Sample records for dual permeability soil

  1. Uncertainty in dual permeability model parameters for structured soils.

    PubMed

    Arora, B; Mohanty, B P; McGuire, J T

    2012-01-01

    Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface ( K sa ) and macropore tortuosity ( l f ) but also of other parameters of the matrix and macropore domains.

  2. Uncertainty in dual permeability model parameters for structured soils

    NASA Astrophysics Data System (ADS)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2012-01-01

    Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface (Ksa) and macropore tortuosity (lf) but also of other parameters of the matrix and macropore domains.

  3. Estimating soil hydraulic properties from soil moisture time series by inversion of a dual-permeability model

    NASA Astrophysics Data System (ADS)

    Dalla Valle, Nicolas; Wutzler, Thomas; Meyer, Stefanie; Potthast, Karin; Michalzik, Beate

    2017-04-01

    Dual-permeability type models are widely used to simulate water fluxes and solute transport in structured soils. These models contain two spatially overlapping flow domains with different parameterizations or even entirely different conceptual descriptions of flow processes. They are usually able to capture preferential flow phenomena, but a large set of parameters is needed, which are very laborious to obtain or cannot be measured at all. Therefore, model inversions are often used to derive the necessary parameters. Although these require sufficient input data themselves, they can use measurements of state variables instead, which are often easier to obtain and can be monitored by automated measurement systems. In this work we show a method to estimate soil hydraulic parameters from high frequency soil moisture time series data gathered at two different measurement depths by inversion of a simple one dimensional dual-permeability model. The model uses an advection equation based on the kinematic wave theory to describe the flow in the fracture domain and a Richards equation for the flow in the matrix domain. The soil moisture time series data were measured in mesocosms during sprinkling experiments. The inversion consists of three consecutive steps: First, the parameters of the water retention function were assessed using vertical soil moisture profiles in hydraulic equilibrium. This was done using two different exponential retention functions and the Campbell function. Second, the soil sorptivity and diffusivity functions were estimated from Boltzmann-transformed soil moisture data, which allowed the calculation of the hydraulic conductivity function. Third, the parameters governing flow in the fracture domain were determined using the whole soil moisture time series. The resulting retention functions were within the range of values predicted by pedotransfer functions apart from very dry conditions, where all retention functions predicted lower matrix potentials

  4. Physically based model for extracting dual permeability parameters using non-Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Abou Najm, M. R.; Basset, C.; Stewart, R. D.; Hauswirth, S.

    2017-12-01

    Dual permeability models are effective for the assessment of flow and transport in structured soils with two dominant structures. The major challenge to those models remains in the ability to determine appropriate and unique parameters through affordable, simple, and non-destructive methods. This study investigates the use of water and a non-Newtonian fluid in saturated flow experiments to derive physically-based parameters required for improved flow predictions using dual permeability models. We assess the ability of these two fluids to accurately estimate the representative pore sizes in dual-domain soils, by determining the effective pore sizes of macropores and micropores. We developed two sub-models that solve for the effective macropore size assuming either cylindrical (e.g., biological pores) or planar (e.g., shrinkage cracks and fissures) pore geometries, with the micropores assumed to be represented by a single effective radius. Furthermore, the model solves for the percent contribution to flow (wi) corresponding to the representative macro and micro pores. A user-friendly solver was developed to numerically solve the system of equations, given that relevant non-Newtonian viscosity models lack forms conducive to analytical integration. The proposed dual-permeability model is a unique attempt to derive physically based parameters capable of measuring dual hydraulic conductivities, and therefore may be useful in reducing parameter uncertainty and improving hydrologic model predictions.

  5. Estimation and upscaling of dual-permeability model parameters for the transport of E.coli D21g in soils with preferential flow

    USDA-ARS?s Scientific Manuscript database

    Dual-permeability models are increasingly used to quantify the transport of solutes and microorganisms in soils with preferential flow. An ability to accurately determine the model parameters and their variation with preferential pathway characteristics is crucial for predicting the transport of mi...

  6. Dual permeability modeling of tile drain management influences on hydrologic and nutrient transport characteristics in macroporous soil

    NASA Astrophysics Data System (ADS)

    Frey, Steven K.; Hwang, Hyoun-Tae; Park, Young-Jin; Hussain, Syed I.; Gottschall, Natalie; Edwards, Mark; Lapen, David R.

    2016-04-01

    Tile drainage management is considered a beneficial management practice (BMP) for reducing nutrient loads in surface water. In this study, 2-dimensional dual permeability models were developed to simulate flow and transport following liquid swine manure and rhodamine WT (strongly sorbing) tracer application on macroporous clay loam soils under controlled (CD) and free drainage (FD) tile management. Dominant flow and transport characteristics were successfully replicated, including higher and more continuous tile discharge and lower peak rhodamine WT concentrations in FD tile effluent; in relation to CD, where discharge was intermittent, peak rhodamine concentrations higher, and mass exchange from macropores into the soil matrix greater. Explicit representation of preferential flow was essential, as macropores transmitted >98% of surface infiltration, tile flow, and tile solute loads for both FD and CD. Incorporating an active 3rd type lower boundary condition that facilitated groundwater interaction was imperative for simulating CD, as the higher (relative to FD) water table enhanced water and soluble nutrient movement from the soil profile into deeper groundwater. Scenario analysis revealed that in conditions where slight upwards hydraulic gradients exist beneath tiles, groundwater upwelling can influence the concentration of surface derived solutes in tile effluent under FD conditions; whereas the higher and flatter CD water table can restrict groundwater upwelling. Results show that while CD can reduce tile discharge, it can also lead to an increase in surface-application derived nutrient concentrations in tile effluent and hence surface water receptors, and it can promote NO3 loading into groundwater. This study demonstrates dual permeability modeling as a tool for increasing the conceptual understanding of tile drainage BMPs.

  7. Permeability of soils in Mississippi

    USGS Publications Warehouse

    O'Hara, Charles G.

    1994-01-01

    The permeability of soils in Mississippi was determined and mapped using a geographic information system (GIS). Soil permeabilities in Mississippi were determined to range in value from nearly 0.0 to values exceeding 5.0 inches per hour. The U.S. Soil Conservation Service's State Soil Geographic Data Base (STATSGO) was used as the primary source of data for the determination of area-weighted soil permeability. STATSGO provides soil layer properties that are spatially referenced to mapped areas. These mapped areas are referred to as polygons in the GIS. The polygons arc boundaries of soils mapped as a group and are given unique Map Unit Identifiers (MUIDs). The data describing the physical characteristics of the soils within each polygon are stored in a tabular data base format and are referred to as attributes. The U.S. Soil Conservation Service developed STATSGO to be primarily used as a guide for regional resource planning, management, and monitoring. STATSGO was designed so that soil information could be extracted from properties tables at the layer level, combined by component, and statistically expanded to cover the entire map unit. The results of this study provide a mapped value for permeability which is representative of the vertical permeability of soils in that area. The resultant permeability map provides a representative vertical soil permeability for a given area sufficient for county, multi- county, and area planning, and will be used as the soil permeability data component in the evaluation of the susceptibility of major aquifers to contami- nation in Mississippi.

  8. Dual Identity and Prejudice: The Moderating Role of Group Boundary Permeability

    PubMed Central

    Shi, Yuanyuan; Dang, Jianning; Zheng, Wenwen; Liu, Li

    2017-01-01

    Past work suggested that dual identity was effective to reduce prejudice. This study extended research on dual identity and prejudice by identifying a boundary condition in this relationship, that is, group permeability. In Study 1, we replicated previous studies with Chinese individuals and found that inducing dual identity (emphasizing subgroup differences and a common nation identity), compared to the control condition, decreased the urban residents’ prejudice against rural-to-urban migrants. In Study 2, we manipulated the group boundary permeability using the Hukou system reform, and found that when the group boundary was permeable, dual identity was effective in reducing prejudice against rural-to-urban migrants. However, this effect vanished in the condition where the group boundary was impermeable. These results point to the importance of inducing dual identity under specific conditions for research on decreasing prejudice. Some practical implications of the findings for urbanization and immigration are discussed. PMID:28261130

  9. Preliminary study of soil permeability properties using principal component analysis

    NASA Astrophysics Data System (ADS)

    Yulianti, M.; Sudriani, Y.; Rustini, H. A.

    2018-02-01

    Soil permeability measurement is undoubtedly important in carrying out soil-water research such as rainfall-runoff modelling, irrigation water distribution systems, etc. It is also known that acquiring reliable soil permeability data is rather laborious, time-consuming, and costly. Therefore, it is desirable to develop the prediction model. Several studies of empirical equations for predicting permeability have been undertaken by many researchers. These studies derived the models from areas which soil characteristics are different from Indonesian soil, which suggest a possibility that these permeability models are site-specific. The purpose of this study is to identify which soil parameters correspond strongly to soil permeability and propose a preliminary model for permeability prediction. Principal component analysis (PCA) was applied to 16 parameters analysed from 37 sites consist of 91 samples obtained from Batanghari Watershed. Findings indicated five variables that have strong correlation with soil permeability, and we recommend a preliminary permeability model, which is potential for further development.

  10. Inverse modeling of rainfall infiltration with a dual permeability approach using different matrix-fracture coupling variants.

    NASA Astrophysics Data System (ADS)

    Blöcher, Johanna; Kuraz, Michal

    2017-04-01

    In this contribution we propose implementations of the dual permeability model with different inter-domain exchange descriptions and metaheuristic optimization algorithms for parameter identification and mesh optimization. We compare variants of the coupling term with different numbers of parameters to test if a reduction of parameters is feasible. This can reduce parameter uncertainty in inverse modeling, but also allow for different conceptual models of the domain and matrix coupling. The different variants of the dual permeability model are implemented in the open-source objective library DRUtES written in FORTRAN 2003/2008 in 1D and 2D. For parameter identification we use adaptations of the particle swarm optimization (PSO) and Teaching-learning-based optimization (TLBO), which are population-based metaheuristics with different learning strategies. These are high-level stochastic-based search algorithms that don't require gradient information or a convex search space. Despite increasing computing power and parallel processing, an overly fine mesh is not feasible for parameter identification. This creates the need to find a mesh that optimizes both accuracy and simulation time. We use a bi-objective PSO algorithm to generate a Pareto front of optimal meshes to account for both objectives. The dual permeability model and the optimization algorithms were tested on virtual data and field TDR sensor readings. The TDR sensor readings showed a very steep increase during rapid rainfall events and a subsequent steep decrease. This was theorized to be an effect of artificial macroporous envelopes surrounding TDR sensors creating an anomalous region with distinct local soil hydraulic properties. One of our objectives is to test how well the dual permeability model can describe this infiltration behavior and what coupling term would be most suitable.

  11. Dual permeability flow behavior for modeling horizontal well production in fractured-vuggy carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Guo, Jian-Chun; Nie, Ren-Shi; Jia, Yong-Lu

    2012-09-01

    SummaryFractured-vuggy carbonate reservoirs are composed of by matrix, fracture, and vug systems. This paper is the first investigation into the dual permeability flow issue for horizontal well production in a fractured-vuggy carbonate reservoir. Considering dispersed vugs in carbonate reservoirs and treating media directly connected with horizontal wellbore as the matrix and fracture systems, a test analysis model of a horizontal well was created, and triple porosity and dual permeability flow behavior were modeled. Standard log-log type curves were drawn up by numerical simulation and flow behavior characteristics were thoroughly analyzed. Numerical simulations showed that type curves are dominated by external boundary conditions as well as the permeability ratio of the fracture system to the sum of fracture and matrix systems. The parameter κ is only relevant to the dual permeability model, and if κ is one, then the dual permeability model is equivalent to the single permeability model. There are seven main flow regimes with constant rate of horizontal well production and five flow regimes with constant wellbore pressure of horizontal well production; different flow regimes have different flow behavior characteristics. Early radial flow and linear flow regimes are typical characteristics of horizontal well production; duration of early radial flow regime is usually short because formation thickness is generally less than 100 m. Derivative curves are W-shaped, which is a reflection of inter-porosity flows between matrix, fracture, and vug systems. A distorted W-shape, which could be produced in certain situations, such as one involving an erroneously low time of inter-porosity flows, would handicap the recognition of a linear flow regime. A real case application was successfully implemented, and some useful reservoir parameters (e.g., permeability and inter-porosity flow factor) were obtained from well testing interpretation.

  12. [Effects of different planting modes on the soil permeability of sloping farmlands in purple soil area].

    PubMed

    Li, Jian-Xing; He, Bing-Hui; Mei, Xue-Mei; Liang, Yan-Ling; Xiong, Jian

    2013-03-01

    Taking bare land as the control, this paper studied the effects of different planting modes on the soil permeability of sloping farmlands in purple soil area. For the test six planting modes, the soil permeability was in the order of Eriobotrya japonica > Citrus limon > Vetiveria zizanioides hedgerows +corn >Leucaena leucocephala hedgerows + corn> Hemerocallis fulva > corn> bare land, and decreased with increasing depth. The eigenvalues of soil infiltration were in the order of initial infiltration rate> average infiltration rate> stable infiltration rate. The soil permeability had significant positive linear correlations with soil total porosity, non-capillary porosity, initial moisture content, water holding capacity, and organic matter content, and significant negative linear correlation with soil bulk density. The common empirical infiltration model could well fit the soil moisture infiltration processes under the six planting modes, while the Kostiakov equation could not.

  13. Air sparging in low permeability soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marley, M.C.

    1996-08-01

    Sparging technology is rapidly growing as a preferred, low cost remediation technique of choice at sites across the United States. The technology is considered to be commercially available and relatively mature. However, the maturity is based on the number of applications of the technology as opposed to the degree of understanding of the mechanisms governing the sparging process. Few well documented case studies exist on the long term operation of the technology. Sparging has generally been applied using modified monitoring well designs in uniform, coarse grained soils. The applicability of sparging for the remediation of DNAPLs in low permeability mediamore » has not been significantly explored. Models for projecting the performance of sparging systems in either soils condition are generally simplistic but can be used to provide general insight into the effects of significant changes in soil and fluid properties. The most promising sparging approaches for the remediation of DNAPLs in low permeability media are variations or enhancements to the core technology. Recirculatory sparging systems, sparging/biosparging trenches or curtains and heating or induced fracturing techniques appear to be the most promising technology variants for this type of soil. 21 refs., 9 figs.« less

  14. Impact of chemical leaching on permeability and cadmium removal from fine-grained soils.

    PubMed

    Lin, Zhongbing; Zhang, Renduo; Huang, Shuang; Wang, Kang

    2017-08-01

    The aim of this study was to investigate the influence of chemical leaching on permeability and Cd removal from fine-grained polluted soils. Column leaching experiments were conducted using two types of soils (i.e., artificially Cd-polluted loam and historically polluted silty loam). Chemical agents of CaCl 2 , FeCl 3 , citric acid, EDTA, rhamnolipid, and deionized water were used to leach Cd from the soils. Results showed that organic agents reduced permeability of both soils, and FeCl 3 reduced permeability of loam soil, compared with inorganic agents and deionized water. Entrapment and deposition of colloids generated from the organic agents and FeCl 3 treatments reduced the soil permeability. The peak Cd effluence from the artificially polluted loam columns was retarded. For the artificially polluted soils treated with EDTA and the historically polluted soils with FeCl 3 , Cd precipitates were observed at the bottom after chemical leaching. When Cd was associated with large colloid particles, the reduction of soil permeability caused Cd accumulation in deeper soil. In addition, the slow process of disintegration of soil clay during chemical leaching might result in the retardation of peak Cd effluence. These results suggest the need for caution when using chemical-leaching agents for Cd removal in fine-grained soils.

  15. Transverse Chemotactic Migration of Bacteria from High to Low Permeability Regions in a Dual Permeability Porous Microfluidic Device

    NASA Astrophysics Data System (ADS)

    Singh, R.; Olson, M. S.

    2011-12-01

    Low permeability regions sandwiched between high permeability regions such as clay lenses are difficult to treat using conventional treatment methods. Trace concentrations of contaminants such as non-aqueous phase liquids (NAPLs) remain trapped in these regions and over the time diffuse out into surrounding water thereby acting as a long term source of groundwater contamination. Bacterial chemotaxis (directed migration toward a contaminant source), may be helpful in enhancing bioremediation of such contaminated sites. This study is focused on simulating a two-dimensional dual-permeability groundwater contamination scenario using microfluidic devices and evaluating transverse chemotactic migration of bacteria from high to low permeability regions. A novel bi-layer polydimethylsiloxane (PDMS) microfluidic device was fabricated using photolithography and soft lithography techniques to simulate contamination of a dual- permeability region due to leakage from an underground storage tank into a low permeability region. This device consists of a porous channel through which a bacterial suspension (Escherchia Coli HCB33) is flown and another channel for injecting contaminant/chemo-attractant (DL-aspertic acid) into the porous channel. The pore arrangement in the porous channel contains a 2-D low permeability region surrounded by high permeability regions on both sides. Experiments were performed under chemotactic and non-chemotactic (replacing attractant with buffer solution in the non porous channel) conditions. Images were captured in transverse pore throats at cross-sections 4.9, 9.8, and 19.6 mm downstream from the attractant injection point and bacteria were enumerated in the middle of each pore throat. Bacterial chemotaxis was quantified in terms of the change in relative bacterial counts in each pore throat at cross-sections 9.8 and 19.6 mm with respect to counts at the cross-section at 4.9 mm. Under non-chemotactic conditions, relative bacterial count was observed

  16. Colloid transport in dual-permeability media

    NASA Astrophysics Data System (ADS)

    Leij, Feike J.; Bradford, Scott A.

    2013-07-01

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the increased risks for disease caused by microorganisms and colloid-associated contaminants. This study presents a model for colloid transport in dual-permeability media that includes reversible and irreversible retention of colloids and first-order exchange between the aqueous phases of the two regions. The model may also be used to describe transport of other reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in aqueous and solid phases were obtained using Laplace transformation and matrix decomposition. The solutions proved convenient to assess the effect of model parameters on the colloid distribution. The analytical model was used to describe effluent concentrations for a bromide tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix with sand of a different grain size. The tracer data were described very well and realistic estimates were obtained for the pore-water velocity in the two flow domains. An accurate description was also achieved for most colloid breakthrough curves. Dispersivity and retention parameters were typically greater for the larger 3.2-μm-colloids while both reversible and irreversible retention rates tended to be higher for the finer sands than the coarser sand. The relatively small sample size and the complex flow pattern in the composite medium made it difficult to reach definitive conclusions regarding transport parameters for colloid transport.

  17. PREFERENTIAL RADON TRANSPORT THROUGH HIGHLY PERMEABLE CHANNELS IN SOILS

    EPA Science Inventory

    The paper discusses preferential radon transport through highly permeable channels in soils. Indoor radon levels (that can pose a serious health risk) can be dramatically increased by air that is drawn into buildings through pipe penetrations that connect to permeable channels in...

  18. Integrating Electrokinetic and Bioremediation Process for Treating Oil Contaminated Low Permeability Soil

    NASA Astrophysics Data System (ADS)

    Ramadan, Bimastyaji Surya; Effendi, Agus Jatnika; Helmy, Qomarudin

    2018-02-01

    Traditional oil mining activities always ignores environmental regulation which may cause contamination in soil and environment. Crude oil contamination in low-permeability soil complicates recovery process because it requires substantial energy for excavating and crushing the soil. Electrokinetic technology can be used as an alternative technology to treat contaminated soil and improve bioremediation process (biostimulation) through transfer of ions and nutrient that support microorganism growth. This study was conducted using a combination of electrokinetic and bioremediation processes. Result shows that the application of electrokinetic and bioremediation in low permeability soils can provide hydrocarbon removal efficiency up to 46,3% in 7 days operation. The highest amount of microorganism can be found in 3-days operation, which is 2x108 CFU/ml using surfactant as flushing fluid for solubilizing hydrocarbon molecules. Enhancing bioremediation using electrokinetic process is very potential to recover oil contaminated low permeability soil in the future.

  19. Thermal treatment of low permeability soils using electrical resistance heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udell, K.S.

    1996-08-01

    The acceleration of recovery rates of second phase liquid contaminants from the subsurface during gas or water pumping operations is realized by increasing the soil and ground water temperature. Electrical heating with AC current is one method of increasing the soil and groundwater temperature and has particular applicability to low permeability soils. Several mechanisms have been identified that account for the enhanced removal of the contaminants during electrical heating. These are vaporization of liquid contaminants with low boiling points, temperature-enhanced evaporation rates of semi-volatile components, and removal of residual contaminants by the boiling of residual water. Field scale studies ofmore » electrical heating and fluid extraction show the effectiveness of this technique and its applicability to contaminants found both above and below the water table and within low permeability soils. 10 refs., 8 figs.« less

  20. Correlation of Three Techniques for Determining Soil Permeability

    ERIC Educational Resources Information Center

    Winneberger, John T.

    1974-01-01

    Discusses problems of acquiring adequate results when measuring for soil permeability. Correlates three relatively simple techniques that could be helpful to the inexperienced technician dealing with septic tank practices. An appendix includes procedures for valid percolation tests. (MLB)

  1. Hot air injection for removal of dense, non-aqueous-phase liquid contaminants from low-permeability soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, F.C.

    1996-08-01

    The performance of soil vapor extraction systems for the recovery of volatile and semi-volatile organic compounds is potentially enhanced by the injection of heated air to increase soil temperatures. The soil temperature increase is expected to improve soil vapor extraction (SVE) performance by increasing target compound vapor pressures and by increasing soil permeability through drying. The vapor pressure increase due to temperature rise relieves the vapor pressure limit on the feasibility of soil vapor extraction. However, the system still requires an air flow through the soil system to deliver heat and to recover mobilized contaminants. Although the soil permeability canmore » be increased through drying, very low permeability soils and low permeability soils adjacent to high permeability air flow pathways will be treated slowly, if at all. AR thermal enhancement methods face this limitation. Heated air injection offers advantages relative to other thermal techniques, including low capital and operation costs. Heated air injection is at a disadvantage relative to other thermal techniques due to the low heat capacity of air. To be effective, heated air injection requires that higher air flows be established than for steam injection or radio frequency heating. Heated air injection is not economically feasible for the stratified soil system developed as a standard test for this document. This is due to the inability to restrict heated air flow to the clay stratum when a low-resistance air flow pathway is available in the adjoining sand. However, the technology should be especially attractive, both technically and economically, for low-volatile contaminant recovery from relatively homogeneous soil formations. 16 refs., 2 tabs.« less

  2. Air permeability and trapped-air content in two soils

    USGS Publications Warehouse

    Stonestrom, David A.; Rubin, Jacob

    1989-01-01

    To improve understanding of hysteretic air permeability relations, a need exists for data on the water content dependence of air permeability, matric pressure, and air trapping (especially for wetting-drying cycles). To obtain these data, a special instrument was designed. The instrument is a combination of a gas permeameter (for air permeability determination), a suction plate apparatus (for retentivity curve determination), and an air pycnometer (for trapped-air-volume determination). This design allowed values of air permeability, matric pressure, and air trapping to be codetermined, i.e., determined at the same values of water content using the same sample and the same inflow-outflow boundaries. Such data were obtained for two nonswelling soils. The validity of the air permeability determinations was repeatedly confirmed by rigorous tests of Darcy's law. During initial drying from complete water saturation, supplementary measurements were made to assess the magnitude of gas slip. The extended Darcy equation accurately described the measured flux gradient relations for each condition of absolute gas pressure tested. Air permeability functions exhibited zero-permeability regions at high water contents as well as an abruptly appearing hysteresis at low water contents. Measurements in the zero-permeability regions revealed that the total amount of air in general exceeded the amount of trapped air. This indicates that the medium' s air space is partitioned into three measurable domains: through-flowing air, locally accessible air (i.e., air accessible from only one flow boundary), and trapped air. During repeated wetting and drying, the disappearance and reappearance of air permeability coincided closely with the reappearance and disappearance, respectively, of trapped air. The observed relation between critical features of the air permeability functions and those of the air-trapping functions suggest that water-based blockages play a significant role in the

  3. Dual permeability FEM models for distributed fiber optic sensors development

    NASA Astrophysics Data System (ADS)

    Aguilar-López, Juan Pablo; Bogaard, Thom

    2017-04-01

    Fiber optic cables are commonly known for being robust and reliable mediums for transferring information at the speed of light in glass. Billions of kilometers of cable have been installed around the world for internet connection and real time information sharing. Yet, fiber optic cable is not only a mean for information transfer but also a way to sense and measure physical properties of the medium in which is installed. For dike monitoring, it has been used in the past for detecting inner core and foundation temperature changes which allow to estimate water infiltration during high water events. The DOMINO research project, aims to develop a fiber optic based dike monitoring system which allows to directly sense and measure any pore pressure change inside the dike structure. For this purpose, questions like which location, how many sensors, which measuring frequency and which accuracy are required for the sensor development. All these questions may be initially answered with a finite element model which allows to estimate the effects of pore pressure change in different locations along the cross section while having a time dependent estimation of a stability factor. The sensor aims to monitor two main failure mechanisms at the same time; The piping erosion failure mechanism and the macro-stability failure mechanism. Both mechanisms are going to be modeled and assessed in detail with a finite element based dual permeability Darcy-Richards numerical solution. In that manner, it is possible to assess different sensing configurations with different loading scenarios (e.g. High water levels, rainfall events and initial soil moisture and permeability conditions). The results obtained for the different configurations are later evaluated based on an entropy based performance evaluation. The added value of this kind of modelling approach for the sensor development is that it allows to simultaneously model the piping erosion and macro-stability failure mechanisms in a time

  4. Heavy metal uptake and leaching from polluted soil using permeable barrier in DTPA-assisted phytoextraction.

    PubMed

    Zhao, Shulan; Shen, Zhiping; Duo, Lian

    2015-04-01

    Application of sewage sludge (SS) in agriculture is an alternative technique of disposing this waste. But unreasonable application of SS leads to excessive accumulation of heavy metals in soils. A column experiment was conducted to test the availability of heavy metals to Lolium perenne grown in SS-treated soils following diethylene triamine penta acetic acid (DTPA) application at rates of 0, 10 and 20 mmol kg(-1) soil. In order to prevent metal leaching in DTPA-assisted phytoextraction process, a horizontal permeable barrier was placed below the treated soil, and its effectiveness was also assessed. Results showed that DTPA addition significantly increased metal uptake by L. perenne shoots and metal leaching. Permeable barriers increased metal concentrations in plant shoots and effectively decreased metal leaching from the treated soil. Heavy metals in SS-treated soils could be gradually removed by harvesting L. perenne many times in 1 year and adding low dosage of DTPA days before each harvest.

  5. Linking soil permeability and soil aggregate stability with root development: a pots experiment (preliminary results)

    NASA Astrophysics Data System (ADS)

    Vergani, Chiara; Graf, Frank; Gerber, Werner

    2015-04-01

    Quantifying and monitoring the contribution of vegetation to the stability of the slopes is a key issue for implementing effective soil bioengineering measures. This topic is being widely investigated both from the hydrological and mechanical point of view. Nevertheless, due to the high variability of the biological components, we are still far from a comprehensive understanding of the role of plants in slope stabilization, especially if the different succession phases and the temporal development of vegetation is considered. Graf et al., 2014, found within the scope of aggregate stability investigations that the root length per soil volume of alder specimen grown for 20 weeks under laboratory conditions is comparable to the one of 20 years old vegetation in the field. This means that already relatively short time scales can provide meaningful information at least for the first stage of colonization of soil bioengineering measures, which is also the most critical. In the present study we analyzed the effect of root growth on two soil properties critical to evaluate the performance of vegetation in restoring and re-stabilizing slopes: permeability and soil aggregate stability. We set up a laboratory experiment in order to work under controlled conditions and limit as much as possible the natural variability. Alnus incana was selected as the study species as it is widely used in restoration projects in the Alps, also because of its capacity to fix nitrogen and its symbiosis with both ecto and arbuscular mycorrhizal fungi. After the first month of growth in germination pots, we planted one specimen each in big quasi cylindrical pots of 34 cm diameter and 35 cm height. The pots were filled with the soil fraction smaller than 10 mm coming from an oven dried moraine collected in a subalpine landslide area (Hexenrübi catchment, central Switzerland). The targeted dry unit weight was 16 kN/m3. The plants have been maintained at a daily temperature of 25°C and relative

  6. Influence of transport infrastructure on water permeability of soils of Western Siberia

    NASA Astrophysics Data System (ADS)

    Eremin, Dmitry; Eremina, Diana

    2017-10-01

    Correctly designed transport infrastructure should support the current economic relations. It should provide a reserve for development of economy of the region in the future. In Western Siberia, new highways are actively being built and major repairs of the operating roads are being conducted. Local materials are often used in the roadbed construction. In the Tyumen region, it is usually sandy silt and clayey sand. The soil has unfavourable physico-mechanical properties. The soil is prone to water and wind erosion. This type of ground gets on the adjacent to the road territory. Studies on the influence of highways on soil permeability were carried out on the basis of the federal highway Tyumen-Omsk. Three types of soils, which are actively used in the agricultural sector, were considered. It is found that the content of particles with the size less than 0.01 mm reaches 32% in the soil used in road construction. It is noted that a part of these particles accumulates on the adjacent to the road territory since it is being washed out from roadbed. The content of physical clay (<0.01 mm) in soils increases by 34-62% relative to the initial values. The width of active accumulation of silt particles reaches 15-20 m along the roads. The soils at the distance up to 10 m from the highway are almost impermeable to water. Absence of a natural hydrological drain, results in the territory bogging. An inverse close correlation was established between the content of physical clay (<0.01 mm) and water permeability (r = 0.90).

