Evaluation of a convective downburst prediction application for India
NASA Astrophysics Data System (ADS)
Pryor, Kenneth L.; Johny, C. J.; Prasad, V. S.
2016-05-01
During the month of June 2015, the South Asian (or Southwest) monsoon advanced steadily from the southern to the northwestern states of India. The progression of the monsoon had an apparent effect on the relative strength of convective storm downbursts that occurred during June and July 2015. A convective downburst prediction algorithm, involving the Microburst Windspeed Potential Index (MWPI) and a satellite-derived three-band microburst risk product, and applied with meteorological geostationary satellite (KALPANA-1 VHRR and METEOSAT-7) and MODIS Aqua data, was evaluated and found to effectively indicate relative downburst intensity in both pre-monsoon and monsoon environments over various regions of India. The MWPI product, derived from T574L64 Global Forecast System (NGFS) model data, is being generated in real-time by National Center for Medium Range Weather Forecasting (NCMRWF), Ministry of Earth Sciences, India. The validation process entailed direct comparison of measured downburst-related wind gusts at airports and India Meteorological Department (IMD) observatories to adjacent MWPI values calculated from GFS and India NGFS model datasets. Favorable results include a statistically significant positive correlation between MWPI values and proximate measured downburst wind gusts with a confidence level near 100%. Case studies demonstrate the influence of the South Asian monsoon on convective storm environments and the response of the downburst prediction algorithm.
Modes of isolated, severe convective storm formation along the dryline
Bluestein, H.B.; Parker, S.S. )
1993-05-01
Patterns of the formation of isolated, severe convective storms along the dryline in the Southern plains of the United States during the spring over a 16-year period were determined from an examination of the evolution of radar echoes as depicted by WSR-57 microfilm data. It was found that in the first 30 min after the first echo, more than half of the radar echoes evolved into isolated storms as isolated cells from the start; others developed either from a pair of cells, from a line segment, from a cluster of cells, from the merger of mature cells, or from a squall line. Proximity soundings were constructed from both standard and special soundings, and from standard surface data. It was found that the estimated convective available potential energy and vertical shear are characteristic of the environment of supercell storms. The average time lag between the first echo and the first occurrence of severe weather of any type, or tornadoes alone, was approximately 2 h. There were no significant differences in the environmental parameters for the different modes of storm formation. 49 refs., 15 figs., 3 tabs.
Dryline on 22 May 2002 During IHOP: Convective Scale Measurements at the Profiling Site
NASA Technical Reports Server (NTRS)
Demoz, Belay; Flamant, Cyrille; Miller, David; Evans, Keith; Fabry, Federic; DiGirolamo, Paolo; Whiteman, David; Geerts, Bart; Weckwerth, Tammy; Brown, William
2004-01-01
A unique set of measurements of wind, water vapor mixing ratio and boundary layer height variability was observed during the first MOP dryline mission of 22 May 2002. Water vapor mixing ratio from the Scanning Raman Lidar (SRL), high-resolution profiles of aerosol backscatter from the HARLIE and wind profiles from the GLOW are combined with the vertical velocity derived from the NCAR/ISS/MAPR and the high-resolution FMCW radar to reveal the convective variability of the cumulus cloud-topped boundary layer. A combined analysis of the in-situ and remote sensing data from aircraft, radiosonde, lidars, and radars reveals moisture variability within boundary layer updraft and downdraft regions as well as characterizes the boundary layer height variability in the dry and moist sides of the dryline. The profiler site measurements will be tied to aircraft data to reveal the relative intensity and location of these updrafts to the dry line. This study provides unprecedented high temporal and spatial resolution measurements of wind, moisture and backscatter within a dryline and the associated convective boundary layer.
The Dryline on 22 May 2002 during IHOP_2002: Convective-Scale Measurements at the Profiling Site
NASA Technical Reports Server (NTRS)
Demoz, Belay; Flamant, Cyrille; Weckwerth, Tammy; Whiteman, David; Evans, Keith; Fabry, Frederic; DiGirolamo, Paolo; Miller, David; Geerts, Bart; Brown, William; Schwemmer, Geary; Gentry, Bruce; Feltz, Wayne; Wang, Zhien
2006-01-01
A detailed analysis of the structure of a double dryline observed over the Oklahoma panhandle during the first International H2O Project (IHOP_2002) convective initiation (CI) mission on 22 May 2002 is presented. A unique and unprecedented set of high temporal and spatial resolution measurements of water vapor mixing ratio, wind, and boundary layer structure parameters were acquired using the National Aeronautics and Space Administration (NASA) scanning Raman lidar (SRL), the Goddard Lidar Observatory for Winds (GLOW), and the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE), respectively. These measurements are combined with the vertical velocity measurements derived from the National Center for Atmospheric Research (NCAR) Multiple Antenna Profiler Radar (MAPR) and radar structure function from the high-resolution University of Massachusetts frequency-modulated continuous-wave (FMCW) radar to reveal the evolution and structure of the late afternoon double-dryline boundary layer. The eastern dryline advanced and then retreated over the Homestead profiling site in the Oklahoma panhandle, providing conditions ripe for a detailed observation of the small-scale variability within the boundary layer and the dryline. In situ aircraft data, dropsonde and radiosonde data, along with NCAR S-band dual-polarization Doppler radar (S-Pol) measurements, are also used to provide the larger-scale picture of the double-dryline environment. Moisture and temperature jumps of about 3 g kg(sup -1) and 1 -2 K, respectively, were observed across the eastern radar fine line (dryline), more than the moisture jumps (1-2 g kg(sup -1)) observed across the western radar fine line (secondary dryline). Most updraft plumes observed were located on the moist side of the eastern dryline with vertical velocities exceeding 3 m s(sup -1) and variable horizontal widths of 2-5 km, although some were as wide as 7-8 km. These updrafts were up to 1.5 g kg(sup -1) moister than the
Moisture, Wind, and Boundary Layer Evolution During a Dryline in IHOP-2002: May 22, 2002
NASA Technical Reports Server (NTRS)
Demoz, B.; Miller, D.; Evans, K.; Whiteman, D.; DiGirolamo, P.; Schwemmer, G.; Gentry, B.; Starr, D.; Wang, Z.
2003-01-01
As part of the International H2O Project (MOP-2002), three NASNGSFC lidars acquired high-resolution clear air data of wind, CBL evolution, and water vapor mixing ratio profiles during a dryline event that occurred on 22 May 2002. Together with the anciliary suite of instruments deployed in MOP-2002, these lidar data sets offer a unique look into the mesoscale evolution and convective scale dynamics in and around a dryline.
Leonardo da Vinci and the Downburst.
NASA Astrophysics Data System (ADS)
Gedzelman, Stanley David
1990-05-01
Evidence from the drawings, experiments, and writings of Leonardo da Vinci are presented to demonstrate that da Vinci recognized and, possibly, discovered the downburst and understood its associated airflow. Other early references to vortex flows resembling downbursts are mentioned.
Short range prediction and monitoring of downbursts over Indian region
NASA Astrophysics Data System (ADS)
Johny, C. J.; Prasad, V. S.; Singh, S. K.; Basu, Swati
2016-05-01
Convective downdraft motions and related outflow wind considered as an eventual source of potential damage which can be more severe in the aviation sector. A great variety of atmospheric environments can produce these downdraft motions. These events are not easily detectable using conventional weather radar or wind shear alert systems, while Doppler radars are useful for identifying these Downbursts. In order to identify the situations that can cause these downdraft events different diagnostic tools are designed. Recently launched Indian satellite INSAT-3D, with atmospheric sounder and imager on board, is capable of identifying regions of downburst occurrence and can help in monitoring them in real time. Some Downburst events reported over different parts of India, during January-April period is investigated using Microburst Wind Speed Potential Index (MWPI) and thermodynamic characteristics derived from the NCMRWF GFS (NGFS) model. An attempt is made to make a short range prediction of these events using MWPI computed from NGFS model forecasts. The results are validated with in-situ observations and also by employing INSAT-3D data and it is shown that the method has a reasonable success. All the investigated downdraft events are associated with the hybrid Microburst environment.
MCS precipitation and downburst intensity response to increased aerosol concentrations
NASA Astrophysics Data System (ADS)
Clavner, M.; Cotton, W. R.; van den Heever, S. C.
2015-12-01
Mesoscale convective systems (MCSs) are important contributors to rainfall in the High Plains of the United States as well as producers of severe weather such as hail, tornados and straight-line wind events known as derechos. Past studies have shown that changes in aerosol concentrations serving as cloud condensation nuclei (CCN) alter the MCS hydrometeor characteristics which in turn modify precipitation yield, downdraft velocity, cold-pool strength, storm propagation and the potential for severe weather to occur. In this study, the sensitivity of MCS precipitation characteristics and convective downburst velocities associated with a derecho to changes in CCN concentrations were examined by simulating a case study using the Regional Atmospheric Modeling System (RAMS). The case study of the 8 May 2009 "Super-Derecho" MCS was chosen since it produced a swath of widespread wind damage in association with an embedded large-scale bow echo, over a broad region from the High Plains of western Kansas to the foothills of the Appalachians. The sensitivity of the storm to changes in CCN concentrations was examined by conducting a set of three simulations which differed in the initial aerosol concentration based on output from the 3D chemical transport model, GEOS-Chem. Results from this study indicate that while increasing CCN concentrations led to an increase in precipitation rates, the changes to the derecho strength were not linear. A moderate increase in aerosol concentration reduced the derecho strength, while the simulation with the highest aerosol concentrations increased the derecho intensity. These changes are attributed to the impact of enhanced CCN concentration on the production of convective downbursts. An analysis of aerosol loading impacts on these MCS features will be presented.
Manual of downburst identification for Project NIMROD. [atmospheric circulation
NASA Technical Reports Server (NTRS)
Fujita, T. T.
1978-01-01
Aerial photography, Doppler radar, and satellite infrared imagery are used in the two year National Intensive Meteorological Research on Downburst (NIMROD) project to provide large area mapping of strong downdrafts that induce an outward burst of damaging winds over or near the earth. Topics discussed include scales of thunderstorm outflow; aerial photographs of downburst damage; microbursts and aviation hazards; radar echo characteristics; infrared imagery from GOES/SMS; and downburts-tornado relationships. Color maps of downbursts and tornadoes are included.
Spearhead echo and downburst in the crash of an airliner
NASA Technical Reports Server (NTRS)
Fujita, T. T.; Byers, H. R.
1977-01-01
Meteorological conditions leading to the crash of an airliner short of the runway of a New York airport were studied. Thunderstorm downdrafts much stronger than those measured on the 1946-47 Thunderstorm Project were found. These exceptional downdrafts have been designated as 'downbursts'. The violent cloud systems that produce downburst cells can be identified in the form of forward extensions of radar echoes designed as 'spearhead echoes' which move with unusual speed. The development of downburst cells appears to be tied in with overshooting tops of clouds at the anvil level.
Downbursts and microbursts - An aviation hazard. [downdrafts beneath thunderstorms
NASA Technical Reports Server (NTRS)
Fujita, T. T.
1980-01-01
Downburst and microburst phenomena occurring since 1975 are studied, based on meteorological analyses of aircraft accidents, aerial surveys of wind effects left behind downbursts, and studies of sub-mesoscale wind systems. It is concluded that microbursts beneath small, air mass thunderstorms are unpredictable in terms of weather forecast. Most aircraft incidents, however, were found to have occurred in the summer months, June through August. An intense microburst could produce 150 mph horizontal winds as well as 60 fps downflows at the tree-top level. The largest contributing factor to aircraft difficulties seemed to be a combination of the headwind decrease and the downflow. Anemometers and/or pressure sensors placed near runways were found effective for detecting gust fronts, but not for detecting downbursts. It is recommended that new detection systems placed on the ground or airborne, be developed, and that pilots be trained for simulated landing and go-around through microbursts.
Aircraft performance and control in downburst wind shear
NASA Technical Reports Server (NTRS)
Bray, Richard S.
1986-01-01
The methods developed for analyses of the winds and of aircraft performance during an investigation of a downburst wind-shear-induced accident have been utilized in a more general study of aircraft performance in such encounters. The computed responses of a generic, large transport aircraft to take-off and approach encounters with a downburst wind field were used in examining the effects of performance factors and control procedures on the ability of the aircraft to survive. Obvious benefits are seen for higher initial encounter speeds, maximum thrust-weight values typical of two-engined aircraft, and immediacy of pilot response. The results of controlling to a constant, predetermined, pitch attitude are demonstrated. Control algorithms that sacrifice altitude for speed appear to provide a higher level of survivability, but guidance displays more explicitly defining flightpath than those commonly in use might be required.
Comprehensive Analysis of Two Downburst-Related Aircraft Accidents
NASA Technical Reports Server (NTRS)
Shen, J.; Parks, E. K.; Bach, R. E.
1996-01-01
Although downbursts have been identified as the major cause of a number of aircraft takeoff and landing accidents, only the 1985 Dallas/Fort Worth (DFW) and the more recent (July 1994) Charlotte, North Carolina, landing accidents provided sufficient onboard recorded data to perform a comprehensive analysis of the downburst phenomenon. The first step in the present analysis was the determination of the downburst wind components. Once the wind components and their gradients were determined, the degrading effect of the wind environment on the airplane's performance was calculated. This wind-shear-induced aircraft performance degradation, sometimes called the F-factor, was broken down into two components F(sub 1) and F(sub 2), representing the effect of the horizontal wind gradient and the vertical wind velocity, respectively. In both the DFW and Charlotte cases, F(sub 1) was found to be the dominant causal factor of the accident. Next, the aircraft in the two cases were mathematically modeled using the longitudinal equations of motion and the appropriate aerodynamic parameters. Based on the aircraft model and the determined winds, the aircraft response to the recorded pilot inputs showed good agreement with the onboard recordings. Finally, various landing abort strategies were studied. It was concluded that the most acceptable landing abort strategy from both an analytical and pilot's standpoint was to hold constant nose-up pitch attitude while operating at maximum engine thrust.
NASA Technical Reports Server (NTRS)
Fujita, T. T.; Caracena, F.
1977-01-01
Three aircraft accidents are analyzed to gain an understanding of thunderstorm-related downbursts, or extremely rapid downdrafts, which interfered with takeoff or landing maneuvers in each of the three cases. For the purposes of this study, downbursts are defined as having downward speeds greater than 3.6 m/sec at 91 m altitude, and diameters of 800 m or greater. Few of the strongest downdrafts investigated reach the intensity of a downburst. The downburst cells mature about 5-10 minutes after formation, and are generally no more than 3-4 miles in diameter at maturity. A spearhead echo is found to be associated with each of the downburst-caused accidents.
NASA Astrophysics Data System (ADS)
Britz, Dieter
Convection has long been coupled with electrochemistry, and the name hydrodynamic voltammetry has become standard. In electroanalytical chemistry we mainly seek reproducible conditions. These are almost always attained by systems in which a steady convective state is achieved, although not always. Thus, the once popular dropping mercury electrode (see texts such as [74, 257]) has convection around it, but is never in steady state; it might be called a reproducible periodic dynamic state.
Mesoscale aspects of convective storms
NASA Technical Reports Server (NTRS)
Fujita, T. T.
1981-01-01
The structure, evolution and mechanisms of mesoscale convective disturbances are reviewed and observation techniques for "nowcasting" their nature are discussed. A generalized mesometeorological scale is given, classifying both low and high pressure systems. Mesoscale storms are shown often to induce strong winds, but their wind speeds are significantly less than those accompanied by submesoscale disturbances, such as tornadoes, downbursts, and microbursts. Mesoscale convective complexes, severe storm wakes, and flash floods are considered. The understanding of the evolution of supercells is essential for improving nowcasting capabilities and a very accurate combination of radar and satellite measurements is required.
NASA Technical Reports Server (NTRS)
Fujita, T. T.
1976-01-01
Radar echoes of a storm at John F. Kennedy International Airport are examined. Results regarding the phenomena presented suggest the existence of downburst cells. These cells are characterized by spearhead echoes. About 2% of the echoes in the New York area were spearhead echoes. The detection and identification of downburst cells, their potential hazard to approaching and landing aircraft, and communication of this information to the pilots of those aircraft are discussed.
Five scales of airflow associated with a series of downbursts on 16 July 1980
NASA Technical Reports Server (NTRS)
Fujita, T. T.; Wakimoto, R. M.
1981-01-01
An attempt is made to estimate wind speed in a series of windstorms, which occurred in a 50-km wide zone from Chicago to Detroit on July 16, 1980, based on three types of airborne objects: a 180 kg chimney, a 1000 kg corn storage bin, and lumber from damaged roofs. The maximum wind speed obtained is 63 + or - 10 m/sec, or 140 + or - 25 mph. SMS/GOES pictures show that the parent cloud was oval-shaped, with a lifetime in excess of 12 hours. That the downbursts began when overshooting activities subsided is indicated by the rapid shrinking of overshooting areas enclosed by -66 C isotherms at the onset of the Chicago-area downbursts. Cloud-top features and wind effects on the ground are presented with no attempt to relate them, on the basis of current conceptual models.
NASA Technical Reports Server (NTRS)
Forbes, G. S.; Wakimoto, R. M.
1983-01-01
A remarkable case of severe weather occurred near Springfield, Illinois on 6 August 1977. Aerial and ground surveys revealed that 17 cyclonic vortices, an anticyclonic vortex, 10 downbursts and 19 microbursts occurred in a limited (20 km x 40 km) area, associated with a bow-shaped radar echo. About half of the vortices appeared to have occurred along a gust front. Some of the others appear to have occurred within the circulation of a mesocyclone accompanying the bow echo, but these vortices seem to have developed specifically in response to localized boundary-layer vorticity generation associated with horizontal and vertical wind shears on the periphery of microbursts. Some of these vortices, and other destructive vortices in the literature, do not qualify as tornadoes as defined in the Glossary of Meteorology. A more pragmatic definition of a tornado is suggested.
Case study: A severe hailstorm and strong downbursts over northeastern Slovenia on June 16th 2009
NASA Astrophysics Data System (ADS)
Korosec, M.
2009-09-01
a bow echo and also satellite imagery showed signs of extremely severe storm as overshooting tops, "cold ring" and "U-shape" features were observed. References - Skywarn Austria forum: (http://www.skywarn.at/forum/) - EARS radar and SFC observations archive (http://www.arso.gov.si) - EARS article: Porocilo o neurjih 16. junija 2009 - OSMER FVG (http://www.meteo.fvg.it) - ESSL/ESWD database (www.essl.org) - ESTOFEX convective maps (www.estofex.org) - EUMETSAT satellite imagery (www.eumetsat.int) - 24ur.com/RTVSLO web portal (www.24ur.com, www.rtvslo.si) - Sobota Info web portal (www.sobotainfo.com) - Pomurje web portal (www.pomurje.si) - Administration of the Republic of Slovenia for Civil Protection and Disaster Relief, www.sos112.si - Worldwide Skew-t diagrams (http://weather.uwyo.edu/upperair/europe.html)
NASA Astrophysics Data System (ADS)
McCue, Mitchell Hollis
Using a 15-year (1995 to 2009) climatology of 1500 UTC warm-season (May through September) rawinsonde observation (RAOB) data from the Cape Canaveral Air Force Station (CCAFS) Skid Strip (KXMR) and 5 minute wind data from 36 wind towers on CCAFS and Kennedy Space Center (KSC), several convective wind forecasting techniques currently employed by the 45th Weather Squadron (45 WS) were evaluated. Present forecasting methods under evaluation include examining the vertical equivalent potential temperature (theta e) profile, vertical profiles of wind spend and direction, and several wet downburst forecasting indices. Although previous research found that currently used wet downburst forecasting methods showed little promise for forecasting convective winds, it was carried out with a very small sample, limiting the reliability of the results. Evaluation versus a larger 15-year dataset was performed to truly assess the forecasting utility of these methods in the central Florida warm-season convective environment. In addition, several new predictive analytic based forecast methods for predicting the occurrence of warm-season convection and its associated wind gusts were developed and validated. This research was performed in order to help the 45 WS better forecast not only which days are more likely to produce convective wind gusts, but also to better predict which days are more likely to yield warning criteria wind events of 35 knots or greater, should convection be forecasted. Convective wind forecasting is a very challenging problem that requires new statistically based modeling techniques since conventional meteorologically based methods do not perform well. New predictive analytic based forecasting methods were constructed using R statistical software and incorporate several techniques including multiple linear regression, logistic regression, multinomial logistic regression, classification and regression trees (CART), and ensemble CART using bootstrapping. All of
On Vortex Genesis. An Heuristic Model of Convection-Advection Linkages
NASA Astrophysics Data System (ADS)
Bouali, S.
2003-04-01
We connect to a model of convection roll an appropriate feedback loop (i.e., the advection retroaction) which unfolds a wide range of vorticity behavior. The 3D numerical computations display the conservative aerologic flows of waterspouts and tropical cyclones. Moreover, several simulations exhibit the singular topology of the structure of cyclones eventually trapped in period-2 orbit. On the other hand, additional advection linkages provide our dynamical system with an explicative proof of the tornadogenesis. These amendements modify the model. The airflows are now dissipatives and we investigate the kinematics of these short life span phenomena. The extended model leads the trajectories of air pockets to one or more vortices. The downbursts and microbursts described in the Fujita classification are also simulated. Our heuristic dynamical system lays the foundation of an unified modelisation of vortices. Theory and Direct Numerical Simulation of the vortex genesis are associated in a new perspective.
NASA Astrophysics Data System (ADS)
Udayashankar, Paniveni
2015-12-01
Observation of the Solar photosphere through high resolution instruments have long indicated that the surface of the Sun is not a tranquil, featureless surface but is beset with a granular appearance. These cellular velocity patterns are a visible manifestation of sub- photospheric convection currents which contribute substantially to the outward transport of energy from the deeper layers, thus maintaining the energy balance of the Sun as a whole.Convection is the chief mode of transport in the outer layers of all cool stars such as the Sun (Noyes,1982). Convection zone of thickness 30% of the Solar radius lies in the sub-photospheric layers of the Sun. Here the opacity is so large that heat flux transport is mainly by convection rather than by photon diffusion. Convection is revealed on four scales. On the scale of 1000 km, it is granulation and on the scale of 8-10 arcsec, it is Mesogranulation. The next hierarchial scale of convection , Supergranules are in the range of 30-40 arcsec. The largest reported manifestation of convection in the Sun are ‘Giant Cells’or ‘Giant Granules’, on a typical length scale of about 108 m.'Supergranules' is caused by the turbulence that extends deep into the convection zone. They have a typical lifetime of about 20hr with spicules marking their boundaries. Gas rises in the centre of the supergranules and then spreads out towards the boundary and descends.Broadly speaking supergranules are characterized by the three parameters namely the length L, the lifetime T and the horizontal flow velocity vh . The interrelationships amongst these parameters can shed light on the underlying convective processes and are in agreement with the Kolmogorov theory of turbulence as applied to large scale solar convection (Krishan et al .2002 ; Paniveni et. al. 2004, 2005, 2010).References:1) Noyes, R.W., The Sun, Our Star (Harvard University Press, 1982)2) Krishan, V., Paniveni U., Singh , J., Srikanth R., 2002, MNRAS, 334/1,2303) Paniveni
Prueitt, Melvin L.
1994-01-01
Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.
Prueitt, Melvin L.
1996-01-01
Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.
Prueitt, Melvin L.
1995-01-01
Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.
Prueitt, M.L.
1996-01-16
Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.
ERIC Educational Resources Information Center
Ebert, James R.; Elliott, Nancy A.; Hurteau, Laura; Schulz, Amanda
2004-01-01
Students must understand the fundamental process of convection before they can grasp a wide variety of Earth processes, many of which may seem abstract because of the scales on which they operate. Presentation of a very visual, concrete model prior to instruction on these topics may facilitate students' understanding of processes that are largely…
Prueitt, M.L.
1994-02-08
Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.
Hammond, R.P.; King, L.D.P.
1960-03-22
An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.
Thorogood, R.M.
1983-12-27
A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.
Thorogood, Robert M.
1986-01-01
A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.
Thorogood, Robert M.
1983-01-01
A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.
Stochastic Convection Parameterizations
NASA Technical Reports Server (NTRS)
Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios
2012-01-01
computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts
Stein, Robert F
2012-07-13
Convection is the transport of energy by bulk mass motions. Magnetic fields alter convection via the Lorentz force, while convection moves the fields via the curl(v×B) term in the induction equation. Recent ground-based and satellite telescopes have increased our knowledge of the solar magnetic fields on a wide range of spatial and temporal scales. Magneto-convection modelling has also greatly improved recently as computers become more powerful. Three-dimensional simulations with radiative transfer and non-ideal equations of state are being performed. Flux emergence from the convection zone through the visible surface (and into the chromosphere and corona) has been modelled. Local, convectively driven dynamo action has been studied. The alteration in the appearance of granules and the formation of pores and sunspots has been investigated. Magneto-convection calculations have improved our ability to interpret solar observations, especially the inversion of Stokes spectra to obtain the magnetic field and the use of helioseismology to determine the subsurface structure of the Sun. PMID:22665893
Convective dynamics - Panel report
NASA Technical Reports Server (NTRS)
Carbone, Richard; Foote, G. Brant; Moncrieff, Mitch; Gal-Chen, Tzvi; Cotton, William; Heymsfield, Gerald
1990-01-01
Aspects of highly organized forms of deep convection at midlatitudes are reviewed. Past emphasis in field work and cloud modeling has been directed toward severe weather as evidenced by research on tornadoes, hail, and strong surface winds. A number of specific issues concerning future thrusts, tactics, and techniques in convective dynamics are presented. These subjects include; convective modes and parameterization, global structure and scale interaction, convective energetics, transport studies, anvils and scale interaction, and scale selection. Also discussed are analysis workshops, four-dimensional data assimilation, matching models with observations, network Doppler analyses, mesoscale variability, and high-resolution/high-performance Doppler. It is also noted, that, classical surface measurements and soundings, flight-level research aircraft data, passive satellite data, and traditional photogrammetric studies are examples of datasets that require assimilation and integration.
Deep convection in mesoscale convective systems
NASA Technical Reports Server (NTRS)
Goodman, S. J.
1985-01-01
A study was undertaken to examine the evolution of radar echoes and lightning attending the convective storms in mesoscale convective systems (MCS) and the relationships between the spatial and temporal evolution of deep convection and the storm environment, precipitation, severe weather, and lightning. The total number of ground discharges ranges from 10,000 to 30,000 over the life cycle of the MCS with peak sustained rates (for up to 10 consecutive hours) in excess of 2000 per hour. The peak lightning activity occurs from 5 to 20 hours after the first storms and anywhere from 7 hours prior to 7 hours after the time of the maximum areal extent of the MCS for very similar synoptic environments. Thus, it appears that mesoscale and sub-synoptic scale mechanisms are responsible for these large temporal variation in lightning activity. In addition, we have found that the lightning rates in MCS's are not related to either the size or the duration of the MCS. Preliminary results suggest that the MCA's with embedded squall lines produce the greatest flash rates.
