the finite element method (FEM), of acoustic-structure interactions involves to couple structural and fluid elements (with different degrees of freedom), whose solution implies several problems of hardware requirements and software configuration, which were solved. To design the drying chamber, the influence of the directivity of the drying open camera and the staggered reflectors over the acoustic pressure distribution was analyzed. Furthermore, to optimize the influence of the acoustic energy on the drying process, the average value of the acoustic energy distribution in the drying chamber was studied. This would determine the adequate position of the food samples to be dried. For this purpose, the acoustic power absorbed by the samples will be analyzed in later studies.

  7. 2. INTERIOR OF SAND DRAINING & DRYING BUILDING WITH DRYING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. INTERIOR OF SAND DRAINING & DRYING BUILDING WITH DRYING BINS TO THE RIGHT, LOOKING SOUTHWEST - Mill "C" Complex, Sand Draining & Drying Building, South of Dee Bennet Road, near Illinois River, Ottawa, La Salle County, IL

  8. Freeze drying method

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  9. Freeze drying apparatus

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    2001-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  10. Dry Skin (Xerosis)

    MedlinePlus

    ... by medical conditions, such as atopic dermatitis and malnutrition. Dry skin develops due to a decrease in ... Diabetes Hypothyroidism Down syndrome Liver or kidney disease Malnutrition HIV/AIDS Lymphoma Signs and Symptoms The most ...

  11. Acoustoconvection Drying of Meat

    NASA Astrophysics Data System (ADS)

    Zhilin, A. A.; Fedorov, A. V.

    2016-03-01

    The dynamics of moisture extraction from meat samples by the acoustoconvection and thermoconvection methods has been investigated. To describe the dynamics of moisture extraction from meat, we propose a simple relaxation model with a relaxation time of 8-10 min in satisfactorily describing experimental data on acoustoconvection drying of meat. For thermoconvection drying the relaxation time is thereby 30 and 45 min for the longitudinal and transverse positions of fibers, respectively.

  12. Strength and failure characteristics of Jurassic Red-Bed sandstone under cyclic wetting-drying conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenhua; Jiang, Qinghui; Zhou, Chuangbing; Liu, Xinting

    2014-08-01

    Due to cyclic fluctuations of reservoir water levels, bank slopes in drawdown areas are subjected to wetting-drying cycles. In order to reasonably evaluate the stabilities of sandstone slopes in the drawdown area of the Three Gorges Reservoir, it is a primary premise to obtain the strength and failure characteristics of the sandstones undergoing wetting-drying cycles. In this paper, the conventional triaxial compression tests, ultrasonic velocity and porosity measurements and microstructural observations were conducted on Jurassic Red-Bed sandstone (JRS) specimens undergoing wetting-drying cycles. The results from the triaxial experiments indicate that the peak strengths of the JRS are dramatically reduced after the first wetting-drying cycle, and then remain approximately constant with increasing number of wetting-drying cycles. The failure modes of the JRS samples undergoing different wetting-drying cycles are all brittle failures under low confining pressures ( ≤ 15 MPa). The decrease in P-wave velocity and increase in porosity with increasing number of wetting-drying cycles reveals the raise of damage level of the sandstone specimens, which is the main reason for the decline of peak strength. Detailed microstructural analysis has shown obvious argillization phenomena after undergoing wetting-drying cycles, which weakens the cements between grains in the sandstone and increases the damage of the sandstone.

  13. Dry Dock No. 3. View of head of Dry Dock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Dry Dock No. 3. View of head of Dry Dock with stair to right of shot. View facing west - U.S. Naval Base, Pearl Harbor, Dry Dock No. 3, On northern shoreline of shipyard, west of Dry Dock Nos. 1 & 2, near the intersection of Avenue G and Sixth Street, Pearl City, Honolulu County, HI

  14. Freeze-drying today and tomorrow.

    PubMed

    Leary, J H; Stanford, E A

    1976-10-01

    The freeze-drying process and equipment have been improved over the years; the cycle times have shortened and the dried products have improved as a result. This talk will deal with these improvements and how we have progressed from the early systems to where we are today. Such areas of discussion will include: vacuum pumping systems, how they are sized and designed to meet the needs for general and special applications; heat transfer systems, and their use in maintaining the drying profile; condensing surface design, and what is best for certain types of dryers; controls and instrumentation, and how these have played a big part in the drying process and have made it possible to get repeatability; refrigeration systems, and the part they play in the performance of freeze-drying; and lastly the effect of internal stoppering, bottomless trays, and other items such as these have had on the present state of the art. It goes without saying that there have been many changes and there will continue to be changes and we shall endeavor to look into the future--as to what might well bo some of these changes. Included in the talk will be a number of slides and illustrations to point out the various items as they are discussed. PMID:1030422

  15. Influence of the drying medium parameters on drying induced stresses

    SciTech Connect

    Musielak, G.

    2000-03-01

    A thermomechanical model of drying of capillary-porous materials whose material constants depend on moisture content and temperature is presented in the paper. The finite element method is used for the solution of two-dimensional problem of convective drying of a prismatic bar. The moisture distributions, temperature distributions, drying induced strains and stresses for various drying medium parameters are determined. The effect of these parameters on moisture distribution and in particular on drying induced stresses is discussed.

  16. Dry anaerobic methane fermentation

    SciTech Connect

    Jewell, W.J.; Dell'Orto, S.; Fanfoni, K.J.; Fast, S.; Jackson, D.; Kabrick, R.M.

    1981-01-01

    The conversion of relatively dry organics directly to biogas increases the potential of using large amounts of organics such as mixtures of crop residues and animal manures on the farm, crop residues, and urban solid wastes. Besides the use of the dry fermentation process on farms and in centralized facilities, the possibility of using this concept as a residential energy generating system exists. Existing crop residues can be used to generate biogas without major water needs problems. Requirements for an efficient reaction include initial solid content less than 30%, an active methanogenic slurry addition of 40% dry weight (depending on the substrate), and a reaction period of 60-300 days, depending on the reactor temperatures. Further analyses are required to clarify the controlling parameters and the economic feasibility.

  17. Magnetically responsive dry fluids.

    PubMed

    Sousa, Filipa L; Bustamante, Rodney; Millán, Angel; Palacio, Fernando; Trindade, Tito; Silva, Nuno J O

    2013-08-21

    Ferrofluids and dry magnetic particles are two separate classes of magnetic materials with specific niche applications, mainly due to their distinct viscosity and interparticle distances. For practical applications, the stability of these two properties is highly desirable but hard to achieve. Conceptually, a possible solution to this problem would be encapsulating the magnetic particles but keeping them free to rotate inside a capsule with constant interparticle distances and thus shielded from changes in the viscosity of the surrounding media. Here we present an example of such materials by the encapsulation of magnetic ferrofluids into highly hydrophobic silica, leading to the formation of dry ferrofluids, i.e., a material behaving macroscopically as a dry powder but locally as a ferrofluid where magnetic nanoparticles are free to rotate in the liquid. PMID:23831769

  18. Magnetically responsive dry fluids

    NASA Astrophysics Data System (ADS)

    Sousa, Filipa L.; Bustamante, Rodney; Millán, Angel; Palacio, Fernando; Trindade, Tito; Silva, Nuno J. O.

    2013-07-01

    Ferrofluids and dry magnetic particles are two separate classes of magnetic materials with specific niche applications, mainly due to their distinct viscosity and interparticle distances. For practical applications, the stability of these two properties is highly desirable but hard to achieve. Conceptually, a possible solution to this problem would be encapsulating the magnetic particles but keeping them free to rotate inside a capsule with constant interparticle distances and thus shielded from changes in the viscosity of the surrounding media. Here we present an example of such materials by the encapsulation of magnetic ferrofluids into highly hydrophobic silica, leading to the formation of dry ferrofluids, i.e., a material behaving macroscopically as a dry powder but locally as a ferrofluid where magnetic nanoparticles are free to rotate in the liquid.Ferrofluids and dry magnetic particles are two separate classes of magnetic materials with specific niche applications, mainly due to their distinct viscosity and interparticle distances. For practical applications, the stability of these two properties is highly desirable but hard to achieve. Conceptually, a possible solution to this problem would be encapsulating the magnetic particles but keeping them free to rotate inside a capsule with constant interparticle distances and thus shielded from changes in the viscosity of the surrounding media. Here we present an example of such materials by the encapsulation of magnetic ferrofluids into highly hydrophobic silica, leading to the formation of dry ferrofluids, i.e., a material behaving macroscopically as a dry powder but locally as a ferrofluid where magnetic nanoparticles are free to rotate in the liquid. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01784b

  19. Cycle Analysis

    Energy Science and Technology Software Center (ESTSC)

    2012-03-20

    1. The Cycle Analysis code is an Microsoft Excel code that performs many different types of thermodynamic cycle analysis for power producing systems. The code will calculate the temperature and pressure and all other thermodynamic properties at the inlet and outlet of each component. The code also calculates the power that is produced, the efficiency, and the heat transported in the heater, gas chiller and recuperators. The code provides a schematic of the loop andmore » provides the temperature and pressure at each location in the loop. The code also provides a T-S (temperature-entropy) diagram of the loop and often it provides an pressure enthalpy plot as well. 2. This version of the code concentrates on supercritical CO2 power cycles, but by simply changing the name of the working fluid many other types of fluids can be analyzed. The Cycle Analysis code provided here contains 18 different types of power cycles. Each cycle is contained in one worksheet or tab that the user can select. The user can change the yellow highlighted regions to perform different thermodynamic cycle analysis.« less

  20. Properties of Spray Dried Food and Spray Drying Characteristics

    NASA Astrophysics Data System (ADS)

    Katoh, Fumio

    The following conclusions are obtained, studying properties of spray dried food and drying characteristics. (a) Dried particles are similar to spray droplets in size distribution (y=2.5), and particle count distribution is arranged as (dn/dx = ae-bx). (b) The ratio of the particle diameters before and after drying is calculated with moisture before and after drying, and porosity is given as (εp = ww4). (c) The standard drying method is presented to evaluate accurately drying problems at a certain standard. (d) Equilibrium moisture at 20 up to 100°C are summarized in terms of adsorption potential. (e) It makes clear that calulation based on the theory of residence time and drying time represents well complex spray drying characteristics.

  1. Drying drops of blood

    NASA Astrophysics Data System (ADS)

    Brutin, David; Sobac, Benjamin; Loquet, Boris; Sampol, José.

    2010-11-01

    The drying of a drop of human blood is fascinating by the complexity of the physical mechanisms that occur as well as the beauty of the phenomenon which has never been previously evidenced in the literature. The final stage of full blood evaporation reveals for a healthy person the same regular pattern with a good reproducibility. Other tests on anemia and hyperlipidemic persons were performed and presented different patterns. By means of digital camera, the influence of the motion of red blood cells (RBCs) which represent about 50% of the blood volume, is revealed as well as its consequences on the final stages of drying. The mechanisms which lead to the final pattern of dried blood drops are presented and explained on the basis of fluid and solid mechanics in conjunction with the principles of hematology. Our group is the first to evidence that the specific regular patterns characteristic of a healthy individual do not appear in a dried drop of blood from a person with blood disease. Blood is a complex colloidal suspension for which the flow motion is clearly non-Newtonian. When drops of blood evaporate, all the colloids are carried by the flow motion inside the drop and interact.

  2. Cooling of dried coal

    SciTech Connect

    Siddoway, M.A.

    1988-06-14

    This patent describes a process for noncombustibly drying particulate coal comprising: separating the coal into two wet coal streams; passing one wet coal system into a dryer to form a bed; heating air in a furnace; admitting the heated air to the dryer to fluidize the bed; withdrawing dryer exhaust gas; passing the exhaust gas through a cyclone and withdrawing coal fines from the cyclone; withdrawing a hot, dry coal stream from the dryer; blending the drier hot dry coal stream with the cyclone coal fines; withdrawing cyclone exhaust gas; wet scrubbing the cyclone exhaust gas to form a coal fines slurry and scrubber exhaust gas; passing the coal fines slurry to a sedimentation pool; blending the second wet coal stream with the drier hot dry coal stream and the cyclone coal fines; passing the latter blended stream to a cooler to form a bed; fluidizing the latter bed with ambient air; withdrawing cooler exhaust gas and passing the gas to a cyclone; passing exhaust gas from the latter cyclone to a baghouse and collecting coal fines therein; passing the latter coal fines to the furnace as fuel for heating the air; and withdrawing cooled coal from the cooler and blending the cooled coal with coal fines from the latter cyclone.

  3. Dry piston coal feeder

    DOEpatents

    Hathaway, Thomas J.; Bell, Jr., Harold S.

    1979-01-01

    This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

  4. Cycling injuries.

    PubMed Central

    Cohen, G. C.

    1993-01-01

    Bicycle-related injuries have increased as cycling has become more popular. Most injuries to recreational riders are associated with overuse or improper fit of the bicycle. Injuries to racers often result from high speeds, which predispose riders to muscle strains, collisions, and falls. Cyclists contact bicycles at the pedals, seat, and handlebars. Each is associated with particular cycling injuries. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8471908

  5. Nutrient cycling.

    PubMed

    Bormann, F H; Likens, G E

    1967-01-27

    The small-watershed approach to problems of nutrient cycling has these advantages. (i) The small watershed is a natural unit of suitable size for intensive study of nutrient cycling at the ecosystem level. (ii) It provides a means of reducing to a minimum, or virtually eliminating, the effect of the difficult-to-measure variables of geologic input and nutrient losses in deep seepage. Control of these variables makes possible accurate measurement of nutrient input and output (erosion) and therefore establishes the relationship of the smaller ecosystem to the larger biospheric cycles. (iii) The small-watershed approach provides a method whereby such important parameters as nutrient release from minerals (weathering) and annual nutrient budgets may be calculated. (iv) It provides a means of studying the interrelationships between the biota and the hydrologic cycle, various nutrient cycles, and energy flow in a single system. (v) Finally, with the small-watershed system we can test the effect of various land-management practices or environmental pollutants on nutrient cycling in natural systems. PMID:17737551

  6. Pore scale processes in dry soils

    NASA Astrophysics Data System (ADS)

    Schimel, J.

    2015-12-01

    Almost all soils experience regular drought and rewetting events. Yet most of our understanding of soil processes focuses on the moist periods, when plants are growing and nutrients are actively cycling. Yet, as soils dry, processes continue, yet change. Microbes shift their metabolic pathways from growth to survival, producing extracellular polymeric substances (EPS), sporulating, and going dormant. Under dry conditions, biotic processes are constrained but abiotic, chemical processes continue potentially altering soil aggregation and structure; in clayey California annual grassland & woodland soils pools of bioavailable water extractable organic carbon (WEOC) increase as does microbial biomass. Finally at rewetting, the pulse of water mobilizes resources, stimulates microbial activity and produces a flush of respiration and nutrient mineralization that can mobilize resources that had been previously inaccessible. One question that has driven much research has been where the organic matter comes from that drives these processes. We had hypothesized that the source of C for the dry-season increases was from the previous winter's dead roots, but field experiments where we maintained plots plant-free for two years showed no decline in the production of WEOC, nor in the early-season respiration pulses following rewetting. In this presentation, we will discuss recent work integrating measurements on aggregation (driven both by biotic and abiotic processes), EPS production, and the dynamics of WEOC and microbial biomass and how they function differently under dry and moist conditions.

  7. Dry etching of metallization

    NASA Technical Reports Server (NTRS)

    Bollinger, D.

    1983-01-01

    The production dry etch processes are reviewed from the perspective of microelectronic fabrication applications. The major dry etch processes used in the fabrication of microelectronic devices can be divided into two categories - plasma processes in which samples are directly exposed to an electrical discharge, and ion beam processes in which samples are etched by a beam of ions extracted from a discharge. The plasma etch processes can be distinguished by the degree to which ion bombardment contributes to the etch process. This, in turn is related to capability for anisotropic etching. Reactive Ion Etching (RIE) and Ion Beam Etching are of most interest for etching of thin film metals. RIE is generally considered the best process for large volume, anisotropic aluminum etching.

  8. An unusually dry story.

    PubMed

    Rajagopala, Srinivas; Danigeti, Gurukiran; Subrahmanyan, Dharanipragada

    2015-09-01

    We present a middle-aged woman with a prior history of central nervous system (CNS) demyelinating disorder who presented with an acute onset quadriparesis and respiratory failure. The evaluation revealed distal renal tubular acidosis with hypokalemia and medullary nephrocalcinosis. Weakness persisted despite potassium correction, and ongoing evaluation confirmed recurrent CNS and long-segment spinal cord demyelination with anti-aquaporin-4 antibodies. There was no history of dry eyes or dry mouth. Anti-Sjogren's syndrome A antigen antibodies were elevated, and there was reduced salivary flow on scintigraphy. Coexistent antiphospholipid antibody syndrome with inferior vena cava thrombosis was also found on evaluation. The index patient highlights several rare manifestations of primary Sjogren's syndrome (pSS) as the presenting features and highlights the differential diagnosis of the clinical syndromes in which pSS should be considered in the Intensive Care Unit. PMID:26430343

  9. An unusually dry story

    PubMed Central

    Rajagopala, Srinivas; Danigeti, Gurukiran; Subrahmanyan, Dharanipragada

    2015-01-01

    We present a middle-aged woman with a prior history of central nervous system (CNS) demyelinating disorder who presented with an acute onset quadriparesis and respiratory failure. The evaluation revealed distal renal tubular acidosis with hypokalemia and medullary nephrocalcinosis. Weakness persisted despite potassium correction, and ongoing evaluation confirmed recurrent CNS and long-segment spinal cord demyelination with anti-aquaporin-4 antibodies. There was no history of dry eyes or dry mouth. Anti-Sjogren's syndrome A antigen antibodies were elevated, and there was reduced salivary flow on scintigraphy. Coexistent antiphospholipid antibody syndrome with inferior vena cava thrombosis was also found on evaluation. The index patient highlights several rare manifestations of primary Sjogren's syndrome (pSS) as the presenting features and highlights the differential diagnosis of the clinical syndromes in which pSS should be considered in the Intensive Care Unit. PMID:26430343

  10. Vapor Compression Cycle Design Program (CYCLE_D)

    National Institute of Standards and Technology Data Gateway

    SRD 49 NIST Vapor Compression Cycle Design Program (CYCLE_D) (PC database for purchase)   The CYCLE_D database package simulates the vapor compression refrigeration cycles. It is fully compatible with REFPROP 9.0 and covers the 62 single-compound refrigerants . Fluids can be used in mixtures comprising up to five components.

  11. Ultrasonic Clothes Drying Technology

    ScienceCinema

    Patel, Viral; Momen, Ayyoub

    2016-05-12

    Oak Ridge National Laboratory researchers Ayyoub Momen and Viral Patel demonstrate a direct contact ultrasonic clothes dryer under development by ORNL in collaboration with General Electric (GE) Appliances. This novel approach uses high-frequency mechanical vibrations instead of heat to extract moisture as cold mist, dramatically reducing drying time and energy use. Funding for this project was competitively awarded by DOE?s Building Technologies Office in 2014.

  12. Session: Hot Dry Rock

    SciTech Connect

    Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

  13. Drying of fiber webs

    DOEpatents

    Warren, David W.

    1997-01-01

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  14. Drying of fiber webs

    DOEpatents

    Warren, D.W.

    1997-04-15

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  15. Dry dock no. 4. Service Building between dry docks 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Dry dock no. 4. Service Building between dry docks 4 and 5. Floor plans (Navy Yard Public Works Office 1941). In files of Cushman & Wakefield, building 501. Philadelphia Naval Business Center. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Service Building, Dry Docks No. 4 & 5, League Island, Philadelphia, Philadelphia County, PA

  16. Simple Solutions for Dry Eye

    MedlinePlus

    ... are more concentrated in the tear film of dry eye patients. In hot weather, sleep with the windows shut and keep cool with air conditioning. • Dry eye patients often develop or aggravate allergies. An ...

  17. Dry mouth during cancer treatment

    MedlinePlus

    ... cause dry mouth. Symptoms you may have include: Mouth sores Thick and stringy saliva Cuts or cracks in ... air dry between brushings. If toothpaste makes your mouth sore, brush with a solution of 1 teaspoon of ...

  18. Menu Cycles.

    ERIC Educational Resources Information Center

    Clayton, Alfred; Almony, John

    The curriculum guide for commercial foods instruction is designed to aid the teacher in communicating the importance of menu cycles in commercial food production. It also provides information about the necessary steps in getting food from the raw form to the finished product, and then to the consumer. In addition to providing information on how to…

  19. Non isothermal drying process optimisation - Drying of clay tiles

    NASA Astrophysics Data System (ADS)

    Vasić, M.; Radojević, Z.

    2015-11-01

    In our previous studies we have developed a model for determination of the variable effective diffusivity and identification of the exact transition points between possible drying mechanisms. The next goal was to develop a drying regime which could in advance characterize the real non isothermal process of drying clay tiles. In order to do this four isothermal experiments were recorded. Temperature and humidity were maintained at 350C / 75%; 450C / 70%; 450C / 60% and 500C / 60%; respectively in each experiment. All experimentally collected data were analyzed and the exact transition points between possible drying mechanisms were detected. Characteristic drying period (time) for each isothermal drying mechanism was also detected. The real, non-isothermal drying process was approximated by 5 segments. In each of these segments approximately isothermal drying condition were maintained. Temperature and humidity of the drying air, in the first four segments, was maintained on the same level as in recorded isothermal experiments while in the fifth segment, it were maintained at 700C / 40%. The duration of the first four segments were calculated from the diagrams Deff - t respectively for each experiment. The clay tile in experiment five was dried without cracking using the proposed non isothermal drying regime.

  20. Microwave applications to rock specimen drying in laboratory

    NASA Astrophysics Data System (ADS)

    Park, Jihwan; Park, Hyeong-Dong

    2014-05-01

    Microwave heating is the process in which electromagnetic wave with 300 MHz - 300 GHz heats dielectric material. Although in the beginning microwave was mainly used in food industry to cook or heat the food, it soon became clear that microwave had a large potential for other applications. It was thus introduced in geological fields of investigation like mineral processing, oil sand and oil shale extraction, soil remediation, waste treatment. However, the drying techniques using microwave was rarely treated in geology field. According to the ISRM suggested methods, experimental rock specimens in laboratory test were dried in 105°C oven for a period of at least 24 hours. In this method, hot air transmits heats to material by means of thermal conduction, and the heat was transferred from the surface to the inside of the rock specimens. The thermal gradient and moisture gradient can deteriorate the specimens, and energy can be wasted in bulk heating the specimens. The aim of our study was to compare physical property, microstructural property, and energy efficiency between microwave drying method and conventional oven drying method, and to suggest new method for rock drying. Granite, basalt, and sandstone were selected as specimens and were made in cylinder shape with 54 mm diameter. To compare two different methods, one set of saturated specimens were dried in 105°C conventional oven and the other set of saturated specimens were dried in microwave oven. After dried, the specimens were cooled and saturated in 20°C water 48 hours. The saturation-drying were repeated 50 cycles, and the physical property and microstructural property were measured every 10 cycles. Absorption and elastic wave velocity were measured to investigate the change of physical property, and microscope image and X-ray computed tomography image were obtained to investigate the change of microstructural property of rock specimens. The electricity consumption of conventional oven and microwave oven

  1. Effect of wetting and drying on the bioavailability of organic compounds sequestered in soil

    SciTech Connect

    White, J.C.; Quinones-Rivera, A.; Alexander, M.

    1998-12-01

    A study was conducted to determine whether cycles of wetting and drying alter the availability of organic compounds that have aged in soil. Subjecting soil to wetting-and drying cycles during periods of aging <60 d decreased the biodegradability, extractability, and uptake by earthworms of phenanthrene and reduced the extractability of di(2-ethylhexyl) phthalate (DEHP) sequestered in soil compared with soil aged at constant moisture. The mineralization of sequestered DEHP was greater in soil that was wet and dried during a 41-d period of aging than in soil incubated at constant moisture. Wetting and drying soil during periods of aging of 100 or more days had no effect on the biodegradability or assimilation by Eisenia foetida of sequestered phenanthrene and DEHP. Subjecting soil containing previously sequestered phenanthrene to one, three, or four wetting-and-drying cycles increased the biodegradability of the compound. The extractability of sequestered phenanthrene was greater in soil that was wet and dried once after aging than in soil maintained at constant moisture, but three wetting-and-drying cycles did not affect extractability. The biodegradability of sequestered DEHP was unaffected by wetting and drying. The authors suggest that wetting and drying may be useful in the remediation of contaminated soils.

  2. Electrohydrodynamic drying of carrot slices.

    PubMed

    Ding, Changjiang; Lu, Jun; Song, Zhiqing

    2015-01-01

    Carrots have one of the highest levels of carotene, and they are rich in vitamins, fiber and minerals. However, since fresh carrots wilt rapidly after harvest under inappropriate storage conditions, drying has been used to improve their shelf life and retain nutritional quality. Therefore, to further investigate the potential of this method, carrot slices were dried in an EHD system in order to study the effect of different voltages on drying rate. As measures of quality, carotene content and rehydration ratio were, respectively, compared against the conventional oven drying regime. Carotene, the main component of the dried carrot, and rehydration characteristics of the dried product can both indicate quality by physical and chemical changes during the drying process. Mathematical modeling and simulation of drying curves were also performed, using root mean square error, reduced mean square of the deviation and modeling efficiency as the primary criteria to select the equation that best accounts for the variation in the drying curves of the dried samples. Theoretically, the Page model was best suited for describing the drying rate curve of carrot slices at 10kV to 30kV. Experimentally, the drying rate of carrots was notably greater in the EHD system when compared to control, and quality, as determined by carotene content and rehydration ratio, was also improved when compared to oven drying. Therefore, this work presents a facile and effective strategy for experimentally and theoretically determining the drying properties of carrots, and, as a result, it provides deeper insight into the industrial potential of the EHD drying technique. PMID:25874695

  3. Electrohydrodynamic Drying of Carrot Slices

    PubMed Central

    Ding, Changjiang; Lu, Jun; Song, Zhiqing

    2015-01-01

    Carrots have one of the highest levels of carotene, and they are rich in vitamins, fiber and minerals. However, since fresh carrots wilt rapidly after harvest under inappropriate storage conditions, drying has been used to improve their shelf life and retain nutritional quality. Therefore, to further investigate the potential of this method, carrot slices were dried in an EHD system in order to study the effect of different voltages on drying rate. As measures of quality, carotene content and rehydration ratio were, respectively, compared against the conventional oven drying regime. Carotene, the main component of the dried carrot, and rehydration characteristics of the dried product can both indicate quality by physical and chemical changes during the drying process. Mathematical modeling and simulation of drying curves were also performed, using root mean square error, reduced mean square of the deviation and modeling efficiency as the primary criteria to select the equation that best accounts for the variation in the drying curves of the dried samples. Theoretically, the Page model was best suited for describing the drying rate curve of carrot slices at 10kV to 30kV. Experimentally, the drying rate of carrots was notably greater in the EHD system when compared to control, and quality, as determined by carotene content and rehydration ratio, was also improved when compared to oven drying. Therefore, this work presents a facile and effective strategy for experimentally and theoretically determining the drying properties of carrots, and, as a result, it provides deeper insight into the industrial potential of the EHD drying technique. PMID:25874695

  4. Drum drying of fabrics

    SciTech Connect

    Stemmelen, D.; Moyne, C.; Perre, R.; Lebois, P.

    1997-10-01

    A study of drying of textile fabrics on a drum heated by natural gas burner is presented. In the first stage of study, the distribution of the heat flux over the outer surface of the drum is calculated by an analytical method. In the second stage, this heat flux is entered in a numerical code able to simulate the heat and mass transfers in porous media. The simulation results validate the analytical model assumptions. Special attention is paid to the contact resistance between the drum and the fabric.

  5. Method of drying articles

    DOEpatents

    Janney, M.A.; Kiggans, J.O. Jr.

    1999-03-23

    A method of drying a green particulate article includes the steps of: (a) Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and (b) contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores. 3 figs.

  6. Dry sand foam generator

    SciTech Connect

    Edgley, K.D.; Stromberg, J.L.

    1988-10-25

    A method of generating a foam containing particulate material for treating a subsurface earth formation penetrated by a well bore, the method comprising: (a) introducing a first stream of pressurized gas having dry particulate material entrained therein into a vessel, the particulate material flowing vertically downward into the vessel, at least in part due to the action of gravity; (b) introducing a second stream of liquid into the vessel; (c) varying the second stream into a self-impinging conical jet; (d) impinging the conical jet onto the first stream and thereby forming a foam containing particulate material; and (e) injecting such a foam into the well bore.

  7. Method of drying articles

    DOEpatents

    Janney, Mark A.; Kiggans, Jr., James O.

    1999-01-01

    A method of drying a green particulate article includes the steps of: a. Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and b. contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores.

  8. Advances in drying: Volume 4

    SciTech Connect

    Mujumdar, A.S.

    1987-01-01

    Topics covered in this volume include recent thoughts in modeling of drying phenomena, use of computers in rational design of drying particulates, recent advances in drying of wood, and heat/mass transfer phenomena in drying of solids. As the readers will no doubt notice, special effort is made to ensure the truly international nature of the contents of this serial publication. As existing knowledge on drying and dryers becomes more widely and readily accessible, it is expected that more and more dryers will be designed rationally rather than built solely with the benefit of empiricism.

  9. Dry reforming of hydrocarbon feedstocks

    SciTech Connect

    Shah, Yatish T.; Gardner, Todd H.

    2014-09-25

    Developments in catalyst technology for the dry reforming of hydrocarbon feedstocks are reviewed for methane, higher hydrocarbons and alcohols. Thermodynamics, mechanisms and the kinetics of dry reforming are also reviewed. The literature on Ni catalysts, bi-metallic Ni catalysts and the role of promoters on Ni catalysts is critically evaluated. The use of noble and transitional metal catalysts for dry reforming is discussed. The application of solid oxide and metal carbide catalysts to dry reforming is also evaluated. Finally, various mechanisms for catalyst deactivation are assessed. This review also examines the various process related issues associated with dry reforming such as its application and heat optimization. Novel approaches such as supercritical dry reforming and microwave assisted dry reforming are briefly expanded upon.

  10. Dry EEG Electrodes

    PubMed Central

    Lopez-Gordo, M. A.; Sanchez-Morillo, D.; Valle, F. Pelayo

    2014-01-01

    Electroencephalography (EEG) emerged in the second decade of the 20th century as a technique for recording the neurophysiological response. Since then, there has been little variation in the physical principles that sustain the signal acquisition probes, otherwise called electrodes. Currently, new advances in technology have brought new unexpected fields of applications apart from the clinical, for which new aspects such as usability and gel-free operation are first order priorities. Thanks to new advances in materials and integrated electronic systems technologies, a new generation of dry electrodes has been developed to fulfill the need. In this manuscript, we review current approaches to develop dry EEG electrodes for clinical and other applications, including information about measurement methods and evaluation reports. We conclude that, although a broad and non-homogeneous diversity of approaches has been evaluated without a consensus in procedures and methodology, their performances are not far from those obtained with wet electrodes, which are considered the gold standard, thus enabling the former to be a useful tool in a variety of novel applications. PMID:25046013

  11. MERCURY MASS BUDGET ESTIMATES AND CYCLING SEASONALITY IN THE FLORIDA EVERGLADES

    EPA Science Inventory

    Distinct seasonal wetting and drying cycling results in fluctuations in hydrometeorological, physical, chemical, and biological characteristics and may subsequently lead to seasonality in mercury (Hg) cycling and bioaccumulation in the Everglades. We investigated seasonal variati...

  12. Interlock recovery during the drying, calcination and vitrification phase of Am/Cm processing

    SciTech Connect

    Snyder, T.K.

    2000-01-20

    This document summarizes the results of five CIM5 [5-inch Cylindrical Induction Melter] runs designed to demonstrate power interlock recovery methods during the drying, calcination and vitrification phases of the Am/Cm melter cycle.

  13. Steam drying -- Modeling and applications

    SciTech Connect

    Wimmerstedt, R.; Hager, J.

    1996-08-01

    The concept of steam drying originates from the mid of the last century. However, a broad industrial acceptance of the technique has so far not taken place. The paper deals with modelling the steam drying process and applications of steam drying within certain industrial sectors where the technique has been deemed to have special opportunities. In the modelling section the mass and heat transfer processes are described along with equilibrium, capillarity and sorption phenomena occurring in porous materials during the steam drying process. In addition existing models in the literature are presented. The applications discussed involve drying of fuels with high moisture contents, cattle feed exemplified by sugar beet pulp, lumber, paper pulp, paper and sludges. Steam drying is compared to flue gas drying of biofuels prior to combustion in a boiler. With reference to a current installation in Sweden, the exergy losses, as manifested by loss of co-generation capacity, are discussed. The energy saving potential when using steam drying of sugar beet pulp as compared to other possible plant configurations is demonstrated. Mechanical vapor recompression applied to steam drying is analyzed with reference to reported data from industrial plants. Finally, environmental advantages when using steam drying are presented.

  14. Dry aging of beef; Review.

    PubMed

    Dashdorj, Dashmaa; Tripathi, Vinay Kumar; Cho, Soohyun; Kim, Younghoon; Hwang, Inho

    2016-01-01

    The present review has mainly focused on the specific parameters including aging (aging days, temperature, relative humidity, and air flow), eating quality (flavor, tenderness and juiciness), microbiological quality and economic (shrinkage, retail yields and cost) involved beef dry aging process. Dry aging is the process where beef carcasses or primal cuts are hanged and aged for 28 to 55 d under controlling environment conditions in a refrigerated room with 0° to 4 °C and with relative humidity of 75 to 80 %. However there are various opinions on dry aging procedures and purveyors of such products are passionate about their programs. Recently, there has been an increased interest in dry aging process by a wider array of purveyors and retailers in the many countries. Dry aging process is very costly because of high aging shrinkage (6 to15 %), trims loss (3 to 24 %), risk of contamination and the requirement of highest grades meat with. The packaging in highly moisture-permeable bag may positively impact on safety, quality and shelf stability of dry aged beef. The key effect of dry aging is the concentration of the flavor that can only be described as "dry-aged beef". But the contribution of flavor compounds of proteolysis and lipolysis to the cooked dry aged beef flavor is not fully known. Also there are limited scientific studies of aging parameters on the quality and palatability of dry aged beef. PMID:27200180

  15. A commercially viable solar wood drying kiln system

    SciTech Connect

    Vore, J.B. de; Denny, G.S.; Harper, T.S.

    1999-01-01

    The purpose of the study was to create a totally passive solar wood drying kiln that would dry lumber to 9% moisture content in a reasonable amount of time. A series of modifications led to a kiln design that dried freshly-cut lumber to 8% in a 29-day period with no case hardening or cracking. Air speed, internal and external temperatures and relative humidity levels were measured at 5-minute intervals. The average temperature inside the kiln was 12% higher with relative humidity levels 19% lower than outside the kiln. It is hypothesized that the daily cycles of heating and cooling permitted the interior moisture of the wood to reach the surface through diffusion, thus lessening stress and speeding drying of the lumber.

  16. Nanoliposomal Dry Powder Formulations

    PubMed Central

    Patel, Gaurang; Chougule, Mahavir; Singh, Mandip; Misra, Ambikanandan

    2013-01-01

    Liposomal dry powder formulations (DPFs) have proven their superiority over conventional DPFs due to favorably improved pharmacokinetics and pharmacodynamics of entrapped drugs, and thus, reduced local and systemic toxicities. Nanoliposomal DPFs (NLDPFs) provide stable, high aerosolization efficiency to deep lung, prolonged drug release, slow systemic dilution, and avoid macrophage uptake of encapsulated drug by carrier-based delivery of nano-range liposomes. This chapter describes methods of preparation of nanoliposomes (NLs) and NLDPFs, using various techniques, and their characterization with respect to size distribution, flow behavior, in vitro drug release profile, lung deposition, cellular uptake and cytotoxicity, and in vivo pharmacokinetics and pharmacodynamics. Some examples have been detailed for better understanding of the methods of preparation and evaluation of NLDPFs by investigators. PMID:19903555

  17. Dry Processing of Used Nuclear Fuel

    SciTech Connect

    K. M. Goff; M. F. Simpson

    2009-09-01

    Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energy’s Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

  18. Dry Ice Etches Terrain

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1

    Every year seasonal carbon dioxide ice, known to us as 'dry ice,' covers the poles of Mars. In the south polar region this ice is translucent, allowing sunlight to pass through and warm the surface below. The ice then sublimes (evaporates) from the bottom of the ice layer, and carves channels in the surface.

    The channels take on many forms. In the subimage shown here (figure 1) the gas from the dry ice has etched wide shallow channels. This region is relatively flat, which may be the reason these channels have a different morphology than the 'spiders' seen in more hummocky terrain.

    Observation Geometry Image PSP_003364_0945 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 15-Apr-2007. The complete image is centered at -85.4 degrees latitude, 104.0 degrees East longitude. The range to the target site was 251.5 km (157.2 miles). At this distance the image scale is 25.2 cm/pixel (with 1 x 1 binning) so objects 75 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel . The image was taken at a local Mars time of 06:57 PM and the scene is illuminated from the west with a solar incidence angle of 75 degrees, thus the sun was about 15 degrees above the horizon. At a solar longitude of 219.6 degrees, the season on Mars is Northern Autumn.

  19. PERFORMANCE EVALUATION OF THE BRAINTREE ELECTRIC LIGHT DEPARTMENT DRY COOLING TOWER

    EPA Science Inventory

    The report gives results of a 5-year evaluation of the performance of a dry cooling tower for the 20-MW steam-electric generation portion of an 85-MW combined-cycle power plant. Objectives of the study were to: demonstrate dry cooling tower technology at a Massachusetts seacoast ...