  7. Polyethylene glycol versus dual sugar assay for gastrointestinal permeability analysis: is it time to choose?

    PubMed

    van Wijck, Kim; Bessems, Babs Afm; van Eijk, Hans Mh; Buurman, Wim A; Dejong, Cornelis Hc; Lenaerts, Kaatje

    2012-01-01

    Increased intestinal permeability is an important measure of disease activity and prognosis. Currently, many permeability tests are available and no consensus has been reached as to which test is most suitable. The aim of this study was to compare urinary probe excretion and accuracy of a polyethylene glycol (PEG) assay and dual sugar assay in a double-blinded crossover study to evaluate probe excretion and the accuracy of both tests. Gastrointestinal permeability was measured in nine volunteers using PEG 400, PEG 1500, and PEG 3350 or lactulose-rhamnose. On 4 separate days, permeability was analyzed after oral intake of placebo or indomethacin, a drug known to increase intestinal permeability. Plasma intestinal fatty acid binding protein and calprotectin levels were determined to verify compromised intestinal integrity after indomethacin consumption. Urinary samples were collected at baseline, hourly up to 5 hours after probe intake, and between 5 and 24 hours. Urinary excretion of PEG and sugars was determined using high-pressure liquid chromatography-evaporative light scattering detection and liquid chromatography-mass spectrometry, respectively. Intake of indomethacin increased plasma intestinal fatty acid-binding protein and calprotectin levels, reflecting loss of intestinal integrity and inflammation. In this state of indomethacin-induced gastrointestinal compromise, urinary excretion of the three PEG probes and lactulose increased compared with placebo. Urinary PEG 400 excretion, the PEG 3350/PEG 400 ratio, and the lactulose/rhamnose ratio could accurately detect indomethacin-induced increases in gastrointestinal permeability, especially within 2 hours of probe intake. Hourly urinary excretion and diagnostic accuracy of PEG and sugar probes show high concordance for detection of indomethacin-induced increases in gastrointestinal permeability. This comparative study improves our knowledge of permeability analysis in man by providing a clear overview of both

  8. Polyethylene glycol versus dual sugar assay for gastrointestinal permeability analysis: is it time to choose?

    PubMed Central

    van Wijck, Kim; Bessems, Babs AFM; van Eijk, Hans MH; Buurman, Wim A; Dejong, Cornelis HC; Lenaerts, Kaatje

    2012-01-01

    Background Increased intestinal permeability is an important measure of disease activity and prognosis. Currently, many permeability tests are available and no consensus has been reached as to which test is most suitable. The aim of this study was to compare urinary probe excretion and accuracy of a polyethylene glycol (PEG) assay and dual sugar assay in a double-blinded crossover study to evaluate probe excretion and the accuracy of both tests. Methods Gastrointestinal permeability was measured in nine volunteers using PEG 400, PEG 1500, and PEG 3350 or lactulose-rhamnose. On 4 separate days, permeability was analyzed after oral intake of placebo or indomethacin, a drug known to increase intestinal permeability. Plasma intestinal fatty acid binding protein and calprotectin levels were determined to verify compromised intestinal integrity after indomethacin consumption. Urinary samples were collected at baseline, hourly up to 5 hours after probe intake, and between 5 and 24 hours. Urinary excretion of PEG and sugars was determined using high-pressure liquid chromatography-evaporative light scattering detection and liquid chromatography-mass spectrometry, respectively. Results Intake of indomethacin increased plasma intestinal fatty acid-binding protein and calprotectin levels, reflecting loss of intestinal integrity and inflammation. In this state of indomethacin-induced gastrointestinal compromise, urinary excretion of the three PEG probes and lactulose increased compared with placebo. Urinary PEG 400 excretion, the PEG 3350/PEG 400 ratio, and the lactulose/rhamnose ratio could accurately detect indomethacin-induced increases in gastrointestinal permeability, especially within 2 hours of probe intake. Conclusion Hourly urinary excretion and diagnostic accuracy of PEG and sugar probes show high concordance for detection of indomethacin-induced increases in gastrointestinal permeability. This comparative study improves our knowledge of permeability analysis in man

  9. Electroosmosis remediation of DNAPLS in low permeability soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, S V.

    1996-08-01

    Electroosmosis is the movement of water through a soil matrix induced by a direct current (DC) electric field. The technique has been used since the 1930s for dewatering and stabilizing fine-grained soils. More recently, electroosmosis has been considered as an in-situ method for soil remediation in which water is injected into the soil at the anode region to flush the contaminants to the cathode side for further treatment or disposal. The major advantage of electroosmosis is its inherent ability to move water uniformly through clayey, silty soils at 100 to 1000 times faster than attainable by hydraulic means, and withmore » very low energy usage. Drawbacks of electroosmosis as a stand-alone technology include slow speed, reliance on solubilizing the contaminants into the groundwater for removal, potentially an unstable process for long term operation, and necessary additional treatment and disposal of the collected liquid. Possible remediation applications of electroosmosis for DNAPLs would be primarily in the removal of residual DNAPLs in the soil pores by electroosmotic flushing. The future of electroosmosis as a broad remedial method lies in how well it can be coupled with complementary technologies. Examples include combining electroosmosis with vacuum extraction, with surfactant usage to deal with non-aqueous phase liquids (NAPLs) through enhanced solubilization or mobilization, with permeability enhancing methods (hydrofracturing, pneumatic fracturing, etc.) to create recovery zones, and with in-situ degradation zones to eliminate aboveground treatment. 33 refs., 1 fig., 1 tab.« less

  10. CORRELATION OF FLORIDA SOIL-GAS PERMEABILITIES WITH GRAIN SIZE, MOISTURE, AND POROSITY

    EPA Science Inventory

    The report describes a new correlation or predicting gas permeabilities of undisturbed or recompacted soils from their average grain diameter (d), moisture saturation factor (m), and porosity (p). he correlation exhibits a geometric standard deviation (GSD) of only 1.27 between m...

  11. Electrokinetic Enhanced Permanganate Delivery for Low Permeability Soil Remediation

    NASA Astrophysics Data System (ADS)

    Chowdhury, A. I.; Gerhard, J.; Reynolds, D. A.; Sleep, B. E.; O'Carroll, D. M.

    2016-12-01

    Contaminant mass sequestered in low permeability zones (LPZ) in the subsurface has become a significant concern due to back diffusion of contaminants, leading to contaminant rebound following treatment of the high permeability strata. In-situ remediation technologies such as in-situ chemical oxidation (ISCO) are promising, however, successful delivery of oxidants into silts and clays remains a challenge. Electrokinetics (EK) has been proposed as a technique that can overcome this challenge by delivering oxidants into low permeability soils. This study demonstrates the ability of EK to facilitate permanganate delivery into silt for treatment of trichloroethene (TCE). A two-dimensional sandbox was packed with alternate vertical layers of coarse sand and silt contaminated with high concentrations of aqueous phase TCE. Nine experiments were conducted to compare EK-enhanced in-situ chemical oxidation (EK-ISCO) to ISCO alone or EK alone. Frequent groundwater sampling at multiple locations combined with image analysis provided detailed mapping of TCE, permanganate, and manganese dioxide mass distributions. EK-ISCO successfully delivered the permanganate throughout the silt cross-section while ISCO without EK resulted in permanganate delivery only to the edges of the silt layer. EK-ISCO resulted in a 4.4 order-of-magnitude (OoM) reduction in TCE concentrations in the coarse sand compared to a 3.5 OoM reduction for ISCO alone. This study suggests that electrokinetics coupled with ISCO can achieve enhanced remediation of lower permeability strata, where remediation technologies for successful contaminant mass removal would otherwise be limited.

  12. Dual-Bioaugmentation Strategy To Enhance Remediation of Cocontaminated Soil

    PubMed Central

    Roane, T. M.; Josephson, K. L.; Pepper, I. L.

    2001-01-01

    Although metals are thought to inhibit the ability of microorganisms to degrade organic pollutants, several microbial mechanisms of resistance to metal are known to exist. This study examined the potential of cadmium-resistant microorganisms to reduce soluble cadmium levels to enhance degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under conditions of cocontamination. Four cadmium-resistant soil microorganisms were examined in this study. Resistant up to a cadmium concentration of 275 μg ml−1, these isolates represented the common soil genera Arthrobacter, Bacillus, and Pseudomonas. Isolates Pseudomonas sp. strain H1 and Bacillus sp. strain H9 had a plasmid-dependent intracellular mechanism of cadmium detoxification, reducing soluble cadmium levels by 36%. Isolates Arthrobacter strain D9 and Pseudomonas strain I1a both produced an extracellular polymer layer that bound and reduced soluble cadmium levels by 22 and 11%, respectively. Although none of the cadmium-resistant isolates could degrade 2,4-D, results of dual-bioaugmentation studies conducted with both pure culture and laboratory soil microcosms showed that each of four cadmium-resistant isolates supported the degradation of 500-μg ml−1 2,4-D by the cadmium-sensitive 2,4-D degrader Ralstonia eutropha JMP134. Degradation occurred in the presence of up to 24 μg of cadmium ml−1 in pure culture and up to 60 μg of cadmium g−1 in amended soil microcosms. In a pilot field study conducted with 5-gallon soil bioreactors, the dual-bioaugmentation strategy was again evaluated. Here, the cadmium-resistant isolate Pseudomonas strain H1 enhanced degradation of 2,4-D in reactors inoculated with R. eutropha JMP134 in the presence of 60 μg of cadmium g−1. Overall, dual bioaugmentation appears to be a viable approach in the remediation of cocontaminated soils. PMID:11425743

  13. Modeling multidomain hydraulic properties of shrink-swell soils

    NASA Astrophysics Data System (ADS)

    Stewart, Ryan D.; Abou Najm, Majdi R.; Rupp, David E.; Selker, John S.

    2016-10-01

    Shrink-swell soils crack and become compacted as they dry, changing properties such as bulk density and hydraulic conductivity. Multidomain models divide soil into independent realms that allow soil cracks to be incorporated into classical flow and transport models. Incongruously, most applications of multidomain models assume that the porosity distributions, bulk density, and effective saturated hydraulic conductivity of the soil are constant. This study builds on a recently derived soil shrinkage model to develop a new multidomain, dual-permeability model that can accurately predict variations in soil hydraulic properties due to dynamic changes in crack size and connectivity. The model only requires estimates of soil gravimetric water content and a minimal set of parameters, all of which can be determined using laboratory and/or field measurements. We apply the model to eight clayey soils, and demonstrate its ability to quantify variations in volumetric water content (as can be determined during measurement of a soil water characteristic curve) and transient saturated hydraulic conductivity, Ks (as can be measured using infiltration tests). The proposed model is able to capture observed variations in Ks of one to more than two orders of magnitude. In contrast, other dual-permeability models assume that Ks is constant, resulting in the potential for large error when predicting water movement through shrink-swell soils. Overall, the multidomain model presented here successfully quantifies fluctuations in the hydraulic properties of shrink-swell soil matrices, and are suitable for use in physical flow and transport models based on Darcy's Law, the Richards Equation, and the advection-dispersion equation.

  14. Modelling the migration of contaminants through variably saturated dual-porosity, dual-permeability chalk.

    PubMed

    Brouyère, Serge

    2006-01-10

    In the Hesbaye region in Belgium, tracer tests performed in variably saturated fissured chalk rocks presented very contrasting results in terms of transit times, according to artificially controlled water recharge conditions prevailing during the experiments. Under intense recharge conditions, tracers migrated across the partially or fully saturated fissure network, at high velocity in accordance with the high hydraulic conductivity and low effective porosity (fracture porosity). At the same time, a portion of the tracer was temporarily retarded in the almost immobile water located in the matrix. Under natural infiltration conditions, the fissure network remained inactive. Tracers migrated downward through the matrix, at low velocity in relation with the low hydraulic conductivity and the large porosity of the matrix. Based on these observations, Brouyère et al. (2004a) [Brouyère, S., Dassargues, A., Hallet, V., 2004a. Migration of contaminants through the unsaturated zone overlying the Hesbaye chalky aquifer in Belgium: a field investigation, J. Contam. Hydrol., 72 (1-4), 135-164, doi: 10.1016/j.conhyd.2003.10.009] proposed a conceptual model in order to explain the migration of solutes in variably saturated, dual-porosity, dual-permeability chalk. Here, mathematical and numerical modelling of tracer and contaminant migration in variably saturated fissured chalk is presented, considering the aforementioned conceptual model. A new mathematical formulation is proposed to represent the unsaturated properties of the fissured chalk in a more dynamic and appropriate way. At the same time, the rock water content is partitioned between mobile and immobile water phases, as a function of the water saturation of the chalk rock. The groundwater flow and contaminant transport in the variably saturated chalk is solved using the control volume finite element method. Modelling the field tracer experiments performed in the variably saturated chalk shows the adequacy and

  15. Micaceous Soil Strength And Permeability Improvement Induced By Microbacteria From Vegetable Waste

    NASA Astrophysics Data System (ADS)

    Omar, R. C.; Roslan, R.; Baharuddin, I. N. Z.; Hanafiah, M. I. M.

    2016-11-01

    Green technology method using vegetable waste are introduced in this paper for improvement of phyllite residual soil from UNITEN, Campus. Residual soil from phyllite are known as micaceous soils and it give problem in managing the stability of the slope especially in wet and extensively dry seasons. Micaceous soil are collected using tube sampler technique and mixed with liquid contain microorganism from fermented vegetable waste name as vege-grout to form remolded sample. The remolded sample are classify as 15.0%, 17.5%, 20.00% and 22.5% based on different incremental percentages of vege-grout. The curing time for the sample are 7, 14, 21, 28, and 35 days before the tests were conducted. Observation of the effect of treatment shows 20.0% of liquid contain Bacillus pasteurii and Bacillus Subtilis with 21 days curing time is the optimum value in strengthening the soil and improve the permeability.

  16. Investigation of Stabilised Batu Pahat Soft Soil Pertaining on its CBR and Permeability Properties for Road Construction

    NASA Astrophysics Data System (ADS)

    Mohd Idrus, M. M.; Singh, J. S. M.; Musbah, A. L. A.; Wijeyesekera, D. C.

    2016-07-01

    Soil stabilization by adding materials such as cement, lime and bitumen is one of the effective methods for improving the geotechnical properties of soils [11] Nano-particle is one of the newest additives and many studies about using nano-particle in soil improvement has been done but it was given less attention when soft clay soils stabilization is concerned. To evaluate the strength characteristics of stabilized Batu Pahat soft clay, laboratory investigation on early strength gained by the stabilized soil must be conducted to formulate a suitable and economical mix design [10]. To achieve such purpose, the study examined the effect of NanoClay on the California Bearing Ratio and the Permeability of soft clay. The results gained shows that the Nano-Clay is able to increase the strength of the soft clay [9]. The California Bearing Ratio of the soil is increase significantly where the results for the highest percentage of admixture is 14.4% while the permeability of the soil decreases significantly with increasing Nano-Clay whereby the results of the highest percentage of admixture is 2.0187x10-11 m/s. After doing this research, it is proven that Nano-clay can contribute towards better soil stabilization and enhance the quality of soil as subgrade and foundation at large.

  17. Electrokinetic Enhanced Delivery and Electrical Resistance Heating Activation of Persulfate for Low Permeability Soil Remediation

    NASA Astrophysics Data System (ADS)

    Chowdhury, A. I.; Gerhard, J.; Reynolds, D. A.; OCarroll, D.

    2016-12-01

    Remediation of low permeability soils is challenging because delivering remediants into these formations is difficult. Electrokinetics (EK) has been proposed as a new approach to overcome this difficulty, for example, to deliver oxidants such as persulfate into silts and clays. However, activation of the persulfate in such scenarios remains a challenge. The current study proposes a novel approach of combining (i) EK-assisted persulfate delivery with (ii) low temperature electrical resistance heating (ERH) to activate the persulfate. The advantage of this new approach that a single set of electrodes can be used for both oxidant delivery and oxidant activation in low permeability, contaminated soil. Proof-of-concept experiments were conducted in a two-dimensional sandbox packed with silt exhibiting high concentrations of aqueous phase tetrachloroethene (PCE). Results showed that (1) EK delivered the non-activated persulfate throughout the silt, (2) ERH was able to achieve and sustain the targeted temperatures to activate the persulfate, and (3) these resulted in complete PCE degradation at all locations. Activating persulfate at a temperature around 36 °C was better than at 42 °C (or higher), because the former more slowly generated the reactive SO4ˉ● radical which ensured more complete reaction with the contaminant. This study proved the concept of this novel, coupled approach for delivering and activating persulfate for remediating chlorinated solvents in low permeability soils.

  18. Colloid Mobilization in a Fractured Soil during Dry-Wet Cycles: Role of Drying Duration and Flow Path Permeability.

    PubMed

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2015-08-04

    In subsurface soils, colloids are mobilized by infiltrating rainwater, but the source of colloids and the process by which colloids are generated between rainfalls are not clear. We examined the effect of drying duration and the spatial variation of soil permeability on the mobilization of in situ colloids in intact soil cores (fractured and heavily weathered saprolite) during dry-wet cycles. Measuring water flux at multiple sampling ports at the core base, we found that water drained through flow paths of different permeability. The duration of antecedent drying cycles affected the amount of mobilized colloids, particularly in high-flux ports that received water from soil regions with a large number of macro- and mesopores. In these ports, the amount of mobilized colloids increased with increased drying duration up to 2.5 days. For drying durations greater than 2.5 days, the amount of mobilized colloids decreased. In contrast, increasing drying duration had a limited effect on colloid mobilization in low-flux ports, which presumably received water from soil regions with fewer macro- and mesopores. On the basis of these results, we attribute this dependence of colloid mobilization upon drying duration to colloid generation from dry pore walls and distribution of colloids in flow paths, which appear to be sensitive to the moisture content of soil after drying and flow path permeability. The results are useful for improving the understanding of colloid mobilization during fluctuating weather conditions.

  19. EXPERIMENTAL EVALUATION OF GEOMETRICAL SHAPE FACTORS FOR SHORT CYLINDRICAL PROBES USED TO MEASURE SOIL PERMEABILITY TO AIR

    EPA Science Inventory

    Permeability of soil has become recognized as an important parameter in determining the rate of transport and entry of radon from the soil into indoor environments. This parameter is usually measured in the field by inserting a cylindrical tube with a short porous section into th...

  20. Prediction of relative and absolute permeabilities for gas and water from soil water retention curves using a pore-scale network model

    NASA Astrophysics Data System (ADS)

    Fischer, Ulrich; Celia, Michael A.

    1999-04-01

    Functional relationships for unsaturated flow in soils, including those between capillary pressure, saturation, and relative permeabilities, are often described using analytical models based on the bundle-of-tubes concept. These models are often limited by, for example, inherent difficulties in prediction of absolute permeabilities, and in incorporation of a discontinuous nonwetting phase. To overcome these difficulties, an alternative approach may be formulated using pore-scale network models. In this approach, the pore space of the network model is adjusted to match retention data, and absolute and relative permeabilities are then calculated. A new approach that allows more general assignments of pore sizes within the network model provides for greater flexibility to match measured data. This additional flexibility is especially important for simultaneous modeling of main imbibition and drainage branches. Through comparisons between the network model results, analytical model results, and measured data for a variety of both undisturbed and repacked soils, the network model is seen to match capillary pressure-saturation data nearly as well as the analytical model, to predict water phase relative permeabilities equally well, and to predict gas phase relative permeabilities significantly better than the analytical model. The network model also provides very good estimates for intrinsic permeability and thus for absolute permeabilities. Both the network model and the analytical model lost accuracy in predicting relative water permeabilities for soils characterized by a van Genuchten exponent n≲3. Overall, the computational results indicate that reliable predictions of both relative and absolute permeabilities are obtained with the network model when the model matches the capillary pressure-saturation data well. The results also indicate that measured imbibition data are crucial to good predictions of the complete hysteresis loop.

  1. LEAK AND GAS PERMEABILITY TESTING DURING SOIL-GAS SAMPLING AT HAL'S CHEVRON LUST SITE IN GREEN RIVER, UTAH

    EPA Science Inventory

    The results of gas permeability and leak testing during active soil-gas sampling at Hal’s Chevron LUST Site in Green River, Utah are presented. This study was conducted to support development of a passive soil-gas sampling method. Gas mixtures containing helium and methane were...

  2. Film Permeability Determination Using Static Permeability Cells

    EPA Pesticide Factsheets

    The permeability of tarps to soil fumigant pesticides varies depending on the active ingredient chemical: dimethyl disulfide (DMDS), methyl bromide, chloropicrin, or other. The diffusion rate can be represented by the mass transfer coefficient (MTC).

  3. Simultaneous acquisition of perfusion and permeability from corrected relaxation rates with dynamic susceptibility contrast dual gradient echo.

    PubMed

    Kim, Eun-Ju; Kim, Dae-Hong; Lee, Sang Hoon; Huh, Yong-Min; Song, Ho-Taek; Suh, Jin-Suck

    2004-04-01

    This study compared two methods, corrected (separation of T(1) and T(2)* effects) and uncorrected, in order to determine the suitability of the perfusion and permeability measures through Delta R(2)* and Delta R(1) analyses. A dynamic susceptibility contrast dual gradient echo (DSC-DGE) was used to image the fixed phantoms and flow phantoms (Sephadex perfusion phantoms and dialyzer phantom for the permeability measurements). The results confirmed that the corrected relaxation rate was linearly proportional to gadolinium-diethyltriamine pentaacetic acid (Gd-DTPA) concentration, whereas the uncorrected relaxation rate did not in the fixed phantom and simulation experiments. For the perfusion measurements, it was found that the correction process was necessary not only for the Delta R(1) time curve but also for the Delta R(2)* time curve analyses. Perfusion could not be measured without correcting the Delta R(2)* time curve. The water volume, which was expressed as the perfusion amount, was found to be closer to the theoretical value when using the corrected Delta R(1) curve in the calculations. However, this may occur in the low concentration of Gd-DTPA in tissue used in this study. For the permeability measurements based on the two-compartment model, the permeability factor (k(ev); e = extravascular, v = vascular) from the outside to the inside of the hollow fibers was greater in the corrected Delta R(1) method than in the uncorrected Delta R(1) method. The differences between the corrected and the uncorrected Delta R(1) values were confirmed by the simulation experiments. In conclusion, this study proposes that the correction for the relaxation rates, Delta R(2)* and Delta R(1), is indispensable in making accurate perfusion and permeability measurements, and that DSC-DGE is a useful method for obtaining information on perfusion and permeability, simultaneously.

  4. Laboratory evaluation of dual-frequency multisensor capacitance probes to monitor soil water and salinity

    USDA-ARS?s Scientific Manuscript database

    Real-time information on salinity levels and transport of fertilizers are generally missing from soil profile knowledge bases. A dual-frequency multisensor capacitance probe (MCP) is now commercially available for sandy soils that simultaneously monitor volumetric soil water content (VWC, ') and sa...

  5. Soil Variable Permeability and Water Phase Change Dynamics in a Wastewater Spray Irrigation Agricultural System Located in a Seasonably Cold Climate

    NASA Astrophysics Data System (ADS)

    Darnault, C. J. G.; Daniel, T. J.; Billy, G.; Hopkins, I.; Guo, L.; Jin, Z.; Gall, H. E.; Lin, H.

    2017-12-01

    The permeability of the upper meter of soils in frozen conditions, commonly referred to as the active layer, can vary exponentially given the time of year. Variable moisture contents along with temperature, radiation, and slope angle of the soil surface can result in variable depths of frozen soils, which can cause the formation of low permeability ice lenses well into the spring thaw period. The wastewater irrigation site known as the "Living Filter" located in State College, PA has been in continuous operation since 1962. On average 5500 m3/day of wastewater is applied to the site annually, even in the winter months when average temperatures can dip as low as -7 °C during the month of January. The Living Filter is not permitted to discharge to surface water and is intended to recharge the Spring Creek basin that directly underlies the site, therefore runoff from the site is not permitted. We hypothesize that water infiltrates the upper meter of the subsurface during the winter in several different ways such as preferential pathways in the ice layer created by plant stems and weak patches of ice thawed by the warm wastewater. 2D conceptual models of the phase change between ice and water in the soil were created in order to predict soil permeability and its change in temperature. The 2D conceptual models can be correlated between observed soil moisture content and soil temperature data in order to validate the model given spray irrigation and weather patterns. By determining the permeability of the frozen soils, irrigation practices can be adjusted for the winter months so as to reduce the risk of any accidental wastewater runoff. The impact of this study will result in a better understanding of the multiphase dynamics of the active layer and their implication on soil hydrology at the Living Filter and other seasonally frozen sites.

  6. Soil features and indoor radon concentration prediction: radon in soil gas, pedology, permeability and 226Ra content.

    PubMed

    Lara, E; Rocha, Z; Santos, T O; Rios, F J; Oliveira, A H

    2015-11-01

    This work aims at relating some physicochemical features of soils and their use as a tool for prediction of indoor radon concentrations of the Metropolitan Region of Belo Horizonte (RMBH), Minas Gerais, Brazil. The measurements of soil gas radon concentrations were performed by using an AlphaGUARD monitor. The (226)Ra content analysis was performed by gamma spectrometry (high pure germanium) and permeabilities were performed by using the RADON-JOK permeameter. The GEORP indicator and soil radon index (RI) were also calculated. Approximately 53 % of the Perferric Red Latosols measurement site could be classified as 'high risk' (Swedish criteria). The Litholic Neosols presented the lowest radon concentration mean in soil gas. The Perferric Red Latosols presented significantly high radon concentration mean in soil gas (60.6 ± 8.7 kBq m(-3)), high indoor radon concentration, high RI, (226)Ra content and GEORP. The preliminary results may indicate an influence of iron formations present very close to the Perferric Red Latosols in the retention of uranium minerals. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Mapping permeability over the surface of the Earth

    USGS Publications Warehouse

    Gleeson, T.; Smith, L.; Moosdorf, N.; Hartmann, J.; Durr, H.H.; Manning, A.H.; Van Beek, L. P. H.; Jellinek, A. Mark

    2011-01-01

    Permeability, the ease of fluid flow through porous rocks and soils, is a fundamental but often poorly quantified component in the analysis of regional-scale water fluxes. Permeability is difficult to quantify because it varies over more than 13 orders of magnitude and is heterogeneous and dependent on flow direction. Indeed, at the regional scale, maps of permeability only exist for soil to depths of 1-2 m. Here we use an extensive compilation of results from hydrogeologic models to show that regional-scale (>5 km) permeability of consolidated and unconsolidated geologic units below soil horizons (hydrolithologies) can be characterized in a statistically meaningful way. The representative permeabilities of these hydrolithologies are used to map the distribution of near-surface (on the order of 100 m depth) permeability globally and over North America. The distribution of each hydrolithology is generally scale independent. The near-surface mean permeability is of the order of ???5 ?? 10-14 m2. The results provide the first global picture of near-surface permeability and will be of particular value for evaluating global water resources and modeling the influence of climate-surface-subsurface interactions on global climate change. Copyright ?? 2011 by the American Geophysical Union.

  8. Mapping permeability over the surface of the Earth

    USGS Publications Warehouse

    Gleeson, Tom; Smith, Leslie; Moosdorf, Nils; Hartmann, Jens; Durr, Hans H.; Manning, Andrew H.; van Beek, Ludovicus P. H.; Jellinek, A. Mark

    2011-01-01

    Permeability, the ease of fluid flow through porous rocks and soils, is a fundamental but often poorly quantified component in the analysis of regional-scale water fluxes. Permeability is difficult to quantify because it varies over more than 13 orders of magnitude and is heterogeneous and dependent on flow direction. Indeed, at the regional scale, maps of permeability only exist for soil to depths of 1-2 m. Here we use an extensive compilation of results from hydrogeologic models to show that regional-scale (>5 km) permeability of consolidated and unconsolidated geologic units below soil horizons (hydrolithologies) can be characterized in a statistically meaningful way. The representative permeabilities of these hydrolithologies are used to map the distribution of near-surface (on the order of 100 m depth) permeability globally and over North America. The distribution of each hydrolithology is generally scale independent. The near-surface mean permeability is of the order of -5 x 10-14 m2. The results provide the first global picture of near-surface permeability and will be of particular value for evaluating global water resources and modeling the influence of climate-surface-subsurface interactions on global climate change.

  9. Hydraulic fracturing to enhance the remediation of DNAPL in low permeability soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murdoch, L.; Slack, B.