Supergranulation, a convective phenomenon
NASA Astrophysics Data System (ADS)
Udayashankar, Paniveni
2015-08-01
Observation of the Solar photosphere through high resolution instruments have long indicated that the surface of the Sun is not a tranquil, featureless surface but is beset with a granular appearance. These cellular velocity patterns are a visible manifestation of sub- photospheric convection currents which contribute substantially to the outward transport of energy from the deeper layers, thus maintaining the energy balance of the Sun as a whole.Convection is the chief mode of transport in the outer layers of all cool stars such as the Sun (Noyes,1982). Convection zone of thickness 30% of the Solar radius lies in the sub-photospheric layers of the Sun. Convection is revealed on four scales. On the scale of 1000 km, it is granulation and on the scale of 8-10 arcsec, it is Mesogranulation. The next hierarchial scale of convection ,Supergranules are in the range of 30-40 arcsec. The largest reported manifestation of convection in the Sun are ‘Giant Cells’or ‘Giant Granules’, on a typical length scale of about 108 m.'Supergranules' is caused by the turbulence that extends deep into the convection zone. They have a typical lifetime of about 20hr with spicules marking their boundaries. Gas rises in the centre of the supergranules and then spreads out towards the boundary and descends.Broadly speaking supergranules are characterized by the three parameters namely the length L, the lifetime T and the horizontal flow velocity vh . The interrelationships amongst these parameters can shed light on the underlying convective processes and are in agreement with the Kolmogorov theory of turbulence as applied to large scale solar convection (Krishan et al .2002 ; Paniveni et. al. 2004, 2005, 2010).References:1) Noyes, R.W., The Sun, Our Star (Harvard University Press, 1982)2) Krishan, V., Paniveni U., Singh , J., Srikanth R., 2002, MNRAS, 334/1,2303) Paniveni , U., Krishan, V., Singh, J., Srikanth, R., 2004, MNRAS, 347, 1279-12814) Paniveni , U., Krishan, V., Singh, J
Anomalously Weak Solar Convection
NASA Technical Reports Server (NTRS)
Hanasoge, Shravan M.; Duvall, Thomas L.; Sreenivasan, Katepalli R.
2012-01-01
Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical- harmonic degree l..Within the wavenumber band l < 60, convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers l < 60, with Rossby numbers smaller than approximately 10(exp -2) at r/R-solar = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.
Thermodynamics of convective circulations
NASA Astrophysics Data System (ADS)
Adams, D. K.; Renno, N. O.
2003-04-01
The heat engine framework has proven successful for studies of atmospheric phenomena ranging from small to large scales. At large scales, the heat engine framework provides estimates of convective available potential energy, convective velocities, and fractional area covered by convection. At the smaller end of the spectrum, the framework provides estimates of the intensity of convective vortices such as dust devils and waterspouts. The heat engine framework sheds light on the basic physics of planetary atmospheres. In particular, it allows the calculation of their thermodynamic efficiency. Indeed, this is a fundamental number for atmospheric circulations because it quantifies the amount of heat that is converted into kinetic energy. As such, it is a valuable number not only for comparison of models with nature, but also for the intercomparison of models. In the present study, we generalize the heat engine framework to large-scale circulations, both open (e.g., the Hadley circulation) and closed (e.g., the general circulation) and apply it to an idealized global climate model to ascertain the thermodynamic efficiency of model circulations, both global and regional. Our results show that the thermodynamic efficiency is sensitive to model resolution and provides a baseline for minimum model resolution in climate studies. The value of the thermodynamic efficiency of convective circulations in nature is controversial. It has been suggested that both nature and numerical models are extremely irreversible. We show that both the global and the Hadley circulation of the idealized model are, to a first approximation, reversible.
Simulating deep convection with a shallow convection scheme
NASA Astrophysics Data System (ADS)
Hohenegger, C.; Bretherton, C. S.
2011-03-01
Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES) as a benchmark to test and refine a unified convection scheme implemented in the Single-Column Community Atmosphere Model (SCAM). Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle. Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.
Simulating deep convection with a shallow convection scheme
NASA Astrophysics Data System (ADS)
Hohenegger, C.; Bretherton, C. S.
2011-10-01
Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES) as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM). Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle. Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.
Gravity wave initiated convection
NASA Technical Reports Server (NTRS)
Hung, R. J.
1990-01-01
The vertical velocity of convection initiated by gravity waves was investigated. In one particular case, the convective motion-initiated and supported by the gravity wave-induced activity (excluding contributions made by other mechanisms) reached its maximum value about one hour before the production of the funnel clouds. In another case, both rawinsonde and geosynchronous satellite imagery were used to study the life cycles of severe convective storms. Cloud modelling with input sounding data and rapid-scan imagery from GOES were used to investigate storm cloud formation, development and dissipation in terms of growth and collapse of cloud tops, as well as, the life cycles of the penetration of overshooting turrets above the tropopause. The results based on these two approaches are presented and discussed.
Bau, H.H.
1995-12-31
Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.
NASA Astrophysics Data System (ADS)
Arnett, W. David
2009-05-01
We review recent progress using numerical simulations as a testbed for development of a theory of stellar convection, much as envisaged by John von Newmann. Necessary features of the theory, non-locality and fluctuations, are illustrated by computer movies. It is found that the common approximation of convection as a diffusive process presents the wrong physical picture, and improvements are suggested. New observational results discussed at the conference are gratifying in their validation of some of our theoretical ideas, especially the idea that SNIb and SNIc events are related to the explosion of massive star cores which have been stripped by mass loss and binary interactions [1
Convection Compensated Electrophoretic NMR
NASA Astrophysics Data System (ADS)
He, Qiuhong; Wei, Zhaohui
2001-06-01
A novel method of convection compensated ENMR (CC-ENMR) has been developed to detect electrophoretic motion of ionic species in the presence of bulk solution convection. This was accomplished using a gradient moment nulling technique to remove spectral artifacts from heat-induced convection and using the polarity switch of the applied electric field to retain spin phase modulations due to electrophoretic flow. Experiments were carried out with a mixture of 100 mM L-aspartic acid and 100 mM 4,9-dioxa-1,12-dodecanediamine to demonstrate this new method of ENMR. CC-ENMR enhances our previously developed capillary array ENMR (CA-ENMR) in solving the convection problem. The combined CA- and CC-ENMR approach strengthens the potential of multidimensional ENMR in simultaneous structural determination of coexisting proteins and protein conformations in biological buffer solutions of high ionic strength. Structural mapping of interacting proteins during biochemical reactions becomes possible in the future using ENMR techniques, which may have a profound impact on the understanding of biological events, including protein folding, genetic control, and signal transduction in general.
Combined buoyancy-thermocapillary convection
NASA Technical Reports Server (NTRS)
Homsy, G. M.
1990-01-01
Combined buoyancy-thermocapillary convection was studied in 2D and 3D. Fluid motion caused by thermally induced tension gradients on the free surface of a fluid is termed thermocapillary convection. It is well-known that in containerless processing of materials in space, thermocapillary convection is a dominant mechanism of fluid flow. Welding and crystal growth processes are terrestrial applications where thermocapillary convection has direct relevance.
Natural convection in porous media
Prasad, V.; Hussain, N.A.
1986-01-01
This book presents the papers given at a conference on free convection in porous materials. Topics considered at the conference included heat transfer, nonlinear temperature profiles and magnetic fields, boundary conditions, concentrated heat sources in stratified porous media, free convective flow in a cavity, heat flux, laminar mixed convection flow, and the onset of convection in a porous medium with internal heat generation and downward flow.
Anomalously weak solar convection
Hanasoge, Shravan M.; Duvall, Thomas L.
2012-01-01
Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical-harmonic degree ℓ. Within the wavenumber band ℓ < 60, convective velocities are 20–100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers ℓ < 60, with Rossby numbers smaller than approximately 10-2 at r/R⊙ = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient. PMID:22665774
Interaction Between Convection and Pulsation
NASA Astrophysics Data System (ADS)
Houdek, Günter; Dupret, Marc-Antoine
2015-12-01
This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.
Thermocapillary Convection in Liquid Droplets
NASA Technical Reports Server (NTRS)
1986-01-01
The purpose of this video is to understand the effects of surface tension on fluid convection. The fluid system chosen is the liquid sessile droplet to show the importance in single crystal growth, the spray drying and cooling of metal, and the advance droplet radiators of the space stations radiators. A cross sectional representation of a hemispherical liquid droplet under ideal conditions is used to show internal fluid motion. A direct simulation of buoyancy-dominant convection and surface tension-dominant convection is graphically displayed. The clear differences between two mechanisms of fluid transport, thermocapillary convection, and bouncy dominant convection is illustrated.
Oxygen abundance and convection
NASA Astrophysics Data System (ADS)
Van't Veer, C.; Cayrel, R.
The triplet IR lines of O I near 777 nm are computed with the Kurucz's code, modified to accept several convection models. The program has been run with the MLT algorithm, with l/H = 1.25 and 0.5, and with the Canuto-Mazzitelli and Canuto-Goldman-Mazzitelli approaches, on a metal-poor turnoff-star model atmosphere with Teff=6200 K, log g = 4.3, [Fe/H]= -1.5. The results show that the differences in equivalent widths for the 4 cases do not exceed 2 per cent (0.3 mA). The convection treatment is therefore not an issue for the oxygen abundance derived from the permitted lines.
Granular convection in microgravity.
Murdoch, N; Rozitis, B; Nordstrom, K; Green, S F; Michel, P; de Lophem, T-L; Losert, W
2013-01-01
We investigate the role of gravity on convection in a dense granular shear flow. Using a microgravity-modified Taylor-Couette shear cell under the conditions of parabolic flight microgravity, we demonstrate experimentally that secondary, convective-like flows in a sheared granular material are close to zero in microgravity and enhanced under high-gravity conditions, though the primary flow fields are unaffected by gravity. We suggest that gravity tunes the frictional particle-particle and particle-wall interactions, which have been proposed to drive the secondary flow. In addition, the degree of plastic deformation increases with increasing gravitational forces, supporting the notion that friction is the ultimate cause. PMID:23383851
NASA Technical Reports Server (NTRS)
Bachmann, Kurt T.
2000-01-01
I helped to complete a research project with NASA scientists Dr. David Hathaway (my mentor), Rick Bogart, and John Beck from the SOHO/SOI collaboration. Our published paper in 'Solar Physics' was titled 'The Solar Convection Spectrum' (April 2000). Two of my undergraduate students were named on the paper--Gavrav Khutri and Josh Petitto. Gavrav also wrote a short paper for the National Conference of Undergraduate Research Proceedings in 1998 using a preliminary result. Our main result was that we show no evidence of a scale of convection named 'mesogranulation'. Instead, we see only direct evidence for the well-known scales of convection known as graduation and supergranulation. We are also completing work on vertical versus horizontal flow fluxes at the solar surface. I continue to work on phase relationships of solar activity indicators, but I have not yet written a paper with my students on this topic. Along with my research results, I have developed and augmented undergraduate courses at Birmingham-Southern College by myself and with other faculty. We have included new labs and observations, speakers from NASA and elsewhere, new subject material related to NASA and space science. I have done a great deal of work in outreach, mostly as President and other offices in the Birmingham Astronomical Society. My work includes speaking, attracting speakers, giving workshops, and governing.
Albarède, Francis; Van Der Hilst, Rob D
2002-11-15
We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth's history that can reconcile this evidence. Whole-mantle convection, even with material segregated within the D" region just above the core-mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends - in a complicated fashion - on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. plate-tectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the effect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced
An introduction to thermal convection
NASA Astrophysics Data System (ADS)
Rieutord, M.
In this lecture I propose a little tour of thermal convection and its applications in astrophysics. The first part of the lecture is devoted to a qualitative introduction to the convective instability using the Schwarzschild criterion; then, concentrating on the equations governing the fluid motions, I introduce the Boussinesq and anelastic approximations which are so often used in these problems. The following part focuses on the Rayleigh-Bénard model which is worked out in detail up to the Landau equation and the Lorenz strange attractor. Finally, I briefly sketch out some results on turbulent convection and end the lecture with the case of stellar convection.
Rotating convection in elliptical geometries
NASA Astrophysics Data System (ADS)
Evonuk, M.
2014-12-01
Tidal interactions between hot jupiter planets and their host stars are likely to result in non-spherical geometries. These elliptical instabilities may have interesting effects on interior fluid convective patterns, which in turn influence the nature of the magnetic dynamo within these planets. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine to first order the effect of ellipticity on convection for varying density contrasts with differing convective vigor and rotation rate. This survey is conducted in two dimensions in order to simulate a broad range of ellipticities and to maximize the parameter space explored.
Modeling ocean deep convection
NASA Astrophysics Data System (ADS)
Canuto, V. M.; Howard, A.; Hogan, P.; Cheng, Y.; Dubovikov, M. S.; Montenegro, L. M.
The goal of this study is to assess models for Deep Convection with special emphasis on their use in coarse resolution ocean general circulation models. A model for deep convection must contain both vertical transport and lateral advection by mesoscale eddies generated by baroclinic instabilities. The first process operates mostly in the initial phases while the second dominates the final stages. Here, the emphasis is on models for vertical mixing. When mesoscales are not resolved, they are treated with the Gent and McWilliams parameterization. The model results are tested against the measurements of Lavender, Davis and Owens, 2002 (LDO) in the Labrador Sea. Specifically, we shall inquire whether the models are able to reproduce the region of " deepest convection," which we shall refer to as DC (mixed layer depths 800-1300 m). The region where it was measured by Lavender et al. (2002) will be referred to as the LDO region. The main results of this study can be summarized as follows. 3° × 3° resolution. A GFDL-type OGCM with the GISS vertical mixing model predicts DC in the LDO region where the vertical heat diffusivity is found to be 10 m 2 s -1, a value that is quite close to the one suggested by heuristic studies. No parameter was changed from the original GISS model. However, the GISS model also predicts some DC in a region to the east of the LDO region. 3° × 3° resolution. A GFDL-type OGCM with the KPP model (everything else being the same) does not predict DC in the LDO region where the vertical heat diffusivity is found to be 0.5 × 10 -4 m 2 s -1 which is the background value. The KPP model yields DC only to the east of the LDO region. 1° × 1° resolution. In this case, a MY2.5 mixing scheme predicts DC in the LDO region. However, it also predicts DC to the west, north and south of it, where it is not observed. The behavior of the KPP and MY models are somewhat anti-symmetric. The MY models yield too low a mixing in stably stratified flows since they
NASA Astrophysics Data System (ADS)
Venturi, Daniele
2005-11-01
Stochastic bifurcations and stability of natural convective flows in 2d and 3d enclosures are investigated by the multi-element generalized polynomial chaos (ME-gPC) method (Xiu and Karniadakis, SISC, vol. 24, 2002). The Boussinesq approximation for the variation of physical properties is assumed. The stability analysis is first carried out in a deterministic sense, to determine steady state solutions and primary and secondary bifurcations. Stochastic simulations are then conducted around discontinuities and transitional regimes. It is found that these highly non-linear phenomena can be efficiently captured by the ME-gPC method. Finally, the main findings of the stochastic analysis and their implications for heat transfer will be discussed.
Modeling ocean deep convection
NASA Astrophysics Data System (ADS)
Canuto, V. M.; Howard, A.; Hogan, P.; Cheng, Y.; Dubovikov, M. S.; Montenegro, L. M.
The goal of this study is to assess models for Deep Convection with special emphasis on their use in coarse resolution ocean general circulation models. A model for deep convection must contain both vertical transport and lateral advection by mesoscale eddies generated by baroclinic instabilities. The first process operates mostly in the initial phases while the second dominates the final stages. Here, the emphasis is on models for vertical mixing. When mesoscales are not resolved, they are treated with the Gent and McWilliams parameterization. The model results are tested against the measurements of Lavender, Davis and Owens, 2002 (LDO) in the Labrador Sea. Specifically, we shall inquire whether the models are able to reproduce the region of " deepest convection," which we shall refer to as DC (mixed layer depths 800-1300 m). The region where it was measured by Lavender et al. (2002) will be referred to as the LDO region. The main results of this study can be summarized as follows. 3° × 3° resolution. A GFDL-type OGCM with the GISS vertical mixing model predicts DC in the LDO region where the vertical heat diffusivity is found to be 10 m 2 s -1, a value that is quite close to the one suggested by heuristic studies. No parameter was changed from the original GISS model. However, the GISS model also predicts some DC in a region to the east of the LDO region. 3° × 3° resolution. A GFDL-type OGCM with the KPP model (everything else being the same) does not predict DC in the LDO region where the vertical heat diffusivity is found to be 0.5 × 10 -4 m 2 s -1 which is the background value. The KPP model yields DC only to the east of the LDO region. 1° × 1° resolution. In this case, a MY2.5 mixing scheme predicts DC in the LDO region. However, it also predicts DC to the west, north and south of it, where it is not observed. The behavior of the KPP and MY models are somewhat anti-symmetric. The MY models yield too low a mixing in stably stratified flows since they
NASA Astrophysics Data System (ADS)
Pasetto, Stefano; Chiosi, Cesare; Cropper, Mark; Grebel, Eva K.
2015-08-01
Convection is one of the fundamental mechanism to transport energy, e.g., in planetology, oceanography as well as in astrophysics where stellar structure customarily described by the mixing-length theory, which makes use of the mixing-length scale parameter to express the convective flux, velocity, and temperature gradients of the convective elements and stellar medium. The mixing-length scale is taken to be proportional to the local pressure scale height of the star, and the proportionality factor (the mixing-length parameter) must be determined by comparing the stellar models to some calibrator, usually the Sun.No strong arguments exist to claim that the mixing-length parameter is the same in all stars and all evolutionary phases. Because of this, all stellar models in literature are hampered by this basic uncertainty.In a recent paper (Pasetto et al 2014) we presented the first fully analytical scale-free theory of convection that does not require the mixing-length parameter. Our self-consistent analytical formulation of convection determines all the properties of convection as a function of the physical behaviour of the convective elements themselves and the surrounding medium (being it a either a star, an ocean, a primordial planet). The new theory of convection is formulated starting from a conventional solution of the Navier-Stokes/Euler equations, i.e. the Bernoulli equation for a perfect fluid, but expressed in a non-inertial reference frame co-moving with the convective elements. In our formalism, the motion of convective cells inside convective-unstable layers is fully determined by a new system of equations for convection in a non-local and time dependent formalism.We obtained an analytical, non-local, time-dependent solution for the convective energy transport that does not depend on any free parameter. The predictions of the new theory in astrophysical environment are compared with those from the standard mixing-length paradigm in stars with
α Centauri and convection theories.
NASA Astrophysics Data System (ADS)
Fernandes, J.; Neuforge, C.
1995-03-01
The metallicity of the alpha Centauri system, Z, suffers from uncertainties. For this reason, different methods are used to calibrate the system: calibrations performed in YALE (Edmonds et al. 1992) use a fixed value for Z: Z=0.026 and a convection parameter for each star, while those made in Meudon and Liege (Noels et al. 1991; Neuforge 1993a) make the hypothesis of a unique convection parameter for the two components of the system and consider Z as a free parameter. We discuss these two techniques, both using models calculated with mixing length convection theory, (MLT), and we explain our solution through the behaviour of the convection parameter with chemical composition. We also compare our results with those of Lydon (1993) and find consistency. With a precise observational value of Z, of the effective temperatures and of the luminosities, our results provide a test for the unicity of α, if, in the frame of the same physics, a precise atmosphere treatment can be used and low-temperature opacities are known with sufficient accuracy. Finally, we perform calibrations with models calculated with the convection treatment of Canuto & Mazzitelli (1991, 1992), where we use {LAMBDA}=z, z being the distance to the top of the convective envelope. We avoid thus problems raised by the MLT convection parameter. In this frame, satisfactory solutions can be found for 0.024<=Z<=0.040.
Convection in Type 2 supernovae
Miller, D.S.
1993-10-15
Results are presented here from several two dimensional numerical calculations of events in Type II supernovae. A new 2-D hydrodynamics and neutrino transport code has been used to compute the effect on the supernova explosion mechanism of convection between the neutrinosphere and the shock. This convection is referred to as exterior convection to distinguish it from convection beneath the neutrinosphere. The model equations and initial and boundary conditions are presented along with the simulation results. The 2-D code was used to compute an exterior convective velocity to compare with the convective model of the Mayle and Wilson 1-D code. Results are presented from several runs with varying sizes of initial perturbation, as well as a case with no initial perturbation but including the effects of rotation. The M&W code does not produce an explosion using the 2-D convective velocity. Exterior convection enhances the outward propagation of the shock, but not enough to ensure a successful explosion. Analytic estimates of the growth rate of the neutron finger instability axe presented. It is shown that this instability can occur beneath the neutrinosphere of the proto-neutron star in a supernova explosion with a growth time of {approximately} 3 microseconds. The behavior of the high entropy bubble that forms between the shock and the neutrinosphere in one dimensional calculations of supernova is investigated. It has been speculated that this bubble is a site for {gamma}-process generation of heavy elements. Two dimensional calculations are presented of the time evolution of the hot bubble and the surrounding stellar material. Unlike one dimensional calculations, the 2D code fails to achieve high entropies in the bubble. When run in a spherically symmetric mode the 2-D code reaches entropies of {approximately} 200. When convection is allowed, the bubble reaches {approximately} 60 then the bubble begins to move upward into the cooler, denser material above it.
Nonlinear Convection in Mushy Layers
NASA Technical Reports Server (NTRS)
Worster, M. Grae; Anderson, Daniel M.; Schulze, T. P.
1996-01-01
When alloys solidify in a gravitational field there are complex interactions between solidification and natural, buoyancy-driven convection that can alter the composition and impair the structure of the solid product. The particular focus of this project has been the compositional convection within mushy layers that occurs in situations where the lighter component of the alloy is rejected into the melt during solidification by cooling from below. The linear stability of such a situation was previously described and has been further elucidated in a number of published articles. Here we describe some recent developments in the study of nonlinear evolution of convection in mushy layers.
Heat distribution by natural convection
Balcomb, J.D.
1985-01-01
Natural convection can provide adequate heat distribution in many situtations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others or to reduce the number of heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures is predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Natural convective loops that can occur in buildings are described and a few design guidelines are presented.
Convective adjustment in baroclinic atmospheres
NASA Technical Reports Server (NTRS)
Emanuel, Kerry A.
1986-01-01
Local convection in planetary atmospheres is generally considered to result from the action of gravity on small regions of anomalous density. That in rotating baroclinic fluids the total potential energy for small scale convection contains a centrifugal as well as a gravitational contribution is shown. Convective adjustment in such an atmosphere results in the establishment of near adiabatic lapse rates of temperature along suitably defined surfaces of constant angular momentum, rather than in the vertical. This leads in general to sub-adiabatic vertical lapse rates. That such an adjustment actually occurs in the earth's atmosphere is shown by example and the magnitude of the effect for several other planetary atmospheres is estimated.
Dynamics of convective scale interaction
NASA Technical Reports Server (NTRS)
Purdom, James F. W.; Sinclair, Peter C.
1988-01-01
Several of the mesoscale dynamic and thermodynamic aspects of convective scale interaction are examined. An explanation of how sounding data can be coupled with satellite observed cumulus development in the warm sector and the arc cloud line's time evolution to develop a short range forecast of expected convective intensity along an arc cloud line. The formative, mature and dissipating stages of the arc cloud line life cycle are discussed. Specific properties of convective scale interaction are presented and the relationship between arc cloud lines and tornado producing thunderstorms is considered.
Dunn, J.C.; Hardee, H.C.; Striker, R.P.
1984-01-09
A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.
Dunn, James C.; Hardee, Harry C.; Striker, Richard P.
1985-01-01
A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.
NASA Astrophysics Data System (ADS)
White, Brian; Scotti, Alberto
2014-11-01
We perform three-dimensional DNS of Horizontal Convection in a rectangular tank with idealized boundary conditions. The flow is driven by imposing the profile for the buoyancy b at the surface, where it ranges from b0 to b0 + Δb and the transition region is confined to a very small area. The Rayleigh based on the domain depth ranges from 105 to 1012. The scaling observed for the Nusselt number and the strength of the circulation is consistent with Rossby's scaling across the range of Rayleigh numbers considered, indicating that the dynamics in the boundary layer under the ``warming'' side throttles the flow. Energetically, we find that Available Potential Energy (APE) is generated along the surface, and converted to Kinetic Energy (KE). Along the descending plume energy goes from APE to KE up to Ra ~1011 . For higher Rayleigh numbers the plume becomes a net sink of APE. When the switch occurs, a stagnant layer develops near the bottom, and the overall circulation becomes characterized by a narrow plume which retroflects rapidly towards the surface, with a shallow recirculation to close the flow. This may indicate the beginning of a Sandström regime characterized by a stagnant abyssal region and a shallow circulation. Work supported by the National Science Foundation.
Realistic Solar Surface Convection Simulations
NASA Technical Reports Server (NTRS)
Stein, Robert F.; Nordlund, Ake
2000-01-01
We perform essentially parameter free simulations with realistic physics of convection near the solar surface. We summarize the physics that is included and compare the simulation results with observations. Excellent agreement is obtained for the depth of the convection zone, the p-mode frequencies, the p-mode excitation rate, the distribution of the emergent continuum intensity, and the profiles of weak photospheric lines. We describe how solar convection is nonlocal. It is driven from a thin surface thermal boundary layer where radiative cooling produces low entropy gas which forms the cores of the downdrafts in which most of the buoyancy work occurs. We show that turbulence and vorticity are mostly confined to the intergranular lanes and underlying downdrafts. Finally, we illustrate our current work on magneto-convection.
Convection, nucleosynthesis, and core collapse
NASA Technical Reports Server (NTRS)
Bazan, Grant; Arnett, David
1994-01-01
We use a piecewise parabolic method hydrodynamics code (PROMETHEUS) to study convective burning in two dimensions in an oxygen shell prior to core collapse. Significant mixing beyond convective boundaries determined by mixing-length theory brings fuel (C-12) into the convective regon, causing hot spots of nuclear burning. Plumes dominate the velocity structure. Finite perturbations arise in a region in which O-16 will be explosively burned to Ni-56 when the star explodes; the resulting instabilities and mixing are likely to distribute Ni-56 throughout the supernova envelope. Inhomogeneities in Y(sub e) may be large enough to affect core collapse and will affect explosive nucleosynthesis. The nature of convective burning is dramatically different from that assumed in one-dimensional simulations; quantitative estimates of nucleosynthetic yields, core masses, and the approach to core collapse will be affected.
Parameterization of precipitating shallow convection
NASA Astrophysics Data System (ADS)
Seifert, Axel
2015-04-01
Shallow convective clouds play a decisive role in many regimes of the atmosphere. They are abundant in the trade wind regions and essential for the radiation budget in the sub-tropics. They are also an integral part of the diurnal cycle of convection over land leading to the formation of deeper modes of convection later on. Errors in the representation of these small and seemingly unimportant clouds can lead to misforecasts in many situations. Especially for high-resolution NWP models at 1-3 km grid spacing which explicitly simulate deeper modes of convection, the parameterization of the sub-grid shallow convection is an important issue. Large-eddy simulations (LES) can provide the data to study shallow convective clouds and their interaction with the boundary layer in great detail. In contrast to observation, simulations provide a complete and consistent dataset, which may not be perfectly realistic due to the necessary simplifications, but nevertheless enables us to study many aspects of those clouds in a self-consistent way. Today's supercomputing capabilities make it possible to use domain sizes that not only span several NWP grid boxes, but also allow for mesoscale self-organization of the cloud field, which is an essential behavior of precipitating shallow convection. By coarse-graining the LES data to the grid of an NWP model, the sub-grid fluctuations caused by shallow convective clouds can be analyzed explicitly. These fluctuations can then be parameterized in terms of a PDF-based closure. The necessary choices for such schemes like the shape of the PDF, the number of predicted moments, etc., will be discussed. For example, it is shown that a universal three-parameter distribution of total water may exist at scales of O(1 km) but not at O(10 km). In a next step the variance budgets of moisture and temperature in the cloud-topped boundary layer are studied. What is the role and magnitude of the microphysical correlation terms in these equations, which
Natural convection in nonvertical wells
Denbow, D.A.; Murphy, H.D.; McEligot, D.M.
1985-01-01
Convective instabilities and the shapes of the ensuing convection cells were experimentally studied for nonvertical wellbores. Steady-state temperature distributions were measured for three inclination angles over a wide range of heating rates to demonstrate the effects of drilling angle and Rayleigh number. In addition, velocities were estimated by measuring the time-of-flight of tracers formed by the Thymol blue technique. 8 refs., 6 figs.