  20. Drying of a model soil

    NASA Astrophysics Data System (ADS)

    Faure, P.; Coussot, P.

    2010-09-01

    Drying experiments have been carried out with model soils made of different pastes filling granular packings. A detailed information concerning the time evolution of the water saturation distribution inside the sample was obtained from magnetic resonance imaging measurements. This study makes it possible to understand the physical origin of the drying characteristics of these materials. The drying curves exhibit a constant-rate period (CRP) and a falling-rate period (FRP) but the relative durations of these periods depend on the paste structure. With a kaolin suspension the CRP lasts down to very low water densities and is associated with a homogeneous drying of the paste throughout the sample. With a bentonite suspension the CRP is shorter and the drying in the FRP results from a complex process involving fractures progressing downward through the pasty matrix. With a gel the CRP period is even shorter and the drying in the FRP results from the progression of a dry front through the packing as a result of the shrinkage of the gel matrix. This provides an overview of the main possible processes at work when drying a soil as a function of its components along with some practical means for slowing down drying from soils.

  1. Drying of a model soil.

    PubMed

    Faure, P; Coussot, P

    2010-09-01

    Drying experiments have been carried out with model soils made of different pastes filling granular packings. A detailed information concerning the time evolution of the water saturation distribution inside the sample was obtained from magnetic resonance imaging measurements. This study makes it possible to understand the physical origin of the drying characteristics of these materials. The drying curves exhibit a constant-rate period (CRP) and a falling-rate period (FRP) but the relative durations of these periods depend on the paste structure. With a kaolin suspension the CRP lasts down to very low water densities and is associated with a homogeneous drying of the paste throughout the sample. With a bentonite suspension the CRP is shorter and the drying in the FRP results from a complex process involving fractures progressing downward through the pasty matrix. With a gel the CRP period is even shorter and the drying in the FRP results from the progression of a dry front through the packing as a result of the shrinkage of the gel matrix. This provides an overview of the main possible processes at work when drying a soil as a function of its components along with some practical means for slowing down drying from soils. PMID:21230167

  2. Convective drying of sludge cake

    NASA Astrophysics Data System (ADS)

    Chen, Jianbo; Peng, Xiaofeng; Xue, Yuan; Lee, Duujong; Chu, Chingping

    2002-08-01

    This paper presented an experimental study on convective drying of waste water sludge collected from Beijing GaoBeiDian Sewage Treatment Plant, particularly on the correlation between the observed shrinkage dynamics of sludge cake and the drying curve. During the initial stage of drying the process resembles to that of a particulate bed, in which moisture diffuses and evaporates at the upper surface. Conventional drying theory assuming a diffusion-evaporating front interprets this period of drying. Consequently, owing to the very large shrinkage ratio of the dried cake, cracks emerges and propagates on and within the cake body, whence inducing evaporating channel that facilitates the water removal. This occurrence compensates the reduction of surface area for evaporation, whence extending the constant-rate period during the test. Afterwards, the cracks meet with each other and form isolated cake piles, while the subsequent drying occur mainly within these piles and the conventional theory fails. The transition between the drying on a plain cake layer and that on the isolated piles demonstrates the need to adopt distinct descriptions on these two regimes of drying for the sludge cake.

  3. Space Technology for Crop Drying

    NASA Technical Reports Server (NTRS)

    1980-01-01

    McDonnell Douglas came up with a new method of drying agricultural crops derived from vacuum chamber technology called MIVAC, a compression of microwave vacuum drying system. A distant cousin of the home microwave oven, MIVAC dries by means of electrically- generated microwaves introduced to a crop-containing vacuum chamber. Microwaves remove moisture quickly and the very low pressure atmosphere in the chamber permits effective drying at much lower than customary temperatures. Thus energy demand is doubly reduced by lower heat requirement and by the shorter time electric power is needed.

  4. The dry season intensity as a key driver of NPP trends

    NASA Astrophysics Data System (ADS)

    Murray-Tortarolo, Guillermo; Friedlingstein, Pierre; Sitch, Stephen; Seneviratne, Sonia I.; Fletcher, Imogen; Mueller, Brigitte; Greve, Peter; Anav, Alessandro; Liu, Yi; Ahlström, Anders; Huntingford, Chris; Levis, Sam; Levy, Peter; Lomas, Mark; Poulter, Benjamin; Viovy, Nicholas; Zaehle, Sonke; Zeng, Ning

    2016-03-01

    We analyze the impacts of changing dry season length and intensity on vegetation productivity and biomass. Our results show a wetness asymmetry in dry ecosystems, with dry seasons becoming drier and wet seasons becoming wetter, likely caused by climate change. The increasingly intense dry seasons were consistently correlated with a decreasing trend in net primary productivity (NPP) and biomass from different products and could potentially mean a reduction of 10-13% in NPP by 2100. We found that annual NPP in dry ecosystems is particularly sensitive to the intensity of the dry season, whereas an increase in precipitation during the wet season has a smaller effect. We conclude that changes in water availability over the dry season affect vegetation throughout the whole year, driving changes in regional NPP. Moreover, these results suggest that usage of seasonal water fluxes is necessary to improve our understanding of the link between water availability and the land carbon cycle.

  5. Dry wind tunnel system

    NASA Technical Reports Server (NTRS)

    Chen, Ping-Chih (Inventor)

    2013-01-01

    This invention is a ground flutter testing system without a wind tunnel, called Dry Wind Tunnel (DWT) System. The DWT system consists of a Ground Vibration Test (GVT) hardware system, a multiple input multiple output (MIMO) force controller software, and a real-time unsteady aerodynamic force generation software, that is developed from an aerodynamic reduced order model (ROM). The ground flutter test using the DWT System operates on a real structural model, therefore no scaled-down structural model, which is required by the conventional wind tunnel flutter test, is involved. Furthermore, the impact of the structural nonlinearities on the aeroelastic stability can be included automatically. Moreover, the aeroservoelastic characteristics of the aircraft can be easily measured by simply including the flight control system in-the-loop. In addition, the unsteady aerodynamics generated computationally is interference-free from the wind tunnel walls. Finally, the DWT System can be conveniently and inexpensively carried out as a post GVT test with the same hardware, only with some possible rearrangement of the shakers and the inclusion of additional sensors.

  6. Forward Osmosis Brine Drying

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Shaw, Hali; Hyde, Deirdre; Beeler, David; Parodi, Jurek

    2015-01-01

    The Forward Osmosis Brine Drying (FOBD) system is based on a technique called forward osmosis (FO). FO is a membrane-based process where the osmotic potential between brine and a salt solution is equalized by the movement of water from the brine to the salt solution. The FOBD system is composed of two main elements, the FO bag and the salt regeneration system. This paper discusses the results of testing of the FO bag to determine the maximum water recovery ratio that can be attained using this technology. Testing demonstrated that the FO bag is capable of achieving a maximum brine water recovery ratio of the brine of 95%. The equivalent system mass was calculated to be 95 kg for a feed similar to the concentrated brine generated on the International Space Station and 86 kg for an Exploration brine. The results have indicated that the FOBD can process all the brine for a one year mission for between 11% to 10% mass required to bring the water needed to make up for water lost in the brine if not recycled. The FOBD saves 685 kg and when treating the International Space Station brine and it saves 829 kg when treating the Exploration brine. It was also demonstrated that saturated salt solutions achieve a higher water recovery ratios than solids salts do and that lithium chloride achieved a higher water recovery ratio than sodium chloride.

  7. Dry sump crankcase

    SciTech Connect

    Berger, A.H.; Dichi, R.E.

    1987-06-23

    A dry sump type crankcase is described for an automotive type internal combustion engine having an intake manifold and a positive crankcase ventilation (PCV) system for automatically and continuously ventilating the crankcase. The system includes an essentially atmospheric pressure fresh air inlet to the engine passing air through to the crankcase and a connection from the oil pan to the vacuum in the intake manifold establishing a constant flow of crankcase vapors. The oil pan has a baffle partitioning it into an inner oil collecting funnel-like crankcase cavity and an outer oil reservoir. The inner cavity has an opening at its lower-most point for communication of oil with the reservoir. The opening is of a controlled vertical height for creating a pressure differential across the baffle during operation of the engine. Means connects the inner cavity to the air inlet pressure side of the PCV System while connecting the reservoir to the vacuum side of the PCV system for establishing a constant pressure differential across the baffle sufficient to displace the oil against gravity and maintain the oil level in the crankcase during operation of the engine at the height of the opening in the baffle. Gravity causes the oil to seek a level higher than the opening upon shutdown of the engine and the consequential decay of vacuum in the intake manifold.

  8. Staying dry under water

    NASA Astrophysics Data System (ADS)

    Jones, Paul; Cruz-Chu, Eduardo; Megaridis, Constantine; Walther, Jens; Koumoutsakos, Petros; Patankar, Neelesh

    2012-11-01

    Lotus leaves are known for their non-wetting properties due to the presence of surface texture. The superhydrophobic behavior arises because of the prevention of liquid water from entering the pores of the roughness. Present superhydrophobic materials rely on air trapped within the surface pores to avoid liquid permeation. This is typically unsustainable for immersed bodies due to dissolution of the air, especially under elevated pressures. Here, molecular dynamics simulations are used to demonstrate the non-wetting behavior of an immersed ten-nanometer pore. This is accomplished by establishing thermodynamically sustained vapor pockets of the surrounding liquid medium. Over 300,000 atoms were used to construct the nanopore geometry and simulate SPC/E water molecules. Ambient pressure was varied along two isotherms (300 K, and 500 K). This approach for vapor-stabilization could offer valuable guidance for maintaining surfaces dry even in a submerged state without relying on trapped air. The approach may be extended to control general phase behavior of water adjacent to textured surfaces. ISEN support is gratefully acknowledged.

  9. Sessile nanofluid droplet drying.

    PubMed

    Zhong, Xin; Crivoi, Alexandru; Duan, Fei

    2015-03-01

    Nanofluid droplet evaporation has gained much audience nowadays due to its wide applications in painting, coating, surface patterning, particle deposition, etc. This paper reviews the drying progress and deposition formation from the evaporative sessile droplets with the suspended insoluble solutes, especially nanoparticles. The main content covers the evaporation fundamental, the particle self-assembly, and deposition patterns in sessile nanofluid droplet. Both experimental and theoretical studies are presented. The effects of the type, concentration and size of nanoparticles on the spreading and evaporative dynamics are elucidated at first, serving the basis for the understanding of particle motion and deposition process which are introduced afterward. Stressing on particle assembly and production of desirable residue patterns, we express abundant experimental interventions, various types of deposits, and the effects on nanoparticle deposition. The review ends with the introduction of theoretical investigations, including the Navier-Stokes equations in terms of solutions, the Diffusion Limited Aggregation approach, the Kinetic Monte Carlo method, and the Dynamical Density Functional Theory. Nanoparticles have shown great influences in spreading, evaporation rate, evaporation regime, fluid flow and pattern formation of sessile droplets. Under different experimental conditions, various deposition patterns can be formed. The existing theoretical approaches are able to predict fluid dynamics, particle motion and deposition patterns in the particular cases. On the basis of further understanding of the effects of fluid dynamics and particle motion, the desirable patterns can be obtained with appropriate experimental regulations. PMID:25578408

  10. Steam atmosphere drying concepts using steam exhaust recompression

    SciTech Connect

    DiBella, F.A. )

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  11. Steam atmosphere drying concepts using steam exhaust recompression

    SciTech Connect

    DiBella, F.A.

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  12. Dry root rot of chickpea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dry root rot of chickpea is a serious disease under dry hot summer conditions, particularly in the semi-arid tropics of Ethiopia, and in central and southern India. It usually occurs at reproductive stages of the plant. Symptoms include drooping of petioles and leaflets of the tips, but not the low...

  13. Dry eye disease after LASIK

    PubMed Central

    Ţuru, L; Alexandrescu, C; Stana, D; Tudosescu, R

    2012-01-01

    LASIK is a surgical tehnique for the correction of refractive errors (myopia, hyperopia, astygmatism). It results in a reshape of the cornea with ocular surface and especially tear film disease. It is a cause for a iatrogenic dry eye syndrome. Neurogenic and inflamatory theory explain this disease. The main therapy of dry eye is the replacement with artificial tears. PMID:22574092

  14. Whey drying on porous carriers

    SciTech Connect

    Mitura, E.; Kaminski, W.

    1996-05-01

    Whey is treated very often as a waste which pollutes the natural environment. Whey which is a valuable source of protein, lacrose, vitamins and mineral salts should be utilized completely. The present paper is a proposal of whey drying on porous carriers. It is proved experimentally that the proposed drying method guarantees good product quality.

  15. High performance surface-emitting lasers with dry etched facets

    NASA Astrophysics Data System (ADS)

    Ou, S. S.; Jansen, M.; Yang, J. J.; Sergant, M.; Mawst, L. J.; Botez, D.; Roth, T. J.; Hess, C.; Tu, C.

    1992-12-01

    The fabrication, performance characteristics, and applications of monolithic in-plane surface-emitting lasers (IPSELs) with dry-etched 45-degree micromirrors are reviewed. Several types of such laser diode structures in both junction-up and junction-down configurations are considered. The performance goals for IPSELs with 45-degree micromirrors are high power and efficiency, high duty cycle and CW operation, good reliability, and high fabrication yields. The proposed approach for achieving these goals includes uniform quantum well material growth and dry etching of the laser micromirrors with tight fabrication tolerances.

  16. Hot, Dry and Cloudy

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Hot, Dry and Cloudy

    This artist's concept shows a cloudy Jupiter-like planet that orbits very close to its fiery hot star. NASA's Spitzer Space Telescope was recently used to capture spectra, or molecular fingerprints, of two 'hot Jupiter' worlds like the one depicted here. This is the first time a spectrum has ever been obtained for an exoplanet, or a planet beyond our solar system.

    The ground-breaking observations were made with Spitzer's spectrograph, which pries apart infrared light into its basic wavelengths, revealing the 'fingerprints' of molecules imprinted inside. Spitzer studied two planets, HD 209458b and HD 189733b, both of which were found, surprisingly, to have no water in the tops of their atmospheres. The results suggest that the hot planets are socked in with dry, high clouds, which are obscuring water that lies underneath. In addition, HD209458b showed hints of silicates, suggesting that the high clouds on that planet contain very fine sand-like particles.

    Capturing the spectra from the two hot-Jupiter planets was no easy feat. The planets cannot be distinguished from their stars and instead appear to telescopes as single blurs of light. One way to get around this is through what is known as the secondary eclipse technique. In this method, changes in the total light from a so-called transiting planet system are measured as a planet is eclipsed by its star, vanishing from our Earthly point of view. The dip in observed light can then be attributed to the planet alone.

    This technique, first used by Spitzer in 2005 to directly detect the light from an exoplanet, currently only works at infrared wavelengths, where the differences in brightness between the planet and star are less, and the planet's light is easier to pick out. For example, if the experiment had been done in visible light, the total light from the system would appear to be unchanged

  17. Your Menstrual Cycle

    MedlinePlus

    ... during your menstrual cycle What happens during your menstrual cycle The menstrual cycle includes not just your period, but the rise ... tool is based on a sample 28-day menstrual cycle, but every woman is different in how long ...

  18. NiH2 Cycle Life Study

    NASA Technical Reports Server (NTRS)

    Hollandsworth, Roger P.; Armantrout, Jon D.; Rao, Gopalakrishna M.

    2002-01-01

    Cycle life studies have been performed at Eagle Picher Technologies (EPT), on HST Mantech design cells with various pedigrees of slurry and dry sinter processed electrodes, to evaluate peak load voltage performance during generic load profile testing. These tests provide information for determining voltage and capacity fade (degradation) mechanisms, and their impact on nickel hydrogen cell cycle life. Comparison of peak load voltage fade, as a function of State of Charge and cycle life, with capacity data from HST indicates that the cycle life limiting mechanism is due to impedance growth, and formation of a second discharge plateau. With a second plateau on discharge, capacity from the cell is still available, but at an unacceptable low voltage of 0.8 V per cell (17.6 V battery). Data shows that cell impedance increases with cycle number and depth of discharge, as expected.

  19. High-intensity drying processes: Impulse drying. Annual report

    SciTech Connect

    Orloff, D.I.; Phelan, P.M.

    1993-12-01

    Experiments were conducted on a sheet-fed pilot-scale shoe press to compare impulse drying and double-felted pressing. Both an IPST (Institute of Paper Science and Technology) ceramic coated and Beloit Type A press roll were evaluated for lienrboard sheet structures having a wide range of z-direction permeability. Purpose was to find ways of correcting sheet sticking problems observed in previous pilot-scale shoe press experiments. Results showed that impulse drying was superior to double felted pressing in both press dryness and in important paper physical properties. Impulse drying critical temperature was found to depend on specific surface of the heated layer of the sheet, thermal properties of the press roll surface, and choice of felt. Impulse drying of recycled and two-ply liner was demonstrated for both Southern Pile and Douglas fir-containing furnishes.

  20. The nitrogen cycle: Atmosphere interactions

    NASA Technical Reports Server (NTRS)

    Levine, J. S.

    1984-01-01

    Atmospheric interactions involving the nitrogen species are varied and complex. These interactions include photochemical reactions, initiated by the absorption of solar photons and chemical kinetic reactions, which involve both homogeneous (gas-to-gas reactions) and heterogeneous (gas-to-particle) reactions. Another important atmospheric interaction is the production of nitrogen oxides by atmospheric lightning. The nitrogen cycle strongly couples the biosphere and atmosphere. Many nitrogen species are produced by biogenic processes. Once in the atmosphere nitrogen oxides are photochemically and chemically transformed to nitrates, which are returned to the biosphere via precipitation, dry deposition and aerosols to close the biosphere-atmosphere nitrogen cycle. The sources, sinks and photochemistry/chemistry of the nitrogen species; atmospheric nitrogen species; souces and sinks of nitrous oxide; sources; sinks and photochemistry/chemistry of ammonia; seasonal variation of the vertical distribution of ammonia in the troposphere; surface and atmospheric sources of the nitrogen species, and seasonal variation of ground level ammonia are summarized.

  1. 7 CFR 58.239 - Drying.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Drying. 58.239 Section 58.239 Agriculture Regulations... Drying. Each dryer should be operated to produce the highest quality dry product consistent with the most efficient operation. The dry products shall be removed from the drying chamber continuously during...

  2. 7 CFR 58.239 - Drying.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Drying. 58.239 Section 58.239 Agriculture Regulations... Drying. Each dryer should be operated to produce the highest quality dry product consistent with the most efficient operation. The dry products shall be removed from the drying chamber continuously during...

  3. 7 CFR 58.239 - Drying.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Drying. 58.239 Section 58.239 Agriculture Regulations... Drying. Each dryer should be operated to produce the highest quality dry product consistent with the most efficient operation. The dry products shall be removed from the drying chamber continuously during...

  4. 7 CFR 58.239 - Drying.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Drying. 58.239 Section 58.239 Agriculture Regulations... Drying. Each dryer should be operated to produce the highest quality dry product consistent with the most efficient operation. The dry products shall be removed from the drying chamber continuously during...

  5. 7 CFR 58.239 - Drying.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Drying. 58.239 Section 58.239 Agriculture Regulations... Drying. Each dryer should be operated to produce the highest quality dry product consistent with the most efficient operation. The dry products shall be removed from the drying chamber continuously during...

  6. Aging and dry eye disease

    PubMed Central

    Ding, Juan; Sullivan, David A.

    2012-01-01

    Dry eye disease is a prevalent eye disorder that in particular affects the elderly population. One of the major causes of dry eye, meibomian gland dysfunction (MGD), shows increased prevalence with aging. MGD is caused by hyperkeratinization of the ductal epithelium of meibomian gland and reduced quantity and/or quality of meibum, the holocrine product that stabilizes and prevents the evaporation of the tear film. Of note, retinoids which are used in current anti-aging cosmetics may promote the development of MGD and dry eye disease. In this review, we will discuss the possible mechanisms of age-related MGD. PMID:22569356

  7. [Conservative treatment of dry eye].

    PubMed

    Hefner, J; Reinshagen, H

    2014-11-01

    The use of topic anti-inflammatory drugs has become very important in the treatment of dry eye disease. Besides the basic therapy including tear replacement, use of serum eye drops and mucolytic eye drops, the topical application of corticosteroids and cyclosporin A is more commonly used in moderate to severe forms of dry eye disease. The consistent treatment of Meibomian gland dysfunction as a frequent reason for evaporative dry eye is also of particular importance. Understanding the chronicity of the disease and long-term compliance are the essential for successful therapy of this widespread disease. PMID:25275793

  8. Why do drying films crack?

    PubMed

    Lee, Wai Peng; Routh, Alexander F

    2004-11-01

    Understanding the mechanism by which films fail during drying is the first step in controlling this natural process. Previous studies have examined the spacing between cracks with predictions made by assuming a balance between elastic energy released with a surface energy consumed. We introduce a new scaling for the spacing between cracks in drying dispersions. The scaling relates to the distance that solvent can flow, to relieve capillary stresses, as a film fails. The scaling collapses data for a range of evaporation rates, film thicknesses, particle sizes, and materials. This work identifies capillary pressures, induced by packed particle fronts travelling horizontally across films, as responsible for the failure in dried films. PMID:15518466

  9. Freeze-drying processes and wind erodibility of a clay loam soil in southern Alberta

    SciTech Connect

    Bullock, M S.; Larney, F. J.; McGinn, Sean M.; Izaurralde, R Cesar C.

    1999-01-01

    Freeze-drying has been implicated as a factor causing soil aggregate breakdown on the Canadian Prairies and northern Great Plains. Aggregates of a Dark Brown Chernozemic clay loam soil sampled in October 1993 and January and April 1994 were subjected to repeated cycles of wetting (to 0.1, 0.2 and 0.3 kg kg-1 water contents) freezing, and freeze-drying under laboratory conditions. The October 1993 samples showed less disruption when initially exposed to freeze-drying cycles compared to samples taken in January and April 1994. Using regression analysis, we predicted that 31 freeze-dry cycles were required for the 0.1 kg kg-1 water content aggregates to reach 60% erodible fraction (EF, % aggregates <0.86 mm), 9 cycles for the 0.2 kg kg-1 aggregates and 2 for 0.3 kg kg-1 aggregates. In a field study, conducted over the 1994-1995 winter on a similar clay loam soil, we estimated the number of freeze-drying cycles using large vapor pressure (VPL) and small vapor pressure (VPS) gradients bet ween the soil surface (which had a mean winter water content of {approx}0.1 kg kg-1) and the atmosphere. With solar energy adjustments, we predicted that the number of freeze-dry cycles required for the soil to reach 60% EF was 60 for VPL and 37 for VPS conditions. The latter number was similar to the 31 cycles predicted in the laboratory study of aggregates at 0.1 water content. Our results demonstrate that freeze-drying is an important overwinter process in the breakdown of soil aggregates and hence wind erosion risk in the Canadian prairie region.

  10. Hydrological cycle.

    PubMed

    Gonçalves, H C; Mercante, M A; Santos, E T

    2011-04-01

    The Pantanal hydrological cycle holds an important meaning in the Alto Paraguay Basin, comprising two areas with considerably diverse conditions regarding natural and water resources: the Plateau and the Plains. From the perspective of the ecosystem function, the hydrological flow in the relationship between plateau and plains is important for the creation of reproductive and feeding niches for the regional biodiversity. In general, river declivity in the plateau is 0.6 m/km while declivity on the plains varies from 0.1 to 0.3 m/km. The environment in the plains is characteristically seasonal and is home to an exuberant and abundant diversity of species, including some animals threatened with extinction. When the flat surface meets the plains there is a diminished water flow on the riverbeds and, during the rainy season the rivers overflow their banks, flooding the lowlands. Average annual precipitation in the Basin is 1,396 mm, ranging from 800 mm to 1,600 mm, and the heaviest rainfall occurs in the plateau region. The low drainage capacity of the rivers and lakes that shape the Pantanal, coupled with the climate in the region, produce very high evaporation: approximately 60% of all the waters coming from the plateau are lost through evaporation. The Alto Paraguay Basin, including the Pantanal, while boasting an abundant availability of water resources, also has some spots with water scarcity in some sub-basins, at different times of the year. Climate conditions alone are not enough to explain the differences observed in the Paraguay River regime and some of its tributaries. The complexity of the hydrologic regime of the Paraguay River is due to the low declivity of the lands that comprise the Mato Grosso plains and plateau (50 to 30 cm/km from east to west and 3 to 1.5 cm/km from north to south) as well as the area's dimension, which remains periodically flooded with a large volume of water. PMID:21537597

  11. Sustaining dry surfaces under water.

    PubMed

    Jones, Paul R; Hao, Xiuqing; Cruz-Chu, Eduardo R; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M; Varanasi, Kripa K; Megaridis, Constantine M; Walther, Jens H; Koumoutsakos, Petros; Espinosa, Horacio D; Patankar, Neelesh A

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. PMID:26282732

  12. Circulating system simplifies dry scrubbing

    SciTech Connect

    Morrison, S.Q.; Jorgensen, C.

    1995-10-01

    This article describes a circulating dry scrubber, based on fluid-bed absorption process, which demonstrates high SO{sub 2} removal with minimal O and M requirements. Unlike other dry scrubbers, this one involves dry reagent and results in dry products. Before construction can begin on a new coal-fired plant, a rigorous set of permit requirements must be satisfied. When the Roanoke Valley Energy Facility, Weldon, NC, began the permitting process for their proposed 44-MW pulverized-coal (p-c)-fired Unit 2, the facility permit limited not only SO{sub 2} emissions (0.187 lb SO{sub 2}/million Btu) but also the removal efficiency of the flue-gas desulfurization process (93%) and the maximum amount of sulfur in the coal (1.6%).

  13. Sustaining dry surfaces under water

    PubMed Central

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. PMID:26282732

  14. Dry eye disease: an immune-mediated ocular surface disorder

    PubMed Central

    Stevenson, William; Chauhan, Sunil K.; Dana, Reza

    2013-01-01

    Dry eye disease is a multifactorial disorder of the tears and ocular surface characterized by symptoms of dryness and irritation. Although the pathogenesis of dry eye disease is not fully understood, it is recognized that inflammation has a prominent role in the development and propagation of this debilitating condition. Factors that adversely affect tear film stability and osmolarity can induce ocular surface damage and initiate an inflammatory cascade that generates innate and adaptive immune responses. These immunoinflammatory responses lead to further ocular surface damage and the development of a self-perpetuating inflammatory cycle. Herein, we review the fundamental links between inflammation and dry eye disease and discuss the clinical implications of inflammation in disease management. PMID:22232476

  15. Electrical Switchability and Dry-Wash Durability of Conductive Textiles

    PubMed Central

    Wu, Bangting; Zhang, Bowu; Wu, Jingxia; Wang, Ziqiang; Ma, Hongjuan; Yu, Ming; Li, Linfan; Li, Jingye

    2015-01-01

    There is growing interest in the area of conductive textiles in the scientific and industrial community. Herein, we successfully prepared a conductive textile via covalently grafting polyaniline (PANI) onto cotton by a multi-step treatment process. The conductivity of the resultant fabric could be tuned by immersing in water having different pH values. The conductive and insulating properties of the textile could be conveniently switched by alternately immersing in acidic and alkaline bath solutions. Most importantly, the resultant conductive fabrics were able to withstand 40 simulated dry-wash cycles, with almost no decay in the electrical conductivity, indicating their excellent dry-wash durability. The present strategy for fabricating conductive fabrics with excellent switchability of electrical properties and dry-wash durability is expected to provide inspiration for the production of multifunctional conductive textiles for use in hash or sensitive conditions. PMID:26066704

  16. Drying in cyclones -- A review

    SciTech Connect

    Nebra, S.A.; Silva, M.A.; Mujumdar, A.S.

    2000-03-01

    This paper presents an overview of the flow, heat and mass transfer characteristics of vortex (or cyclone) dryers. The focus is on the potential of the cyclone configuration for drying of particulates. A selective review is made of the literature pertains to single phase and gas-particle flow in cyclone geometries. Recent data on drying of particulates in cyclone dryers are summarized. 56 refs.

  17. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

    2005-01-01

    This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

  18. A comparison of humid air turbine (HAT) cycle and combined-cycle power plants

    SciTech Connect

    Rao, A.D.; Francuz, V.J.; Shen, J.C.; West, E.W. )

    1991-03-01

    The Humid Air Turbine (HAT) cycle is a combustion turbine-based power generating cycle that provides an alternative to combined-cycle power generation. The HAT cycle differs from combined cycles in that it eliminates the steam turbine bottoming cycle by vaporizing water into the turbine's combustion air with heat obtained from the combustion turbine exhaust and other heat sources. This report presents the results of a study conducted by Fluor Daniel, Inc. for EPRI in which the HAT cycle was compared with combined-cycle plants in integration with the Texaco coal gasification process, and in natural gas-fired plants. The comparison of the coal gasification-based power plants utilizing the HAT cycle with Texaco coal gasification-based combined-cycle plants indicate that HAT cycle-based plants are less expensive and produce less environmental emissions. Whereas the combined-cycle plants require the use of expensive syngas coolers to achieve high efficiencies, the HAT cycle plants can achieve similar high efficiencies without the use of such equipment, resulting in a significant savings in capital cost and a reduction in levelized cost of electricity of up to 15%. In addition, HAT cycle plants produce very low levels of NO{sub x} emissions, possibly as little as 6 ppmv (dry, 15% O{sub 2} basis) without requiring the use of control technologies such as selective catalytic reduction. In natural gas-fired plants, the HAT cycle was calculated to have as much as a 4 percentage point gain in efficiency over the combined cycle and a potential for substantial reductions in NO{sub x} emissions, CO{sub 2} emissions, and water consumption. 71 figs., 74 tabs.

  19. MECHANISMS OF DRY SO2 CONTROL PROCESSES

    EPA Science Inventory

    The report discusses physical and chemical processes and reaction mechanisms for lime spray drying and dry injection of sodium compounds in dry flue gas desulfurization (FGD) processes. It includes: chemical reactions, physical changes, proposed reaction mechanisms and mathematic...

  20. The Kiln Drying of Wood for Airplanes

    NASA Technical Reports Server (NTRS)

    Tiemann, Harry D

    1919-01-01

    This report is descriptive of various methods used in the kiln drying of woods for airplanes and gives the results of physical tests on different types of woods after being dried by the various kiln-drying methods.

  1. The Contemporary Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Houghton, R. A.

    2003-12-01

    The global carbon cycle refers to the exchanges of carbon within and between four major reservoirs: the atmosphere, the oceans, land, and fossil fuels. Carbon may be transferred from one reservoir to another in seconds (e.g., the fixation of atmospheric CO2 into sugar through photosynthesis) or over millennia (e.g., the accumulation of fossil carbon (coal, oil, gas) through deposition and diagenesis of organic matter). This chapter emphasizes the exchanges that are important over years to decades and includes those occurring over the scale of months to a few centuries. The focus will be on the years 1980-2000 but our considerations will broadly include the years ˜1850-2100. Chapter 8.09, deals with longer-term processes that involve rates of carbon exchange that are small on an annual timescale (weathering, vulcanism, sedimentation, and diagenesis).The carbon cycle is important for at least three reasons. First, carbon forms the structure of all life on the planet, making up ˜50% of the dry weight of living things. Second, the cycling of carbon approximates the flows of energy around the Earth, the metabolism of natural, human, and industrial systems. Plants transform radiant energy into chemical energy in the form of sugars, starches, and other forms of organic matter; this energy, whether in living organisms or dead organic matter, supports food chains in natural ecosystems as well as human ecosystems, not the least of which are industrial societies habituated (addicted?) to fossil forms of energy for heating, transportation, and generation of electricity. The increased use of fossil fuels has led to a third reason for interest in the carbon cycle. Carbon, in the form of carbon dioxide (CO2) and methane (CH4), forms two of the most important greenhouse gases. These gases contribute to a natural greenhouse effect that has kept the planet warm enough to evolve and support life (without the greenhouse effect the Earth's average temperature would be -33

  2. Fundamentals of freeze-drying.

    PubMed

    Nail, Steven L; Jiang, Shan; Chongprasert, Suchart; Knopp, Shawn A

    2002-01-01

    Given the increasing importance of reducing development time for new pharmaceutical products, formulation and process development scientists must continually look for ways to "work smarter, not harder." Within the product development arena, this means reducing the amount of trial and error empiricism in arriving at a formulation and identification of processing conditions which will result in a quality final dosage form. Characterization of the freezing behavior of the intended formulation is necessary for developing processing conditions which will result in the shortest drying time while maintaining all critical quality attributes of the freeze-dried product. Analysis of frozen systems was discussed in detail, particularly with respect to the glass transition as the physical event underlying collapse during freeze-drying, eutectic mixture formation, and crystallization events upon warming of frozen systems. Experiments to determine how freezing and freeze-drying behavior is affected by changes in the composition of the formulation are often useful in establishing the "robustness" of a formulation. It is not uncommon for seemingly subtle changes in composition of the formulation, such as a change in formulation pH, buffer salt, drug concentration, or an additional excipient, to result in striking differences in freezing and freeze-drying behavior. With regard to selecting a formulation, it is wise to keep the formulation as simple as possible. If a buffer is needed, a minimum concentration should be used. The same principle applies to added salts: If used at all, the concentration should be kept to a minimum. For many proteins a combination of an amorphous excipient, such as a disaccharide, and a crystallizing excipient, such as glycine, will result in a suitable combination of chemical stability and physical stability of the freeze-dried solid. Concepts of heat and mass transfer are valuable in rational design of processing conditions. Heat transfer by conduction

  3. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Tyler Moore; Douglas P. Harrison

    2003-08-01

    This report describes research conducted between April 1, 2003 and June 30, 2003 on the use of dry regenerable sorbents for concentration of carbon dioxide from flue gas. Grade 1 sodium bicarbonate performed similarly to grade 5 sodium bicarbonate in fixed bed testing in that activity improved after the first carbonation cycle and did not decline over the course of 5 cycles. Thermogravimetric analysis indicated that sodium bicarbonate sorbents produced by calcination of sodium bicarbonate are superior to either soda ash or calcined trona. Energy requirements for regeneration of carbon dioxide sorbents (either wet or dry) is of primary importance in establishing the economic feasibility of carbon dioxide capture processes. Recent studies of liquid amine sorption processes were reviewed and found to incorporate conflicting assumptions of energy requirements. Dry sodium based processes have the potential to be less energy intensive and thus less expensive than oxygen inhibited amine based systems. For dry supported sorbents, maximizing the active fraction of the sorbent is of primary importance in developing an economically feasible process.

  4. High-intensity drying processes-impulse drying. Yearly report

    SciTech Connect

    Orloff, D.I.

    1991-06-01

    Impulse drying is an innovative process for drying paper that holds great promise for reducing the energy consumed during the manufacture of paper and similar web products. impulse drying occurs when a wet paper web passes through a press nip in which one of the rolls is heated to a high temperature. A steam layer adjacent to the heated surface grows and displaces water from the sheet in a very efficient manner. The energy required for water removal is very much less than that required for conventional evaporative drying. To eliminate sheet delamination, low thermal mass ceramic press roll coatings were developed to reduce heat transfer to the sheet, while maintaining high heat flux during early stages of the process. In so doing, most of the transferred energy is used to form steam that displaces liquid water, rather than in excessively heating the sheet. During this period, a prototype ceramic coating was developed and its impulse drying performance was compared to that of steel surfaces. It was observed that ceramic platens can be operated at higher temperatures and pressures resulting in improved water removal and physical properties without inducing sheet delamination. Heat flux measurement techniques were developed to provide a mechanistic explanation for the superior performance of the prototype. The work confirmed that the prototype ceramic coating is more energy efficient than the steel surface.

  5. High-intensity drying processes-impulse drying

    SciTech Connect

    Orloff, D.I.

    1991-06-01

    Impulse drying is an innovative process for drying paper that holds great promise for reducing the energy consumed during the manufacture of paper and similar web products. impulse drying occurs when a wet paper web passes through a press nip in which one of the rolls is heated to a high temperature. A steam layer adjacent to the heated surface grows and displaces water from the sheet in a very efficient manner. The energy required for water removal is very much less than that required for conventional evaporative drying. To eliminate sheet delamination, low thermal mass ceramic press roll coatings were developed to reduce heat transfer to the sheet, while maintaining high heat flux during early stages of the process. In so doing, most of the transferred energy is used to form steam that displaces liquid water, rather than in excessively heating the sheet. During this period, a prototype ceramic coating was developed and its impulse drying performance was compared to that of steel surfaces. It was observed that ceramic platens can be operated at higher temperatures and pressures resulting in improved water removal and physical properties without inducing sheet delamination. Heat flux measurement techniques were developed to provide a mechanistic explanation for the superior performance of the prototype. The work confirmed that the prototype ceramic coating is more energy efficient than the steel surface.

  6. Optimal operation of a concurrent-flow corn dryer with a drying heat pump using superheated steam

    SciTech Connect

    Moraitis, C.S.; Akritidis, C.B.

    1998-07-01

    A numerical model of a concurrent-flow dryer of corn using superheated steam as drying medium is solved applying a shooting technique, so as to satisfy boundary conditions imposed by the optimal design of a drying heat pump. The drying heat pump is based on the theory of minimum energy cycles. The solution of the model proves the applicability of the heat pump to a concurrent-flow dryer, achieving a Specific Energy Consumption as low as 1080 kJ/kg.