    1996-08-01

    Meager rates of fluid flow are a major obstacle to in situ remediation of low permeability soils. This paper describes methods designed to avoid that obstacle by creating fractures and filling them with sand to increase well discharge and change paths of fluid flow in soil. Gently dipping fractures 10 m in maximum dimension and 1 to 2 cm thick can be created in some contaminated soils at depths of a few in or greater. Hydraulic fractures can also be used to create electrically conductive layers or to deliver granules of chemically or biologically active compounds that will degrade contaminantsmore » in place. Benefits of applying hydraulic fractures to DNAPL recovery include rates of fluid recovery, enhancing upward gradients to improve hydrodynamic stabilization, forming flat-lying reactive curtains to intersect compounds moving downward, or improving the performance of electrokinetics intended to recover compounds dissolved in water. 30 refs., 7 figs., 1 tab.« less

  10. Nature based solutions to mitigate soil sealing in urban areas: Results from a 4-year study comparing permeable, porous, and impermeable pavements.

    PubMed

    Fini, A; Frangi, P; Mori, J; Donzelli, D; Ferrini, F

    2017-07-01

    Soil sealing is one of the most pervasive forms of soil degradation that follows urbanization and, despite innovative pavements (i.e. pervious) are being installed in urban areas to mitigate it, there is little research on the effects of pervious pavements on soil water and carbon cycle and on the physiology of urban trees. The aim of this 4-year experiment was to assess the effects of three pavements, differing in permeability to water and gases, on some soil physical parameters, and on growth and physiology of newly planted Celtis australis and Fraxinus ornus. Treatments were: 1) impermeable pavement (asphalt on concrete sub-base); 2) permeable pavement (pavers on crushed rock sub-base); 3) porous design (porous pavement on crushed rock sub-base); 4) control (unpaved soil, kept free of weed by chemical control). Soil (temperature, moisture, oxygen content and CO 2 efflux) and plant (above- and below-ground growth, leaf gas exchange, chlorophyll fluorescence, water relations) parameters were measured. All types of pavements altered the water cycle compared to unpaved soil plots, but this disturbance was less intense in porous pavements than in other soil cover types. Porous pavements allowed both higher infiltration and evaporation of water than both pavers and asphalt. Reduction of evaporative cooling from soil paved with permeable and impermeable pavements contributed to significant soil warming: at 20cm depth, soils under concrete pavers and asphalt were 4 and 5°C warmer than soil covered by porous pavements and unpaved soils, respectively. Thus, enhancing evaporation from paved soil by the use of porous pavements may contribute to mitigating urban heat islands. CO 2 greatly accumulated under impermeable and permeable pavements, but not under porous pavements, which showed CO 2 efflux rates similar to control. Soil oxygen slightly decreased only beneath asphalt. Growth of newly planted C. australis and F. ornus was little affected by pavement type. Tree

  11. Influences of spatial scale and soil permeability on relationships between land cover and baseflow stream nutrient concentrations

    EPA Science Inventory

    The Little Miami River (LMR) basin, dominated by agriculture, contains two geologically-distinct regions; a glaciated northern till plain with soils three times more permeable than a southern, pre-Wisconsinan drift plain. The influences of two landscape measures, percent row crop...

  12. Processes affecting soil and groundwater contamination by DNAPL in low-permeability media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McWhorter, D.B.

    1996-08-01

    This paper is one of a set of focus papers intended to document the current knowledge relevant to the contamination and remediation of soils and ground water by dense, nonaqueous phase liquids (DNAPL). The emphasis is on low permeability media such as fractured clay and till and unconsolidated, stratified formations. Basic concepts pertaining to immiscible-fluid mixtures are described and used to discuss such aspects as DNAPL transport, dissolved-phase transport, and equilibrium mass distributions. Several implications for remediation are presented. 27 refs., 8 figs., 4 tabs.

  13. Modeling relative permeability of water in soil: Application of effective-medium approximation and percolation theory

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Sahimi, Muhammad; Daigle, Hugh

    2016-07-01

    Accurate prediction of the relative permeability to water under partially saturated condition has broad applications and has been studied intensively since the 1940s by petroleum, chemical, and civil engineers, as well as hydrologists and soil scientists. Many models have been developed for this purpose, ranging from those that represent the pore space as a bundle of capillary tubes, to those that utilize complex networks of interconnected pore bodies and pore throats with various cross-section shapes. In this paper, we propose an approach based on the effective-medium approximation (EMA) and percolation theory in order to predict the water relative permeability. The approach is general and applicable to any type of porous media. We use the method to compute the water relative permeability in porous media whose pore-size distribution follows a power law. The EMA is invoked to predict the relative permeability from the fully saturated pore space to some intermediate water saturation that represents a crossover from the EMA to what we refer to as the "critical region." In the critical region below the crossover water saturation Swx, but still above the critical water saturation Swc (the residual saturation or the percolation threshold of the water phase), the universal power law predicted by percolation theory is used to compute the relative permeability. To evaluate the accuracy of the approach, data for 21 sets of undisturbed laboratory samples were selected from the UNSODA database. For 14 cases, the predicted relative permeabilities are in good agreement with the data. For the remaining seven samples, however, the theory underestimates the relative permeabilities. Some plausible sources of the discrepancy are discussed.

  14. Long-Term Groundwater Monitoring Optimization, Clare Water Supply Superfund Site, Permeable Reactive Barrier and Soil Remedy Areas, Clare, Michigan

    EPA Pesticide Factsheets

    This report contains a review of the long-term groundwater monitoring network for the Permeable Reactive Barrier (PRB) and Soil Remedy Areas at the Clare Water Supply Superfund Site in Clare, Michigan.

  15. Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste.

    PubMed

    Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen

    2018-05-01

    The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.

  16. Fracture and healing in magmas: a dual role on permeability evolution

    NASA Astrophysics Data System (ADS)

    Lamur, Anthony; Lavallée, Yan; Wall, Richard; Ashworth, James; Kendrick, Jackie; Wadsworth, Fabian

    2016-04-01

    The development of a permeable network in silicic volcanic conduits controls outgassing and plays a major role on the subsequent eruptive behaviour. Efficient outgassing, at higher permeabilities, is achieved through the coalescence of pores and fractures. Whilst the relationship between permeability and increasing connected porosity is now relatively well constrained, the effects of fractures have, on the other hand, rarely been investigated. Here, we present the results of an experimental study focusing on the impacts of tensile fracturing and healing on permeability. Permeability measurements have been performed on over 60 disk-shaped samples (26 mm diameter, 13 mm thickness) with connected porosities ranging from 2 to 45%. Our results for unfractured samples display the same porosity-permeability trend as previous studies and permeabilities span from 10-15 at low porosities to over 5x10-12 m2 at higher porosities. These samples were then broken via Brazilian tests and the resultant permeability of the rocks were then measured across the fracture zone. Whilst high porosity samples reached permeabilities of about 5x10-10 m2 (2 orders of magnitude higher than intact samples), low porosity samples, on the other hand, reached permeabilities around 5x10-12 m2 (more than 3 orders of magnitude above intact samples). Our results show that fracturing favours the development of a permeable network that adheres to a different permeability-porosity relationship than previously presented, and that this effect is emphasized in magmas with low connected porosities. The effect of fracture healing by diffusion on permeability has been investigated through a series of experiments on borosilicate standard glass (NIST 717a). These experiments were conducted at 560oC (viscosity of 1010.33 Pa.s) on pairs of columns pressed and held in contact at constant load for times varying between 0.5s and 15000 s before being pulled apart at a strain rate of 10-3s-1. Using Maxwell's theory of

  17. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil.

    PubMed

    Mena, Esperanza; Ruiz, Clara; Villaseñor, José; Rodrigo, Manuel A; Cañizares, Pablo

    2015-01-01

    Removal of diesel from spiked kaolin has been studied in the laboratory using coupled electrokinetic soil flushing (EKSF) and bioremediation through an innovative biological permeable reactive barriers (Bio-PRBs) positioned between electrode wells. The results show that this technology is efficient in the removal of pollutants and allows the soil to maintain the appropriate conditions for microorganism growth in terms of pH, temperature, and nutrients. At the same time, EKSF was demonstrated to be a very interesting technology for transporting pollutants, microorganisms and nutrients, although results indicate that careful management is necessary to avoid the depletion of nutrients, which are effectively transported by electro-migration. After two weeks of operation, 30% of pollutants are removed and energy consumption is under 70 kWh m(-3). Main fluxes (electroosmosis and evaporation) and changes in the most relevant parameters (nutrients, diesel, microorganisms, surfactants, moisture conductivity and pH) during treatment and in a complete post-study analysis are studied to give a comprehensive description of the most relevant processes occurring in the soil (pollutant transport and biodegradation). Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Lab and Pore-Scale Study of Low Permeable Soils Diffusional Tortuosity

    NASA Astrophysics Data System (ADS)

    Lekhov, V.; Pozdniakov, S. P.; Denisova, L.

    2016-12-01

    Diffusion plays important role in contaminant spreading in low permeable units. The effective diffusion coefficient of saturated porous medium depends on this coefficient in water, porosity and structural parameter of porous space - tortuosity. Theoretical models of relationship between porosity and diffusional tortuosity are usually derived for conceptual granular models of medium filled by solid particles of simple geometry. These models usually do not represent soils with complex microstructure. The empirical models, like as Archie's law, based on the experimental electrical conductivity data are mostly useful for practical applications. Such models contain empirical parameters that should be defined experimentally for given soil type. In this work, we compared tortuosity values obtained in lab-scale diffusional experiments and pore scale diffusion simulation for the studied soil microstructure and exanimated relationship between tortuosity and porosity. Samples for the study were taken from borehole cores of low-permeable silt-clay formation. Using the samples of 50 cm3 we performed lab scale diffusional experiments and estimated the lab-scale tortuosity. Next using these samples we studied the microstructure with X-ray microtomograph. Shooting performed on undisturbed microsamples of size 1,53 mm with a resolution ×300 (10243 vox). After binarization of each obtained 3-D structure, its spatial correlation analysis was performed. This analysis showed that the spatial correlation scale of the indicator variogram is considerably smaller than microsample length. Then there was the numerical simulation of the Laplace equation with binary coefficients for each microsamples. The total number of simulations at the finite-difference grid of 1753 cells was 3500. As a result the effective diffusion coefficient, tortuosity and porosity values were obtained for all studied microsamples. The results were analyzed in the form of graph of tortuosity versus porosity. The 6

  19. Study on the technology of dual-tube layered injection in ASP flooding

    NASA Astrophysics Data System (ADS)

    Yang, Ye; Zhang, Yongping; Xu, Dekui; Cai, Meng; Yang, Zhigang; Wang, Hailong; Song, Xingliang

    2017-10-01

    For the single-tube layered injection technology cannot solve the problem of interlayer pressure difference is greater than 2MPa injection wells, through the development of dual-tube packer, dual-tube injection allocator, downhole plug, the ground pressure regulator and molecular weight regulator. Dual-tube layered injection technology is formed. According to the data of ASP flooding injection wells in the field, the whole well is divided into high permeability and low permeability oil reservoir. Two separate injection channels can be formed by using dual-tube packer and dual-tube injection allocator. Through the use of the ground pressure regulator, the problem of the high permeability layer and low permeability layer of the injection pressure difference is solved. Through the use of the ground molecular weight regulator, the problem that the same molecular weight ASP solution is not suitable for high and low permeability is solved. By replacing the downhole plug, the grouping transformation of some oil layer can be achieved. The experiment and field application of 3 wells results show that: the flow control range is 20m3/d-70m3/d; the max. Throttling differential pressure is 3.5MPa; the viscosity loss rate of solution is less than 5%; and the molecular weight adjusting range is 20%-50%. The utilization degree of oil layer is obviously increased through the use of the dual-tube layered injection technology.

  20. One-dimensional model for biogeochemical interactions and permeability reduction in soils during leachate permeation.

    PubMed

    Singhal, Naresh; Islam, Jahangir

    2008-02-19

    This paper uses the findings from a column study to develop a reactive model for exploring the interactions occurring in leachate-contaminated soils. The changes occurring in the concentrations of acetic acid, sulphate, suspended and attached biomass, Fe(II), Mn(II), calcium, carbonate ions, and pH in the column are assessed. The mathematical model considers geochemical equilibrium, kinetic biodegradation, precipitation-dissolution reactions, bacterial and substrate transport, and permeability reduction arising from bacterial growth and gas production. A two-step sequential operator splitting method is used to solve the coupled transport and biogeochemical reaction equations. The model gives satisfactory fits to experimental data and the simulations show that the transport of metals in soil is controlled by multiple competing biotic and abiotic reactions. These findings suggest that bioaccumulation and gas formation, compared to chemical precipitation, have a larger influence on hydraulic conductivity reduction.

  1. Pneumatic fracturing of low permeability media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuring, J.R.

    1996-08-01

    Pneumatic fracturing of soils to enhance the removal and treatment of dense nonaqueous phase liquids is described. The process involves gas injection at a pressure exceeding the natural stresses and at a flow rate exceeding the permeability of the formation. The paper outlines geologic considerations, advantages and disadvantages, general technology considerations, low permeability media considerations, commercial availability, efficiency, and costs. Five case histories of remediation using pneumatic fracturing are briefly summarized. 11 refs., 2 figs., 1 tab.

  2. Quantification of colloidal and aqueous element transfer in soils: The dual-phase mass balance model

    USGS Publications Warehouse

    Bern, Carleton R.; Thompson, Aaron; Chadwick, Oliver A.

    2015-01-01

    Mass balance models have become standard tools for characterizing element gains and losses and volumetric change during weathering and soil development. However, they rely on the assumption of complete immobility for an index element such as Ti or Zr. Here we describe a dual-phase mass balance model that eliminates the need for an assumption of immobility and in the process quantifies the contribution of aqueous versus colloidal element transfer. In the model, the high field strength elements Ti and Zr are assumed to be mobile only as suspended solids (colloids) and can therefore be used to distinguish elemental redistribution via colloids from redistribution via dissolved aqueous solutes. Calculations are based upon element concentrations in soil, parent material, and colloids dispersed from soil in the laboratory. We illustrate the utility of this model using a catena in South Africa. Traditional mass balance models systematically distort elemental gains and losses and changes in soil volume in this catena due to significant redistribution of Zr-bearing colloids. Applying the dual-phase model accounts for this colloidal redistribution and we find that the process accounts for a substantial portion of the major element (e.g., Al, Fe and Si) loss from eluvial soil. In addition, we find that in illuvial soils along this catena, gains of colloidal material significantly offset aqueous elemental loss. In other settings, processes such as accumulation of exogenous dust can mimic the geochemical effects of colloid redistribution and we suggest strategies for distinguishing between the two. The movement of clays and colloidal material is a major process in weathering and pedogenesis; the mass balance model presented here is a tool for quantifying effects of that process over time scales of soil development.

  3. Monitoring water stable isotopic composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rothfuss, Youri; Vereecken, Harry; Brüggemann, Nicolas

    2013-06-01

    In soils, the isotopic composition of water (δ2H and δ18O) provides qualitative (e.g., location of the evaporation front) and quantitative (e.g., evaporation flux and root water uptake depths) information. However, the main disadvantage of the isotope methodology is that contrary to other soil state variables that can be monitored over long time periods, δ2H and δ18O are typically analyzed following destructive sampling. Here we present a nondestructive method for monitoring soil liquid water δ2H and δ18O over a wide range of water availability conditions and temperatures by sampling water vapor equilibrated with soil water using gas-permeable polypropylene tubing and a cavity ring-down laser absorption spectrometer. By analyzing water vapor δ2H and δ18O sampled with the tubing from a fine sand for temperatures ranging between 8°C and 24°C, we demonstrate that our new method is capable of monitoring δ2H and δ18O in soils online with high precision and after calibration, also with high accuracy. Our sampling protocol enabled detecting changes of δ2H and δ18O following nonfractionating addition and removal of liquid water and water vapor of different isotopic compositions. Finally, the time needed for the tubing to monitor these changes is compatible with the observed variations of δ2H and δ18O in soils under natural conditions.

  4. Dual frequency microwave radiometer measurements of soil moisture for bare and vegetated rough surfaces

    NASA Technical Reports Server (NTRS)

    Lee, S. L.

    1974-01-01

    Controlled ground-based passive microwave radiometric measurements on soil moisture were conducted to determine the effects of terrain surface roughness and vegetation on microwave emission. Theoretical predictions were compared with the experimental results and with some recent airborne radiometric measurements. The relationship of soil moisture to the permittivity for the soil was obtained in the laboratory. A dual frequency radiometer, 1.41356 GHz and 10.69 GHz, took measurements at angles between 0 and 50 degrees from an altitude of about fifty feet. Distinct surface roughnesses were studied. With the roughness undisturbed, oats were later planted and vegetated and bare field measurements were compared. The 1.4 GHz radiometer was less affected than the 10.6 GHz radiometer, which under vegetated conditions was incapable of detecting soil moisture. The bare surface theoretical model was inadequate, although the vegetation model appeared to be valid. Moisture parameters to correlate apparent temperature with soil moisture were compared.

  5. Analytical solution for vacuum preloading considering the nonlinear distribution of horizontal permeability within the smear zone.

    PubMed

    Peng, Jie; He, Xiang; Ye, Hanming

    2015-01-01

    The vacuum preloading is an effective method which is widely used in ground treatment. In consolidation analysis, the soil around prefabricated vertical drain (PVD) is traditionally divided into smear zone and undisturbed zone, both with constant permeability. In reality, the permeability of soil changes continuously within the smear zone. In this study, the horizontal permeability coefficient of soil within the smear zone is described by an exponential function of radial distance. A solution for vacuum preloading consolidation considers the nonlinear distribution of horizontal permeability within the smear zone is presented and compared with previous analytical results as well as a numerical solution, the results show that the presented solution correlates well with the numerical solution, and is more precise than previous analytical solution.

  6. Analytical solution for vacuum preloading considering the nonlinear distribution of horizontal permeability within the smear zone

    PubMed Central

    Peng, Jie; He, Xiang; Ye, Hanming

    2015-01-01

    The vacuum preloading is an effective method which is widely used in ground treatment. In consolidation analysis, the soil around prefabricated vertical drain (PVD) is traditionally divided into smear zone and undisturbed zone, both with constant permeability. In reality, the permeability of soil changes continuously within the smear zone. In this study, the horizontal permeability coefficient of soil within the smear zone is described by an exponential function of radial distance. A solution for vacuum preloading consolidation considers the nonlinear distribution of horizontal permeability within the smear zone is presented and compared with previous analytical results as well as a numerical solution, the results show that the presented solution correlates well with the numerical solution, and is more precise than previous analytical solution. PMID:26447973

  7. Impact of rainfall intensity on the transport of two herbicides in undisturbed grassed filter strip soil cores

    NASA Astrophysics Data System (ADS)

    Pot, V.; Šimůnek, J.; Benoit, P.; Coquet, Y.; Yra, A.; Martínez-Cordón, M.-J.

    2005-12-01

    Two series of displacement experiments with isoproturon and metribuzin herbicides were performed on two undisturbed grassed filter strip soil cores, under unsaturated steady-state flow conditions. Several rainfall intensities (0.070, 0.147, 0.161, 0.308 and 0.326 cm h - 1 ) were used. A water tracer (bromide) was simultaneously injected in each displacement experiment. A descriptive analysis of experimental breakthrough curves of bromide and herbicides combined with a modeling analysis showed an impact of rainfall intensity on the solute transport. Two contrasting physical non-equilibrium transport processes occurred. Multiple (three) porosity domains contributed to flow at the highest rainfall intensities, including preferential flow through macropore pathways. Macropores were not active any longer at intermediate and lowest velocities, and the observed preferential transport was described using dual-porosity-type models with a zero or low flow in the matrix domain. Chemical non-equilibrium transport of herbicides was found at all rainfall intensities. Significantly higher estimated values of degradation rate parameters as compared to batch data were correlated with the degree of non-equilibrium sorption. Experimental breakthrough curves were analyzed using different physical and chemical equilibrium and non-equilibrium transport models: convective-dispersive model (CDE), dual-porosity model (MIM), dual-permeability model (DP), triple-porosity, dual permeability model (DP-MIM); each combined with both chemical instantaneous and kinetic sorption.

  8. Review of potential subsurface permeable barrier emplacement and monitoring technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riggsbee, W.H.; Treat, R.L.; Stansfield, H.J.

    1994-02-01

    This report focuses on subsurface permeable barrier technologies potentially applicable to existing waste disposal sites. This report describes candidate subsurface permeable barriers, methods for emplacing these barriers, and methods used to monitor the barrier performance. Two types of subsurface barrier systems are described: those that apply to contamination.in the unsaturated zone, and those that apply to groundwater and to mobile contamination near the groundwater table. These barriers may be emplaced either horizontally or vertically depending on waste and site characteristics. Materials for creating permeable subsurface barriers are emplaced using one of three basic methods: injection, in situ mechanical mixing, ormore » excavation-insertion. Injection is the emplacement of dissolved reagents or colloidal suspensions into the soil at elevated pressures. In situ mechanical mixing is the physical blending of the soil and the barrier material underground. Excavation-insertion is the removal of a soil volume and adding barrier materials to the space created. Major vertical barrier emplacement technologies include trenching-backfilling; slurry trenching; and vertical drilling and injection, including boring (earth augering), cable tool drilling, rotary drilling, sonic drilling, jetting methods, injection-mixing in drilled holes, and deep soil mixing. Major horizontal barrier emplacement technologies include horizontal drilling, microtunneling, compaction boring, horizontal emplacement, longwall mining, hydraulic fracturing, and jetting methods.« less

  9. Soil Moisture Flow and Nitrate Movement Simulation through Deep and Heterogeneous Vadose Zone using Dual-porosity Approach

    NASA Astrophysics Data System (ADS)

    Yadav, B. K.; Tomar, J.; Harter, T.

    2014-12-01

    We investigate nitrate movement from non-point sources in deep, heterogeneous vadose zones, using multi-dimensional variably saturated flow and transport simulations. We hypothesize that porous media heterogeneity causes saturation variability that leads to preferential flow systems such that a significant portion of the vadose zone does not significantly contribute to flow. We solve Richards' equation and the advection-dispersion equation to simulate soil moisture and nitrate transport regimes in plot-scale experiments conducted in the San Joaquin Valley, California. We compare equilibrium against non-equilibrium (dual-porosity) approaches. In the equilibrium approach we consider each soil layer to have unique hydraulic properties as a whole, while in the dual-porosity approach we assume that large fractions of the porous flow domain are immobile. However we consider exchange of water and solute between mobile and immobile zone using the appropriate mass transfer terms. The results indicate that flow and transport in a nearly 16 m deep stratified vadose zone comprised of eight layers of unconsolidated alluvium experiences highly non-uniform, localized preferential flow and transport patterns leading to accelerated nitrate transfer. The equilibrium approach largely under-predicted the leaching of nitrate to groundwater while the dual-porosity approach showed higher rates of nitrate leaching, consistent with field observations. The dual-porosity approach slightly over-predicted nitrogen storage in the vadose zone, which may be the result of limited matrix flow or denitrification not accounted for in the model. Results of this study may be helpful to better predict fertilizer and pesticide retention times in deep vadose zone, prior to recharge into the groundwater flow system. Keywords: Nitrate, Preferential flow, Heterogeneous vadose zone, Dual-porosity approach

  10. Effective diffusion coefficients of DNAPL waste components in saturated low permeability soil materials

    NASA Astrophysics Data System (ADS)

    Ayral-Cinar, Derya; Demond, Avery H.

    2017-12-01

    Diffusion is regarded as the dominant transport mechanism into and out of low permeable subsurface lenses and layers in the subsurface. But, some reports of mass storage in such zones are higher than what might be attributable to diffusion, based on estimated diffusion coefficients. Despite the importance of diffusion to efforts to estimate the quantity of residual contamination in the subsurface, relatively few studies present measured diffusion coefficients of organic solutes in saturated low permeability soils. This study reports the diffusion coefficients of a trichloroethylene (TCE), and an anionic surfactant, Aerosol OT (AOT), in water-saturated silt and a silt-montmorillonite (25:75) mixture, obtained using steady-state experiments. The relative diffusivity ranged from 0.11 to 0.17 for all three compounds for the silt and the silt-clay mixture that was allowed to expand. In the case in which the swelling was constrained, the relative diffusivity was about 0.07. In addition, the relative diffusivity of 13C-labeled TCE through a water saturated silt-clay mixture that had contacted a field dense non-aqueous phase liquid (DNAPL) for 18 months was measured and equaled 0.001. These experimental results were compared with the estimates generated using common correlations, and it was found that, in all cases, the measured diffusion coefficients were significantly lower than the estimated. Thus, the discrepancy between mass accumulations observed in the field and the mass storage that can attributable to diffusion may be greater than previously believed.

  11. Use of a Dual-Structure Constitutive Model for Predicting the Long-Term Behavior of an Expansive Clay Buffer in a Nuclear Waste Repository

    DOE PAGES

    Vilarrasa, Víctor; Rutqvist, Jonny; Blanco Martin, Laura; ...

    2015-12-31

    Expansive soils are suitable as backfill and buffer materials in engineered barrier systems to isolate heat-generating nuclear waste in deep geological formations. The canisters containing nuclear waste would be placed in tunnels excavated at a depth of several hundred meters. The expansive soil should provide enough swelling capacity to support the tunnel walls, thereby reducing the impact of the excavation-damaged zone on the long-term mechanical and flow-barrier performance. In addition to their swelling capacity, expansive soils are characterized by accumulating irreversible strain on suction cycles and by effects of microstructural swelling on water permeability that for backfill or buffer materialsmore » can significantly delay the time it takes to reach full saturation. In order to simulate these characteristics of expansive soils, a dual-structure constitutive model that includes two porosity levels is necessary. The authors present the formulation of a dual-structure model and describe its implementation into a coupled fluid flow and geomechanical numerical simulator. The authors use the Barcelona Basic Model (BBM), which is an elastoplastic constitutive model for unsaturated soils, to model the macrostructure, and it is assumed that the strains of the microstructure, which are volumetric and elastic, induce plastic strain to the macrostructure. The authors tested and demonstrated the capabilities of the implemented dual-structure model by modeling and reproducing observed behavior in two laboratory tests of expansive clay. As observed in the experiments, the simulations yielded nonreversible strain accumulation with suction cycles and a decreasing swelling capacity with increasing confining stress. Finally, the authors modeled, for the first time using a dual-structure model, the long-term (100,000 years) performance of a generic heat-generating nuclear waste repository with waste emplacement in horizontal tunnels backfilled with expansive clay and

  12. Mixed region reactors for in situ treatment of DNAPL contaminated low permeability media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, O.R.; Siegrist, R.L.

    1996-08-01

    Fine-textured soils and sediments contaminated by dense non-aqueous phase liquids (DNAPLs) present a significant environmental restoration challenge. An emerging approach to rapid in situ treatment within low permeability media involves the use of soil mixing to create mixed region reactors wherein biological or physical/chemical treatment processes can be employed. In cohesive soils, mixing breaks up the original soil structure and produces soil aggregates or clods separated by interaggregate void spaces. These void spaces create preferential flow paths for more efficient extraction of contaminants from the soil matrix or more rapid diffusion of treatment agents into the soil aggregates. This enhancementmore » technology has been most successfully used with vapor stripping. However, other technologies can also be coupled with soil mixing including chemical degradation, biodegradation and solidification. The application of this technology to DNAPL-contaminated low permeability media appears promising but requires further experiments and models that can simulate the movement of DNAPLs in mixed regions. 11 refs., 6 figs.« less

  13. Development of a Digital Aquifer Permeability Map for the ...

    EPA Pesticide Factsheets

    Researchers at the U.S. Environmental Protection Agency’s Western Ecology Division have been developing hydrologic landscape maps for selected U.S. states in an effort to create a method to identify the intrinsic watershed attributes of landscapes in regions with little data. Each hydrologic landscape unit is assigned a categorical value from five key indices of macro-scale hydrologic behavior, including annual climate, climate seasonality, aquifer permeability, terrain, and soil permeability. The aquifer permeability index requires creation of a from-scratch dataset for each state. The permeability index for the Pacific Southwest (California, Nevada, and Arizona) expands and modifies the permeability index for the Pacific Northwest (Oregon, Washington, and Idaho), which preceded it. The permeability index was created by assigning geologic map units to one of 18 categories with presumed similar values of permeability to create a hydrolithologic map. The hydrolithologies were then further categorized into permeability index classifications of high, low, unknown and surface water. Unconsolidated, carbonate, volcanic, and undifferentiated units are classified more conservatively to better address uncertainty in source data. High vs. low permeability classifications are assigned qualitatively but follow a threshold guideline of 8.5x10-2 m/day hydraulic conductivity. Estimates of permeability from surface lithology is the current best practice for broad-sca

  14. Effective diffusion coefficients of DNAPL waste components in saturated low permeability soil materials.

    PubMed

    Ayral-Cinar, Derya; Demond, Avery H

    2017-12-01

    Diffusion is regarded as the dominant transport mechanism into and out of low permeable subsurface lenses and layers in the subsurface. But, some reports of mass storage in such zones are higher than what might be attributable to diffusion, based on estimated diffusion coefficients. Despite the importance of diffusion to efforts to estimate the quantity of residual contamination in the subsurface, relatively few studies present measured diffusion coefficients of organic solutes in saturated low permeability soils. This study reports the diffusion coefficients of a trichloroethylene (TCE), and an anionic surfactant, Aerosol OT (AOT), in water-saturated silt and a silt-montmorillonite (25:75) mixture, obtained using steady-state experiments. The relative diffusivity ranged from 0.11 to 0.17 for all three compounds for the silt and the silt-clay mixture that was allowed to expand. In the case in which the swelling was constrained, the relative diffusivity was about 0.07. In addition, the relative diffusivity of 13 C-labeled TCE through a water saturated silt-clay mixture that had contacted a field dense non-aqueous phase liquid (DNAPL) for 18months was measured and equaled 0.001. These experimental results were compared with the estimates generated using common correlations, and it was found that, in all cases, the measured diffusion coefficients were significantly lower than the estimated. Thus, the discrepancy between mass accumulations observed in the field and the mass storage that can attributable to diffusion may be greater than previously believed. Copyright © 2017. Published by Elsevier B.V.