Pattern Formation in Convective Instabilities
NASA Astrophysics Data System (ADS)
Friedrich, R.; Bestehorn, M.; Haken, H.
The present article reviews recent progress in the study of pattern formation in convective instabilities. After a brief discussion of the relevant basic hydrodynamic equations as well as a short outline of the mathematical treatment of pattern formation in complex systems the self-organization of spatial and spatio-temporal structures due to convective instabilities is considered. The formation of various forms of convective patterns arising in the Bénard experiment, i.e. in a horizontal fluid layer heated from below, is discussed. Then the review considers pattern formation in the Bénard instability in spherical geometries. In that case it can be demonstrated how the interaction among several convective cells may lead to time dependent as well as chaotic evolution of the spatial structures. Finally, the convective instability in a binary fluid mixture is discussed. In contrast to the instability in a single component fluid the instability may be oscillatory. In that case convection sets in in the form of travelling wave patterns which in addition to a complicated and chaotic temporal behaviour exhibit more or less spatial irregularity already close to threshold.
Isentropic Analysis of Convective Motions
NASA Technical Reports Server (NTRS)
Pauluis, Olivier M.; Mrowiec, Agnieszka A.
2013-01-01
This paper analyzes the convective mass transport by sorting air parcels in terms of their equivalent potential temperature to determine an isentropic streamfunction. By averaging the vertical mass flux at a constant value of the equivalent potential temperature, one can compute an isentropic mass transport that filters out reversible oscillatory motions such as gravity waves. This novel approach emphasizes the fact that the vertical energy and entropy transports by convection are due to the combination of ascending air parcels with high energy and entropy and subsiding air parcels with lower energy and entropy. Such conditional averaging can be extended to other dynamic and thermodynamic variables such as vertical velocity, temperature, or relative humidity to obtain a comprehensive description of convective motions. It is also shown how this approach can be used to determine the mean diabatic tendencies from the three-dimensional dynamic and thermodynamic fields. A two-stream approximation that partitions the isentropic circulation into a mean updraft and a mean downdraft is also introduced. This offers a straightforward way to identify the mean properties of rising and subsiding air parcels. The results from the two-stream approximation are compared with two other definitions of the cloud mass flux. It is argued that the isentropic analysis offers a robust definition of the convective mass transport that is not tainted by the need to arbitrarily distinguish between convection and its environment, and that separates the irreversible convective overturning fromoscillations associated with gravity waves.
Observation of deep convection initiation from shallow convection environment
NASA Astrophysics Data System (ADS)
Lothon, Marie; Couvreux, Fleur; Guichard, Françoise; Campistron, Bernard; Chong, Michel; Rio, Catherine; Williams, Earle
2010-05-01
In the afternoon of 10 July 2006, deep convective cells initiated right in the field of view of the Massachusetts Institute Technology (MIT) C-band Doppler radar. This radar, with its 3D exploration at 10 min temporal resolution and 250 m radial resolution, allows us to track the deep convective cells and also provides clear air observations of the boundary layer structure prior to deep convection initiation. Several other observational platforms were operating then which allow us to thoroughly analyse this case: Vertically pointing aerosol lidar, W-band radar and ceilometer from the ARM Mobile Facility, along with radiosoundings and surface measurements enable us to describe the environment, from before their initiation to after the propagation of of one propagating cell that generated a circular gust front very nicely caught by the MIT radar. The systems considered here differ from the mesoscale convective systems which are often associated with African Easterly Waves, increasing CAPE and decreasing CIN. The former have smaller size, and initiate more locally, but there are numerous and still play a large role in the atmospheric circulation and scalar transport. Though, they remain a challenge to model. (See the presentation by Guichard et al. in the same session, for a model set up based on the same case, with joint single-column model and Large Eddy Simulation, which aims at better understanding and improving the parametrisation of deep convection initiation.) Based on the analysis of the observations mentioned above, we consider here the possible sources of deep convection initiation that day, which showed a typical boundary-layer growth in semi-arid environment, with isolated deep convective events.
Convection wave studies over land and sea
NASA Technical Reports Server (NTRS)
Kuettner, Joachim; Grossmann, Robert
1991-01-01
Preliminary results of recent case studies conducted over land and sea are given. Two dimensional convection (roll vortex/cloudstreet) and three dimensional convection in the underlying boundary layer are dealt with. Vertical momentum flux profiles and time series of important parameters and vertical soundings taken in the experiment area are shown. The three cases described show that convection waves occur over land and over ocean, over three dimensional convection and over two dimensional convection.
Year of Tropical Convection (YOTC)
NASA Astrophysics Data System (ADS)
Moncrieff, M. W.; Waliser, D. E.
2009-05-01
Tropical convection and the multi-scale organization of precipitating convection are associated with scale interactions that are fundamental to the atmospheric circulation and its interaction with the ocean. The realistic representation of tropical convection and its multi-scale organization is a long-standing challenge for numerical weather prediction and climate models. Incomplete knowledge and practical issues disadvantage the representation of important phenomena and processes in global models, such as the ITCZ, monsoons, MJO, and easterly waves and tropical cyclones. The tropical-extratropical interactions of tropical convection are key aspects of the Predictability and Dynamical Processes of THORPEX. The WCRP and WWRP/THORPEX are jointly coordinating a year of observing, modeling, and forecasting with a focus on the multi-scale organization of tropical convection, prediction, and predictability: Year of Tropical Convection (YOTC). Satellite, in-situ, and field-campaign measurements (e.g., TPARC), operational prediction, and cloud-system resolving models will be utilized. The temporal scales addressed, up to seasonal, enables the above phenomena to be modeled at high resolution, and seamless prediction issues at the intersection of weather and climate addressed. The 'Year', the period 1 May 2008 - 31 October 2009, began with the archiving of ECMWF T799 (i.e., 25 km) products: i) complete global analysis; ii) deterministic forecasts; and iii) special diagnostics. Plans are underway to obtain similar NCEP and NASA GEOS-5 data, and to integrate various multi-sensor satellite products. The YOTC Science Plan, which is available at http://www.wmo.int/pages/prog/arep/wwrp/new/documents/ YOTC_Science_Plan.pdf, has been published as a WMO Technical Document. The YOTC Implementation Plan, presently being drafted, will be discussed and finalized at an international workshop in July 2009. This talk summarizes programmatic aspects; science issues involving the multiscale
Influence of convection on microstructure
NASA Technical Reports Server (NTRS)
Wilcox, William R.; Eisa, Gaber Faheem; Chandrasekhar, S.; Larrousse, Mark; Banan, Mohsen
1988-01-01
The influence was studied of convection during directional solidification on the resulting microstructure of eutectics, specifically lead/tin and manganese/bismuth. A theory was developed for the influence of convection on the microstructure of lamellar and fibrous eutectics, through the effect of convection on the concentration field in the melt in front of the growing eutectic. While the theory agrees with the experimental spin-up spin-down results, it predicts that the weak convection expected due to buoyancy will not produce a measurable change in eutectic microstructure. Thus, this theory does not explain the two fold decrease in MnBi fiber size and spacing observed when MnBi-Bi is solidified in space or on Earth with a magnetic field applied. Attention was turned to the morphology of the MnBi-Bi interface and to the generation of freezing rate fluctuations by convection. Decanting the melt during solidification of MnBi-Bi eutectic showed that the MnBi phase projects into the melt ahead of the Bi matrix. Temperature measurements in a Bi melt in the vertical Bridgman-Stockbarger configuration showed temperature variations of up to 25 C. Conclusions are drawn and discussed.
Mantle Convection on Modern Supercomputers
NASA Astrophysics Data System (ADS)
Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.
2015-12-01
Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.
Convective Excitation of Internal Waves
NASA Astrophysics Data System (ADS)
Lecoanet, Daniel; Le Bars, Michael; Burns, Keaton; Vasil, Geoffrey; Quataert, Eliot; Brown, Benjamin; Oishi, Jeffrey
2015-11-01
We will present a joint experimental & computational study of internal wave generation by convection. First we describe an experiment using the peculiar property of water that its density maximum is at 4° C . A tank of water cooled from below and heated from above develops a cold, convective layer near 4° C at the bottom of the tank, adjacent to a hot stably stratified layer at the top of the tank. We simulate this setup in 2D using the open-source Dedalus code (dedalus-project.org). Our simulations show that waves are excited from within the convection zone, opposed to at the interface between the convective and stably stratified regions. Finally, we will present 3D simulations of internal wave excitation by convection in a fully compressible atmosphere with multiple density scaleheights. These simulations provide greater freedom in choosing the thermal equilibrium of the system, and are run at higher Rayleigh number. The simulated waves are then compared to analytic predictions of the bulk excitation model.
Mantle convection on modern supercomputers
NASA Astrophysics Data System (ADS)
Weismüller, Jens; Gmeiner, Björn; Mohr, Marcus; Waluga, Christian; Wohlmuth, Barbara; Rüde, Ulrich; Bunge, Hans-Peter
2015-04-01
Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures demand an interdisciplinary co-design. Here we report about recent advances of the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups in computer sciences, mathematics and geophysical application under the leadership of FAU Erlangen. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection assessing the impact of small scale processes on global mantle flow.
ARM - Midlatitude Continental Convective Clouds
Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos
2012-01-19
Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.
Penetration below a convective zone
NASA Astrophysics Data System (ADS)
Hurlburt, Neal E.; Toomre, Juri; Massaguer, Josep M.; Zahn, Jean-Paul
1994-01-01
Two-dimensional numerical simulations are used to investigate how fully compressible nonlinear convection penetrates into a stably stratified zone beneath a stellar convection zone. Estimates are obtained of the extent of penetration as the relative stability S of the stable to the unstable zone is varied over a broad range. The model deals with a perfect gas possessing a constant dynamic viscosity. The dynamics is dominated by downward-directed plumes which can extend far into the stable material and which can lead to the excitation of a broad spectrum of internal gravity waves in the lower stable zone. The convection is highly time dependent, with the close coupling between the lateral swaying of the plumes and the internal gravity waves they generate serving to modulate the strength of the convection. The depth of penetration delta, determined by the position where the time-averaged kinetic flux has its first zero in the stable layer, is controlled by a balance between the kinetic energy carried into the stable layer by the plumes and the buoyancy braking they experience there. A passive scalar is introduced into the unstable layer to evaluate the transport of chemical species downward. Such a tracer is effectively mixed within a few convective overturning times down to a depth of delta within the stable layer. Analytical estimates based on simple scaling laws are used to interpret the variation of delta with S, showing that it first involves an interval of adiabatic penetration if the local Peclet number of the convection exceeds unity, followed by a further thermal adjustment layer, the depths of each interval scaling in turn as S-1 and S-1/4. These estimates are in accord with the penetration results from the simulations.
Report of convective phenomena team
NASA Technical Reports Server (NTRS)
Orville, H.; Koenig, R.; Miller, J.; Telford, J.; Jones, B.; Alger, G.; Lee, R.; Boudle, D.
1980-01-01
A group meeting was assembled to focus on the planning of specific experiments, to establish some priorities, identify interested scientists who would like to participate, establish any special requirements, make recommendations on data processing, and to prepare flight plan outlines. Since the number of convective storms in the CCOPE (Cooperative Convective Precipitation Experiment) field experiment area are limited to only a few days during the operational time period the flight plans must be designed with a hierarchy of abort experiments so that the easily identified and lowest probability events should take priority until their quota is filled.
Simulating Convection in Stellar Envelopes
NASA Astrophysics Data System (ADS)
Tanner, Joel
Understanding convection in stellar envelopes, and providing a mathematical description of it, would represent a substantial advance in stellar astrophysics. As one of the largest sources of uncertainty in stellar models, existing treatments of convection fail to account for many of the dynamical effects of convection, such as turbulent pressure and asymmetry in the velocity field. To better understand stellar convection, we must be able to study and examine it in detail, and one of the best tools for doing so is numerical simulation. Near the stellar surface, both convective and radiative process play a critical role in determining the structure and gas dynamics. By following these processes from first principles, convection can be simulated self-consistently and accurately, even in regions of inefficient energy transport where existing descriptions of convection fail. Our simulation code includes two radiative transfer solvers that are based on different assumptions and approximations. By comparing simulations that differ only in their respective radiative transfer methods, we are able to isolate the effect that radiative efficiency has on the structure of the superadiabatic layer. We find the simulations to be in good general agreement, but they show distinct differences in the thermal structure in the superadiabatic layer and atmosphere. Using the code to construct a grid of three-dimensional radiation hydrodynamic simulations, we investigate the link between convection and various chemical compositions. The stellar parameters correspond to main-sequence stars at several surface gravities, and span a range in effective temperatures (4500 < Teff < 6400). Different chemical compositions include four metallicities (Z = 0.040, 0.020, 0.010, 0.001), three helium abundances (Y = 0.1, 0.2, 0.3) and several levels of alpha-element enhancement. Our grid of simulations shows that various convective properties, such as velocity and the degree of superadiabaticity, are
Wavenumber selection in Benard convection
Catton, I.
1988-11-01
The results of three related studies dealing with wavenumber selection in Rayleigh--Benard convection are reported. The first, an extension of the power integral method, is used to argue for the existence of multi-wavenumbers at all supercritical wavenumbers. Most existing closure schemes are shown to be inadequate. A thermodynamic stability criterion is shown to give reasonable results but requires empirical measurement of one parameter for closure. The third study uses an asymptotic approach based in part on geometric considerations and requires no empiricism to obtain good predictions of the wavenumber. These predictions, however, can only be used for certain planforms of convection.
Convective Overshoot in Stellar Interior
NASA Astrophysics Data System (ADS)
Zhang, Q. S.
2015-07-01
In stellar interiors, the turbulent thermal convection transports matters and energy, and dominates the structure and evolution of stars. The convective overshoot, which results from the non-local convective transport from the convection zone to the radiative zone, is one of the most uncertain and difficult factors in stellar physics at present. The classical method for studying the convective overshoot is the non-local mixing-length theory (NMLT). However, the NMLT bases on phenomenological assumptions, and leads to contradictions, thus the NMLT was criticized in literature. At present, the helioseismic studies have shown that the NMLT cannot satisfy the helioseismic requirements, and have pointed out that only the turbulent convection models (TCMs) can be accepted. In the first part of this thesis, models and derivations of both the NMLT and the TCM were introduced. In the second part, i.e., the work part, the studies on the TCM (theoretical analysis and applications), and the development of a new model of the convective overshoot mixing were described in detail. In the work of theoretical analysis on the TCM, the approximate solution and the asymptotic solution were obtained based on some assumptions. The structure of the overshoot region was discussed. In a large space of the free parameters, the approximate/asymptotic solutions are in good agreement with the numerical results. We found an important result that the scale of the overshoot region in which the thermal energy transport is effective is 1 HK (HK is the scale height of turbulence kinetic energy), which does not depend on the free parameters of the TCM. We applied the TCM and a simple overshoot mixing model in three cases. In the solar case, it was found that the temperature gradient in the overshoot region is in agreement with the helioseismic requirements, and the profiles of the solar lithium abundance, sound speed, and density of the solar models are also improved. In the low-mass stars of open
Segregation and convection in dendritic alloys
NASA Technical Reports Server (NTRS)
Poirier, D. R.
1990-01-01
Microsegregation in dentritic alloys is discussed, including solidification with and without thermal gradient, the convection of interdendritic liquid. The conservation of momentum, energy, and solute is considered. Directional solidification and thermosolutal convection are discussed.
Convection in Uranus and Neptune
NASA Astrophysics Data System (ADS)
Podolak, Morris; Helled, Ravit; Schubert, Gerald
2015-11-01
It is a common assumption of interior models that the outer planets of our solar system are convective, and that the internal temperature distributions are therefore adiabatic. If this assumption is not correct, the inferred internal structures of these planets can be different than typically thought. Therefore, exploring this topic is crucial for planetary characterization. We investigate how the internal temperature profiles of Uranus and Neptune depend on the treatment of layered-convection. We then use a set of possible temperature profiles associated with layered-convection together with density profiles derived from interior models that match the measured gravitational fields to derive the compositions of the planets. We find that the inferred compositions of both Uranus and Neptune are not very sensitive to the thermal profile. In addition, we show that calculating the thermal flux is important for understanding the energy transport mechanism in giant planets. Finally, we suggest that Neptune’s interior is just at the boundary between being convective or conductive and both configurations are consistent with its thermal flux, while Uranus’ interior is mostly conductive. This result is consistent with recent dynamo models and useful for understanding the origin of the magnetic fields of the planets.
Synthesis : Convection, structure and evolution
NASA Astrophysics Data System (ADS)
Schatzman, E.
1997-12-01
Lectures and discussions at the SCORe workshop have given a general idea of our present understanding of convection and oscillations and its application to the special case of the Sun. This {\\it SYNTHESIS} is just an attempt to present what seems to me to be the most important results, to draw attention to forgotten physical processes and to approach some important unsolved questions.
Mantle convection, topography and geoid
NASA Astrophysics Data System (ADS)
Golle, Olivia; Dumoulin, Caroline; Choblet, Gaël.; Cadek, Ondrej
2010-05-01
The internal evolution of planetary bodies often include solid-state convection. This phenomenon may have a large impact on the various interfaces of these bodies (dynamic topography occurs). It also affects their gravity field (and the geoid). Since both geoid and topography can be measured by a spacecraft, and are therefore available for several planetary bodies (while seismological measurements are still lacking for all of them but the Moon and the Earth), these are of the first interest for the study of internal structures and processes. While a classical approach now is to combine gravity and altimetry measurements to infer the internal structure of a planet [1], we propose to complement it by the reverse problem, i.e., producing synthetic geoid and dynamic topography from numerical models of convection as proposed by recent studies (e.g. for the CMB topography of the Earth,[2]). This procedure first include a simple evaluation of the surface topography and geoid from the viscous flow obtained by the 3D numerical tool OEDIPUS [3] modeling convection in a spherical shell. An elastic layer will then be considered and coupled to the viscous model - one question being whether the elastic shell shall be included 'on top' of the convective domain or within it, in the cold 'lithospheric' outer region. What we will present here corresponds to the first steps of this work: the comparison between the response functions of the topography and the geoid obtained from the 3D convection program to the results evaluated by a spectral method handling radial variations of viscosity [4]. We consider the effect of the elastic layer whether included in the convective domain or not. The scale setting in the context of a full thermal convection model overlaid by an elastic shell will be discussed (thickness of the shell, temperature at its base...). References [1] A.M. Wieczorek, (2007), The gravity and topography of the terrestrial planets, Treatise on Geophysics, 10, 165-206. [2
How stratified is mantle convection?
NASA Astrophysics Data System (ADS)
Puster, Peter; Jordan, Thomas H.
1997-04-01
We quantify the flow stratification in the Earth's mid-mantle (600-1500 km) in terms of a stratification index for the vertical mass flux, Sƒ (z) = 1 - ƒ(z) / ƒref (z), in which the reference value ƒref(z) approximates the local flux at depth z expected for unstratified convection (Sƒ=0). Although this flux stratification index cannot be directly constrained by observations, we show from a series of two-dimensional convection simulations that its value can be related to a thermal stratification index ST(Z) defined in terms of the radial correlation length of the temperature-perturbation field δT(z, Ω). ST is a good proxy for Sƒ at low stratifications (Sƒ<0.2), where it rises with stratification strength much more rapidly than Sƒ. Assuming that the shear-speed variations δβ(z, Ω) imaged by seismic tomography are primarily due to convective temperature fluctuations, we can approximate ST by Sβ, the analogous index for the radial correlation length of δβ, and thereby construct bounds on Sƒ. We discuss several key issues regarding the implementation of this strategy, including finite resolution of the seismic data, biases due to the parameterization of the tomographic models, and the bias and variance due to noise. From the comparison of the numerical simulations with recent tomographic structures, we conclude that it is unlikely that convection in the Earth's mantle has Sƒ≳0.15. We consider the possibility that this estimate is biased because mantle convection is intermittent and therefore that the present-day tomographic snapshot may differ from its time average. Although this possibility cannot be dismissed completely, we argue that values of Sƒ≳0.2 can be discounted under a weak version of the Uniformitarian Principle. The bound obtained here from global tomography is consistent with local seismological evidence for slab flux into the lower mantle; however, the total material flux has to be significantly greater (by a factor of 2-3) than that
Convective storms in planetary atmospheres
NASA Astrophysics Data System (ADS)
Hueso, R.; Sánchez-Lavega, A.
2013-05-01
The atmospheres of the planets in the Solar System have different physical properties that in some cases can be considered as extreme when compared with our own planet's more familiar atmosphere. From the tenuous and cold atmosphere of Mars to the dense and warm atmosphere of Venus in the case of the terrestrial planets, to the gigantic atmospheres of the outer planets, or the nitrogen and methane atmosphere of Saturn's moon Titan, we can find a large variety of physical environments. The comparative study of these atmospheres provides a better understanding of the physics of a geophysical fluid. In many of these worlds convective storms of different intensity appear. They are analogous to terrestrial atmospheres fed by the release of latent heat when one of the gases in the atmosphere condenses and they are therefore called moist convective storms. In many of these planets they can produce severe meteorological phenomena and by studying them in a comparative way we can aspire to get a further insight in the dynamics of these atmospheres even beyond the scope of moist convection. A classical example is the structure of the complex systems of winds in the giant planets Jupiter and Saturn. These winds are zonal and alternate in latitude but their deep structure is not accessible to direct observation. However the behaviour of large--scale convective storms vertically extending over the "weather layer" allows to study the buried roots of these winds. Another interesting atmosphere with a rather different structure of convection is Titan, a world where methane is close to its triple point in the atmosphere and can condense in bright clouds with large precipitation fluxes that may model part of the orography of the surface making Titan a world with a methane cycle similar to the hydrological cycle of Earth's atmosphere.
Ionospheric convection signatures and magnetic field topology
NASA Technical Reports Server (NTRS)
Coley, W. R.; Heelis, R. A.; Hanson, W. B.; Reiff, P. H.; Sharber, J. R.
1987-01-01
A statistical study of signatures of the high-latitude ionospheric convection pattern and the simultaneously observed energetic electron precipitation is presented. Most often found are convection cells in which the sunward flowing region contains auroral particle precipitation but the antisunward flowing region does not. However, observations also show the frequent occurrence of convection cells in which neither the antisunward nor the sunward flowing plasma region contains auroral particle precipitation. These findings may appear within the dawnside or duskside convection pattern and strongly suggest that such convection cells may be associated with open magnetic field lines that thread the magnetotail lobes.
Tropical Convection's Roles in Tropical Tropopause Cirrus
NASA Technical Reports Server (NTRS)
Boehm, Matthew T.; Starr, David OC.; Verlinde, Johannes; Lee, Sukyoung
2002-01-01
The results presented here show that tropical convection plays a role in each of the three primary processes involved in the in situ formation of tropopause cirrus. First, tropical convection transports moisture from the surface into the upper troposphere. Second, tropical convection excites Rossby waves that transport zonal momentum toward the ITCZ, thereby generating rising motion near the equator. This rising motion helps transport moisture from where it is detrained from convection to the cold-point tropopause. Finally, tropical convection excites vertically propagating tropical waves (e.g. Kelvin waves) that provide one source of large-scale cooling near the cold-point tropopause, leading to tropopause cirrus formation.
A transilient matrix for moist convection
Romps, D.; Kuang, Z.
2011-08-15
A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.
The shadowgraph method in convection experiments
NASA Astrophysics Data System (ADS)
Rasenat, S.; Hartung, G.; Winkler, B. L.; Rehberg, I.
1989-06-01
The shadowgraph method is applied to thermal convection experiments and electro-hydrodynamic convection (EHC) in nematic liquid crystals. In both cases convection leads to a spatially periodic field of the refractive index causing a spatially periodic intensity modulation of parallel light passing the cell. Close to the onset of convection the temperature or director field is given by linear stability analysis. Knowing these functions the determination of their amplitudes becomes possible by means of the shadowgraph method. The method is demostrated using various examples of thermal and EHC convection experiments.
Granular convection observed by magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Ehrichs, E. E.; Jaeger, H. M.; Karczmar, Greg S.; Knight, James B.; Kuperman, Vadim Yu.; Nagel, Sidney R.
1995-03-01
Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here.
Granular convection observed by magnetic resonance imaging
Ehrichs, E.E.; Jaeger, H.M.; Knight, J.B.; Nagel, S.R.; Karczmar, G.S.; Kuperman, V.Yu.
1995-03-17
Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here. 31 refs., 4 figs.
Seismic Constraints on Interior Solar Convection
NASA Technical Reports Server (NTRS)
Hanasoge, Shravan M.; Duvall, Thomas L.; DeRosa, Marc L.
2010-01-01
We constrain the velocity spectral distribution of global-scale solar convective cells at depth using techniques of local helioseismology. We calibrate the sensitivity of helioseismic waves to large-scale convective cells in the interior by analyzing simulations of waves propagating through a velocity snapshot of global solar convection via methods of time-distance helioseismology. Applying identical analysis techniques to observations of the Sun, we are able to bound from above the magnitudes of solar convective cells as a function of spatial convective scale. We find that convection at a depth of r/R(solar) = 0.95 with spatial extent l < 30, where l is the spherical harmonic degree, comprise weak flow systems, on the order of 15 m/s or less. Convective features deeper than r/R(solar) = 0.95 are more difficult to image due to the rapidly decreasing sensitivity of helioseismic waves.
Seismology of Convection in the Sun
NASA Astrophysics Data System (ADS)
Hanasoge, Shravan
2015-08-01
Solar convection lies in extraordinary regime of dynamical parameters. Convective processes in the Sun drive global fluid circulations and magnetic fields, which in turn affect its visible outer layers (solar activity) and, more broadly, the heliosphere (space weather). The precise determination of the depth of solar convection zone, departures from adiabaticity of the temperature gradient, and the internal rotation rate as a function of latitude and depth are among the seminal contributions of helioseismology towards understanding convection in the Sun. Contemporary helioseismology, which is focused on inferring the properties of three-dimensional convective features, suggests that transport velocities are substantially smaller than theoretical predictions. Furthermore, helioseismology provides important constraints on the anisotropic Reynolds stresses that control the global dynamics of the solar convection zone. In this review, I will discuss the state of our understanding of convection in the Sun, with a focus on helioseismic diagnostics.
Modelling natural convection of fluid in cuvette
NASA Astrophysics Data System (ADS)
Kucher, D.; Manukhin, B.; Andreeva, O.; Chivilikhin, S.
2014-09-01
Convection is a process of transfer liquid from a hot region to a cool region. This phenomenon is involved in many physical processes. The main characteristic of convection is a temperature field. Modelling of convection allows to get the information about temperature field at any time of process. In this paper the results of modelling natural convection of fluid in cuvette are presented. All results are approved by experimental data. For modelling the process of natural convection Navier-Stokes equations under Boussinesq approximation were used. An experimental setup based on digital holographic interferometry was developedin order to make an experiment. The results for three stadiums of convection, such as: jet initiation, initial jet formation, jet development with formation of mushroom-shaped convective stream, are presented.
Natural convection in low-g environments
NASA Technical Reports Server (NTRS)
Grodzka, P. G.; Bannister, T. C.
1974-01-01
The present state of knowledge in the area of low-g natural convection is reviewed, taking into account a number of experiments conducted during the Apollo 14, 16, and 17 space flights. Convections due to steady low-g accelerations are considered. Steady g-levels result from spacecraft rotation, gravity gradients, solar wind, and solar pressure. Varying g-levels are produced by engine burns, attitude control maneuvers, and onboard vibrations from machinery or astronaut movement. Thermoacoustic convection in a low-g environment is discussed together with g-jitter convection, surface tension-driven convection, electrohydrodynamics under low-g conditions, phase change convection, and approaches for the control and the utilization of convection in space.