  7. Fragmentation of drying paint layers

    NASA Astrophysics Data System (ADS)

    Bakos, Katinka; Dombi, András; Járai-Szabó, Ferenc; Néda, Zoltán

    2013-11-01

    Fragmentation of thin layers of drying granular materials on a frictional surface are studied both by experiments and computer simulations. Besides a qualitative description of the fragmentation phenomenon, the dependence of the average fragment size as a function of the layer thickness is thoroughly investigated. Experiments are done using a special nail polish, which forms characteristic crack structures during drying. In order to control the layer thickness, we diluted the nail polish in acetone and evaporated in a controlled manner different volumes of this solution on glass surfaces. During the evaporation process we managed to get an instable paint layer, which formed cracks as it dried out. In order to understand the obtained structures a previously developed spring-block model was implemented in a three-dimensional version. The experimental and simulation results proved to be in excellent qualitative and quantitative agreement. An earlier suggested scaling relation between the average fragment size and the layer thickness is reconfirmed.

  8. Dry cleaning of Turkish coal

    SciTech Connect

    Cicek, T.

    2008-07-01

    This study dealt with the upgrading of two different type of Turkish coal by a dry cleaning method using a modified air table. The industrial size air table used in this study is a device for removing stones from agricultural products. This study investigates the technical and economical feasibility of the dry cleaning method which has never been applied before on coals in Turkey. The application of a dry cleaning method on Turkish coals designated for power generation without generating environmental pollution and ensuring a stable coal quality are the main objectives of this study. The size fractions of 5-8, 3-5, and 1-3 mm of the investigated coals were used in the upgrading experiments. Satisfactory results were achieved with coal from the Soma region, whereas the upgrading results of Hsamlar coal were objectionable for the coarser size fractions. However, acceptable results were obtained for the size fraction 1-3 mm of Hsamlar coal.

  9. Solar Cycle 23: An Anomalous Cycle?

    NASA Astrophysics Data System (ADS)

    de Toma, G.; White, O. R.; Chapman, G. A.; Walton, S. R.; Preminger, D. G.; Cookson, A. M.

    2004-05-01

    We discuss the importance of solar cycle 23 as a magnetically simpler cycle and a variant from recent cycles. We see a significant decrease in sunspot activity in cycle 23 relative to cycle 22, but the strength of the total solar irradiance (TSI) cycle did not change significantly. The latest SOHO/VIRGO TSI time series is analyzed using new solar variability measures obtained from full-disk solar images made at the San Fernando Observatory and the MgII 280nm index. The TSI record for the period 1986 to the present is reproduced within about 130ppm RMS using only two indices representing photospheric and chromospheric sources of variability due to magnetic regions. This is in spite of the difference in magnetic activity between the two cycles. Our results show the continuing improvement in TSI measurements and surrogates containing information necessary to account for irradiance variability.

  10. 7 CFR 58.409 - Drying room.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Drying room. 58.409 Section 58.409 Agriculture....409 Drying room. When applicable, a drying room of adequate size shall be provided to accommodate the... provided for proper drying. Temperature and humidity control facilities should be provided which...

  11. 7 CFR 58.409 - Drying room.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Drying room. 58.409 Section 58.409 Agriculture....409 Drying room. When applicable, a drying room of adequate size shall be provided to accommodate the... provided for proper drying. Temperature and humidity control facilities should be provided which...

  12. 7 CFR 58.409 - Drying room.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Drying room. 58.409 Section 58.409 Agriculture....409 Drying room. When applicable, a drying room of adequate size shall be provided to accommodate the... provided for proper drying. Temperature and humidity control facilities should be provided which...

  13. 7 CFR 58.409 - Drying room.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Drying room. 58.409 Section 58.409 Agriculture....409 Drying room. When applicable, a drying room of adequate size shall be provided to accommodate the... provided for proper drying. Temperature and humidity control facilities should be provided which...

  14. Combined infrared and freeze-drying.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The drying of the combined infrared (IR) and freeze-drying of food materials has been shown to be very rapid compared to regular freeze drying (FD). The resulting tissue structure of products processed with sequential infrared and freeze drying (SIRFD) tends to have higher crispness than those proce...

  15. 21 CFR 160.105 - Dried eggs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Dried eggs. 160.105 Section 160.105 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.105 Dried eggs. (a) Dried eggs, dried whole...

  16. Drying leather with vacuum and toggling sequentially

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated a drying method that will enable leather to be dried under vacuum and stretch sequentially to improve area yield. Vacuum drying offers fast speed at a low temperature, which would be advantageous to heat-vulnerable chrome-free leather. Adding a toggle action after vacuum drying cou...

  17. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  18. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  19. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  20. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida...

  1. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  2. Stabilized dried blood spot collection.

    PubMed

    McMorran, Darren; Chung, Dwayne Chung Kim; Toth, Monika; Liew, Oi Wah; Muradoglu, Murat; Ng, Tuck Wah

    2016-08-01

    During the collection phase of the dried blood spot method, practitioners need to ensure that there is no smearing of the blood sample on the filter paper or else readings from it will be invalid. This can be difficult to accomplish in the field if there is relative motion between the site of blood discharge on the finger and the filter paper. In this article, a gyroscope stabilization method is introduced and demonstrated to provide consistent and improved dried blood spot collection within a circular guide region notwithstanding the presence of rocking. PMID:27156813

  3. Dry machinability of aluminum alloys.

    SciTech Connect

    Shareef, I.; Natarajan, M.; Ajayi, O. O.; Energy Technology; Department of IMET

    2005-01-01

    Adverse effects of the use of cutting fluids and environmental concerns with regard to cutting fluid disposability is compelling industry to adopt Dry or near Dry Machining, with the aim of eliminating or significantly reducing the use of metal working fluids. Pending EPA regulations on metal cutting, dry machining is becoming a hot topic of research and investigation both in industry and federal research labs. Although the need for dry machining may be apparent, most of the manufacturers still consider dry machining to be impractical and even if possible, very expensive. This perception is mainly due to lack of appropriate cutting tools that can withstand intense heat and Built-up-Edge (BUE) formation during dry machining. The challenge of heat dissipation without coolant requires a completely different approach to tooling. Special tooling utilizing high-performance multi-layer, multi-component, heat resisting, low friction coatings could be a plausible answer to the challenge of dry machining. In pursuit of this goal Argonne National Labs has introduced Nano-crystalline near frictionless carbon (NFC) diamond like coatings (DLC), while industrial efforts have led to the introduction of composite coatings such as titanium aluminum nitride (TiAlN), tungsten carbide/carbon (WC/C) and others. Although, these coatings are considered to be very promising, they have not been tested either from tribological or from dry machining applications point of view. As such a research program in partnership with federal labs and industrial sponsors has started with the goal of exploring the feasibility of dry machining using the newly developed coatings such as Near Frictionless Carbon Coatings (NFC), Titanium Aluminum Nitride (TiAlN), and multi-layer multicomponent nano coatings such as TiAlCrYN and TiAlN/YN. Although various coatings are under investigation as part of the overall dry machinability program, this extended abstract deals with a systematic investigation of dry

  4. Phase transitions in freeze-dried systems - quantification using in situ synchrotron X-ray diffractometry

    SciTech Connect

    Varshney, Dushyant B.; Sundaramurthi, Prakash; Kumar, Satyendra; Shalaev, Evgenyi Y.; Kang, Shin-Woong; Gatlin, Larry A.; Suryanarayanan, Raj

    2009-09-02

    The purpose is: (1) To develop a synchrotron X-ray diffraction (SXRD) method to monitor phase transitions during the entire freeze-drying cycle. Aqueous sodium phosphate buffered glycine solutions with initial glycine to buffer molar ratios of 1:3 (17:50 mM), 1:1 (50 mM) and 3:1 were utilized as model systems. (2) To investigate the effect of initial solute concentration on the crystallization of glycine and phosphate buffer salt during lyophilization. Phosphate buffered glycine solutions were placed in a custom-designed sample cell for freeze-drying. The sample cell, covered with a stainless steel dome with a beryllium window, was placed on a stage capable of controlled cooling and vacuum drying. The samples were cooled to -50 C and annealed at -20 C. They underwent primary drying at -25 C under vacuum until ice sublimation was complete and secondary drying from 0 to 25 C. At different stages of the freeze-drying cycle, the samples were periodically exposed to synchrotron X-ray radiation. An image plate detector was used to obtain time-resolved two-dimensional SXRD patterns. The ice, {beta}-glycine and DHPD phases were identified based on their unique X-ray peaks. When the solutions were cooled and annealed, ice formation was followed by crystallization of disodium hydrogen phosphate dodecahydrate (DHPD). In the primary drying stage, a significant increase in DHPD crystallization followed by incomplete dehydration to amorphous disodium hydrogen phosphate was evident. Complete dehydration of DHPD occurred during secondary drying. Glycine crystallization was inhibited throughout freeze-drying when the initial buffer concentration (1:3 glycine to buffer) was higher than that of glycine. A high-intensity X-ray diffraction method was developed to monitor the phase transitions during the entire freeze-drying cycle. The high sensitivity of SXRD allowed us to monitor all the crystalline phases simultaneously. While DHPD crystallizes in frozen solution, it dehydrates

  5. Energy and quality aspects of food drying

    SciTech Connect

    Strumillo, C.; Adamiec, J.

    1996-05-01

    High energy consumption and increasing consumers` interest in new products are two problems worthy of note in the drying of food. Difficulties in producing high-quality food and degrading transformations of the material during drying are mentioned. The kinetics of quality degradation due to drying is described. The role of water activity in maintaining product quality is emphasized. Examples of drying methods and tendencies toward a reduction in quality degradation of dried food products are shown.

  6. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    SciTech Connect

    Edward K. Levy; Nenad Sarunac; Wei Zhang

    2004-07-01

    This is the sixth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture, prior to firing in a pulverized coal boiler. Coal drying experiments were performed with a Powder River Basin coal to measure the effects of fluidization velocity and drying temperature on rate of drying in a batch drying process. Comparisons to computational results using the batch bed drying model show good agreement. Comparisons to drying results with North Dakota lignite at the same process conditions confirm the lignite dries slightly more rapidly than the PRB. Experiments were also carried out to determine the effects of inlet air humidity on drying rate. The specific humidity ranged from a value typical for air at temperatures near freezing to a value for 30 C air at 90 percent relative humidity. The experimental results show drying rate is strongly affected by inlet air humidity, with the rate decreasing with more humid inlet air. The temperature of the drying process also plays a strong role, with the negative impacts of high inlet moisture being less of a factor in a higher temperature drying process. Concepts for coal drying systems integrated into a power plant were developed. These make use of hot circulating cooling water from the condenser, steam extraction from the turbine cycle and thermal energy extracted from hot flue gas, in various combinations. Analyses are under way to calculate the effects of drying system design and process conditions on unit performance, emissions, and cooling tower makeup water.

  7. Bioactive maca (Lepidium meyenii) alkamides are a result of traditional Andean postharvest drying practices.

    PubMed

    Esparza, Eliana; Hadzich, Antonella; Kofer, Waltraud; Mithöfer, Axel; Cosio, Eric G

    2015-08-01

    Maca, Lepidium meyenii Walpers (Brassicaceae), is an annual herbaceous plant native to the high plateaus of the Peruvian central Andes. Its underground storage hypocotyls have been a traditional medicinal agent and dietary staple since pre-Columbian times. Reported properties include energizing and fertility-enhancing effects. Published reports have focused on the benzylalkamides (macamides) present in dry hypocotyls as one of the main bioactive components. Macamides are secondary amides formed by benzylamine and a fatty acid moiety, with varying hydrocarbon chain lengths and degree of unsaturation. Although it has been assumed that they are usually present in fresh undamaged tissues, analyses show them to be essentially absent from them. However, hypocotyls dried by traditional Andean postharvest practices or industrial oven drying contain up to 800μgg(-1) dry wt (2.3μmolg(-1) dry wt) of macamides. In this study, the generation of macamides and their putative precursors were studied during nine-week traditional drying trials at 4200m altitude and in ovens under laboratory conditions. Freeze-thaw cycles in the open field during drying result in tissue maceration and release of free fatty acids from storage and membrane lipids up to levels of 1200μgg(-1) dry wt (4.3μmolg(-1) dry wt). Endogenous metabolism of the isothiocyanates generated from glucosinolate hydrolysis during drying results in maximal benzylamine values of 4300μgg(-1) dry wt (40.2μmolg(-1) dry wt). Pearson correlation coefficients of the accumulation profiles of benzylamine and free fatty acid to that of macamides showed good values of 0.898 and 0.934, respectively, suggesting that both provide sufficient substrate for amide synthesis during the drying process. PMID:25817836

  8. Granular flow: Dry and wet

    NASA Astrophysics Data System (ADS)

    Mitarai, N.; Nakanishi, H.

    2012-04-01

    Granular material is a collection of macroscopic particles that are visible with naked eyes. The non-equilibrium nature of the granular materials makes their rheology quite different from that of molecular systems. In this minireview, we present the unique features of granular materials focusing on the shear flow of dry granular materials and granule-liquid mixture.

  9. Hope, for the Dry Side.

    ERIC Educational Resources Information Center

    Husted, Bette Lynch

    2001-01-01

    Describes the experiences of the author as she tries to transfigure her students enrolled in freshman writing and college preparatory writing classes at Blue Mountain Community College in Pendleton, Oregon (located in the "dry side" of the state). Addresses students' racism, homophobia, and distrust of their own skills in writing. (RS)

  10. Drying Milk With Boiler Exhaust

    NASA Technical Reports Server (NTRS)

    Broussard, M. R.

    1984-01-01

    Considerable energy saved in powdered-milk industry. Only special requirement boiler fired with natural gas or other clean fuel. Boiler flue gas fed to spray drier where it directly contacts product to be dried. Additional heat supplied by auxillary combustor when boiler output is low. Approach adaptable to existing plants with minimal investment because most already equipped with natural-gas-fired boilers.

  11. Dry Zones Around Frozen Droplets

    NASA Astrophysics Data System (ADS)

    Bisbano, Caitlin; Nath, Saurabh; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    The saturation pressure of water vapor above supercooled water exceeds that above ice at the same temperature. A frozen droplet will therefore grow by harvesting water vapor from neighboring supercooled condensate, which has recently been demonstrated to be a primary mechanism of in-plane frost growth on hydrophobic surfaces. The underlying physics of this source-sink interaction is still poorly understood. In this work, a deposited water droplet is frozen on a dry hydrophobic surface initially held above the dew point. We demonstrate that when the surface is then cooled beneath the dew point, the frozen droplet harvests nearby water vapor in the air. This results in an annular dry zone that forms between the frozen droplet and the forming supercooled condensation. For a given ambient temperature and humidity, the length of the dry zone varied strongly with surface temperature and weakly with droplet volume. The dependence of the dry zone on surface temperature is due to the fact that the vapor pressure gradients between the ambient and the surface and between the liquid and frozen water are both functions of temperature.

  12. Longevity Of Dry Film Lubricants

    NASA Technical Reports Server (NTRS)

    Kannel, J. W.; Stockwell, R. D.

    1993-01-01

    Report describes evaluation of dry film lubricants candidate for use in rotary joints of proposed Space Station. Study included experiments and theoretical analyses focused on longevity of sputtered molybdenum disulfide films and ion-plated lead films under conditions partially simulating rolling contact.

  13. Microwave drying of seed cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A small lab dryer was designed for use in drying seed cotton with components of a microwave generator mounted thereon. The magnetron emitted radiation directly into the seed cotton and a fan directed air cross-flow to the radiation direction. The microwave components were a 1.1 kW magnetron, trans...

  14. Dry bin filler for apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A unique dry bin filler for apples using a sequenced tray was developed to reduce bruising in packing operations. Research and commercial trials in West Virginia, Pennsylvania, and Washington State demonstrated the ability to fill bins evenly and with low damage. Cultivars with different bruising su...

  15. Solar Cycle 23: An Anomalous Cycle?

    NASA Astrophysics Data System (ADS)

    de Toma, Giuliana; White, Oran R.; Chapman, Gary A.; Walton, Stephen R.; Preminger, Dora G.; Cookson, Angela M.

    2004-07-01

    The latest SOHO VIRGO total solar irradiance (TSI) time series is analyzed using new solar variability measures obtained from full-disk solar images made at the San Fernando Observatory and the Mg II 280 nm index. We discuss the importance of solar cycle 23 as a magnetically simpler cycle and a variant from recent cycles. Our results show the continuing improvement in TSI measurements and surrogates containing information necessary to account for irradiance variability. Use of the best surrogate for irradiance variability due to photospheric features (sunspots and faculae) and chromospheric features (plages and bright network) allows fitting the TSI record to within an rms difference of 130 ppm for the period 1986 to the present. Observations show that the strength of the TSI cycle did not change significantly despite the decrease in sunspot activity in cycle 23 relative to cycle 22. This points to the difficulty of modeling TSI back to times when only sunspot observations were available.

  16. Interfacing primary heat sources and cycles for thermochemical hydrogen production

    SciTech Connect

    Bowman, M.G.

    1980-01-01

    Advantages cited for hydrogen production from water by coupling thermochemical cycles with primary heat include the possibility of high efficiencies. These can be realized only if the cycle approximates the criteria required to match the characteristics of the heat source. Different types of cycles may be necessary for fission reactors, for fusion reactors or for solar furnaces. Very high temperature processes based on decomposition of gaseous H/sub 2/O or CO/sub 2/ appear impractical even for projected solar technology. Cycles based on CdO decomposition are potentially quite efficient and require isothermal heat at temperatures that may be available from solar furnaces of fusion reactors. Sulfuric acid and solid sulfate cycles are potentially useful at temperatures available from each heat source. Solid sulfate cycles offer advantages for isothermal heat sources. All cycles under development include concentration and drying steps. Novel methods for improving such operations would be beneficial.

  17. Effects of heat exposure in the absence of hyperthermia on power output during repeated cycling sprints

    PubMed Central

    Arimitsu, T; Yunoki, T; Kimura, T; Yamanaka, R; Yano, T

    2014-01-01

    The aim of this study was to investigate the effects of heat exposure in the absence of hyperthermia on power output during repeated cycling sprints. Seven males performed four 10-s cycling sprints interspersed by 30 s of active recovery on a cycle ergometer in hot-dry and thermoneutral environments. Changes in rectal temperature were similar under the two ambient conditions. The mean 2-s power output over the 1st–4th sprints was significantly lower under the hot-dry condition than under the thermoneutral condition. The amplitude of the electromyogram was lower under the hot-dry condition than under the thermoneutral condition during the early phase (0–3 s) of each cycling sprint. No significant difference was observed for blood lactate concentration between the two ambient conditions. Power output at the onset of a cycling sprint during repeated cycling sprints is decreased due to heat exposure in the absence of hyperthermia. PMID:25729145

  18. Combined dry and wet adhesion between a particle and an elastic substrate.

    PubMed

    Qian, Jin; Lin, Ji; Shi, Mingxing

    2016-12-01

    We theoretically model the combined dry and wet adhesion between a rigid sphere and an elastic substrate, where the dry contact area is surrounded by a liquid meniscus. The influence of the liquid on the interfacial adhesion is twofold: inducing the Laplace pressure around the dry contact area and altering the adhesion energy between solid surfaces. The behavior of such combined dry and wet adhesion shows a smooth transition between the JKR and DMT models for hydrophilic solids, governed by the prescribed liquid volume or environmental humidity. The JKR-DMT transition vanishes when the solids become hydrophobic. An inverse scaling law of adhesive strength indicates that size reduction helps to enhance the adhesive strength until a theoretical limit is reached. This study also demonstrates the jumping-on and jumping-off hysteresis between the combined dry-wet adhesion and pure liquid bridge in a complete separation and approach cycle. PMID:27567029

  19. Systemic Review of Dry Socket: Aetiology, Treatment, and Prevention

    PubMed Central

    Saleh, Lubna Ahmed; Umair, Ayesha; Azzeghaiby, Saleh Nasser; Hanouneh, Salah

    2015-01-01

    Our systemic review is to make a comprehensive review about the aetiology, treatment and the prevention of dry socket, the inclusion criteria were all the studies that discuss the dry socket and its etiology, treatment and prevention and exclusion criteria were all the studies that discuss the other complications of tooth extraction, the materials and methods used for this systemic review was to search in the Pub Medline database between 2008 to 2013, using specific words “dry socket, aetiology, treatment and prevention” and published in the English language, the articles were screened by abstract for relevance to aetiology, treatment and prevention of dry socket, 82 papers were identified in pub med but a total of 36 out of Publications were included in the final systemic review according to the specific keywords and materials mentioned above. The occurrence of dry socket in an everyday oral surgery or dental practice is unavoidable. The risk factors are smoking, surgical trauma, single extractions, age, sex, medical history, systemic disorder, extraction site, amount of anaesthesia, operator experience, antibiotics use prior to surgery, difficulty of the surgery and the previous surgical site infection in addition to oral Contraceptives, menstrual cycle and immediate postextraction socket irrigation with normal saline. The traditional options of treatment are directed toward palliative care, such as the irrigation of the surgical site, avoiding curetting the extraction socket, Packing with a zinc oxide– eugenol paste on iodoform gauze can be considered to relieve acute pain episodes, there is also new agents in the market can accelerate the healing of the socket such as PRGF and GECB. The prevention methods include avoiding smoking before and after surgery and a traumatic surgery, the use of antibiotics, such as, azithromycin, can be considered, the other preventive measures such as chlorhecidine rinse or gel can be effective in the reduction of dry socket

  20. Systemic review of dry socket: aetiology, treatment, and prevention.

    PubMed

    Tarakji, Bassel; Saleh, Lubna Ahmed; Umair, Ayesha; Azzeghaiby, Saleh Nasser; Hanouneh, Salah

    2015-04-01

    Our systemic review is to make a comprehensive review about the aetiology, treatment and the prevention of dry socket, the inclusion criteria were all the studies that discuss the dry socket and its etiology, treatment and prevention and exclusion criteria were all the studies that discuss the other complications of tooth extraction, the materials and methods used for this systemic review was to search in the Pub Medline database between 2008 to 2013, using specific words "dry socket, aetiology, treatment and prevention" and published in the English language, the articles were screened by abstract for relevance to aetiology, treatment and prevention of dry socket, 82 papers were identified in pub med but a total of 36 out of Publications were included in the final systemic review according to the specific keywords and materials mentioned above. The occurrence of dry socket in an everyday oral surgery or dental practice is unavoidable. The risk factors are smoking, surgical trauma, single extractions, age, sex, medical history, systemic disorder, extraction site, amount of anaesthesia, operator experience, antibiotics use prior to surgery, difficulty of the surgery and the previous surgical site infection in addition to oral Contraceptives, menstrual cycle and immediate postextraction socket irrigation with normal saline. The traditional options of treatment are directed toward palliative care, such as the irrigation of the surgical site, avoiding curetting the extraction socket, Packing with a zinc oxide- eugenol paste on iodoform gauze can be considered to relieve acute pain episodes, there is also new agents in the market can accelerate the healing of the socket such as PRGF and GECB. The prevention methods include avoiding smoking before and after surgery and a traumatic surgery, the use of antibiotics, such as, azithromycin, can be considered, the other preventive measures such as chlorhecidine rinse or gel can be effective in the reduction of dry socket

  1. Hanford spent nuclear fuel cold vacuum drying proof of performance test procedure

    SciTech Connect

    McCracken, K.J.

    1998-06-10

    This document provides the test procedure for cold testing of the first article skids for the Cold Vacuum Drying (CVD) process at the Facility. The primary objective of this testing is to confirm design choices and provide data for the initial start-up parameters for the process. The current scope of testing in this document includes design verification, drying cycle determination equipment performance testing of the CVD process and MCC components, heat up and cool-down cycle determination, and thermal model validation.

  2. Crystallization of Trehalose in Frozen Solutions and its Phase Behavior during Drying

    SciTech Connect

    Sundaramurthi, Prakash; Patapoff, Thomas W.; Suryanarayanan, Raj

    2015-02-19

    To study the crystallization of trehalose in frozen solutions and to understand the phase transitions during the entire freeze-drying cycle. Aqueous trehalose solution was cooled to -40 C in a custom-designed sample holder. The frozen solution was warmed to -18 C and annealed, and then dried in the sample chamber of the diffractometer. XRD patterns were continuously collected during cooling, annealing and drying. After cooling, hexagonal ice was the only crystalline phase observed. However, upon annealing, crystallization of trehalose dihydrate was evident. Seeding the frozen solution accelerated the solute crystallization. Thus, phase separation of the lyoprotectant was observed in frozen solutions. During drying, dehydration of trehalose dihydrate yielded a substantially amorphous anhydrous trehalose. Crystallization of trehalose, as trehalose dihydrate, was observed in frozen solutions. The dehydration of the crystalline trehalose dihydrate to substantially amorphous anhydrate occurred during drying. Therefore, analyzing the final lyophile will not reveal crystallization of the lyoprotectant during freeze-drying. The lyoprotectant crystallization can only become evident by continuous monitoring of the system during the entire freeze-drying cycle. In light of the phase separation of trehalose in frozen solutions, its ability to serve as a lyoprotectant warrants further investigation.

  3. Freeze-drying process monitoring using a cold plasma ionization device.

    PubMed

    Mayeresse, Y; Veillon, R; Sibille, P H; Nomine, C

    2007-01-01

    A cold plasma ionization device has been designed to monitor freeze-drying processes in situ by monitoring lyophilization chamber moisture content. This plasma device, which consists of a probe that can be mounted directly on the lyophilization chamber, depends upon the ionization of nitrogen and water molecules using a radiofrequency generator and spectrometric signal collection. The study performed on this probe shows that it is steam sterilizable, simple to integrate, reproducible, and sensitive. The limitations include suitable positioning in the lyophilization chamber, calibration, and signal integration. Sensitivity was evaluated in relation to the quantity of vials and the probe positioning, and correlation with existing methods, such as microbalance, was established. These tests verified signal reproducibility through three freeze-drying cycles. Scaling-up studies demonstrated a similar product signature for the same product using pilot-scale and larger-scale equipment. On an industrial scale, the method efficiently monitored the freeze-drying cycle, but in a larger industrial freeze-dryer the signal was slightly modified. This was mainly due to the positioning of the plasma device, in relation to the vapor flow pathway, which is not necessarily homogeneous within the freeze-drying chamber. The plasma tool is a relevant method for monitoring freeze-drying processes and may in the future allow the verification of current thermodynamic freeze-drying models. This plasma technique may ultimately represent a process analytical technology (PAT) approach for the freeze-drying process. PMID:17722483

  4. Uncertainty analysis as essential step in the establishment of the dynamic Design Space of primary drying during freeze-drying.

    PubMed

    Mortier, Séverine Thérèse F C; Van Bockstal, Pieter-Jan; Corver, Jos; Nopens, Ingmar; Gernaey, Krist V; De Beer, Thomas

    2016-06-01

    compared to the deterministic dynamic Design Space; however, the risk of failure is under control. Experimental verification revealed that only a risk of failure acceptance level of 0.01% yielded a guaranteed zero-defect quality end-product. The computed process settings with a risk of failure acceptance level of 0.01% resulted in a decrease of more than half of the primary drying time in comparison with a regular, conservative cycle with fixed settings. PMID:26992290

  5. Solar Cycle 25: Another Moderate Cycle?

    NASA Astrophysics Data System (ADS)

    Cameron, R. H.; Jiang, J.; Schüssler, M.

    2016-06-01

    Surface flux transport simulations for the descending phase of Cycle 24 using random sources (emerging bipolar magnetic regions) with empirically determined scatter of their properties provide a prediction of the axial dipole moment during the upcoming activity minimum together with a realistic uncertainty range. The expectation value for the dipole moment around 2020 (2.5 ± 1.1 G) is comparable to that observed at the end of Cycle 23 (about 2 G). The empirical correlation between the dipole moment during solar minimum and the strength of the subsequent cycle thus suggests that Cycle 25 will be of moderate amplitude, not much higher than that of the current cycle. However, the intrinsic uncertainty of such predictions resulting from the random scatter of the source properties is considerable and fundamentally limits the reliability with which such predictions can be made before activity minimum is reached.

  6. Hydrodynamic model for drying emulsions

    NASA Astrophysics Data System (ADS)

    Feng, Huanhuan; Sprakel, Joris; van der Gucht, Jasper

    2015-08-01

    We present a hydrodynamic model for film formation in a dense oil-in-water emulsion under a unidirectional drying stress. Water flow through the plateau borders towards the drying end leads to the buildup of a pressure gradient. When the local pressure exceeds the critical disjoining pressure, the water films between droplets break and the droplets coalesce. We show that, depending on the critical pressure and the evaporation rate, the coalescence can occur in two distinct modes. At low critical pressures and low evaporation rates, coalescence occurs throughout the sample, whereas at high critical pressures and high evaporation rate, coalescence occurs only at the front. In the latter case, an oil layer develops on top of the film, which acts as a diffusive barrier and slows down film formation. Our findings, which are summarized in a state diagram for film formation, are in agreement with recent experimental findings.

  7. Dry Eye and Designer Ophthalmics

    PubMed Central

    Laurie, Gordon W.; Olsakovsky, Leslie A.; Conway, Brian P.; McKown, Robert L.; Kitagawa, Kazuko; Nichols, Jason J.

    2009-01-01

    EST, proteomic, and antibody capture assays are revealing a level of tear film protein complexity far greater than previously appreciated. A systems biology approach will be needed to fully appreciate function as tear protein doses fluctuate in time through different conditions. Although consensus is growing on what fully constitutes the human tear proteome, questions remain about the source and significance of the ∼256 tear proteins designated as ‘intracellular’. Many of these may derive from normal cellular turnover and could therefore be informative. A further >183 are designated as ‘extracellular’. Surprisingly, only 4 – 5% of these appear to be dysregulated in the three forms of dry eye preliminarily examined to date. Some differ and a couple overlap, suggesting that disease-specific signatures could be identified. Future dry eye treatment might include recombinant tear protein rescue as a personalized ophthalmic approach to ocular surface disease. PMID:18677231

  8. The management of dry eye.

    PubMed

    2016-01-01

    Dry eye disease (also called keratoconjunctivitis sicca) is a common condition, with a prevalence ranging from 8-34%, depending on the criteria used.(1) It becomes more common with increasing age and affects more women than men. Artificial tears and ocular lubricants are considered the mainstay of treatment and there is a very wide range of these products available. In England in 2014, over 6.4 million prescription items for artificial tears, ocular lubricants and astringents were dispensed in the community at a cost to the NHS of over £27 million.(2) In this article we review the management of dry eye disease, focusing on artificial tears and ocular lubricants. PMID:26763598

  9. The Delicate Cycle

    ERIC Educational Resources Information Center

    Galloway, Melinda

    2006-01-01

    There are two types of parenting styles when it comes to parent involvement in their children's education: the "hovering" type and the "dry cleaner" type. Hovering parents are always on hand for every landmark moment of their children while dry cleaner parents show up only when an emergency is imminent. In this article, the author relates her own…

  10. Drying of Beulah Zap lignite

    SciTech Connect

    Vorres, K.S.; Molenda, D. ); Dang, Y.; Malhotra, V.M. . Dept. of Physics)

    1991-01-01

    Recent results on the kinetics of water's desorption from Beulah-Zap lignite coal, as determined by thermogravimetric analysis (TGA) and the differential scanning calorimetry (DSC) technique were reported. The kinetic analysis of DSC was further complimented by determining the mechanism of air drying of lignite coal with the help of an in-situ Desorption Kinetics via Fourier transform infrared (ISDK-FTIR) technique. 17 refs., 5 figs., 1 tab.

  11. Ingested hyaluronan moisturizes dry skin

    PubMed Central

    2014-01-01

    Hyaluronan (HA) is present in many tissues of the body and is essential to maintain moistness in the skin tissues, which contain approximately half the body’s HA mass. Due to its viscosity and moisturizing effect, HA is widely distributed as a medicine, cosmetic, food, and, recently marketed in Japan as a popular dietary supplement to promote skin moisture. In a randomized, double-blind, placebo-controlled clinical study it was found that ingested HA increased skin moisture and improved treatment outcomes for patients with dry skin. HA is also reported to be absorbed by the body distributed, in part, to the skin. Ingested HA contributes to the increased synthesis of HA and promotes cell proliferation in fibroblasts. These effects show that ingestion of HA moisturizes the skin and is expected to improve the quality of life for people who suffer from dry skin. This review examines the moisturizing effects of dry skin by ingested HA and summarizes the series of mechanisms from absorption to pharmacological action. PMID:25014997

  12. Skin aging and dry skin.

    PubMed

    Hashizume, Hideo

    2004-08-01

    Skin aging appears to be the result of both scheduled and continuous "wear and tear" processes that damage cellular DNA and proteins. Two types of aging, chronological skin aging and photoaging, have distinct clinical and histological features. Chronological skin aging is a universal and inevitable process characterized primarily by physiologic alterations in skin function. In this case, keratinocytes are unable to properly terminally differentiate to form a functional stratum corneum, and the rate of formation of neutral lipids that contribute to the barrier function slows, causing dry, pale skin with fine wrinkles. In contrast, photoaging results from the UVR of sunlight and the damage thus becomes apparent in sun-exposed skin. Characteristics of this aging type are dry and sallow skin displaying fine wrinkles as well as deep furrows, resulting from the disorganization of epidermal and dermal components associated with elastosis and heliodermatitis. Understanding of the functions of the skin and the basic principles of moisturizer use and application is important for the prevention of skin aging. Successful treatment of dry skin with appropriate skin care products gives the impression of eternal youth. PMID:15492432

  13. McMurdo Dry Valleys

    NASA Technical Reports Server (NTRS)

    2002-01-01

    One of the few areas of Antarctica not covered by thousands of meters of ice, the McMurdo Dry Valleys stand out in this satellite image. For a few weeks each summer temperatures are warm enough to melt glacial ice, creating streams that feed freshwater lakes that lie at the bottom of the valleys. Beneath a cap of ice these lakes remains unfrozen year-round, supporting colonies of bacteria and phytoplankton. Over the past 14 years, however, summers have been colder than usual, and the lakes are becoming more and more frozen. If the trend continues, the biological communities they support may go into hibernation. Most of Antarctica has cooled along with the Dry Valleys, in contrast to much of the rest of the Earth, which has warmed over the past 100 years. No one knows if the trend is related to global climate, or just a quirk in the weather. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) instrument on December 18, 1999. For more information, visit: National Public Radio's Mixed Signals from Antarctica Declassified Satellite Imagery of the McMurdo Dry Valleys Image by Robert Simmon, based on data provided by the NASA GSFC Oceans and Ice Branch and the Landsat 7 Science Team

  14. Inhaled antibiotics: dry or wet?

    PubMed

    Tiddens, Harm A W M; Bos, Aukje C; Mouton, Johan W; Devadason, Sunalene; Janssens, Hettie M

    2014-11-01

    Dry powder inhalers (DPIs) delivering antibiotics for the suppressive treatment of Pseudomonas aeruginosa in cystic fibrosis patients were developed recently and are now increasingly replacing time-consuming nebuliser therapy. Noninferiority studies have shown that the efficacy of inhaled tobramycin delivered by DPI was similar to that of wet nebulisation. However, there are many differences between inhaled antibiotic therapy delivered by DPI and by nebuliser. The question is whether and to what extent inhalation technique and other patient-related factors affect the efficacy of antibiotics delivered by DPI compared with nebulisers. Health professionals should be aware of the differences between dry and wet aerosols, and of patient-related factors that can influence efficacy, in order to personalise treatment, to give appropriate instructions to patients and to better understand the response to the treatment after switching. In this review, key issues of aerosol therapy are discussed in relation to inhaled antibiotic therapy with the aim of optimising the use of both nebulised and DPI antibiotics by patients. An example of these issues is the relationship between airway generation, structural lung changes and local concentrations of the inhaled antibiotics. The pros and cons of dry and wet modes of delivery for inhaled antibiotics are discussed. PMID:25323242

  15. Microalgal drying and cell disruption--recent advances.

    PubMed

    Show, Kuan-Yeow; Lee, Duu-Jong; Tay, Joo-Hwa; Lee, Tse-Min; Chang, Jo-Shu

    2015-05-01

    Production of intracellular metabolites or biofuels from algae involves various processing steps, and extensive work on laboratory- and pilot-scale algae cultivation, harvesting and processing has been reported. As algal drying and cell disruption are integral processes of the unit operations, this review examines recent advances in algal drying and disruption for nutrition or biofuel production. Challenges and prospects of the processing are also outlined. Engineering improvements in addressing the challenges of energy efficiency and cost-effective and rigorous techno-economic analyses for a clearer prospect comparison between different processing methods are highlighted. Holistic life cycle assessments need to be conducted in assessing the energy balance and the potential environmental impacts of algal processing. The review aims to provide useful information for future development of efficient and commercially viable algal food products and biofuels production. PMID:25465783

  16. Drying and recovery of aerobic granules.

    PubMed

    Hu, Jianjun; Zhang, Quanguo; Chen, Yu-You; Lee, Duu-Jong

    2016-10-01

    To dehydrate aerobic granules to bone-dry form was proposed as a promising option for long-term storage of aerobic granules. This study cultivated aerobic granules with high proteins/polysaccharide ratio and then dried these granules using seven protocols: drying at 37°C, 60°C, 4°C, under sunlight, in dark, in a flowing air stream or in concentrated acetone solutions. All dried granules experienced volume shrinkage of over 80% without major structural breakdown. After three recovery batches, although with loss of part of the volatile suspended solids, all dried granules were restored most of their original size and organic matter degradation capabilities. The strains that can survive over the drying and storage periods were also identified. Once the granules were dried, they can be stored over long period of time, with minimal impact yielded by the applied drying protocols. PMID:27392096

  17. Simple Solutions for Treating Dry Mouth

    MedlinePlus

    Patient Education Sheet Simple Solutions for Treating Dry Mouth Clinicians: Please make as many copies of this ... Philadelphia, for authoring “Simple Solutions for Treating Dry Mouth.” Ask your family doctor to discontinue or provide ...