  15. Endothelin ETA Receptor Blockade, by Activating ETB Receptors, Increases Vascular Permeability and Induces Exaggerated Fluid Retention.

    PubMed

    Vercauteren, Magali; Trensz, Frederic; Pasquali, Anne; Cattaneo, Christophe; Strasser, Daniel S; Hess, Patrick; Iglarz, Marc; Clozel, Martine

    2017-05-01

    Endothelin (ET) receptor antagonists have been associated with fluid retention. It has been suggested that, of the two endothelin receptor subtypes, ET B receptors should not be blocked, because of their involvement in natriuresis and diuresis. Surprisingly, clinical data suggest that ET A -selective antagonists pose a greater risk of fluid overload than dual antagonists. The purpose of this study was to evaluate the contribution of each endothelin receptor to fluid retention and vascular permeability in rats. Sitaxentan and ambrisentan as ET A -selective antagonists and bosentan and macitentan as dual antagonists were used as representatives of each class, respectively. ET A -selective antagonism caused a dose-dependent hematocrit/hemoglobin decrease that was prevented by ET B -selective receptor antagonism. ET A -selective antagonism led to a significant blood pressure reduction, plasma volume expansion, and a greater increase in vascular permeability than dual antagonism. Isolated vessel experiments showed that ET A -selective antagonism increased vascular permeability via ET B receptor overstimulation. Acutely, ET A -selective but not dual antagonism activated sympathetic activity and increased plasma arginine vasopressin and aldosterone concentrations. The hematocrit/hemoglobin decrease induced by ET A -selective antagonism was reduced in Brattleboro rats and in Wistar rats treated with an arginine vasopressin receptor antagonist. Finally, the decrease in hematocrit/hemoglobin was larger in the venous than in the arterial side, suggesting fluid redistribution. In conclusion, by activating ET B receptors, endothelin receptor antagonists (particularly ET A -selective antagonists) favor edema formation by causing: 1) fluid retention resulting from arginine vasopressin and aldosterone activation secondary to vasodilation, and 2) increased vascular permeability. Plasma volume redistribution may explain the clinical observation of a hematocrit/hemoglobin decrease

  16. Update to Permeable Pavement Research at the Edison ...

    EPA Pesticide Factsheets

    The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavements including interlocking concrete permeable pavers, pervious concrete, and porous asphalt. The permeable pavements are limited to parking spaces while adjacent driving lanes are impermeable and drain to the permeable surfaces. The parking lot is instrumented for continuous monitoring with thermistors and water content reflectometers that measure moisture as infiltrate passes through the storage gallery beneath the permeable pavements into the underlying native soil. Each permeable surface of the parking lot has four lined sections that capture infiltrate in tanks for water quality analyses; these tanks are capable of holding volumes up to 4.1 m3, which represents up to 38 mm (1.5 in.) for direct rainfall on the porous pavement and runoff from adjacent driving lanes that drain into the permeable surface.Previous technical releases concerning the demonstration site focused on monitoring techniques, observed chloride and nutrient concentrations, surface hydrology, and infiltration and evaporation rates. This presentation summarizes these past findings and addresses current water quality efforts including pH, solids analysis, total organic carbon, and chemical oxygen demand. Stormwater runoff continues to be a major cause of water pollution in

  17. Characterization of tillage effects on soil permeability using different measures of macroporosity derived from tension infiltrometry

    NASA Astrophysics Data System (ADS)

    Bodner, G.; Schwen, A.; Scholl, P.; Kammerer, G.; Buchan, G.; Kaul, H.-P.; Loiskandl, W.

    2010-05-01

    Soil macroporosity is a highly dynamic property influenced by environmental factors, such as raindrop impact, wetting-drying and freezing-thawing cycles, soil biota and plant roots, as well as agricultural management measures. Macroporosity represents an important indicator of soil physical quality, particularly in relation to the site specific water transmission properties, and can be used as a sensitive measure to assess soil structural degradation. Its quantification is also required for the parameterization of dual porosity models that are frequently used in environmental impact studies on erosion and solute (pesticide, nitrate) leaching. The importance of soil macroporosity for the water transport properties of the soil and its complexity due to high spatio-temporal heterogeneity make its quantitative assessment still a challenging task. Tension infiltrometers have been shown to be adequate measurement devices to obtain data in the near-saturated range of water flow where structural (macro)pores are dominating the transport process. Different methods have been used to derive water transmission characteristics from tension infiltrometer measurements. Moret and Arrúe (2007) differentiated between using a minimum equivalent capillary pore radius and a flow weighted mean pore radius to obtain representative macropore flow properties from tension infiltrometer data. Beside direct approaches based on Wooding's equation, also inverse methods have been applied to obtain soil hydraulic properties (Šimůnek et al. 1998). Using a dual porosity model in the inverse procedure allows estimating parameters in the dynamic near-saturated range by numerical optimization to the infiltration measurements, while fixing parameters in the more stable textural range of small pores using e.g. pressure plate data or even pedotransfer functions. The present work presents a comparison of quantitative measures of soil macroporosity derived from tension infiltrometer data by different

  18. Experimental techniques and computational methods toward the estimation of the effective two-phase flow coefficients and multi-scale heterogeneities of soils

    NASA Astrophysics Data System (ADS)

    Tsakiroglou, C. D.; Aggelopoulos, C. A.; Sygouni, V.

    2009-04-01

    pressure drop across the network to the permeability distribution function, spatial correlations of permeability, and capillary number, and (2) to estimate the effective (up-scaled) relative permeability functions at the soil column scale. In an attempt to clarify potential effects of the permeability distribution and spatial permeability correlations on the transient responses of the pressure drop across a soil column, signal analysis with wavelets is performed [4] on experimental and simulated results. The transient variation of signal energy and frequency of pressure drop fluctuations at the wavelet domain are correlated with macroscopic properties such as the effective water and oil relative permeabilities of the porous medium, and microscopic properties such as the variation of the permeability distribution of oil-occupied nodes. Toward the solution of the inverse problem, a general procedure is suggested to identify macro-heterogeneities from the fast analysis of pressure drop signals. References 1. Tsakiroglou, C.D. and M.A. Ioannidis, "Dual porosity modeling of the pore structure and transport properties of a contaminated soil", Eur. J. Soil Sci., 59, 744-761 (2008). 2. Aggelopoulos, C.A., and C.D. Tsakiroglou, "Quantifying the Soil Heterogeneity from Solute Dispersion Experiments", Geoderma, 146, 412-424 (2008). 3. Aggelopoulos, C.A., and C.D. Tsakiroglou, "A multi-flow path approach to model immiscible displacement in undisturbed heterogeneous soil columns", J. Contam. Hydrol., in press (2009). 4. Sygouni, V., C.D. Tsakiroglou, and A.C. Payatakes, "Using wavelets to characterize the wettability of porous materials", Phys. Rev. E, 76, 056304 (2007).

  19. The Error Structure of the SMAP Single and Dual Channel Soil Moisture Retrievals

    NASA Astrophysics Data System (ADS)

    Dong, Jianzhi; Crow, Wade T.; Bindlish, Rajat

    2018-01-01

    Knowledge of the temporal error structure for remotely sensed surface soil moisture retrievals can improve our ability to exploit them for hydrologic and climate studies. This study employs a triple collocation analysis to investigate both the total variance and temporal autocorrelation of errors in Soil Moisture Active and Passive (SMAP) products generated from two separate soil moisture retrieval algorithms, the vertically polarized brightness temperature-based single-channel algorithm (SCA-V, the current baseline SMAP algorithm) and the dual-channel algorithm (DCA). A key assumption made in SCA-V is that real-time vegetation opacity can be accurately captured using only a climatology for vegetation opacity. Results demonstrate that while SCA-V generally outperforms DCA, SCA-V can produce larger total errors when this assumption is significantly violated by interannual variability in vegetation health and biomass. Furthermore, larger autocorrelated errors in SCA-V retrievals are found in areas with relatively large vegetation opacity deviations from climatological expectations. This implies that a significant portion of the autocorrelated error in SCA-V is attributable to the violation of its vegetation opacity climatology assumption and suggests that utilizing a real (as opposed to climatological) vegetation opacity time series in the SCA-V algorithm would reduce the magnitude of autocorrelated soil moisture retrieval errors.

  20. A dual isotope approach to isolate soil carbon pools of different turnover times

    DOE PAGES

    Torn, M. S.; Kleber, M.; Zavaleta, E. S.; ...

    2013-12-10

    Soils are globally significant sources and sinks of atmospheric CO 2. Increasing the resolution of soil carbon turnover estimates is important for predicting the response of soil carbon cycling to environmental change. We show that soil carbon turnover times can be more finely resolved using a dual isotope label like the one provided by elevated CO 2 experiments that use fossil CO 2. We modeled each soil physical fraction as two pools with different turnover times using the atmospheric 14C bomb spike in combination with the label in 14C and 13C provided by an elevated CO 2 experiment in amore » California annual grassland. In sandstone and serpentine soils, the light fraction carbon was 21–54% fast cycling with 2–9 yr turnover, and 36–79% slow cycling with turnover slower than 100 yr. This validates model treatment of the light fraction as active and intermediate cycling carbon. The dense, mineral-associated fraction also had a very dynamic component, consisting of ~7% fast-cycling carbon and ~93% very slow cycling carbon. Similarly, half the microbial biomass carbon in the sandstone soil was more than 5 yr old, and 40% of the carbon respired by microbes had been fixed more than 5 yr ago. Resolving each density fraction into two pools revealed that only a small component of total soil carbon is responsible for most CO 2 efflux from these soils. In the sandstone soil, 11% of soil carbon contributes more than 90% of the annual CO 2 efflux. The fact that soil physical fractions, designed to isolate organic material of roughly homogeneous physico-chemical state, contain material of dramatically different turnover times is consistent with recent observations of rapid isotope incorporation into seemingly stable fractions and with emerging evidence for hot spots or micro-site variation of decomposition within the soil matrix. Predictions of soil carbon storage using a turnover time estimated with the assumption of a single pool per density fraction would greatly

  1. Compact, Lightweight Dual-Frequency Microstrip Antenna Feed for Future Soil Moisture and Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Yueh, Simon; Wilson, William J.; Njoku, Eni; Dinardo, Steve; Hunter, Don; Rahmat-Samii, Yahya; Kona, Keerti S.; Manteghi, Majid

    2006-01-01

    The development of a compact, lightweight, dual-frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx.1 GHz) passive and active sensing systems. The design features will also enable applications to airborne soil moisture and salinity remote sensing sensors operating on small aircrafts. This paper describes the design of stacked patch elements and 16-element array configuration. The results from the return loss, antenna pattern measurements and sky tests are also described.

  2. Control of the permeability of fractures in geothermal rocks

    NASA Astrophysics Data System (ADS)

    Faoro, Igor

    This thesis comprises three journal articles that will be submitted for publication (Journal of Geophysical Research-Solid Earth). Their respective titles are: "Undrained through Drained Evolution of Permeability in Dual Permeability Media" by Igor Faoro, Derek Elsworth and Chris Marone, "Evolution of Stiffness and Permeability in Fractures Subject to Thermally-and Mechanically-Activated Dissolution" by Igor Faoro, Derek Elsworth Chris Marone; "Linking permeability and mechanical damage for basalt from Mt. Etna volcano (Italy)" by Igor Faoro, Sergio Vinciguerra, Chris Marone and Derek Elsworth. Undrained through Drained Evolution of Permeability in Dual Permeability Media: temporary permeability changes of fractured aquifers subject to earthquakes have been observed and recorded worldwide, but their comprehension still remains a complex issue. In this study we report on flow-through fracture experiments on cracked westerly cores that reproduce, at laboratory scale, those (steps like) permeability changes that have been recorded when earthquakes occur. In particular our experiments show that under specific test boundary conditions, rapid increments of pore pressure induce transient variations of flow rate of the fracture whose peak magnitudes decrease as the variations of the effective stresses increase. We identify that the observed hydraulic behavior of the fracture is due to two principal mechanisms of origin; respectively mechanical (shortening of core) and poro-elastic (radial diffusion of the pore fluid into the matrix of the sample) whose interaction cause respectively an instantaneous opening and then a progressive closure of the fracture. Evolution of Stiffness and Permeability in Fractures Subject to Thermally-and Mechanically-Activated Dissolution: we report the results of radial flow-through experiments conducted on heated samples of Westerly granite. These experiments are performed to examine the influence of thermally and mechanically activated

  3. Regulation of intestinal permeability: The role of proteases

    PubMed Central

    Van Spaendonk, Hanne; Ceuleers, Hannah; Witters, Leonie; Patteet, Eveline; Joossens, Jurgen; Augustyns, Koen; Lambeir, Anne-Marie; De Meester, Ingrid; De Man, Joris G; De Winter, Benedicte Y

    2017-01-01

    The gastrointestinal barrier is - with approximately 400 m2 - the human body’s largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases. PMID:28405139

  4. Modeling soil moisture processes and recharge under a melting snowpack

    USGS Publications Warehouse

    Flint, A.L.; Flint, L.E.; Dettinger, M.D.

    2008-01-01

    Recharge into granitic bedrock under a melting snowpack is being investigated as part of a study designed to understand hydrologic processes involving snow at Yosemite National Park in the Sierra Nevada Mountains of California. Snowpack measurements, accompanied by water content and matric potential measurements of the soil under the snowpack, allowed for estimates of infiltration into the soil during snowmelt and percolation into the bedrock. During portions of the snowmelt period, infiltration rates into the soil exceeded the permeability of the bedrock and caused ponding to be sustained at the soil-bedrock interface. During a 5-d period with little measured snowmelt, drainage of the ponded water into the underlying fractured granitic bedrock was estimated to be 1.6 cm d?1, which is used as an estimate of bedrock permeability. The numerical simulator TOUGH2 was used to reproduce the field data and evaluate the potential for vertical flow into the fractured bedrock or lateral flow at the bedrock-soil interface. During most of the snowmelt season, the snowmelt rates were near or below the bedrock permeability. The field data and model results support the notion that snowmelt on the shallow soil overlying low permeability bedrock becomes direct infiltration unless the snowmelt rate greatly exceeds the bedrock permeability. Late in the season, melt rates are double that of the bedrock permeability (although only for a few days) and may tend to move laterally at the soil-bedrock interface downgradient and contribute directly to streamflow. ?? Soil Science Society of America.

  5. Monitoring water stable isotope composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rothfuss, Youri; Vereecken, Harry; Brüggemann, Nicolas

    2013-04-01

    The water stable isotopologues 1H2H16O and 1H218O are powerful tracers of processes occurring in nature. Their slightly different masses as compared to the most abundant water isotopologue (1H216O) affect their thermodynamic (e.g. during chemical equilibrium reactions or physical phase transitions with equilibration) and kinetic (liquid and vapor phases transport processes and chemical reactions without equilibration) properties. This results in measurable differences of the isotopic composition of water within or between the different terrestrial ecosystem compartments (i.e. sub-soil, soil, surface waters, plant, and atmosphere). These differences can help addressing a number of issues, among them water balance closure and flux partitioning from the soil-plant-atmosphere continuum at the field to regional scales. In soils particularly, the isotopic composition of water (δ2H and δ18O) provides qualitative information about whether water has only infiltrated or already been re-evaporated since the last rainfall event or about the location of the evaporation front. From water stable isotope composition profiles measured in soils, it is also possible, under certain hypotheses, to derive quantitative information such as soil evaporation flux and the identification of root water uptake depths. In addition, water stable isotopologues have been well implemented into physically based Soil-Vegetation-Atmosphere Transfer models (e.g. SiSPAT-Isotope; Soil-Litter iso; TOUGHREACT) and have demonstrated their potential. However, the main disadvantage of the isotope methodology is that, contrary to other soil state variables that can be monitored over long time periods, δ2H and δ18O are typically analyzed following destructive sampling. Here, we present a non-destructive method for monitoring soil liquid water δ2H and δ18O over a wide range of water availability conditions and temperatures by sampling and measuring water vapor equilibrated with soil water using gas-permeable

  6. PNEUMATIC PUMP TEST FOR DESIGN OF SOIL VACUUM EXTRACTION

    EPA Science Inventory

    In-situ pneumatic pumping tests were performed to estimate the pneumatic permeability at a site containing soils contaminated with aviation gasoline. Determination of pneumatic permeability was necessary to evaluate soil-air discharge or pore volume exchange rates. Pressure propa...

  7. CAPSTONE REPORT ON THE APPLICATION, MONITORING, AND PERFORMANCE OF PERMEABLE REACTIVE BARRIERS FOR GROUND-WATER REMEDIATION: VOL. 2 LONG-TERM MONITORING OF PRBS: SOIL AND GROUND WATER SAMPLING

    EPA Science Inventory

    This report discusses soil and ground-water sampling methods and procedures used to evaluate the long-term performance of permeable reactive barriers (PRBS) at two sites, Elizabeth City, NC, and the Denver Federal Center near Lakewood, CO. Both PRBs were installed in 1996 and hav...

  8. Scale dependence of in-situ permeability measurements in the Nankai accretionary prism: The role of fractures

    NASA Astrophysics Data System (ADS)

    Boutt, David F.; Saffer, Demian; Doan, Mai-Linh; Lin, Weiren; Ito, Takatoshi; Kano, Yasuyuki; Flemings, Peter; McNeill, Lisa C.; Byrne, Timothy; Hayman, Nicholas W.; Moe, Kyaw Thu

    2012-04-01

    Modeling studies suggest that fluid permeability is an important control on the maintenance and distribution of pore fluid pressures at subduction zones generated through tectonic loading. Yet, to date, few data are available to constrain permeability of these materials, at appropriate scales. During IODP Expedition 319, downhole measurements of permeability within the uppermost accretionary wedge offshore SW Japan were made using a dual-packer device to isolate 1 m sections of borehole at a depth of 1500 m below sea floor. Analyses of pressure transients using numerical models suggest a range of in-situ fluid permeabilities (5E-15-9E-17 m2). These values are significantly higher than those measured on core samples (2E-19 m2). Borehole imagery and cores suggests the presence of multiple open fractures at this depth of measurement. These observations suggest that open permeable natural fractures at modest fracture densities could be important contributors to overall prism permeability structure at these scales.

  9. Measuring Clogging with Pressure Transducers in Permeable Pavement Strips

    EPA Science Inventory

    Two issues that have a negative affect on the long term hydrologic performance of permeable pavement systems are surface clogging and clogging at the interface with the underlying soil. Surface clogging limits infiltration capacity and results in bypass if runoff rate exceeds in...

  10. Snake spectacle vessel permeability to sodium fluorescein.

    PubMed

    Bellhorn, Roy W; Strom, Ann R; Motta, Monica J; Doval, John; Hawkins, Michelle G; Paul-Murphy, Joanne

    2018-03-01

    Assess vascular permeability of the snake spectacle to sodium fluorescein during resting and shedding phases of the ecdysis cycle. Ball python (Python regius). The snake was anesthetized, and spectral domain optic coherence tomography was performed prior to angiographic procedures. An electronically controlled digital single-lens reflex camera with a dual-head flash equipped with filters suitable for fluorescein angiography was used to make images. Sodium fluorescein (10%) solution was administered by intracardiac injection. Angiographic images were made as fluorescein traversed the vasculature of the iris and spectacle. Individually acquired photographic frames were assessed and sequenced into pseudovideo image streams for further evaluation CONCLUSIONS: Fluorescein angiograms of the snake spectacle were readily obtained. Vascular permeability varied with the phase of ecdysis. Copious leakage of fluorescein occurred during the shedding phase. This angiographic method may provide diverse opportunities to investigate vascular aspects of snake spectacle ecdysis, dysecdysis, and the integument in general. © 2017 American College of Veterinary Ophthalmologists.

  11. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films.

    PubMed

    Biduski, Bárbara; Silva, Francine Tavares da; Silva, Wyller Max da; Halal, Shanise Lisie de Mello El; Pinto, Vania Zanella; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    The objective of this study was to evaluate the effects of acid and oxidation modifications on sorghum starch, as well as the effect of dual modification of starch on the physical, morphological, mechanical, and barrier properties of biodegradable films. The acid modification was performed with 3% lactic acid and the oxidation was performed with 1.5% active chlorine. For dual modification, the acid modification was performed first, followed by oxidation under the same conditions as above. Both films of the oxidized starches, single and dual, had increased stiffness, providing a higher tensile strength and lower elongation when compared to films based on native and single acid modified starches. However, the dual modification increased the water vapor permeability of the films without changing their solubility. The increase in sorghum starch concentration in the filmogenic solution increased the thickness, water vapor permeability, and elongation of the films. Copyright © 2016. Published by Elsevier Ltd.

  12. Multiscale modelling of dual-porosity porous media; a computational pore-scale study for flow and solute transport

    NASA Astrophysics Data System (ADS)

    de Vries, Enno T.; Raoof, Amir; van Genuchten, Martinus Th.

    2017-07-01

    Many environmental and agricultural applications involve the transport of water and dissolved constituents through aggregated soil profiles, or porous media that are structured, fractured or macroporous in other ways. During the past several decades, various process-based macroscopic models have been used to simulate contaminant transport in such media. Many of these models consider advective-dispersive transport through relatively large inter-aggregate pore domains, while exchange with the smaller intra-aggregate pores is assumed to be controlled by diffusion. Exchange of solute between the two domains is often represented using a first-order mass transfer coefficient, which is commonly obtained by fitting to observed data. This study aims to understand and quantify the solute exchange term by applying a dual-porosity pore-scale network model to relatively large domains, and analysing the pore-scale results in terms of the classical dual-porosity (mobile-immobile) transport formulation. We examined the effects of key parameters (notably aggregate porosity and aggregate permeability) on the main dual-porosity model parameters, i.e., the mobile water fraction (ϕm) and the mass transfer coefficient (α). Results were obtained for a wide range of aggregate porosities (between 0.082 and 0.700). The effect of aggregate permeability was explored by varying pore throat sizes within the aggregates. Solute breakthrough curves (BTCs) obtained with the pore-scale network model at several locations along the domain were analysed using analytical solutions of the dual-porosity model to obtain estimates of ϕm and α. An increase in aggregate porosity was found to decrease ϕm and increase α, leading to considerable tailing in the BTCs. Changes in the aggregate pore throat size affected the relative flow velocity between the intra- and inter-aggregate domains. Higher flow velocities within the aggregates caused a change in the transport regime from diffusion dominated to more

  13. Modeling the Impact of Cracking in Low Permeability Layers in a Groundwater Contamination Source Zone on Dissolved Contaminant Fate and Transport

    NASA Astrophysics Data System (ADS)

    Sievers, K. W.; Goltz, M. N.; Huang, J.; Demond, A. H.

    2011-12-01

    Dense Non-Aqueous Phase Liquids (DNAPLs), which are chemicals and chemical mixtures that are heavier than and only slightly soluble in water, are a significant source of groundwater contamination. Even with the removal or destruction of most DNAPL mass, small amounts of remaining DNAPL can dissolve into flowing groundwater and continue as a contamination source for decades. One category of DNAPLs is the chlorinated aliphatic hydrocarbons (CAHs). CAHs, such as trichloroethylene and carbon tetrachloride, are found to contaminate groundwater at numerous DoD and industrial sites. DNAPLs move through soils and groundwater leaving behind residual separate phase contamination as well as pools sitting atop low permeability layers. Recently developed models are based on the assumption that dissolved CAHs diffuse slowly from pooled DNAPL into the low permeability layers. Subsequently, when the DNAPL pools and residual DNAPL are depleted, perhaps as a result of a remediation effort, the dissolved CAHs in these low permeability layers still remain to serve as long-term sources of contamination, due to so-called "back diffusion." These recently developed models assume that transport in the low permeability zones is strictly diffusive; however field observations suggest that more DNAPL and/or dissolved CAH is stored in the low permeability zones than can be explained on the basis of diffusion alone. One explanation for these field observations is that there is enhanced transport of dissolved CAHs and/or DNAPL into the low permeability layers due to cracking. Cracks may allow for advective flow of water contaminated with dissolved CAHs into the layer as well as possible movement of pure phase DNAPL into the layer. In this study, a multiphase numerical flow and transport model is employed in a dual domain (high and low permeability layers) to investigate the impact of cracking on DNAPL and CAH movement. Using literature values, the crack geometry and spacing was varied to model

  14. Evaluation of the permeability of agricultural films to various fumigants.

    PubMed

    Qian, Yaorong; Kamel, Alaa; Stafford, Charles; Nguyen, Thuy; Chism, William J; Dawson, Jeffrey; Smith, Charles W

    2011-11-15

    A variety of agricultural films are commercially available for managing emissions and enhancing pest control during soil fumigation. These films are manufactured using different materials and processes which can ultimately result in different permeability to fumigants. A systematic laboratory study of the permeability of the agricultural films to nine fumigants was conducted to evaluate the performance of commonly used film products, including polyethylene, metalized, and high-barrier films. The permeability, as expressed by mass transfer coefficient (cm/h), of 27 different films from 13 manufacturers ranged from below 1 × 10(-4) cm/h to above 10 cm/h at 25 °C under ambient relative humidity test conditions. The wide range in permeability of commercially available films demonstrates the need to use films which are appropriate for the fumigation application. The effects of environmental factors, such as temperature and humidity, on the film permeability were also investigated. It was found that high relative humidity could drastically increase the permeability of the high-barrier films. The permeability of some high-barrier films was increased by 2-3 orders of magnitude when the films were tested at high relative humidity. Increasing the temperature from 25 to 40 °C increased the permeability for some high-barrier films up to 10 times more than the permeability at 25 °C, although the effect was minimal for several of these films. Analysis of the distribution of the permeability of the films under ambient humidity conditions to nine fumigants indicated that the 27 films largely followed the material type, although the permeability varied considerably among the films of similar material.

  15. Development of a smear proof horizontal and vertical permeability probe.

    DOT National Transportation Integrated Search

    2013-01-01

    Permeability is a measure of how well a porous medium conducts a fluid. For water, this property is called hydraulic conductivity, and it is important for projects that depend on properties of soil and strata, such as earthen dams, retention ponds, d...

  16. Geophysical methods for monitoring soil stabilization processes

    NASA Astrophysics Data System (ADS)

    Saneiyan, Sina; Ntarlagiannis, Dimitrios; Werkema, D. Dale; Ustra, Andréa

    2018-01-01

    Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety of available methods carbonate precipitation is a very promising one, especially when it is being induced through common soil borne microbes (MICP - microbial induced carbonate precipitation). Such microbial mediated precipitation has the added benefit of not harming the environment as other methods can be environmentally detrimental. Carbonate precipitation, typically in the form of calcite, is a naturally occurring process that can be manipulated to deliver the expected soil strengthening results or permeability changes. This study investigates the ability of spectral induced polarization and shear-wave velocity for monitoring calcite driven soil strengthening processes. The results support the use of these geophysical methods as soil strengthening characterization and long term monitoring tools, which is a requirement for viable soil stabilization projects. Both tested methods are sensitive to calcite precipitation, with SIP offering additional information related to long term stability of precipitated carbonate. Carbonate precipitation has been confirmed with direct methods, such as direct sampling and scanning electron microscopy (SEM). This study advances our understanding of soil strengthening processes and permeability alterations, and is a crucial step for the use of geophysical methods as monitoring tools in microbial induced soil alterations through carbonate precipitation.

  17. GPR monitoring for non-uniform infiltration through a high permeable gravel layer in the test sand box

    NASA Astrophysics Data System (ADS)

    Kuroda, Seiichiro; Ishii, Nobuyuki; Morii, Toshihiro

    2017-04-01

    Recently capillary barriers have been known as a method to protect subsurface regions against infiltration from soil surface. It has essentially non-uniform structure of permeability or soil physical property. To identify the function of the capillary barrier, the site-characterization technique for non-uniform soil moisture distribution and infiltration process is needed. We built a sand box in which a thin high-permeable gravel layer was embedded and conducted a infiltration test, including non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed soundings with multi-frequency antenna and transmission measurements like one using cross-borehole radar. Finally we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. This work has partially supported by JSPS Grant-in-aid Scientific Research program, No.16H02580.