The continental drift convection cell
NASA Astrophysics Data System (ADS)
Whitehead, J. A.; Behn, Mark D.
2015-06-01
Continents on Earth periodically assemble to form supercontinents and then break up again into smaller continental blocks (the Wilson cycle). Previous highly developed numerical models incorporate fixed continents while others indicate that continent movement modulates flow. Our simplified numerical model suggests that continental drift is fundamental. A thermally insulating continent is anchored at its center to mantle flow on an otherwise stress-free surface for infinite Prandtl number cellular convection with constant material properties. Rayleigh numbers exceed 107, while continent widths and chamber lengths approach Earth's values. The Wilson cycle is reproduced by a unique, rugged monopolar "continental drift convection cell." Subduction occurs at the cell's upstream end with cold slabs dipping at an angle beneath the moving continent (as found in many continent/subduction regions on Earth). Drift enhances vertical heat transport up to 30%, especially at the core-mantle boundary, and greatly decreases lateral mantle temperature differences.
Fluid convection, constraint and causation
Bishop, Robert C.
2012-01-01
Complexity—nonlinear dynamics for my purposes in this essay—is rich with metaphysical and epistemological implications but is receiving sustained philosophical analysis only recently. I will explore some of the subtleties of causation and constraint in Rayleigh–Bénard convection as an example of a complex phenomenon, and extract some lessons for further philosophical reflection on top-down constraint and causation particularly with respect to causal foundationalism. PMID:23386955
Vegetation forcing and convective motion
Hong, X.; Leach, M.J.; Raman, S.
1995-04-01
A large irrigated vegetation area in a semiarid or relatively dry location is a strong surface forcing of thermal circulations. Several observational studies have found that such thermally induced mesoscale circulation may contribute to the triggering and development of convective clouds. In the western United States, extensive areas of irrigated farmland are surrounded by hot, dry surfaces, such as a steppe. Substantial gradients of sensible heating in the horizontal direction lead to a {open_quotes}farm breeze{close_quotes} circulation from the cooler agricultural area to the warmer steppes found at Boardman, Oregon. These thermally forced circulations may trigger convection by the related convergence and updraft motion under favorable atmospheric conditions. The role of vegetative covering in convective motion is investigated using a mesoscale numerical model. Two- and three-dimensional simulations are described. The effects of atmospheric stability, moisture in the lower atmosphere, moisture in the upper atmosphere, and horizontal heating scale on thermally induced clouds are studied. The horizontal scale of inhomogeneity is also studied using the two-dimensional model. Finally, a realistic vegetation distribution similar to that of the Boardman Regional Flux Experiment is used in the three-dimensional simulations.
Influence of convection on microstructure
NASA Technical Reports Server (NTRS)
Wilcox, William R.; Caram, Rubens; Mohanty, A. P.; Seth, Jayshree
1990-01-01
The mechanism responsible for the difference in microstructure caused by solidifying the MnBi-Bi eutectic in space is sought. The objectives for the three year period are as follows: (1) completion of the following theoretical analyses - determination of the influence of the Soret effect on the average solid composition versus distance of off-eutectic mixtures directionally solidified in the absence of convection, determination of the influence of convection on the microstructure of off-eutectic mixtures using a linear velocity profile in the adjacent melt, determination of the influence of volumetric changes during solidification on microconvection near the freezing interface and on microstructure, and determination of the influence of convection on microstructure when the MnBi fibers project out in front of the bismuth matrix; (2) search for patterns in the effect of microgravity on different eutectics (for example, eutectic composition, eutectic temperature, usual microstructure, densities of pure constituents, and density changes upon solidification); and (3) determination of the Soret coefficient and the diffusion coefficient for Mn-Bi melts near the eutectic composition, both through laboratory experiements to be performed here and from data from Shuttle experiments.
Instability of spiral convective vortex
NASA Astrophysics Data System (ADS)
Evgrafova, Anna; Andrey, Sukhanovsky; Elena, Popova
2014-05-01
Formation of large-scale vortices in atmosphere is one of the interesting problems of geophysical fluid dynamics. Tropical cyclones are examples of atmospheric spiral vortices for which convection plays an important role in their formation and evolution. Our study is focused on intensive cyclonic vortex produced by heating in the central part of the rotating layer. The previous studies made by Bogatyrev et al, showed that structure of such vortex is very similar to the structure of tropical cyclones. Qualitative observations described in (Bogatyrev, 2009) showed that the evolution of large-scale vortex in extreme regimes can be very complicated. Our main goal is the study of evolution of convective cyclonic vortex at high values of Grasshof number by PIV system. Experimental setup is a rotating cylindrical tank of fluid (radius 150 mm, depth 30 mm, free upper surface). Velocity fields for different values of heat flux were obtained and temporal and spatial structure of intensive convective vortex were studied in details. With the use of PIV data vorticity fields were reconstructed in different horizontal cross-sections. Physical interpretation of mechanisms that lead to the crucial change in the vortex structure with the growth of heat rate is described. Financial support from program of UD RAS, the International Research Group Program supported by Perm region Government is gratefully acknowledged.
Magnetohydrodynamic convection in liquid gallium.
NASA Astrophysics Data System (ADS)
Juel, Anne; Mullin, Tom
1996-11-01
Results are presented from a study of convective flow of liquid gallium confined in a rectangular cavity of length/depth ratio 4, subject to a horizontal temperature gradient. The origin of the problem lies in the area of crystal growth, where it is known that the dynamics of the fluid flow in semiconductor geometries are of vital importance in determining the quality of the crystal. Application of a magnetic field, for instance, damps out the time-dependent convection in the liquid phase that creates striations in the crystal and reduces its quality. Prior to the study of dynamical phenomena, the nature of the steady flow is investigated. In the absence of a magnetic field, a direct comparison between experimental results, the Hadley cell model and two and three-dimensional numerical simulations clearly shows that the flow is three-dimensional in nature. The effect of a uniform transverse magnetic field is then examined. Direct comparison between experimental results and three dimensional simulations shows identical damping of the convective circulation. Numerically, it is found that the magnetic field restricts the flow to 2d motion. Experimentally, this is confirmed from the measurement of isotherms. Hence, the detailed knowledge of the steady flow provides us with a robust basis for studies of time dependent behaviour.
Bifurcation phenomena in cylindrical convection
NASA Astrophysics Data System (ADS)
Tuckerman, Laurette; Boronska, K.; Bordja, L.; Martin-Witkowski, L.; Navarro, M. C.
2008-11-01
We present two bifurcation scenarios occurring in Rayleigh-Benard convection in a small-aspect-ratio cylinder. In water (Pr=6.7) with R/H=2, Hof et al. (1999) observed five convective patterns at Ra=14200. We have computed 14 stable and unstable steady branches, as well as novel time-dependent branches. The resulting complicated bifurcation diagram, can be partitioned according to azimuthal symmetry. For example, three-roll and dipole states arise from an m=1 bifurcation, four-roll and ``pizza'' branches from m=2, and the ``mercedes'' state from an m=3 bifurcation after successive saddle-node bifurcations via ``marigold'', ``mitsubishi'' and ``cloverleaf'' states. The diagram represents a compromise between the physical tendency towards parallel rolls and the mathematical requirement that primary bifurcations be towards trigonometric states. Our second investigation explores the effect of exact counter-rotation of the upper and lower bounding disks on axisymmetric flows with Pr=1 and R/H=1. The convection threshold increases and, for sufficiently high rotation, the instability becomes oscillatory. Limit cycles originating at the Hopf bifurcation are annihilated when their period becomes infinite at saddle-node-on-periodic-orbit (SNOPER) bifurcations.
Atmospheric Vortices in Shallow Convection.
NASA Astrophysics Data System (ADS)
Hess, G. D.; Spillane, K. T.; Lourensz, R. S.
1988-03-01
Observations of funnel clouds over Port Phillip Bay, Victoria, Australia, indicate that they occur during outbreaks of cool air from the Southern Ocean advecting over the relatively warm bay waters. These clouds act as tracers for shallow convection vortices with dynamics similar to large dust devils. The related phenomena of waterspouts and tornadoes differ from these vortices by requiring deep convection and downdraft and updraft interactions associated with rain processes.Deardorff (1978a) suggests that a necessary condition for the formation of dust devils is /L of the order of 100 or more, where h is the convective boundary layer height and L the Obukhov length. Calculations of /L over the bay and over land for the days of observation are consistent with this suggestion. They indicate that significant rotation may occur at /L as low as 50. This information, if confirmed, may make it possible to use boundary layer numerical models to forecast likely conditions of dust devil occurrence over mesoscale regions, which would be of benefit to pilots of light aircraft and helicopters.
Ice Nucleation in Deep Convection
NASA Technical Reports Server (NTRS)
Jensen, Eric; Ackerman, Andrew; Stevens, David; Gore, Warren J. (Technical Monitor)
2001-01-01
The processes controlling production of ice crystals in deep, rapidly ascending convective columns are poorly understood due to the difficulties involved with either modeling or in situ sampling of these violent clouds. A large number of ice crystals are no doubt generated when droplets freeze at about -40 C. However, at higher levels, these crystals are likely depleted due to precipitation and detrainment. As the ice surface area decreases, the relative humidity can increase well above ice saturation, resulting in bursts of ice nucleation. We will present simulations of these processes using a large-eddy simulation model with detailed microphysics. Size bins are included for aerosols, liquid droplets, ice crystals, and mixed-phase (ice/liquid) hydrometers. Microphysical processes simulated include droplet activation, freezing, melting, homogeneous freezing of sulfate aerosols, and heterogeneous ice nucleation. We are focusing on the importance of ice nucleation events in the upper part of the cloud at temperatures below -40 C. We will show that the ultimate evolution of the cloud in this region (and the anvil produced by the convection) is sensitive to these ice nucleation events, and hence to the composition of upper tropospheric aerosols that get entrained into the convective column.
Thermosolutal convection during dendritic solidification
NASA Technical Reports Server (NTRS)
Heinrich, J. C.; Nandapurkar, P.; Poirier, D. R.; Felicelli, S.
1989-01-01
This paper presents a mathematical model for directional solidification of a binary alloy including a dendritic region underlying an all-liquid region. It is assumed initially that there exists a nonconvecting state with planar isotherms and isoconcentrates solidifying at a constant velocity. The stability of this system has been analyzed and nonlinear calculations are performed that show the effect of convection in the solidification process when the system is unstable. Results of calculations for various cases defined by the initial temperature gradient at the dendrite tips and varying strength of the gravitational field are presented for systems involving lead-tin alloys. The results show that the systems are stable for a gravitational constant of 0.0001 g(0) and that convection can be suppressed by appropriate choice of the container's size for higher values of the gravitational constant. It is also concluded that for the lead-tin systems considered, convection in the mushy zone is not significant below the upper 20 percent of the dendritic zone, if al all.
Three types of critical convection patterns in two-layer fluid Bénard-Marangoni convection
NASA Astrophysics Data System (ADS)
Kang, Qi; Li, Lujun; Hu, Liang; Duan, Li
This paper presents the experiment on Benard-Marangoni convection of two-layer fluid. Compared with the single layer fluid convection, the two layers fluid convection depend on not only the Rayleigh number (Ra) and the Marangoni number (Ma) in each layer, but also the ratio of their depth. The theoretical investigations have shown there are three types of convection patterns at or near the convection onset, which are the mechanically coupled stationary convection, the thermally coupled stationary convection, and the time-dependent convection. In the present experiment, the high resolution PIV is used in this experiment and the convection pattern were recognized directly by the velocity field distribution. The experimental cell is rectangular cavity in our experiment. The cell is heated from below and cooled from top. Liquid FC70 and the silicon oil KF96-10CS are used. Their densities are 1.93xchmetcnvTCSC0NumberType1NegativeFalseHasSpaceTrueSourceValue103UnitNamekg103 kg/m3 and chmetcnvTCSC0NumberType1NegativeFalseHasSpaceFalseSourceValue935UnitNamekg935kg/ respectively. The rate of change of interface tension with temperature is -4.46x10-5 N/mK. Our experiment obtained the three types of critical convection patterns as predicted by theory. And the structures of convection cell are learned. The time-dependent convection is validated from experiment. The experimental results show the convection pattern at or near convection onset depends on the depth ratio strongly. When the depth ratio Hr is smaller, such as Hr=1.60, the convection style of two layer fluid is mechanically coupled. When the depth ratio is bigger, such as Hr=3.72, the convection style is thermally coupled. When the depth ratio is intermediate, such as Hr=2.13, the convection style will be time-dependent directly.
How cold pool triggers deep convection?
NASA Astrophysics Data System (ADS)
Yano, Jun-Ichi
2014-05-01
The cold pool in the boundary layer is often considered a major triggering mechanism of convection. Here, presented are basic theoretical considerations on this issue. Observations suggest that cold pool-generated convective cells is available for shallow maritime convection (Warner et al. 1979; Zuidema et al. 2012), maritime deep convection (Barnes and Garstang 1982; Addis et al. 1984; Young et al. 1995) and continental deep convection (e.g., Lima and Wilson 2008; Flamant 2009; Lothon et al. 2011; Dione et al. 2013). Moreover, numerical studies appear to suggest that cold pools promote the organization of clouds into larger structures and thereby aid the transition from shallow to deep convection (Khairoutdinov and Randall 2006, Boing et al. 2012, Schlemmer and Hohenegger, 2014). Even a cold--pool parameterization coupled with convection is already proposed (Grandpeix and Lafore 2010: but see also Yano 2012). However, the suggested link between the cold pool and deep convection so far is phenomenological at the best. A specific process that the cold pool leads to a trigger of deep convection must still to be pinned down. Naively, one may imagine that a cold pool lifts up the air at the front as it propagates. Such an uplifting leads to a trigger of convection. However, one must realize that a shift of air along with its propagation does not necessarily lead to an uplifting, and even if it may happen, it would not far exceed a depth of the cold pool itself. Thus, the uplifting can never be anything vigorous. Its thermodynamic characteristics do help much either for inducing convection. The cold-pool air is rather under rapid recovering process before it can induce convection under a simple parcel-lifting argument. The most likely reason that the cold pool may induce convection is its gust winds that may encounter an air mass from an opposite direction. This induces a strong convergence, also leading to a strong uplifting. This is an argument essentially developed
Some properties of convection in hybrid stars
NASA Astrophysics Data System (ADS)
Yudin, A. V.; Hempel, M.; Nadyozhin, D. K.; Razinkova, T. L.
2016-02-01
It is shown that the unusual thermodynamic properties of matter within the region of two-phase coexistence in hybrid stars result in a change of the standard condition for beginning of convection. In particular, the thermal flux transported by convection may be directed towards the stellar centre. We discuss favourable circumstances leading to such an effect of `inverse convection' and its possible influence on the thermal evolution of hybrid stars.
Convective cell formation in a Z pinch
NASA Astrophysics Data System (ADS)
Kesner, J.
2003-03-01
Closed field line confinement systems can develop convective cells when the magnetohydrodynamic interchange stability criterion is violated. Using a previously derived set of reduced equations [V. P. Pastukhov and N. V. Chudin, Plasma Phys. Rep. 27, 907 (2001)] it is shown that a true steady state solution can exist. For an assumed large-scale vortex pattern, the plasma pressure profile that is implied by these convective flows as well as the nonlocal heat flux resulting from the convective flows is calculated.
Convection Design of Cryogenic Piping and Components
NASA Astrophysics Data System (ADS)
McIntosh, G. E.
2006-04-01
Poor thermal performance of dewars, magnet cryostats, and other cryogenic equipment is often caused by failure of the designer to recognize the impact of enclosed free convection heat transfer. This paper describes the mechanism of internal convection in piping, vapor-cooled leads, bayonets and specialty dewars. Specific examples are given in each category. Conclusions include guidelines to avoid convection heat transfer problems and rules for correctly calculating heat leak of cryogenic piping.
Dust devil vortex generation from convective cells
NASA Astrophysics Data System (ADS)
Onishchenko, O.; Pokhotelov, O.; Horton, W.; Fedun, V.
2015-11-01
We have developed a hydrodynamic theory of the nonlinear stage of dust devil generation in a convectively unstable atmosphere with large-scale seed vertical vorticity. It is shown that convective motion in such an atmosphere transforms into dust devils extremely fast. The strong vortical structure of the dust devils can be formed in a few minutes or even in a fraction of a minute. The formation process strongly depends on the convective instability growth rate and horizontal vorticity.
Convective Instabilities in Liquid Foams
NASA Technical Reports Server (NTRS)
Veretennikov, Igor; Glazier, James A.
2004-01-01
The main goal of this work is to better understand foam behavior both on the Earth and in microgravity conditions and to determine the relation between a foam's structure and wetness and its rheological properties. Our experiments focused on the effects of the bubble size distribution (BSD) on the foam behavior under gradual or stepwise in the liquid flow rate and on the onset of the convective instability. We were able to show experimentally, that the BSD affects foam rheology very strongly so any theory must take foam texture into account.
Moisture processes accompanying convective activity
NASA Technical Reports Server (NTRS)
Sienkiewicz, M. E.; Scoggins, J. R.
1982-01-01
A moisture budget analysis was performed on data collected during the AVE 7 (May 2 to 3, 1978) and AVE-SESAME1 (April 10 to 11, 1979) experiments. Local rates-of-change of moisture were compared with average moisture divergence in the same time period. Results were presented as contoured plots in the horizontal and as vertical cross sections. These results were used to develop models of the distribution of moisture processes in the vicinity of convective areas in two layers representing lower and middle tropospheric conditions. Good correspondence was found between the residual term of the moisture budget and actual precipitation.
A Study of Detrainment from Deep Convection
NASA Astrophysics Data System (ADS)
Glenn, I. B.; Krueger, S. K.
2014-12-01
Uncertainty in the results of Global Climate Model simulations has been attributed to errors and simplifications in how parameterizations of convection coarsely represent the processes of entrainment, detrainment, and mixing between convective clouds and their environment. Using simulations of convection we studied these processes at a resolution high enough to explicitly resolve them. Two of several recently developed analysis techniques that allow insight into these processes at their appropriate scale are an Eulerian method of directly measuring entrainment and detrainment, and a Lagrangian method that uses particle trajectories to map convective mass flux over height and a cloud variable of interest. The authors of the Eulerian technique used it to show that the dynamics of shells of cold, humid air that surround shallow convective updrafts have important effects on the properties of air entrained and detrained from the updrafts. There is some evidence for the existence of such shells around deep convective updrafts as well, and that detrainment is more important than entrainment in determining the ultimate effect of the deep convection on the large scale environment. We present results from analyzing a simulation of deep convection through the Eulerian method as well as using Lagrangian particle trajectories to illustrate the role of the shell in the process of detrainment and mixing between deep convection and its environment.
A Dynamically Computed Convective Time Scale for the Kain–Fritsch Convective Parameterization Scheme
Many convective parameterization schemes define a convective adjustment time scale τ as the time allowed for dissipation of convective available potential energy (CAPE). The Kain–Fritsch scheme defines τ based on an estimate of the advective time period for deep con...
Properties of semi-convection and convective overshooting for massive stars
NASA Astrophysics Data System (ADS)
Ding, C. Y.; Li, Y.
2014-02-01
The properties of semi-convection and core convective overshooting of stars with masses of 15 and 30 M⊙ are calculated in the present article. New methods are used to deal with semi-convection. Different entropy gradients are used when adopting the Schwarzschild and Ledoux methods, which are used to confine the convective boundary and calculate the turbulent quantities: {{partial } overline{s}}/{{partial } r}=-({c_p}/{H_P})(nabla -nabla _ad) when the Schwarzschild method is adopted and {{partial } overline{s}}/{{partial } r}=-({c_p}/{H_P})(nabla -nabla _ad-nabla _{μ }) when the Ledoux method is adopted. Core convective overshooting and semi-convection are treated as a whole and their development is found to present almost opposing tendencies: more intensive core convective overshooting leads to weaker semi-convection. The influence of different parameters and convection processing methods on the turbulent quantities is analysed in this article. Increasing the mixing-length parameter α leads to more turbulent dynamic energy in the convective core and prolongs the overshooting distance but depresses the development of semi-convection. Adoption of the Ledoux method leads to overshooting extending further and semi-convection development being suppressed.
Transitions in turbulent rotating convection
NASA Astrophysics Data System (ADS)
Rajaei, Hadi; Alards, Kim; Kunnen, Rudie; Toschi, Federico; Clercx, Herman; Fluid Dynamics Lab Team
2015-11-01
This study aims to explore the flow transition from one state to the other in rotating Rayleigh-Bènard convection using Lagrangian acceleration statistics. 3D particle tracking velocimetry (3D-PTV) is employed in a water-filled cylindrical tank of equal height and diameter. The measurements are performed at the center and close to the top plate at a Rayleigh number Ra = 1.28e9 and Prandtl number Pr = 6.7 for different rotation rates. In parallel, direct numerical simulation (DNS) has been performed to provide detailed information on the boundary layers. We report the acceleration pdfs for different rotation rates and show how the transition from weakly to strongly rotating Rayleigh-Bènard affects the acceleration pdfs in the bulk and boundary layers. We observe that the shapes of the acceleration PDFs as well as the isotropy in the cell center are largely unaffected while crossing the transition point. However, acceleration pdfs at the top show a clear change at the transition point. Using acceleration pdfs and DNS data, we show that the transition between turbulent states is actually a boundary layer transition between Prandtl-Blasius type (typical of non-rotating convection) and Ekman type.
Structure in turbulent thermal convection
NASA Astrophysics Data System (ADS)
Balachandar, S.
1992-12-01
Small-scale features of vorticity, strain rate, and temperature gradients are considered in a Rayleigh-Bénard convection. The results reported are from a direct numerical simulation of turbulent convection performed in a rectangular box of aspect ratio 2√2 at a Rayleigh number of 6.5×106 and a Prandtl number of 0.72. In agreement with earlier results [Ashurst et al., Phys. Fluids 30, 2343 (1987) and Ruetsch and Maxey, Phys. Fluids A 3, 1587 (1991)], the intermediate strain rate is on an average positive, but the ratio of alpha, beta, and gamma strain rates are measured to be 5.3:1.0:-6.3. This result differs from the earlier result of 3:1:-4 obtained in homogeneous isotropic and shear turbulences. Buoyancy-induced vorticity production makes significant contribution to the overall enstrophy balance, especially close to the boundaries. Vorticity production by buoyancy is exclusively in the horizontal direction and is balanced by preferred production by stretching and tilting in the vertical direction, due to the preferred alignment of extensional alpha strain rate with the vertical direction. Such directional alignment of vorticity, strain rate, and scalar gradient is explained on the basis of preferred spatial orientation of coherent structures in thermal turbulence.
NASA Astrophysics Data System (ADS)
Khan, B. A.; Stenchikov, G. L.; Abualnaja, Y.
2014-12-01
Shallow convection has been studied in the sea breeze frontal zone along the Arabian Red Sea coast. This convection is forced by thermal and dynamic instabilities and generally is capped below 500 hPa. The thermally induced sea breeze modifies the desert Planetary Boundary Layer (PBL) and propagates inland as a density current. The leading edge of the denser marine air rapidly moves inland undercutting the hot and dry desert air mass. The warm air lifts up along the sea breeze front (SBF). Despite large moisture flux from the sea, the shallow convection in SBF does not cause precipitation on the most part of the Arabian coastal plane. The main focus of this research is to study the vertical structure and extent of convective activity in SBF and to differentiate flow regimes that lead to dry and wet convection. The Weather Research and Forecasting Model (WRF) has been employed at a high spatial resolution of 500 m to investigate the thermodynamic structure of the atmospheric column along the SBF. We found that convection occurs during offshore and cross-shore mean wind conditions; precipitation in SBF frequently develops in the southern region of the Red Sea along the high terrain of Al-Sarawat Mountains range, while on most of the days convection is dry in the middle region and further north of the Red Sea. The coherent structures in the PBL, horizontal convective rolls (HCRs) and open convective cells (OCCs), play an important role shaping interaction of SBF with the desert boundary layer. The HCRs develop in the midmorning along the mean wind vector and interact with the SBF. Later in the afternoon HCRs evolve into OCCs. The convection is strongest, where the HCR and OCC updrafts overlap with SBF and is weakest in their downdraft regions.
Convection heat transfer coefficients at convective drying of porous materials
Szentgyoergyi, S.; Toemoesy, L.; Molnar, O.
2000-07-01
Measurements proved that the convective heat transfer coefficient (h) has a larger value h{sub wet} at the constant drying rate period and after that it falls down to a minimum one: h{sub dry} in the equilibrium dried state. Measurements showed also that the heat of vaporization in the last phase of the falling drying rate period is far greater than it was in the constant drying rate period. The first measurements were made on a gypsum plate. Afterwards the authors carried out measurement research with fine glass powder and cement-perlite plate and determined h{sub wet} and h{sub dry} heat transfer coefficients as a function of Reynolds number. All of these measurements confirmed the conclusion that h{sub wet} is far greater than h{sub dry}.
OBSERVATIONS OF TRANSPORT OF TRACE GASES BY VIGOROUS CONVECTIVE CLOUDS
Cumulus convective clouds provide an important link between the mixed layer and the upper levels of the troposphere. resh boundary layer pollutants emitted naturally and anthropogenically can be transported to high altitudes during deep convective activity. he convective transpor...
Introductory Analysis of Benard-Marangoni Convection
ERIC Educational Resources Information Center
Maroto, J. A.; Perez-Munuzuri, V.; Romero-Cano, M. S.
2007-01-01
We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and…
Extremely tall convection: characteristics and controls
NASA Astrophysics Data System (ADS)
Nesbitt, S. W.; Rasmussen, K. L.
2015-12-01
Tall continental convective structures are observed in several climatological regions, and have been shown to be related with severe weather and extreme hydrologic events. Recent work has defined tall convection as regions with precipitation structures observed with spaceborne radar echo extending into the upper troposphere/lower stratosphere. While these climatological regions are known for these tall convective structures (subtropical South America, equatorial Africa, southcentral USA, South Asia), not all observed convective eventsin these regions contain strong structures, and the characteristics of the meteorological environments, including sounding profiles, that dictate the strength of the spectrum of convective systems are poorly constrained. In this study, precipitation radar (PR) data from the Tropical Rainfall Measuring Mission (TRMM) and dual-frequency precipitation radar (DPR) from the Global Precipitation Measurement (GPM) satellites will be examined alongside composites of atmospheric reanalysis data to examine the structural and meteorological environments surrounding observed tall convective systems. Environments of convective systems of various vertical extents will be contrasted with less extreme convection to infer physical causal mechanisms and to examine issues of predictability of these events.
Traveling waves and chaos in thermosolutal convection
NASA Technical Reports Server (NTRS)
Deane, A. E.; Toomre, J.; Knobloch, E.
1987-01-01
Numerical experiments on two-dimensional thermosolutal convection reveal oscillations in the form of traveling, standing, modulated, and chaotic waves. Transitions between these wave forms and steady convection are investigated and compared with theory. Such rich nonlinear behavior is possible in fluid layers of wide horizontal extent, and provides an explanation for waves observed in recent laboratory experiments with binary fluid mixtures.
Generalized convective quasi-equilibrium principle
NASA Astrophysics Data System (ADS)
Yano, Jun-Ichi; Plant, Robert S.