  18. Dry Mouth? Don't Delay Treatment

    MedlinePlus

    ... For Consumers Home For Consumers Consumer Updates Dry Mouth? Don't Delay Treatment Share Tweet Linkedin Pin ... saliva, cavities may occur. back to top Dry Mouth Treatments Your doctor or dentist may recommend oral ...

  19. HAZARDOUS AIR POLLUTANTS: DRY-DEPOSITION PHENOMENA

    EPA Science Inventory

    Dry-deposition rates were evaluated for two hazardous organic air pollutants, nitrobenzene and perchloroethylene, to determine their potential for removal from the atmosphere to three building material surfaces, cement, tar paper, and vinyl asbestos tile. Dry-deposition experimen...

  20. 7 CFR 58.409 - Drying room.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... maximum production of cheese during the flush period. Adequate shelving and air circulation shall be provided for proper drying. Temperature and humidity control facilities should be provided which will promote the development of a sound, dry surface of the cheese....

  1. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect

    Carter, J.

    2011-01-03

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  2. Development of spray dried liposomal dry powder inhaler of Dapsone.

    PubMed

    Chougule, Mahavir; Padhi, Bijay; Misra, Ambikanandan

    2008-01-01

    This investigation was undertaken to evaluate practical feasibility of site specific pulmonary delivery of liposomal encapsulated Dapsone (DS) dry powder inhaler for prolonged drug retention in lungs as an effective alternative in prevention of Pneumocystis carinii pneumonia (PCP) associated with immunocompromised patients. DS encapsulated liposomes were prepared by thin film evaporation technique and resultant liposomal dispersion was passed through high pressure homogenizer. DS nano-liposomes (NLs) were separated by ultra centrifugation and characterized. NLs were dispersed in phosphate buffer saline (PBS) pH 7.4 containing different carriers like lactose, sucrose, and hydrolyzed gelatin, and 15% L-leucine as antiadherent. The resultant dispersion was spray dried and spray dried formulation were characterized to ascertain its performance. In vitro pulmonary deposition was assessed using Andersen Cascade Impactor as per USP. NLs were found to have average size of 137 +/- 15 nm, 95.17 +/- 3.43% drug entrapment, and zeta potential of 0.8314 +/- 0.0827 mV. Hydrolyzed gelatin based formulation was found to have low density, good flowability, particle size of 7.9 +/- 1.1 microm, maximum fine particle fraction (FPF) of 75.6 +/- 1.6%, mean mass aerodynamic diameter (MMAD) 2.2 +/- 0.1 microm, and geometric standard deviation (GSD) 2.3 +/- 0.1. Developed formulations were found to have in vitro prolonged drug release up to 16 h, and obeys Higuchi's Controlled Release model. The investigation provides a practical approach for direct delivery of DS encapsulated in NLs for site specific controlled and prolonged release behavior at the site of action and hence, may play a promising role in prevention of PCP. PMID:18446460

  3. 2008 National dry mill corn ethanol survey.

    PubMed

    Mueller, Steffen

    2010-09-01

    Emerging regulations require an examination of corn ethanol's greenhouse gas emissions on a life cycle basis, including emissions from energy consumed at the plant level. However, comprehensive survey data of the industry's average performance dates back to 2001, prior to the industry's expansion phase. Responding to the need for updated data, we conducted a survey to collect energy and processing data for average dry mill ethanol produced during 2008. The study finds that the average liter of anhydrous corn ethanol produced during 2008 requires 28% less thermal energy than 2001 ethanol: 7.18 MJ/l compared to 10 MJ/l. Also, 2008 ethanol requires 32% less electricity: 0.195 kWh/l compared to 0.287 kWh/l, but anhydrous ethanol yields from corn are 5.3% higher and total 0.416 l/kg compared to 0.395 l/kg. Findings also suggest that older plants installed energy efficiency retrofits. PMID:20473631

  4. Benefits from incorporation of combined cycle propulsion

    NASA Astrophysics Data System (ADS)

    Czysz, Paul A.; Richards, Michael J.

    1999-09-01

    The X-33 program was initiated to develop a testbed for integrated RLV technologies that pave the way for a full scale development of a launch vehicle (Venture Star). Within the Nasa Future X Trailblazer program there is an Upgrade X-33 that focuses on materials and upgrades. The authors propose that the most significant gains can be realized by changing the propulsion cycle, not materials. The cycles examined are rocket cycles, with the combustion in the rocket motor. Specifically, these rocket cycles are: turbopump, topping, expander, air augmented, air augmented ram, LACE and deeply cooled. The vehicle size, volume, structural weight remain constant. The system and propellant tank weights vary with the propulsion system cycle. A reduction in dry weight, made possible by a reduced propellant tank volume, was converted into payload weight provided sufficient volume was made available by the propellant reduction. This analysis was extended to Venture Star for selected engine cycles. The results show that the X-33 test bed could carry a significant payload to LEO (10,000 Ib) and be a valuable test bed in developing a frequent flight to LEO capability. From X-33 published information the maximum speed is about 15,000 ft/sec. With a LACE rocket propulsion system Venture Star vehicle could be sized to a smaller vehicle with greater payload than the Venture Star baseline. Vehicle layout and characteristics were obtained from: http:// www.venturestar.com.

  5. Sensitivity Variation on Low Cycle Fatigue Cracks Using Level 4/Method B Penetrant

    SciTech Connect

    FULWOOD,HARRY; MOORE,DAVID G.

    1999-09-02

    The Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) is currently conducting experiments with Level 4, Method B penetrant on low cycle fatigue specimens. The main focus of these experiments is to document the affect on penetrant brightness readings by varying inspection parameters. This paper discusses the results of changing drying temperature, drying time, and dwell time of both penetrant and emulsifier on low cycle fatigue specimens.

  6. Stability of dry liposomes in sugar glasses.

    PubMed Central

    Sun, W Q; Leopold, A C; Crowe, L M; Crowe, J H

    1996-01-01

    Sugars, particularly trehalose and sucrose, are used to stabilize liposomes during hydration (freeze-drying and air-drying). As a result, dry liposomes are trapped in a sugar glass, a supersaturated and thermodynamically unstable solid solution. We investigated the effects of the glassy state on liposome fusion and solute retention in the dry state. Solute leakage from dry liposomes was extremely slow at temperatures below the glass transition temperature (Tg); however, it increased exponentially as temperature increased to near or above the Tg, indicating that the glassy state had to be maintained for dry liposomes to retain trapped solutes. The leakage of solutes from dry liposomes followed the law of first-order kinetics and was correlated linearly with liposome fusion. The kinetics of solute leakage showed an excellent fit with the Arrhenius equation at temperatures both above and below the Tg, with a transitional break near the Tg. The activation energy of solute leakage was 1320 kJ/mol at temperatures above the Tg, but increased to 1991 kJ/mol at temperatures below the Tg. The stabilization effect of sugar glass on dry liposomes may be associated with the elevated energy barrier for liposome fusion and the physical separation of dry liposomes in the glassy state. The half-life of solute retention in dry liposomes may be prolonged by storing dry liposomes at temperatures below the Tg and by increasing the Tg of the dry liposome preparation. PMID:8785336

  7. Compton Dry-Cask Imaging System

    ScienceCinema

    None

    2013-05-28

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  8. Compton Dry-Cask Imaging System

    SciTech Connect

    2011-01-01

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  9. Composite drying with simultaneous vacuum and toggling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drying is an important mechanical operation in the leather making process. Leather acquires its final texture, consistency and flexibility in the drying operation. Vacuum drying offers fast water removal at a low temperature, which is particularly advantageous to heat-vulnerable chrome-free leathe...

  10. Composite drying with simultaneous vacuum and toggling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drying is one of key steps to govern the physical properties of leather and it is where leather acquires its final texture, consistency and flexibility. Recently we have been working diligently to improve chrome-free leather by optimizing its drying process. We developed a drying method using a co...

  11. 7 CFR 51.1444 - Well dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Well dried. 51.1444 Section 51.1444 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Shelled Pecans Definitions § 51.1444 Well dried. Well dried means that the...

  12. 7 CFR 51.2961 - Well dried.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Well dried. 51.2961 Section 51.2961 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Walnuts in the Shell Definitions § 51.2961 Well dried. Well dried means that...

  13. 7 CFR 51.2086 - Well dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Well dried. 51.2086 Section 51.2086 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Almonds in the Shell Definitions § 51.2086 Well dried. Well dried means that...

  14. 7 CFR 51.2287 - Well dried.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Well dried. 51.2287 Section 51.2287 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2287 Well dried. Well dried...

  15. 7 CFR 51.2119 - Well dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Well dried. 51.2119 Section 51.2119 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Shelled Almonds Definitions § 51.2119 Well dried. Well dried means that the...

  16. 7 CFR 51.2119 - Well dried.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Well dried. 51.2119 Section 51.2119 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Shelled Almonds Definitions § 51.2119 Well dried. Well dried means that the...

  17. 7 CFR 51.2086 - Well dried.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Well dried. 51.2086 Section 51.2086 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Almonds in the Shell Definitions § 51.2086 Well dried. Well dried means that...

  18. 7 CFR 51.2287 - Well dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Well dried. 51.2287 Section 51.2287 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2287 Well dried. Well dried...

  19. 7 CFR 51.2961 - Well dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Well dried. 51.2961 Section 51.2961 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Walnuts in the Shell Definitions § 51.2961 Well dried. Well dried means that...

  20. 7 CFR 51.1444 - Well dried.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Well dried. 51.1444 Section 51.1444 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Shelled Pecans Definitions § 51.1444 Well dried. Well dried means that the...

  1. Composite Drying with Simultaneous Vacuum and Toggling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drying is one of key steps to govern the physical properties of leather and it is where leather acquires its final texture, consistency and flexibility. Recently we have been working diligently to improve chrome-free leather by optimizing its drying process. We developed a drying method using a co...

  2. Infrared thermography for monitoring of freeze-drying processes: instrumental developments and preliminary results.

    PubMed

    Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina

    2014-07-01

    Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from -40 °C to 25 °C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5 °C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8 °C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13 °C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10 °C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes. PMID:24902839

  3. Infrared Thermography for Monitoring of Freeze-Drying Processes: Instrumental Developments and Preliminary Results

    PubMed Central

    Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina

    2014-01-01

    Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from −40°C to 25°C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5°C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8°C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13°C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10°C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes. © 2014 European Union 103:2088–2097, 2014 PMID:24902839

  4. Cycling To Awareness.

    ERIC Educational Resources Information Center

    Kozak, Stan

    1999-01-01

    Encourages environmental and outdoor educators to promote bicycling. In the community and the curriculum, cycling connects environmental issues, health and fitness, law and citizenship, appropriate technology, and the joy of being outdoors. Describes the Ontario Cycling Association's cycling strategy and its four components: school cycling…

  5. HIV Life Cycle

    MedlinePlus

    HIV Overview The HIV Life Cycle (Last updated 9/8/2016; last reviewed 9/8/2016) Key Points HIV gradually destroys the immune ... life cycle. What is the connection between the HIV life cycle and HIV medicines? Antiretroviral therapy (ART) ...

  6. Why the Learning Cycle?

    ERIC Educational Resources Information Center

    Marek, Edmund A.

    2008-01-01

    The learning cycle is a way to structure inquiry in school science and occurs in several sequential phases. A learning cycle moves children through a scientific investigation by having them first explore materials, then construct a concept, and finally apply or extend the concept to other situations. Why the learning cycle? Because it is a…

  7. Impact of dry eye on work productivity

    PubMed Central

    Yamada, Masakazu; Mizuno, Yoshinobu; Shigeyasu, Chika

    2012-01-01

    Background The purpose of this study was to evaluate the impact of dry eye on work productivity of office workers, especially in terms of presenteeism. Methods A total of 396 individuals aged ≥20 years (258 men and 138 women, mean age 43.4 ± 13.0 years) were recruited through an online survey. Data from 355 responders who did not have missing values were included in the analysis. They were classified into the following four groups according to the diagnostic status and subjective symptoms of dry eye: a definite dry eye group; a marginal dry eye group; a self-reported dry eye group; and a control group. The impact of dry eye on work productivity was evaluated using the Japanese version of the Work Limitations Questionnaire. The cost of work productivity loss associated with dry eye and the economic benefits of providing treatment for dry eye were also assessed. Results The degree of work performance loss was 5.65% in the definite dry eye group, 4.37% in the marginal dry eye group, 6.06% in the self-reported dry eye group, and 4.27% in the control group. Productivity in the self-reported dry eye group was significantly lower than that in the control group (P < 0.05). The annual cost of work productivity loss associated with dry eye was estimated to be USD 741 per person. Conclusion Dry eye impairs work performance among office workers, which may lead to a substantial loss to industry. Management of symptoms of dry eye by providing treatment may contribute to improvement in work productivity. PMID:23091391

  8. Creep of dry clinopyroxene aggregates

    NASA Astrophysics Data System (ADS)

    Bystricky, Misha; Mackwell, Stephen

    2001-01-01

    We have determined diffusional and dislocation creep rheologies for clinopyroxenite Ca1.0Mg0.8Fe0.2Si2O6 under dry conditions by deforming natural and hot-pressed samples at confining pressures of 300-430 MPa and temperatures of 1100°-1250°C with the oxygen fugacity buffered by either nickel-nickel oxide or iron-wüstite powders. The coarse-grained natural Sleaford Bay clinopyroxenite yielded a stress exponent of n = 4.7 ± 0.2 and an activation energy for creep of Q = 760 ± 40 kJ mol-1, consistent with deformation in the dislocation creep regime. The strength of the natural clinopyroxenite is consistent with previous high-temperature measurements of dislocation creep behavior of Sleaford Bay clinopyroxenite by Kirby and Kronenberg [1984] and Boland and Tullis [1986]. Fine-grained clinopyroxenite was prepared from ground powders of the natural clinopyroxenite. Hot-pressed samples were deformed under similar conditions to the natural samples. Mixed-mode deformation behavior was observed, with diffusional creep (n = 1) at lower differential stresses and dislocation creep (with n and Q similar to those of the natural samples) at higher differential stresses. Within the dislocation creep field the predried hot-pressed samples generally yielded creep rates that were about an order of magnitude faster than the natural samples. Thus, even at the highest differential stresses, a component of strain accommodation by grain boundary diffusion was present in the hot-pressed samples. Optical and electron microscope investigations of the deformation microstructures of the natural and hot-pressed samples show evidence for mechanical twinning and activation of dislocation slip systems. When extrapolated to geological conditions expected in the deep crust and upper mantle on Earth and other terrestrial planets, the strength of dry single-phase clinopyroxene aggregates is very high, exceeding that of dry olivine-rich rocks.

  9. Tear dynamics and dry eye.

    PubMed

    Tsubota, K

    1998-10-01

    Tears undergo four processes: production by the lacrimal gland, distribution by blinking, evaporation from the ocular surface and drainage through the nasolacrimal duct. Abnormalities in any of these steps can cause dry eye. There are two kinds of tear production, basic and reflex, which can be distinguished from each other by the Schirmer test with nasal stimulation. Reflex tearing is important because it supplies such essential components as EGF and vitamin A, whose deficiency may cause squamous metaplasia. There is no reflex tearing in Sjogren's syndrome because of destruction of the lacrimal gland. In cases of diminished or absent reflex tearing, topical autologous serum is the treatment of choice. Even when there is adequate tear production, insufficient distribution, such as occurs with the decreased blinking associated with the use of video display terminals (VDT), may cause dry eye. Any process or activity that suppresses blinking interferes with tear distribution. Tear evaporation increases under certain conditions and in some diseases. When the exposed ocular surface area is increased, such as in VDT work, tear evaporation increases. Meibomian gland dysfunction (MGD) also causes increased tear evaporation by altering the quality of the oily layer in tears. Tear evaporation can be suppressed by using a warm compresser or a humidifier, narrowing the palpebral fissure, or wearing protective eyeglasses. The tear clearance rate is measured by fluorescein dye dilution in the conjunctiva. When the tear clearance is low, inflammatory cytokines or preservatives accumulate in the conjunctival sac, resulting in ocular surface diseases. Frequent use of artificial tears without preservative is the key treatment. A differential diagnosis of the abnormalities of tear dynamics can give us a proper understanding of the pathogenesis of dry eye. With this knowledge, we can formulate an efficient therapeutic approach. PMID:9777650

  10. Zinder: a city running dry.

    PubMed

    Price, T

    1993-01-01

    In the West African Sahel lies the old Hausa city of Zinder, Niger. Since the last few decades, it has constantly faced considerable population growth (19,300-119,8000 between 1960 and 1980) while its acute problems with the water supply are increasing. The dry regional climate compounds the problems. In the past, Zinder was a trade center between northern and sub-Saharan Africa as well as being the colonial capital of Niger (1911-26). Its economic and political position has fallen greatly with independence. Lower than average rainfall and the disastrous droughts of the 1970s and 1980s have seriously diminished the region's economic base, e.g., the average annual rainfall in 1930-60 was 535 mm, but by the 1980s, it was only 355 mm. Zinder sits on an elevated, rocky hill which is encircled by dry river valleys and there are no major permanent bodies of water in the vicinity. Impenetrable layers of stone prevent the digging of wells within the city, so the city depends on wells in nearby valleys. The reduced rainfall hinders replenishment of the aquifer, resulting in a drop in the availability of water for daily consumption from 6500 to 3500 sq m. Per capita water consumption in Zinder is much lower than the national average (55 1/day vs. about 100 1/day). The drought in 1992 caused per capita consumption to fall to 29 1/day, just barely above the minimal standards for private use in urban areas of 20 1/person/day. To further compound the problem, 20 villages in Zinder's environs, some villages with a population of 5000, people, rely on the same water system. Zinder serves as a refuge for the regional population in drought years and during the yearly dry season. Promised international financing cannot resolve Zinder's problems at a realistic cost. PMID:12287010

  11. Thermal resistance of naturally occurring airborne bacterial spores. [Viking spacecraft dry heat decontamination simulation

    NASA Technical Reports Server (NTRS)

    Puleo, J. R.; Bergstrom, S. L.; Peeler, J. T.; Oxborrow, G. S.

    1978-01-01

    Simulation of a heat process used in the terminal dry-heat decontamination of the Viking spacecraft is reported. Naturally occurring airborne bacterial spores were collected on Teflon ribbons in selected spacecraft assembly areas and subsequently subjected to dry heat. Thermal inactivation experiments were conducted at 105, 111.7, 120, 125, 130, and 135 C with a moisture level of 1.2 mg of water per liter. Heat survivors were recovered at temperatures of 135 C when a 30-h heating cycle was employed. Survivors were recovered from all cycles studied and randomly selected for identification. The naturally occurring spore population was reduced an average of 2.2 to 4.4 log cycles from 105 to 135 C. Heating cycles of 5 and 15 h at temperature were compared with the standard 30-h cycle at 111.7, 120, and 125 C. No significant differences in inactivation (alpha = 0.05) were observed between 111.7 and 120 C. The 30-h cycle differs from the 5- and 15-h cycles at 125 C. Thus, the heating cycle can be reduced if a small fraction (about 0.001 to 0.0001) of very resistant spores can be tolerated.

  12. Dry-cleaning of graphene

    SciTech Connect

    Algara-Siller, Gerardo; Lehtinen, Ossi; Kaiser, Ute; Turchanin, Andrey

    2014-04-14

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

  13. Drying and Quality Characteristics of Fresh and Sugar-infused Blueberries Dried with Infrared Radiation Heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the finished product quality and infrared (IR) drying characteristics of fresh and sugar-infused blueberries dried with a catalytic infrared (CIR) dryer. IR drying tests were conducted at four product temperatures (60, 70, 80, and 90oC) to evaluate the drying rate, and the color and te...

  14. Dry Transfer Systems for Used Nuclear Fuel

    SciTech Connect

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  15. Spray drying for processing of nanomaterials

    NASA Astrophysics Data System (ADS)

    Sæderup Lindeløv, Jesper; Wahlberg, Michael

    2009-05-01

    Consolidation of nano-particles into micron-sized granules reduces the potential risks associated with handling nano-powders in dry form. Spray drying is a one step granulation technique which can be designed for safe production of free flowing low dusty granules from suspensions of nano-particles. Spray dried granules are well suited for subsequent processing into final products where the superior properties given by the nano-particles are retained. A spray drier with bag filters inside the drying chamber and recycling of drying gas combined with containment valves are proposed as a safe process for granulation of potential hazardous nano-particles.

  16. Experimental study of cassava sun drying

    SciTech Connect

    Njie, D.N.; Rumsey, T.R.

    1997-03-01

    Sun drying experiments were performed to compare drying of cassava chips in sheet-metal trays with drying on mesh wire trays. In the sheet-metal trays, there was air flow across the top of the bed chips, while the mesh wire trays permitted air to flow through the bed. Drying rate was faster and more uniform in the trays with through-flow air circulation. Higher temperatures were reached by chips in the sheet-metal trays than those in the mesh trays because of contact heating, but the drying rate was lower because of the reduced air flow.

  17. Next generation drying technologies for pharmaceutical applications.

    PubMed

    Walters, Robert H; Bhatnagar, Bakul; Tchessalov, Serguei; Izutsu, Ken-Ichi; Tsumoto, Kouhei; Ohtake, Satoshi

    2014-09-01

    Drying is a commonly used technique for improving the product stability of biotherapeutics. Typically, drying is accomplished through freeze-drying, as evidenced by the availability of several lyophilized products on the market. There are, however, a number of drawbacks to lyophilization, including the lengthy process time required for drying, low energy efficiency, high cost of purchasing and maintaining the equipment, and sensitivity of the product to freezing and various other processing-related stresses. These limitations have led to the search for next-generation drying methods that can be applied to biotherapeutics. Several alternative drying methods are reviewed herein, with particular emphasis on methods that are commonly employed outside of the biopharmaceutical industry including spray drying, convective drying, vacuum drying, microwave drying, and combinations thereof. Although some of the technologies have already been implemented for processing biotherapeutics, others are still at an early stage of feasibility assessment. An overview of each method is presented, detailing the comparison to lyophilization, examining the advantages and disadvantages of each technology, and evaluating the potential of each to be utilized for drying biotherapeutic products. PMID:24916125

  18. Atmospheric freeze drying assisted by power ultrasound

    NASA Astrophysics Data System (ADS)

    Santacatalina, J. V.; Cárcel, J. A.; Simal, S.; Garcia-Perez, J. V.; Mulet, A.

    2012-12-01

    Atmospheric freeze drying (AFD) is considered an alternative to vacuum freeze drying to keep the quality of fresh product. AFD allows continuous drying reducing fix and operating costs, but presents, as main disadvantage, a long drying time required. The application of power ultrasound (US) can accelerate AFD process. The main objective of the present study was to evaluate the application of power ultrasound to improve atmospheric freeze drying of carrot. For that purpose, AFD experiments were carried out with carrot cubes (10 mm side) at constant air velocity (2 ms-1), temperature (-10°C) and relative humidity (10%) with (20.5 kWm-3,USAFD) and without (AFD) ultrasonic application. A diffusion model was used in order to quantify the influence of US in drying kinetics. To evaluate the quality of dry products, rehydration capacity and textural properties were determined. The US application during AFD of carrot involved the increase of drying rate. The effective moisture diffusivity identified in USAFD was 73% higher than in AFD experiments. On the other hand, the rehydration capacity was higher in USAFD than in AFD and the hardness of dried samples did not show significant (p<0.05) differences. Therefore, US application during AFD significantly (p<0.05) sped-up the drying process preserving the quality properties of the dry product.

  19. Introduction to combined cycles

    NASA Astrophysics Data System (ADS)

    Moore, M. J.

    Ideas and concepts underlying the technology of combined cycles including the scientific principles involved and the reasons these cycles are in fashion at the present time, are presented. A cycle is a steady flow process for conversion of heat energy into work, in which a working medium passes through a range of states, returning to its original state. Cycles for power production are the steam cycle, which is a closed cycle, and the gas turbine, which represents an open cycle. Combined cycle thermodynamic parameters, are discussed. The general arrangement of the plant is outlined and important features of their component parts described. The scope for future development is discussed. It is concluded that for the next few years the natural gas fired combined cycle will be the main type of plant installed for electricity generation and cogeneration. Whilst gas turbines may not increase substantially in unit size, there remains scope for further increase in firing temperature with consequent increase in cycle performance. However the larger global reserves of coal are providing an incentive to the development of plant for clean coal combustion using the inherent advantage of the combined cycle to attain high efficiencies.

  20. Drying of solids in fluidized beds

    SciTech Connect

    Kannan, C.S.; Thomas, P.P.; Varma, Y.B.G.

    1995-09-01

    Fluidized bed drying is advantageously adopted in industrial practice for drying of granular solids such as grains, fertilizers, chemicals, and minerals either for long shelf life or to facilitate further processing or handling. Solids are dried in batch and in continuous fluidized beds corresponding to cross-flow and countercurrent flow of phases covering a wide range in drying conditions. Materials that essentially dry with constant drying rate and then give a falling drying rate approximately linear with respect to solids moisture content (sand) as well as those with an extensive falling rate period with the subsequent falling rate being a curve with respect to the moisture content (mustard, ragi, poppy seeds) are chosen for the study. The performance of the continuous fluidized bed driers is compared with that of batch fluidized bed driers; the performance is predicted using batch kinetics, the residence time distribution of solids, and the contact efficiency between the phases.

  1. Acousto-Convective Drying of Pine Nuts

    NASA Astrophysics Data System (ADS)

    Zhilin, A. A.; Fedorov, A. V.

    2014-07-01

    An experimental investigation of the process of drying pine nut grains has been carried out by three methods: acousto-convective, thermoconvective, and thermal. A qualitative and a quantitative comparison of the dynamics of the processes of moisture extraction from the nut grains for the considered drying methods have been made. To elucidate the mechanism of moisture extraction from the pine nut grains, we carried out a separate investigation of the process of drying the nut shell and the kernel. The obtained experimental data on the acousto-convective drying of nuts are well described by the relaxation model, the data on the thermoconvective drying are well described by the bilinear law, and the data on the thermal drying are well described by the combined method consisting of three time steps characterized by different kinetic regimes of drying.

  2. Microwave drying of ferric oxide pellets

    SciTech Connect

    Pickles, C.A.; Xia, D.K.

    1997-12-31

    The application of microwave energy for the drying of ferric oxide pellets has been investigated and evaluated. It is shown that the microwave drying rates are much higher than those observed in the conventional process. Also there is some potential for improved quality of the product. As a stand-alone technology it is unlikely that microwave drying would be economical for pellets due to the low cost of conventional fuels. However, based on an understanding of the drying mechanisms in the conventional process and in the microwave process, it is shown that microwave-assisted drying offers considerable potential. In this hybrid process, the advantages of the two drying techniques are combined to provide an improved drying process.

  3. Sludge-Drying Lagoons: a Potential Significant Methane Source in Wastewater Treatment Plants.

    PubMed

    Pan, Yuting; Ye, Liu; van den Akker, Ben; Ganigué Pagès, Ramon; Musenze, Ronald S; Yuan, Zhiguo

    2016-02-01

    "Sludge-drying lagoons" are a preferred sludge treatment and drying method in tropical and subtropical areas due to the low construction and operational costs. However, this method may be a potential significant source of methane (CH4) because some of the organic matter would be microbially metabolized under anaerobic conditions in the lagoon. The quantification of CH4 emissions from lagoons is difficult due to the expected temporal and spatial variations over a lagoon maturing cycle of several years. Sporadic ebullition of CH4, which cannot be easily quantified by conventional methods such as floating hoods, is also expected. In this study, a novel method based on mass balances was developed to estimate the CH4 emissions and was applied to a full-scale sludge-drying lagoon over a three year operational cycle. The results revealed that processes in a sludge-drying lagoon would emit 6.5 kg CO2-e per megaliter of treated sewage. This would represent a quarter to two-thirds of the overall greenhouse gas (GHG) emissions from wastewater-treatment plants (WWTPs). This work highlights the fact that sludge-drying lagoons are a significant source of CH4 that adds substantially to the overall GHG footprint of WWTPs despite being recognized as a cheap and energy-efficient means of drying sludge. PMID:26642353

  4. Increasing contrasts between wet and dry precipitation extremes during the "global warming hiatus" (1998-2013)

    NASA Astrophysics Data System (ADS)

    Lau, W. K. M.; Wu, H. T.

    2015-12-01

    We investigate changes in daily precipitation extremes using TRMM data (1998-2013), which coincides with the so-called "global warming hiatus". Results show a structural change in probability distribution functions (pdf) of local precipitation events (LPE) during this period, indicating more intense LPE, less moderate LPE, and more dry (no-rain) days globally. Analyses for land and ocean separately reveal more complex and nuanced changes over land, characterized by a strong positive trend (+12.0% per decade, 99% confidence level (c.l.)) in frequency of extreme LPE's over the Northern Hemisphere extratropics during the wet season, but a negative global trend (-6.6% per decade, 95% c.l.) during the dry season. Analyses of the risk of drought based on the number of dry days show a significant global drying trend (3.2% per decade, 99% c.l.) over land during the dry season. Regions of pronounced increased drought include western and central US, northeastern Asia and southern Europe/Mediterranean. Trends in cloud distributions from TRMM VIS-IR, and relative humidity from reanalysis have also been examined. Overall, the changes in water cycle parameters are consistent with increasing contrasts between wet and dry precipitation extremes, as reported in previous studies based on observations and climate model projections for a longer period, implying changes in global water cycle was underway during 1998-2013 as if there is no "global warming hiatus". The implications of the present results will be discussed.

  5. Intermittent Pool Beds Are Permanent Cyclic Habitats with Distinct Wet, Moist and Dry Phases

    PubMed Central

    Dell, Anthony I.; Alford, Ross A.; Pearson, Richard G.

    2014-01-01

    Recognition that intermittent pools are a single habitat phase of an intermittent pool bed that cycles between aquatic and terrestrial habitat greatly enhances their usefulness for addressing general questions in ecology. The aquatic phase has served as a model system in many ecological studies, because it has distinct habitat boundaries in space and time and is an excellent experimental system, but the aquatic to terrestrial transition and terrestrial phase remain largely unstudied. We conducted a field experiment within six replicate natural intermittent pool beds to explore macroinvertebrate community dynamics during the transition from aquatic to terrestrial habitat and during the terrestrial phase. We monitored and compared macroinvertebrate communities within leaf packs that i) remained wet, ii) underwent drying (i.e., started wet and then dried), and iii) remained dry. Our results show that i) a diverse macroinvertebrate community inhabits all phases of intermittent pool beds, ii) pool drying involves colonization by an assemblage of macroinvertebrates not recorded in permanently terrestrial leaf packs, iii) the community within dried leaf packs remains distinct from that of permanently terrestrial leaf packs for an extended period following drying (possibly until subsequent refilling), and iv) there are likely to be strong spatial and temporal resource linkages between the aquatic and terrestrial communities. The unique environmental characteristics of intermittent pool beds, which repeatedly cycle from aquatic to terrestrial habitat, should continue to make them valuable study systems. PMID:25244550

  6. The evaporative gas turbine (EGT) cycle

    SciTech Connect

    Horlock, J.H.

    1998-04-01

    Humidification of the flow through a gas turbine has been proposed in a variety of forms. The STIG plant involves the generation of steam by the gas turbine exhaust in a heat recovery steam generator (HRSG), and its injection into or downstream of the combustion chamber. This increases the mass flow through the turbine and the power output from the plant, with a small increase in efficiency. In the evaporative gas turbine (or EGT) cycle, water is injected in the compressor discharge in a regenerative gas turbine cycle (a so-called CBTX plant--compressor [C], burner [B], turbine [T], heat exchanger [X]); the air is evaporatively cooled before it enters the heat exchanger. While the addition of water increases the turbine mass flow and power output, there is also apparent benefit in reducing the temperature drop in the exhaust stack. In one variation of the basic EGT cycle, water is also added downstream of the evaporative aftercooler, even continuously in the heat exchanger. There are several other variations on the basic cycle (e.g., the cascaded humidified advanced turbine [CHAT]). The present paper analyzes the performance of the EGT cycle. The basic thermodynamics are first discussed, and related to the cycle analysis of a dry regenerative gas turbine plant. Subsequently some detailed calculations of EGT cycles are presented. The main purpose of the work is to seek the optimum pressure ratio in the EGT cycle for given constraints (e.g., fixed maximum to minimum temperature). It is argued that this optimum has a relatively low value.

  7. DRY DEPOSITION OF REDUCED AND REACTIVE NITROGEN: A SURROGATE SURFACES APPROACH. (R826647)

    EPA Science Inventory

    Nitrogen dry deposition causes pH modification of ecosystems, promotes
    eutrophication in some water bodies, interferes with the nutrient geochemical
    cycle on land, and has a deteriorating effect on buildings. In this study, a
    water surface sampler (WSS) and knife-l...

  8. Dry borax applicator operator's manual.

    SciTech Connect

    Karsky, Richard, J.

    1999-01-01

    Annosum root rot affects conifers throughout the Northern Hemisphere, infecting their roots and eventually killing the trees. The fungus Heterobasidion annosum causes annosum root rot. The fungus colonizes readily on freshly cut stumps. Partially cut stands have a high risk of infestation because the fungus can colonize on each of the stumps and potentially infect the neighboring trees. Wind and rain carry the annosum spores. Spores that land on freshly cut stumps grow down the stump's root system where they can infect living trees through root grafts or root contacts. Once annosum becomes established, it can remain active for many years in the Southern United States and for several decades in the north. About 7% of the trees that become infected die. When thinning, stumps can be treated successfully using a competing fungus, Phlebia gigantea, and with ''Tim-Bor'' in liquid formulations. These liquid products are no longer approved in the United States. Only the dry powder form is registered and approved by the EPA. Stumps can be treated with a dry formula of borax, (Sporax), significantly reducing one of the primary routes by which Heterobasidion annosum infects a stand of trees. Sporax is used by the USDA Forest Service to control annosum root rot. Sporax is now applied by hand, but once the felled trees are skidded it becomes very hard to locate the stumps. A stump applicator will reduce error, labor costs, and hazards to workers.

  9. Dry Eye in Vernal Keratoconjunctivitis

    PubMed Central

    Villani, Edoardo; Strologo, Marika Dello; Pichi, Francesco; Luccarelli, Saverio V.; De Cillà, Stefano; Serafino, Massimiliano; Nucci, Paolo

    2015-01-01

    Abstract The purpose of this comparative cross-sectional study was to investigate the use of standardized clinical tests for dry eye in pediatric patients with active and quiet vernal keratoconjunctivitis (VKC) and to compare them with healthy children. We recruited 35 active VKC, 35 inactive VKC, and 70 age-matched control healthy subjects. Each child underwent a complete eye examination, including visual analog scale symptoms assessment, biomicroscopy, fluorescein break-up time (BUT), corneal fluorescein and conjunctival lissamine green staining, corneal esthesiometry, Schirmer test with anesthetic, and meibomian glands inspection and expression. Active VKC patients showed significantly increased symptoms and signs of ocular surface disease, compared with the other 2 groups. Inactive VKC patients, compared with control subjects, showed increased photophobia (P < 0.05; Mann-Whitney U test), conjunctival lissamine green staining and Schirmer test values, and reduced BUT and corneal sensitivity [P < 0.05 by analysis of variance (ANOVA) least significant difference posthoc test for BUT and Schirmer; P < 0.001 by Mann-Whitney U test for lissamine green staining and corneal sensitivity]. Our results confirm the association between VKC and short-BUT dry eye. This syndrome seems to affect the ocular surface in quiescent phases too, determining abnormalities in tear film stability, epithelial cells integrity, and corneal nerves function. The very long-term consequences of this perennial mechanism of ocular surface damage have not been fully understood yet. PMID:26496269

  10. Cocoon drying through solar energy

    SciTech Connect

    Kulunk, M.

    1983-12-01

    In this paper, silk cocoon drying operations through solar energy have been presented. Nearly no comprehensive work has been appeared in literature on this unusual application. General mechanism of solar drying methods are presented by some authors for instance, Roman and Jindal. This application seems vitally significant for silk cocoon producer countries like Turkey. The rate of production accelerates year by year and it is about 3000 tons per year presently in Turkey. In Turkey, by now and currently, a water vapour chamber is utilized in the killing process of silkworm. Vapour produced by burning of conventional fuels posses many drawbacks beside being very expensive and also non-renewable. Vapour effects the quality and quantity of silk thread negatively. For instance, the colour of silk cocoon tends to turn to pale instead of being gleamy. This is not tolerable. The length and mass of silk thread obtained per a typical cocoon sample is increased about 10.1 and 16.5 per cent respectively in the average by using solar energy.

  11. Dry-wet digital etching of Ge1-xSnx

    NASA Astrophysics Data System (ADS)

    Shang, Colleen K.; Wang, Vivian; Chen, Robert; Gupta, Suyog; Huang, Yi-Chiau; Pao, James J.; Huo, Yijie; Sanchez, Errol; Kim, Yihwan; Kamins, Theodore I.; Harris, James S.

    2016-02-01

    The development of a precise micromachining process for Ge1-xSnx has the potential to enable both the fabrication and optimization of Ge1-xSnx-based devices in photonics and microelectromechanical systems. We demonstrate a digital etching scheme for Ge0.922Sn0.078 based on a two-stage, highly selective CF4 plasma dry etch and HCl wet etch. Using X-Ray Reflectivity, we show consistent etch control as low as 1.5 nm per cycle, which is defined as one dry etch step followed by one wet etch step. The etch rate increases to 3.2 nm per cycle for a longer dry etch time due to physical sputtering contributions, accompanied by an increase in RMS surface roughness. By operating within a regime with minimal sputtering, we demonstrate that good digital etch depth control and surface quality can be achieved using this technique.