  18. Do soil microbes and abrasion by soil particles influence persistence and loss of physical dormancy in seeds of tropical pioneers?

    PubMed Central

    Zalamea, Paul-Camilo; Sarmiento, Carolina; Arnold, A. Elizabeth; Davis, Adam S.; Dalling, James W.

    2015-01-01

    Germination from the soil seed bank (SSB) is an important determinant of species composition in tropical forest gaps, with seed persistence in the SSB allowing trees to recruit even decades after dispersal. The capacity to form a persistent SSB is often associated with physical dormancy, where seed coats are impermeable at the time of dispersal. Germination literature often speculates, without empirical evidence, that dormancy-break in physically dormant seeds is the result of microbial action and/or abrasion by soil particles. We tested the microbial/soil abrasion hypothesis in four widely distributed neotropical pioneer tree species (Apeiba membranacea, Luehea seemannii, Ochroma pyramidale, and Cochlospermum vitifolium). Seeds were buried in five common gardens in a lowland tropical forest in Panama, and recovered at 1, 3, 6, and 12 months after burial. Seed permeability, microbial infection, seed coat thickness, and germination were measured. Parallel experiments compared the germination fraction of fresh and aged seeds without soil contact, and in seeds as a function of seed permeability. Contrary to the microbial/soil abrasion hypothesis the proportion of permeable seeds, and of seeds infected by cultivable microbes, decreased as a function of burial duration. Furthermore, seeds stored in dark and dry conditions for 2 years showed a higher proportion of seed germination than fresh seeds in identical germination conditions. We determined that permeable seeds of A. membranacea and O. pyramidale had cracks in the chalazal area or lacked the chalazal plug, whereas all surfaces of impermeable seeds were intact. Our results are inconsistent with the microbial/soil abrasion hypothesis of dormancy loss and instead suggest the existence of multiple dormancy phenotypes, where a fraction of each seed cohort is dispersed in a permeable state and germinates immediately, while the impermeable seed fraction accounts for the persistent SSB. Thus, we conclude that fluctuations

  19. Evaluation of Surface and Subsurface Processes in Permeable Pavement Infiltration Trenches

    EPA Science Inventory

    The hydrologic performance of permeable pavement systems can be affected by clogging of the pavement surface and/or clogging at the interface where the subsurface storage layer meets the underlying soil. As infiltration and exfiltration are the primary functional mechanisms for ...

  20. A new simplified method for measuring the permeability characteristics of highly porous media

    NASA Astrophysics Data System (ADS)

    Qin, Yinghong; Zhang, Mingyi; Mei, Guoxiong

    2018-07-01

    Fluid flow through highly porous media is important in a variety of science and technology fields, including hydrology, chemical engineering, convections in porous media, and others. While many methods have been available to measure the permeability of tight solid materials, such as concrete and rock, the technique for measuring the permeability of highly porous media is limited (such as gravel, aggregated soils, and crushed rock). This study proposes a new simplified method for measuring the permeability of highly porous media with a permeability of 10-8-10-4 m2, using a Venturi tube to gauge the gas flowing rate through the sample. Using crushed rocks and glass beads as the test media, we measure the permeability and inertial resistance factor of six types of single-size aggregate columns. We compare the testing results with the published permeability and inertial resistance factor of crushed rock and of glass beads. We found that in a log-log graph, the permeability and inertial resistance factor of a single-size aggregate heap increases linearly with the mean diameter of the aggregate. We speculate that the proposed simplified method is suitable to efficiently test the permeability and inertial resistance factor of a variety of porous media with an intrinsic permeability of 10-8-10-4 m2.

  1. Analysis of Selected Enhancements for Soil Vapor Extraction

    DTIC Science & Technology

    1997-09-01

    Inches per second ACRONYMS AND ABBREVIATIONS (Continued) xiii ISB In situ bioremediation JFK John F. Kennedy Airport K Hydraulic conductivity KAI KAI...wells by an applied vacuum. RFH is effective for treating VOCs in low-permeability soil in the vadose zone. Electrical Resistance Heating : This... applied vacuum. However, application of steam injection/stripping systems is limited to medium- to high-permeability soils. ER heating is more

  2. Off-tarp emissions, distribution, and efficacy of carbonated fumigants in a low permeability film tarped field

    USDA-ARS?s Scientific Manuscript database

    Carbonated fumigants have been shown to distribute quickly and uniformly in sandy soils and improve pest control efficacy for annual crops. Low permeability films, such as VaporSafe® (TIF), could further improve fumigant dispersion by effectively retaining the fumigant in soil; however, there is a c...

  3. Development of a New Apparatus for Investigating Acoustic Effects on Hydraulic Properties of Low-Permeability Geo-Materials

    NASA Astrophysics Data System (ADS)

    Nakajima, H.; Sawada, A.; Sugita, H.; Takeda, M.; Komai, T.; Zhang, M.

    2006-12-01

    Remediation of polluted soils and groundwater contaminated by heavy metals and non-aqueous phase liquids has been one of the challenging issues in the field of geo-environments. In-situ removal of the contaminants from low permeable soils, such as clay strata, is particularly difficult because of the low mobility, strong adsorption, and/or other various interactions within soils. Thus current remediation techniques, such as pump- and-treat method and even eletrokinetic method, generally suffer from low recovery rates and/or economically unacceptable long remediation periods. A perspective improvement in remediation technology is to couple the electrokinetic method with an application of acoustic waves. This so-called Electro-Acoustic Soil Decontamination (EASD) method has been proposed by Battelle Columbus Labs.(Muralidhara et al. 1990). Simultaneous application of an electric field and an acoustic field may produce a synergistic effect and result in further enhancement of water transport by electro-osmosis in principle, but there is still no fundamental data for the design of EASD method in practical applications. A number of investigations have shown that an application of acoustic waves can increase hydraulic conductivity and mobility of non-aqueous phase liquids in porous media. Most of the prior and ongoing researches in this area have been focused on increasing production from declining oil and gas reservoirs. During several field tests by the oil and gas industries, increases in oil production rates by 20% or more have been reported. However, underlying physical mechanisms for acoustically enhanced fluid transport are not adequately understood. In addition, majority of the past investigations has dealt with applications of large amplitude of acoustic waves to relatively permeable soils or fractured rocks, and there is little information if acoustic wave effectively enhances flow and contaminant transport for less permeable clayey soils. To evaluate the

  4. Impact of DNAPL Storage in Cracked Low Permeability Layers on Dissolved Contaminant Plume Persistence

    NASA Astrophysics Data System (ADS)

    Goltz, M. N.; Sievers, K. W.; Huang, J.; Demond, A. H.

    2012-12-01

    The subsurface storage and transport of a Dense Non-Aqueous Phase Liquid (DNAPL) was evaluated using a numerical model. DNAPLs are organic liquids comprised of slightly water-soluble chemicals or chemical mixtures that have a density greater than water. DNAPLs may pool atop low permeability layers upon entering the subsurface. Even with the removal or destruction of most pooled DNAPL mass, small amounts of the remaining contaminant, which had been transported into the low permeability layer, can dissolve into flowing groundwater and continue to act as a contamination source for decades. Recently developed models assume that transport in the low permeability zones is strictly diffusive; however field observations suggest that more mass is stored in the low permeability zones than can be explained by diffusion alone. Observations and experimental evidence indicate that cracks in low permeability layers may have apertures of sufficient size to allow entry of separate phase DNAPL. In this study, a numerical flow and transport model is employed using a dual domain construct (high and low permeability layers) to investigate the impact of DNAPL entry into cracked low permeability zones on dissolved contaminant plume evolution and persistence. This study found that DNAPL within cracks can significantly contribute to down gradient dissolved phase concentrations; however, the extent of this contribution is very dependent upon the rate of DNAPL dissolution. Given these findings, remediation goals may be difficult to meet if source remediation strategies are used which do not account for the effect of cracking upon contaminant transport and storage in low permeability layers.

  5. Crustal permeability

    USGS Publications Warehouse

    Gleeson, Tom; Ingebritsen, Steven E.

    2016-01-01

    Permeability is the primary control on fluid flow in the Earth’s crust and is key to a surprisingly wide range of geological processes, because it controls the advection of heat and solutes and the generation of anomalous pore pressures.  The practical importance of permeability – and the potential for large, dynamic changes in permeability – is highlighted by ongoing issues associated with hydraulic fracturing for hydrocarbon production (“fracking”), enhanced geothermal systems, and geologic carbon sequestration.  Although there are thousands of research papers on crustal permeability, this is the first book-length treatment.  This book bridges the historical dichotomy between the hydrogeologic perspective of permeability as a static material property and the perspective of other Earth scientists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. 

  6. Impact of monovalent cations on soil structure. Part II. Results of two Swiss soils

    NASA Astrophysics Data System (ADS)

    Farahani, Elham; Emami, Hojat; Keller, Thomas

    2018-01-01

    In this study, we investigated the impact of adding solutions with different potassium and sodium concentrations on dispersible clay, water retention characteristics, air permeability, and soil shrinkage behaviour using two agricultural soils from Switzerland with different clay content but similar organic carbon to clay ratio. Three different solutions (including only Na, only K, and the combination of both) were added to soil samples at three different cation ratio of soil structural stability levels, and the soil samples were incubated for one month. Our findings showed that the amount of readily dispersible clay increased with increasing Na concentrations and with increasing cation ratio of soil structural stability. The treatment with the maximum Na concentration resulted in the highest water retention and in the lowest shrinkage capacity. This was was associated with high amounts of readily dispersible clay. Air permeability generally increased during incubation due to moderate wetting and drying cycles, but the increase was negatively correlated with readily dispersible clay. Readily dispersible clay decreased with increasing K, while readily dispersible clay increased with increasing K in Iranian soil (Part I of our study). This can be attributed to the different clay mineralogy of the studied soils (muscovite in Part I and illite in Part II).

  7. Parameterization and Modeling of Coupled Heat and Mass Transport in the Vadose Zone

    NASA Astrophysics Data System (ADS)

    Mohanty, B.; Yang, Z.

    2016-12-01

    The coupled heat and mass transport in the vadose zone is essentially a multiphysics issue. Addressing this issue appropriately has remarkable impacts on soil physical, chemical and biological processes. To data, most coupled heat and water transport modeling has focused on the interactions between liquid water, water vapor and heat transport in homogeneous and layered soils. Comparatively little work has been done on structured soils where preferential infiltration and evaporation flow occurs. Moreover, the traditional coupled heat and water model usually neglects the nonwetting phase air flow, which was found to be significant in the state-of-the-art modeling framework for coupled heat and water transport investigation. However, the parameterizations for the nonwetting phase air permeability largely remain elusive so far. In order to address the above mentioned limitations, this study aims to develop and validate a predictive multiphysics modeling framework for coupled soil heat and water transport in the heterogeneous shallow subsurface. To this end, the following research work is specifically conducted: (a) propose an improved parameterization to better predict the nonwetting phase relative permeability; (b) determine the dynamics, characteristics and processes of simultaneous soil moisture and heat movement in homogeneous and layered soils; and (c) develop a nonisothermal dual permeability model for heterogeneous structured soils. The results of our studies showed that: (a) the proposed modified nonwetting phase relative permeability models are much more accurate, which can be adopted for better parameterization in the subsequent nonisothermal two phase flow models; (b) the isothermal liquid film flow, nonwetting phase gas flow and liquid-vapor phase change non-equilibrium effects are significant in the arid and semiarid environments (Riverside, California and Audubon, Arizona); and (c) the developed nonisothermal dual permeability model is capable of

  8. Development of a smear proof horizontal and vertical permeability probe : [technical summary].

    DOT National Transportation Integrated Search

    2013-01-01

    Permeability is a measure of how well a porous medium conducts a fluid. For water, this property is called hydraulic conductivity, and it is important for projects that depend on properties of soil and strata, such as earthen dams, retention ponds, d...

  9. The effect of stress on limestone permeability and its effective stress behavior

    NASA Astrophysics Data System (ADS)

    Meng, F.; Baud, P.; Ge, H.; Wong, T. F.

    2017-12-01

    The evolution of permeability and its effective stress behavior is related to inelastic deformation and failure mode. This was investigated in Indiana and Purbeck limestones with porosities of 18% and 13%, respectively. Hydrostatic and triaxial compression tests were conducted at room temperature on water-saturated samples at pore pressure of 5 MPa and confining pressures up to 90 MPa. Permeability was measured using steady flow at different stages of deformation. For Indiana limestone, under hydrostatic loading pore collapse initiated at critical pressure P* 55 MPa with an accelerated reduction of permeability by 1/2. At a confinement of 35 MPa and above, shear-enhanced compaction initiated at critical stress C*, beyond which permeability reduction up to a factor of 3 was observed. At a confinement of 15 MPa and below, dilatancy initiated at critical stress C', beyond which permeability continued to decrease, with a negative correlation between porosity and permeability changes. Purbeck limestone showed similar evolution of permeability. Microstructural and mercury porosimetry data showed that pore size distribution in both Indiana and Purbeck limestones is bimodal, with significant proportions of macropores and micropores. The effective stress behaviour of a limestone with dual porosity is different from the prediction for a microscopically homogeneous assemblage, in that its effective stress coefficients for permeability and porosity change may attain values significantly >1. Indeed this was confirmed by our measurements (at confining pressures of 7-15 MPa and pore pressures of 1-3 MPa) in samples that had not been deformed inelastically. We also investigated the behavior in samples hydrostatically and triaxially compacted to beyond the critical stresses P* and C*, respectively. Experimental data for these samples consistently showed effective stress coefficients for both permeability and porosity change with values <1. Thus the effective stress behavior in an

  10. Multiphase flow of carbon dioxide and brine in dual porosity carbonates

    NASA Astrophysics Data System (ADS)

    Pentland, Christopher; Oedai, Sjaam; Ott, Holger

    2014-05-01

    The storage of carbon dioxide in subsurface formations presents a challenge in terms of multiphase flow characterisation. Project planning requires an understanding of multiphase flow characteristics such as the relationship between relative permeability and saturation. At present there are only a limited number of relative permeability relations for carbon dioxide-brine fluid systems, most of which are measured on sandstone rocks. In this study coreflood experiments are performed to investigate the relative permeability of carbon dioxide and brine in two dual porosity carbonate systems. Carbon dioxide is injected into the brine saturated rocks in a primary drainage process. The rock fluid system is pre-equilibrated to avoid chemical reactions and physical mass transfer between phases. The pressure drop across the samples, the amount of brine displaced and the saturation distribution within the rocks are measured. The experiments are repeated on the same rocks for the decane-brine fluid system. The experimental data is interpreted by simulating the experiments with a continuum scale Darcy solver. Selected functional representations of relative permeability are investigated, the parameters of which are chosen such that a least squares objective function is minimised (i.e. the difference between experimental observations and simulated response). The match between simulation and measurement is dependent upon the form of the functional representations. The best agreement is achieved with the Corey [Brooks and Corey, 1964] or modified Corey [Masalmeh et al., 2007] functions which best represent the relative permeability of brine at low brine saturations. The relative permeability of carbon dioxide is shown to be lower than the relative permeability of decane over the saturation ranges investigated. The relative permeability of the brine phase is comparable for the two fluid systems. These observations are consistent with the rocks being water-wet. During the experiment

  11. The influence of preferential flow on pressure propagation and landslide triggering of the Rocca Pitigliana landslide

    NASA Astrophysics Data System (ADS)

    Shao, Wei; Bogaard, Thom; Bakker, Mark; Berti, Matteo

    2016-12-01

    The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately. In conclusion, the 1D dual-permeability model is a promising tool for landslides under similar conditions.

  12. Salinity management using an anionic polymer in a pecan field with calcareous-sodic soil.

    PubMed

    Ganjegunte, Girisha K; Sheng, Zhuping; Braun, Robert J

    2011-01-01

    Soil salinity and sodicity have long been recognized as the major concerns for irrigated agriculture in the Trans-Pecos Basin, where fields are being flood irrigated with Rio Grande River water that has elevated salinity. Reclamation of these salt-affected lands is difficult due to fine-texture, high shrink-swell soils with low permeability. Conventional practice of subsoiling to improve soil permeability is expensive and has had limited success on the irrigated soils that have appreciable amounts of readily weatherable Ca minerals. If these native Ca sources can be effectively used to counter sodicity, it can improve soil permeability and reduce amelioration costs. This study evaluated the effects of 3 yr of polyacrylamide (PAM) application at 10 mg L concentration during the first irrigation of the season to evaluate soil permeability, in situ Ca mineral dissolution, and leaching of salts from the effective root zone in a pecan field of El Paso County, TX. Results indicated that PAM application improved water movement throughout the effective root zone that resulted in Na leaching. Polymer application significantly decreased CaCO (estimated based on inorganic C analysis) concentrations in the top 45 cm compared with baseline levels, indicating solubilization and redistribution of calcite. The PAM application also reduced soil electrical conductivity (EC) in the top 60 cm (4.64-2.76 dS m) and sodium adsorption ratio (SAR) from 13.1 to 5.7 mmol L in the top 75-cm depths. As evidence of improved soil conditions, pecan nut yields increased by 34% in PAM-treated fields over the control. Results suggested that PAM application helped in effective use of native Ca sources present in soils of the study site and reduced Na by improving soil permeability. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Geophysical Methods for Monitoring Soil Stabilization Processes

    EPA Science Inventory

    Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety...

  14. Development of an evaporation-optimized and water-permeable pavement

    NASA Astrophysics Data System (ADS)

    Starke, P.; Göbel, P.; Coldewey, W. G.

    2009-04-01

    During recent decades, urban areas have been threatened more frequently by flood events. Furthermore, the potential for damage from these events has increased on average. The construction of houses, streets and parking lots has caused this trend by sealing the ground surface, i.e. these water-impermeable areas reduce the natural infiltration and evaporation-rates, and in some cases it is even completely stopped. The consequence is the so called "urban water cycle". Water from precipitation cannot be stored anywhere and so there is an immediate and very high surface run-off effect. Especially after intense rain events, canalisations and sewage-treatment plants are overloaded and this leads to higher costs for water treatment and to environmental damage. A practical solution to this problem is the use of water-permeable pavements. Here higher infiltration rates lead to a groundwater recharge that is greater than that of natural soils. The consequences from using these surfaces are already noticeable in many places through increasing groundwater levels. These increases cause damage to buildings. A second difference from a natural-soil water-balance is a lower evapotranspiration rate. Up to now the evaporation rates for water-permeable pavements has not been established accurately. The aim of the applied research project at the University of Muenster, which is sponsored by the DBU (The German Federal Environmental Foundation), is to gain knowledge of urban evaporation rates and of water-permeable surfaces, especially water-permeable pavements. Water-permeable pavements consist of the paving stone surface and the two sub-base layers below. Pre-investigations show that evaporation can be influenced by the complete sub-base. Therefore, the first step was to investigate which materials are used for sub-base construction. All in all, 27 materials were collected from throughout Germany and these materials were then tested (in terms of physical and hydraulic attributes) in

  15. Plastic Films for Soil Fumigation: Permeability and Emissions Reduction

    USDA-ARS?s Scientific Manuscript database

    Soil fumigation is being increasingly regulated to protect human and environmental health. Current California regulations are based on field data and, in effect, assume that use of a standard polyethylene tarp does not reliably reduce emissions. Plastic tarps used to cover the soil surface during so...

  16. GROUNDWATER AND SOIL REMEDIATION USING ELECTRICAL FIELD

    EPA Science Inventory

    Enhancements of contaminants removal and degradation in low permeability soils by electrical fields are achieved by the processes of electrical heating, electrokinetics, and electrochemical reactions. Electrical heating increases soil temperature resulting in the increase of cont...

  17. Effect of permeability enhancers on paracellular permeability of acyclovir.

    PubMed

    Ates, Muge; Kaynak, Mustafa Sinan; Sahin, Selma

    2016-06-01

    According to Biopharmaceutics Classification System (BCS), acyclovir is a class III (high solubility, low permeability) compound, and it is transported through paracellular route by passive diffusion. The aim of this study was to investigate the effect of various pharmaceutical excipients on the intestinal permeability of acyclovir. The single-pass in-situ intestinal perfusion (SPIP) method was used to estimate the permeability values of acyclovir and metoprolol across different intestinal segments (jejunum, ileum and colon). Permeability coefficient (Peff ) of acyclovir was determined in the absence and presence of a permeation enhancer such as dimethyl β-cyclodextrin (DM-β-CD), sodium lauryl sulfate (SLS), sodium caprate (Cap-Na) and chitosan chloride. All enhancers increased the permeability of paracellularly transported acyclovir. Although Cap-Na has the highest permeability-enhancing effect in all segments, permeation-enhancing effect of chitosan and SLS was only significant in ileum. On the other hand, DM-β-CD slightly decreased the permeability in all intestinal segments. These findings have potential implication concerning the enhancement of absorption of paracellularly transported compounds with limited oral bioavailability. In the case of acyclovir, Cap-Na either alone or in combination with SLS or chitosan has the potential to improve its absorption and bioavailability and has yet to be explored. © 2016 Royal Pharmaceutical Society.

  18. Dual-Energy Micro-CT Functional Imaging of Primary Lung Cancer in Mice Using Gold and Iodine Nanoparticle Contrast Agents: A Validation Study

    PubMed Central

    Ashton, Jeffrey R.; Clark, Darin P.; Moding, Everett J.; Ghaghada, Ketan; Kirsch, David G.; West, Jennifer L.; Badea, Cristian T.

    2014-01-01

    Purpose To provide additional functional information for tumor characterization, we investigated the use of dual-energy computed tomography for imaging murine lung tumors. Tumor blood volume and vascular permeability were quantified using gold and iodine nanoparticles. This approach was compared with a single contrast agent/single-energy CT method. Ex vivo validation studies were performed to demonstrate the accuracy of in vivo contrast agent quantification by CT. Methods Primary lung tumors were generated in LSL-KrasG12D; p53FL/FL mice. Gold nanoparticles were injected, followed by iodine nanoparticles two days later. The gold accumulated in tumors, while the iodine provided intravascular contrast. Three dual-energy CT scans were performed–two for the single contrast agent method and one for the dual contrast agent method. Gold and iodine concentrations in each scan were calculated using a dual-energy decomposition. For each method, the tumor fractional blood volume was calculated based on iodine concentration, and tumor vascular permeability was estimated based on accumulated gold concentration. For validation, the CT-derived measurements were compared with histology and inductively-coupled plasma optical emission spectroscopy measurements of gold concentrations in tissues. Results Dual-energy CT enabled in vivo separation of gold and iodine contrast agents and showed uptake of gold nanoparticles in the spleen, liver, and tumors. The tumor fractional blood volume measurements determined from the two imaging methods were in agreement, and a high correlation (R2 = 0.81) was found between measured fractional blood volume and histology-derived microvascular density. Vascular permeability measurements obtained from the two imaging methods agreed well with ex vivo measurements. Conclusions Dual-energy CT using two types of nanoparticles is equivalent to the single nanoparticle method, but allows for measurement of fractional blood volume and permeability with a

  19. Stochastical analysis of surfactant-enhanced remediation of denser-than-water nonaqueous phase liquid (DNAPL)-contaminated soils.

    PubMed

    Zhang, Renduo; Wood, A Lynn; Enfield, Carl G; Jeong, Seung-Woo

    2003-01-01

    Stochastical analysis was performed to assess the effect of soil spatial variability and heterogeneity on the recovery of denser-than-water nonaqueous phase liquids (DNAPL) during the process of surfactant-enhanced remediation. UTCHEM, a three-dimensional, multicomponent, multiphase, compositional model, was used to simulate water flow and chemical transport processes in heterogeneous soils. Soil spatial variability and heterogeneity were accounted for by considering the soil permeability as a spatial random variable and a geostatistical method was used to generate random distributions of the permeability. The randomly generated permeability fields were incorporated into UTCHEM to simulate DNAPL transport in heterogeneous media and stochastical analysis was conducted based on the simulated results. From the analysis, an exponential relationship between average DNAPL recovery and soil heterogeneity (defined as the standard deviation of log of permeability) was established with a coefficient of determination (r2) of 0.991, which indicated that DNAPL recovery decreased exponentially with increasing soil heterogeneity. Temporal and spatial distributions of relative saturations in the water phase, DNAPL, and microemulsion in heterogeneous soils were compared with those in homogeneous soils and related to soil heterogeneity. Cleanup time and uncertainty to determine DNAPL distributions in heterogeneous soils were also quantified. The study would provide useful information to design strategies for the characterization and remediation of nonaqueous phase liquid-contaminated soils with spatial variability and heterogeneity.

  20. Identification of Soil Properties and Organophosphate Residues From Agricultural Land in Wanasari Sub-District, Brebes, Indonesia

    NASA Astrophysics Data System (ADS)

    Joko, Tri; Anggoro, Sutrisno; Sunoko, Henna Rya; Rachmawati, Savitri

    2018-02-01

    Organophosphates have been used to eradicate pests and prevent losses from harvest failures caused by pest attack. It is undeniable that the organophosphate persist in soil. This study aims to identify the organophosphate residue and soil properties include pH, soil texture, and permeability. The soil samples were taken from cropland in 10 villages, Wanasari sub-district, Brebes, Indonesia. Organophosphate residue determined by gas chromatography using Flame Photometric Detector. Soil texture was determined by soil texture triangle from NRCS USDA, and the permeability value was determined by falling head method. The mean value of chlorpyrifos, profenofos, diazinon were 0.0078; 0.0388; 0.2271 mg/l respectively. The soil texture varies from clay, silt clay, loam, silt loam, and silt clay loam with permeability value at 10-7 with the soil pH value between 6.4 - 8.1. The results showed that organophosphate residues found in the soil and its potential affect the soil fertility decline. We recommend to conduct routine soil quality analysis to prevent soil damage in the agricultural environment.

  1. Experimental studies and model analysis of noble gas fractionation in low-permeability porous media

    NASA Astrophysics Data System (ADS)

    Ding, Xin; Mack Kennedy, B.; Molins, Sergi; Kneafsey, Timothy; Evans, William C.

    2017-05-01

    Gas flow through the vadose zone from sources at depth involves fractionation effects that can obscure the nature of transport and even the identity of the source. Transport processes are particularly complex in low permeability media but as shown in this study, can be elucidated by measuring the atmospheric noble gases. A series of laboratory column experiments was conducted to evaluate the movement of noble gas from the atmosphere into soil in the presence of a net efflux of CO2, a process that leads to fractionation of the noble gases from their atmospheric abundance ratios. The column packings were designed to simulate natural sedimentary deposition by interlayering low permeability ceramic plates and high permeability beach sand. Gas samples were collected at different depths at CO2 fluxes high enough to cause extreme fractionation of the noble gases (4He/36Ar > 20 times the air ratio). The experimental noble gas fractionation-depth profiles were in good agreement with those predicted by the dusty gas (DG) model, demonstrating the applicability of the DG model across a broad spectrum of environmental conditions. A governing equation based on the dusty gas model was developed to specifically describe noble gas fractionation at each depth that is controlled by the binary diffusion coefficient, Knudsen diffusion coefficient and the ratio of total advection flux to total flux. Finally, the governing equation was used to derive the noble gas fractionation pattern and illustrate how it is influenced by soil CO2 flux, sedimentary sequence, thickness of each sedimentary layer and each layer's physical parameters. Three potential applications of noble gas fractionation are provided: evaluating soil attributes in the path of gas flow from a source at depth to the atmosphere, testing leakage through low permeability barriers used to isolate buried waste, and tracking biological methanogenesis and methane oxidation associated with hydrocarbon degradation.

  2. Simultaneous Assimilation of AMSR-E Brightness Temperature and MODIS LST to Improve Soil Moisture with Dual Ensemble Kalman Smoother

    NASA Astrophysics Data System (ADS)

    Huang, Chunlin; Chen, Weijin; Wang, Weizhen; Gu, Juan

    2017-04-01

    Uncertainties in model parameters can easily cause systematic differences between model states and observations from ground or satellites, which significantly affect the accuracy of soil moisture estimation in data assimilation systems. In this paper, a novel soil moisture assimilation scheme is developed to simultaneously assimilate AMSR-E brightness temperature (TB) and MODIS Land Surface Temperature (LST), which can correct model bias by simultaneously updating model states and parameters with dual ensemble Kalman filter (DEnKS). The Common Land Model (CoLM) and a Q-h Radiative Transfer Model (RTM) are adopted as model operator and observation operator, respectively. The assimilation experiment is conducted in Naqu, Tibet Plateau, from May 31 to September 27, 2011. Compared with in-situ measurements, the accuracy of soil moisture estimation is tremendously improved in terms of a variety of scales. The updated soil temperature by assimilating MODIS LST as input of RTM can reduce the differences between the simulated and observed brightness temperatures to a certain degree, which helps to improve the estimation of soil moisture and model parameters. The updated parameters show large discrepancy with the default ones and the former effectively reduces the states bias of CoLM. Results demonstrate the potential of assimilating both microwave TB and MODIS LST to improve the estimation of soil moisture and related parameters. Furthermore, this study also indicates that the developed scheme is an effective soil moisture downscaling approach for coarse-scale microwave TB.