2016-03-01
A generalization of Arakawa and Schubert's convective quasi-equilibrium principle is presented for a closure formulation of mass-flux convection parameterization. The original principle is based on the budget of the cloud work function. This principle is generalized by considering the budget for a vertical integral of an arbitrary convection-related quantity. The closure formulation includes Arakawa and Schubert's quasi-equilibrium, as well as both CAPE and moisture closures as special cases. The formulation also includes new possibilities for considering vertical integrals that are dependent on convective-scale variables, such as the moisture within convection. The generalized convective quasi-equilibrium is defined by a balance between large-scale forcing and convective response for a given vertically-integrated quantity. The latter takes the form of a convolution of a kernel matrix and a mass-flux spectrum, as in the original convective quasi-equilibrium. The kernel reduces to a scalar when either a bulk formulation is adopted, or only large-scale variables are considered within the vertical integral. Various physical implications of the generalized closure are discussed. These include the possibility that precipitation might be considered as a potentially-significant contribution to the large-scale forcing. Two dicta are proposed as guiding physical principles for the specifying a suitable vertically-integrated quantity.
Convection in stars and heating of coronae
NASA Technical Reports Server (NTRS)
Mullan, D. J.
1991-01-01
The properties of convection in the sun and other cool stars are summarized. Recent studies of convection which have involved the use of supercomputers to model the flow of compressible gas in three dimensions are discussed. It is shown how the results of these computations may eventualy provide an understanding of how nonthermal processes heat coronal gas to temperatures of millions of degrees.
Collective phase description of oscillatory convection
Kawamura, Yoji; Nakao, Hiroya
2013-12-15
We formulate a theory for the collective phase description of oscillatory convection in Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory convection by a single degree of freedom which we call the collective phase. The theory can be considered as a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems, namely, stable time-periodic solutions to partial differential equations, representing the oscillatory convection. We derive the phase sensitivity function, which quantifies the phase response of the oscillatory convection to weak perturbations applied at each spatial point, and analyze the phase synchronization between two weakly coupled Hele-Shaw cells exhibiting oscillatory convection on the basis of the derived phase equations.
Magnetospheric convection pattern and its implications
NASA Technical Reports Server (NTRS)
Zhu, Xiaoming
1993-01-01
When we use 14 months of the Fast Plasma Experiment ion velocity measurements, the mean magnetospheric circulation pattern is constructed. It is shown that the magnetospheric convection velocity is of the order tens of kilometers per second. The convection is largely restricted to the outer magnetosphere. During magnetically active periods the convection velocity increases and the convection boundary extends to the region closer to the Earth, indicating more magnetic field flux is being transported to the dayside magnetosphere. It is also shown that the convective flows tend to follow contours of constant unit flux volume as they move around the Earth, especially on the duskside of the magnetosphere. This helps to avoid the pressure balance inconsistency often found in two-dimensional magnetotail models.
Spatial localization in rotating convection and magnetoconvection
NASA Astrophysics Data System (ADS)
Kao, H.-C.; Knobloch, E.
2014-01-01
Stationary spatially localized states are present in both rotating convection and magnetoconvection. In two-dimensional convection with stress-free boundary conditions, the formation of such states is due to the interaction between convection and a large scale mode: zonal velocity in rotating convection and magnetic potential in magnetoconvection. We develop a higher order theory, a nonlocal fifth order Ginzburg-Landau equation, to describe the effects of spatial modulation near a codimension-two point. Two different bifurcation scenarios are identified. Our results shed light on numerical studies of two-dimensional convective systems with stress-free boundary conditions. This paper is dedicated to Professor Helmut Brand on the occasion of his 60th birthday.
Penetrative Convection and Zonal Flow on Jupiter
Zhang; Schubert
1996-08-16
Measurements by the Galileo probe support the possibility that the zonal winds in Jupiter's atmosphere originate from convection that takes place in the deep hydrogen-helium interior. However, according to models based on recent opacity data and the probe's temperature measurements, there may be radiative and nonconvective layers in the outer part of the jovian interior, raising the question of how deep convection could extend to the surface. A theoretical model is presented to demonstrate that, because of predominant rotational effects and spherical geometry, thermal convection in the deep jovian interior can penetrate into any outer nonconvective layer. These penetrative convection rolls interact nonlinearly and efficiently in the model to generate and sustain a mean zonal wind with a larger amplitude than that of the nonaxisymmetric penetrative convective motions, a characteristic of the wind field observed at the cloud level on Jupiter. PMID:8688074
Natural convection around the human head.
Clark, R P; Toy, N
1975-01-01
1. Factors determining the convective flow patterns around the human head in 'still' conditions are discussed in relation to body posture. 2. The flow patterns have been visualized using a schlieren optical system which reveals that the head has a thicker 'insulating' layer of convecting air in the erect posture than in the supine position. 3. Local convective and radiative heat transfer measurements from the head have been using surface calorimeters. These results are seen to be closely related to the thickness of the convective boundary layer flows. 4. The total convective and radiative heat loss from the head of a subject in the erect and supine position has been evaluated from the local measurements. For the head of the supine subject the heat loss was found to be 30% more than when the subject was standing. PMID:1142118
Phase transitions and convection in icy satellites
NASA Technical Reports Server (NTRS)
Bercovici, D.; Schubert, G.; Reynolds, R. T.
1986-01-01
The effects of solid-solid phase changes on subsolidus convection in the large icy moons of the outer solar system are considered. Phase transitions affect convection via processes that distort the phase change boundary and/or influence buoyancy through thermal expansion. Linear stability analyses are carried out for ice layers with a phase change at the midplane. Two exothermic phase transitions (ice I - ice II, ice VI - ice VIII) and two endothermic transitions (ice I - ice III, ice II - ice V) are considered. For the exothermic cases, the phase change can either impede or enhance whole-layer convection. For the endothermic cases, the phse change always inhibits whole-layer convective overturn and tends to enforce two-layer convection. These results play some constraints on possible models of icy satellite evolution and structure.
Natural convection between concentric spheres
NASA Technical Reports Server (NTRS)
Garg, Vijay K.
1992-01-01
A finite-difference solution for steady natural convective flow in a concentric spherical annulus with isothermal walls has been obtained. The stream function-vorticity formulation of the equations of motion for the unsteady axisymmetric flow is used; interest lying in the final steady solution. Forward differences are used for the time derivatives and second-order central differences for the space derivatives. The alternating direction implicit method is used for solution of the discretization equations. Local one-dimensional grid adaptation is used to resolve the steep gradients in some regions of the flow at large Rayleigh numbers. The break-up into multi-cellular flow is found at high Rayleigh numbers for air and water, and at significantly low Rayleigh numbers for liquid metals. Excellent agreement with previous experimental and numerical data is obtained.
Two-dimensional convective turbulence
Gruzinov, A.V.; Kukharkin, N.; Sudan, R.N.
1996-02-01
We show that 2D {bold E{times}B} ionospheric turbulence of the electron density in the equatorial electrojet is isomorphic to the viscous convection of an ordinary fluid in a porous medium due to temperature gradients. Numerical simulations reveal the strong anisotropy in the turbulence, which consists of rising hot bubbles and falling cool bubbles. These bubbles break up into fingers leading to the formation of stable shear flows. After reaching a quasisteady state, the omnidirectional energy spectrum approaches a {ital k}{sup {minus}2} behavior, rather than {ital k}{sup {minus}5/3} as expected from isotropic turbulence. Physical mechanisms that lead to anisotropy are analyzed. {copyright} {ital 1996 The American Physical Society.}
New Approaches to Parameterizing Convection
NASA Technical Reports Server (NTRS)
Randall, David A.; Lappen, Cara-Lyn
1999-01-01
Many general circulation models (GCMs) currently use separate schemes for planetary boundary layer (PBL) processes, shallow and deep cumulus (Cu) convection, and stratiform clouds. The conventional distinctions. among these processes are somewhat arbitrary. For example, in the stratocumulus-to-cumulus transition region, stratocumulus clouds break up into a combination of shallow cumulus and broken stratocumulus. Shallow cumulus clouds may be considered to reside completely within the PBL, or they may be regarded as starting in the PBL but terminating above it. Deeper cumulus clouds often originate within the PBL with also can originate aloft. To the extent that our models separately parameterize physical processes which interact strongly on small space and time scales, the currently fashionable practice of modularization may be doing more harm than good.
Steady Magnetospheric Convection: A Review
NASA Astrophysics Data System (ADS)
Fairfield, D. H.
2004-12-01
On occasion, solar wind energy enters Earth's magnetosphere yet the common discrete energy-dissipation events known as magnetospheric substorms fail to occur. During these times, the magnetotail assumes a configuration where earthward of about 12 Re the tail remains in a stretched tail-like state with a thin current sheet similar to the substorm growth phase. At the same time the more distant tail attains a more relaxed configuration with a thick plasma sheet, weak lobe field and enhanced northward Bz, similar to the substorm recovery phase. Simultaneously, (1) auroral zone currents remain strong and assume a two cell DP 2 convection pattern; (2) the auroral oval is wide and optically active, particularly at its poleward and equatorward edges; (3) polar cap area remains constant and energetic particle boundaries are stable, (4) earthward plasma flow persists near the center of the tail as implied by the name steady magnetospheric convection (SMC) except that it occurs on a time scale of minutes and the flow remains bursty. These small scale flows in the tail correspond to auroral streamers that form near the poleward boundary of the oval and propagate equatorward in a few minutes time. Although SMC events have some substorm-like characteristics, such as Pi2's, particle injections and region 1-type field aligned currents with their associated westward ionospheric currents, such phenomena occur on much shorter time and spatial scales and with much smaller amplitudes than actual substorms. Modeling the global magnetic field for several specific SMC events suggest that a minimum in the equatorial tail field Bz magnitude exists near 12 Re which may correspond to the one known equilibrium field configuration that can avoid the pressure catastrophe that may correspond to substorms. This unique field configuration may permit the return of magnetic flux to the dayside that allows the persistence of the steady state field configuration.
Mesoscale convective complexes in Africa
Laing, A.G.; Fritsch, J.M. )
1993-08-01
Digitized full-disk infrared satellite imagery from the European geostationary satellite (Meteosat) for 1986 and 1987 was used to construct a climatology of mesoscale convective complexes (MCCs) in Africa. One hundred ninety-five systems formed over Africa and its near vicinity during the two-year study period. From this database, characteristics of Africa MCCs were calculated. The results indicate that these MCCs display many of the same characteristics as those found in the Americas, the Indian subcontinent, and the western Pacific region. The systems are predominantly nocturnal and tend to form over or in the immediate vicinity of land. The average lifetime of African MCCs is about 11.5 h. The size distributions of the African systems are also extremely similar to those of the Americas, the Indian subcontinent, and the western Pacific region with most systems exhibiting areas between 2 [times] 10[sup 5] and 3 [times] 10[sup 5] km[sup 2]. The monthly frequency distribution of African systems indicates that peak activity tends to occur during the period of most intense insolation. Like the MCCs in the western Pacific region and the Americas, the African MCCs tend to propagate toward the low-level high-[theta][sub e] air that feeds the convective systems. Systems over northern Africa moved toward the west-southwest, with a few developing into tropical cyclones over the Atlantic. Systems over southeastern Africa generally moved toward the northeast and east. It is concluded that the satellite-observed systems over Africa are essentially the same phenomena as the MCC populations observed over the Americas, the Indian monsoon region, and the western Pacific region. In addition, the large number of MCCs found worldwide (approximately 300-400 per year) indicate that they may be significant contributors to the global tropospheric energy budget and hydrological cycle. 46 refs., 9 figs., 1 tab.
Actively convected liquid metal divertor
NASA Astrophysics Data System (ADS)
Shimada, Michiya; Hirooka, Yoshi
2014-12-01
The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.
Convective Available Potential Energy of World Ocean
NASA Astrophysics Data System (ADS)
Su, Z.; Ingersoll, A. P.; Thompson, A. F.
2012-12-01
Here, for the first time, we propose the concept of Ocean Convective Available Potential Energy (OCAPE), which is the maximum kinetic energy (KE) per unit seawater mass achievable by ocean convection. OCAPE occurs through a different mechanism from atmospheric CAPE, and involves the interplay of temperature and salinity on the equation of state of seawater. The thermobaric effect, which arises because the thermal coefficient of expansion increases with depth, is an important ingredient of OCAPE. We develop an accurate algorithm to calculate the OCAPE for a given temperature and salinity profile. We then validate our calculation of OCAPE by comparing it with the conversion of OCAPE to KE in a 2-D numerical model. We propose that OCAPE is an important energy source of ocean deep convection and contributes to deep water formation. OCAPE, like Atmospheric CAPE, can help predict deep convection and may also provide a useful constraint for modelling deep convection in ocean GCMs. We plot the global distribution of OCAPE using data from the World Ocean Atlas 2009 (WOA09) and see many important features. These include large values of OCAPE in the Labrador, Greenland, Weddell and Mediterranean Seas, which are consistent with our present observations and understanding, but also identify some new features like the OCAPE pattern in the Antarctic Circumpolar Current (ACC). We propose that the diagnosis of OCAPE can improve our understanding of global patterns of ocean convection and deep water formation as well as ocean stratification, the meridional overturning circulation and mixed layer processes. The background of this work is briefly introduced as below. Open-ocean deep convection can significantly modify water properties both at the ocean surface and throughout the water column (Gordon 1982). Open-ocean convection is also an important mechanism for Ocean Deep Water formation and the transport of heat, freshwater and nutrient (Marshall and Schott 1999). Open
Cloud formation, convection, and stratospheric dehydration
NASA Astrophysics Data System (ADS)
Schoeberl, Mark R.; Dessler, Andrew E.; Wang, Tao; Avery, Melody A.; Jensen, Eric J.
2014-12-01
Using the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis winds, temperatures, and anvil cloud ice, we use our domain-filling, forward trajectory model combined with a new cloud module to show that convective transport of saturated air and ice to altitudes below the tropopause has a significant impact on stratospheric water vapor and upper tropospheric clouds. We find that including cloud microphysical processes (rather than assuming that parcel water vapor never exceeds saturation) increases the lower stratospheric average H2O by 10-20%. Our model-computed cloud fraction shows reasonably good agreement with tropical upper troposphere (TUT) cloud frequency observed by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument in boreal winter with poorer agreement in summer. Our results suggest that over 40% of TUT cirrus is due to convection, and it is the saturated air from convection rather than injected cloud ice that primarily contributes to this increase. Convection can add up to 13% more water to the stratosphere. With just convective hydration (convection adds vapor up to saturation), the global lower stratospheric modeled water vapor is close to Microwave Limb Sounder observations. Adding convectively injected ice increases the modeled water vapor to ~8% over observations. Improving the representation of MERRA tropopause temperatures fields reduces stratospheric water vapor by ~4%.
Magnetic Control of Solutal Buoyancy Driven Convection
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Leslie, F. W.
2003-01-01
Volumetric forces resulting from local density variations and gravitational acceleration cause buoyancy induced convective motion in melts and solutions. Solutal buoyancy is a result of concentration differences in an otherwise isothermal fluid. If the fluid also exhibits variations in magnetic susceptibility with concentration then convection control by external magnetic fields can be hypothesized. Magnetic control of thermal buoyancy induced convection in ferrofluids (dispersions of ferromagnetic particles in a carrier fluid) and paramagnetic fluids have been demonstrated. Here we show the nature of magnetic control of solutal buoyancy driven convection of a paramagnetic fluid, an aqueous solution of Manganese Chloride hydrate. We predict the critical magnetic field required for balancing gravitational solutal buoyancy driven convection and validate it through a simple experiment. We demonstrate that gravity driven flow can be completely reversed by a magnetic field but the exact cancellation of the flow is not possible. This is because the phenomenon is unstable. The technique can be applied to crystal growth processes in order to reduce convection and to heat exchanger devices for enhancing convection. The method can also be applied to impose a desired g-level in reduced gravity applications.
Seismic sounding of convection in the Sun
NASA Astrophysics Data System (ADS)
Sreenivasan, Katepalli R.
2015-11-01
Thermal convection is the dominant mechanism of energy transport in the outer envelope of the Sun (one-third by radius). It drives global fluid circulations and magnetic fields observed on the solar surface. Convection excites a broadband spectrum of acoustic waves that propagate within the interior and set up modal resonances. These acoustic waves, also called seismic waves, are observed at the surface of the Sun by space- and ground-based telescopes. Seismic sounding, the study of these seismic waves to infer the internal properties of the Sun, constitutes helioseismology. Here we review our knowledge of solar convection, especially that obtained through seismic inference. Several characteristics of solar convection, such as differential rotation, anisotropic Reynolds stresses, the influence of rotation on convection and supergranulation, are considered. On larger scales, several inferences suggest that convective velocities are substantially smaller than those predicted by theory and simulations. This discrepancy challenges the models of internal differential rotation that rely on convective stresses as a driving mechanism and provide an important benchmark for numerical simulations. In collaboration with Shravan Hanasoge, Tata Institute of Fundamental Research, Mumbai and Laurent Gizon, Max-Planck-Institut fuer Sonnensystemforschung, Goettingen.
Seismic Sounding of Convection in the Sun
NASA Astrophysics Data System (ADS)
Hanasoge, Shravan; Gizon, Laurent; Sreenivasan, Katepalli R.
2016-01-01
Thermal convection is the dominant mechanism of energy transport in the outer envelope of the Sun (one-third by radius). It drives global fluid circulations and magnetic fields observed on the solar surface. Vigorous surface convection excites a broadband spectrum of acoustic waves that propagate within the interior and set up modal resonances. These acoustic waves, also called seismic waves in this context, are observed at the surface of the Sun by space- and ground-based telescopes. Seismic sounding, the study of these seismic waves to infer the internal properties of the Sun, constitutes helioseismology. Here we review our knowledge of solar convection, especially that obtained through seismic inference. Several characteristics of solar convection, such as differential rotation, anisotropic Reynolds stresses, the influence of rotation on convection, and supergranulation, are considered. On larger scales, several inferences suggest that convective velocities are substantially smaller than those predicted by theory and simulations. This discrepancy challenges the models of internal differential rotation that rely on convective stresses as a driving mechanism and provide an important benchmark for numerical simulations.
Transition to chaos of thermocapillary convection
NASA Astrophysics Data System (ADS)
Li, Kai; Tang, Ze Mei; Aa, Yan; Hu, Wen-Rui
Transition of fluid convection to chaos in dissipative dynamical systems is a subject of great interest for both its theoretical and practical aspects in the fluid mechanics. Extensive studies have shown that there are several routes of the buoyant natural convection to chaos depending on parameters of the dissipative dynamical systems such as the Rayleigh number, the Prandtl number and geometry aspect. Another important type of natural convection is thermocapillary convection driven by the surface-tension gradient prominent in fluid systems with interface in the microgravity condition or in small-scaled terrestrial configurations (The relative importance of the gravity effect to the capillary effect is scaled by the static Bond number, , and the dynamic Bond number, , the geometrical scale of the system in the terrestrial experiments, therefore, was significantly reduced to make the capillary effect dominant). The thermocapillary convection has become one of the fundamental subjects in the microgravity fluid physics and space fluid/heat management. However, most studies now available were focused on the onset of oscillatory thermocapillary convection, the initial regime of the route to chaos. A complete route to chaos in such a new sort of dissipative system is still an attractive open question, especially in the experimental study. In present study, the route to chaos of the thermocapillary convection has been investigated. Several routes to chaos, e.g. period oscillatory convection to quasi-period oscillatory convection with 2 to 3 major frequencies, a series of successive period doubling bifurcations and their combination, of the thermocapillary flow is reported through the temperature measurements and the corresponding real time analysis of frequency spectra accomplished by Fast-Fourier-Transformation (FFT) or numerically. The corresponding phase diagrams are also provided.
Convective cell development and propagation in a mesoscale convective complex
NASA Technical Reports Server (NTRS)
Ahn, Yoo-Shin; Brundidge, Kenneth C.
1987-01-01
A case study was made of the mesoscale convective complex (MCC) which occurred over southern Oklahoma and northern Texas on 27 May 1981. This storm moved in an eastsoutheasterly direction and during much of its lifetime was observable by radars at Oklahoma City, Ok. and Stephenville, Tx. It was found that the direction of cell (VIP level 3 or more reflectivity) propagation was somewhat erratic but approximately the same as the system (VIP level 1 reflectivity) movement and the ambient wind. New cells developed along and behind the gust front make it appear that once the MCC is initiated, a synergistic relationship exists between the gust front and the MCC. The relationship between rainfall patterns and amounts and the infrared (IR) temperature field in the satellite imagery were examined. The 210 K isotherm of GOES IR imagery was found to encompass the rain area of the storm. The heaviest rainfall was in the vicinity of the VIP level 3 cells and mostly contained within the 205 K isotherm of GOES IR imagery.
Effects of Deep Convection on Atmospheric Chemistry
NASA Technical Reports Server (NTRS)
Pickering, Kenneth E.
2007-01-01
This presentation will trace the important research developments of the last 20+ years in defining the roles of deep convection in tropospheric chemistry. The role of deep convection in vertically redistributing trace gases was first verified through field experiments conducted in 1985. The consequences of deep convection have been noted in many other field programs conducted in subsequent years. Modeling efforts predicted that deep convection occurring over polluted continental regions would cause downstream enhancements in photochemical ozone production in the middle and upper troposphere due to the vertical redistribution of ozone precursors. Particularly large post-convective enhancements of ozone production were estimated for convection occurring over regions of pollution from biomass burning and urban areas. These estimates were verified by measurements taken downstream of biomass burning regions of South America. Models also indicate that convective transport of pristine marine boundary layer air causes decreases in ozone production rates in the upper troposphere and that convective downdrafts bring ozone into the boundary layer where it can be destroyed more rapidly. Additional consequences of deep convection are perturbation of photolysis rates, effective wet scavenging of soluble species, nucleation of new particles in convective outflow, and the potential fix stratosphere-troposphere exchange in thunderstorm anvils. The remainder of the talk will focus on production of NO by lightning, its subsequent transport within convective clouds . and its effects on downwind ozone production. Recent applications of cloud/chemistry model simulations combined with anvil NO and lightning flash observations in estimating NO Introduction per flash will be described. These cloud-resolving case-study simulations of convective transport and lightning NO production in different environments have yielded results which are directly applicable to the design of lightning
Skylab M518 multipurpose furnace convection analysis
NASA Technical Reports Server (NTRS)
Bourgeois, S. V.; Spradley, L. W.
1975-01-01
An analysis was performed of the convection which existed on ground tests and during skylab processing of two experiments: vapor growth of IV-VI compounds growth of spherical crystals. A parallel analysis was also performed on Skylab experiment indium antimonide crystals because indium antimonide (InSb) was used and a free surface existed in the tellurium-doped Skylab III sample. In addition, brief analyses were also performed of the microsegregation in germanium experiment because the Skylab crystals indicated turbulent convection effects. Simple dimensional analysis calculations and a more accurate, but complex, convection computer model, were used in the analysis.
Importance of combining convection with film cooling.
NASA Technical Reports Server (NTRS)
Colladay, R. S.
1972-01-01
The interaction of film and convection cooling and its effect on wall cooling efficiency is investigated analytically for two cooling schemes for advanced gas turbine applications. The two schemes are full coverage- and counterflow-film cooling. In full coverage film cooling, the cooling air issues from a large number of small discrete holes in the surface. Counterflow film cooling is a film-convection scheme with film injection from a slot geometry. The results indicate that it is beneficial to utilize as much of the cooling air heat sink as possible for convection cooling prior to ejecting it as a film.
Importance of combining convection with film cooling
NASA Technical Reports Server (NTRS)
Colladay, R. S.
1971-01-01
The interaction of film and convection cooling and its effect on wall cooling efficiency is investigated analytically for two cooling schemes for advanced gas turbine applications. The two schemes are full coverage- and counterflow-film cooling. In full coverage film cooling, the cooling air issues from a large number of small discrete holes in the surface. Counterflow film cooling is a film-convection scheme with film injection from a slot geometry. The results indicate that it is beneficial to utilize as much of the cooling air heat sink as possible for convection cooling prior to ejecting it as a film.
Transient Mixed Convection Validation for NGNP
Smith, Barton; Schultz, Richard
2015-10-19
The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.
Convective drying of sludge cake
NASA Astrophysics Data System (ADS)
Chen, Jianbo; Peng, Xiaofeng; Xue, Yuan; Lee, Duujong; Chu, Chingping
2002-08-01
This paper presented an experimental study on convective drying of waste water sludge collected from Beijing GaoBeiDian Sewage Treatment Plant, particularly on the correlation between the observed shrinkage dynamics of sludge cake and the drying curve. During the initial stage of drying the process resembles to that of a particulate bed, in which moisture diffuses and evaporates at the upper surface. Conventional drying theory assuming a diffusion-evaporating front interprets this period of drying. Consequently, owing to the very large shrinkage ratio of the dried cake, cracks emerges and propagates on and within the cake body, whence inducing evaporating channel that facilitates the water removal. This occurrence compensates the reduction of surface area for evaporation, whence extending the constant-rate period during the test. Afterwards, the cracks meet with each other and form isolated cake piles, while the subsequent drying occur mainly within these piles and the conventional theory fails. The transition between the drying on a plain cake layer and that on the isolated piles demonstrates the need to adopt distinct descriptions on these two regimes of drying for the sludge cake.
Influence of convection on microstructure
NASA Technical Reports Server (NTRS)
Wilcox, William R.; Caram, Rubens; Mohanty, A. P.; Seth, Jayshree
1990-01-01
In eutectic growth, as the solid phases grow they reject atoms to the liquid. This results in a variation of melt composition along the solid/liquid interface. In the past, mass transfer in eutectic solidification, in the absence of convection, was considered to be governed only by the diffusion induced by compositional gradients. However, mass transfer can also be generated by a temperature gradient. This is called thermotransport, thermomigration, thermal diffusion or the Soret effect. A theoretical model of the influence of the Soret effect on the growth of eutectic alloys is presented. A differential equation describing the compositional field near the interface during unidirectional solidification of a binary eutectic alloy was formulated by including the contributions of both compositional and thermal gradients in the liquid. A steady-state solution of the differential equation was obtained by applying appropriate boundary conditions and accounting for heat flow in the melt. Following that, the average interfacial composition was converted to a variation of undercooling at the interface, and consequently to microstructural parameters. The results obtained show that thermotransport can, under certain circumstances, be a parameter of paramount importance.
SURFACE INHOMOGENEITY EFFECTS ON CONVECTIVE DIFFUSION
It is suggested that convectlve scaling, with appropriate extensions, provides the most useful framework for estimating the effects of urban-scale surface inhomogeneities on diffusion in convective conditions. trong contrasts in surface heat flux exist between cropland, forests, ...
Understanding and controlling plasmon-induced convection.
Roxworthy, Brian J; Bhuiya, Abdul M; Vanka, Surya P; Toussaint, Kimani C
2014-01-01
The heat generation and fluid convection induced by plasmonic nanostructures is attractive for optofluidic applications. However, previously published theoretical studies predict only nanometre per second fluid velocities that are inadequate for microscale mass transport. Here we show both theoretically and experimentally that an array of plasmonic nanoantennas coupled to an optically absorptive indium-tin-oxide (ITO) substrate can generate >micrometre per second fluid convection. Crucially, the ITO distributes thermal energy created by the nanoantennas generating an order of magnitude increase in convection velocities compared with nanoantennas on a SiO2 base layer. In addition, the plasmonic array alters absorption in the ITO, causing a deviation from Beer-Lambert absorption that results in an optimum ITO thickness for a given system. This work elucidates the role of convection in plasmonic optical trapping and particle assembly, and opens up new avenues for controlling fluid and mass transport on the micro- and nanoscale. PMID:24445431
Understanding and controlling plasmon-induced convection
NASA Astrophysics Data System (ADS)
Roxworthy, Brian J.; Bhuiya, Abdul M.; Vanka, Surya P.; Toussaint, Kimani C.