  12. Dry Valley streams in Antarctica: Ecosystems waiting for water

    USGS Publications Warehouse

    McKnight, Diane M.; Niyogi, D.K.; Alger, A.S.; Bomblies, A.; Conovitz, P.A.; Tate, C.M.

    1999-01-01

    effects of reintroducing water flow to channels in which flow has not occurred for decades or centuries. The present work of the McMurdo Dry Valleys LTER has led us to conclude that the legacy of past conditions constitutes a dominant influence on present-day ecosystem structure and function in the dry valleys (Moorhead et al. 1999). For example, Virginia-and Wall (1999) have found that soil nematodes are partly sustained by relict organic carbon from algae that grew during the high lake stands of 8000-10,000 years ago. Similarly, the growth of current algal populations in the lakes of the dry valleys is supported by diffusion of nutrients from relict nutrient pools in the deep bottom waters (Priscu et al. 1999). For the stream ecosystems, abundant algal mats are present in channels that have stable stone pavements, which formed through freeze-thaw cycles occurring over long periods, possibly hundreds of years. We hypothesize that these stone pavements are an important ecological legacy permitting the successful 'waiting for water' strategy. Similarly, the biodiversity of algal species that can survive the harsh conditions in the streams of the dry valleys may be stable for centuries or more, representing a second important ecological legacy.

  13. Kilogram-scale production of SnO(2) yolk-shell powders by a spray-drying process using dextrin as carbon source and drying additive.

    PubMed

    Choi, Seung Ho; Kang, Yun Chan

    2014-05-01

    A simple and general method for the large-scale production of yolk-shell powders with various compositions by a spray-drying process is reported. Metal salt/dextrin composite powders with a spherical and dense structure were obtained by spray drying and transformed into yolk-shell powders by simple combustion in air. Dextrin plays a key role in the preparation of precursor powders for fabricating yolk-shell powders by spray drying. Droplets containing metal salts and dextrin show good drying characteristics even in a severe environment of high humidity. Sucrose, glucose, and polyvinylpyrrolidone are widely used as carbon sources in the preparation of metal oxide/carbon composite powders; however, they are not appropriate for large-scale spray-drying processes because of their caramelization properties and adherence to the surface of the spray dryer. SnO2 yolk-shell powders were studied as the first target material in the spray-drying process. Combustion of tin oxalate/dextrin composite powders at 600 °C in air produced single-shelled SnO2 yolk-shell powders with the configuration SnO2 @void@SnO2 . The SnO2 yolk-shell powders prepared by the simple spray-drying process showed superior electrochemical properties, even at high current densities. The discharge capacities of the SnO2 yolk-shell powders at a current density of 2000 mA g(-1) were 645 and 570 mA h g(-1) for the second and 100th cycles, respectively; the corresponding capacity retention measured for the second cycle was 88 %. PMID:24665070

  14. Oscillations in land surface hydrological cycle

    NASA Astrophysics Data System (ADS)

    Labat, D.

    2006-02-01

    Hydrological cycle is the perpetual movement of water throughout the various component of the global Earth's system. Focusing on the land surface component of this cycle, the determination of the succession of dry and humid periods is of high importance with respect to water resources management but also with respect to global geochemical cycles. This knowledge requires a specified estimation of recent fluctuations of the land surface cycle at continental and global scales. Our approach leans towards a new estimation of freshwater discharge to oceans from 1875 to 1994 as recently proposed by Labat et al. [Labat, D., Goddéris, Y., Probst, JL, Guyot, JL, 2004. Evidence for global runoff increase related to climate warming. Advances in Water Resources, 631-642]. Wavelet analyses of the annual freshwater discharge time series reveal an intermittent multiannual variability (4- to 8-y, 14- to 16-y and 20- to 25-y fluctuations) and a persistent multidecadal 30- to 40-y variability. Continent by continent, reasonable relationships between land-water cycle oscillations and climate forcing (such as ENSO, NAO or sea surface temperature) are proposed even though if such relationships or correlations remain very complex. The high intermittency of interannual oscillations and the existence of persistent multidecadal fluctuations make prediction difficult for medium-term variability of droughts and high-flows, but lead to a more optimistic diagnostic for long-term fluctuations prediction.

  15. CO2 (dry ice) cleaning system

    NASA Technical Reports Server (NTRS)

    Barnett, Donald M.

    1995-01-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  16. CO2 (dry ice) cleaning system

    NASA Astrophysics Data System (ADS)

    Barnett, Donald M.

    1995-03-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  17. Dispersibility in water of dried nanocrystalline cellulose.

    PubMed

    Beck, Stephanie; Bouchard, Jean; Berry, Richard

    2012-05-14

    Dispersibility is important for nanocrystalline cellulose (NCC) because recovering the unique suspension and particle properties is essential after the product has been dried for storage or transport. It is our goal to produce dried NCC that redisperses in water to yield colloidal suspensions without the use of additives or a large energy input. In contrast with the as-prepared acidic form of NCC (H-NCC), suspensions of neutral sodium-form NCC (Na-NCC) dried by evaporation, lyophilization, or spray-drying are readily dispersible in water. Suspension properties and NCC particle size determined by light scattering were used as indicators of dispersion quality. The neutral counterion content, drying technique, freezing action, drying and redispersion concentrations, and moisture content in the dried NCC were all found to influence dispersibility. When a minimum of 94% of the H(+) counterion is exchanged for Na(+), the neutral salt form is fully dispersible in water even when fully dried. Mild sonication is generally sufficient to recover measured particle sizes identical to those in the never-dried Na-NCC sample. A threshold moisture content of 4 wt % was found, above which dried H-NCC is fully dispersible in water. PMID:22482888

  18. Dry fermentation of agricultural residues

    NASA Astrophysics Data System (ADS)

    Jewell, W. J.; Chandler, J. A.; Dellorto, S.; Fanfoni, K. J.; Fast, S.; Jackson, D.; Kabrick, R. M.

    1981-09-01

    A dry fermentation process is discussed which converts agricultural residues to methane, using the residues in their as produced state. The process appears to simplify and enhance the possibilities for using crop residues as an energy source. The major process variables investigated include temperature, the amount and type of inoculum, buffer requirements, compaction, and pretreatment to control the initial available organic components that create pH problems. A pilot-scale reactor operation on corn stover at a temperature of 550 C, with 25 percent initial total solids, a seed-to-feed ratio of 2.5 percent, and a buffer-to-feed ratio of 8 percent achieved 33 percent total volatile solids destruction in 60 days. Volumetric biogas yields from this unit were greater than 1 vol/vol day for 12 days, and greater than 0.5 vol/vol day for 32 days, at a substrate density of 169 kg/m (3).

  19. Wetter for fine dry powder

    DOEpatents

    Hall, James E.; Williams, Everett H.

    1977-01-01

    A system for wetting fine dry powders such as bentonite clay with water or other liquids is described. The system includes a wetting tank for receiving water and a continuous flow of fine powder feed. The wetting tank has a generally square horizontal cross section with a bottom end closure in the shape of an inverted pyramid. Positioned centrally within the wetting tank is a flow control cylinder which is supported from the walls of the wetting tank by means of radially extending inclined baffles. A variable speed motor drives a first larger propeller positioned immediately below the flow control cylinder in a direction which forces liquid filling the tank to flow downward through the flow control cylinder and a second smaller propeller positioned below the larger propeller having a reverse pitch to oppose the flow of liquid being driven downward by the larger propeller.

  20. Low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Solomon, H. D. (Editor); Kaisand, L. R. (Editor); Halford, G. R. (Editor); Leis, B. N. (Editor)

    1988-01-01

    The papers contained in this volume focus on various aspects of low cycle fatigue, including cyclic deformation, crack propagation, high-temperature low cycle fatigue, microstructural defects, multiaxial and variable amplitude loading, and life prediction. Papers are presented on the low cycle fatigue of some aluminum alloys, prediction of crack growth under creep-fatigue loading conditions, high-temperature low cycle fatigue behavior and lifetime prediction of a nickel-base ODS alloy, and an integrated approach to creep-fatigue life prediction. Other topics discussed include thermal fatigue testing of coated monocrystalline superalloys, low cycle fatigue of Al-Mg-Si alloys, and the effect of superimposed stresses at high frequency on low cycle fatigue.

  1. Dislocation creep of dry quartz

    NASA Astrophysics Data System (ADS)

    Kilian, Rüdiger; Heilbronner, Renée.; Holyoke, Caleb W.; Kronenberg, Andreas K.; Stünitz, Holger

    2016-05-01

    Small-scale shear zones within the Permian Truzzo meta-granite developed during the Alpine orogeny at amphibolite facies conditions. In these shear zones magmatic quartz deformed by dislocation creep and recrystallized dynamically by grain boundary migration with minor subgrain rotation recrystallization to a grain size of around 250-750 µm, consistent with flow at low differential stresses. Fourier transform infrared (FTIR) spectroscopy reveals very low water contents in the interior of recrystallized grains (in the form of discrete OH peaks, ~20 H/106Si and very little broad band absorption, <100 H/106Si). The spectral characteristics are comparable to those of dry Brazil quartz. In FTIR spectra, magmatic quartz grains show a broad absorption band related with high water concentrations only in those areas where fluid inclusions are present while other areas are dry. Drainage of fluid inclusions and synkinematic growth of hydrous minerals indicates that a hydrous fluid has been available during deformation. Loss of intragranular water during grain boundary migration recrystallization did not result in a microstructure indicative of hardening. These FTIR measurements provide the first evidence that quartz with extremely low intragranular water contents can deform in nature by dislocation creep at low differential stresses. Low intragranular water contents in naturally deformed quartz may not be necessarily indicative of a high strength, and the results are contrary to implications taken from deformation experiments where very high water contents are required to allow dislocation creep in quartz. It is suggested that dislocation creep of quartz in the Truzzo meta-granite is possible to occur at low differential stresses because sufficient amounts of intergranular water ensure a high recovery rate by grain boundary migration while the absence of significant amounts of intragranular water is not crucial at natural conditions.

  2. A statistical approach to optimize the spray drying of starch particles: application to dry powder coating.

    PubMed

    Bilancetti, Luca; Poncelet, Denis; Loisel, Catherine; Mazzitelli, Stefania; Nastruzzi, Claudio

    2010-09-01

    This article describes the preparation of starch particles, by spray drying, for possible application to a dry powder coating process. Dry powder coating consists of spraying a fine powder and a plasticizer on particles. The efficiency of the coating is linked to the powder morphological and dimensional characteristics. Different experimental parameters of the spray-drying process were analyzed, including type of solvent, starch concentration, rate of polymer feeding, pressure of the atomizing air, drying air flow, and temperature of drying air. An optimization and screening of the experimental parameters by a design of the experiment (DOE) approach have been done. Finally, the produced spray-dried starch particles were conveniently tested in a dry coating process, in comparison to the commercial initial starch. The obtained results, in terms of coating efficiency, demonstrated that the spray-dried particles led to a sharp increase of coating efficiency value. PMID:20706878

  3. [Cycling in Zagreb].

    PubMed

    Matos, Stipan; Krapac, Ladislav; Krapac, Josip

    2007-01-01

    Cycling in Zagreb, as means of urban transport inside and outside the city, has a bright past, hazy presence but a promising future. Every day, aggressive citizens who lack urban traffic culture mistreat many cyclists but also many pedestrians. Sedentary way of living, unhealthy eating habits and inadequate recreation would surely be reduced if Zagreb had a network of cycling tracks (190 cm) or lanes (80 cm). Main city roads were constructed at the beginning of the 20th century. Today, the lack of cycling tracks is particularly evident in terms of missing connections between northern and southern parts of the city. Transportation of bikes in public vehicles, parking of bikes as well as cycling along the foot of the mountains Medvednica and Zumberacko gorje is not adequately organized. Better organization is necessary not only because of the present young generation but also because of the young who will shortly become citizens of the EU, where cycling is enormously popular. Cycling tourism is not known in Zagreb, partly due to inadequate roads. The surroundings of Zagreb are more suitable for cycling tourism and attractive brochures and tourist guides offer information to tourists on bikes. Professional, acrobatic and sports cycling do not have a tradition in Zagreb and in Croatia. The same holds true for recreational cycling and indoor exercise cycling. The authors discuss the impact of popularization of cycling using print and electronic media. The role of district and local self-government in the construction and improvement of traffic roads in Zagreb is very important. It is also significant for the implementation of legal regulations that must be obeyed by all traffic participants in order to protect cyclists, the most vulnerable group of traffic participants besides passengers. Multidisciplinary action of all benevolent experts would surely increase safety and pleasure of cycling in the city and its surroundings. This would also help reduce daily stress and

  4. Solar activity secular cycles

    NASA Astrophysics Data System (ADS)

    Kramynin, A. P.; Mordvinov, A. V.

    2013-12-01

    Long-term variations in solar activity secular cycles have been studied using a method for the expansion of reconstructed sunspot number series Sn( t) for 11400 years in terms of natural orthogonal functions. It has been established that three expansion components describe more than 98% of all Sn( t) variations. In this case, the contribution of the first expansion component is about 92%. The averaged form of the 88year secular cycle has been determined based on the form of the first expansion coordinate function. The quasi-periodicities modulating the secular cycle have been revealed based on the time function conjugate to the first function. The quasi-periodicities modulating the secular cycle coincide with those observed in the Sn( t) series spectrum. A change in the secular cycle form and the time variations in this form are described by the second and third expansion components, the contributions of which are about 4 and 2%, respectively. The variations in the steepness of the secular cycle branches are more pronounced in the 200-year cycle, and the secular cycle amplitude varies more evidently in the 2300-year cycle.

  5. Nuclear fuel cycle costs

    SciTech Connect

    Burch, W.D.; Haire, M.J.; Rainey, R.H.

    1982-02-01

    The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel cycle costs are given for the pressurized water reactor once-through and fuel recycle systems, and for the liquid-metal fast breeder reactor system. These calculations show that fuel cycle costs are a small part of the total power costs. For breeder reactors, fuel cycle costs are about half that of the present once-through system. The total power cost of the breeder reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment.

  6. Transcutaneous delivery and thermostability of a dry trivalent inactivated influenza vaccine patch

    PubMed Central

    Frolov, Vladimir G.; Seid, Robert C.; Odutayo, Olabisi; Al‐Khalili, Mohammad; Yu, Jianmei; Frolova, Olga Y.; Vu, Hong; Butler, Barbara A.; Look, Jee Loon; Ellingsworth, Larry R.; Glenn, Gregory M.

    2008-01-01

    A patch containing a trivalent inactivated influenza vaccine (TIV) was prepared in a dried, stabilized formulation for transcutaneous delivery. When used in a guinea pig immunogenicity model, the dry patch was as effective as a wet TIV patch in inducing serum anti‐influenza IgG antibodies. When the dry TIV patch was administered with LT as an adjuvant, a robust immune response was obtained that was comparable with or better than an injected TIV vaccine. When stored sealed in a nitrogen‐purged foil, the dry TIV patch was stable for 12 months, as measured by HA content, under both refrigerated and room temperature conditions. Moreover, the immunological potency of the vaccine product was not affected by long‐term storage. The dry TIV patch was also thermostable against three cycles of alternating low‐to‐high temperatures of −20/25 and −20/40°C, and under short‐term temperature stress conditions. These studies indicate that the dry TIV patch product can tolerate unexpected environmental stresses that may be encountered during shipping and distribution. Because of its effectiveness in vaccine delivery and its superior thermostable characteristics, the dry TIV patch represents a major advance for needle‐free influenza vaccination. PMID:19453472

  7. Dry needling — peripheral and central considerations

    PubMed Central

    Dommerholt, Jan

    2011-01-01

    Dry needling is a common treatment technique in orthopedic manual physical therapy. Although various dry needling approaches exist, the more common and best supported approach targets myofascial trigger points. This article aims to place trigger point dry needling within the context of pain sciences. From a pain science perspective, trigger points are constant sources of peripheral nociceptive input leading to peripheral and central sensitization. Dry needling cannot only reverse some aspects of central sensitization, it reduces local and referred pain, improves range of motion and muscle activation pattern, and alters the chemical environment of trigger points. Trigger point dry needling should be based on a thorough understanding of the scientific background of trigger points, the differences and similarities between active and latent trigger points, motor adaptation, and central sensitize application. Several outcome studies are included, as well as comments on dry needling and acupuncture. PMID:23115475

  8. Drying apparatus for photographic sheet material

    NASA Technical Reports Server (NTRS)

    Epstein, P.; Donovan, G.; Lawhite, E. (Inventor)

    1973-01-01

    An elongated drying chamber is provided with transport means for carrying photographic sheet material edgewise with the sheets in end-to-end relationship past a plurality of tubes that issue drying air streams. The tubes are slotted a distance equal to substantially the full width of the sheet material for complete, gentle drying by sheets of air. A common plenum supplies the tubes with heated air; the air is directed from the tube slots at a pronounced angle to the sheet surface to provide for arraying the tubes close to the surface for maximum drying effect while minimizing the danger of mechanical interference between the edges of the sheets and the slots in the tubes. The driver for the transport is housed in an enclosure between the plenum and the drying chamber; an air return duct is provided along another side to complete insulation of the drying chamber from ambient conditions.

  9. Thin layer drying of tomato slices.

    PubMed

    Das Purkayastha, Manashi; Nath, Amit; Deka, Bidyut Chandra; Mahanta, Charu Lata

    2013-08-01

    The hot air convective drying characteristics of blanched tomato (Lycopersicon esculantum L.) slices have been investigated. Drying experiments were carried out at four different temperatures (50, 60, 65 and 70 °C). The effect of drying temperatures on the drying behavior of the tomato slices was evaluated. All drying experiments had only falling rate period. The average effective diffusivity values varied from 0.5453 × 10(-9) to 2.3871 × 10(-9) m(2)/s over the temperature range studied and the activation energy was estimated to be 61.004 kJ/mol. In order to select a suitable form of the drying curve, six different thin layer drying models (Henderson-Pabis, Page, Diamante et al., Wang and Singh, Logarithmic and Newton models) were fitted to the experimental data. The goodness of fit tests indicated that the Logarithmic model gave the best fit to experimental results, which was closely followed by the Henderson-Pabis model. The influence of varied drying temperatures on quality attributes of the tomato slices viz. Hunter color parameters, ascorbic acid, lycopene, titratable acidity, total sugars, reducing sugars and sugar/acid ratio of dried slices was also studied. Slices dried at 50 and 60 °C had high amount of total sugars, lycopene, sugar/acid ratio, Hunter L- and a-values. Drying of slices at 50 °C revealed optimum retention of ascorbic acid, sugar/acid ratio and red hue, whereas, drying at higher temperature (65 and 70 °C) resulted in a considerable decrease in nutrients and colour quality of the slices. PMID:24425966

  10. Dry Eye: an Inflammatory Ocular Disease

    PubMed Central

    Hessen, Michelle; Akpek, Esen Karamursel

    2014-01-01

    Keratoconjunctivitis sicca, or dry eye, is a common ocular disease prompting millions of individuals to seek ophthalmological care. Regardless of the underlying etiology, dry eye has been shown to be associated with abnormalities in the pre-corneal tear film and subsequent inflammatory changes in the entire ocular surface including the adnexa, conjunctiva and cornea. Since the recognition of the role of inflammation in dry eye, a number of novel treatments have been investigated designed to inhibit various inflammatory pathways. Current medications that are used, including cyclosporine A, corticosteroids, tacrolimus, tetracycline derivatives and autologous serum, have been effective for management of dry eye and lead to measurable clinical improvement. PMID:25279127

  11. Liquid Crystal Research Shows Deformation By Drying

    NASA Technical Reports Server (NTRS)

    2003-01-01

    These images, from David Weitz's liquid crystal research, show ordered uniform sized droplets (upper left) before they are dried from their solution. After the droplets are dried (upper right), they are viewed with crossed polarizers that show the deformation caused by drying, a process that orients the bipolar structure of the liquid crystal within the droplets. When an electric field is applied to the dried droplets (lower left), and then increased (lower right), the liquid crystal within the droplets switches its alignment, thereby reducing the amount of light that can be scattered by the droplets when a beam is shone through them.

  12. FINAL REPORT: Transformational electrode drying process

    SciTech Connect

    Claus Daniel, C.; Wixom, M.

    2013-12-19

    This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheating and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.

  13. Cold vacuum drying facility design requirements

    SciTech Connect

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  14. Interannual variability in biochemistry of partially mixed estuaries: Dissolved silicate cycles in northern San Francisco Bay

    USGS Publications Warehouse

    Peterson, David H.; Cayan, Daniel R.; Festa, John F.

    1986-01-01

    Much of the interannual variability in partially mixed estuaries in dissolved inorganic nutrient and dissolved oxygen patterns results from an enhancement or reduction of their annual cycle (generally via climatic forcing). In northern San Francisco Bay estuary the annual cycle of dissolved silicate supply peaks in spring and the effect of phytoplankton removal peaks in fall. Because riverine silicate sources are enhanced in wet years and reduced in dry years, the annual silicate cycle is modified accordingly. Effects of phytoplankton removal are reduced and delayed in wet years and enhanced and advanced (seen earlier) in dry years. Similar reasoning can apply to interpreting and understanding other mechanisms and rates.

  15. A dynamic fuel cycle analysis for a heterogeneous thorium-DUPIC recycle in CANDU reactors

    SciTech Connect

    Jeong, C. J.; Park, C. J.; Choi, H.

    2006-07-01

    A heterogeneous thorium fuel recycle scenario in a Canada deuterium uranium (CANDU) reactor has been analyzed by the dynamic analysis method. The thorium recycling is performed through a dry process which has a strong proliferation resistance. In the fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides, and fission products of a multiple thorium recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. The analysis results have shown that the heterogeneous thorium fuel cycle can be constructed through the dry process technology. It is also shown that the heterogeneous thorium fuel cycle can reduce the spent fuel inventory and save on the natural uranium resources when compared with the once-through cycle. (authors)

  16. Reusable thermal cycling clamp

    NASA Technical Reports Server (NTRS)

    Debnam, W. J., Jr.; Fripp, A. L.; Crouch, R. K. (Inventor)

    1985-01-01

    A reusable metal clamp for retaining a fused quartz ampoule during temperature cycling in the range of 20 deg C to 1000 deg C is described. A compressible graphite foil having a high radial coefficient of thermal expansion is interposed between the fused quartz ampoule and metal clamp to maintain a snug fit between these components at all temperature levels in the cycle.

  17. Seeing the Carbon Cycle

    ERIC Educational Resources Information Center

    Drouin, Pamela; Welty, David J.; Repeta, Daniel; Engle-Belknap, Cheryl A.; Cramer, Catherine; Frashure, Kim; Chen, Robert

    2006-01-01

    In this article, the authors present a classroom experiment that was developed to introduce middle school learners to the carbon cycle. The experiment deals with transfer of CO[subscript 2] between liquid reservoirs and the effect CO[subscript 2] has on algae growth. It allows students to observe the influence of the carbon cycle on algae growth,…

  18. The Oxygen Cycle.

    ERIC Educational Resources Information Center

    Swant, Gary D.

    Produced for primary grades, this booklet provides study of the oxygen-carbon dioxide cycle in nature. Line drawings, a minimum amount of narrative, and a glossary of terms make up its content. The booklet is designed to be used as reading material, a coloring book, or for dramatic arts with students acting out parts of the cycle. This work was…

  19. Rock Cycle Roulette.

    ERIC Educational Resources Information Center

    Schmidt, Stan M.; Palmer, Courtney

    2000-01-01

    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  20. Measuring Cycling Effort.

    ERIC Educational Resources Information Center

    Jahnke, Thomas; Hamson, Mike

    1999-01-01

    Investigates the basic mechanics of cycling with a simple reckoning of how much effort is needed from the cyclist. The work done by the cyclist is quantified when the ride is on the flat and also when pedaling uphill. Proves that by making use of the available gears on a mountain bike, cycling uphill can be accomplished without pain. (Author/ASK)

  1. The carbon cycle revisited

    NASA Technical Reports Server (NTRS)

    Bolin, Bert; Fung, Inez

    1992-01-01

    Discussions during the Global Change Institute indicated a need to present, in some detail and as accurately as possible, our present knowledge about the carbon cycle, the uncertainties in this knowledge, and the reasons for these uncertainties. We discuss basic issues of internal consistency within the carbon cycle, and end by summarizing the key unknowns.

  2. Family Life Cycle: 1980.

    ERIC Educational Resources Information Center

    Norton, Arthur J.

    1983-01-01

    Used data from a 1980 national sample survey to show differences in the timing of major family life-cycle events according to age, social and economic characteristics, and marital history. Results suggest that age generational differences, more than any other factor, influence timing of life-cycle events. (Author/JAC)

  3. Power Plant Cycling Costs

    SciTech Connect

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  4. Teaching the Krebs Cycle.

    ERIC Educational Resources Information Center

    Akeroyd, F. Michael

    1983-01-01

    Outlines a simple but rigorous treatment of the Krebs Cycle suitable for A-level Biology students. The importance of the addition of water molecules in various stages of the cycle is stressed as well as the removal of hydrogen atoms by the oxidizing enzymes. (JN)

  5. Predicting the Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    The 11-year sunspot cycle was discovered by an amateur astronomer in 1844. Visual and photographic observations of sunspots have been made by both amateurs and professionals over the last 400 years. These observations provide key statistical information about the sunspot cycle that do allow for predictions of future activity. However, sunspots and the sunspot cycle are magnetic in nature. For the last 100 years these magnetic measurements have been acquired and used exclusively by professional astronomers to gain new information about the nature of the solar activity cycle. Recently, magnetic dynamo models have evolved to the stage where they can assimilate past data and provide predictions. With the advent of the Internet and open data policies, amateurs now have equal access to the same data used by professionals and equal opportunities to contribute (but, alas, without pay). This talk will describe some of the more useful prediction techniques and reveal what they say about the intensity of the upcoming sunspot cycle.

  6. Host selection and gonotrophic cycle length of Anopheles punctimacula in southern Mexico.

    PubMed

    Ulloa, Armando; Gonzalez-Cerón, Lilia; Rodríguez, Mario H

    2006-12-01

    The host preference, survival rates, and length of the gonotrophic cycle of Anopheles punctimacula was investigated in southern México. Mosquitoes were collected in 15-day separate experiments during the rainy and dry seasons. Daily changes in the parous-nulliparous ratio were recorded and the gonotrophic cycle length was estimated by a time series analysis. Anopheles punctimacula was most abundant during the dry season and preferred animals to humans. The daily survival rate in mosquitoes collected in animal traps was 0.96 (parity rate = 0.86; gonotrophic cycle = 4 days). The length of gonotrophic cycle of 4 days was estimated on the base of a high correlation coefficient value appearing every 4 days. The minimum time estimated for developing mature eggs after blood feeding was 72 h. The proportion of mosquitoes living enough to transmit Plasmodium vivax malaria during the dry season was 0.35. PMID:17304932

  7. The Chlamydomonas Cell Cycle

    PubMed Central

    Cross, Frederick R.; Umen, James G.

    2015-01-01

    The position of Chlamydomonas within the eukaryotic phylogeny makes it a unique model in at least two important ways: as a representative of the critically important, early-diverging lineage leading to plants, and as a microbe retaining important features of the last eukaryotic common ancestor (LECA) that have been lost in the highly studied yeast lineages. Its cell biology has been studied for many decades, and it has well-developed experimental genetic tools, both classical (Mendelian) and molecular. Unlike land plants, it is a haploid with very few gene duplicates, making it ideal for loss-of-function genetic studies. The Chlamydomonas cell cycle has a striking temporal and functional separation between cell growth and rapid cell divisions, probably connected to the interplay between diurnal cycles that drive photosynthetic cell growth with the cell division cycle; it also exhibits a highly choreographed interaction between the cell cycle and its centriole/basal body/flagellar cycle. Here we review the current status of studies of the Chlamydomonas cell cycle. We begin with an overview of cell cycle control in the well-studied yeast and animal systems, which has yielded a canonical, well-supported model. We discuss briefly what is known about similarities and differences in plant cell cycle control compared to this model. We next review the cytology and cell biology of the multiple fission cell cycle of Chlamydomonas. Lastly we review recent genetic approaches and insights into Chlamydomonas cell cycle regulation that have been enabled by a new generation of genomics-based tools. PMID:25690512

  8. Experimental Performance of a Thermoelectric Heat-Pump Drying System for Drying Herbs

    NASA Astrophysics Data System (ADS)

    Wongsim, K.; Jamradloedluk, J.; Lertsatitthanakorn, C.; Siriamornpun, S.; Rungsiyopas, M.; Soponronnarit, S.

    2015-06-01

    In this study we investigated thermoelectric (TE) heat-pump drying of laurel clock vine leaves, and the effect of drying-air temperature on the characteristics of the leaves. The TE drying system comprised four TE modules each with its own rectangular fin heat sink. The hot side of each TE module was fixed to its own heat sink; the cold sides were fixed to heat-pipe heat sinks and a drying chamber. The drying time depended on drying-air temperature. The heating capacity and coefficient of performance (COP) increased as the current supplied to the TE modules was increased. Calculated COP for the entire TE heat-pump drying system were 1.28 and 0.81 for drying-air temperatures of 50 and 40°C, respectively.

  9. Nutrient addition effects on tropical dry forests: a mini-review from microbial to ecosystem scales

    NASA Astrophysics Data System (ADS)

    Powers, Jennifer; Becklund, Kristen; Gei, Maria; Iyengar, Siddarth; Meyer, Rebecca; O'Connell, Christine; Schilling, Erik; Smith, Christina; Waring, Bonnie; Werden, Leland

    2015-06-01

    Humans have more than doubled inputs of reactive nitrogen globally and greatly accelerated the biogeochemical cycles of phosphorus and metals. However, the impacts of increased element mobility on tropical ecosystems remain poorly quantified, particularly for the vast tropical dry forest biome. Tropical dry forests are characterized by marked seasonality, relatively little precipitation, and high heterogeneity in plant functional diversity and soil chemistry. For these reasons, increased nutrient deposition may affect tropical dry forests differently than wet tropical or temperate forests. Here we review studies that investigated how nutrient availability affects ecosystem and community processes from the microsite to ecosystem scales in tropical dry forests. The effects of N and P addition on ecosystem carbon cycling and plant and microbial dynamics depend on forest successional stage, soil parent material and rainfall regime. Responses may depend on whether overall productivity is N- versus P-limited, although data to test this hypothesis are limited. These results highlight the many important gaps in our understanding of tropical dry forest responses to global change. Large-scale experiments are required to resolve these uncertainties.

  10. DOE hot dry rock program

    SciTech Connect

    Nunz, G.J.

    1980-01-01

    Hydraulic fracturing has been used to create and subsequently to enlarge the first hot dry rock heat-extraction loop at Fenton Hill, New Mexico. Encouraging results prompted the DOE to expand this project into a program of national scope. The elements of that Program and their present status are discussed. Emphasis is given the ongoing Fenton Hill Project where techniques and information developed in the existing research system will soon be used to produce a multiply-fractured engineering system in hotter rock at the same site. Recent results from research loop operation and progress in constructing the engineering system are reported. Although acoustic mapping and system geometry indicate that the primary hydraulic fractures are essentially vertical, relatively low fracturing pressure and absence of a sharp breakdown suggest that at Fenton Hill fracture initiation occurs by reopening of old natural fractures rather than by initiation of new ones. Flow patterns and temperature behavior suggest opening of additional old fractures as the loop is operated. Except where the hot fluid leaves the crack system to enter the production well, flow impedances are very low without either artificial propping or inflation by pressurization.

  11. Which 100-kyr Cycle?

    NASA Astrophysics Data System (ADS)

    Berger, A.; Loutre, M. F.; Mélice, J. L.

    The origin of all the fundamental frequencies characterising the long term variations of the astronomical parameters has been identified. This allows to discuss their inter- relationship and possible changes in times. Different sources for the so-called 100-kyr cycle have been found in the astronomical parameters and in the insolation itself. The most popular 100-kyr cycle is certainly the eccentricity one. Actually, the periods of the most important spectral components of e used in Berger (1978) are 412 885, 14 945, 123 297, 99 590 and 131 248 yr. Instability of the resulting average 100-kyr cy- cle has been shown related to the ~ 400-kyr cycle. The derivative of eccentricity is definitely showing a spectrum dominated by the 100-kyr cycle with the same spectral components as e itself. The inclination of the Earth orbital plane on the ecliptic does not display any 100-kyr cycle, but it is not the case for its inclination on the reference plane for which cycles of 98 046 and 107 478 years appear. Finally the frequency modulation of obliquity is characterised by cycles 171 kyr and 97 kyr long. For inso- lation, it is known that there is only a very weak signal around 100-kyr coming from e itself. However, if we consider the seasonal cycle at the equator, its amplitude varies with cycles of 400 kyr, 100 kyr, 41 kyr, 10 kyr and 5 kyr, all related to e. Although all these cycles are close to the 100 kyr cycle found in geological data, the origin of this kind of cycle can be best identified by comparing the proxy record to the re- sponse of the climate system to the astronomical forcing. This forcing signal which contains, in one way or another, the astronomical characteristics mentioned above is, at least, partly distorted and transformed, a modification which can only be estimated through climate models. Such a climate model has been developed in the early 80Ss in Louvain-la-Neuve and used since to simulate the last and next glacial-interglacial cycles.

  12. Cold vacuum drying facility 90% design review

    SciTech Connect

    O`Neill, C.T.

    1997-05-02

    This document contains review comment records for the CVDF 90% design review. Spent fuels retrieved from the K Basins will be dried at the CVDF. It has also been recommended that the Multi-Conister Overpacks be welded, inspected, and repaired at the CVD Facility before transport to dry storage.

  13. Reflectance characteristics of dry plant materials

    NASA Technical Reports Server (NTRS)

    Elvidge, Christopher D.

    1987-01-01

    Chlorophyll and water obscure the absorption features of all other leaf constituents in the spectra of green leaves. The predominant near-IR and thermal IR spectral features of dry plant materials originate from lignin, cellulose, and hemicellulose. These compounds account for 80 to 98 percent of the dry weight in most plant materials.

  14. WET AND DRY SCRUBBERS FOR EMISSION CONTROL

    EPA Science Inventory

    Generally speaking, absorption equipment includes two major categories: Wet adsorption scrubbers (or wet scrubbers); Dry absorption scrubbers (or dry scrubbers).
    Wet scrubbers: As the name implies, wet scrubbers (also known as wet collectors) are devices which use a liquid fo...

  15. EMISSIONS OF PERCHLOROETHYLENE FROM DRY CLEANED FABRICS

    EPA Science Inventory

    A study was conducted to evaluate the emissions of perchloroethylene (tetrachloroethylene) from dry cleaned fabrics to determine: (a) how the introduction of fresh dry cleaning into a home affects the indoor concentration of perchloroethylene, and (b) the effectiveness of ‘airing...

  16. Dry phase reactor for generating medical isotopes

    DOEpatents

    Mackie, Thomas Rockwell; Heltemes, Thad Alexander

    2016-05-03

    An apparatus for generating medical isotopes provides for the irradiation of dry-phase, granular uranium compounds which are then dissolved in a solvent for separation of the medical isotope from the irradiated compound. Once the medical isotope is removed, the dissolved compound may be reconstituted in dry granular form for repeated irradiation.

  17. Hot-dry-rock feasibility study

    SciTech Connect

    Not Available

    1981-08-01

    The hot-dry-rock project tasks are covered as follows: hot-dry-rock reservoir; generation facilities; water resources; transmission requirements; environmental issues; government and community institutional factors; leasing, ownership and management of facilities; regulations, permits, and laws; and financial considerations. (MHR)

  18. Can wet roof insulation be dried out

    SciTech Connect

    Tobiasson, W.; Korhonen, C.; Coutermarsh, B.; Greatorex, A.

    1983-01-01

    Nondestructive techniques are being widely used to locate wet insulation in compact roofing systems. Now that wet insulation can be found, breather vents and so-called breathable membranes are being promoted to dry out wet insulation, thereby recovering its thermal effectiveness. Exposure tests in New Hampshire indicate that the above venting methods are all rather ineffective in drying sealed specimens of perlite and fibrous glass roof insulation. It would take many decades to dry our specimens at the rates measured over the past two years. Cross-ventilation within the insulation increased the rate of drying. For perlite insulation, the faster rate would still result in a drying time measured in decades. For fibrous glass insulation, the drying time was reduced to 13 years. Fibrous glass insulation in a roof was dried by removing the water with a vacuum cleaner. In a series of tests with a total duration of 134 h, about 0.4 2 m/sup 3/ (110 gal) of water was removed from a 17-m/sup 2/ (180-ft/sup 2/) area of 38-mm (1.5-in.)-thick insulation. Before the water was removed the insulation had only 21% of its dry insulating ability; afterward it had 83%.

  19. Can wet roof insulation be dried out

    SciTech Connect

    Tobiasson, W.; Coutermarsh, B.; Greatorex, A.; Korhonen, C.

    1981-12-01

    Nondestructive techniques are being widely used to locate wet insulation in compact roofing systems. Now that wet insulation can be found, breather vents and so called ''breathable'' membranes are being promoted to dry out wet insulation, thereby recovering its thermal effectiveness. Exposure tests in New Hampshire indicate that the above venting methods are all rather ineffective in drying sealed specimens of perlite and fibrous glass roof insulation. It would take many decades to dry specimens at the rates measured over the past two years. Cross-ventilation within the insulation increased the rate of drying. For perlite insulation, the faster rate would still result in a drying time measured in decades. For fibrous glass insulation, the drying time was reduced to 13 years. The authors have succeeded in drying fibrous glass insulation in a roof by removing the water with a vacuum cleaner. In a series of tests with a total duration of 134 h, about 0.42 m/sup 3/ (110 gal) of water was removed from a 17-m/sup 2/ (180-ft/sup 2/) area of 38-mm (1.5-in.)-thick insulation. Before the water was removed the insulation had only 21 percent of its dry insulating ability; afterward it had 83 percent.