  3. Frictional stability-permeability relationships for fractures in shales: Friction-Permeability Relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yi; Elsworth, Derek; Wang, Chaoyi

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO 2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS).more » We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.« less

  4. Compact, Lightweight Dual- Frequency Microstrip Antenna Feed for Future Soil Moisture and Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Wilson, William J.; Njoku, Eni; Hunter, Don; Dinardo, Steve; Kona, Keerti S.; Manteghi, Majid; Gies, Dennis; Rahmat-Samii, Yahya

    2004-01-01

    The development of a compact, lightweight, dual frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx. 1 GHz) passive and active sensing systems. The design features will also enable applications to airborne sensors operating on small aircrafts. This paper describes the design of stacked patch elements, 16-element array configuration and power-divider beam forming network The test results from the fabrication of stacked patches and power divider were also described.

  5. Oil permeability variations on lagoon sand beaches in the Patos-Guaíba system in Rio Grande do Sul, Brazil.

    PubMed

    Oliveira, Elaine Baroni; Nicolodi, João Luiz

    2017-02-15

    Permeability is the ability of a sediment deposit to allow fluids to pass through it. It depends on the local types of sediments. When the fluid is oil, high permeability implies greater interaction with the site and more extensive damage, which makes recovery most difficult. Knowledge of permeability oscillations is necessary to understand oil behavior and improve cleanup techniques. The goal is to determine oil permeability variations on lagoon sand beaches. Oil permeability tests were performed at the beach face, using a Modified Phillip Dunne Permeameter and parameters were sampled. Permeability of lagoon beaches is driven by grain diameter and roundness, soil compaction, and depth of the water table. Factors that enhance permeability include: sand sorting, vertical distribution of sediments and gravel percentage. High permeability on lagoon beaches is related to polymodal distribution, to the sediment package, and to the system's low mobility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Vertically-Integrated Dual-Continuum Models for CO2 Injection in Fractured Aquifers

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Guo, B.; Bandilla, K.; Celia, M. A.

    2017-12-01

    Injection of CO2 into a saline aquifer leads to a two-phase flow system, with supercritical CO2 and brine being the two fluid phases. Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the system. Almost all of that work has focused on unfractured formations. 3D models solve the governing equations in three dimensions and are applicable to generic geological formations. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally more efficient, but the associated assumptions restrict the applicability of VE model to formations with moderate to high permeability. In this presentation, we extend the VE and 3D models for CO2 injection in fractured aquifers. This is done in the context of dual-continuum modeling, where the fractured formation is modeled as an overlap of two continuous domains, one representing the fractures and the other representing the rock matrix. Both domains are treated as porous media continua and can be modeled by either a VE or a 3D formulation. The transfer of fluid mass between rock matrix and fractures is represented by a mass transfer function connecting the two domains. We have developed a computational model that combines the VE and 3D models, where we use the VE model in the fractures, which typically have high permeability, and the 3D model in the less permeable rock matrix. A new mass transfer function is derived, which couples the VE and 3D models. The coupled VE-3D model can simulate CO2 injection and migration in fractured aquifers. Results from this model compare well with a full-3D model in which both the fractures and rock matrix are modeled with 3D models, with the hybrid VE-3D model having significantly reduced computational cost. In

  7. Soil salinity study in Northern Great Plains sodium affected soil

    NASA Astrophysics Data System (ADS)

    Kharel, Tulsi P.

    Climate and land-use changes when combined with the marine sediments that underlay portions of the Northern Great Plains have increased the salinization and sodification risks. The objectives of this dissertation were to compare three chemical amendments (calcium chloride, sulfuric acid and gypsum) remediation strategies on water permeability and sodium (Na) transport in undisturbed soil columns and to develop a remote sensing technique to characterize salinization in South Dakota soils. Forty-eight undisturbed soil columns (30 cm x 15 cm) collected from White Lake, Redfield, and Pierpont were used to assess the chemical remediation strategies. In this study the experimental design was a completely randomized design and each treatment was replicated four times. Following the application of chemical remediation strategies, 45.2 cm of water was leached through these columns. The leachate was separated into 120- ml increments and analyzed for Na and electrical conductivity (EC). Sulfuric acid increased Na leaching, whereas gypsum and CaCl2 increased water permeability. Our results further indicate that to maintain effective water permeability, ratio between soil EC and sodium absorption ratio (SAR) should be considered. In the second study, soil samples from 0-15 cm depth in 62 x 62 m grid spacing were taken from the South Dakota Pierpont (65 ha) and Redfield (17 ha) sites. Saturated paste EC was measured on each soil sample. At each sampling points reflectance and derived indices (Landsat 5, 7, 8 images), elevation, slope and aspect (LiDAR) were extracted. Regression models based on multiple linear regression, classification and regression tree, cubist, and random forest techniques were developed and their ability to predict soil EC were compared. Results showed that: 1) Random forest method was found to be the most effective method because of its ability to capture spatially correlated variation, 2) the short wave infrared (1.5 -2.29 mum) and near infrared (0

  8. Aluminum and temperature alteration of cell membrane permeability of Quercus rubra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junping Chen; Sucoff, E.I.; Stadelmann, E.J.

    1991-06-01

    Al toxicity is the major factor limiting plant growth in acid soils. This report extends research on Al-induced changes in membrane behavior of intact root cortex cells of Northern red oak (Quercus rubra). Membrane permeability was determined by the plasmometric method for individual intact cells at temperatures from 2 or 4 to 35 C. Al (0.37 millimolar) significantly increased membrane permeability to urea and monoethyl urea and decreased permeability to water. Al significantly altered the activation energy required to transport water (+ 32%), urea (+ 9%), and monoethyl urea ({minus}7%) across cell membranes. Above 9 C, Al increased the lipidmore » partiality of the cell membranes; below 7 C, Al decreased it. Al narrowed by 6 C the temperature range over which plasmolysis occurred without membrane damage. These changes in membrane behavior are explainable if Al reduced membrane lipid fluidity and kink frequency and increases packing density and the occurrence of straight lipid chains.« less

  9. Revamping of entisol soil physical characteristics with compost treatment

    NASA Astrophysics Data System (ADS)

    Sumono; Loka, S. P.; Nasution, D. L. S.

    2018-02-01

    Physical characteristic of Entisol soil is an important factor for the growth of plant. The aim of this research was to know the effect of compost application on physical characteristics of Entisol soil. The research method used was experimental method with 6 (six) treatments and 3 replications of which K1 = 10 kg Entisol soil without compost, K2 = 9 Kg Entisol soil with 1 kg compost, K3 = 8 kg Entisol soil with 2 kg compost, K4 = 7 kg Entisol soilwith3 kg compost, K5 = 6 kg Entisol soil with 4 kg compost and K6 = 5 kg Entisol soil with 5 kg compost. The observed parameters were soil texture, soil organic matter, soil thickness, porosity, soil pore size, soil permeability and water availability. The results showed that the Entisol soil texture was loamy sand texture, the value of soil organic matter ranged from 0.74% to 4.69%, soil thickness ranged from 13.83 to 20.16 cm, porosity ranged from16% to 37%, soil pore size ranged from 2.859 to 5.493 µm, permeability ranged from 1.24 to 5.64 cm/hour and water availability ranged from 6.67% to 9.12% by each treatment.

  10. The Influence of Preferential Flow on Pressure Propagation and Landslide Triggering of the Rocca Pitigliana Landslide

    NASA Astrophysics Data System (ADS)

    Shao, W.; Bogaard, T.; Bakker, M.; Berti, M.; Savenije, H. H. G.

    2016-12-01

    The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately.

  11. Estimation of potential runoff-contributing areas in Kansas using topographic and soil information

    USGS Publications Warehouse

    Juracek, Kyle E.

    1999-01-01

    Digital topographic and soil information was used to estimate potential runoff-contributing areas throughout Kansas. The results then were used to compare 91 selected subbasins representing soil, slope, and runoff variability. Potential runoff-contributing areas were estimated collectively for the processes of infiltration-excess and saturation-excess overland flow using a set of environmental conditions that represented very high, high, moderate, low, very low, and extremely low potential runoff. For infiltration-excess overland flow, various rainfall-intensity and soil-permeability values were used. For saturation-excess overland flow, antecedent soil-moisture conditions and a topographic wetness index were used. Results indicated that very low potential-runoff conditions provided the best ability to distinguish the 91 selected subbasins as having relatively high or low potential runoff. The majority of the subbasins with relatively high potential runoff are located in the eastern half of the State where soil permeability generally is less and precipitation typically is greater. The ability to distinguish the subbasins as having relatively high or low potential runoff was possible mostly due to the variability of soil permeability across the State.

  12. A comprehensive numerical analysis of the hydraulic behavior of a permeable pavement

    NASA Astrophysics Data System (ADS)

    Brunetti, Giuseppe; Šimůnek, Jiří; Piro, Patrizia

    2016-09-01

    The increasing frequency of flooding events in urban catchments related to an increase in impervious surfaces highlights the inadequacy of traditional urban drainage systems. Low Impact Development (LID) techniques have proven to be a viable and effective alternative by reducing stormwater runoff and increasing the infiltration and evapotranspiration capacity of urban areas. However, the lack of adequate modeling tools represents a barrier in designing and constructing such systems. This paper investigates the suitability of a mechanistic model, HYDRUS-1D, to correctly describe the hydraulic behavior of permeable pavement installed at the University of Calabria. Two different scenarios of describing the hydraulic behavior of the permeable pavement system were analyzed: the first one uses a single-porosity model for all layers of the permeable pavement; the second one uses a dual-porosity model for the base and sub-base layers. Measured and modeled month-long hydrographs were compared using the Nash-Sutcliffe efficiency (NSE) index. A Global Sensitivity Analysis (GSA) followed by a Monte Carlo filtering highlighted the influence of the wear layer on the hydraulic behavior of the pavement and identified the ranges of parameters generating behavioral solutions. Reduced ranges were then used in the calibration procedure conducted with the metaheuristic Particle swarm optimization (PSO) algorithm for the estimation of hydraulic parameters. The best fit value for the first scenario was NSE = 0.43; for the second scenario, it was NSE = 0.81, indicating that the dual-porosity approach is more appropriate for describing the variably-saturated flow in the base and sub-base layers. Estimated parameters were validated using an independent, month-long set of measurements, resulting in NSE values of 0.43 and 0.86 for the first and second scenarios, respectively. The improvement in correspondence between measured and modeled hydrographs confirmed the reliability of the

  13. Methods to determine intestinal permeability and bacterial translocation during liver disease

    PubMed Central

    Wang, Lirui; Llorente, Cristina; Hartmann, Phillipp; Yang, An-Ming; Chen, Peng; Schnabl, Bernd

    2015-01-01

    Liver disease is often times associated with increased intestinal permeability. A disruption of the gut barrier allows microbial products and viable bacteria to translocate from the intestinal lumen to extraintestinal organs. The majority of the venous blood from the intestinal tract is drained into the portal circulation, which is part of the dual hepatic blood supply. The liver is therefore the first organ in the body to encounter not only absorbed nutrients, but also gut-derived bacteria and pathogen associated molecular patterns (PAMPs). Chronic exposure to increased levels of PAMPs has been linked to disease progression during early stages and to infectious complications during late stages of liver disease (cirrhosis). It is therefore important to assess and monitor gut barrier dysfunction during hepatic disease. We review methods to assess intestinal barrier disruption and discuss advantages and disadvantages. We will in particular focus on methods that we have used to measure increased intestinal permeability and bacterial translocation during experimental liver disease models. PMID:25595554

  14. Microwave Permittivity and Permeability Measurement on Lunar Soils

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin; Steinfeld, David; Begley, Shelley B.; Winterhalter, Daniel; Allen, Carlton

    2011-01-01

    There has been interest in finding ways to process the lunar regolith since the early analyses of lunar samples returned from the Apollo moon missions. This fact has led to proposals for using microwaves to perform in-situ processing of the lunar soil to support future colonization of the moon. More recently, there has been speculation that the excellent microwave absorption of lunar soil came from the nanophase iron content in the regolith. The motivation for the present study was to begin obtaining a more fundamental understanding of the dielectric and magnetic properties of the regolith at microwave frequencies. A major objective of this study was to obtain information that would help answer the question about whether nanophase iron plays a major role in heating lunar soils. These new measurements over a wide frequency range can also determine the magnitude of the dielectric and magnetic absorption and if there are any resonant features that could be used to enhance processing of the regolith in the future. In addition, these microwave measurements would be useful in confirming that new simulants being developed, particularly those containing nanophase iron, would have the correct composition to simulate the lunar regolith. The results of this study suggest that nanophase iron does not play a major role in heating lunar regolith.

  15. Trench infiltration for managed aquifer recharge to permeable bedrock

    USGS Publications Warehouse

    Heilweil, V.M.; Watt, D.E.

    2011-01-01

    Managed aquifer recharge to permeable bedrock is increasingly being utilized to enhance resources and maintain sustainable groundwater development practices. One such target is the Navajo Sandstone, an extensive regional aquifer located throughout the Colorado Plateau of the western United States. Spreading-basin and bank-filtration projects along the sandstone outcrop's western edge in southwestern Utah have recently been implemented to meet growth-related water demands. This paper reports on a new cost-effective surface-infiltration technique utilizing trenches for enhancing managed aquifer recharge to permeable bedrock. A 48-day infiltration trench experiment on outcropping Navajo Sandstone was conducted to evaluate this alternative surface-spreading artificial recharge method. Final infiltration rates through the bottom of the trench were about 0.5 m/day. These infiltration rates were an order of magnitude higher than rates from a previous surface-spreading experiment at the same site. The higher rates were likely caused by a combination of factors including the removal of lower permeability soil and surficial caliche deposits, access to open vertical sandstone fractures, a reduction in physical clogging associated with silt and biofilm layers, minimizing viscosity effects by maintaining isothermal conditions, minimizing chemical clogging caused by carbonate mineral precipitation associated with algal photosynthesis, and diminished gas clogging associated with trapped air and biogenic gases. This pilot study illustrates the viability of trench infiltration for enhancing surface spreading of managed aquifer recharge to permeable bedrock. ?? 2010.

  16. Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon in disturbed and undisturbed soil columns.

    PubMed

    Dousset, S; Thevenot, M; Pot, V; Simunek, J; Andreux, F

    2007-12-07

    In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due

  17. Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon in disturbed and undisturbed soil columns

    NASA Astrophysics Data System (ADS)

    Dousset, S.; Thevenot, M.; Pot, V.; Šimunek, J.; Andreux, F.

    2007-12-01

    In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due

  18. Soil radium, soil gas radon and indoor radon empirical relationships to assist in post-closure impact assessment related to near-surface radioactive waste disposal.

    PubMed

    Appleton, J D; Cave, M R; Miles, J C H; Sumerling, T J

    2011-03-01

    Least squares (LS), Theil's (TS) and weighted total least squares (WTLS) regression analysis methods are used to develop empirical relationships between radium in the ground, radon in soil and radon in dwellings to assist in the post-closure assessment of indoor radon related to near-surface radioactive waste disposal at the Low Level Waste Repository in England. The data sets used are (i) estimated ²²⁶Ra in the < 2 mm fraction of topsoils (eRa226) derived from equivalent uranium (eU) from airborne gamma spectrometry data, (ii) eRa226 derived from measurements of uranium in soil geochemical samples, (iii) soil gas radon and (iv) indoor radon data. For models comparing indoor radon and (i) eRa226 derived from airborne eU data and (ii) soil gas radon data, some of the geological groupings have significant slopes. For these groupings there is reasonable agreement in slope and intercept between the three regression analysis methods (LS, TS and WTLS). Relationships between radon in dwellings and radium in the ground or radon in soil differ depending on the characteristics of the underlying geological units, with more permeable units having steeper slopes and higher indoor radon concentrations for a given radium or soil gas radon concentration in the ground. The regression models comparing indoor radon with soil gas radon have intercepts close to 5 Bq m⁻³ whilst the intercepts for those comparing indoor radon with eRa226 from airborne eU vary from about 20 Bq m⁻³ for a moderately permeable geological unit to about 40 Bq m⁻³ for highly permeable limestone, implying unrealistically high contributions to indoor radon from sources other than the ground. An intercept value of 5 Bq m⁻³ is assumed as an appropriate mean value for the UK for sources of indoor radon other than radon from the ground, based on examination of UK data. Comparison with published data used to derive an average indoor radon: soil ²²⁶Ra ratio shows that whereas the published data are

  19. Permeability changes induced by microfissure closure and opening in tectonized materials. Effect on slope pore pressure regime.

    NASA Astrophysics Data System (ADS)

    De la Fuente, Maria; Vaunat, Jean; Pedone, Giuseppe; Cotecchia, Federica; Sollecito, Francesca; Casini, Francesca

    2015-04-01

    Tectonized clays are complex materials characterized by several levels of structures that may evolve during load and wetting/drying processes. Some microstructural patterns, as microfissures, have a particular influence on the value of permeability which is one of the main factors controlling pore pressure regime in slopes. In this work, the pore pressure regime measured in a real slope of tectonized clay in Southern Italy is analyzed by a numerical model that considers changes in permeability induced by microfissure closure and opening during the wetting and drying processes resulting from climatic actions. Permeability model accounts for the changes in Pore Size Distribution observed by Microscopy Intrusion Porosimetry. MIP tests are performed on representative samples of ground in initial conditions ("in situ" conditions) and final conditions (deformed sample after applying a wetting path that aims to reproduce the saturation of the soil under heavy rains). The resulting measurements allow for the characterization at microstructural level of the soil, identifying the distribution of dominant families pores in the sample and its evolution under external actions. Moreover, comparison of pore size density functions allows defining a microstructural parameter that depends on void ratio and degree of saturation and controls the variation of permeability. Model has been implemented in a thermo-hydro-mechanical code provided with a special boundary condition for climatic actions. Tool is used to analyze pore pressure measurements obtained in the tectonized clay slope. Results are analyzed at the light of the effect that permeability changes during wetting and drying have on the pore pressure regime.

  20. A long-term soil structure observatory for post-compaction soil structure evolution: design and initial soil structure recovery observations

    NASA Astrophysics Data System (ADS)

    Keller, Thomas; Colombi, Tino; Ruiz, Siul; Grahm, Lina; Reiser, René; Rek, Jan; Oberholzer, Hans-Rudolf; Schymanski, Stanislaus; Walter, Achim; Or, Dani

    2016-04-01

    to about half a metre, decreased gas and water transport functions (air permeability, gas diffusivity, saturated hydraulic conductivity), and increased mechanical impedance. Water infiltration at the soil surface was initially reduced by three orders of magnitude, but significantly recovered within a year. However, within the soil profile, recovery of transport properties is much smaller. Air permeability tended to recover more than gas diffusivity, suggesting that initial post-compaction recovery is initiated by new macropores (e.g. biopores). Tillage recovered topsoil bulk density but not topsoil transport functions. Compaction changed grass species composition in PG, and significantly reduced grass biomass in PG and crop yields in NT and CT.

  1. Crustal permeability

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Gleeson, Tom

    2017-01-01

    Permeability is the dominant parameter in most hydrogeologic studies. There is abundant evidence for dynamic variations in permeability in time as well as space, and throughout the crust. Whether this dynamic behavior should be included in quantitative models depends on the problem at hand.

  2. Modification of the USLE K factor for soil erodibility assessment on calcareous soils in Iran

    NASA Astrophysics Data System (ADS)

    Ostovari, Yaser; Ghorbani-Dashtaki, Shoja; Bahrami, Hossein-Ali; Naderi, Mehdi; Dematte, Jose Alexandre M.; Kerry, Ruth

    2016-11-01

    The measurement of soil erodibility (K) in the field is tedious, time-consuming and expensive; therefore, its prediction through pedotransfer functions (PTFs) could be far less costly and time-consuming. The aim of this study was to develop new PTFs to estimate the K factor using multiple linear regression, Mamdani fuzzy inference systems, and artificial neural networks. For this purpose, K was measured in 40 erosion plots with natural rainfall. Various soil properties including the soil particle size distribution, calcium carbonate equivalent, organic matter, permeability, and wet-aggregate stability were measured. The results showed that the mean measured K was 0.014 t h MJ- 1 mm- 1 and 2.08 times less than the estimated mean K (0.030 t h MJ- 1 mm- 1) using the USLE model. Permeability, wet-aggregate stability, very fine sand, and calcium carbonate were selected as independent variables by forward stepwise regression in order to assess the ability of multiple linear regression, Mamdani fuzzy inference systems and artificial neural networks to predict K. The calcium carbonate equivalent, which is not accounted for in the USLE model, had a significant impact on K in multiple linear regression due to its strong influence on the stability of aggregates and soil permeability. Statistical indices in validation and calibration datasets determined that the artificial neural networks method with the highest R2, lowest RMSE, and lowest ME was the best model for estimating the K factor. A strong correlation (R2 = 0.81, n = 40, p < 0.05) between the estimated K from multiple linear regression and measured K indicates that the use of calcium carbonate equivalent as a predictor variable gives a better estimation of K in areas with calcareous soils.

  3. Linking soil bacterial biodiversity and soil carbon stability.

    PubMed

    Mau, Rebecca L; Liu, Cindy M; Aziz, Maliha; Schwartz, Egbert; Dijkstra, Paul; Marks, Jane C; Price, Lance B; Keim, Paul; Hungate, Bruce A

    2015-06-01

    Native soil carbon (C) can be lost in response to fresh C inputs, a phenomenon observed for decades yet still not understood. Using dual-stable isotope probing, we show that changes in the diversity and composition of two functional bacterial groups occur with this 'priming' effect. A single-substrate pulse suppressed native soil C loss and reduced bacterial diversity, whereas repeated substrate pulses stimulated native soil C loss and increased diversity. Increased diversity after repeated C amendments contrasts with resource competition theory, and may be explained by increased predation as evidenced by a decrease in bacterial 16S rRNA gene copies. Our results suggest that biodiversity and composition of the soil microbial community change in concert with its functioning, with consequences for native soil C stability.

  4. Permeability - Fluid Pressure - Stress Relationship in Fault Zones in Shales

    NASA Astrophysics Data System (ADS)

    Henry, P.; Guglielmi, Y.; Morereau, A.; Seguy, S.; Castilla, R.; Nussbaum, C.; Dick, P.; Durand, J.; Jaeggi, D.; Donze, F. V.; Tsopela, A.

    2016-12-01

    Fault permeability is known to depend strongly on stress and fluid pressures. Exponential relationships between permeability and effective pressure have been proposed to approximate fault response to fluid pressure variations. However, the applicability of these largely empirical laws remains questionable, as they do not take into account shear stress and shear strain. A series of experiments using mHPP probes have been performed within fault zones in very low permeability (less than 10-19 m2) Lower Jurassic shale formations at Tournemire (France) and Mont Terri (Switzerland) underground laboratories. These probes allow to monitor 3D displacement between two points anchored to the borehole walls at the same time as fluid pressure and flow rate. In addition, in the Mont-Terri experiment, passive pressure sensors were installed in observation boreholes. Fracture transmissivity was estimated from single borehole pulse test, constant pressure injection tests, and cross-hole tests. It is found that the transmissivity-pressure dependency can be approximated with an exponential law, but only above a pressure threshold that we call the Fracture Opening Threshold (F.O.P). The displacement data show a change of the mechanical response across the F.O.P. The displacement below the F.O.P. is dominated by borehole response, which is mostly elastic. Above F.O.P., the poro-elasto-plastic response of the fractures dominates. Stress determinations based on previous work and on the analysis of slip data from mHPPP probe indicate that the F.O.P. is lower than the least principal stress. Below the F.O.P., uncemented fractures retain some permeability, as pulse tests performed at low pressures yield diffusivities in the range 10-2 to 10-5 m2/s. Overall, this dual behavior appears consistent with the results of CORK experiments performed in accretionary wedge decollements. Results suggest (1) that fault zones become highly permeable when approaching the critical Coulomb threshold (2

  5. FEASIBILITY OF ELECTROKINETIC SOIL REMEDIATION IN HORIZONTAL LASAGNA CELLS

    EPA Science Inventory

    An integrated soil remediation technology called Lasagna has been developed that combines electrokinetics with treatment zones for use in low permeability soils where the rates of hydraulic and electrokinetic transport are too low to be useful for remediation of contaminants. The...

  6. Permeability of stylolite-bearing chalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lind, I.; Nykjaer, O.; Priisholm, S.

    1994-11-01

    Permeabilities were measured on core plugs from stylolite-bearing chalk of the Gorm field in the Danish North Sea. Air and liquid permeabilities were measured in directions parallel to and perpendicular to the stylolite surface. Permeability was measured with sleeve pressure equal to in-situ reservoir stress. Permeabilities of plugs with stylolites but without stylolite-associated fractures were equal in the two directions. The permeability is equal to the matrix permeability of non-stylolite-bearing chalk. In contrast, when fractures were associated with the stylolites, permeability was enhanced. The enhancement was most significant in the horizontal direction parallel to the stylolites.

  7. Modeling the Hydrologic Processes of a Permeable Pavement ...

    EPA Pesticide Factsheets

    A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has been developed in this study. The developed model can continuously simulate infiltration through the permeable pavement surface, exfiltration from the storage to the surrounding in situ soils, and clogging impacts on infiltration/exfiltration capacity at the pavement surface and the bottom of the subsurface storage unit. The exfiltration modeling component simulates vertical and horizontal exfiltration independently based on Darcy’s formula with the Green-Ampt approximation. The developed model can be arranged with physically-based modeling parameters, such as hydraulic conductivity, Manning’s friction flow parameters, saturated and field capacity volumetric water contents, porosity, density, etc. The developed model was calibrated using high-frequency observed data. The modeled water depths are well matched with the observed values (R2 = 0.90). The modeling results show that horizontal exfiltration through the side walls of the subsurface storage unit is a prevailing factor in determining the hydrologic performance of the system, especially where the storage unit is developed in a long, narrow shape; or with a high risk of bottom compaction and clogging. This paper presents unit

  8. Biological soil crust succession impact on soil moisture and temperature in the sub-surface along a rainfall gradient

    NASA Astrophysics Data System (ADS)

    Zaady, E.; Yizhaq, H.; Ashkenazy, Y.

    2012-04-01

    Biological soil crusts produce mucilage sheets of polysaccharides that cover the soil surface. This hydrophobic coating can seal the soil micro-pores and thus cause reduction of water permeability and may influence soil temperature. This study evaluates the impact of crust composition on sub-surface water and temperature over time. We hypothesized that the successional stages of biological soil crusts, affect soil moisture and temperature differently along a rainfall gradient throughout the year. Four experimental sites were established along a rainfall gradient in the western Negev Desert. At each site three treatments; crust removal, pure sand (moving dune) and natural crusted were monitored. Crust successional stage was measured by biophysiological and physical measurements, soil water permeability by field mini-Infiltrometer, soil moisture by neutron scattering probe and temperature by sensors, at different depths. Our main interim conclusions from the ongoing study along the rainfall gradient are: 1. the biogenic crust controls water infiltration into the soil in sand dunes, 2. infiltration was dependent on the composition of the biogenic crust. It was low for higher successional stage crusts composed of lichens and mosses and high with cyanobacterial crust. Thus, infiltration rate controlled by the crust is inverse to the rainfall gradient. Continuous disturbances to the crust increase infiltration rates, 3. despite the different rainfall amounts at the sites, soil moisture content below 50 cm is almost the same. We therefore predict that climate change in areas that are becoming dryer (desertification) will have a positive effect on soil water content and vice versa.

  9. Geotechnical behaviour of low-permeability soils in surfactant-enhanced electrokinetic remediation.

    PubMed

    López-Vizcaíno, Rubén; Navarro, Vicente; Alonso, Juan; Yustres, Ángel; Cañizares, Pablo; Rodrigo, Manuel A; Sáez, Cristina

    2016-01-01

    Electrokinetic processes provide the basis of a range of very interesting techniques for the remediation of polluted soils. These techniques consist of the application of a current field in the soil that develops different transport mechanisms capable of mobilizing several types of pollutants. However, the use of these techniques could generate nondesirable effects related to the geomechanical behavior of the soil, reducing the effectiveness of the processes. In the case of the remediation of polluted soils with plasticity index higher than 35, an excessive shrinkage can be observed in remediation test. For this reason, the continued evaporation that takes place in the sample top can lead to the development of cracks, distorting the electrokinetic transport regime, and consequently, the development of the operation. On the other hand, when analyzing silty soils, in the surroundings of injection surfactant wells, high seepages can be generated that give rise to the development of piping processes. In this article methods are described to allow a reduction, or to even eliminate, both problems.