2014-01-01
The heat generation and fluid convection induced by plasmonic nanostructures is attractive for optofluidic applications. However, previously published theoretical studies predict only nanometre per second fluid velocities that are inadequate for microscale mass transport. Here we show both theoretically and experimentally that an array of plasmonic nanoantennas coupled to an optically absorptive indium-tin-oxide (ITO) substrate can generate >micrometre per second fluid convection. Crucially, the ITO distributes thermal energy created by the nanoantennas generating an order of magnitude increase in convection velocities compared with nanoantennas on a SiO2 base layer. In addition, the plasmonic array alters absorption in the ITO, causing a deviation from Beer-Lambert absorption that results in an optimum ITO thickness for a given system. This work elucidates the role of convection in plasmonic optical trapping and particle assembly, and opens up new avenues for controlling fluid and mass transport on the micro- and nanoscale.
Tachocline dynamics: convective overshoot at stiff interfaces
NASA Astrophysics Data System (ADS)
Brown, Benjamin; Lecoanet, Daniel; Oishi, Jeffrey S.; Burns, Keaton; Vasil, Geoffrey M.
2016-05-01
The solar tachocline lies at the base of the solar convection zone. At this internal interface, motions from the unstable convection zone above overshoot and penetrate downward into the stiffly stable radiative zone below, driving gravity waves, mixing, and possibly pumping and storing magnetic fields. Here we study the dynamics of convective overshoot across very stiff interfaces with some properties similar to the internal boundary layer within the Sun. We use the Dedalus pseudospectral framework and study fully compressible dynamics at moderate to high Peclet number and low Mach number, probing a regime where turbulent transport is important. In this preliminary work, we find that the depth of convective overshoot is well described by a simple buoyancy equilibration model, and we consider implications for dynamics at the solar tachocline.
Double-diffusive convection with sidewalls
NASA Technical Reports Server (NTRS)
Mcfadden, G. B.; Coriell, S. R.; Boisvert, R. F.
1985-01-01
Stommel et al. (1956) have first described an instability, known as thermosolutal convection, thermohaline convection, or double-diffusive convection. This instability may occur in the case of a fluid in a gravitational field with two diffusing components present. The present study is concerned with the effect of sidewalls on flow in the fingering regime in the absence of applied horizontal gradients. The work was motivated by numerical results obtained on the basis of a simulation of thermosolutal convection occurring during the unidirectional solidification of a binary alloy. In this case, the unperturbed solute field in the liquid ahead of the solidifying planar interface has an exponential vertical profile because of the rejection or preferential incorporation of solute by the solid phase.
Electrodynamics of convection in the inner magnetosphere
NASA Technical Reports Server (NTRS)
Spiro, R. W.; Wolf, R. A.
1984-01-01
During the past ten years, substantial progress has been made in the development of quantitative models of convection in the magnetosphere and of the electrodynamic processes that couple that magnetosphere and ionosphere. Using a computational scheme first proposed by Vasyliunas, the convection models under consideration separate the three-dimensional problem of convection in the inner magnetosphere/ionosphere into a pair of two-dimensional problems coupled by Birkeland currents flowing between the two regions. The logic, development, and major results of the inner magnetosphere convection model are reviewed with emphasis on ionospheric and magnetospheric currents. A major theoretical result of the models has been the clarification of the relationship between the region 1/region 2 picture of field-aligned currents and the older partial ring current/tail current interruption picture of substorm dynamics.
Criterion for convection in an inhomogeneous star
NASA Technical Reports Server (NTRS)
Stothers, Richard B.; Chin, Chao-Wen
1992-01-01
To resolve the question of whether the Schwarzschild criterion or the Ledoux criterion should be used to test for convective instability in a star, a well-observed cluster of chemically inhomogeneous massive stars, in which the choice of the criterion for convection makes a crucial and easily observable difference, is required. NGC 330, a metal-poor cluster in the Small Magellanic Cloud, is ideal for this test. Its large evolved stellar population contains both blue and red supergiants, of which its many red supergiants should be absent if a gradient of mean molecular weight did not choke off rapid convective motions in the inhomogeneous region connecting the envelope and core. Thus the Ledoux criterion for convection is strongly indicated as being correct.
Internal Wave Generation by Turbulent Convection
NASA Astrophysics Data System (ADS)
Lecoanet, D.; Le Bars, M.; Burns, K. J.; Vasil, G. M.; Quataert, E.; Brown, B. P.; Oishi, J.
2015-12-01
Recent measurements suggest that a portion of the Earth's core may be stably stratified. If this is the case, then the Earth's core joins the many planetary and stellar objects which have a stably stratified region adjacent to a convective region. The stably stratified region admits internal gravity waves which can transport angular momentum, energy, and affect magnetic field generation. We describe experiments & simulations of convective excitation of internal waves in water, exploiting its density maximum at 4C. The simulations show that waves are excited within the bulk of the convection zone, opposed to at the interface between the convective and stably stratified regions. We will also present 3D simulations using a compressible fluid. These simulations provide greater freedom in choosing the thermal equilibrium of the system, and are run at higher Rayleigh number.
Supercritical droplet gasification experiments with forced convection
NASA Technical Reports Server (NTRS)
Litchford, Ron; Parigger, Chris; Jeng, San-Mou
1992-01-01
Preliminary results of a comprehensive experimental program are presented which offer the first direct observations of suspended n-heptane droplet gasifications in pure nitrogen with forced convection without the interference to optical probing associated with a flame. Measurements show attainment of a wet-bulb temperature until reduced pressures exceed about 1.0 under supercritical gas temperatures. Thereafter, temperature measurements indicate fully transient heat-up through the critical temperature. The surface is found to regress in a continuous manner with the measured temperature approaching the critical value at the end of the droplet lifetime under supercritical conditions with very mild level of convection. At increased level of convection for the same ambient conditions, similar sized droplets will undergo significant deformation during the gasification process until partially convected away as a dense vapor cloud as the critical temperature is approached.
Absolute/convective instabilities and the convective Mach number in a compressible mixing layer
NASA Technical Reports Server (NTRS)
Jackson, T. L.; Grosch, C. E.
1989-01-01
Two aspects of the stability of a compressible mixing layer: Absolute/Convective instability and the convective Mach number were considered. It was shown that, for Mach numbers less than one, the compressible mixing layer is convectively unstable unless there is an appreciable amount of backflow. Also presented was a rigorous derivation of a convective Mach number based on linear stability theory for the flow of a multi-species gas in a mixing layer. The result is compared with the heuristic definitions of others and to selected experimental results.
On-off convection: Noise-induced intermittency near the convection threshold.
Fujisaka, H; Ouchi, K; Ohara, H
2001-09-01
A phenomenological nonlinear stochastic model of intermittency experimentally observed by Behn, Lange, and John [Phys. Rev. E 58, 2047 (1998)] in the electrohydrodynamic convection in nematics under dichotomous noise is proposed. This has the structure of the two-dimensional Swift-Hohenberg equation for local convection variable with fluctuating threshold. Numerical integration of the model equation shows intermittent emergence of convective pattern. Its statistics are found to obey those known, so far, for on-off intermittency. In the course of time, although the pattern intensity changes intermittently, no evident pattern change is observed. Adding additive noise, we observe an intermittent change of convective pattern. PMID:11580416
Global aerosol effects on convective clouds
NASA Astrophysics Data System (ADS)
Wagner, Till; Stier, Philip
2013-04-01
Atmospheric aerosols affect cloud properties, and thereby the radiation balance of the planet and the water cycle. The influence of aerosols on clouds is dominated by increase of cloud droplet and ice crystal numbers (CDNC/ICNC) due to enhanced aerosols acting as cloud condensation and ice nuclei. In deep convective clouds this increase in CDNC/ICNC is hypothesised to increase precipitation because of cloud invigoration through enhanced freezing and associated increased latent heat release caused by delayed warm rain formation. Satellite studies robustly show an increase of cloud top height (CTH) and precipitation with increasing aerosol optical depth (AOD, as proxy for aerosol amount). To represent aerosol effects and study their influence on convective clouds in the global climate aerosol model ECHAM-HAM, we substitute the standard convection parameterisation, which uses one mean convective cloud for each grid column, with the convective cloud field model (CCFM), which simulates a spectrum of convective clouds, each with distinct values of radius, mixing ratios, vertical velocity, height and en/detrainment. Aerosol activation and droplet nucleation in convective updrafts at cloud base is the primary driver for microphysical aerosol effects. To produce realistic estimates for vertical velocity at cloud base we use an entraining dry parcel sub cloud model which is triggered by perturbations of sensible and latent heat at the surface. Aerosol activation at cloud base is modelled with a mechanistic, Köhler theory based, scheme, which couples the aerosols to the convective microphysics. Comparison of relationships between CTH and AOD, and precipitation and AOD produced by this novel model and satellite based estimates show general agreement. Through model experiments and analysis of the model cloud processes we are able to investigate the main drivers for the relationship between CTH / precipitation and AOD.
Numerical Study of a Convective Turbulence Encounter
NASA Technical Reports Server (NTRS)
Proctor, Fred H.; Hamilton, David W.; Bowles, Roland L.
2002-01-01
A numerical simulation of a convective turbulence event is investigated and compared with observational data. The specific case was encountered during one of NASA's flight tests and was characterized by severe turbulence. The event was associated with overshooting convective turrets that contained low to moderate radar reflectivity. Model comparisons with observations are quite favorable. Turbulence hazard metrics are proposed and applied to the numerical data set. Issues such as adequate grid size are examined.
Subcooled forced convection boiling of trichlorotrifluoroethane
NASA Technical Reports Server (NTRS)
Dougall, R. S.; Panian, D. J.
1972-01-01
Experimental heat-transfer data were obtained for the forced-convection boiling of trichlorotrifluoroethane (R-113 or Freon-113) in a vertical annular test annular test section. The 97 data points obtained covered heat transfer by forced convection, local boiling, and fully-developed boiling. Correlating methods were obtained which accurately predicted the heat flux as a function of wall superheat (boiling curve) over the range of parameters studied.
Driving forces: Slab subduction and mantle convection
NASA Technical Reports Server (NTRS)
Hager, Bradford H.
1988-01-01
Mantle convection is the mechanism ultimately responsible for most geological activity at Earth's surface. To zeroth order, the lithosphere is the cold outer thermal boundary layer of the convecting mantle. Subduction of cold dense lithosphere provides tha major source of negative buoyancy driving mantle convection and, hence, surface tectonics. There are, however, importnat differences between plate tectonics and the more familiar convecting systems observed in the laboratory. Most important, the temperature dependence of the effective viscosity of mantle rocks makes the thermal boundary layer mechanically strong, leading to nearly rigid plates. This strength stabilizes the cold boundary layer against small amplitude perturbations and allows it to store substantial gravitational potential energy. Paradoxically, through going faults at subduction zones make the lithosphere there locally weak, allowing rapid convergence, unlike what is observed in laboratory experiments using fluids with temperature dependent viscosities. This bimodal strength distribution of the lithosphere distinguishes plate tectonics from simple convection experiments. In addition, Earth has a buoyant, relatively weak layer (the crust) occupying the upper part of the thermal boundary layer. Phase changes lead to extra sources of heat and bouyancy. These phenomena lead to observed richness of behavior of the plate tectonic style of mantle convection.
EFFECTS OF PENETRATIVE CONVECTION ON SOLAR DYNAMO
Masada, Youhei; Yamada, Kohei; Kageyama, Akira
2013-11-20
Spherical solar dynamo simulations are performed. A self-consistent, fully compressible magnetohydrodynamic system with a stably stratified layer below the convective envelope is numerically solved with a newly developed simulation code based on the Yin-Yang grid. The effects of penetrative convection are studied by comparing two models with and without the stable layer. The differential rotation profile in both models is reasonably solar-like with equatorial acceleration. When considering the penetrative convection, a tachocline-like shear layer is developed and maintained beneath the convection zone without assuming any forcing. While the turbulent magnetic field becomes predominant in the region where the convective motion is vigorous, mean-field components are preferentially organized in the region where the convective motion is less vigorous. Particularly in the stable layer, the strong, large-scale field with a dipole symmetry is spontaneously built up. The polarity reversal of the mean-field component takes place globally and synchronously throughout the system regardless of the presence of the stable layer. Our results suggest that the stably stratified layer is a key component for organizing the large-scale strong magnetic field, but is not essential for the polarity reversal.
Theory and simulations of rotating convection
Barker, Adrian J.; Dempsey, Adam M.; Lithwick, Yoram
2014-08-10
We study thermal convection in a rotating fluid in order to better understand the properties of convection zones in rotating stars and planets. We first derive a mixing-length theory for rapidly rotating convection, arriving at the results of Stevenson via simple physical arguments. The theory predicts the properties of convection as a function of the imposed heat flux and rotation rate, independent of microscopic diffusivities. In particular, it predicts the mean temperature gradient, the rms velocity and temperature fluctuations, and the size of the eddies that dominate heat transport. We test all of these predictions with high resolution three-dimensional hydrodynamical simulations of Boussinesq convection in a Cartesian box. The results agree remarkably well with the theory across more than two orders of magnitude in rotation rate. For example, the temperature gradient is predicted to scale as the rotation rate to the four-fifths power at fixed flux, and the simulations yield 0.75 ± 0.06. We conclude that the mixing-length theory is a solid foundation for understanding the properties of convection zones in rotating stars and planets.
Theory and Simulations of Rotating Convection
NASA Astrophysics Data System (ADS)
Barker, Adrian J.; Dempsey, Adam M.; Lithwick, Yoram
2014-08-01
We study thermal convection in a rotating fluid in order to better understand the properties of convection zones in rotating stars and planets. We first derive a mixing-length theory for rapidly rotating convection, arriving at the results of Stevenson via simple physical arguments. The theory predicts the properties of convection as a function of the imposed heat flux and rotation rate, independent of microscopic diffusivities. In particular, it predicts the mean temperature gradient, the rms velocity and temperature fluctuations, and the size of the eddies that dominate heat transport. We test all of these predictions with high resolution three-dimensional hydrodynamical simulations of Boussinesq convection in a Cartesian box. The results agree remarkably well with the theory across more than two orders of magnitude in rotation rate. For example, the temperature gradient is predicted to scale as the rotation rate to the four-fifths power at fixed flux, and the simulations yield 0.75 ± 0.06. We conclude that the mixing-length theory is a solid foundation for understanding the properties of convection zones in rotating stars and planets.
Convection in Condensible-rich Atmospheres
NASA Astrophysics Data System (ADS)
Ding, F.; Pierrehumbert, R. T.
2016-05-01
Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO2 is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.
Convection automated logic oven control
Boyer, M.A.; Eke, K.I.
1998-03-01
For the past few years, there has been a greater push to bring more automation to the cooling process. There have been attempts at automated cooking using a wide range of sensors and procedures, but with limited success. The authors have the answer to the automated cooking process; this patented technology is called Convection AutoLogic (CAL). The beauty of the technology is that it requires no extra hardware for the existing oven system. They use the existing temperature probe, whether it is an RTD, thermocouple, or thermistor. This means that the manufacturer does not have to be burdened with extra costs associated with automated cooking in comparison to standard ovens. The only change to the oven is the program in the central processing unit (CPU) on the board. As for its operation, when the user places the food into the oven, he or she is required to select a category (e.g., beef, poultry, or casseroles) and then simply press the start button. The CAL program then begins its cooking program. It first looks at the ambient oven temperature to see if it is a cold, warm, or hot start. CAL stores this data and then begins to look at the food`s thermal footprint. After CAL has properly detected this thermal footprint, it can calculate the time and temperature at which the food needs to be cooked. CAL then sets up these factors for the cooking stage of the program and, when the food has finished cooking, the oven is turned off automatically. The total time for this entire process is the same as the standard cooking time the user would normally set. The CAL program can also compensate for varying line voltages and detect when the oven door is opened. With all of these varying factors being monitored, CAL can produce a perfectly cooked item with minimal user input.
Entropy Production in Convective Hydrothermal Systems
NASA Astrophysics Data System (ADS)
Boersing, Nele; Wellmann, Florian; Niederau, Jan
2016-04-01
Exploring hydrothermal reservoirs requires reliable estimates of subsurface temperatures to delineate favorable locations of boreholes. It is therefore of fundamental and practical importance to understand the thermodynamic behavior of the system in order to predict its performance with numerical studies. To this end, the thermodynamic measure of entropy production is considered as a useful abstraction tool to characterize the convective state of a system since it accounts for dissipative heat processes and gives insight into the system's average behavior in a statistical sense. Solving the underlying conservation principles of a convective hydrothermal system is sensitive to initial conditions and boundary conditions which in turn are prone to uncertain knowledge in subsurface parameters. There exist multiple numerical solutions to the mathematical description of a convective system and the prediction becomes even more challenging as the vigor of convection increases. Thus, the variety of possible modes contained in such highly non-linear problems needs to be quantified. A synthetic study is carried out to simulate fluid flow and heat transfer in a finite porous layer heated from below. Various two-dimensional models are created such that their corresponding Rayleigh numbers lie in a range from the sub-critical linear to the supercritical non-linear regime, that is purely conductive to convection-dominated systems. Entropy production is found to describe the transient evolution of convective processes fairly well and can be used to identify thermodynamic equilibrium. Additionally, varying the aspect ratio for each Rayleigh number shows that the variety of realized convection modes increases with both larger aspect ratio and higher Rayleigh number. This phenomenon is also reflected by an enlarged spread of entropy production for the realized modes. Consequently, the Rayleigh number can be correlated to the magnitude of entropy production. In cases of moderate
Tropical Convection's Roles in Tropical Tropopause Cirrus
NASA Technical Reports Server (NTRS)
Boehm, Matthew T.; Starr, David OC.; Verlinde, Johannes; Lee, Sukyoung
2002-01-01
Remote sensing observations reveal the frequent occurrence of tropopause cirrus, thin cirrus layers located near the tropical cold-point tropopause. Here, we present a theory in which tropical convection plays several important roles in tropopause cirrus formation. First, tropical convection is the primary means by which the moisture required for tropopause cirrus formation is transported into the upper troposphere. However, previous studies suggest that this convection rarely penetrates to the altitudes at which tropopause cirrus layers are observed, suggesting that additional vertical moisture transport is required to explain tropopause cirrus formation. We propose a mechanism for explaining this transport in which tropical convection plays the key role. According to this hypothesis, the transport is accomplished by meridional circulations that develop within the tropopause transition layer (TTL) in response to momentum transport by Rossby waves generated by tropical convection. Results of a series of global scale model runs designed to test this hypothesis will be presented. In addition, reanalyses vertical velocity data will be examined for evidence of the expected correlation between large-scale rising motion within the TTL and tropical convection. Once moisture is present near the cold-point tropopause, large-scale cooling is required to initiate tropopause cirrus formation. One source of this cooling is stratospheric tropical waves induced by tropical convection, as we will show using a time series of radiosonde temperature data superimposed with data on cloud occurrence from the DOE ARM Nauru99 field experiment. Observations of the global characteristics of these waves from a longer time series of reanalysis data will also be presented.
Tornadoes and downbursts in the context of generalized planetary scales
NASA Technical Reports Server (NTRS)
Fujita, T. T.
1981-01-01
In order to cover a wide range of horizontal dimensions of airflow, the paper proposes a series of five scales, maso, meso, miso (to be read as my-so), moso and muso arranged in the order of the vowels, A, E, I, O, U. The dimensions decrease by two orders of magnitude per scale, beginning with the planet's equator length chosen to be the maximum dimension of masoscale for each planet. Mesoscale highs and lows were described on the basis of mesoanalyses, while sub-mesoscale disturbances were depicted by cataloging over 20,000 photographs of wind effects taken from low-flying aircraft during the past 15 years. Various motion thus classified into these scales led to a conclusion that extreme winds induced by thunderstorms are associated with misoscale and mososcale airflow spawned by the parent, mesoscale disturbances.
Tornadoes and Downbursts in the Context of Generalized Planetary Scales.
NASA Astrophysics Data System (ADS)
Fujita, T. Theodore
1981-08-01
In order to cover a wide range of horizontal dimensions of airflow, the author proposes a series of five scales, maso, meso, miso (to be read as my-so), moso and muso arranged in the order of the vowels, A, E, 1, O, U. The dimensions decrease by two orders of magnitude per scale, beginning with the planet's equator length chosen to be the maximum dimension of masoscale for each planet.Mesoscale highs and lows were described on the basis of mesoanalyses, while sub-mesoscale disturbances were depicted by cataloging over 20 000 photographs of wind effects taken from low-flying aircraft during the past 15 years. Various motion thus classified into these scales led to a conclusion that extreme winds induced by thunderstorms are associated with misoscale and mososcale airflow spawned by the parent. mesoscale disturbances.
NASA Astrophysics Data System (ADS)
Majda, Andrew J.; Khouider, Boualem; Frenkel, Yevgeniy
2015-02-01
Atmospheric convection has the striking capability to organize itself into a hierarchy of cloud clusters and super-clusters on scales ranging from the convective cell of a few kilometres to planetary scale disturbances such as the Madden-Julian oscillation. It is widely accepted that this phenomenon is due in large part to the two-way coupling between convective processes and equatorially trapped waves and planetary scale flows in general. However, the physical mechanisms responsible for this multiscale organization and the associated across-scale interactions are poorly understood. The two main peculiarities of the tropics are the vanishing of the Coriolis force at the equator and the abundance of mid-level moisture. Here we test the effect of these two physical properties on the organization of convection and its interaction with gravity waves in a simplified primitive equation model for flows parallel to the equator. Convection is represented by deterministic as well as stochastic multicloud models that are known to represent organized convection and convectively coupled waves quite well. It is found here that both planetary rotation and mid-troposphere moisture are important players in the diminishing of organized convection and convectively coupled gravity wave activity in the subtropics and mid-latitudes. The meridional mean circulation increases with latitude while the mean zonal circulation is much shallower and is dominated by mid-level jets, reminiscent of a second baroclinic mode circulation associated with a congestus mode instability in the model. This is consistent with the observed shallow Hadley and Walker circulations accompanied by congestus cloud decks in the higher latitude tropics and sub-tropics. Moreover, deep convection activity in the stochastic model simulations becomes very patchy and unorganized as the computational domain is pushed towards the subtropics and mid-latitudes. This is consistent with previous work based on cloud resolving
Driving mechanism of the nightside ionospheric convection
NASA Astrophysics Data System (ADS)
Kikuchi, T.
2001-12-01
Magnetometer and SuperDARN observations provided evidence of the instantaneous reaction of ionospheric convection on the dayside and nightside. The AMIE analyses revealed that the potential pattern did not move but remained nearly at fixed locations. SuperDARN observations demonstrated that the plasma motion in the nightside ionosphere was intensified immediately after the motion of dayside ionospheric plasma was intensified within a resolution of the measurement (2 min). The convection in the night-side polar ionosphere would cause the plasma convection in the near-earth magnetotail. In the companion paper (Hashimoto and Kikuchi, this meeting) we demonstrate that the growth phase signature at the geosynchronous orbit and the ground magnetic signatures of the partial ring currents developed several minutes after the magnetic reconnection at the dayside magnetopause. These results suggest that the electric field responsible for the convection in the near-Earth magnetotail propagated from the night-side polar ionosphere after having propagated from the magnetosphere to the polar ionosphere on the dayside. In order to explain the quick response of the nightside ionospheric convection, we examine possible propagation modes that could transmit the convection electric field from the dayside outer magnetosphere to the nightside ionosphere. The magnetospheric convection may be generated either by accumulation of the FTEs or by the dynamo action in the cusp and the HLBL. In either case, the electric field propagates from the dayside magnetosphere to the nightside ionosphere within a few minutes. One possible propagation mode would be the magnetosonic wave propagating across the geomagnetic field and the other is the shear Alfvén mode propagating parallel to the geomagnetic field. The magnetosonic waves would be totally reflected at the ionosphere and the resultant electric field would be vanished almost completely. On the other hand, the convective motion of the plasma can
Convective Regimes in Crystallizing Basaltic Magma Chambers
NASA Astrophysics Data System (ADS)
Gilbert, A. J.; Neufeld, J. A.; Holness, M. B.
2015-12-01
Cooling through the chamber walls drives crystallisation in crustal magma chambers, resulting in a cumulate pile on the floor and mushy regions at the walls and roof. The liquid in many magma chambers, either the bulk magma or the interstitial liquid in the mushy regions, may convect, driven either thermally, due to cooling, or compositionally, due to fractional crystallization. We have constructed a regime diagram of the possible convective modes in a system containing a basal mushy layer. These modes depend on the large-scale buoyancy forcing characterised by a global Rayleigh number and the proportion of the chamber height constituting the basal mushy region. We have tested this regime diagram using an analogue experimental system composed of a fluid layer overlying a pile of almost neutrally buoyant inert particles. Convection in this system is driven thermally, simulating magma convection above and within a porous cumulate pile. We observe a range of possible convective regimes, enabling us to produce a regime diagram. In addition to modes characterised by convection of the bulk and interstitial fluid, we also observe a series of regimes where the crystal pile is mobilised by fluid motions. These regimes feature saltation and scouring of the crystal pile by convection in the bulk fluid at moderate Rayleigh numbers, and large crystal-rich fountains at high Rayleigh numbers. For even larger Rayleigh numbers the entire crystal pile is mobilised in what we call the snowglobe regime. The observed mobilisation regimes may be applicable to basaltic magma chambers. Plagioclase in basal cumulates crystallised from a dense magma may be a result of crystal mobilisation from a plagioclase-rich roof mush. Compositional convection within such a mush could result in disaggregation, enabling the buoyant plagioclase to be entrained in relatively dense descending liquid plumes and brought to the floor. The phenocryst load in porphyritic lavas is often interpreted as a
The potential for free and mixed convection in sedimentary basins
Raffensperger, J.P.; Vlassopoulos, D.
1999-01-01
Free thermal convection and mixed convection are considered as potential mechanisms for mass and heat transport in sedimentary basins. Mixed convection occurs when horizontal flows (forced convection) are superimposed on thermally driven flows. In cross section, mixed convection is characterized by convection cells that migrate laterally in the direction of forced convective flow. Two-dimensional finite-element simulations of variable-density groundwater flow and heat transport in a horizontal porous layer were performed to determine critical mean Rayleigh numbers for the onset of free convection, using both isothermal and semi-conductive boundaries. Additional simulations imposed a varying lateral fluid flux on the free-convection pattern. Results from these experiments indicate that forced convection becomes dominant, completely eliminating buoyancy-driven circulation, when the total forced-convection fluid flux exceeds the total flux possible due to free convection. Calculations of the thermal rock alteration index (RAI=q????T) delineate the patterns of potential diagenesis produced by fluid movement through temperature gradients. Free convection produces a distinct pattern of alternating positive and negative RAIs, whereas mixed convection produces a simpler layering of positive and negative values and in general less diagenetic alteration. ?? Springer-Verlag.
CONVECTIVE BABCOCK-LEIGHTON DYNAMO MODELS
Miesch, Mark S.; Brown, Benjamin P.
2012-02-20
We present the first global, three-dimensional simulations of solar/stellar convection that take into account the influence of magnetic flux emergence by means of the Babcock-Leighton (BL) mechanism. We have shown that the inclusion of a BL poloidal source term in a convection simulation can promote cyclic activity in an otherwise steady dynamo. Some cycle properties are reminiscent of solar observations, such as the equatorward propagation of toroidal flux near the base of the convection zone. However, the cycle period in this young sun (rotating three times faster than the solar rate) is very short ({approx}6 months) and it is unclear whether much longer cycles may be achieved within this modeling framework, given the high efficiency of field generation and transport by the convection. Even so, the incorporation of mean-field parameterizations in three-dimensional convection simulations to account for elusive processes such as flux emergence may well prove useful in the future modeling of solar and stellar activity cycles.
Are steady magnetospheric convection events prolonged substorms?
NASA Astrophysics Data System (ADS)
Walach, M.-T.; Milan, S. E.