  20. Integrated coal drying and steam gasification process

    SciTech Connect

    Nahas, N.C.

    1981-08-18

    Carbonaceous solids slurried in an aqueous solution, which preferably contains catalyst constituents having gasification activity, are dried by contacting the slurry with superheated steam in a fluid bed slurry dryer and the resultant dried solids are subsequently gasified with steam generated in the dryer.

  1. 27 CFR 24.202 - Dried fruit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of wine from dried fruit, a quantity of water sufficient to restore the moisture content to that of... to that of the fresh fruit, or if the moisture content is not known, sufficient water may be added to reduce the density to 22 degrees Brix. If the dried fruit liquid after restoration is found to...

  2. Weed competition and dry bean yield components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed competition can significantly reduce dry bean (Phaseolus vulgaris L.) yields and therefore the profitability for the producer. Depending on the dry bean variety produced, the yield components may be affected differently by the stress produced by weed competition. This research was conducted to ...

  3. Investigation of orography impact on extreme dry spells over Greece

    NASA Astrophysics Data System (ADS)

    Oikonomou, C.; Flocas, H.; Manola, I.; Hatzaki, M.; Asimakopoulos, D. N.

    2009-04-01

    Precipitation regime over Greece is controlled by the atmospheric circulation, orography sea surface temperature distribution and land/sea interaction. Previous studies have shown that the precipitation amounts are increased in Western Greece, which is located in the upstream side of the largest mountain range of the central mainland. Furthermore, the longest dry spells were identified in south eastern part of Greece during summer and in northern Greek area during winter. The objective of this study is to investigate the impact of topography on prolonged dry periods over Greece, using the third generation hydrostatic Regional Climate Model RegCM3, which shows a noticeable improvement in the representation of the surface hydrological cycle in mountainous regions. More specifically, an attempt is made to study the distribution of prolonged dry spells during two seasons, summer of 1993 and winter of 1989, over the Greek area, under two different simulation scenarios: the first employs the real orography of the Greek area while in the second one the orography is eliminated, by transforming the models terrain code. Both simulation experiments were conducted with the high spatial resolution of 10 Km, while the MIT-Emanuel Convective Precipitation Scheme was selected for the computation of convective precipitation, as it offers more physical representation of convection compared to the other oldest schemes of RegCM. The model was firstly validated through comparisons of the model outputs with observed precipitation amount data, employing 20 stations over Greece for the two selected seasons. The validation demonstrated that the model can simulate precipitation amount quite well over the Greek area, except for the south Dodecanese Islands, where precipitation is underestimated, and the eastern continental Greece, where the daily precipitation is overestimated. For the identification of the extreme dry spells, the climatic index CDD (Maximum number of consecutive dry days

  4. Improved Energy and Processing Efficiencies of Strawberry Drying Using Sequential Infrared Freeze-Drying Method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strawberries are rich in nutrients but highly perishable. Freeze-drying is an excellent dehydration method for strawberry preservation. However, freeze-drying is an expensive dehydration process due to slow drying rates, high capital operating costs and low energy efficiency. Strawberry slice wei...

  5. Real-time monitoring of drying parameters in semitrailers during peanut drying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficient control of drying parameters is essential to ensure that peanuts are dried at the optimal rate, preserving quality and desired flavor. The present peanut drying process has limitations in means for measuring parameters such as temperature and relative humidity of the air being blown in...

  6. A study of the effect of perchloroethylene exposure on the reproductive outcomes of wives of dry-cleaning workers

    SciTech Connect

    Eskenazi, B.; Fenster, L.; Hudes, M.; Wyrobek, A.J.; Katz, D.F.; Gerson, J.; Rempel, D.M. )

    1991-01-01

    The purpose of this investigation was to compare the reproductive outcomes of wives of men exposed to perchloroethylene in the dry-cleaning industry compared to those of wives of laundry workers. Seventeen female partners of dry cleaners and 32 partners of laundry workers were interviewed. The number of pregnancies and the standardized fertility ratios were similar between the two groups. Wives of dry cleaners did not have higher rates of spontaneous abortions. However, wives of dry cleaners were more than twice as likely to have a history of attempting to become pregnant for more than 12 months or to have sought care for an infertility problem. Cox proportional hazards models indicated that dry-cleaners' wives had half of the per-cycle pregnancy rate of wives of laundry workers, when controlling for other potential confounders (estimated rate ratio of 0.54, 95% C.I. = 0.23, 1.27).

  7. Living cell dry mass measurement using quantitative phase imaging with quadriwave lateral shearing interferometry: an accuracy and sensitivity discussion

    NASA Astrophysics Data System (ADS)

    Aknoun, Sherazade; Savatier, Julien; Bon, Pierre; Galland, Frédéric; Abdeladim, Lamiae; Wattellier, Benoit; Monneret, Serge

    2015-12-01

    Single-cell dry mass measurement is used in biology to follow cell cycle, to address effects of drugs, or to investigate cell metabolism. Quantitative phase imaging technique with quadriwave lateral shearing interferometry (QWLSI) allows measuring cell dry mass. The technique is very simple to set up, as it is integrated in a camera-like instrument. It simply plugs onto a standard microscope and uses a white light illumination source. Its working principle is first explained, from image acquisition to automated segmentation algorithm and dry mass quantification. Metrology of the whole process, including its sensitivity, repeatability, reliability, sources of error, over different kinds of samples and under different experimental conditions, is developed. We show that there is no influence of magnification or spatial light coherence on dry mass measurement; effect of defocus is more critical but can be calibrated. As a consequence, QWLSI is a well-suited technique for fast, simple, and reliable cell dry mass study, especially for live cells.

  8. Select Generic Dry-Storage Pilot Plant Design for Safeguards and Security by Design (SSBD) per Used Fuel Campaign

    SciTech Connect

    Demuth, Scott Francis; Sprinkle, James K.

    2015-05-26

    As preparation to the year-end deliverable (Provide SSBD Best Practices for Generic Dry-Storage Pilot Scale Plant) for the Work Package (FT-15LA040501–Safeguards and Security by Design for Extended Dry Storage), the initial step was to select a generic dry-storage pilot plant design for SSBD. To be consistent with other DOE-NE Fuel Cycle Research and Development (FCR&D) activities, the Used Fuel Campaign was engaged for the selection of a design for this deliverable. For the work Package FT-15LA040501–“Safeguards and Security by Design for Extended Dry Storage”, SSBD will be initiated for the Generic Dry-Storage Pilot Scale Plant described by the layout of Reference 2. SSBD will consider aspects of the design that are impacted by domestic material control and accounting (MC&A), domestic security, and international safeguards.

  9. Bimodality and the Hale cycle

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1988-01-01

    Evidence is provided of a modulation of between 20 and 24 yr for the Hale cycle, and comparison of consecutive pairs of cycles strongly suggests that even-numbered cycles are preferentially paired with odd-numbered following cycles. The results indicate that cycles 22 and 23 form a new cyle pair. The sum of monthly mean sunspot numbers over consecutively paired sunspot cycles for Hale cycle 12 is found to be about 19,100 + or - 3000.

  10. Sensitivity of Amazonian TOA flux diurnal cycle composite monthly variability to choice of reanalysis

    NASA Astrophysics Data System (ADS)

    Dodson, J. Brant; Taylor, Patrick C.

    2016-05-01

    Amazonian deep convection experiences a strong diurnal cycle driven by the cycle in surface sensible heat flux, which contributes to a significant diurnal cycle in the top of the atmosphere (TOA) radiative flux. Even when accounting for seasonal variability, the TOA flux diurnal cycle varies significantly on the monthly timescale. Previous work shows evidence supporting a connection between variability in the convective and radiative cycles, likely modulated by variability in monthly atmospheric state (e.g., convective instability). The hypothesized relationships are further investigated with regression analysis of the radiative diurnal cycle and atmospheric state using additional meteorological variables representing convective instability and upper tropospheric humidity. The results are recalculated with three different reanalyses to test the reliability of the results. The radiative diurnal cycle sensitivity to upper tropospheric humidity is about equal in magnitude to that of convective instability. In addition, the results are recalculated with the data subdivided into the wet and dry seasons. Overall, clear-sky radiative effects have a dominant role in radiative diurnal cycle variability during the dry season. Because of this, even in a convectively active region, the clear-sky radiative effects must be accounted for in order to fully explain the monthly variability in diurnal cycle. Finally, while there is general agreement between the different reanalysis-based results when examining the full data time domain (without regard to time of year), there are significant disagreements when the data are divided into wet and dry seasons. The questionable reliability of reanalysis data is a major limitation.

  11. EUV extendibility via dry development rinse process

    NASA Astrophysics Data System (ADS)

    Sayan, Safak; Zheng, Tao; De Simone, Danilo; Vandenberghe, Geert

    2016-03-01

    Conventional photoresist processing involves resist coating, exposure, post-exposure bake, development, rinse and spin drying of a wafer. DDRP mitigates pattern collapse by applying a special polymer material (DDRM) which replaces the exposed/developed part of the photoresist material before wafer is spin dried. As noted above, the main mechanism of pattern collapse is the capillary forces governed by surface tension of rinse water and its asymmetrical recession from both sides of the lines during the drying step of the develop process. DDRP essentially eliminates these failure mechanisms by replacing remaining rinse water with DDRM and providing a structural framework that support resist lines from both sides during spin dry process. Dry development rinse process (DDRP) eliminates the root causes responsible for pattern collapse of photoresist line structures. Since these collapse mechanisms are mitigated, without the need for changes in the photoresist itself, achievable resolution of the state-of-the-art EUV photoresists can further be improved.

  12. Inspection of Used Fuel Dry Storage Casks

    SciTech Connect

    Dennis C. Kunerth; Tim McJunkin; Mark McKay; Sasan Bakhtiari

    2012-09-01

    ABSTRACT The U.S. Nuclear Regulatory Commission (NRC) regulates the storage of used nuclear fuel, which is now and will be increasingly placed in dry storage systems. Since a final disposition pathway is not defined, the fuel is expected to be maintained in dry storage well beyond the time frame originally intended. Due to knowledge gaps regarding the viability of current dry storage systems for long term use, efforts are underway to acquire the technical knowledge and tools required to understand the issues and verify the integrity of the dry storage system components. This report summarizes the initial efforts performed by researchers at Idaho National Laboratory and Argonne National Laboratory to identify and evaluate approaches to in-situ inspection dry storage casks. This task is complicated by the design of the current storage systems that severely restrict access to the casks.

  13. Spray drying formulation of amorphous solid dispersions.

    PubMed

    Singh, Abhishek; Van den Mooter, Guy

    2016-05-01

    Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed. PMID:26705850

  14. Mathematical modelling of cucumber (cucumis sativus) drying

    NASA Astrophysics Data System (ADS)

    Shahari, N.; Hussein, S. M.; Nursabrina, M.; Hibberd, S.

    2014-07-01

    This paper investigates the applicability of using an experiment based mathematical model (empirical model) and a single phase mathematical model with shrinkage to describe the drying curve of cucumis sativus (cucumber). Drying experiments were conducted using conventional air drying and data obtained from these experiments were fitted to seven empirical models using non-linear least square regression based on the Levenberg Marquardt algorithm. The empirical models were compared according to their root mean square error (RMSE), sum of square error (SSE) and coefficient of determination (R2). A logarithmic model was found to be the best empirical model to describe the drying curve of cucumber. The numerical result of a single phase mathematical model with shrinkage was also compared with experiment data for cucumber drying. A good agreement was obtained between the model predictions and the experimental data.

  15. Dry heat effects on survival of indigenous soil particle microflora and particle viability studies of Kennedy Space Center soil

    NASA Technical Reports Server (NTRS)

    Ruschmeyer, O. R.; Pflug, I. J.; Gove, R.; Heisserer, Y.

    1975-01-01

    Research efforts were concentrated on attempts to obtain data concerning the dry heat resistance of particle microflora in Kennedy Space Center soil samples. The in situ dry heat resistance profiles at selected temperatures for the aggregate microflora on soil particles of certain size ranges were determined. Viability profiles of older soil samples were compared with more recently stored soil samples. The effect of increased particle numbers on viability profiles after dry heat treatment was investigated. These soil particle viability data for various temperatures and times provide information on the soil microflora response to heat treatment and are useful in making selections for spacecraft sterilization cycles.

  16. Applied physiology of cycling.

    PubMed

    Faria, I E

    1984-01-01

    Historically, the bicycle has evolved through the stages of a machine for efficient human transportation, a toy for children, a finely-tuned racing machine, and a tool for physical fitness development, maintenance and testing. Recently, major strides have been made in the aerodynamic design of the bicycle. These innovations have resulted in new land speed records for human powered machines. Performance in cycling is affected by a variety of factors, including aerobic and anaerobic capacity, muscular strength and endurance, and body composition. Bicycle races range from a 200m sprint to approximately 5000km. This vast range of competitive racing requires special attention to the principle of specificity of training. The physiological demands of cycling have been examined through the use of bicycle ergometers, rollers, cycling trainers, treadmill cycling, high speed photography, computer graphics, strain gauges, electromyography, wind tunnels, muscle biopsy, and body composition analysis. These techniques have been useful in providing definitive data for the development of a work/performance profile of the cyclist. Research evidence strongly suggests that when measuring the cyclist's aerobic or anaerobic capacity, a cycling protocol employing a high pedalling rpm should be used. The research bicycle should be modified to resemble a racing bicycle and the cyclist should wear cycling shoes. Prolonged cycling requires special nutritional considerations. Ingestion of carbohydrates, in solid form and carefully timed, influences performance. Caffeine appears to enhance lipid metabolism. Injuries, particularly knee problems which are prevalent among cyclists, may be avoided through the use of proper gearing and orthotics. Air pollution has been shown to impair physical performance. When pollution levels are high, training should be altered or curtailed. Effective training programmes simulate competitive conditions. Short and long interval training, blended with long

  17. Development of maintenance-free dry calcium (MFDC) lead-acid battery for automotive use

    NASA Astrophysics Data System (ADS)

    Yoshimura, Tsunenori; Yasuda, Hiroshi

    A maintenance-free, dry calcium (MFDC) developed by the Panasonic Battery (Thailand) Co. Ltd. The battery is designed for automotive applications and is ready for use upon injection of the electrolyte. The MFDC battery employs grids made from a lead-calcium-based alloy. This feature suppresses undesirable loss of electrolyte and enables good recovery of capacity after a long time of storage or a long cycle-life. Moreover, the batteries is a dry-charged type and requires only a low frequency of recharging due to its suppressed self-discharge during storage. Transportation costs are reduced as the battery contains only a small amount of electrolyte during storage.

  18. Performance Comparison Between NiH2 Dry Sinter and Slurry Electrode Cells

    NASA Technical Reports Server (NTRS)

    Armantrout, J. D.; Hafen, D. P.; Rao, G. M.

    1997-01-01

    The electrical and thermal performance of dry sinter and slurry process electrode cells manufactured for the Hubble Space Telescope (HST) batteries have been characterized for a matrix of operating conditions over the temperature range from 14 to 86 F at various charge control levels. The dry sinter process electrode cells tested are similar to the onboard HST NiH2 cells. The slurry process electrode cells were developed to be less susceptible to electrode expansion and impedance changes with life. Both cell types were impregnated by the aqueous electrochemical process. Test conditions included standard capacity tests and electrical cycling using 96-minute cycling regimens incorporating gr depth-of-discharge (DOD) cycles. The dry sinter process electrodes have higher operating capacities to 1.20V/cell, but both electrode types have similar heat dissipation for the conditions tested. The results of the testing included cyclic heat generation during a typical 96-minute cycle, operating capacity data vs. cutoff voltage to generate a temperature-compensated voltage curve, and voltage characteristics suitable to develop a voltage prediction model. Analysis of data shows differences in the discharge voltage plateaus operating conditions evaluated. This is the basis for recommended changes in the battery charge control.

  19. Hot Dry Rock; Geothermal Energy

    SciTech Connect

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  20. Phenological controls on inter-annual variability in ozone dry deposition velocity

    NASA Astrophysics Data System (ADS)

    Clifton, Olivia; Fiore, Arlene; Munger, J. William; Shevliakova, Elena; Horowitz, Larry; Malyshev, Sergey; Griffin, Kevin

    2016-04-01

    Our understanding of ozone removal by northern mid-latitude temperate deciduous forests is largely based on short-term observational studies, and thus year-to-year variations of this sink have received little attention. The specific pathways for ozone dry deposition include stomatal uptake and other non-stomatal processes that are poorly understood. Given the importance of ozone dry deposition to model accurately the tropospheric ozone budget and regional air quality, an improved mechanistic understanding of this ozone sink is needed. We investigate here the physical and biological controls on inter-annual variations in seasonal and diurnal cycles of ozone dry deposition velocity using nine years of hourly observations of eddy covariance ozone flux and concentration measurements at Harvard Forest, a northern mid-latitude temperate deciduous forest. We also use coincident eddy covariance water vapor flux and sensible heat flux and other micrometeorological measurements to infer stomatal conductance in order to separate the impacts of stomatal versus non-stomatal pathways on ozone deposition. There is a difference of approximately a factor of two between minimum and maximum monthly daytime mean ozone dry deposition velocities at Harvard Forest. The highest summertime mean ozone dry deposition velocities occur during 1998 and 1999 (0.72 cm/s), and similar seasonal and diurnal cycles occur in both years. The similar dry deposition velocities during these two years, however, may reflect compensation between different processes as mean daytime summertime stomatal conductance during 1998 is roughly 1.5 times higher than for 1999, suggesting large year-to-year variations in non-stomatal as well as stomatal uptake of ozone. We partition the onset and decline of the growing season each year into different periods using spring and fall phenology observations at Harvard Forest. Combining the dry deposition velocities across years during each phenological period, we find that

  1. The Rock Cycle

    ERIC Educational Resources Information Center

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  2. Mining the Learning Cycle.

    ERIC Educational Resources Information Center

    Hemler, Debra; King, Hobart

    1996-01-01

    Describes an approach that uses the learning cycle to meaningfully teach students about mineral properties while alleviating the tedious nature of identifying mineral specimens. Discusses mineral properties, cooperative learning, and mineral identification. (JRH)

  3. Life Cycle Costing.

    ERIC Educational Resources Information Center

    McCraley, Thomas L.

    1985-01-01

    Life cycle costing establishes a realistic comparison of the cost of owning and operating products. The formula of initial cost plus maintenance plus operation divided by useful life identifies the best price over the lifetime of the product purchased. (MLF)

  4. The global carbon cycle

    SciTech Connect

    Sedjo, R.A. )

    1990-10-01

    The author discusses the global carbon cycle and cites the results of several recently completed research projects, that seem to indicate that the temperate zone forests are a sink for carbon rather than a source, as was previously believed.

  5. Solar Cycle Prediction

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2011-01-01

    Solar cycle predictions are needed to plan long-term space missions; just like weather predictions are needed to plan your next vacation. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Testing solar dynamo theories by quantitative predictions of what will happen in 5-20 years is the next arena for solar cycle predictions. I will describe the current state of solar cycle predictions and anticipate how those predictions could be made more accurate in the future.

  6. Cycle isolation monitoring

    SciTech Connect

    Svensen, L.M. III; Zeigler, J.R.; Todd, F.D.; Alder, G.C.

    2009-07-15

    There are many factors to monitor in power plants, but one that is frequently overlooked is cycle isolation. Often this is an area where plant personnel can find 'low hanging fruit' with great return on investment, especially high energy valve leakage. This type of leakage leads to increased heat rate, potential valve damage and lost generation. The fundamental question to ask is 'What is 100 Btu/kW-hr of heat rate worth to your plant? On a 600 MW coal-fired power plant, a 1% leakage can lead to an 81 Btu/kW-hr impact on the main steam cycle and a 64 Btu/kW-hr impact on the hot reheat cycle. The article gives advice on methods to assist in detecting leaking valves and to monitor cycle isolation. A software product, TP. Plus-CIM was designed to estimate flow rates of potentially leaking valves.

  7. Cyclodextrin as membrane protectant in spray-drying and freeze-drying of PEGylated liposomes.

    PubMed

    van den Hoven, Jolanda M; Metselaar, Josbert M; Storm, Gert; Beijnen, Jos H; Nuijen, Bastiaan

    2012-11-15

    In this study it was investigated whether hydroxypropyl-β-cyclodextrin (HPβCD) is able to stabilize the liposomal membranes during drying of long circulating polyethylene glycol (PEG) coated liposomes, as compared to the disaccharides trehalose and sucrose. PEGylated liposomes loaded with prednisolone disodium phosphate (PLP) were dried by spray-drying or freeze-drying. The dried powders were tested on their residual moisture content, glass transition temperature and amorphous character. Upon reconstitution the liposomal size, size distribution and drug retention were determined and the results were compared to the characteristics of the formulation solution before drying. In contrast to the disaccharides, HPβCD stabilizes the liposomal membranes of the PEGylated liposomes during the drying process of both spray drying and freeze-drying when present in a lipid:carbohydrate ratio of 1:6 (w/w). The resulting powder can be stored at room temperature. No changes in size and size distribution were seen upon reconstitution of the HPβCD containing formulations. Drying resulted in a minimal leaking of PLP from the liposomes. Its relatively high [Formula: see text] and T(g) of HPβCD, as compared to the disaccharides, make HPβCD an excellent membrane protectant for dry PEGylated liposomal formulations. PMID:22960501

  8. Measuring dry plant residues in grasslands: A case study using AVIRIS

    NASA Technical Reports Server (NTRS)

    Fitzgerald, Michael; Ustin, Susan L.

    1992-01-01

    Grasslands, savannah, and hardwood rangelands are critical ecosystems and sensitive to disturbance. Approximately 20 percent of the Earth's surface are grasslands and represent 3 million ha. in California alone. Developing a methodology for estimating disturbance and the effects of cumulative impacts on grasslands and rangelands is needed to effectively monitor these ecosystems. Estimating the dry biomass residue remaining on rangelands at the end of the growing season provides a basis for evaluating the effectiveness of land management practices. The residual biomass is indicative of the grazing pressure and provides a measure of the system capacity for nutrient cycling since it represents the maximum organic matter available for decomposition, and finally, provides a measure of the erosion potential for the ecosystem. Remote sensing presents a possible method for measuring dry residue. However, current satellites have had limited application due to the coarse spatial scales (relative to the patch dynamics) and insensitivity of the spectral coverage to resolve dry plant material. Several hypotheses for measuring the biochemical constituents of dry plant material, particularly cellulose and lignin, using high spectral resolution sensors were proposed. The use of Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) to measure dry plant residues over an oak savannah on the eastern slopes of the Coast Range in central California was investigated and it was asked what spatial and spectral resolutions are needed to quantitatively measure dry plant biomass in this ecosystem.

  9. The high elevation Dry Valleys in Antarctica as analog sites for subsurface ice on Mars

    NASA Astrophysics Data System (ADS)

    Heldmann, J. L.; Pollard, W.; McKay, C. P.; Marinova, M. M.; Davila, A.; Williams, K. E.; Lacelle, D.; Andersen, D. T.

    2013-09-01

    The high elevation valleys of the McMurdo Dry Valleys of Antarctica are the only locations on Earth known to contain dry permafrost. The Dry Valleys are a hyper-arid polar desert environment and above 1500 m elevation, air temperatures do not exceed 0 °C and thus, similarly to Mars, liquid water is largely absent and instead the hydrologic cycle is dominated by frozen ice and vapor phase processes such as sublimation. These conditions make the high elevation Dry Valleys a key Mars analog location where periglacial processes and geomorphic features, and their use as a diagnostic for subsurface ice, can be studied in situ. Two valleys in the upper Dry Valleys show a diversity of subsurface ice; University Valley is dominated by dry permafrost overlying ice-cemented to ice-bonded ground and nearby middle Beacon Valley is dominated by massive ground ice. In both cases the ice is 10-60 cm below the surface. Here we compare the surface features in these two valleys to assess any correlation with the nature of the subsurface ice and compare these features to similar features seen at the Phoenix landing site on Mars. We conclude that while surface features may be indicative of ground ice, no specific correlations are possible and more direct methods are required to determine the nature of subsurface ice on Mars.

  10. Radiation processing as a post-harvest quarantine control for raisins, dried figs and dried apricots

    NASA Astrophysics Data System (ADS)

    Cetinkaya, N.; Ozyardımci, B.; Denli, E.; Ic, E.

    2006-03-01

    The commercially packed samples of raisins, dried figs and dried apricots were irradiated using doses in the range of 0.5-1.0 kGy for disinfestation and 0.5-5.0 kGy for sensory analysis with the dose rate ranging from 1.44 to 1.92 kGy/h. Pests on dried fruits were evaluated after 0, 1, 2 and 3 months of storage for irradiated dried figs and 1, 3, 6 and 12 months of storage for raisins and dried apricots. Sensory analysis of dried figs, dried apricots and raisins were carried out after 0, 1, 3, 6 and 12 months of storage. The results indicated that radiation processing at low doses, (˜1.0 kGy) is an effective post-harvest treatment and quarantine control for these products with no adverse effects on sensory (marketing) attributes.

  11. Solar Cycle Predictions

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2012-01-01

    Solar cycle predictions are needed to plan long-term space missions; just like weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as you consume the reduced propellant load more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5-20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations how those predictions could be made more accurate in the future will be discussed.

  12. Malone cycle refrigerator development

    SciTech Connect

    Shimko, M.A.; Crowley, C.J.

    1999-07-01

    This paper describes the progress made in demonstrating a Malone Cycle Refrigerator/Freezer. The Malone cycle is similar to the Stirling cycle but uses a supercritical fluid in place of real gas. In the approach, solid-metal diaphragms are used to seal and sweep the working volumes against the high working fluid pressures required in Malone cycle machines. This feature eliminates the friction and leakage that accounted for nearly half the losses in the best piston-defined Malone cycle machines built to date. The authors successfully built a Malone cycle refrigerator that: (1) used CO{sub 2} as the working fluid, (2) operated at pressures up to 19.3 Mpa (2,800 psi), (3) achieved a cold end metal temperatures of {minus}29 C ({minus}20 F), and (4) produced over 400 Watts of cooling at near ambient temperatures. The critical diaphragm components operated flawlessly throughout characterization and performance testing, supporting the conclusion of high reliability based on analysis of fatigue date and actual strain measurements.

  13. Quantifying the Adaptive Cycle

    PubMed Central

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems. PMID:26716453

  14. Acoustically enhanced heat exchange and drying apparatus

    DOEpatents

    Bramlette, T.T.; Keller, J.O.

    1987-07-10

    A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

  15. Cryopreservation of Spin-Dried Mammalian Cells

    PubMed Central

    Chakraborty, Nilay; Menze, Michael A.; Malsam, Jason; Aksan, Alptekin; Hand, Steven C.; Toner, Mehmet

    2011-01-01

    This study reports an alternative approach to achieve vitrification where cells are pre-desiccated prior to cooling to cryogenic temperatures for storage. Chinese Hamster Ovary (CHO) cells suspended in a trehalose solution were rapidly and uniformly desiccated to a low moisture content (<0.12 g of water per g of dry weight) using a spin-drying technique. Trehalose was also introduced into the cells using a high-capacity trehalose transporter (TRET1). Fourier Transform Infrared Spectroscopy (FTIR) was used to examine the uniformity of water concentration distribution in the spin-dried samples. 62% of the cells were shown to survive spin-drying in the presence of trehalose following immediate rehydration. The spin-dried samples were stored in liquid nitrogen (LN2) at a vitrified state. It was shown that following re-warming to room temperature and re-hydration with a fully complemented cell culture medium, 51% of the spin-dried and vitrified cells survived and demonstrated normal growth characteristics. Spin-drying is a novel strategy that can be used to improve cryopreservation outcome by promoting rapid vitrification. PMID:21966385

  16. Extending dry storage of spent LWR fuel for 100 years.

    SciTech Connect

    Einziger, R. E.

    1998-12-16

    Because of delays in closing the back end of the fuel cycle in the U.S., there is a need to extend dry inert storage of spent fuel beyond its originally anticipated 20-year duration. Many of the methodologies developed to support initial licensing for 20-year storage should be able to support the longer storage periods envisioned. This paper evaluates the applicability of existing information and methodologies to support dry storage up to 100 years. The thrust of the analysis is the potential behavior of the spent fuel. In the USA, the criteria for dry storage of LWR spent fuel are delineated in 10 CFR 72 [1]. The criteria fall into four general categories: maintain subcriticality, prevent the release of radioactive material above acceptable limits, ensure that radiation rates and doses do not exceed acceptable levels, and maintain retrievability of the stored radioactive material. These criteria need to be considered for normal, off-normal, and postulated accident conditions. The initial safety analysis report submitted for licensing evaluated the fuel's ability to meet the requirements for 20 years. It is not the intent to repeat these calculations, but to look at expected behavior over the additional 80 years, during which the temperatures and radiation fields are lower. During the first 20 years, the properties of the components may change because of elevated temperatures, presence of moisture, effects of radiation, etc. During normal storage in an inert atmosphere, there is potential for the cladding mechanical properties to change due to annealing or interaction with cask materials. The emissivity of the cladding could also change due to storage conditions. If there is air leakage into the cask, additional degradation could occur through oxidation in breached rods, which could lead to additional fission gas release and enlargement of cladding breaches. Air in-leakage could also affect cover gas conductivity, cladding oxidation, emissivity changes, and

  17. Influence of soil moisture-carbon cycle interactions on the terrestrial carbon cycle over Europe

    NASA Astrophysics Data System (ADS)

    Mystakidis, Stefanos; Davin, Edouard L.; Gruber, Nicolas; Seneviratne, Sonia I.

    2016-04-01

    Water availability is a crucial limiting factor for terrestrial ecosystems, but relatively few studies have quantitatively assessed the influence of soil moisture variability on the terrestrial carbon cycle. Here, we investigate the role of soil moisture variability and state in the contemporary terrestrial carbon cycle over Europe. For this we use a Regional Earth System Model (RESM) based on the COSMO-CLM Regional Climate Model, coupled to the Community Land Model version 4.0 (CLM4.0) and its carbon-nitrogen module. The simulation setup consists of a control simulation over the period 1979-2010 in which soil moisture is interactive and three sensitivity simulations in which soil moisture is prescribed to a mean, a very dry or a very wet seasonal cycle without inter-annual variability. The cumulative net biome productivity varies markedly between the different experiments ranging from a strong sink of up to 6PgC in the wet experiment to a source of up to 1.2PgC in the dry experiment. Changes in the land carbon uptake are driven by a combination of two factors: the direct impact of soil moisture on plant's carbon uptake (essentially in southern Europe) and an indirect effect through changes in temperature affecting ecosystem respiration (mainly in central and northern Europe). We find that removing temporal variations in soil moisture dampens interannual variations in terrestrial carbon fluxes (Gross Primary Productivity, respiration, Net Biome Productivity) by more than 50% over most of Europe. Moreover, the analysis reveals that on annual scale about two-thirds of central Europe and about 70% of southern Europe display statistically significant effect of drying and/or wetting on the terrestrial carbon budget and its components. Our findings confirm the crucial role of soil moisture in determining the magnitude and the inter-annual variability in land CO2 uptake which is a key contributor to the year-to-year variations in atmospheric CO2 concentration.

  18. 7 CFR 58.250 - Dry whole milk.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Dry whole milk. 58.250 Section 58.250 Agriculture... Products Bearing Usda Official Identification § 58.250 Dry whole milk. Dry whole milk in commercial bulk... Grades of Dry Whole Milk. Quality requirements for dry whole milk in consumer packages shall be for...

  19. 7 CFR 58.250 - Dry whole milk.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Dry whole milk. 58.250 Section 58.250 Agriculture... Products Bearing Usda Official Identification § 58.250 Dry whole milk. Dry whole milk in commercial bulk... Grades of Dry Whole Milk. Quality requirements for dry whole milk in consumer packages shall be for...

  20. 7 CFR 58.250 - Dry whole milk.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Dry whole milk. 58.250 Section 58.250 Agriculture... Products Bearing Usda Official Identification § 58.250 Dry whole milk. Dry whole milk in commercial bulk... Grades of Dry Whole Milk. Quality requirements for dry whole milk in consumer packages shall be for...

  1. 7 CFR 58.250 - Dry whole milk.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Dry whole milk. 58.250 Section 58.250 Agriculture... Products Bearing Usda Official Identification § 58.250 Dry whole milk. Dry whole milk in commercial bulk... Grades of Dry Whole Milk. Quality requirements for dry whole milk in consumer packages shall be for...

  2. Mechanisms of deterioration of nutrients. [of freeze dried foods

    NASA Technical Reports Server (NTRS)

    Karel, M.; Flink, J. M.

    1976-01-01

    Methods which produce freeze dried foods of improved quality were examined with emphasis on storage stability. Specific topics discussed include: microstructure of freeze dried systems, investigation of structural changes in freeze dried systems, artificial food matrices, osmotic preconcentration to yield improved quality freeze dried fruits, and storage stability of osmotically preconcentrated freeze dried fruits.

  3. 46 CFR 154.1150 - Distribution of dry chemical.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Distribution of dry chemical. 154.1150 Section 154.1150... Firefighting System: Dry Chemical § 154.1150 Distribution of dry chemical. (a) All locations on the above deck... chemical hand hose lines; or (2) At least one dry chemical hand hose line and one dry chemical monitor....

  4. 46 CFR 154.1150 - Distribution of dry chemical.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Distribution of dry chemical. 154.1150 Section 154.1150... Firefighting System: Dry Chemical § 154.1150 Distribution of dry chemical. (a) All locations on the above deck... chemical hand hose lines; or (2) At least one dry chemical hand hose line and one dry chemical monitor....

  5. 46 CFR 154.1150 - Distribution of dry chemical.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Distribution of dry chemical. 154.1150 Section 154.1150... Firefighting System: Dry Chemical § 154.1150 Distribution of dry chemical. (a) All locations on the above deck... chemical hand hose lines; or (2) At least one dry chemical hand hose line and one dry chemical monitor....

  6. 46 CFR 154.1150 - Distribution of dry chemical.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Distribution of dry chemical. 154.1150 Section 154.1150... Firefighting System: Dry Chemical § 154.1150 Distribution of dry chemical. (a) All locations on the above deck... chemical hand hose lines; or (2) At least one dry chemical hand hose line and one dry chemical monitor....

  7. 46 CFR 154.1150 - Distribution of dry chemical.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Distribution of dry chemical. 154.1150 Section 154.1150... Firefighting System: Dry Chemical § 154.1150 Distribution of dry chemical. (a) All locations on the above deck... chemical hand hose lines; or (2) At least one dry chemical hand hose line and one dry chemical monitor....

  8. 7 CFR 58.250 - Dry whole milk.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Dry whole milk. 58.250 Section 58.250 Agriculture... Products Bearing Usda Official Identification § 58.250 Dry whole milk. Dry whole milk in commercial bulk... Grades of Dry Whole Milk. Quality requirements for dry whole milk in consumer packages shall be for...

  9. Cold vacuum drying facility site evaluation report

    SciTech Connect

    Diebel, J.A.

    1996-03-11

    In order to transport Multi-Canister Overpacks to the Canister Storage Building they must first undergo the Cold Vacuum Drying process. This puts the design, construction and start-up of the Cold Vacuum Drying facility on the critical path of the K Basin fuel removal schedule. This schedule is driven by a Tri-Party Agreement (TPA) milestone requiring all of the spent nuclear fuel to be removed from the K Basins by December, 1999. This site evaluation is an integral part of the Cold Vacuum Drying design process and must be completed expeditiously in order to stay on track for meeting the milestone.

  10. Airless drying -- Developments since IDS'94

    SciTech Connect

    Stubbing, T.J.

    1999-09-01

    Since its introduction to IDS'94 delegates, significant progress has been made with the development of airless drying technology. The ceramic industry internationally is beginning to benefit from both the energy use and drying time reductions it achieves, while on the basis of further theoretical work carried out since 1993 other industries, including the bioenergy sector, should also soon begin to exploit its advantages. As global warming becomes a reality and oil reserves decline, superheated steam drying and gasification of biomass will contribute to the mitigation of those problems.

  11. The Impact of Amazonian Deforestation on Dry-Season Rainfall

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Adler, Robert F.; Xu, Li-Ming; Surratt, Jason; Starr, David OC. (Technical Monitor)

    2002-01-01

    Many modeling studies have concluded that widespread deforestation of Amazonia would lead to decreased rainfall. We analyze geosynchronous infrared satellite data with respect percent cloudiness, and analyze rain estimates from microwave sensors aboard the Tropical Rainfall Measuring Mission satellite. We conclude that in the dry-season, when the effects of the surface are not overwhelmed by synoptic-scale weather disturbances, deep convective cloudiness, as well as rainfall occurrence, all increase over the deforested and non-forested (savanna) regions. This is in response to a local circulation initiated by the differential heating of the region's varying forestation. Analysis of the diurnal cycle of cloudiness reveals a shift toward afternoon hours in the deforested and savanna regions, compared to the forested regions. Analysis of 14 years of data from the Special Sensor Microwave/Imager data revealed that only in August did rainfall amounts increase over the deforested region.