  10. Multi-process herbicide transport in structured soil columns: Experiments and model analysis

    NASA Astrophysics Data System (ADS)

    Köhne, J. Maximilian; Köhne, Sigrid; Šimůnek, Jirka

    2006-05-01

    Model predictions of pesticide transport in structured soils are complicated by multiple processes acting concurrently. In this study, the hydraulic, physical, and chemical nonequilibrium (HNE, PNE, and CNE, respectively) processes governing herbicide transport under variably saturated flow conditions were studied. Bromide (Br -), isoproturon (IPU, 3-(4-isoprpylphenyl)-1,1-dimethylurea) and terbuthylazine (TER, N2-tert-butyl-6-chloro- N4-ethyl-1,3,5-triazine-2,4-diamine) were applied to two soil columns. An aggregated Ap soil column and a macroporous, aggregated Ah soil column were irrigated at a rate of 1 cm h - 1 for 3 h. Two more irrigations at the same rate and duration followed in weekly intervals. Nonlinear (Freundlich) equilibrium and two-site kinetic sorption parameters were determined for IPU and TER using batch experiments. The observed water flow and Br - transport were inversely simulated using mobile-immobile (MIM), dual-permeability (DPM), and combined triple-porosity (DP-MIM) numerical models implemented in HYDRUS-1D, with improving correspondence between empirical data and model results. Using the estimated HNE and PNE parameters together with batch-test derived equilibrium sorption parameters, the preferential breakthrough of the weakly adsorbed IPU in the Ah soil could be reasonably well predicted with the DPM approach, whereas leaching of the strongly adsorbed TER was predicted less well. The transport of IPU and TER through the aggregated Ap soil could be described consistently only when HNE, PNE, and CNE were simultaneously accounted for using the DPM. Inverse parameter estimation suggested that two-site kinetic sorption in inter-aggregate flow paths was reduced as compared to within aggregates, and that large values for the first-order degradation rate were an artifact caused by irreversible sorption. Overall, our results should be helpful to enhance the understanding and modeling of multi-process pesticide transport through structured soils

  11. Seasonal variability of soil-gas radon concentration in central California

    USGS Publications Warehouse

    King, C.-Y.; Minissale, A.

    1994-01-01

    Radon concentrations in soil gas were measured by the track-etch method in 60 shallow holes, each 70 cm deep and supported by a capped plastic tube, along several major faults in central California during 1975-1985. This set of data was analyzed to investigate the seasonal variability of soil-gas radon concentration in an area which has various geological conditions but similar climate. The results show several different patterns of seasonal variations, but all of which can be largely attributed to the water-saturation and moisture-retention characteristics of the shallow part of the soil. During the rainy winter and spring seasons, radon tended to be confined underground by the water-saturated surface soil which had much reduced gas permeability, while during the sunny summer and autumn seasons, it exhaled more readily as the soil became drier and more permeable. At several sites located on creeping faults, the radon-variation patterns changed with time, possibly because of disturbance of site condition by fault movement. ?? 1994.

  12. Steam injection for in-situ remediation of DNAPLs in low permeability media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sleep, B.

    1996-08-01

    The potential for remediation of dense, nonaqueous phase liquid (DNAPL) contamination by steam injection is investigated, including the advantages and disadvantages of the technology. The primary advantage is the significant enhancement of removal rates through steam distillation. The disadvantages are related to the lack of field experience with the technology and difficulties related to steam override and channeling in heterogeneous soils. The problems related to steam injection in low permeability fractured clay are examined, and removal times and costs are postulated for a hypothetical DNAPL contamination scenario. It is concluded that steam injection has significant potential for remediation of DNAPLmore » in fractured clay soils, but there is significant uncertainty in predictions of the performance of steam injection in these soils. 13 refs., 4 figs., 1 tab.« less

  13. Study of the transport of cadusafos in two tropical undisturbed soil columns

    NASA Astrophysics Data System (ADS)

    Dionisio Fernandez-Bayo, Jesus; Crevoisier, David; Saison, Carine; Geniez, Chantal; Huttel, Olivier; Samouelian, Anatja; Voltz, Marc

    2013-04-01

    The use of pesticides to control agriculture pests is a common practice on most tropical plantations whose vulnerability to pesticide pollution is very important due to the frequent heavy rains that wash pesticides from target areas. Tropical volcanic soils have been scarcely investigated in this sense and monitoring the dynamic of pesticide at column scale is of great interest for a better understanding at catchment scale and risk modelling. The objective was to study and model the transport of cadusafos (CDS) in two undisturbed soil columns from a nitisol and an andosol, representative of the major soils in agricultural areas of the FWI. Undisturbed soil columns from andosol (sandy-loam soil) and nitisol (clay soil) from Guadeloupe Island were spiked with 14C-CDS along with 10 g of granulate Rugby®. To each soil column, 10 rain events of different intensities (20 and 40 mm/h during 4 and 2 hours, respectively) were applied with 4-7 days delay between two subsequent rain events. For the nitisol columns, the cumulated rain was halved (by decreasing duration of each rain event) since these soils occur in drier areas of Guadeloupe and because the imposed rain intensities led to the accumulation of water at the surface of the column. At the end of the leaching experiment the extractable and non-extractable remaining pesticide residues were determined along the soil profile. The andosol presented a very high permeability attributed to the preferential flow expected in this type of soil with high macroporosity due to the allophane materials. The maximum concentration of CDS was attained during the first rainfall event while the cumulated infiltrated volume of water was much less than the pore volume of the column soil. The peak concentration levels of CDS were almost constant during the first 5 rain events and they decreased during the subsequent rain events, probably due to degradation and/or ageing processes of CDS. The nitisol showed lower permeability reflected in

  14. Transmembrane protein diffusion in gel-supported dual-leaflet membranes.

    PubMed

    Wang, Chih-Ying; Hill, Reghan J

    2014-11-18

    Tools to measure transmembrane-protein diffusion in lipid bilayer membranes have advanced in recent decades, providing a need for predictive theoretical models that account for interleaflet leaflet friction on tracer mobility. Here we address the fully three-dimensional flows driven by a (nonprotruding) transmembrane protein embedded in a dual-leaflet membrane that is supported above and below by soft porous supports (e.g., hydrogel or extracellular matrix), each of which has a prescribed permeability and solvent viscosity. For asymmetric configurations, i.e., supports with contrasting permeability, as realized for cells in contact with hydrogel scaffolds or culture media, the diffusion coefficient can reflect interleaflet friction. Reasonable approximations, for sufficiently large tracers on low-permeability supports, are furnished by a recent phenomenological theory from the literature. Interpreting literature data, albeit for hard-supported membranes, provides a theoretical basis for the phenomenological Stokes drag law as well as strengthening assertions that nonhydrodynamic interactions are important in supported bilayer systems, possibly leading to overestimates of the membrane/leaflet viscosity. Our theory provides a theoretical foundation for future experimental studies of tracer diffusion in gel-supported membranes.

  15. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter.

    PubMed

    Haddix, Michelle L; Paul, Eldor A; Cotrufo, M Francesca

    2016-06-01

    The formation and stabilization of soil organic matter (SOM) are major concerns in the context of global change for carbon sequestration and soil health. It is presently believed that lignin is not selectively preserved in soil and that chemically labile compounds bonding to minerals comprise a large fraction of the SOM. Labile plant inputs have been suggested to be the main precursor of the mineral-bonded SOM. Litter decomposition and SOM formation are expected to have temperature sensitivity varying with the lability of plant inputs. We tested this framework using dual (13) C and (15) N differentially labeled plant material to distinguish the metabolic and structural components within a single plant material. Big Bluestem (Andropogon gerardii) seedlings were grown in an enriched (13) C and (15) N environment and then prior to harvest, removed from the enriched environment and allowed to incorporate natural abundance (13) C-CO2 and (15) N fertilizer into the metabolic plant components. This enabled us to achieve a greater than one atom % difference in (13) C between the metabolic and structural components within the plant litter. This differentially labeled litter was incubated in soil at 15 and 35 °C, for 386 days with CO2 measured throughout the incubation. After 14, 28, 147, and 386 days of incubation, the soil was subsequently fractionated. There was no difference in temperature sensitivity of the metabolic and structural components with regard to how much was respired or in the amount of litter biomass stabilized. Only the metabolic litter component was found in the sand, silt, or clay fraction while the structural component was exclusively found in the light fraction. These results support the stabilization framework that labile plant components are the main precursor of mineral-associated organic matter. © 2016 John Wiley & Sons Ltd.

  16. Effect of dissolved oxygen manipulation on diffusive emissions from NAPL-impacted low permeability soil layers.

    PubMed

    Clifton, Lisa M; Dahlen, Paul R; Johnson, Paul C

    2014-05-06

    Aquifer physical model experiments were performed to investigate if diffusive emissions from nonaqueous phase liquid (NAPL)-impacted low-permeability layers into groundwater moving through adjacent NAPL-free high-permeability layers can be reduced by creating an aerobic biotreatment zone at the interface between the two, and if over time that leads to reduced emissions after treatment ceases. Experiments were performed in two 1.2-m long × 1.2-m high × 5.4 cm wide stainless steel tanks; each with a high-permeability sand layer overlying a low-permeability crushed granite layer containing a NAPL mixture of indane and benzene. Each tank was water-saturated with horizontal flow primarily through the sand layer. The influent water was initially deoxygenated and the emissions and concentration distributions were allowed to reach near-steady conditions. The influent dissolved oxygen (DO) level was increased stepwise to 6.5-8.5 mg/L and 17-20 mg/L, and then decreased back to deoxygenated conditions. Each condition was maintained for at least 45 days. Relative to the near-steady benzene emission at the initial deoxygenated condition, the emission was reduced by about 70% when the DO was 6.5-8.5 mg/L, 90% when the DO was 17-20 mg/L, and ultimately 60% when returning to low DO conditions. While the reductions were substantial during treatment, longer-term reductions after 120 d of elevated DO treatment, relative to an untreated condition predicted by theory, were low: 29% and 6% in Tank 1 and Tank 2, respectively. Results show a 1-2 month lag between the end of DO delivery and rebound to the final near-steady emissions level. This observation has implications for post-treatment performance monitoring sampling at field sites.

  17. Axial and Radial Permeability Evolutions of Compressed Sandstones: End Effects and Shear-band Induced Permeability Anisotropy

    NASA Astrophysics Data System (ADS)

    Dautriat, Jeremie; Gland, Nicolas; Guelard, Jean; Dimanov, Alexandre; Raphanel, Jean L.

    2009-07-01

    The influence of hydrostatic and uniaxial stress states on the porosity and permeability of sandstones has been investigated. The experimental procedure uses a special triaxial cell which allows permeability measurements in the axial and radial directions. The core sleeve is equipped with two pressure samplers placed distant from the ends. They provide mid-length axial permeability measure as opposed to the overall permeability measure, which is based on the flow imposed through the pistons of the triaxial cell. The core sleeve is also equipped to perform flows in two directions transverse to the axis of the sample. Two independent measures of axial and complementary radial permeability are thus obtained. Both Fontainebleau sandstone specimens with a porosity of about 5.8% to 8% and low permeability ranging from 2.5 mD to 30 mD and Bentheimer sandstone with a porosity of 24% and a high permeability of 3 D have been tested. The initial axial permeability values obtained by each method are in good agreement for the Fontainebleau sandstone. The Bentheimer sandstone samples present an axial mid-length permeability 1.6 times higher than the overall permeability. A similar discrepancy is also observed in the radial direction, also it relates essentially to the shape of flow lines induced by the radial flow. All the tested samples have shown a higher stress dependency of overall and radial permeability than mid-length permeability. The effect of compaction damage at the pistons/sample and radial ports/sample interfaces is discussed. The relevance of directional permeability measurements during continuous uniaxial compression loadings has been shown on the Bentheimer sandstone until the failure of the sample. We can efficiently measure the influence of brittle failure associated to dilatant regime on the permeability: It tends to increase in the failure propagation direction and to decrease strongly in the transverse direction.

  18. A method for the estimation of dual transmissivities from slug tests

    NASA Astrophysics Data System (ADS)

    Wolny, Filip; Marciniak, Marek; Kaczmarek, Mariusz

    2018-03-01

    Aquifer homogeneity is usually assumed when interpreting the results of pumping and slug tests, although aquifers are essentially heterogeneous. The aim of this study is to present a method of determining the transmissivities of dual-permeability water-bearing formations based on slug tests such as the pressure-induced permeability test. A bi-exponential rate-of-rise curve is typically observed during many of these tests conducted in heterogeneous formations. The work involved analyzing curves deviating from the exponential rise recorded at the Belchatow Lignite Mine in central Poland, where a significant number of permeability tests have been conducted. In most cases, bi-exponential movement was observed in piezometers with a screen installed in layered sediments, each with a different hydraulic conductivity, or in fissured rock. The possibility to identify the flow properties of these geological formations was analyzed. For each piezometer installed in such formations, a set of two transmissivity values was calculated piecewise based on the interpretation algorithm of the pressure-induced permeability test—one value for the first (steeper) part of the obtained rate-of-rise curve, and a second value for the latter part of the curve. The results of transmissivity estimation for each piezometer are shown. The discussion presents the limitations of the interpretational method and suggests future modeling plans.

  19. Air Permeability and Infiltration Differences Associated with Grass and Gravel Streambeds in an Urban Environment

    NASA Astrophysics Data System (ADS)

    Witte, B.; Ferlin, C.; Gallo, E. L.; Lohse, K. A.; Meixner, T.; Brooks, P. D.; Ferre, T. A.

    2010-12-01

    Storm water infiltration and recharge is a key component of sustainable water resource management in rapidly expanding urban areas of arid and semi-arid regions. Near surface streambed permeability affects the partitioning of stream flows to infiltration and subsequent groundwater recharge, or increasing runoff to be conveyed downstream. Therefore, in this study, we assessed how air permeability varied among distinct stream beds of ephemeral urban washes in the semi-arid southwest. A Soil Core Air Permeameter (SCAP) was used to quantify in situ air permeability at sixteen sites in the Tucson, Arizona metropolitan area. Significant air permeability differences between gravel and grass lined ephemeral stream beds were found, where the average air permeability at the gravel sites was 3.58 x10-2 ± 1.11 x 10-2 mm2 (mean ± std error) and the air permeability at the grass sites was 7.13 x 10-3 ± 2.02 x 10-3 mm2. A previously published linear correlation between air permeability and saturated hydraulic conductivity was used to predict saturated hydraulic conductivity at the ephemeral stream beds of this study. Preliminary results suggest that the predicted saturated hydraulic conductivity values are comparable to ring infiltration measurements taken in the field. Findings from this study indicate that the higher porosity and decreased vegetation at the gravel lined urban washes enhanced infiltration rates, which may lead to decreased storm water runoff. However, higher infiltration rates at gravel lined sites may result in less time for processing of potential pollutants with negative implications for water quality.

  20. Gradual changes in permeability of inner mitochondrial membrane precede the mitochondrial permeability transition.

    PubMed

    Balakirev, M Y; Zimmer, G

    1998-08-01

    Some compounds are known to induce solute-nonselective permeability of the inner mitochondrial membrane (IMM) in Ca2+-loaded mitochondria. Existing data suggest that this process, following the opening of a mitochondrial permeability transition pore, is preceded by different solute-selective permeable states of IMM. At pH 7, for instance, the K0.5 for Ca2+-induced pore opening is 16 microM, a value 80-fold above a therapeutically relevant shift of intracellular Ca2+ during ischemia in vivo. The present work shows that in the absence of Ca2+, phenylarsine oxide and tetraalkyl thiuram disulfides (TDs) are able to induce a complex sequence of IMM permeability changes. At first, these agents activated an electrogenic K+ influx into the mitochondria. This K+-specific pathway had K0.5 = 35 mM for K+ and was inhibited by bromsulfalein with Ki = 2.5 microM. The inhibitors of mitochondrial KATP channel, ATP and glibenclamide, did not inhibit K+ transport via this pathway. Moreover, 50 microM glibenclamide induced by itself K+ influx into the mitochondria. After the increase in K+ permeability of IMM, mitochondria become increasingly permeable to protons. Mechanisms of H+ leak and nonselective permeability increase could also be different depending on the type of mitochondrial permeability transition (MPT) inducer. Thus, permeabilization of mitochondria induced by phenylarsine oxide was fully prevented by ADP and/or cyclosporin A, whereas TD-induced membrane alterations were insensitive toward these inhibitors. It is suggested that MPT in vivo leading to irreversible apoptosis is irrelevant in reversible ischemia/reperfusion injury. Copyright 1998 Academic Press.

  1. Quantifying the heterogeneity of soil compaction, physical soil properties and soil moisture across multiple spatial scales

    NASA Astrophysics Data System (ADS)

    Coates, Victoria; Pattison, Ian; Sander, Graham

    2016-04-01

    England's rural landscape is dominated by pastoral agriculture, with 40% of land cover classified as either improved or semi-natural grassland according to the Land Cover Map 2007. Since the Second World War the intensification of agriculture has resulted in greater levels of soil compaction, associated with higher stocking densities in fields. Locally compaction has led to loss of soil storage and an increased in levels of ponding in fields. At the catchment scale soil compaction has been hypothesised to contribute to increased flood risk. Previous research (Pattison, 2011) on a 40km2 catchment (Dacre Beck, Lake District, UK) has shown that when soil characteristics are homogeneously parameterised in a hydrological model, downstream peak discharges can be 65% higher for a heavy compacted soil than for a lightly compacted soil. However, at the catchment scale there is likely to be a significant amount of variability in compaction levels within and between fields, due to multiple controlling factors. This research focusses in on one specific type of land use (permanent pasture with cattle grazing) and areas of activity within the field (feeding area, field gate, tree shelter, open field area). The aim was to determine if the soil characteristics and soil compaction levels are homogeneous in the four areas of the field. Also, to determine if these levels stayed the same over the course of the year, or if there were differences at the end of the dry (October) and wet (April) periods. Field experiments were conducted in the River Skell catchment, in Yorkshire, UK, which has an area of 120km2. The dynamic cone penetrometer was used to determine the structural properties of the soil, soil samples were collected to assess the bulk density, organic matter content and permeability in the laboratory and the Hydrosense II was used to determine the soil moisture content in the topsoil. Penetration results show that the tree shelter is the most compacted and the open field area

  2. Dual-input two-compartment pharmacokinetic model of dynamic contrast-enhanced magnetic resonance imaging in hepatocellular carcinoma.

    PubMed

    Yang, Jian-Feng; Zhao, Zhen-Hua; Zhang, Yu; Zhao, Li; Yang, Li-Ming; Zhang, Min-Ming; Wang, Bo-Yin; Wang, Ting; Lu, Bao-Chun

    2016-04-07

    To investigate the feasibility of a dual-input two-compartment tracer kinetic model for evaluating tumorous microvascular properties in advanced hepatocellular carcinoma (HCC). From January 2014 to April 2015, we prospectively measured and analyzed pharmacokinetic parameters [transfer constant (Ktrans), plasma flow (Fp), permeability surface area product (PS), efflux rate constant (kep), extravascular extracellular space volume ratio (ve), blood plasma volume ratio (vp), and hepatic perfusion index (HPI)] using dual-input two-compartment tracer kinetic models [a dual-input extended Tofts model and a dual-input 2-compartment exchange model (2CXM)] in 28 consecutive HCC patients. A well-known consensus that HCC is a hypervascular tumor supplied by the hepatic artery and the portal vein was used as a reference standard. A paired Student's t-test and a nonparametric paired Wilcoxon rank sum test were used to compare the equivalent pharmacokinetic parameters derived from the two models, and Pearson correlation analysis was also applied to observe the correlations among all equivalent parameters. The tumor size and pharmacokinetic parameters were tested by Pearson correlation analysis, while correlations among stage, tumor size and all pharmacokinetic parameters were assessed by Spearman correlation analysis. The Fp value was greater than the PS value (FP = 1.07 mL/mL per minute, PS = 0.19 mL/mL per minute) in the dual-input 2CXM; HPI was 0.66 and 0.63 in the dual-input extended Tofts model and the dual-input 2CXM, respectively. There were no significant differences in the kep, vp, or HPI between the dual-input extended Tofts model and the dual-input 2CXM (P = 0.524, 0.569, and 0.622, respectively). All equivalent pharmacokinetic parameters, except for ve, were correlated in the two dual-input two-compartment pharmacokinetic models; both Fp and PS in the dual-input 2CXM were correlated with Ktrans derived from the dual-input extended Tofts model (P = 0.002, r = 0.566; P

  3. Intestinal permeability study of minoxidil: assessment of minoxidil as a high permeability reference drug for biopharmaceutics classification.

    PubMed

    Ozawa, Makoto; Tsume, Yasuhiro; Zur, Moran; Dahan, Arik; Amidon, Gordon L

    2015-01-05

    The purpose of this study was to evaluate minoxidil as a high permeability reference drug for Biopharmaceutics Classification System (BCS). The permeability of minoxidil was determined in in situ intestinal perfusion studies in rodents and permeability studies across Caco-2 cell monolayers. The permeability of minoxidil was compared with that of metoprolol, an FDA reference drug for BCS classification. In rat perfusion studies, the permeability of minoxidil was somewhat higher than that of metoprolol in the jejunum, while minoxidil showed lower permeability than metoprolol in the ileum. The permeability of minoxidil was independent of intestinal segment, while the permeability of metoprolol was region-dependent. Similarly, in mouse perfusion study, the jejunal permeability of minoxidil was 2.5-fold higher than that of metoprolol. Minoxidil and metoprolol showed similar permeability in Caco-2 study at apical pH of 6.5 and basolateral pH of 7.4. The permeability of minoxidil was independent of pH, while metoprolol showed pH-dependent transport in Caco-2 study. Minoxidil exhibited similar permeability in the absorptive direction (AP-BL) in comparison with secretory direction (BL-AP), while metoprolol had higher efflux ratio (ER > 2) at apical pH of 6.5 and basolateral pH of 7.4. No concentration-dependent transport was observed for either minoxidil or metoprolol transport in Caco-2 study. Verapamil did not alter the transport of either compounds across Caco-2 cell monolayers. The permeability of minoxidil was independent of both pH and intestinal segment in intestinal perfusion studies and Caco-2 studies. Caco-2 studies also showed no involvement of carrier mediated transport in the absorption process of minoxidil. These results suggest that minoxidil may be an acceptable reference drug for BCS high permeability classification. However, minoxidil exhibited higher jejunal permeability than metoprolol and thus to use minoxidil as a reference drug would raise the

  4. A dual stable-isotope approach to analyse the linkages between tree water fluxes and soil water pools in a Mediterranean mountain catchment

    NASA Astrophysics Data System (ADS)

    Llorens, Pilar; Cayuela, Carles; Sánchez-Costa, Elisenda; Gallart, Francesc; Latron, Jérôme

    2017-04-01

    This work uses a dual isotope-based approach (18O, 2H) to examine the mixing of water in the soil and the linkages between tree water fluxes and soil water pools in a Mediterranean mountain catchment (Vallcebre Research Catchments, NE Spain, 42° 12'N, 1° 49'E). Since May 2015, water-isotopes have been monitored in rainfall, throughfall and stemflow below a Scots pine stand and in stream water at the Can Vila (0.56 km2) catchment outlet. Moreover, fortnightly (From May to December 2015) soil samples (10, 20, 30, 50 and 100 cm), xylem samples (3 Scots pines) and mobile soil water samples in low-suction lysimeters (20, 50 and 100 cm) and in a piezometer (150-300 cm deep) were collected at the same stand. Water from soil and xylem samples was extracted by cryogenic vacuum distillation and isotope analyses were obtained by infrared spectroscopy. All this information has been combined with continuous measurement of meteorological, soil moisture and water potential, piezometric levels and hydrological variables at the stand and catchment scales. Stable isotopes ratios of bound soil water fell below the local meteoric water line (LMWL), with more evaporative enrichment in the shallow horizons. On the contrary, mobile soil water (low suction lysimeters) and groundwater fell along the LMWL, well mixed with stream water. The differences observed between these two water pools remained similar during the whole study period. Stable isotopes ratios indicate that Scots pine trees use shallow bound soil water during the whole study period. No marked changes in depth of water uptake were observed, presumably due to the availability of water in the shallow horizons, even during the summer months.

  5. Measurements on stress dependent permeability

    NASA Astrophysics Data System (ADS)

    Risnes, R.; Faldaas, I.; Korsnes, R. I.; Norland, T.

    2003-04-01

    Hydrostatic loading is the conventional test procedure to determine the stress dependence of permeability. However, hydrostatic tests do not truly reflect the deviatoric stress state that exists in most reservoirs. The main objective of the present project was to study permeability changes under deviatoric stresses, like encountered in standard triaxial tests. However in measuring permeability in a triaxial cell, end effects may be important. The friction between the axial steel pistons and the sample may cause stress concentrations and thereby a non-homogeneous strain pattern towards the sample ends. To overcome this problem, the cell was modified to have pressure outlets from the mid-section of the sample, with the pressure tubes connected to the outside of the cell for pressure recording. The cell was designed for 1.5 in plugs with plug lengths of about 80 mm. Tests have been performed on two types of high porosity outcrop chalk: Liège chalk with porosity around 40 percent and permeability 1-2 millidarcy, and Aalborg chalk with porosity around 45 percent and permeability in the range 3-5 millidarcy. Methanol was used as saturating fluid for the chalks. In addition some sandstone samples from core material were included. The porosity values were rather high, around 30 percent, and the permeability ranged from around 50 millidarcy to over one Darcy. Synthetic oil was used as saturating fluid for the sandstone samples, to avoid any reactions with clay minerals. The results so far can be summarized as follows:(1) In almost all the tests, the permeability calculated by the overall pressure drop is smaller than the mid-section permeability. The reduction could typically be around 20 percent. This means that end-effects play an important role.(2) The permeability generally decrease with increasing hydrostatic stresses. This is in agreement with observations from other sources.(3) During deviatoric phases the average stress level is increasing, but the changes in

  6. Sub-core permeability and relative permeability characterization with Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Zahasky, C.; Benson, S. M.

    2017-12-01

    This study utilizes preclinical micro-Positron Emission Tomography (PET) to image and quantify the transport behavior of pulses of a conservative aqueous radiotracer injected during single and multiphase flow experiments in a Berea sandstone core with axial parallel bedding heterogeneity. The core is discretized into streamtubes, and using the micro-PET data, expressions are derived from spatial moment analysis for calculating sub-core scale tracer flux and pore water velocity. Using the flux and velocity data, it is then possible to calculate porosity and saturation from volumetric flux balance, and calculate permeability and water relative permeability from Darcy's law. Full 3D simulations are then constructed based on this core characterization. Simulation results are compared with experimental results in order to test the assumptions of the simple streamtube model. Errors and limitations of this analysis will be discussed. These new methods of imaging and sub-core permeability and relative permeability measurements enable experimental quantification of transport behavior across scales.

  7. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability.

    PubMed

    Sarin, Hemant

    2010-08-11

    Much of our current understanding of microvascular permeability is based on the findings of classic experimental studies of blood capillary permeability to various-sized lipid-insoluble endogenous and non-endogenous macromolecules. According to the classic small pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the transcapillary flow rates of various-sized systemically or regionally perfused endogenous macromolecules, transcapillary exchange across the capillary wall takes place through a single population of small pores that are approximately 6 nm in diameter; whereas, according to the dual pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the accumulation of various-sized systemically or regionally perfused non-endogenous macromolecules in the locoregional tissue lymphatic drainages, transcapillary exchange across the capillary wall also takes place through a separate population of large pores, or capillary leaks, that are between 24 and 60 nm in diameter. The classification of blood capillary types on the basis of differences in the physiologic upper limits of pore size to transvascular flow highlights the differences in the transcapillary exchange routes for the transvascular transport of endogenous and non-endogenous macromolecules across the capillary walls of different blood capillary types. The findings and published data of studies on capillary wall ultrastructure and capillary microvascular permeability to lipid-insoluble endogenous and non-endogenous molecules from the 1950s to date were reviewed. In this study, the blood capillary types in different tissues and organs were classified on the basis of the physiologic upper limits of pore size to the transvascular flow of lipid-insoluble molecules. Blood capillaries were classified as non-sinusoidal or sinusoidal on the basis of capillary wall basement membrane layer continuity or lack thereof

  8. A study on the correlation between soil radon potential and average indoor radon potential in Canadian cities.

    PubMed

    Chen, Jing; Ford, Ken L

    2017-01-01

    Exposure to indoor radon is identified as the main source of natural radiation exposure to the population. Since radon in homes originates mainly from soil gas radon, it is of public interest to study the correlation between radon in soil and radon indoors in different geographic locations. From 2007 to 2010, a total of 1070 sites were surveyed for soil gas radon and soil permeability. Among the sites surveyed, 430 sites were in 14 cities where indoor radon information is available from residential radon and thoron surveys conducted in recent years. It is observed that indoor radon potential (percentage of homes above 200 Bq m -3 ; range from 1.5% to 42%) correlates reasonably well with soil radon potential (SRP: an index proportional to soil gas radon concentration and soil permeability; average SRP ranged from 8 to 26). In five cities where in-situ soil permeability was measured at more than 20 sites, a strong correlation (R 2  = 0.68 for linear regression and R 2  = 0.81 for non-linear regression) was observed between indoor radon potential and soil radon potential. This summary report shows that soil gas radon measurement is a practical and useful predictor of indoor radon potential in a geographic area, and may be useful for making decisions around prioritizing activities to manage population exposure and future land-use planning. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  9. Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles.