2015-03-01
Magnetospheric modes, including substorms, sawtooth events, and steady magnetospheric convection events, have in the past been described as different responses of the magnetosphere to coupling with the solar wind. Using previously determined event lists for sawtooth events, steady magnetospheric convection events, and substorms, we produce a statistical study of these event types to examine their similarities and behavior in terms of solar wind parameters, auroral brightness, open magnetospheric flux, and geomagnetic indices. A superposed epoch analysis shows that individual sawteeth show the same signatures as substorms but occur during more extreme cases of solar wind driving as well as geomagnetic activity. We also explore the limitations of current methods of identifying steady magnetospheric convection events and explain why some of those events are flagged inappropriately. We show that 58% of the steady magnetospheric convection events considered, as identified by criteria defined in previous studies are part of a prolonged version of substorms due to continued dayside driving during expansion phase. The remaining 42% are episodes of enhanced magnetospheric convection, occurring after extended periods of dayside driving.
Convection in Oblate Late-Type Stars
NASA Astrophysics Data System (ADS)
Wang, Junfeng
2015-08-01
In this talk, we present recent investigations of the convection, oblateness and differential rota-tion in rapidly rotating late-type stars with a novel and powerful Compressible High-ORder Un-structured Spectral-difference (CHORUS) code (J. Comput. Physics Vol. 290, 190-211, 2015). Recent observations have revealed the drastic effects of rapid rotation on stellar structure, including centrifugal deformation and gravity darkening. The centrifugal force counteracts gravity, causing the equatorial region to expand. Consequently, rapidly rotating stars are oblate and cannot be described by an one-dimensional spherically symmetric model. If convection establishes a substantial differential rotation, as in the envelopes of late-type stars, this can considerably increase the oblateness. We have successfully extended the CHORUS code to model rapidly rotating stars on fixed unstructured grids. In the CHORUS code, the hydrodynamic equations are discretized by a robust and efficient high-order Spectral Difference Method (SDM). The discretization stencil of the spectral difference method is compact and advantageous for parallel processing. CHORUS has been verified by comparing to spherical anelastic convection simulations on benchmark problems. This talk will be centred on the first global simulations by CHORUS for convection in oblate stars with different rotating rates. We quantify the influence of the oblateness on the mean flows and the thermal structure of the convection zone through these new simulations and implications of these results for stellar observations will be discussed.
Heterogeneous nanofluids: natural convection heat transfer enhancement
2011-01-01
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755
Heterogeneous nanofluids: natural convection heat transfer enhancement.
Oueslati, Fakhreddine Segni; Bennacer, Rachid
2011-01-01
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755
Heterogeneous nanofluids: natural convection heat transfer enhancement
NASA Astrophysics Data System (ADS)
Oueslati, Fakhreddine Segni; Bennacer, Rachid
2011-12-01
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case.
Onset of Natural Convection in Saline Aquifers
NASA Astrophysics Data System (ADS)
Riaz, A.
2013-05-01
Sequestration of carbon dioxide in saline aquifers has emerged as the preferred method of permanently storing CO2 in the subsurface. In order to be successful over geologic time scales, sequestration in saline aquifers relies upon enhanced dissolution of CO2 in brine by natural convection. In this talk we review the progress made thus far towards the modeling and prediction of the onset time for natural convection that occurs due to an unstable stratification of aqueous CO2. We show how the onset of natural convection is connected to a preceding event of the onset of instability with respect to small amplitude perturbations that originate within the aqueous boundary layer. Our analysis indicates that the onset time for instability is uncertain within an initial transient period where perturbation growth depends on the specific form of the initial condition. A constrained adjoint based optimization is employed to determine the upper bound and the mean of perturbation growth. With the help of a weakly nonlinear analysis, we show that the time at which convection initiates is associated with fixed perturbation amplitude. The influence of permeability heterogeneity is studied with this approach. For certain permeability structures, the marginal stability curve bifurcates to form multiple stable and unstable zones in the space of the perturbation wavenumber and time. The transition toward bifurcation governs the behavior of the most dangerous mode in the linear regime and determines the route to the onset of natural convection.
Purple fingers: convection in carbon sequestration
NASA Astrophysics Data System (ADS)
Slim, Anja; Bandi, Mahesh; Mahadevan, L.
2011-11-01
In geological carbon sequestration, CO2 injected into a saline formation is less dense than the resident brine and floats above it. It is slightly soluble in brine and progressively dissolves. Brine with dissolved CO2 is slightly denser than ``pure'' brine giving the potential for convective overturning. We experimentally study the dissolution process from first contact between CO2 and brine through onset of convection to almost complete saturation for Rayleigh numbers between 80 and 1200. We present an analogue experiment using potassium permanganate as our solute, which closely mimics relevant CO2 properties. We describe the different dynamical regimes and connect these with trends in several global measures, including the dissolution flux. We find onset of convection using both amplitude and flux deviations from pure diffusion.
Entropy in Adiabatic Regions of Convection Simulations
NASA Astrophysics Data System (ADS)
Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre
2016-05-01
One of the largest sources of uncertainty in stellar models is caused by the treatment of convection in stellar envelopes. One-dimensional stellar models often make use of the mixing length or equivalent approximations to describe convection, all of which depend on various free parameters. There have been attempts to rectify this by using 3D radiative-hydrodynamic simulations of stellar convection, and in trying to extract an equivalent mixing length from the simulations. In this Letter, we show that the entropy of the deeper, adiabatic layers in these simulations can be expressed as a simple function of {log}g and {log}{T}{{eff}}, which holds potential for calibrating stellar models in a simple and more general manner.
Buoyant currents arrested by convective dissolution
NASA Astrophysics Data System (ADS)
MacMinn, Christopher W.; Juanes, Ruben
2013-05-01
When carbon dioxide (CO2) dissolves into water, the density of water increases. This seemingly insubstantial phenomenon has profound implications for geologic carbon sequestration. Here we show, by means of laboratory experiments with analog fluids, that the up-slope migration of a buoyant current of CO2 is arrested by the convective dissolution that ensues from a fingering instability at the moving CO2-groundwater interface. We consider the effectiveness of convective dissolution as a large-scale trapping mechanism in sloping aquifers, and we show that a small amount of slope is beneficial compared to the horizontal case. We study the development and coarsening of the fingering instability along the migrating current and predict the maximum migration distance of the current with a simple sharp-interface model. We show that convective dissolution exerts a powerful control on CO2 plume dynamics and, as a result, on the potential of geologic carbon sequestration.
Thermoelectric convection in a variable temperature field
NASA Astrophysics Data System (ADS)
Belyaev, A. V.; Smorodin, B. L.
2008-03-01
We have studied the convective instability of a horizontal layer of a liquid semiconductor or an ionic melt in the presence of a variable temperature gradient under microgravity conditions in the case where an excess charge can appear only as a result of the thermostimulated diffusion. Thresholds for the onset of thermoelectric convective instability are determined. It is established that, under variable thermal action with a zero mean value, perturbations of a subharmonic response are absent. Depending on the amplitude and frequency of modulation and on the physical properties of the semiconductor (or the melt), synchronous perturbations are differently manifested and belong to various classes. The amplitudes and frequencies of an external action necessary for the effective suppression of thermoelectric convection are determined.
Eclogites, pyroxene geotherm, and layered mantle convection.
Basu, A R; Ongley, J S; Macgregor, I D
1986-09-19
Temperatures of equilibration for the majority (81 percent) of the eclogite xenoliths of the Roberts Victor kimberlite pipe in South Africa range between 1000 degrees and 1250 degrees C, falling essentially on the gap of the lower limb of the subcontinental inflected geotherm derived from garnet peridotite xenoliths. In view of the Archean age (>2.6 x 10(9) years) of these eclogites and their stratigraphic position on the geotherm, it is proposed that the inflected part of the geotherm represents the convective boundary layer beneath the conductive lid of the lithospheric plate. The gradient of 8 Celsius degrees per kilometer for the inflection is characteristic of a double thermal boundary layer and suggests layered convection rather than whole mantle convection for the earth. PMID:17843357
A new conceptual model of convection
Walcek, C.
1995-09-01
Classical cumulus parameterizations assume that cumulus clouds are entraining plumes of hot air rising through the atmosphere. However, ample evidence shows that clouds cannot be simulated using this approach. Dr. Walcek suggests that cumulus clouds can be reasonably simulated by assuming that buoyant plumes detrain mass as they rise through the atmosphere. Walcek successfully simulates measurements of tropical convection using this detraining model of cumulus convection. Comparisons with measurements suggest that buoyant plumes encounter resistance to upward movement as they pass through dry layers in the atmosphere. This probably results from turbulent mixing and evaporation of cloud water, which generates negatively buoyant mixtures which detrain from the upward moving plume. This mass flux model of detraining plumes is considerably simpler than existing mass flux models, yet reproduces many of the measured effects associated with convective activity. 1 fig.
Numerical Archetypal Parameterization for Mesoscale Convective Systems
NASA Astrophysics Data System (ADS)
Yano, J. I.
2015-12-01
Vertical shear tends to organize atmospheric moist convection into multiscale coherent structures. Especially, the counter-gradient vertical transport of horizontal momentum by organized convection can enhance the wind shear and transport kinetic energy upscale. However, this process is not represented by traditional parameterizations. The present paper sets the archetypal dynamical models, originally formulated by the second author, into a parameterization context by utilizing a nonhydrostatic anelastic model with segmentally-constant approximation (NAM-SCA). Using a two-dimensional framework as a starting point, NAM-SCA spontaneously generates propagating tropical squall-lines in a sheared environment. A high numerical efficiency is achieved through a novel compression methodology. The numerically-generated archetypes produce vertical profiles of convective momentum transport that are consistent with the analytic archetype.
Viscous stratification of the earth and convection
NASA Technical Reports Server (NTRS)
Elsasser, W. M.
1972-01-01
The shallow model of the earth's mantle is discussed along with a variety of geophysical arguments for its correctness and against the existence of deep convection. The main agrument is summarized in the proposal that the astheno sphere is less viscous (by a factor of 10 to 100) than has generally been assumed. In this shallow model, the return flow is essentially through the asthenosphere. The dynamical agent is the steep temperature gradient in the upper mantle. Speculations as to the historical variation of this gradient are advanced. The effects on the model of a nonuniform earth aggregation are considered and shown to favor shallow convection as well as a top convective layer (lithosphere plus asthenosphere) whose depth increases slowly over the earth's life, leading to a tectonic activity that increases gradually with time.
Mineral Dust Impacts on Organized Convection Anvils
NASA Astrophysics Data System (ADS)
Seigel, R. B.; van den Heever, S. C.; Saleeby, S.
2012-12-01
Mineral dust in the atmosphere impacts both radiative and microphysical processes. As it is arguably the most abundant aerosol species in the world, dust plays a large role in the global energy budget. In order to understand its global distribution through transport, we must first understand how deep convective clouds microphysically process and subsequently vent mineral dust. This research utilizes a numerically simulated idealized squall line to (1) investigate the impact of mineral dust on convective anvils and aerosol venting, and (2) assess the aerosol indirect effect. To accomplish these tasks, we use the Regional Atmospheric Modeling System (RAMS) set up as a convection-resolving model (CRM). The CRM contains aerosol and microphysical schemes that allow radiatively active mineral dust particles to nucleate as cloud drops and ice crystals, replenish upon evaporation and sublimation, be tracked throughout hydrometeor transition, and scavenge by precipitation and dry sedimentation. Four simulations of the squall line are performed in order to directly assess the individual contributions of radiation and microphysics to the aerosol indirect effects from mineral dust. After three hours into the simulation of a squall line, the four sensitivity simulations are performed by toggling: (1) radiation off and dust not microphysically active; (2) radiation on and dust not microphysically active; (3) radiation off and dust microphysically active; and (4) radiation on and dust microphysically active. The systematic toggling between radiation on and dust being microphysically active allows for direct quantification of mineral dust impacts on various convective and radiative processes governing the squall line. As expansive organized convection anvils are greatly important for both regional and global radiation budgets, this research will highlight both mineral dusts impacts on the anvil region and the venting process of dust in the wake of deep convection.
Free convection in the Matian atmosphere
NASA Technical Reports Server (NTRS)
Clow, G. D.; Haberle, R. M.
1990-01-01
The 'free convective' regime for the Martian atmospheric boundary layer (ABL) was investigated. This state occurs when the mean windspeed at the top of the ABL drops below some critical value U(sub c) and positive buoyant forces are present. Such forces can arise either from vertical temperature or water vapor gradients across the atmospheric surface layer. During free convection, buoyant forces drive narrow plumes that ascend to the inversion height with a return circulation consisting of broad slower-moving downdraughts. Horizontal pressure, temperature, windspeed, and water vapor fluctuations resulting form this circulation pattern can be quite large adjacent to the ground (within the surface layer). The local turbulent fluctuations cause non-zero mean surface stresses, sensible heat fluxes, and latent heat fluxes, even when the mean regional windspeed is zero. Although motions above the surface layer are insensitive to the nature of the surface, the sensible and latent heat fluxes are primarily controlled by processes within the interfacial sublayer immediately adjacent to the ground during free convection. Thus the distinction between aerodynamically smooth and rough airflow within the interfacial sublayer is more important than for the more typical situation where the mean regional windspeed is greater than U(sub c). Buoyant forces associated with water vapor gradients are particularly large on Mars at low pressures and high temperatures when the surface relative humidity is 100 percent, enhancing the likelihood of free convection under these conditions. On this basis, Ingersol postulated the evaporative heat losses from an icy surface on Mars at 237 K and current pressures would exceed the available net radiative flux at the surface, thus prohibiting ice from melting at low atmospheric pressures. Schumann has developed equations describing the horizontal fluctuations and mean vertical gradients occurring during free convection. Schumann's model was
Impacts of Convective Triggering on Convective Variability in a Climate Model
NASA Astrophysics Data System (ADS)
Wang, Y. C.
2015-12-01
In this study, we investigated the impacts of the triggering designs of the deep convection scheme on convective variability from diurnal rainfall cycle to intraseasonal rainfall variability by using NCAR CAM5 model. Using single-column simulations at the Southern Great Plains site, we found that the underestimated nighttime rainfall of diurnal cycle can be greatly improved when two convective triggering designs from the Simplified Arakawa-Schubert scheme (SAS) are implemented into the default Zhang-Mcfarlane (ZM) scheme. We further conducted AMIP-type climate simulations with this modified ZM scheme (ZMMOD), and found that improvements can also be seen for the diurnally propagating convection over topographical regions, such as Maritime Continent and the western coast of Columbia. We further examined the rainfall variability from synoptic to intraseasonal scales, and found that using ZMMOD scheme increases rainfall variability of 2-10-day over South America and Africa land regions. However, this improvement does not seem to transfer to the intraseasonal convective organization (20-100 days), such as the MJO. This study demonstrates the importance of convective triggering and its impacts on convective variability. This work is still on-going to understand the physical processes of such impacts and how they might affect climate systems through multiscale interactions.
Convective, intrusive geothermal plays: what about tectonics?
NASA Astrophysics Data System (ADS)
Santilano, A.; Manzella, A.; Gianelli, G.; Donato, A.; Gola, G.; Nardini, I.; Trumpy, E.; Botteghi, S.
2015-09-01
We revised the concept of convective, intrusive geothermal plays, considering that the tectonic setting is not, in our opinion, a discriminant parameter suitable for a classification. We analysed and compared four case studies: (i) Larderello (Italy), (ii) Mt Amiata (Italy), (iii) The Geysers (USA) and (iv) Kizildere (Turkey). The tectonic settings of these geothermal systems are different and a matter of debate, so it is hard to use this parameter, and the results of classification are ambiguous. We suggest a classification based on the age and nature of the heat source and the related hydrothermal circulation. Finally we propose to distinguish the convective geothermal plays as volcanic, young intrusive and amagmatic.
Double-diffusive inner core convective translation
NASA Astrophysics Data System (ADS)
Deguen, Renaud; Alboussière, Thierry; Labrosse, Stéphane
2016-04-01
The hemispherical asymmetry of the inner core has been interpreted as resulting form a high-viscosity mode of inner core convection, consisting in a translation of the inner core. With melting on one hemisphere and crystallization on the other one, inner core translation would impose a strongly asymmetric buoyancy flux at the bottom of the outer core, with likely strong implications for the dynamics of the outer core and the geodynamo. The main requirement for convective instability in the inner core is an adverse radial density gradient. While older estimates of the inner core thermal conductivity favored a superadiabatic temperature gradient and the existence of thermal convection, the much higher values recently proposed makes thermal convection very unlikely. Compositional convection might be a viable alternative to thermal convection: an unstable compositional gradient may arise in the inner core either because the light elements present in the core are predicted to become increasingly incompatible as the inner core grows (Gubbins et al. 2013), or because of a possibly positive feedback of the development of the F-layer on inner core convection. Though the magnitude of the destabilizing effect of the compositional field is predicted to be similar to or smaller than the stabilizing effect of the thermal field, the huge difference between thermal and chemical diffusivities implies that double-diffusive instabilities can still arise even if the net density decreases upward. We propose here a theoretical and numerical study of double diffusive convection in the inner core that demonstrate that a translation mode can indeed exist if the compositional field is destabilizing, even if the temperature profile is subadiabatic, and irrespectively of the relative magnitude of the destabilizing compositional gradient and stabilizing temperature field. The predicted inner core translation rate is similar to the mean inner core growth rate, which is more consistent with
Towards high-resolution mantle convection simulations
NASA Astrophysics Data System (ADS)
Höink, T.; Richards, M. A.; Lenardic, A.
2009-12-01
The motion of tectonic plates at the Earth’s surface, earthquakes, most forms of volcanism, the growth and evolution of continents, and the volatile fluxes that govern the composition and evolution of the oceans and atmosphere are all controlled by the process of solid-state thermal convection in the Earth’s rocky mantle, with perhaps a minor contribution from convection in the iron core. Similar processes govern the evolution of other planetary objects such as Mars, Venus, Titan, and Europa, all of which might conceivably shed light on the origin and evolution of life on Earth. Modeling and understanding this complicated dynamical system is one of the true “grand challenges” of Earth and planetary science. In the past three decades much progress towards understanding the dynamics of mantle convection has been made, with the increasing aid of computational modeling. Numerical sophistication has evolved significantly, and a small number of independent codes have been successfully employed. Computational power continues to increase dramatically, and with it the ability to resolve increasingly finer fluid mechanical structures. Yet, the perhaps most often cited limitation in numerical modeling based publications is still the limitation of computing power, because the ability to resolve thermal boundary layers within the convecting mantle (e.g., lithospheric plates), requires a spatial resolution of ~ 10 km. At present, the largest supercomputing facilities still barely approach the power to resolve this length scale in mantle convection simulations that include the physics necessary to model plate-like behavior. Our goal is to use supercomputing facilities to perform 3D spherical mantle convection simulations that include the ingredients for plate-like behavior, i.e. strongly temperature- and stress-dependent viscosity, at Earth-like convective vigor with a global resolution of order 10 km. In order to qualify to use such facilities, it is also necessary to
Thermal convection in a liquid metal battery
NASA Astrophysics Data System (ADS)
Shen, Yuxin; Zikanov, Oleg
2016-08-01
Generation of thermal convection flow in the liquid metal battery, a device recently proposed as a promising solution for the problem of the short-term energy storage, is analyzed using a numerical model. It is found that convection caused by Joule heating of electrolyte during charging or discharging is virtually unavoidable. It exists in laboratory prototypes larger than a few centimeters in size and should become much stronger in larger-scale batteries. The phenomenon needs further investigation in view of its positive (enhanced mixing of reactants) and negative (loss of efficiency and possible disruption of operation due to the flow-induced deformation of the electrolyte layer) effects.
A high-latitude convective cloud feedback
NASA Astrophysics Data System (ADS)
Abbot, Dorian Schuyler
Available data suggest that during the late Cretaceous and early Paleogene (˜100 to ˜35 million years ago) Earth had an "equable" climate: the equator to pole surface temperature difference and seasonal cycle in high-latitude surface temperature were both much smaller than they are today. The combination of much warmer high latitudes, particularly during winter, and only somewhat warmer tropics has traditionally been difficult to model in global climate models and to explain physically. In this thesis a positive feedback on high-latitude surface temperatures based on the onset of convection and convective clouds is proposed and investigated using a hierarchy of climate models. This feedback mechanism is based on an initial warming leading to destabilization of the high-latitude atmosphere to convection, causing convection, which results in convective clouds and increased atmospheric moisture, both of which trap outgoing longwave radiation and lead to further warming. It is also shown that this convective cloud feedback could be active in a future atmosphere with increased greenhouse gasses, increasing high-latitude climate uncertainty under global warming scenarios. A variety of climate models are used to understand the convective cloudfeedback in this thesis. Simple, analytical models are used in two chapters to understand more complex models and their underlying physics. A zonally-averaged, two-level model of the atmosphere without a seasonal cycle, but containing a hydrological cycle and parameterizations of convection, precipitation, and clouds, and a longwave radiation scheme that explicitly depends on CO 2, water vapor, and cloud fraction is constructed and used as an initial test of the feedback mechanism. The National Center for Atmospheric Research (NCAR) single column model (SCAM), which contains state-of-the-art atmospheric physics parameterizations, high vertical resolution, a full seasonal cycle, a thermodynamic sea ice model, and a mixed layer ocean
Geothermal reservoirs in hydrothermal convection systems
Sorey, M.L.
1982-01-01
Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.
NASA Astrophysics Data System (ADS)
Förster, M.; Feldstein, Y. I.; Haaland, S. E.; Dremukhina, L. A.; Gromova, L. I.; Levitin, A. E.
2009-08-01
Cluster/EDI electron drift observations above the Northern and Southern polar cap areas for more than seven and a half years (2001-2008) have been used to derive a statistical model of the high-latitude electric potential distribution for summer conditions. Based on potential pattern for different orientations of the interplanetary magnetic field (IMF) in the GSM y-z-plane, basic convection pattern (BCP) were derived, that represent the main characteristics of the electric potential distribution in dependence on the IMF. The BCPs comprise the IMF-independent potential distribution as well as patterns, which describe the dependence on positive and negative IMFBz and IMFBy variations. The full set of BCPs allows to describe the spatial and temporal variation of the high-latitude electric potential (ionospheric convection) for any solar wind IMF condition near the Earth's magnetopause within reasonable ranges. The comparison of the Cluster/EDI model with the IZMEM ionospheric convection model, which was derived from ground-based magnetometer observations, shows a good agreement of the basic patterns and its variation with the IMF. According to the statistical models, there is a two-cell antisunward convection within the polar cap for northward IMFBz+≤2 nT, while for increasing northward IMFBz+ there appears a region of sunward convection within the high-latitude daytime sector, which assumes the form of two additional cells with sunward convection between them for IMFBz+≍4-5 nT. This results in a four-cell convection pattern of the high-latitude convection. In dependence of the ±IMFBy contribution during sufficiently strong northward IMFBz conditions, a transformation to three-cell convection patterns takes place.
Mantle Convection in a Microwave Oven: New Perspectives for the Internally Heated Convection
NASA Astrophysics Data System (ADS)
Limare, A.; Fourel, L.; Surducan, E.; Neamtu, C.; Surducan, V.; Vilella, K.; Farnetani, C. G.; Kaminski, E. C.; Jaupart, C. P.
2015-12-01
The thermal evolution of silicate planets is primarily controlled by the balance between internal heating - due to radioactive decay - and heat transport by mantle convection. In the Earth, the problem is particularly complex due to the heterogeneous distribution of heat sources in the mantle and the non-linear coupling between this distribution and convective mixing. To investigate the behaviour of such systems, we have developed a new technology based on microwave absorption to study internally-heated convection in the laboratory. This prototype offers the ability to reach the high Rayleigh-Roberts and Prandtl numbers that are relevant for planetary convection. Our experimental results obtained for a uniform distribution of heat sources were compared to numerical calculations reproducing exactly experimental conditions (3D Cartesian geometry and temperature-dependent physical properties), thereby providing the first cross validation of experimental and numerical studies of convection in internally-heated systems. We find that the thermal boundary layer thickness and interior temperature scale with RaH-1/4, where RaH is the Rayleigh-Roberts number, as theoretically predicted by scaling arguments on the dissipation of kinetic energy. Our microwave-based method offers new perspectives for the study of internally-heated convection in heterogeneous systems which have been out of experimental reach until now. We are able to selectively heat specific regions in the convecting layer, through the careful control of the absorption properties of different miscible fluids. This is analogous to convection in the presence of chemical reservoirs with different concentration of long-lived radioactive isotopes. We shall show results for two different cases: the stability of continental lithosphere over a convective fluid and the evolution of a hidden enriched reservoir in the lowermost mantle.
Implementing New Semi-Convection and Overshooting Prescriptions in KEPLER
NASA Astrophysics Data System (ADS)
Brown, Justin; Garaud, P.; Woosley, S. E.
2014-01-01
The processes of semi-convection and overshooting convection have been shown to have drastic impacts on the evolution of stars; in particular, the pre-supernova structure of massive stars depends strongly on the mixing prescription of semi-convection used in 1D stellar models. This has a significant impact on the properties of the supernova and the produced nucleosynthesis (Woosley & Heger 2002). There is currently little consensus on the most appropriate 1D models of semi-convection and overshooting convection, so we have implemented the physically-motivated semi-convection prescriptions from Wood, Garaud, & Stellmach (2013) and Moll, Garaud, & Stellmach (in preparation) and overshooting convection prescription from Rempel (2004) into KEPLER. We present the comparisons of these implementations with the previous semi-convection treatment from Langer, Fricke, & Sugimoto (1983) for a range of massive stars.
The structure and evolution of boundary layers in stratified convection
NASA Astrophysics Data System (ADS)
Anders, Evan H.; Brown, Benjamin; Brandenburg, Axel; Rast, Mark
2016-05-01
Solar convection is highly stratified, and the density in the Sun increases by many orders of magnitude from the photosphere to the base of the convection zone. The photosphere is an important boundary layer, and interactions between the surface convection and deep convection may lie at the root of the solar convection conundrum, where observed large-scale velocities are much lower than predicted by full numerical simulations. Here, we study the structure and time evolution of boundary layers in numerical stratified convection. We study fully compressible convection within plane-parallel layers using the Dedalus pseudospectral framework. Within the context of polytropic stratification, we study flows from low (1e-3) to moderately high (0.1) Mach number, and at moderate to high Rayleigh number to study both laminar and turbulent convective transport. We aim to characterize the thickness and time variation of velocity and thermal (entropy) boundary layers at the top and bottom boundaries of the domain.
Convection, helioseismology and solar energy: personal reminiscence
NASA Astrophysics Data System (ADS)
Unno, Wasaburo
2014-08-01
This article is a brief history of my life from childhood and describes how I became interested in astronomy. Starting from researches using radiative transfer as a main tool, I gradually expanded my research field to hydrodynamics (particularly convection, turbulence, pulsation, waves and helioseismology), magnetohydrodynamics and chaotic systems. My recent interest is to develop a sustainable society using solar energy.
White Dwarf Convection Preceding Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Zingale, Michael; Almgren, A. S.; Bell, J. B.; Malone, C. M.; Nonaka, A.; Woosley, S. E.
2010-01-01
In the single degenerate scenario for Type Ia supernovae, a Chandrasekhar mass white dwarf `simmers' for centuries preceding the ultimate explosion. During this period, reactions near the center drive convection throughout most of the interior of the white dwarf. The details of this convective flow determine how the first flames in the white dwarf ignite. Simulating this phase is difficult because the flows are highly subsonic. Using the low Mach number hydrodynamics code, MAESTRO, we present 3-d, full star models of the final hours of this convective phase, up to the point of ignition of a Type Ia supernova. We discuss the details of the convective velocity field and the locations of the initial hot spots. Finally, we show some preliminary results with rotation. Support for this work came from the DOE/Office of Nuclear Physics, grant No. DE-FG02-06ER41448 (Stony Brook), the SciDAC Program of the DOE Office of Mathematics, Information, and Computational Sciences under the DOE under contract No. DE-AC02-05CH11231 (LBNL), and the DOE SciDAC program, under grant No. DE-FC02-06ER41438 (UCSC). We made use of the jaguar machine via a DOE INCITE allocation at the Oak Ridge Leadership Computational Facility.