  12. Impingement drying for preparing dried apple pomace flour and its fortification in bakery and meat products.

    PubMed

    Jung, Jooyeoun; Cavender, George; Zhao, Yanyun

    2015-09-01

    This study aimed to evaluate impingement drying (ID) as a rapid drying method to dry wet apple pomace (WAP) and to investigate the fortification of dried apple pomace flour (APF) or WAP in bakery and meat products. ID at ~110 °C reduced the moisture content of apple pomace from 80 % (wet basis) to 4.5 % within 3 h, compared with 24 h to 2.2 % using 40 °C forced-air drying and ~60 h to 2.3 % using freeze drying. Furthermore, ID enhanced the extractable phenolic compounds, allowing for a 58 % increase in total phenolic content (TPC) compared with wet pomace, a 110 % and 83 % higher than TPC in forced-air dried and freeze dried samples, respectively. The 15-20 % APF-fortified cookies were found to be ~44-59 % softer, ~30 % more chewy, and ~14 % moister than those of the control. WAP-fortified meat products had significantly higher dietary fiber content (0.7-1.8 % vs. 0.1-0.2 % in control) and radical scavenging activity than that of the control. These results suggest that impingement drying is a fast and effective method for preparing dried APF with highly retained bioactive compounds, and apple pomace fortified products maintained or even had improved quality. PMID:26344970

  13. Subsurface Salts in Antarctic Dry Valley Soils

    NASA Technical Reports Server (NTRS)

    Englert, P.; Bishop, J. L.; Gibson, E. K.; Koeberl, C.

    2013-01-01

    The distribution of water-soluble ions, major and minor elements, and other parameters were examined to determine the extent and effects of chemical weathering on cold desert soils. Patterns at the study sites support theories of multiple salt forming processes, including marine aerosols and chemical weathering of mafic minerals. Periodic solar-mediated ionization of atmospheric nitrogen might also produce high nitrate concentrations found in older sediments. Chemical weathering, however, was the major contributor of salts in Antarctic Dry Valleys. The Antarctic Dry Valleys represent a unique analog for Mars, as they are extremely cold and dry desert environments. Similarities in the climate, surface geology, and chemical properties of the Dry Valleys to that of Mars imply the possible presence of these soil formation mechanisms on Mars, other planets and icy satellites.

  14. Evaluation of historical dry well surveillance logs

    SciTech Connect

    Price, R.K.

    1996-09-09

    Several dry well surveillance logs from 1975 through 1995 for the SX Tank Farm have been examined to identify potential subsurface zones of radioactive contaminant migration. Several dynamic conditions of the gamma-ray emitting radioactive contaminant shave been identified.

  15. Fuel-Cell Structure Prevents Membrane Drying

    NASA Technical Reports Server (NTRS)

    Mcelroy, J.

    1986-01-01

    Embossed plates direct flows of reactants and coolant. Membrane-type fuel-cell battery has improved reactant flow and heat removal. Compact, lightweight battery produces high current and power without drying of membranes.

  16. Recent Advances in Nanostructured Biomimetic Dry Adhesives

    PubMed Central

    Pattantyus-Abraham, Andras; Krahn, Jeffrey; Menon, Carlo

    2013-01-01

    The relatively large size of the gecko and its ability to climb a multitude of structures with ease has often been cited as the inspiration upon which the field of dry adhesives is based. Since 2010, there have been many advances in the field of dry adhesives with much of the new research focusing on developing nanoscale and hierarchical features in a concentrated effort to develop synthetic gecko-like dry adhesives which are strong, durable, and self-cleaning. A brief overview of the geckos and the hairs which it uses to adhere to many different surfaces is provided before delving into the current methods and materials used to fabricate synthetic gecko hairs. A summary of the recently published literature on bio-inspired, nanostructured dry adhesives is presented with an emphasis being placed on fabrication techniques. PMID:25023409

  17. Mechanisms of Drying of Skin Forming Materials

    NASA Astrophysics Data System (ADS)

    Hassan, Haydar Mahmood

    Available from UMI in association with The British Library. The literature relating to evaporation from single droplets of pure liquids, and to the drying of droplets containing solids and of droplet sprays has been reviewed. The heat and mass transfer rates for a single droplet suspended from a nozzle were studied within a 42mm I.D. horizontal wind tunnel designed to supply hot dry air, to simulate conditions encountered in practical spray dryer. A novel rotating glass nozzle was developed to facilitate direct measurements of droplet weight and core temperature. This design minimised heat conduction through the nozzle. Revised correlations were obtained for heat and mass transfer coefficients, for evaporation from pure water droplets suspended from a rotating nozzle. (UNFORMATTED TABLE OR EQUATION FOLLOWS)eqalign {rm Nu&= rm 2.0 + 0.27 ({1over B})^{0.18}Re^{0.5}Pr ^{0.33}crrm Sh&= rm 2.0 + 0.575({Ta-Ts over Tamb})^{ -0.04}Re^{0.5}Sc^{0.33 }cr}(TABLE/EQUATION ENDS)Experimental drying studies were carried out on single droplets of different types of skin-forming materials, namely, custard, starch, gelatin, skim milk and fructose at air temperatures ranging from 19^circC to 198 ^circC. Dried crusts were recovered and examined by Scanning Electron Microscopy. Skin-forming materials were classified into three types according to the mechanisms of skin formation. In the first type (typified by droplets of custard and starch) skin formed due to gelatinisation at high temperatures. Increasing the drying temperature resulted in increased crust resistance to mass transfer due to increased granule swelling and the crust resistance was completely transferred to a skin resistance at drying temperatures >150 ^circC. In the second type e.g. gelatin droplets the skin formed immediately drying had taken place at any drying temperature. At drying temperature >60^circC a more resistant skin was formed. In the third type (typified by droplets of skim milk and fructose) the skin

  18. High strength air-dried aerogels

    DOEpatents

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  19. Dry Creek Wilderness study area, Arkansas

    SciTech Connect

    Haley, B.R.; Stroud, R.B.

    1984-01-01

    A mineral evaluation study of the Dry Creek Wilderness Study Area indicated that the area has a probable resource potential for natural gas and little promise for the occurrence of other mineral commodities.

  20. Cold vacuum drying facility design requirements

    SciTech Connect

    Irwin, J.J.

    1997-09-24

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility.

  1. SLUDGE DEWATERING AND DRYING ON SAND BEDS

    EPA Science Inventory

    Dewatering of water and wastewater treatment sludges was examined through mathematical modeling and experimental work. The various components of the research include: (1) chemical analyses of water treatment sludges, (2) drainage and drying studies of sludges, (3) a mathematical ...

  2. Helium process cycle

    DOEpatents

    Ganni, Venkatarao

    2008-08-12

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  3. Helium process cycle

    DOEpatents

    Ganni, Venkatarao

    2007-10-09

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  4. Dry Eye in Pediatric Contact Lens Wearers

    PubMed Central

    Greiner, Katie L.; Walline, Jeffrey J.

    2015-01-01

    Objectives To determine whether children who wear contact lenses truly have fewer dry eye complaints than adults. Methods Ninety-four pediatric contact lens wearers, ages 8 to 14 years, were recruited and given the Contact Lens Dry Eye Questionnaire (CLDEQ) short form. The survey is designed to diagnose dry eye syndrome by obtaining information on the frequency of dryness and light sensitivity and their corresponding intensity levels within the first two hours of putting in the lenses, in the middle of the day, and at the end of the day. The responses were scored by multiplying the frequency by the average intensity and a constant. A composite score was calculated by subtracting the photophobia score from the dryness score, and the results were compared to adult samples from the literature. The questionnaire also asked whether the subject thought he/she had dry eyes while wearing contact lenses. Subjects that thought they had dry eyes and had a CLDEQ composite score >0.03 were diagnosed with dry eye. Subjects who were unsure if they dry eye or said they did not have dry eye but scored >1.29 were also diagnosed with dry eye. Results The average (± SD) age of the sample was 11.7 ± 1.5 years, 56.4% were female, 59.6% were white, and 19.1% were black. The mean (± SD) CLDEQ composite score was 0.25 ±0.50 (range= -1.20 to 1.45). In the literature, the adult mean (± SD) CLDEQ composite score was 1.02 ±0.80 (range= -0.74 to 4.50). Of the 94 surveys collected, 4.3% of children were categorized with dry eye compared to 56.2% of adults who completed the CLDEQ survey in the adult study. Conclusions Pediatric contact lens wearers have fewer complaints about dry eyes than adult contact lens wearers, which may be due to improved tear film, differences in reporting of symptoms, or modality of contact lens wear. PMID:21060258

  5. Atmospheric dry and wet deposition of mercury in Toronto

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaotong; Siddiqi, Zia; Song, Xinjie; Mandiwana, Khakhathi L.; Yousaf, Muhammad; Lu, Julia

    2012-04-01

    Atmospheric mercury (Hg) speciation and deposition are critical in understanding the cycling of mercury in the environment. To estimate the dry and wet deposition of mercury in an urban environment, concentrations of gaseous elemental mercury (GEM), gaseous oxidized inorganic mercury (GOIM), mercury associated with particles having size less than 2.5 μm (Hg(p) < 2.5) (December 2003-November 2004) and total particulate mercury (THg(p)) (June 2004-December 2004) in the atmosphere, as well as the concentrations of methyl mercury (MeHg) and total mercury (THg) in atmospheric precipitation samples (June 2005-January 2006 and September 2007-March 2008), were measured in downtown Toronto, Canada.The dry deposition rates of GOIM, Hg(p) < 2.5 μm and THg(p) estimated between December 2003 and December 2004 were 0.17-2.33 μg m-2 month-1, 0.04-0.32 μg m-2 month-1 and 0.17-1.11 μg m-2 month-1, respectively, while the wet deposition rates of methyl mercury and total mercury between June 2005-January 2006 and September 2007-March 2008 were 0.01-0.08 μg m-2 month-1 and 0.32-8.48 μg m-2 month-1, respectively. The total dry deposition (7.66-26.06 μg m-2 a-1, calculated as the sum of GOIM and THg(p) deposition) and the total wet deposition (= the wet deposition of total mercury = 18.60 μg m-2 a-1) contributed proportionally to the total atmospheric Hg deposition in Toronto.

  6. Soil Amendement by green supplement: dry cowdung powder

    NASA Astrophysics Data System (ADS)

    Barot, N. S.; Bagla, H.

    2009-04-01

    Soil is a heavenly resource, a living, breathing and ever changing dynamic ecosystem. Retrogression and degradation of soil system is the result of continuous encroachment done by global anthropogenic activities. Mother earth's monition has increased the local concern to explore solution for the healthy sustainability of soil. At this hour of need it is crucial to regain the health of soil by utilizing eco-friendly solution and the promising one is Dry Cow Dung powder. Cow Dung is bio- organic, complex, polymorphic fecal matter of the bovine species, enriched with ‘Humic acid' (HA), ‘Fulvic Acid' etc. The HA in Cow Dung has been extracted using Neutralization Reaction and its presence is confirmed by comparing it with FTIR spectra of Std HA (IHSS). Property of metal ion adsorption of Standard and Extracted HA has been confirmed using ‘Tracer Technique'. Cow Dung is renewable, easy and freely available with least contaminants as the process of Humification takes place during drying stage hence speciation of any type is not required due to its Biological matrix. Any pre or post conditioning of cow dung powder is not required reducing undesired chemical sink in milieu. It will surely contribute in closing the natural nutrient cycle and increase the fertility as well as carbon pool of soil due to abundance of useful microflora. If compared to present day usage of synthetic and semi- synthetic products, employing Dry Cow Dung powder as agrarian booster will be surely a Green solution! It's rightly said that "The nation which destroys its soil, destroys itself!", hence we need to pursue instant remedies to mitigate our self destruction because healthy soil is the only life line for Survival!

  7. Soil amendement by green supplement : Dry cowdung powder

    NASA Astrophysics Data System (ADS)

    Barot, N.; Bagla, H.

    2009-04-01

    Soil is a heavenly resource, a living, breathing and ever changing dynamic ecosystem. Retrogression and degradation of soil system is the result of continuous encroachment done by global anthropogenic activities. Mother earth's monition has increased the local concern to explore solution for the healthy sustainability of soil. At this hour of need it is crucial to regain the health of soil by utilizing eco-friendly solution and the promising one is Dry Cow Dung powder. Cow Dung is bio- organic, complex, polymorphic fecal matter of the bovine species, enriched with ‘Humic acid' (HA), ‘Fulvic Acid' etc. The HA in Cow Dung has been extracted using Neutralization Reaction and its presence is confirmed by comparing it with FTIR spectra of Std HA (IHSS). Property of metal ion adsorption of Standard and Extracted HA has been confirmed using ‘Tracer Technique'. Cow Dung is renewable, easy and freely available with least contaminants as the process of Humification takes place during drying stage hence speciation of any type is not required due to its Biological matrix. Any pre or post conditioning of cow dung powder is not required reducing undesired chemical sink in milieu. It will surely contribute in closing the natural nutrient cycle and increase the fertility as well as carbon pool of soil due to abundance of useful microflora. If compared to present day usage of synthetic and semi- synthetic products, employing Dry Cow Dung powder as agrarian booster will be surely a Green solution! It's rightly said that "The nation which destroys its soil, destroys itself!", hence we need to pursue instant remedies to mitigate our self destruction because healthy soil is the only life line for Survival!

  8. Highly durable and unidirectionally stooped polymeric nanohairs for gecko-like dry adhesive

    NASA Astrophysics Data System (ADS)

    Im, Hyeon Seong; Kwon, Ki Yoon; Kim, Jong Uk; Kim, Kwang Su; Yi, Hoon; Yoo, Pil J.; Pang, Changhyun; Jeong, Hoon Eui; Kim, Tae-il

    2015-10-01

    Gecko-like dry adhesive using high aspect ratio polymeric nanohairs has insuperable limitations, although it has huge potential in many applications. Repeated harsh contacts on a target substrate lead to physical collapse of nanohairs and significant degradation of the adhesion property, because the polymeric nanohairs are quite fragile due to poor mechanical robustness. Herein, we demonstrate a highly robust gecko-like dry adhesive with unidirectionally stooped polymeric nanohairs (diameter 100 nm) with a high aspect ratio (∼9) using an ultrathin metal coating. 100 cycles of repeated adhesion tests with 1 N preloading force did not significantly degrade adhesion or cause collapse of nanohairs. We believe that this approach allows gecko-like dry adhesive to be utilized in many related applications and diverse industry interests.

  9. Highly durable and unidirectionally stooped polymeric nanohairs for gecko-like dry adhesive.

    PubMed

    Im, Hyeon Seong; Kwon, Ki Yoon; Kim, Jong Uk; Kim, Kwang Su; Yi, Hoon; Yoo, Pil J; Pang, Changhyun; Jeong, Hoon Eui; Kim, Tae-il

    2015-10-16

    Gecko-like dry adhesive using high aspect ratio polymeric nanohairs has insuperable limitations, although it has huge potential in many applications. Repeated harsh contacts on a target substrate lead to physical collapse of nanohairs and significant degradation of the adhesion property, because the polymeric nanohairs are quite fragile due to poor mechanical robustness. Herein, we demonstrate a highly robust gecko-like dry adhesive with unidirectionally stooped polymeric nanohairs (diameter 100 nm) with a high aspect ratio (∼9) using an ultrathin metal coating. 100 cycles of repeated adhesion tests with 1 N preloading force did not significantly degrade adhesion or cause collapse of nanohairs. We believe that this approach allows gecko-like dry adhesive to be utilized in many related applications and diverse industry interests. PMID:26391964

  10. A Virtual Prototyping Technology for Design of Pressing Equipment of Dried Tofu

    NASA Astrophysics Data System (ADS)

    Huang, Mingji; Dong, Xiuping

    vThe industry of dried tofu products wants to achieve breakthrough, the key lies in developing efficient processing equipments. Pressing equipment of dried tofu has been mostly designed according to the line - "manual design (some with a CAD) - prototype production - prototype testing - design modification". However this way not only gets a high cost of research, but also a long cycle. It used virtual prototyping technology, at first, according to the design requirements, created three-dimensional modeling by using Pro/E software; at last, made the feasibility analysis of kinematics and dynamics by using of ADAMS software. Through optimization design, analysis and control of cost, it had several characters as follows, simple machine, low cost, high productivity, it had great significance to mechanization and industrialization of pressing equipment of dried tofu.

  11. Microbial ecology of extreme environments: Antarctic dry valley yeasts and growth in substrate limited habitats

    NASA Technical Reports Server (NTRS)

    Vishniac, H. S.

    1981-01-01

    The multiple stresses temperature, moisture, and for chemoheterotrophs, sources of carbon and energy of the Dry Valley Antarctica soils allow at best depauperate communities, low in species diversity and population density. The nature of community structure, the operation of biogeochemical cycles, the evolution and mechanisms of adaptation to this habitat are of interest in informing speculations upon life on other planets as well as in modeling the limits of gene life. Yeasts of the Cryptococcus vishniacil complex (Basidiobiastomycetes) are investigated, as the only known indigenes of the most hostile, lichen free, parts of the Dry Valleys. Methods were developed for isolating these yeasts (methods which do not exclude the recovery of other microbiota). The definition of the complex was refined and the importance of nitrogen sources was established as well as substrate competition in fitness to the Dry Valley habitats.

  12. Variability of soil moisture memory for wet and dry basins

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Mahfuzur; Lu, Minjiao; Kyi, Khin Htay

    2015-04-01

    Soil moisture memory (SMM) is not only important for atmospheric weather/climate forecasting, but may also be useful in flood and drought prediction. Despite their importance, SMM studies are restricted in certain regions due to the scarcity of soil moisture data. To overcome this limitation, this study explains the variability of SMM in wet and dry basins, and shows an alternative way to predict the basin scale SMM using observed precipitation and potential evapotranspiration information only. This study presents the basin average SMM in the form of a timescale that indicates the duration of significant autocorrelations at 95% confidence intervals. The soil moisture autocorrelations were calculated using observed precipitation, potential evapotranspiration, streamflow and soil moisture data sets simulated using the XinAnJiang (XAJ) model, for 26 river basins across the USA. The XAJ model's capability to simulate seasonal cycles (temporal anomalies) of soil moisture was validated against cycles from the observed data set of the Spoon River basin of Illinois State, USA. Based on the validation experience, the XAJ model was thereafter used to simulate soil moisture data for the analysed basins. Basin scale SMM timescale ranges were computed from 11 to 133 days. The SMM timescale is highly influenced by precipitation variability and exhibits strong seasonality. Dry basins tend to show the highest memory during the winter months (December to February) and lowest in late spring (May). In contrast, wet basins have the lowest memory during winter and early spring (December to April) and highest in the late summer and early autumn (July to September). The SMM timescale displayed an exponential relationship with the basin aridity index, with an r2 value of 0.9. This relationship could be a cheap source of basin scale SMM prediction from widely available observed data sets (actual precipitation and potential evapotranspiration), and thus, could afford some knowledge of SMM

  13. Soil Crust Changes due to Wetting and Drying Analyzed by Non-Invasive Images

    NASA Astrophysics Data System (ADS)

    Piresa, Luiz F.

    2010-08-01

    In this work a γ-ray computed tomography (CT) scanner was used to evaluate soil crust changes due to wetting and drying (W-D) cycles. Changes in soil porous system (SPS) due to W-D cycles of samples with crust have important practical consequences, because they can affect the soil water retention curve (SWRC) representativeness. CT data allowed detailed analyses of the soil bulk density (db) for thick layers, which cannot be achieved by traditional methods commonly used in soil physics. It was also possible to observe a decrease in db in the crust region. These results show that important changes can occur in SPS during SWRC evaluations.

  14. Dry-Enzyme Test For Gaseous Chemicals

    NASA Technical Reports Server (NTRS)

    Barzana, Eduardo; Karel, Marcus; Klibanov, Alexander

    1990-01-01

    Simple, dry-chemical test detects ethanol in human breath. Method of test also adapted to detection of such toxic chemicals as formaldehyde in airstreams. Used qualitatively to detect chemical compounds above present level; for example, ethanol above legal level for driving. Also used to indicate quantitatively concentrations of compounds. Involves dry enzyme and color indicator. Adapted to detect any gaseous compound transformed by enzymes to produce change evident to human eye or to instrument.

  15. R and D needs -- Drying of sludges

    SciTech Connect

    Kasakura, T.; Hasatani, M.

    1996-10-01

    Sludge management is a very important environmental issue in many industrialized countries, because its generated volume is the largest in all generated wastes. In the sludge management field, the role of drying is becoming more important as sludge disposal becomes more difficult. In this paper, the present status of drying of construction sludge, food industry sludge and municipal sludge are mentioned as concrete examples. To respond to these needs, it is necessary to advance further R and D.

  16. Diagnosis and treatment of dry mouth.

    PubMed

    Singh, Medha; Tonk, Rajinder Singh

    2011-01-01

    For effective management of dry mouth, early diagnosis and aggressive, symptom-based treatment are necessary to help alleviate much of the discomfort and to retard progression of the disorder. Many effective strategies are available to help patients manage their symptoms. Routine follow-up care with physicians and dentists is essential. With early intervention and proper individualized care, people with dry mouth should be able to lead full and comfortable lives. PMID:22313928

  17. Isotope studies to determine dry deposition of sulfate to deciduous and coniferous trees: Final draft

    SciTech Connect

    Garten, C.T. Jr.

    1988-01-01

    Experiments have been conducted at two locations near Oak Ridge, Tennessee, with radioactive /sup 35/S (87 day half-life) to examine the cycling behavior of sulfur in yellow poplar (Liriodendron tulipifera), red maple (Acer rubrum), and loblolly pine (Pinus taeda) trees. Some findings pertain to methods development for estimating dry deposition of sulfur to forest canopies and the magnitude of sulfur emissions from natural sources (Task II). We will determine through field studies, the internal cycling, storage, and biogenic emission of sulfur, as traced by /sup 35/SO/sub 4//sup 2 -/, in environments impacted by atmospheric sulfate deposition; and will determine through isotope dilution studies, the contribution of foliar leaching and dry deposition to net throughfall (NTF) sulfate concentrations beneath deciduous and coniferous trees in such environments. 3 refs., 2 figs., 1 tab.

  18. A New Experimental Method for in Situ Corrosion Monitoring Under Alternate Wet-Dry Conditions

    PubMed Central

    Fu, Xinxin; Dong, Junhua; Han, Enhou; Ke, Wei

    2009-01-01

    A new experimental method was applied in in situ corrosion monitoring of mild steel Q235 under alternate wet-dry conditions. The thickness of the electrolyte film during the wet cycle was monitored by a high-precision balance with a sensibility of 0.1 mg. At the same time, an electrochemical impedance technique was employed to study the effect of film thickness on corrosion rates. Experimental results showed that there was a critical electrolyte film condition for which the corrosion rate reached a maximum during wet-dry cycles. For the substrate, the critical condition could be described by a film thickness of about 17 μm. For the rusted specimen, the critical condition could be described by an electrolyte amount of about 0.038 g, which is equivalent to a film thickness of 38 μm. This monitoring system was very useful for studying atmospheric corrosion of metals covered by corrosion products. PMID:22303180

  19. A new experimental method for in situ corrosion monitoring under alternate wet-dry conditions.

    PubMed

    Fu, Xinxin; Dong, Junhua; Han, Enhou; Ke, Wei

    2009-01-01

    A new experimental method was applied in in situ corrosion monitoring of mild steel Q235 under alternate wet-dry conditions. The thickness of the electrolyte film during the wet cycle was monitored by a high-precision balance with a sensibility of 0.1 mg. At the same time, an electrochemical impedance technique was employed to study the effect of film thickness on corrosion rates. Experimental results showed that there was a critical electrolyte film condition for which the corrosion rate reached a maximum during wet-dry cycles. For the substrate, the critical condition could be described by a film thickness of about 17 μm. For the rusted specimen, the critical condition could be described by an electrolyte amount of about 0.038 g, which is equivalent to a film thickness of 38 μm. This monitoring system was very useful for studying atmospheric corrosion of metals covered by corrosion products. PMID:22303180

  20. Persistent drying in the tropics linked to natural forcing

    NASA Astrophysics Data System (ADS)

    Winter, Amos; Zanchettin, Davide; Kushnir, Yochanan; Black, David; Breitenbach, Sebastian; Cheng, Hai; Miller, Thomas; Haug, Gerald

    2015-04-01

    Climate projections for the future indicate a regional contrast in tropical hydrologic trends between areas that are slated to dry and those that may become wet. While much of the tropical ocean under the Intertropical Convergence Zone (ITCZ) is projected to see an increase in rainfall, a wide area of Central America and surrounding oceans is expected to experience severe drying. Approximately half the world's population lives in the tropics, and future changes in the hydrological cycle will impact not just freshwater supplies but also energy production in areas dependent upon hydroelectric power. It is vital that we understand tropical forcing mechanisms and the eventual hydrological response in order to better assess projected future regional precipitation trends and variability. Paleoclimate proxies are a valuable source of information for this purpose as they provide long time series that pre-date and complement the present, often short instrumental observations. Here we present paleo-precipitation data from a speleothem located in Mesoamerica that reveal large multi-decadal declines in regional precipitation whose onset coincides with clusters of large volcanic eruptions during the 19th and 20th centuries. This reconstruction provides new independent evidence of robust long-lasting volcanic effects on climate and elucidates key aspects of the causal chain of physical processes determining the tropical climate response to global radiative forcing.

  1. Contextual view of building 110 with dry dock 2 in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Contextual view of building 110 with dry dock 2 in foreground; camera facing northeast. - Mare Island Naval Shipyard, Pump House, California Avenue, east side between Dry Dock 1 & Dry Dock 2, near Ninth Street, Vallejo, Solano County, CA

  2. Contextual view of building 110 with dry dock 1 visible ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Contextual view of building 110 with dry dock 1 visible on left; camera facing southeast. - Mare Island Naval Shipyard, Pump House, California Avenue, east side between Dry Dock 1 & Dry Dock 2, near Ninth Street, Vallejo, Solano County, CA

  3. Using solar dryers to dry clay bricks

    SciTech Connect

    Bernal, J.A.; Wicker, R.B.

    1996-12-31

    Experiments using a small-scale solar dryer have been performed to determine the effect of incorporating solar dryers in the pre-firing stage of clay brick production. A comparison of brick moisture content over time is presented for dry bricks that underwent additional drying either naturally through direct exposure, in convection ovens set at 65.6 C and 104 C, in the solar dryer, or sealed in plastic bags. The ambient temperature and relative humidity were monitored along with the solar dryer temperature. Results indicated the solar dryer removed from one to two percent more moisture than natural drying, but removed less moisture than did the ovens. A similar comparison of wet bricks naturally dried, oven dried, and placed in the solar dryer for periods of five and seven days is also presented. The solar dryer reduced the amount of time required for bricks to be dried to a specified moisture content and increased the amount of moisture removed for a given amount of time.

  4. Templated Dry Printing of Conductive Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rolfe, David Alexander

    Printed electronics can lower the cost and increase the ubiquity of electrical components such as batteries, sensors, and telemetry systems. Unfortunately, the advance of printed electronics has been held back by the limited minimum resolution, aspect ratio, and feature fidelity of present printing techniques such as gravure, screen printing and inkjet printing. Templated dry printing offers a solution to these problems by patterning nanoparticle inks into templates before drying. This dissertation shows advancements in two varieties of templated dry nanoprinting. The first, advective micromolding in vapor-permeable templates (AMPT) is a microfluidic approach that uses evaporation-driven mold filling to create submicron features with a 1:1 aspect ratio. We will discuss submicron surface acoustic wave (SAW) resonators made through this process, and the refinement process in the template manufacturing process necessary to make these devices. We also present modeling techniques that can be applied to future AMPT templates. We conclude with a modified templated dry printing that improves throughput and isolated feature patterning by transferring dry-templated features with laser ablation. This method utilizes surface energy-defined templates to pattern features via doctor blade coating. Patterned and dried features can be transferred to a polymer substrate with an Nd:YAG MOPA fiber laser, and printed features can be smaller than the laser beam width.

  5. Drying a tuberculosis vaccine without freezing.

    PubMed

    Wong, Yun-Ling; Sampson, Samantha; Germishuizen, Willem Andreas; Goonesekera, Sunali; Caponetti, Giovanni; Sadoff, Jerry; Bloom, Barry R; Edwards, David

    2007-02-20

    With the increasing incidence of tuberculosis and drug resistant disease in developing countries due to HIV/AIDS, there is a need for vaccines that are more effective than the present bacillus Calmette-Guérin (BCG) vaccine. We demonstrate that BCG vaccine can be dried without traditional freezing and maintained with remarkable refrigerated and room-temperature stability for months through spray drying. Studies with a model Mycobacterium (Mycobacterium smegmatis) revealed that by removing salts and cryoprotectant (e.g., glycerol) from bacterial suspensions, the significant osmotic pressures that are normally produced on bacterial membranes through droplet drying can be reduced sufficiently to minimize loss of viability on drying by up to 2 orders of magnitude. By placing the bacteria in a matrix of leucine, high-yield, free-flowing, "vial-fillable" powders of bacteria (including M. smegmatis and M. bovis BCG) can be produced. These powders show relatively minor losses of activity after maintenance at 4 degrees C and 25 degrees C up to and beyond 4 months. Comparisons with lyophilized material prepared both with the same formulation and with a commercial formulation reveal that the spray-dried BCG has better overall viability on drying. PMID:17299039

  6. Dry season streamflow persistence in seasonal climates

    NASA Astrophysics Data System (ADS)

    Dralle, David N.; Karst, Nathaniel J.; Thompson, Sally E.

    2016-01-01

    Seasonally dry ecosystems exhibit periods of high water availability followed by extended intervals during which rainfall is negligible and streamflows decline. Eventually, such declining flows will fall below the minimum values required to support ecosystem functions or services. The time at which dry season flows drop below these minimum values (Q*), relative to the start of the dry season, is termed the "persistence time" (). The persistence time determines how long seasonal streams can support various human or ecological functions during the dry season. In this study, we extended recent work in the stochastic hydrology of seasonally dry climates to develop an analytical model for the probability distribution function (PDF) of the persistence time. The proposed model accurately captures the mean of the persistence time distribution, but underestimates its variance. We demonstrate that this underestimation arises in part due to correlation between the parameters used to describe the dry season recession, but that this correlation can be removed by rescaling the flow variables. The mean persistence time predictions form one example of the broader class of streamflow statistics known as crossing properties, which could feasibly be combined with simple ecological models to form a basis for rapid risk assessment under different climate or management scenarios.

  7. Steam atmosphere drying exhaust steam recompression system

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.; Doyle, Edward F.; DiBella, Francis A.

    1994-01-01

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

  8. Steam atmosphere drying exhaust steam recompression system

    DOEpatents

    Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

    1994-03-08

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

  9. Solar magnetic cycle

    NASA Technical Reports Server (NTRS)

    Harvey, Karen L.

    1993-01-01

    Using NSO/KP magnetograms, the pattern and rate of the emergence of magnetic flux and the development of the large-scale patterns of unipolar fields are considered in terms of the solar magnetic cycle. Magnetic flux emerges in active regions at an average rate of 2 x 10(exp 21) Mx/day, approximately 10 times the estimated rate in ephemeral regions. Observations are presented that demonstrate that the large-scale unipolar fields originate in active regions and activity nests. For cycle 21, the net contribution of ephemeral regions to the axial dipole moment of the Sun is positive, and is of opposite sign to that of active regions. Its amplitude is smaller by a factor of 6, assuming an average lifetime of ephemeral regions of 8 hours. Active regions larger than 4500 Mm(sup 2) are the primary contributor to the cycle variation of Sun's axial dipole moment.

  10. The global sulfur cycle

    NASA Technical Reports Server (NTRS)

    Sagan, D. (Editor)

    1985-01-01

    The results of the planetary biology microbial ecology's 1984 Summer Research Program, which examined various aspects of the global sulfur cycle are summarized. Ways in which sulfur flows through the many living and chemical species that inhabit the surface of the Earth were investigated. Major topics studied include: (1) sulfur cycling and metabolism of phototropic and filamentous sulfur bacteria; (2) sulfur reduction in sediments of marine and evaporite environments; (3) recent cyanobacterial mats; (4) microanalysis of community metabolism in proximity to the photic zone in potential stromatolites; and (5) formation and activity of microbial biofilms on metal sulfides and other mineral surfaces. Relationships between the global sulfur cycle and the understanding of the early evolution of the Earth and biosphere and current processes that affect global habitability are stressed.

  11. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  12. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  13. A Forecast Procedure for Dry Thunderstorms

    NASA Astrophysics Data System (ADS)

    Nauslar, Nicholas J.

    Dry thunderstorm (traditionally less than 2.5 mm or 0.1" of rainfall) forecasting has long been a forecast problem for the western United States. Dry thunderstorms are responsible for starting thousands of wildland fires every year. In the largest lightning outbreaks (or busts in the wildland fire-meteorological community), hundreds of fires may be started in a 24- to 36-hour period. These extreme events put a huge strain on fire suppression efforts. Many of these fires may go unstaffed due to the lack of available fire personnel simply because of the large number of fire starts. Forecasting these events in advance, even just 24-48 hours, could help fire agencies plan resources in preparation of a large outbreak. Fires are much more likely to be controlled during the early stages, and therefore cost much less to suppress. . Due to the seemingly innocuous conditions preceding dry thunderstorm development across the western United States (west of the Rocky Mountains), forecasting dry thunderstorm events can prove challenging and inconsistent. To improve dry thunderstorm forecasting, the National Weather Service (NWS) Reno Weather Forecast Office (WFO) developed WA04 (Wallmann 2004, 2010), a conceptual model of dry thunderstorms that includes the pressure of the dynamic tropopause, jet streak dynamics, equivalent potential temperature, and upper level lapse rates in conjunction with the High Level Total Totals. This thesis supplements WA04 by adding moist isentropic analysis and enhancing the jet streak analysis to help a Dry Thunderstorm Procedure (DTP). Moist isentropic analysis resolves moisture and instability better than analyzing constant pressure maps, thus making it ideal to find the pockets of instability and plumes of moisture that spawn dry thunderstorms. The enhanced jet streak analysis in DTP more completely resolves upward motion and divergence aloft that might not be distinguished using constant pressure maps or traditional quasi-geostrophic theory. The

  14. Effects of dehumidification drying environment on drying speed of one component waterborne wood top coating

    NASA Astrophysics Data System (ADS)

    Lu, Zeguang; Tang, Tong; Zhou, Ge; Jia, Wanda; Wang, Meng; Xu, Jing; Bai, Shihong

    2016-03-01

    In this study, the effects of dehumidification drying environment including air temperature and relative humidity and velocity on drying speed of one component waterborne wood top coating are studied by Orthogonal experimental design and the results are analyzed creatively by Duncan analyses. It is found that during the dehumidification drying process, hard drying time is decreasing with the increasing air temperature and velocity and decreasing relative humidity. Air velocity is extremely significant to hard drying time, which is more significant than relative humidity, and relative humidity is more significant than air temperature. The difference of hard drying time is significant when the difference is 5 min and above, and it is extremely significant when the difference is 10 min and above, which are critical to judge the hard time in practice.

  15. Method and apparatus for in-situ drying investigation and optimization of slurry drying methodology

    DOEpatents

    Armstrong, Beth L.; Daniel, Claus; Howe, Jane Y.; Kiggans, Jr, James O.; Sabau, Adrian S.; Wood, III, David L.; Kalnaus, Sergiy

    2016-05-10

    A method of drying casted slurries that includes calculating drying conditions from an experimental model for a cast slurry and forming a cast film. An infrared heating probe is positioned on one side of the casted slurry and a thermal probe is positioned on an opposing side of the casted slurry. The infrared heating probe may control the temperature of the casted slurry during drying. The casted slurry may be observed with an optical microscope, while applying the drying conditions from the experimental model. Observing the casted slurry includes detecting the incidence of micro-structural changes in the casted slurry during drying to determine if the drying conditions from the experimental model are optimal.

  16. Rate of drying and stresses in the first period of drying

    SciTech Connect

    Kowalski, S.J.; Rybicki, A.

    2000-03-01

    The paper presents a computer simulated processes and illustrate how the drying induced stresses are influenced by the rate of drying. It is shown that the moisture transport coefficient, and thus the rate of drying, depends on the thermal state of the drying material, defined by the wet-bulb temperature. Through these simulated processes one can observe the evolution of the moisture content and stress distributions during drying at constant, but in each process different, wet-bulb temperatures. A convective drying process of a bar with rectangular cross-section is considered as example, and a two-dimensional initial-boundary value problem is solved numerically with the use of the finite element method. The numerical results are visualized in spatial diagrams.

  17. Breaking a vicious cycle.

    PubMed

    Hayes, Daniel F; Allen, Jeff; Compton, Carolyn; Gustavsen, Gary; Leonard, Debra G B; McCormack, Robert; Newcomer, Lee; Pothier, Kristin; Ransohoff, David; Schilsky, Richard L; Sigal, Ellen; Taube, Sheila E; Tunis, Sean R

    2013-07-31

    Despite prodigious advances in tumor biology research, few tumor-biomarker tests have been adopted as standard clinical practice. This lack of reliable tests stems from a vicious cycle of undervaluation, resulting from inconsistent regulatory standards and reimbursement, as well as insufficient investment in research and development, scrutiny of biomarker publications by journals, and evidence of analytical validity and clinical utility. We offer recommendations designed to serve as a roadmap to break this vicious cycle and call for a national dialogue, as changes in regulation, reimbursement, investment, peer review, and guidelines development require the participation of all stakeholders. PMID:23903752

  18. Global water cycle

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Christy, John R.; Goodman, Steven J.; Miller, Tim L.; Fitzjarrald, Dan; Lapenta, Bill; Wang, Shouping

    1991-01-01

    The primary objective is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates changes on both global and regional scales. The following subject areas are covered: (1) water vapor variability; (2) multi-phase water analysis; (3) diabatic heating; (4) MSU (Microwave Sounding Unit) temperature analysis; (5) Optimal precipitation and streamflow analysis; (6) CCM (Community Climate Model) hydrological cycle; (7) CCM1 climate sensitivity to lower boundary forcing; and (8) mesoscale modeling of atmosphere/surface interaction.