Jupiter's Convection and Its Red Spot.
Smoluchowski, R
1970-06-12
Physical properties of the liquid hydrogen-helium layer of Jupiter are calculated and used in evaluating convection and in interpreting the approximately constant rate of longitudinal motion of the Red Spot on the basis of the Hide-Streett model. PMID:17731041
The Extension of Convective Boundedness Criterion
NASA Astrophysics Data System (ADS)
Jian, Wu; Traoré, Philippe; Hubert, Romat
2010-09-01
The paper describes an extension of the well-known Convective Boundedness Criterion (CBC). It is shown that the newly proposed criterion is a combination of the CBC and the extended convective boundedness criterion (ECBC), as shown in Fig.1. A new scheme (NECBC1) based on the new criterion is designed and tested by two problems: (1) convection of a stepwise profile in an oblique uniform velocity field and (2) convection of an elliptical profile in a stagnation point flow. The numerical tests show the effectiveness of the new criterion and reveal the limitation of the CBC and the ECBC. Moreover, some numerical experiments of some specially-designed schemes and two TVD-Type schemes: the van Albada scheme and Miroslav Čada & Manuel Torrilhon's new third-order scheme, are carried out. Through these numerical experiments, some extra constraints for the new criterion are observed and in the meantime some other possible regions in the normalized diagram (NV) for high-resolution schemes reveal themselves.
Bifurcations and unfoldings in natural convection
Decker, W.J.; Dorning, J.
1996-12-31
Extensive numerical studies of bifurcations and unfoldings have been carried out for two important problems in natural convection. These are (a) the Rayleigh-Benard convection (RBC) problem-a rectangular cavity, with insulated sidewalls, heated at constant uniform temperature along the bottom and cooled at constant uniform temperature along the top; and (b) the volumetric heating convection (VHC) problem - a rectangular cavity, with insulated sidewalls and bottom, heated by a constant uniform volumetric heat source and cooled at constant uniform temperature along the top. The information available in the literature on RBC was used to evaluate and justify the approximations made in the current research, which has shed additional light on nonlinear phenomena in RBC and led to new basic information on the bifurcations and unfoldings that occur in VHC for which there were essentially no previous results available. Both problems arise in many important technological and scientific contexts, including reactor safety analysis and meteorological phenomena. In particular, VHC is relevant to the development of an understanding of the natural convective motion driven by the radioactive decay heat in the molten core mixture (corium) in the core catcher following a hypothetical reactor core meltdown accident and of that which occurs in the atmosphere due to the deposition of radiant solar energy. The calculations were done using newly developed versions of the nodal integral method (NIM) for steady-state flows in conjunction with extended system methods for numerical bifurcation analysis for the saddle-node and pitchfork bifurcation computations.
Solar Hot Water Heating by Natural Convection.
ERIC Educational Resources Information Center
Noble, Richard D.
1983-01-01
Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)
Convectively driven PCR thermal-cycling
Benett, William J.; Richards, James B.; Milanovich, Fred P.
2003-07-01
A polymerase chain reaction system provides an upper temperature zone and a lower temperature zone in a fluid sample. Channels set up convection cells in the fluid sample and move the fluid sample repeatedly through the upper and lower temperature zone creating thermal cycling.
Meniscus height controlled convective self-assembly
NASA Astrophysics Data System (ADS)
Choudhary, Satyan; Crosby, Alfred
Convective self-assembly techniques based on the 'coffee-ring effect' allow for the fabrication of materials with structural hierarchy and multi-functionality across a wide range of length scales. The coffee-ring effect describes deposition of non-volatiles at the edge of droplet due to capillary flow and pattern formations due to pinning and de-pinning of meniscus with the solvent evaporation. We demonstrate a novel convective self-assembly method which uses a piezo-actuated bending motion for driving the de-pinning step. In this method, a dilute solution of nanoparticles or polymers is trapped by capillary forces between a blade and substrate. As the blade oscillates with a fixed frequency and amplitude and the substrate translates at a fixed velocity, the height of the capillary meniscus oscillates. The meniscus height controls the contact angle of three phase contact line and at a critical angle de-pinning occurs. The combination of convective flux and continuously changing contact angle drives the assembly of the solute and subsequent de-pinning step, providing a direct means for producing linear assemblies. We demonstrate a new method for convective self-assembly at an accelerated rate when compared to other techniques, with control over deposit dimensions. Army Research Office (W911NF-14-1-0185).
Extreme Convective Weather in Future Decades
NASA Astrophysics Data System (ADS)
Gadian, Alan; Burton, Ralph; Groves, James; Blyth, Alan; Warner, James; Holland, Greg; Bruyere, Cindy; Done, James; Thielen, Jutta
2016-04-01
WISER (Weather Climate Change Impact Study at Extreme Resolution) is a project designed to analyse changes in extreme weather events in a future climate, using a weather model (WRF) which is able to resolve small scale processes. Use of a weather model is specifically designed to look at convection which is of a scale which cannot be resolved by climate models. The regional meso-scale precipitation events, which are critical in understanding climate change impacts will be analysed. A channel domain outer model, with a resolution of ~ 20km in the outer domain drives an inner domain of ~ 3 km resolution. Results from 1989-1994 and 2020-2024 and 2030-2034 will be presented to show the effects of extreme convective events over Western Europe. This presentation will provide details of the project. It will present data from the 1989-1994 ERA-interim and CCSM driven simulations, with analysis of the future years as defined above. The representation of pdfs of extreme precipitation, Outgoing Longwave Radiation and wind speeds, with preliminary comparison with observations will be discussed. It is also planned to use the output to drive the EFAS (European Flood model) to examine the predicted changes in quantity and frequency of severe and hazardous convective rainfall events and leading to the frequency of flash flooding due to heavy convective precipitation.
Global tectonics from mantle convection models
NASA Astrophysics Data System (ADS)
Coltice, N.
2015-12-01
The motions of the surface of the Earth are described using the theory of Plate Tectonics. Despite the fact that this theory has shaped modern geosciences it has some limitations, and among them the impossibility to evaluate the forces at the origin of the surface displacements and deformations. Hence important questions remain difficult to solve like the origin of the sizes of plates, forces driving mountain building or supercontinent dispersal... Tremendous progresses have been made in the past 15 years in mantle convection modelling. Especially, modern convection codes can solve for motion equations with complex material properties. Since the early 2000's, the development of pseudo-plastic rheologies contributed to produce convection models with plate-like behaviour: plates naturally emerge and interact with the flow in a self-organized manner. Using such models in 3D spherical geometry (computed with StagYY - Tackley, 2008), I will show that important questions on the global tectonics of the planet can be addressed now: the distribution of seafloor ages, the distribution of plate area, the lifetime of small and large plates or modes of plate reorganizations. Tackley, P.J., Modellng compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid, Phys. Earth Planet. Inter, 171, 7-18 (2008).
Seafloor dynamics in mantle convection models
NASA Astrophysics Data System (ADS)
Coltice, N.; Rolf, T.; Tackley, P. J.; Labrosse, S.
2012-12-01
The distribution of seafloor ages determines fundamental characteristics of our planet: sea-level, ocean chemistry,tectonic forces and heat loss. The present-day distribution suggests that subduction affects lithosphere of all ageswith the same probability (B. Parsons, J. Geophys. Res 87, 289-302, 1982). This is at odds with the theory of thermal convection which predicts that subduction should happen once a critical age has been reached. So far, the area-age distribution remains a primary constraint, which convection models have failed to satisfy (S. Labrosse and C. Jaupart, Earth Planet. Sci. Lett. 260, 465-481, 2007). We will show that combined action of plate-like behavior and continents causes the seafloor area-age distribution in spherical models of mantle convection to be Earth-like (Coltice et al., Science 336, 335-338, 2012). Our simulations suggest that the seafloor age distribution on Earth evolves over a time-scale of several 100Myrs. Depending on the parameters of the convective flow, strong variations of the production rate of new ocean floor and of the length of ridges are obtained.
Convection in Slab and Spheroidal Geometries
NASA Technical Reports Server (NTRS)
Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.
2000-01-01
Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.
MAGNETIC WREATHS AND CYCLES IN CONVECTIVE DYNAMOS
Nelson, Nicholas J.; Toomre, Juri; Brown, Benjamin P.; Brun, Allan Sacha
2013-01-10
Solar-type stars exhibit a rich variety of magnetic activity. Seeking to explore the convective origins of this activity, we have carried out a series of global three-dimensional magnetohydrodynamic simulations with the anelastic spherical harmonic code. Here we report on the dynamo mechanisms achieved as the effects of artificial diffusion are systematically decreased. The simulations are carried out at a nominal rotation rate of three times the solar value (3 {Omega}{sub Sun }), but similar dynamics may also apply to the Sun. Our previous simulations demonstrated that convective dynamos can build persistent toroidal flux structures (magnetic wreaths) in the midst of a turbulent convection zone and that high rotation rates promote the cyclic reversal of these wreaths. Here we demonstrate that magnetic cycles can also be achieved by reducing the diffusion, thus increasing the Reynolds and magnetic Reynolds numbers. In these more turbulent models, diffusive processes no longer play a significant role in the key dynamical balances that establish and maintain the differential rotation and magnetic wreaths. Magnetic reversals are attributed to an imbalance in the poloidal magnetic induction by convective motions that is stabilized at higher diffusion levels. Additionally, the enhanced levels of turbulence lead to greater intermittency in the toroidal magnetic wreaths, promoting the generation of buoyant magnetic loops that rise from the deep interior to the upper regions of our simulated domain. The implications of such turbulence-induced magnetic buoyancy for solar and stellar flux emergence are also discussed.
Parameterization of sub-grid scale convection
NASA Technical Reports Server (NTRS)
Frank, William; Molinari, John; Kain, Jack; Moncrieff, Mitch; Karyampudi, Mohan; Grell, Georg
1993-01-01
The following topics are discussed: an overview of the cumulus parameterization problem; interactions between explicit and implicit processes in mesoscale models; effects of model grid size on the cumulus parameterization problem; parameterizing convective effects on momentum fields in mesoscale models; differences between slantwise and vertical cumulus parameterization; experiments with different closure hypotheses; and coupling cumulus parameterizations to boundary layer, stable cloud, and radiation schemes.
Forced Convection Heat Transfer in Circular Pipes
ERIC Educational Resources Information Center
Tosun, Ismail
2007-01-01
One of the pitfalls of engineering education is to lose the physical insight of the problem while tackling the mathematical part. Forced convection heat transfer (the Graetz-Nusselt problem) certainly falls into this category. The equation of energy together with the equation of motion leads to a partial differential equation subject to various…
A Simple Classroom Demonstration of Natural Convection
ERIC Educational Resources Information Center
Wheeler, Dean R.
2005-01-01
This article explains a simple way to demonstrate natural convection, such as from a lit candle, in the classroom using an overhead projector. The demonstration is based on the principle of schlieren imaging, commonly used to visualize variations in density for gas flows.
Probability distribution functions in turbulent convection
NASA Technical Reports Server (NTRS)
Balachandar, S.; Sirovich, L.
1991-01-01
Results of an extensive investigation of probability distribution functions (pdfs) for Rayleigh-Benard convection, in hard turbulence regime, are presented. It is shown that the pdfs exhibit a high degree of internal universality. In certain cases this universality is established within two Kolmogorov scales of a boundary. A discussion of the factors leading to the universality is presented.
Convective towers detection using GPS radio occultations
NASA Astrophysics Data System (ADS)
Biondi, R.; Neubert, T.; Syndergaard, S.; Nielsen, J.
2010-12-01
The tropical deep convection affects the radiation balance of the atmosphere changing the water vapour mixing ratio and the temperature of the upper troposphere and lower stratosphere. To gain a better understanding of deep convective processes, the study of tropical cyclones could play an important role since they lead to deep convective activity. With this work we want to investigate if severe storms leave a significant signature in radio occultation profiles in the tropical tropopause layer. The GPS radio occultation (RO) technique is useful for studying severe weather phenomena because the GPS signals penetrate through clouds and allow measurements of atmospheric profiles related to temperature, pressure, and water vapour with high vertical resolution. Using tropical cyclone best track database and data from different GPS RO missions (COSMIC, GRACE, CHAMP, SACC and GPSMET), we selected 1194 profiles in a time window of 3 hours and a space window of 300 km from the eye of the cyclone. We show that the bending angle anomaly of a GPS RO signal is typically larger than the climatology above the tropopause. Comparisons with co-located radiosondes, climatology of tropopause altitudes and GOES analyses will also be shown to support our hypothesis and to corroborate the idea that the bending angle anomaly can be used as an indicator of convective towers. The results are discussed in connection to the GPS radio occultation receiver which will be part of the Atomic Clock Ensemble in Space (ACES) payload on the International Space Station.
Mapping high-latitude plasma convection with coherent HF radars
NASA Technical Reports Server (NTRS)
Ruohoniemi, J. M.; Greenwald, R. A.; Baker, K. B.; Villain, J.-P.; Hanuise, C.
1989-01-01
Several methods developed for mapping high-latitude plasma convection with a high-latitude HF radar are described, which utilize coherent backscatter from electron density irregularities at F-region altitudes to observe convective plasma motion. Several examples of two-dimensional convection-velocity maps are presented, showing instances of L-shell-aligned flow in the dusk sector, the reversal of convection near magnetic midnight, and counterstreaming in the dayside cleft.
Marangoni Convection and Deviations from Maxwells' Evaporation Model
NASA Technical Reports Server (NTRS)
Segre, P. N.; Snell, E. H.; Adamek, D. H.
2003-01-01
We investigate the convective dynamics of evaporating pools of volatile liquids using an ultra-sensitive thermal imaging camera. During evaporation, there are significant convective flows inside the liquid due to Marangoni forces. We find that Marangoni convection during evaporation can dramatically affect the evaporation rates of volatile liquids. A simple heat balance model connects the convective velocities and temperature gradients to the evaporation rates.
NASA Astrophysics Data System (ADS)
Dahley, N.; Futterer, B.; Egbers, C.; Crumeyrolle, O.; Mutabazi, I.
2011-12-01
Within the project "Convection in a Cylinder" (CiC) heat transfer enhancement is studied for the case of two concentric, vertically aligned cylinders. The cylindrical gap is filled with a dielectric liquid, which viscosity is just few times higher than that of water. The inner cylinder is heated and the outer one is cooled. This setup in a gravitational buoyancy field leads to a fluid movement in a single convective cell with hot fluid rising at the inner boundary and cold fluid sinking at the outer boundary. The top and bottom part of the system shows horizontal movement, again in boundary layers. The strengthening of temperature gradient induces instabilities of that convective motion. If we vary the buoyancy force by means of electro-hydrodynamic effects, the patterns of convection differ from those instabilities rising only from variation of the temperature gradient.
Convective effects during the physical vapor transport process. I - Thermal convection
NASA Technical Reports Server (NTRS)
Duval, Walter M. B.
1992-01-01
The effects of convection on diffusive-convective physical vapor transport process are examined computationally. We analyze conditions ranging from typical laboratory conditions to conditions achievable only in a low gravity environment. This corresponds to thermal Rayleigh numbers Ra(T) ranging from 1.80 to 1.92 x 10 exp 6. Our results indicate that the effect of the sublimation and condensation fluxes at the boundaries is 10 increase the threshold of instability. For typical ground based conditions time dependent oscillatory convection can occur. This results in nonuniform temperature and concentration gradients at the crystal interface. Spectral analysis of the flow field shows regions of both periodic and quasi-periodic states. Low gravity conditions can effectively reduce convective effects, thus resulting in uniform temperature and concentration gradients at the interface, a desirable condition for crystal growth.
The Dynamics of Titan's Convective Clouds
NASA Astrophysics Data System (ADS)
Rafkin, S. C.
2012-12-01
Titan's deep convective clouds are the most dynamic phenomena known to operate within the atmosphere of the moon. Previous studies have focused primarily on the control of these storms by the large scale thermodynamic environment, especially methane abundance, which determines the amount of convective available potential energy (CAPE). This study looks at factors in addition to the thermodynamic environment that may have a first order impact on the evolution and structure of Titan's deep convective clouds. To the extent that thunderstorms on Earth provide a reasonable analog to the storms on Titan, it is well established that CAPE alone is insufficient to determine the structure and behavior of deep convection. Wind shear—both directional and speed—is also known to exert a first order effect. The influence of both CAPE and wind speed shear is typically expressed as the ratio of the two parameters in the form of the Bulk Richardson Number. On Earth, for a fixed value of CAPE, the addition of wind speed shear (i.e., the reduction of the Bulk Richardson Number) will tend to produce storms that are longer lived, tilted upshear with height, and multi-cellular in nature. These multi-cellular storms also tend to be more violent than storms generated in low wind speed shear environments: strong winds and large hail are common. The addition of directional shear (i.e., helicity) can transform the multi-cell storms into single, intense supercell storms. These are the storms associated typically associated with tornadoes. With respect to Titan, if there is a similar dependence on the Bulk Richardson Number, then this would have implications for how long Titan's storms live, how much precipitation they can produce, the area they cover, and the strength and duration of winds. A series of numerical simulations of Titan's deep convective clouds from the Titan Regional Atmospheric Modeling System are presented. A reasonable sweep of the parameter space of CAPE and shear for
Turbulent Convection: Old and New Models
NASA Astrophysics Data System (ADS)
Canuto, V. M.
1996-08-01
This paper contains (1) a physical argument to show that the one-eddy MLT model underestimates the convective flux Fc in the high-efficiency regime, while it overestimates Fc in the low-efficiency regime, and (2) a new derivation of the Fc(MLT) using a turbulence model in the one-eddy approximation. (3) We forsake the one-eddy approximation and adopt the Kolmogorov spectrum to represent the turbulent energy spectrum. The resulting Fc > Fc(MLT) in the high-efficiency regime, and Fc
Precipitation Characteristics in Warm Convective Clouds
NASA Astrophysics Data System (ADS)
Xue, H.; Ma, Y.; Feingold, G.
2011-12-01
The relationship between radar reflectivity factor Z at 9.6 GHz (3 cm) and rain rate R for warm convective clouds is studied. The objectives are to obtain a reasonable Z-R relationship for use in weather radar observation of warm convective precipitation, and to analyze factors that affect the Z-R relationship. Rain rate R is calculated from the drop size distributions in a large eddy simulation (LES); the drop size distributions from LES are also used as inputs into Quickbeam, a software package for simulating atmospheric radiative characteristics, to get radar reflectivity factor Z. It is found that a uniform Z-R relationship is not valid for the cumulus cloud population that develops for several hours. The Z-R relationship depends on the stage of cloud development and the height relative to cloud base. As expected, a range of R values can all lead to the same Z. This is due to the complicated drop size distributions and may cause large uncertainty in precipitation measurement in warm convective clouds using radar data. This study also investigates the Z-R relationship at 94 GHz (3 mm) to evaluate the possibility of measuring precipitation in warm convective clouds using current millimeter wave cloud radars. Results show that a well-defined Z-R relationship at 94 GHz generally exists when the local rain rate is smaller than 1 mm hour-1. This indicates that a millimeter wave cloud radar can be used to measure light precipitation in warm convective clouds. When precipitation is stronger, the attenuation of the signal due to precipitation particles is significant and the estimation of R from the reflectivity factor Z has bigger uncertainty. The domain-averaged rain rate R can be parameterized as a function of domain-averaged liquid water path and cloud drop concentration for the LES clouds. The result for warm convective clouds in this study is consistent with previous findings for stratiform clouds. This may help to better parameterize the warm convective
Testing particle filters on convective scale dynamics
NASA Astrophysics Data System (ADS)
Haslehner, Mylene; Craig, George. C.; Janjic, Tijana
2014-05-01
Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical
Examining the Impact of Prandtl Number and Surface Convection Models on Deep Solar Convection
NASA Astrophysics Data System (ADS)
O'Mara, B. D.; Augustson, K.; Featherstone, N. A.; Miesch, M. S.
2015-12-01
Turbulent motions within the solar convection zone play a central role in the generation and maintenance of the Sun's magnetic field. This magnetic field reverses its polarity every 11 years and serves as the source of powerful space weather events, such as solar flares and coronal mass ejections, which can affect artificial satellites and power grids. The structure and inductive properties are linked to the amplitude (i.e. speed) of convective motion. Using the NASA Pleiades supercomputer, a 3D fluids code simulates these processes by evolving the Navier-Stokes equations in time and under an anelastic constraint. This code simulates the fluxes describing heat transport in the sun in a global spherical-shell geometry. Such global models can explicitly capture the large-scale motions in the deep convection zone but heat transport from unresolved small-scale convection in the surface layers must be parameterized. Here we consider two models for heat transport by surface convection, including a conventional turbulent thermal diffusion as well as an imposed flux that carries heat through the surface in a manner that is independent of the deep convection and the entropy stratification it establishes. For both models, we investigate the scaling of convective amplitude with decreasing diffusion (increasing Rayleigh number). If the Prandtl number is fixed, we find that the amplitude of convective motions increases with decreasing diffusion, possibly reaching an asymptotic value in the low diffusion limit. However, if only the thermal diffusion is decreased (keeping the viscosity fixed), we find that the amplitude of convection decreases with decreasing diffusion. Such a high-Prandtl-number, high-Peclet-number limit may be relevant for the Sun if magnetic fields mix momentum, effectively acting as an enhanced viscosity. In this case, our results suggest that the amplitude of large-scale convection in the Sun may be substantially less than in current models that employ an
CONVECTION THEORY AND SUB-PHOTOSPHERIC STRATIFICATION
Arnett, David; Meakin, Casey; Young, Patrick A. E-mail: casey.meakin@gmail.co
2010-02-20
As a preliminary step toward a complete theoretical integration of three-dimensional compressible hydrodynamic simulations into stellar evolution, convection at the surface and sub-surface layers of the Sun is re-examined, from a restricted point of view, in the language of mixing-length theory (MLT). Requiring that MLT use a hydrodynamically realistic dissipation length gives a new constraint on solar models. While the stellar structure which results is similar to that obtained by Yale Rotational Evolution Code (Guenther et al.; Bahcall and Pinsonneault) and Garching models (Schlattl et al.), the theoretical picture differs. A new quantitative connection is made between macro-turbulence, micro-turbulence, and the convective velocity scale at the photosphere, which has finite values. The 'geometric parameter' in MLT is found to correspond more reasonably with the thickness of the superadiabatic region (SAR), as it must for consistency in MLT, and its integrated effect may correspond to that of the strong downward plumes which drive convection (Stein and Nordlund), and thus has a physical interpretation even in MLT. If we crudely require the thickness of the SAR to be consistent with the 'geometric factor' used in MLT, there is no longer a free parameter, at least in principle. Use of three-dimensional simulations of both adiabatic convection and stellar atmospheres will allow the determination of the dissipation length and the geometric parameter (i.e., the entropy jump) more realistically, and with no astronomical calibration. A physically realistic treatment of convection in stellar evolution will require substantial additional modifications beyond MLT, including nonlocal effects of kinetic energy flux, entrainment (the most dramatic difference from MLT found by Meakin and Arnett), rotation, and magnetic fields.
Convective dynamo and emerging flux in the solar convective envelope (Invited)
NASA Astrophysics Data System (ADS)
Fan, Y.
2013-12-01
We present MHD simulations of a convective dynamo in the rotating solar convective envelope driven by the radiative diffusive heat flux in the solar convection zone. Our simulations have obtained a quasi-cyclic large-scale mean field with a period of roughly 10 years. The mean axisymmetric toroidal magnetic field peaks at the bottom of the convection zone, reaching a value of about 7000 G. Including the fluctuating component, individual channels of strong field reaching about 30kG are present. The axisymmetric mean field shows a current helicity that is predominantly negative in the northern hemisphere (consistent with the sense of twist of the solar active regions), but the current helicity of the fluctuating component is opposite, and is of a much larger amplitude. The presence of the turbulent magnetic fields appears to be important for maintaining a solar-like differential rotation. Without the magnetic fields, the convective flows drive a differential rotation with a faster rotating polar-region. We also present simulations where strong buoyant toroidal flux tubes are inserted into the rotating solar convective flows to study their buoyant rise and the properties of the emerging flux they produce.
Convective scale interaction: Arc cloud lines and the development and evolution of deep convection
NASA Technical Reports Server (NTRS)
Purdom, James Francis Whitehurst
1986-01-01
Information is used from satellite data and research aircraft data to provide new insights concerning the mesoscale development and evolution of deep convection in an atmosphere typified by weak synoptic-scale forcing. The importance of convective scale interaction in the development and evolution of deep convection is examined. This interaction is shown to manifest itself as the merger and intersection of thunderstorm outflow boundaries (arc cloud lines) with other convective lines, areas or boundaries. Using geostationary satellite visible and infrared data convective scale interaction is shown to be responsible for over 85 percent of the intense convection over the southeast U.S. by late afternoon, and a majority of that area's afternoon rainfall. The aircraft observations provided valuable information concerning critically important regions of the arc cloud line: (1) the cool outflow region, (2) the density surge line interface region; and (3) the sub-cloud region above the surge line. The observations when analyzed with rapid scan satellite data, helped in defining the arc cloud line's life cycle as 3 evolving stages.
A continuous and prognostic convection scheme based on buoyancy, PCMT
NASA Astrophysics Data System (ADS)
Guérémy, Jean-François; Piriou, Jean-Marcel
2016-04-01
A new and consistent convection scheme (PCMT: Prognostic Condensates Microphysics and Transport), providing a continuous and prognostic treatment of this atmospheric process, is described. The main concept ensuring the consistency of the whole system is the buoyancy, key element of any vertical motion. The buoyancy constitutes the forcing term of the convective vertical velocity, which is then used to define the triggering condition, the mass flux, and the rates of entrainment-detrainment. The buoyancy is also used in its vertically integrated form (CAPE) to determine the closure condition. The continuous treatment of convection, from dry thermals to deep precipitating convection, is achieved with the help of a continuous formulation of the entrainment-detrainment rates (depending on the convective vertical velocity) and of the CAPE relaxation time (depending on the convective over-turning time). The convective tendencies are directly expressed in terms of condensation and transport. Finally, the convective vertical velocity and condensates are fully prognostic, the latter being treated using the same microphysics scheme as for the resolved condensates but considering the convective environment. A Single Column Model (SCM) validation of this scheme is shown, allowing detailed comparisons with observed and explicitly simulated data. Four cases covering the convective spectrum are considered: over ocean, sensitivity to environmental moisture (S. Derbyshire) non precipitating shallow convection to deep precipitating convection, trade wind shallow convection (BOMEX) and strato-cumulus (FIRE), together with an entire continental diurnal cycle of convection (ARM). The emphasis is put on the characteristics of the scheme which enable a continuous treatment of convection. Then, a 3D LAM validation is presented considering an AMMA case with both observations and a CRM simulation using the same initial and lateral conditions as for the parameterized one. Finally, global
Using Jupiter's gravitational field to probe the Jovian convective dynamo.
Kong, Dali; Zhang, Keke; Schubert, Gerald
2016-01-01
Convective motion in the deep metallic hydrogen region of Jupiter is believed to generate its magnetic field, the strongest in the solar system. The amplitude, structure and depth of the convective motion are unknown. A promising way of probing the Jovian convective dynamo is to measure its effect on the external gravitational field, a task to be soon undertaken by the Juno spacecraft. We calculate the gravitational signature of non-axisymmetric convective motion in the Jovian metallic hydrogen region and show that with sufficiently accurate measurements it can reveal the nature of the deep convection. PMID:27005472