  19. Global water cycle

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin; Goodman, Steven J.; Christy, John R.; Fitzjarrald, Daniel E.; Chou, Shi-Hung; Crosson, William; Wang, Shouping; Ramirez, Jorge

    1993-01-01

    This research is the MSFC component of a joint MSFC/Pennsylvania State University Eos Interdisciplinary Investigation on the global water cycle extension across the earth sciences. The primary long-term objective of this investigation is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates change on both global and regional scales. Significant accomplishments in the past year are presented and include the following: (1) water vapor variability; (2) multi-phase water analysis; (3) global modeling; and (4) optimal precipitation and stream flow analysis and hydrologic processes.

  20. Cycles in fossil diversity

    SciTech Connect

    Rohde, Robert A.; Muller, Richard A.

    2004-10-20

    It is well-known that the diversity of life appears to fluctuate during the course the Phanerozoic, the eon during which hard shells and skeletons left abundant fossils (0-542 Ma). Using Sepkoski's compendium of the first and last stratigraphic appearances of 36380 marine genera, we report a strong 62 {+-} 3 Myr cycle, which is particularly strong in the shorter-lived genera. The five great extinctions enumerated by Raup and Sepkoski may be an aspect of this cycle. Because of the high statistical significance, we also consider contributing environmental factors and possible causes.

  1. Synthetic battery cycling techniques

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; Thaller, L. H.

    1982-01-01

    Synthetic battery cycling makes use of the fast growing capability of computer graphics to illustrate some of the basic characteristics of operation of individual electrodes within an operating electrochemical cell. It can also simulate the operation of an entire string of cells that are used as the energy storage subsystem of a power system. The group of techniques that as a class have been referred to as Synthetic Battery Cycling is developed in part to try to bridge the gap of understanding that exists between single cell characteristics and battery system behavior.

  2. Urea Cycle Disorders.

    PubMed

    Kleppe, Soledad; Mian, Asad; Lee, Brendan

    2003-07-01

    Urea cycle disorders comprise a group of inborn errors of metabolism that represent unique gene-nutrient interactions whose significant morbidity arises from acute and chronic neurotoxicity associated with often massive hyperammonemia. Current paradigms of treatment are focused on controlling the flux of nitrogen transfer through the hepatic urea cycle by a combination of dietary and pharmacologic approaches. Evolving paradigms include the development of cell and gene therapies. Current research is focused on understanding the pathophysiology of ammonia-mediated toxicity and prevention of neural injury. PMID:12791198

  3. Modelling of heat and mass transfer in a granular medium during high-temperature air drying. Effect of the internal gas pressure

    NASA Astrophysics Data System (ADS)

    Othmani, Hammouda; Hassini, Lamine; Lamloumi, Raja; El Cafsi, Mohamed Afif

    2016-02-01

    A comprehensive internal heat and water transfer model including the gas pressure effect has been proposed in order to improve the industrial high-temperature air drying of inserts made of agglomerated sand. In this model, the internal gas phase pressure effect was made perfectly explicit, by considering the liquid and vapour transfer by filtration and the liquid expulsion at the surface. Wet sand enclosed in a tight cylindrical glass bottle dried convectively at a high temperature was chosen as an application case. The model was validated on the basis of the experimental average water content and core temperature curves for drying trials at different operating conditions. The simulations of the spatio-temporal distribution of internal gas pressure were performed and interpreted in terms of product potential damage. Based on a compromise between the drying time and the pressure increase, a simple drying cycle was implemented in order to optimize the drying process.

  4. Global Warming and 21st Century Drying

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Smerdun, Jason E.; Seager, Richard; Coats, Sloan

    2014-01-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twentyfirst century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman- Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  5. Metabolic cycle, cell cycle, and the finishing kick to Start

    PubMed Central

    Futcher, Bruce

    2006-01-01

    Slowly growing budding yeast store carbohydrate, then liquidate it in late G1 phase of the cell cycle, superimposing a metabolic cycle on the cell cycle. This metabolic cycle may separate biochemically incompatible processes. Alternatively it may provide a burst of energy and material for commitment to the cell cycle. Stored carbohydrate could explain the size requirement for cells passing the Start point. PMID:16677426

  6. A mathematical model for the secondary drying of a freeze-drying process

    NASA Astrophysics Data System (ADS)

    Font, F.; Lee, W.

    2015-09-01

    In this manuscript a mathematical model describing the secondary drying stage of a freeze-drying process is presented. The model consists in governing equations for the transport of an air-vapour mixture in a porous medium. The production of water vapour due to the desorption of bound water is accounted for by means of a source term in the equation for the water vapour concentration. We show how, in the limit of small Peclet numbers, the model can be solved analytically. In addition, we provide with an explicit expression for the total time for the secondary drying stage of the freeze-drying process amenable for real time control applications.

  7. Changes in chemical and sensory properties of migaki-nishin (dried herring fillet) during drying.

    PubMed

    Shah, A K M A; Tokunaga, C; Ogasawara, M; Kurihara, H; Takahashi, K

    2009-09-01

    Migaki-nishin is a Japanese term that refers to dried herring fillets. It is widely consumed in Japan due to its characteristic flavor enhancing properties. This study was conducted to investigate the changes in chemical and sensory properties of migaki-nishin during drying. Chemical analyses showed that extractive nitrogen and amount of peptides increased significantly (P < 0.05) up to the 8th day of drying and then slightly decreased by the 10th day. Glutamic acid, alanine, glycine, and histidine were the most abundant free amino acids and the largest increase was found in samples dried for 10 d. A decrease in Hunter's L* value (lightness) and increase in b* value (yellowness) as well as browning intensity suggested that nonenzymatic browning occurred in migaki-nishin during drying. Fluorescence spectrophotometric determination also revealed that Maillard reactions progressed throughout the drying period. In addition, available lysine content and free amino groups decreased significantly (P < 0.05) as drying progressed. Sensory evaluation showed that addition of water-soluble extracts to Japanese noodle soup (mentsuyu) linearly enhanced the flavor characteristics such as thickness, mouthfulness, and continuity with the increased length of drying time. These results suggest that during the drying period, proteolysis as well as Maillard reaction products increased markedly, which might contribute to the characteristic taste and flavor of migaki-nishin. PMID:19895496

  8. MERCURY CYCLING AND BIOMAGNIFICATION

    EPA Science Inventory

    Mercury cycling and biomagnification was studied in man-made ponds designed for watering livestock on the Cheyenne River Sioux Reservation in South Dakota. Multiple Hg species were quantified through multiple seasons for 2 years in total atmospheric deposition samples, surface wa...

  9. Assisted Cycling Tours

    ERIC Educational Resources Information Center

    Hollingsworth, Jan Carter

    2008-01-01

    This article discusses Assisted Cycling Tours (ACT), a Westminster, Colorado based 501(c)3, non-profit that is offering the joy of bicycle tours in breathtaking, scenic locations to children and adults with developmental and physical disabilities and their families. ACT was founded by Bob Matter and his son David with a goal of opening up the…

  10. Rapid cycling superconducting magnets

    NASA Astrophysics Data System (ADS)

    Fabbricatore, P.; Farinon, S.; Gambardella, U.; Greco, M.; Volpini, G.

    2006-04-01

    The paper deals with the general problematic related to the development of fast cycled superconducting magnets for application in particle accelerator machines. Starting from the requirements of SIS300 synchrotron under design at GSI and an envisaged future Super-SPS injector at CERN, it is shown which developments are mandatory in the superconducting wire technology and in the magnet design field.

  11. Stirling cycle piston engine

    SciTech Connect

    Morgan, G. R.

    1985-02-12

    This device is an improvement over the conventional type of Stirling cycle engine where the expander piston is connected to a crankshaft and the displacer piston is connected to the same or another crankshaft for operation. The improvement is based on both the expansion and displacer pistons being an integral unit having regenerating means which eliminate the mechanisms that synchronize the regeneration mode.

  12. The Science of Cycling

    ERIC Educational Resources Information Center

    Crompton, Zoe; Daniels, Shelley

    2014-01-01

    Children are engaged by finding out about science in the real world (Harlen, 2010). Many children will be cyclists or will have seen or heard about the success of British cyclists in the Olympics and the Tour de France. This makes cycling a good hook to draw children into learning science. It is also a good cross-curricular topic, with strong…

  13. Re-Cycling

    ERIC Educational Resources Information Center

    Brown, Robert W.; Covault, Corbin E.

    2015-01-01

    An old comedy routine on Saturday Night Live by Father Guido Sarducci introduced a "Five-Minute University," because five minutes is all that's remembered after graduation anyway. In counterpoint, we discuss "cycling," a teaching method for memory enhancement. Our principal implementation consists of offering a simple version…

  14. LIFE-CYCLE ASSESSMENT

    EPA Science Inventory

    Life Cycle Assessment, or LCA, is an environmental accounting and mangement approach that consider all the aspects of resource use and environmental releases associated with an industrial system from cradle-to-grave. Specifically, it is a holistic view of environmental interacti...

  15. 90-Day Cycle Handbook

    ERIC Educational Resources Information Center

    Park, Sandra; Takahashi, Sola

    2013-01-01

    90-Day Cycles are a disciplined and structured form of inquiry designed to produce and test knowledge syntheses, prototyped processes, or products in support of improvement work. With any type of activity, organizations inevitably encounter roadblocks to improving performance and outcomes. These barriers might include intractable problems at…

  16. Energy-saving drying and its application

    NASA Astrophysics Data System (ADS)

    Kovbasyuk, V. I.

    2015-09-01

    Superheated steam is efficiently applied as a coolant for the intensification of drying, which is an important component of many up-to-date technologies. However, traditional drying is extremely energy consuming, and many drying apparatus are environmentally unfriendly. Thus, it is important to implement the proposed drying technique using superheated steam under pressure significantly higher than the atmospheric one with subsequent steam transfer for use in a turbine for electric power generation as a compensation of energy costs for drying. This paper includes a brief thermodynamic analysis of such a technique, its environmental advantages, and possible benefits of the use of wet wastes and obtaining high-quality fuels from wet raw materials. A scheme is developed for the turbine protection from impurities that can occur in the steam at drying. Potential advantage of the technique are also the absence of heating surfaces that are in contact with wet media, the absence of the emissions to the atmosphere, and the use of low potential heat for desalination and the purification of water. The new drying technique can play an extremely important part in the implementation in the field of thermal destruction of anthropogenic wastes. In spite of the promotion of waste sorting to obtain valuable secondary raw materials, the main problem of big cities is nonutilizable waste, which makes not less than 85% of the starting quantity of waste. This can only be totally solved by combustion, which even more relates to the sewage sludge utilization. The wastes can be safely and efficiently combusted only provided that they are free of moisture. Combustion temperature optimization makes possible full destruction of dioxins and their toxic analogues.

  17. The Geologic Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Johnson, B. W.; Goldblatt, C.

    2013-12-01

    N2 is the dominant gas in Earth's atmosphere, and has been so through the majority of the planet's history. Originally thought to only be cycled in significant amounts through the biosphere, it is becoming increasingly clear that a large degree of geologic cycling can occur as well. N is present in crustal rocks at 10s to 100s of ppm and in the mantle at 1s to perhaps 10s of ppm. In light of new data, we present an Earth-system perspective of the modern N cycle, an updated N budget for the silicate Earth, and venture to explain the evolution of the N cycle over time. In an fashion similar to C, N has a fast, biologically mediated cycle and a slower cycle driven by plate tectonics. Bacteria fix N2 from the atmosphere into bioavailable forms. N is then cycled through the food chain, either by direct consumption of N-fixing bacteria, as NH4+ (the primary waste form), or NO3- (the most common inorganic species in the modern ocean). Some organic material settles as sediment on the ocean floor. In anoxic sediments, NH4+ dominates; due to similar ionic radii, it can readily substitute for K+ in mineral lattices, both in sedimentary rocks and in oceanic lithosphere. Once it enters a subduction zone, N may either be volatilized and returned to the atmosphere at arc volcanoes as N2 or N2O, sequestered into intrusive igneous rocks (as NH4+?), or subducted deep into the mantle, likely as NH4+. Mounting evidence indicates that a significant amount of N may be sequestered into the solid Earth, where it may remain for long periods (100s m.y.) before being returned to the atmosphere/biosphere by volcanism or weathering. The magnitude fluxes into the solid Earth and size of geologic N reservoirs are poorly constrained. The size of the N reservoirs contained in the solid Earth directly affects the evolution of Earth's atmosphere. It is possible that N now sequestered in the solid Earth was once in the atmosphere, which would have resulted in a higher atmospheric pressure, and

  18. Closing nuclear fuel cycle with fast reactors: problems and prospects

    SciTech Connect

    Shadrin, A.; Dvoeglazov, K.; Ivanov, V.

    2013-07-01

    The closed nuclear fuel cycle (CNFC) with fast reactors (FR) is the most promising way of nuclear energetics development because it prevents spent nuclear fuel (SNF) accumulation and minimizes radwaste volume due to minor actinides (MA) transmutation. CNFC with FR requires the elaboration of safety, environmentally acceptable and economically effective methods of treatment of SNF with high burn-up and low cooling time. The up-to-date industrially implemented SNF reprocessing technologies based on hydrometallurgical methods are not suitable for the reprocessing of SNF with high burn-up and low cooling time. The alternative dry methods (such as electrorefining in molten salts or fluoride technologies) applicable for such SNF reprocessing have not found implementation at industrial scale. So the cost of SNF reprocessing by means of dry technologies can hardly be estimated. Another problem of dry technologies is the recovery of fissionable materials pure enough for dense fuel fabrication. A combination of technical solutions performed with hydrometallurgical and dry technologies (pyro-technology) is proposed and it appears to be a promising way for the elaboration of economically, ecologically and socially accepted technology of FR SNF management. This paper deals with discussion of main principle of dry and aqueous operations combination that probably would provide safety and economic efficiency of the FR SNF reprocessing. (authors)

  19. Corrosion of iron under alternating wet and dry conditions

    SciTech Connect

    Dunn, D.S.; Bogart, M.B.; Brossia, C.S.; Cragnolino, G.A.

    2000-05-01

    In-situ alternating current (AC) and direct current (DC) electrochemical techniques were used to determine the corrosion rate and corrosion potential of high-purity iron under alternate wet and dry conditions. Comparisons between DC electrochemical measurements and weight loss were conducted to verify the validity of the corrosion rate measurements. Identification of the corrosion products was performed using Raman spectroscopy. Corrosion products contained layers of iron oxides and oxyhydroxides. At low Cl{sup {minus}} concentrations, corrosion products consisted of lepidocrocite ({gamma}-FeOOH) and magnetite (Fe{sub 3}O{sub 4}). At higher Cl{sup {minus}} concentrations, the formation of akaganeite ({beta}-FeOOH) was observed. Corrosion rates and corrosion potentials fluctuated through-out the wet cycles depending on electrolyte layer thickness, ionic strength, and wetting cycle. Accelerated corrosion rates of high-purity iron, up to three times those observed under continuously immersed conditions, were the result of Fe(III) reduction in the corrosion product layer, increased Cl{sup {minus}} concentration during evaporation, and accelerated oxygen transport across the thin electrolyte layer.

  20. Corrosion of iron under alternating wet and dry conditions

    SciTech Connect

    Dunn, D.S.; Bogart, M.B.; Brossia, C.S.; Cragnolino, G.A.

    1999-11-01

    In-situ AC and DC electrochemical techniques were used to determine the corrosion rate and corrosion potential of high purity iron under alternate wet and dry conditions. Comparisons between DC electrochemical measurements and weight loss were also performed to verify the validity of the corrosion rate measurements. Identification of the corrosion products was performed using Raman spectroscopy. The corrosion products were found to contain layers of iron oxides and oxyhydroxides. At low chloride concentrations the corrosion products consisted of {gamma}-FeOOH and Fe{sub 3}O{sub 4}, whereas at higher chloride concentrations the formation of {beta}-FeOOH was observed. Corrosion rates and corrosion potentials fluctuated throughout the wet cycles based on electrolyte layer thickness, ionic strength, and wetting cycle. Accelerated corrosion rates of high purity iron up to 3 times that observed under continuously immersed conditions were found to be the result of Fe(III) reduction in the corrosion product layer, increased chloride concentration during evaporation, and accelerated oxygen transport across the thin electrolyte layer.

  1. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-04-01

    This report describes research conducted between January 1, 2004 and March 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. RTI has produced laboratory scale batches (approximately 300 grams) of supported sorbents (composed of 20 to 40% sodium carbonate) with high surface area and acceptable activity. Initial rates of weight gain of the supported sorbents when exposed to a simulated flue gas exceeded that of 100% calcined sodium bicarbonate. One of these sorbents was tested through six cycles of carbonation/calcination by thermogravimetric analysis and found to have consistent carbonation activity. Kinetic modeling of the regeneration cycle on the basis of diffusion resistance at the particle surface is impractical, because the evolving gases have an identical composition to those assumed for the bulk fluidization gas. A kinetic model of the reaction has been developed on the basis of bulk motion of water and carbon dioxide at the particle surface (as opposed to control by gas diffusion). The model will be used to define the operating conditions in future laboratory- and pilot-scale testing.

  2. Leaching of biocides from polymer renders under wet/dry cycles--Rates and mechanisms.

    PubMed

    Styszko, Katarzyna; Bollmann, Ulla E; Bester, Kai

    2015-11-01

    In this study it was tested, which mechanism for the transport of biocides in polymeric renders is more relevant: (1) evaporative transports (meaning there is a flow of water through the material due to evaporation on the surface), which transports also the biocides to the surface, (2) transport through the polymer and (3) transport through water filled pores. It turned out that under the experimental conditions evaporative transport was not relevant, while transport through soaked (constantly wetted) renders was considerably faster than by other means. Additionally it turned out that also the equilibria were influenced by the water content. Differences in equilibria can be up to factor 10 between constantly wetted (soaked) and un-wetted materials. The two tested materials (one silicone and one acrylate render) had significantly different leaching behavior concerning equilibria and dynamics of mass flows, but for both the pre-wetted materials leached most. PMID:26210026

  3. Mineralization of N in Soils Amended with Dairy Manure as Affected by Wetting/Drying Cycles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in manure management and its effects on nitrogen (N) mineralization has increased in recent years. The focus of this research was to investigate the N mineralization rates of different soil types in Coastal Plain soils and compare them to a soil from Illinois. Soils with and without dairy ...

  4. Determination of end point of primary drying in freeze-drying process control.

    PubMed

    Patel, Sajal M; Doen, Takayuki; Pikal, Michael J

    2010-03-01

    Freeze-drying is a relatively expensive process requiring long processing time, and hence one of the key objectives during freeze-drying process development is to minimize the primary drying time, which is the longest of the three steps in freeze-drying. However, increasing the shelf temperature into secondary drying before all of the ice is removed from the product will likely cause collapse or eutectic melt. Thus, from product quality as well as process economics standpoint, it is very critical to detect the end of primary drying. Experiments were conducted with 5% mannitol and 5% sucrose as model systems. The apparent end point of primary drying was determined by comparative pressure measurement (i.e., Pirani vs. MKS Baratron), dew point, Lyotrack (gas plasma spectroscopy), water concentration from tunable diode laser absorption spectroscopy, condenser pressure, pressure rise test (manometric temperature measurement or variations of this method), and product thermocouples. Vials were pulled out from the drying chamber using a sample thief during late primary and early secondary drying to determine percent residual moisture either gravimetrically or by Karl Fischer, and the cake structure was determined visually for melt-back, collapse, and retention of cake structure at the apparent end point of primary drying (i.e., onset, midpoint, and offset). By far, the Pirani is the best choice of the methods tested for evaluation of the end point of primary drying. Also, it is a batch technique, which is cheap, steam sterilizable, and easy to install without requiring any modification to the existing dryer. PMID:20058107

  5. Blanching, salting and sun drying of different pumpkin fruit slices.

    PubMed

    Workneh, T S; Zinash, A; Woldetsadik, K

    2014-11-01

    The study was aimed at assessing the quality of pumpkin (Cucuribita Spp.) slices that were subjected to pre-drying treatments and drying using two drying methods (uncontrolled sun and oven) fruit accessions. Pre-drying had significant (P ≤ 0.05) effect on the quality of dried pumpkin slices. 10 % salt solution dipped pumpkin fruit slices had good chemical quality. The two-way interaction between drying methods and pre-drying treatments had significant (P ≤ 0.05) effect on chemical qualities. Pumpkin subjected to salt solution dipping treatment and oven dried had higher chemical concentrations. Among the pumpkin fruit accessions, pumpkin accession 8007 had the superior TSS, total sugar and sugar to acid ratio after drying. Among the three pre-drying treatment, salt solution dipping treatment had significant (P ≤ 0.05) effect and the most efficient pre-drying treatment to retain the quality of dried pumpkin fruits without significant chemical quality deterioration. Salt dipping treatment combined with low temperature (60 °C) oven air circulation drying is recommended to maintain quality of dried pumpkin slices. However, since direct sun drying needs extended drying time due to fluctuation in temperature, it is recommended to develop or select best successful solar dryer for use in combination with pre-drying salt dipping or blanching treatments. PMID:26396303

  6. Study of a dry room in a battery manufacturing plant using a process model

    NASA Astrophysics Data System (ADS)

    Ahmed, Shabbir; Nelson, Paul A.; Dees, Dennis W.

    2016-09-01

    The manufacture of lithium ion batteries requires some processing steps to be carried out in a dry room, where the moisture content should remain below 100 parts per million. The design and operation of such a dry room adds to the cost of the battery. This paper studied the humidity management of the air to and from the dry room to understand the impact of design and operating parameters on the energy demand and the cost contribution towards the battery manufacturing cost. The study was conducted with the help of a process model for a dry room with a volume of 16,000 cubic meters. For a defined base case scenario it was found that the dry room operation has an energy demand of approximately 400 kW. The paper explores some tradeoffs in design and operating parameters by looking at the humidity reduction by quenching the make-up air vs. at the desiccant wheel, and the impact of the heat recovery from the desiccant regeneration cycle.

  7. More extreme precipitation in the world’s dry and wet regions

    NASA Astrophysics Data System (ADS)

    Donat, Markus G.; Lowry, Andrew L.; Alexander, Lisa V.; O’Gorman, Paul A.; Maher, Nicola

    2016-05-01

    Intensification of the hydrological cycle is expected to accompany a warming climate. It has been suggested that changes in the spatial distribution of precipitation will amplify differences between dry and wet regions, but this has been disputed for changes over land. Furthermore, precipitation changes may differ not only between regions but also between different aspects of precipitation, such as totals and extremes. Here we investigate changes in these two aspects in the world’s dry and wet regions using observations and global climate models. Despite uncertainties in total precipitation changes, extreme daily precipitation averaged over both dry and wet regimes shows robust increases in both observations and climate models over the past six decades. Climate projections for the rest of the century show continued intensification of daily precipitation extremes. Increases in total and extreme precipitation in dry regions are linearly related to the model-specific global temperature change, so that the spread in projected global warming partly explains the spread in precipitation intensification in these regions by the late twenty-first century. This intensification has implications for the risk of flooding as the climate warms, particularly for the world’s dry regions.

  8. Quantifying future changes affecting dry and wet states of soil moisture

    NASA Astrophysics Data System (ADS)

    Verrot, Lucile; Destouni, Georgia

    2016-04-01

    Soil moisture is at the heart of many processes connected to water cycle, climate, ecosystem and societal conditions. The study we present investigates the impact of future climate change scenarios from the Coupled Model Intercomparison Project phase 5 (CMIP5) for the 21st century on soil moisture intra- and inter- annual patterns, and for both wet and dry conditions. From a relatively simple analytical soil-moisture model we explore the temporal dynamics in long-term projected data series within and across 81 large catchments worldwide. We quantify changes in mean seasonal soil moisture and its inter-annual variability, as well as in the frequency of dry and wet events. Results show large changes in the intra-annual variability of the mean soil moisture, especially for the dry season. Also, in some parts of the globe, the frequency of dry events increases to nearly double by the end of the century. Finally, this study shows that both the direction of change in soil moisture conditions and its magnitude for mainly the dry conditions depend greatly on climate scenario (representative concentration pathway) assumed for the future.

  9. Analysis of open sun drying experiments

    SciTech Connect

    Mulet, A. . Dept. of Food Technology); Berna, A. . Dept. of Chemical Engineering); Rossell, C.; Canellas, J. . Dept. of Chemistry)

    1993-01-01

    Open sun drying has lost its previous importance due to the fact that different factors affect its reliability and the quality of the products obtained. One of the set-backs for the analysis of solar drying experiments is their dependence on a non-controlled source of energy, i.e. solar radiation depends on climatic conditions and experiments are difficult to compare. It is thus necessary to investigate the advantages of a particular set up as well as the climatic influences. Open sun drying could constitute the natural reference, allowing the comparison of different drying strategies. A new way of standardizing drying times, based on solar radiation input, is proposed, to allow better evaluation of the experiments. An equivalent time is defined, allowing comparison of experiments carried out under different circumstances. Carrots and potatoes were used in these experiments. The use of the average daily solar radiation 15.28 MJ m[sup [minus]2][center dot]d[sup [minus]1] in Palma de Mallorca (39.33 N, 2.37 E), is proposed for comparison purposes. An improvement of more than 12% in the explained variance was observed, the unexplained variance being lower than 1%.

  10. Why most ``dry`` rocks should cool ``wet``

    SciTech Connect

    Kohn, M.J.

    1999-04-01

    A new consideration of oxygen isotope resetting among metamorphic minerals is made accounting for (1) the possibility of f{sub H{sub 2}O}-buffering by typical mineral assemblages during cooling and (2) experimental data that show that high f{sub H{sub 2}O} correlates with high diffusion rates. Isotope closure temperatures in buffered rocks are intermediate between simpler predictions based on wet (1 kbar hydrothermal) and dry (P {le} 1 atm, H{sub 2}O-absent) diffusion experiments, but are typically within {approximately}50 C of closure temperature estimates that use wet diffusion rates, yet 200--300 C different from dry. Even though many rocks may be dry in that they lack a hydrous fluid that is physically present during cooling, buffering of f{sub H{sub 2}O} results in quasi-wet diffusion rates. Re-evaluation of published data shows that most rocks indeed exhibit substantial isotope resetting that is best matched by predictions of f{sub H{sub 2}O}-buffering models. Wet- and dry-diffusion models somewhat overestimate and greatly underestimate resetting respectively. Previous interpretations invoking dry diffusion rates may derive from erroneous fractionation factors or faster cooling rates than assumed. The rare preservation of isotope closure temperatures that are higher than predicted may reflect faster than expected cooling rates or extraordinarily los f{sub H{sub 2}O} in conjunction with anhydrous assemblages.

  11. Scaling theory of drying in porous media

    SciTech Connect

    Tsimpanogiannis, I.N.; Yortsos, Y.C.; Poulou, S.; Kanellopoulos, N.; Stubos, A.K.

    1999-04-01

    Concepts of immiscible displacements in porous media driven by mass transfer are utilized to model drying of porous media. Visualization experiments of drying in two-dimensional glass micromodels are conducted to identify pore-scale mechanisms. Then, a pore network approach is used to analyze the advancing drying front. It is shown that in a porous medium, capillarity induces a flow that effectively limits the extent of the front, which would otherwise be of the percolation type, to a finite width. In conjuction with the predictions of a macroscale stable front, obtained from a linear stability analysis, the process is shown to be equivalent to invasion percolation in a stabilizing gradient. A power-law scaling relation of the front width with a diffusion-based capillary number is also obtained. This capillary number reflects the fact that drying is controlled by diffusion in contrast to external drainage. The scaling exponent predicted is compatible with the experimental results of Shaw [Phys Rev. Lett. {bold 59}, 1671 (1987)]. A framework for a continuum description of the upstream drying regimes is also developed. {copyright} {ital 1999} {ital The American Physical Society}

  12. Running dry at the power plant

    SciTech Connect

    Barker, B.

    2007-07-01

    In the future, competition for water will require electricity generators in the United States to address conservation of fresh water. There are a number of avenues to consider. One is to use dry-cooling and dry-scrubbing technologies. Another is to find innovative ways to recycle water within the power plant itself. A third is to find and use alternative sources of water, including wastewater supplies from municipalities, agricultural runoff, blackish groundwater, or seawater. Dry technologies are usually more capital intensive and typically exact a penalty in terms of plant performance, which in turn raises the cost of power generation. On the other hand, if the cost of water increases in response to greater demand, the cost differences between dry and wet technologies will be reduced. EPRI has a substantial R & D programme evaluating new water-conserving power plant technologies, improving dry and hybrid cooling technologies, reducing water losses in cooling towers, using degraded water sources and developing resource assessment and management decision support tools. 5 refs., 10 figs.

  13. Aging: A Predisposition to Dry Eyes

    PubMed Central

    Hindman, Holly B.

    2014-01-01

    Dry eye syndrome is a disease of the ocular surface and tear film that is prevalent in older adults. Even though the degree of visual acuity loss in dry eye patients is commonly mild-to-moderate, in the aging population, this minimal change in visual status can lead to a significant decrease in visual function and quality of life. A healthy ocular surface is maintained by appropriate tear production and tear drainage, and deficiencies in this delicate balance can lead to dryness. In the aging eye, risk factors such as polypharmacy, androgen deficiency, decreased blink rates, and oxidative stress can predispose the patient to developing dry eye that is frequently more severe, has higher economic costs, and leads to worse consequences to the well-being of the patient. Understanding why elderly patients are at higher risk for developing dry eyes can provide insights into the diagnosis and management of the growing number of older adults struggling with dry eye and minimize the burden of disease on our aging population. PMID:25197560

  14. Small bowel obstruction caused by dried apple

    PubMed Central

    Ooi, Sally; Hong, Khiem

    2015-01-01

    Introduction Small bowel obstruction in a virgin abdomen is an uncommon surgical condition. While malignancy, inflammatory bowel disease and foreign body are the main reported causes, undigested food bezoar causing bowel obstruction is a rare entity. We report a case of small bowel obstruction secondary to dried preserved apple having re-expanded within the gastrointestinal tract. Presentation of case A 69 year old male presented with severe abdominal distension, generalized abdominal tenderness and obstipation for 1 week. Small bowel obstruction (SBO) was confirmed on plain abdominal X-ray and CT imaging. An emergency explorative laparatomy identified a sausage-shaped intra-luminal foreign body obstructing the distal ileum. An enterotomy was performed which revealed a rehydrated, donut-shaped piece of dried apple. Discussion Swallowed items that pass through the pylorus rarely cause obstruction as they are usually small enough to pass through the rest of the bowel without difficulty. We postulate that in our patient that the dried apple was originally small enough to pass through the pylorus. However during small bowel, its’ highly absorbable nature resulted in an increase in size that prevented its’ passage through the ileocecal valve. A simple in-vitro experiment discovered that dried apple has a potential to reabsorb fluid and expand up to 35% of its initial size within 72 h. Conclusion This report illustrates the potential for dried food substances to cause intra-luminal SBO after significant expansion with rehydration. PMID:25841159

  15. Current Approach to Dry Eye Disease.

    PubMed

    Valim, Valéria; Trevisani, Virginia Fernandes Moça; de Sousa, Jacqueline Martins; Vilela, Verônica Silva; Belfort, Rubens

    2015-12-01

    Dry eye disease (DED) is a multifactorial disease of the tears and ocular surface that causes tear film instability with potential damage to the ocular surface. The prevalence of dry eye in the world population ranges from 6 to 34 %. It is more common in those aged over 50, and affects mainly women. Since the introduction of the Schirmer's test in 1903, other tests have been developed to evaluate dry eye, such as biomicroscopy, the tear film breakup time (BUT), vital dyes (lissamine green and rose bengal), fluorescein, leaf fern test, corneal sensitivity test, conjunctiva impression cytology, optical coherence tomography (OCT), and tear osmolarity measurement. Although there is no gold standard, it is advisable to combine at least two tests. Strategies for treating DED have recently been modified and include patient education, tear substitute, corticosteroids, secretagogues, fatty acids, immunomodulators, occlusion of lacrimal puncta surgery and, tarsorrhaphy. Biological therapy and new topical immunomodulators such as tacrolimus, tofacitinib and IL-1 receptor inhibitor are being tested. In this review, the evaluation tests for dry eye are compared and the main studies on treatment are presented, with emphasis on studies in patients with Sjögren's syndrome. The authors propose an approach for the management of dry eye. PMID:25081064

  16. Dried fruits quality assessment by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Serranti, Silvia; Gargiulo, Aldo; Bonifazi, Giuseppe

    2012-05-01

    Dried fruits products present different market values according to their quality. Such a quality is usually quantified in terms of freshness of the products, as well as presence of contaminants (pieces of shell, husk, and small stones), defects, mould and decays. The combination of these parameters, in terms of relative presence, represent a fundamental set of attributes conditioning dried fruits humans-senses-detectable-attributes (visual appearance, organolectic properties, etc.) and their overall quality in terms of marketable products. Sorting-selection strategies exist but sometimes they fail when a higher degree of detection is required especially if addressed to discriminate between dried fruits of relatively small dimensions and when aiming to perform an "early detection" of pathogen agents responsible of future moulds and decays development. Surface characteristics of dried fruits can be investigated by hyperspectral imaging (HSI). In this paper, specific and "ad hoc" applications addressed to propose quality detection logics, adopting a hyperspectral imaging (HSI) based approach, are described, compared and critically evaluated. Reflectance spectra of selected dried fruits (hazelnuts) of different quality and characterized by the presence of different contaminants and defects have been acquired by a laboratory device equipped with two HSI systems working in two different spectral ranges: visible-near infrared field (400-1000 nm) and near infrared field (1000-1700 nm). The spectra have been processed and results evaluated adopting both a simple and fast wavelength band ratio approach and a more sophisticated classification logic based on principal component (PCA) analysis.

  17. Survival of female Anopheles gambiae Giles through a 9-month dry season in Sudan*

    PubMed Central

    Omer, Salah M.; Cloudsley-Thompson, J. L.

    1970-01-01

    The dry-season biology of a member of the Anopheles gambiae complex (probably species B) was studied in 2 areas in the Khartoum region of Sudan. It was found that in the valley of the White Nile the species maintained itself by low-level breeding, as shown by the continuing presence of larvae, male mosquitos and parous females through the dry months (9 months in the year). In the scattered villages of arid areas situated more than 20 km from the Nile Valley, on the other hand, regular sampling through the cool dry and hot dry months of the year failed to detect any An. gambiae except nulliparous females. These were found in occupied huts, deserted huts, dry wells and animal burrows. The great majority of 213 females collected in the 11 dry months between November 1966 and December 1967 had fresh or older blood-meals but the abdomen was never found fully distended in the dry season. Examination of the ovaries showed that they did not develop beyond Christophers' stage II in the period from November to February, stage III in March and April, or beyond stage IV in May. But, in June and July stage IV and V ovaries predominated and few specimens remained in stage late-II. It is inferred from these observations that the local population of An. gambiae is highly adapted to survive in the adult stage through the severe drought and heat of the arid zone of Sudan. Some feeding activity continues but ovarian development is extremely retarded, and only one batch of eggs matures during the whole 9-month period. Evidence collected in the Nile Valley indicated that female An. gambiae in that area were not subjected to similar retardation of the ovarian cycle; in fact, clear evidence was obtained there of continuous year-round breeding by the mosquito. PMID:5310144

  18. Life cycle test of the NOXSO process

    SciTech Connect

    Ma, W.T.; Haslbeck, J.L.; Neal, L.G.

    1990-05-01

    This paper summarizes the data generated by the NOXSO Life Cycle Test Unit (LCTU). The NOXSO process is a dry flue gas treatment system that employs a reusable sorbent. The sorbent consists of sodium carbonate impregnated on a high-surface-area gamma alumina. A fluidized bed of sorbent simultaneously removes SO{sub 2} and NO{sub x} from flue gas at a temperature of 250{degrees}F. The spent sorbent is regenerated for reuse by treatment at high temperature with a reducing gas. This regeneration reduces sorbed sulfur compounds to SO{sub 2}, H{sub 2}S, and elemental sulfur. The SO{sub 2} and H{sub 2}S are then converted to elemental sulfur in a Claus-type reactor. The sulfur produced is a marketable by-product of the process. Absorbed nitrogen oxides are decomposed and evolved on heating the sorbent to regeneration temperature.

  19. INVESTIGATION INTO GRAIN DRY MATTER LOSS DURING FIELD DRYING OF CORN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the early 1990s reports were circulating in the U.S. Midwest corn production community that there is significant loss in grain dry matter when corn is left to dry further in the field. While there was also evidence that this does not happen or that such loss is minimal, this became an issue of c...

  20. Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices

    NASA Astrophysics Data System (ADS)

    Doymaz, İbrahim

    2016-03-01

    The effects of air drying temperature, slice thickness and pre-treatment application on the drying kinetics of carrot slices during convective drying in the range 50-70 °C were investigated. Results indicated that drying time, rehydration ratio and colour characteristics of carrot slices were more affected by drying air temperature, followed by pre-treatment applications. Five thin-layer drying models were applied to describe the drying kinetics. Midilli et al. model was the best model to characterize the drying kinetics of carrot slices. The moisture effective diffusivity calculated from the second Fick's law of diffusion ranged from 3.46 × 10-10 to 1.02 × 10-9 m2/s. The values of activation energy determined from the slope of the Arrhenius plot, ln(D eff ) versus 1/(T + 273.15), were 35.53, 43.42, and 37.75 kJ/mol for blanch, potas and control samples, respectively.