    PubMed

    Tan, Shereen; Cui, Jiwei; Fu, Qiang; Nam, Eunhyung; Ladewig, Katharina; Ren, Jing M; Wong, Edgar H H; Caruso, Frank; Blencowe, Anton; Qiao, Greg G

    2016-03-09

    Burst release of a payload from polymeric particles upon photoirradiation was engineered by altering the cross-linking density. This was achieved via a dual cross-linking concept whereby noncovalent cross-linking was provided by cyclodextrin host-guest interactions, and irreversible covalent cross-linking was mediated by continuous assembly of polymers (CAP). The dual cross-linked particles (DCPs) were efficiently infiltrated (∼80-93%) by the biomacromolecule dextran (molecular weight up to 500 kDa) to provide high loadings (70-75%). Upon short exposure (5 s) to UV light, the noncovalent cross-links were disrupted resulting in increased permeability and burst release of the cargo (50 mol % within 1 s) as visualized by time-lapse fluorescence microscopy. As sunlight contains UV light at low intensities, the particles can potentially be incorporated into systems used in agriculture, environmental control, and food packaging, whereby sunlight could control the release of nutrients and antimicrobial agents.

  10. Normal compression wave scattering by a permeable crack in a fluid-saturated poroelastic solid

    NASA Astrophysics Data System (ADS)

    Song, Yongjia; Hu, Hengshan; Rudnicki, John W.

    2017-04-01

    A mathematical formulation is presented for the dynamic stress intensity factor (mode I) of a finite permeable crack subjected to a time-harmonic propagating longitudinal wave in an infinite poroelastic solid. In particular, the effect of the wave-induced fluid flow due to the presence of a liquid-saturated crack on the dynamic stress intensity factor is analyzed. Fourier sine and cosine integral transforms in conjunction with Helmholtz potential theory are used to formulate the mixed boundary-value problem as dual integral equations in the frequency domain. The dual integral equations are reduced to a Fredholm integral equation of the second kind. It is found that the stress intensity factor monotonically decreases with increasing frequency, decreasing the fastest when the crack width and the slow wave wavelength are of the same order. The characteristic frequency at which the stress intensity factor decays the fastest shifts to higher frequency values when the crack width decreases.

  11. Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jihoon; Moridis, George J.

    We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gasmore » causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design

  12. Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability

    DOE PAGES

    Kim, Jihoon; Moridis, George J.

    2014-12-01

    We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gasmore » causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design

  13. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods.

    PubMed

    Li, Hui; Kayhanian, Masoud; Harvey, John T

    2013-03-30

    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Quicklime-induced changes of soil properties: Implications for enhanced remediation of volatile chlorinated hydrocarbon contaminated soils via mechanical soil aeration.

    PubMed

    Ma, Yan; Dong, Binbin; He, Xiaosong; Shi, Yi; Xu, Mingyue; He, Xuwen; Du, Xiaoming; Li, Fasheng

    2017-04-01

    Mechanical soil aeration is used for soil remediation at sites contaminated by volatile organic compounds. However, the effectiveness of the method is limited by low soil temperature, high soil moisture, and high soil viscosity. Combined with mechanical soil aeration, quicklime has a practical application value related to reinforcement remediation and to its action in the remediation of soil contaminated with volatile organic compounds. In this study, the target pollutant was trichloroethylene, which is a volatile chlorinated hydrocarbon pollutant commonly found in contaminated soils. A restoration experiment was carried out, using a set of mechanical soil-aeration simulation tests, by adding quicklime (mass ratios of 3, 10, and 20%) to the contaminated soil. The results clearly indicate that quicklime changed the physical properties of the soil, which affected the environmental behaviour of trichloroethylene in the soil. The addition of CaO increased soil temperature and reduced soil moisture to improve the mass transfer of trichloroethylene. In addition, it improved the macroporous cumulative pore volume and average pore size, which increased soil permeability. As soil pH increased, the clay mineral content in the soils decreased, the cation exchange capacity and the redox potential decreased, and the removal of trichloroethylene from the soil was enhanced to a certain extent. After the addition of quicklime, the functional group COO of soil organic matter could interact with calcium ions, which increased soil polarity and promoted the removal of trichloroethylene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Predicting A Drug'S Membrane Permeability: Evolution of a Computational Model Validated with in Vitro Permeability Assay Data

    DOE PAGES

    Carpenter, Timothy S.; McNerney, M. Windy; Be, Nicholas A.; ...

    2016-02-16

    Membrane permeability is a key property to consider in drug design, especially when the drugs in question need to cross the blood-brain barrier (BBB). A comprehensive in vivo assessment of the BBB permeability of a drug takes considerable time and financial resources. A current, simplified in vitro model to investigate drug permeability is a Parallel Artificial Membrane Permeability Assay (PAMPA) that generally provides higher throughput and initial quantification of a drug's passive permeability. Computational methods can also be used to predict drug permeability. Our methods are highly advantageous as they do not require the synthesis of the desired drug, andmore » can be implemented rapidly using high-performance computing. In this study, we have used umbrella sampling Molecular Dynamics (MD) methods to assess the passive permeability of a range of compounds through a lipid bilayer. Furthermore, the permeability of these compounds was comprehensively quantified using the PAMPA assay to calibrate and validate the MD methodology. And after demonstrating a firm correlation between the two approaches, we then implemented our MD method to quantitatively predict the most permeable potential drug from a series of potential scaffolds. This permeability was then confirmed by the in vitro PAMPA methodology. Therefore, in this work we have illustrated the potential that these computational methods hold as useful tools to help predict a drug's permeability in a faster and more cost-effective manner. Release number: LLNL-ABS-677757.« less

  16. Predicting A Drug'S Membrane Permeability: Evolution of a Computational Model Validated with in Vitro Permeability Assay Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Timothy S.; McNerney, M. Windy; Be, Nicholas A.

    Membrane permeability is a key property to consider in drug design, especially when the drugs in question need to cross the blood-brain barrier (BBB). A comprehensive in vivo assessment of the BBB permeability of a drug takes considerable time and financial resources. A current, simplified in vitro model to investigate drug permeability is a Parallel Artificial Membrane Permeability Assay (PAMPA) that generally provides higher throughput and initial quantification of a drug's passive permeability. Computational methods can also be used to predict drug permeability. Our methods are highly advantageous as they do not require the synthesis of the desired drug, andmore » can be implemented rapidly using high-performance computing. In this study, we have used umbrella sampling Molecular Dynamics (MD) methods to assess the passive permeability of a range of compounds through a lipid bilayer. Furthermore, the permeability of these compounds was comprehensively quantified using the PAMPA assay to calibrate and validate the MD methodology. And after demonstrating a firm correlation between the two approaches, we then implemented our MD method to quantitatively predict the most permeable potential drug from a series of potential scaffolds. This permeability was then confirmed by the in vitro PAMPA methodology. Therefore, in this work we have illustrated the potential that these computational methods hold as useful tools to help predict a drug's permeability in a faster and more cost-effective manner. Release number: LLNL-ABS-677757.« less

  17. Adapting HYDRUS-1D to Simulate Overland Flow and Reactive Transport During Sheet Flow Deviations

    NASA Astrophysics Data System (ADS)

    Liang, J.; Bradford, S. A.; Simunek, J.; Hartmann, A.

    2017-12-01

    The HYDRUS-1D code is a popular numerical model for solving the Richards equation for variably-saturated water flow and solute transport in porous media. This code was adapted to solve rather than the Richards equation for subsurface flow the diffusion wave equation for overland flow at the soil surface. The numerical results obtained by the new model produced an excellent agreement with the analytical solution of the kinematic wave equation. Model tests demonstrated its applicability to simulate the transport and fate of many different solutes, such as non-adsorbing tracers, nutrients, pesticides, and microbes. However, the diffusion wave or kinematic wave equations describe surface runoff as sheet flow with a uniform depth and velocity across the slope. In reality, overland water flow and transport processes are rarely uniform. Local soil topography, vegetation, and spatial soil heterogeneity control directions and magnitudes of water fluxes, and strongly influence runoff characteristics. There is increasing evidence that variations in soil surface characteristics influence the distribution of overland flow and transport of pollutants. These spatially varying surface characteristics are likely to generate non-equilibrium flow and transport processes. HYDRUS-1D includes a hierarchical series of models of increasing complexity to account for both physical equilibrium and non-equilibrium, e.g., dual-porosity and dual-permeability models, up to a dual-permeability model with immobile water. The same conceptualization as used for the subsurface was implemented to simulate non-equilibrium overland flow and transport at the soil surface. The developed model improves our ability to describe non-equilibrium overland flow and transport processes and to improves our understanding of factors that cause this behavior. The HYDRUS-1D overland flow and transport model was additionally also extended to simulate soil erosion. The HYDRUS-1D Soil Erosion Model has been verified by

  18. Demonstration, testing, & evaluation of in situ heating of soil. Draft final report, Volume II: Appendices A to E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dev, H.; Enk, J.; Jones, D.

    This document is a draft final report for US DOE contract entitled, {open_quotes}Demonstration Testing and Evaluation of In Situ Soil Heating,{close_quotes} Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report This document is Volume II, containing appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow wasmore » increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120{degrees}to 130{degrees}C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow.« less

  19. Permeability-porosity relationships of subduction zone sediments

    USGS Publications Warehouse

    Gamage, Kusali; Screaton, Elizabeth; Bekins, B.; Aiello, I.

    2011-01-01

    Permeability-porosity relationships for sediments from the northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on sediment type, grain size distribution, and general mechanical and chemical compaction history. Greater correlation was observed between permeability and porosity in siliciclastic sediments, diatom oozes, and nannofossil chalks than in nannofossil oozes. For siliciclastic sediments, grouping of sediments by percentage of clay-sized material yields relationships that are generally consistent with results from other marine settings and suggests decreasing permeability as percentage of clay-sized material increases. Correction of measured porosities for smectite content improved the correlation of permeability-porosity relationships for siliciclastic sediments and diatom oozes. The relationship between permeability and porosity for diatom oozes is very similar to the relationship in siliciclastic sediments, and permeabilities of both sediment types are related to the amount of clay-size particles. In contrast, nannofossil oozes have higher permeability values by 1.5 orders of magnitude than siliciclastic sediments of the same porosity and show poor correlation between permeability and porosity. More indurated calcareous sediments, nannofossil chalks, overlap siliciclastic permeabilities at the lower end of their measured permeability range, suggesting similar consolidation patterns at depth. Thus, the lack of correlation between permeability and porosity for nannofossil oozes is likely related to variations in mechanical and chemical compaction at shallow depths. This study provides the foundation for a much-needed global database with fundamental properties that relate to permeability in marine settings. Further progress in delineating controls on permeability requires additional carefully documented permeability measurements on well-characterized samples. ?? 2010 Elsevier B.V.

  20. Permeability evolution of shale during spontaneous imbibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, N.; Karpyn, Z. T.; Liu, S.

    Shales have small pore and throat sizes ranging from nano to micron scales, low porosity and limited permeability. The poor permeability and complex pore connectivity of shales pose technical challenges to (a) understanding flow and transport mechanisms in such systems and, (b) in predicting permeability changes under dynamic saturation conditions. This paper presents quantitative experimental evidence of the migration of water through a generic shale core plug using micro CT imaging. In addition, in-situ measurements of gas permeability were performed during counter-current spontaneous imbibition of water in nano-darcy permeability Marcellus and Haynesville core plugs. It was seen that water blocksmore » severely reduced the effective permeability of the core plugs, leading to losses of up to 99.5% of the initial permeability in experiments lasting 30 days. There was also evidence of clay swelling which further hindered gas flow. When results from this study were compared with similar counter-current gas permeability experiments reported in the literature, the initial (base) permeability of the rock was found to be a key factor in determining the time evolution of effective gas permeability during spontaneous imbibition. With time, a recovery of effective permeability was seen in the higher permeability rocks, while becoming progressively detrimental and irreversible in tighter rocks. Finally, these results suggest that matrix permeability of ultra-tight rocks is susceptible to water damage following hydraulic fracturing stimulation and, while shut-in/soaking time helps clearing-up fractures from resident fluid, its effect on the adjacent matrix permeability could be detrimental.« less

  1. Permeability evolution of shale during spontaneous imbibition

    DOE PAGES

    Chakraborty, N.; Karpyn, Z. T.; Liu, S.; ...

    2017-01-05

    Shales have small pore and throat sizes ranging from nano to micron scales, low porosity and limited permeability. The poor permeability and complex pore connectivity of shales pose technical challenges to (a) understanding flow and transport mechanisms in such systems and, (b) in predicting permeability changes under dynamic saturation conditions. This paper presents quantitative experimental evidence of the migration of water through a generic shale core plug using micro CT imaging. In addition, in-situ measurements of gas permeability were performed during counter-current spontaneous imbibition of water in nano-darcy permeability Marcellus and Haynesville core plugs. It was seen that water blocksmore » severely reduced the effective permeability of the core plugs, leading to losses of up to 99.5% of the initial permeability in experiments lasting 30 days. There was also evidence of clay swelling which further hindered gas flow. When results from this study were compared with similar counter-current gas permeability experiments reported in the literature, the initial (base) permeability of the rock was found to be a key factor in determining the time evolution of effective gas permeability during spontaneous imbibition. With time, a recovery of effective permeability was seen in the higher permeability rocks, while becoming progressively detrimental and irreversible in tighter rocks. Finally, these results suggest that matrix permeability of ultra-tight rocks is susceptible to water damage following hydraulic fracturing stimulation and, while shut-in/soaking time helps clearing-up fractures from resident fluid, its effect on the adjacent matrix permeability could be detrimental.« less

  2. Estimation and comparison of potential runoff-contributing areas in Kansas using topographic, soil, and land-use information

    USGS Publications Warehouse

    Juracek, Kyle E.

    2000-01-01

    Digital topographic, soil, and land-use information was used to estimate potential runoff-contributing areas in Kansas. The results were used to compare 91 selected subbasins representing slope, soil, land-use, and runoff variability across the State. Potential runoff-contributing areas were estimated collectively for the processes of infiltration-excess and saturation-excess overland flow using a set of environmental conditions that represented, in relative terms, very high, high, moderate, low, very low, and extremely low potential for runoff. Various rainfall-intensity and soil-permeability values were used to represent the threshold conditions at which infiltration-excess overland flow may occur. Antecedent soil-moisture conditions and a topographic wetness index (TWI) were used to represent the threshold conditions at which saturation-excess overland flow may occur. Land-use patterns were superimposed over the potential runoff-contributing areas for each set of environmental conditions. Results indicated that the very low potential-runoff conditions (soil permeability less than or equal to 1.14 inches per hour and TWI greater than or equal to 14.4) provided the best statewide ability to quantitatively distinguish subbasins as having relatively high, moderate, or low potential for runoff on the basis of the percentage of potential runoff-contributing areas within each subbasin. The very low and (or) extremely low potential-runoff conditions (soil permeability less than or equal to 0.57 inch per hour and TWI greater than or equal to 16.3) provided the best ability to qualitatively compare potential for runoff among areas within individual subbasins. The majority of subbasins with relatively high potential for runoff are located in the eastern half of the State where soil permeability is generally less and precipitation is typically greater. The ability to distinguish subbasins as having relatively high, moderate, or low potential for runoff was possible mostly

  3. Surface soil moisture retrieval using the L-band synthetic aperture radar onboard the Soil Moisture Active Passive satellite and evaluation at core validation sites

    USDA-ARS?s Scientific Manuscript database

    This paper evaluates the retrieval of soil moisture in the top 5-cm layer at 3-km spatial resolution using L-band dual-copolarized Soil Moisture Active Passive (SMAP) synthetic aperture radar (SAR) data that mapped the globe every three days from mid-April to early July, 2015. Surface soil moisture ...

  4. Seismic waves increase permeability.

    PubMed

    Elkhoury, Jean E; Brodsky, Emily E; Agnew, Duncan C

    2006-06-29

    Earthquakes have been observed to affect hydrological systems in a variety of ways--water well levels can change dramatically, streams can become fuller and spring discharges can increase at the time of earthquakes. Distant earthquakes may even increase the permeability in faults. Most of these hydrological observations can be explained by some form of permeability increase. Here we use the response of water well levels to solid Earth tides to measure permeability over a 20-year period. At the time of each of seven earthquakes in Southern California, we observe transient changes of up to 24 degrees in the phase of the water level response to the dilatational volumetric strain of the semidiurnal tidal components of wells at the Piñon Flat Observatory in Southern California. After the earthquakes, the phase gradually returns to the background value at a rate of less than 0.1 degrees per day. We use a model of axisymmetric flow driven by an imposed head oscillation through a single, laterally extensive, confined, homogeneous and isotropic aquifer to relate the phase response to aquifer properties. We interpret the changes in phase response as due to changes in permeability. At the time of the earthquakes, the permeability at the site increases by a factor as high as three. The permeability increase depends roughly linearly on the amplitude of seismic-wave peak ground velocity in the range of 0.21-2.1 cm s(-1). Such permeability increases are of interest to hydrologists and oil reservoir engineers as they affect fluid flow and might determine long-term evolution of hydrological and oil-bearing systems. They may also be interesting to seismologists, as the resulting pore pressure changes can affect earthquakes by changing normal stresses on faults.

  5. EPA Permeable Surface Research

    EPA Science Inventory

    EPA recognizes permeable surfaces as an effective post-construction infiltration-based Best Management Practice to mitigate the adverse effects of stormwater runoff. The professional user community conceptually embraces permeable surfaces as a tool for making runoff more closely...

  6. Sensitivity Analysis of the USLE Soil Erodibility Factor to Its Determining Parameters

    NASA Astrophysics Data System (ADS)

    Mitova, Milena; Rousseva, Svetla

    2014-05-01

    Soil erosion is recognized as one of the most serious soil threats worldwide. Soil erosion prediction is the first step in soil conservation planning. The Universal Soil Loss Equation (USLE) is one of the most widely used models for soil erosion predictions. One of the five USLE predictors is the soil erodibility factor (K-factor), which evaluates the impact of soil characteristics on soil erosion rates. Soil erodibility nomograph defines K-factor depending on soil characteristics, such as: particle size distribution (fractions finer that 0.002 mm and from 0.1 to 0.002 mm), organic matter content, soil structure and soil profile water permeability. Identifying the soil characteristics, which mostly influence the K-factor would give an opportunity to control the soil loss through erosion by controlling the parameters, which reduce the K-factor value. The aim of the report is to present the results of analysis of the relative weight of these soil characteristics in the K-factor values. The relative impact of the soil characteristics on K-factor was studied through a series of statistical analyses of data from the geographic database for soil erosion risk assessments in Bulgaria. Degree of correlation between K-factor values and the parameters that determine it was studied by correlation analysis. The sensitivity of the K-factor was determined by studying the variance of each parameter within the range between minimum and maximum possible values considering average value of the other factors. Normalizing transformation of data sets was applied because of the different dimensions and the orders of variation of the values of the various parameters. The results show that the content of particles finer than 0.002 mm has the most significant relative impact on the soil erodibility, followed by the content of particles with size from 0.1 mm to 0.002 mm, the class of the water permeability of the soil profile, the content of organic matter and the aggregation class. The

  7. Water and solute permeability of rat lung caveolae: high permeabilities explained by acyl chain unsaturation.

    PubMed

    Hill, Warren G; Almasri, Eyad; Ruiz, W Giovanni; Apodaca, Gerard; Zeidel, Mark L

    2005-07-01

    Caveolae are invaginated membrane structures with high levels of cholesterol, sphingomyelin, and caveolin protein that are predicted to exist as liquid-ordered domains with low water permeability. We isolated a caveolae-enriched membrane fraction without detergents from rat lung and characterized its permeability properties to nonelectrolytes and protons. Membrane permeability to water was 2.85 +/- 0.41 x 10(-3) cm/s, a value 5-10 times higher than expected based on comparisons with other cholesterol and sphingolipid-enriched membranes. Permeabilities to urea, ammonia, and protons were measured and found to be moderately high for urea and ammonia at 8.85 +/- 2.40 x 10(-7)and 6.84 +/- 1.03 x 10(-2) respectively and high for protons at 8.84 +/- 3.06 x 10(-2) cm/s. To examine whether caveolin or other integral membrane proteins were responsible for high permeabilities, liposomes designed to mimic the lipids of the inner and outer leaflets of the caveolar membrane were made. Osmotic water permeability to both liposome compositions were determined and a combined inner/outer leaflet water permeability was calculated and found to be close to that of native caveolae at 1.58 +/- 1.1 x 10(-3) cm/s. In caveolae, activation energy for water flux was high (19.4 kcal/mol) and water permeability was not inhibited by HgCl2; however, aquaporin 1 was detectable by immunoblotting. Immunostaining of rat lung with AQP1 and caveolin antisera revealed very low levels of colocalization. We conclude that aquaporin water channels do not contribute significantly to the observed water flux and that caveolae have relatively high water and solute permeabilities due to the high degree of unsaturation in their fatty acyl chains.

  8. Subsurface Xenon Migration by Atmospheric Pumping Using an Implicit Non-Iterative Algorithm for a Locally 1D Dual-Porosity Model

    NASA Astrophysics Data System (ADS)

    Annewandter, R.; Kalinowksi, M. B.

    2009-04-01

    An underground nuclear explosion injects radionuclids in the surrounding host rock creating an initial radionuclid distribution. In the case of fractured permeable media, cyclical changes in atmospheric pressure can draw gaseous species upwards to the surface, establishing a ratcheting pump effect. The resulting advective transport is orders of magnitude more significant than transport by molecular diffusion. In the 1990s the US Department of Energy funded the socalled Non-Proliferation Experiment conducted by the Lawrence Livermore National Laboratory to investigate this barometric pumping effect for verifying compliance with respect to the Comprehensive Nuclear Test Ban Treaty. A chemical explosive of approximately 1 kt TNT-equivalent has been detonated in a cavity located 390 m deep in the Rainier Mesa (Nevada Test Site) in which two tracer gases were emplaced. Within this experiment SF6 was first detected in soil gas samples taken near fault zones after 50 days and 3He after 325 days. For this paper a locally one-dimensional dual-porosity model for flow along the fracture and within the permeable matrix was used after Nilson and Lie (1990). Seepage of gases and diffusion of tracers between fracture and matrix are accounted. The advective flow along the fracture and within the matrix block is based on the FRAM filtering remedy and methodology of Chapman. The resulting system of equations is solved by an implicit non-iterative algorithm. Results on time of arrival and subsurface concentration levels for the CTBT-relevant xenons will be presented.

  9. Permeability During Magma Expansion and Compaction

    NASA Astrophysics Data System (ADS)

    Gonnermann, Helge. M.; Giachetti, Thomas; Fliedner, Céline; Nguyen, Chinh T.; Houghton, Bruce F.; Crozier, Joshua A.; Carey, Rebecca J.

    2017-12-01

    Plinian lapilli from the 1060 Common Era Glass Mountain rhyolitic eruption of Medicine Lake Volcano, California, were collected and analyzed for vesicularity and permeability. A subset of the samples were deformed at a temperature of 975°, under shear and normal stress, and postdeformation porosities and permeabilities were measured. Almost all undeformed samples fall within a narrow range of vesicularity (0.7-0.9), encompassing permeabilities between approximately 10-15 m2 and 10-10 m2. A percolation threshold of approximately 0.7 is required to fit the data by a power law, whereas a percolation threshold of approximately 0.5 is estimated by fitting connected and total vesicularity using percolation modeling. The Glass Mountain samples completely overlap with a range of explosively erupted silicic samples, and it remains unclear whether the erupting magmas became permeable at porosities of approximately 0.7 or at lower values. Sample deformation resulted in compaction and vesicle connectivity either increased or decreased. At small strains permeability of some samples increased, but at higher strains permeability decreased. Samples remain permeable down to vesicularities of less than 0.2, consistent with a potential hysteresis in permeability-porosity between expansion (vesiculation) and compaction (outgassing). We attribute this to retention of vesicle interconnectivity, albeit at reduced vesicle size, as well as bubble coalescence during shear deformation. We provide an equation that approximates the change in permeability during compaction. Based on a comparison with data from effusively erupted silicic samples, we propose that this equation can be used to model the change in permeability during compaction of effusively erupting magmas.

  10. DEMONSTRATION BULLETIN: HYDRAULIC FRACTURING OF CONTAMINATED SOIL

    EPA Science Inventory

    Hydraulic fracturing is a physical process that creates fractures in silty clay soil to enhance its permeability. The technology, developed by the Risk Reduction Engineering Laboratory (RREL) and the University of Cincinnati, creates sand-filled horizontal fractures up to 1 in. i...

  11. Predicting the extent of metabolism using in vitro permeability rate measurements and in silico permeability rate predictions

    PubMed Central

    Hosey, Chelsea M; Benet, Leslie Z

    2015-01-01

    The Biopharmaceutics Drug Disposition Classification System (BDDCS) can be utilized to predict drug disposition, including interactions with other drugs and transporter or metabolizing enzyme effects based on the extent of metabolism and solubility of a drug. However, defining the extent of metabolism relies upon clinical data. Drugs exhibiting high passive intestinal permeability rates are extensively metabolized. Therefore, we aimed to determine if in vitro measures of permeability rate or in silico permeability rate predictions could predict the extent of metabolism, to determine a reference compound representing the permeability rate above which compounds would be expected to be extensively metabolized, and to predict the major route of elimination of compounds in a two-tier approach utilizing permeability rate and a previously published model predicting the major route of elimination of parent drug. Twenty-two in vitro permeability rate measurement data sets in Caco-2 and MDCK cell lines and PAMPA were collected from the literature, while in silico permeability rate predictions were calculated using ADMET Predictor™ or VolSurf+. The potential for permeability rate to differentiate between extensively and poorly metabolized compounds was analyzed with receiver operating characteristic curves. Compounds that yielded the highest sensitivity-specificity average were selected as permeability rate reference standards. The major route of elimination of poorly permeable drugs was predicted by our previously published model and the accuracies and predictive values were calculated. The areas under the receiver operating curves were >0.90 for in vitro measures of permeability rate and >0.80 for the VolSurf+ model of permeability rate, indicating they were able to predict the extent of metabolism of compounds. Labetalol and zidovudine predicted greater than 80% of extensively metabolized drugs correctly and greater than 80% of poorly metabolized drugs correctly in Caco

  12. Pressure sensitivity of low permeability sandstones

    USGS Publications Warehouse

    Kilmer, N.H.; Morrow, N.R.; Pitman, Janet K.

    1987-01-01

    Detailed core analysis has been carried out on 32 tight sandstones with permeabilities ranging over four orders of magnitude (0.0002 to 4.8 mD at 5000 psi confining pressure). Relationships between gas permeability and net confining pressure were measured for cycles of loading and unloading. For some samples, permeabilities were measured both along and across bedding planes. Large variations in stress sensitivity of permeability were observed from one sample to another. The ratio of permeability at a nominal confining pressure of 500 psi to that at 5000 psi was used to define a stress sensitivity ratio. For a given sample, confining pressure vs permeability followed a linear log-log relationship, the slope of which provided an index of pressure sensitivity. This index, as obtained for first unloading data, was used in testing relationships between stress sensitivity and other measured rock properties. Pressure sensitivity tended to increase with increase in carbonate content and depth, and with decrease in porosity, permeability and sodium feldspar. However, scatter in these relationships increased as permeability decreased. Tests for correlations between pressure sensitivity and various linear combinations of variables are reported. Details of pore structure related to diagenetic changes appears to be of much greater significance to pressure sensitivity than mineral composition. ?? 1987.

  13. Experimental Study on Permeability of Concrete

    NASA Astrophysics Data System (ADS)

    Yang, Honglu; Liu, Rentai; Zheng, Zhuo; Liu, Haojie; Gao, Yan; Liu, Yankai

    2018-01-01

    To study the influencing factors on permeability of pervious concrete, by adding inorganic organic composite materials obtained experimental results show that different aggregate size, aggregate cement ratio of different, different water cement ratio on the permeability performance. The permeability of the concrete was tested by using the self - made permeable device. The experimental results showed that the permeation coefficient of the experiment was obtained and the factors influencing the permeability of the concrete were compared and analyzed. At the same time, the porosity of pervious concrete was measured, the influence of various variables on porosity was studied, and the influence of various factors on the permeability of voids was found. Finally, through comprehensive analysis of a variety of factors, the optimal water cement ratio is 0.28. At this time, the pervious performance of concrete is optimal.

  14. Vortex rings impinging on permeable boundaries

    NASA Astrophysics Data System (ADS)

    Mujal-Colilles, Anna; Dalziel, Stuart B.; Bateman, Allen

    2015-01-01

    Experiments with vortex rings impinging permeable and solid boundaries are presented in order to investigate the influence of permeability. Utilizing Particle Image Velocimetry, we compared the behaviour of a vortex ring impinging four different reticulated foams (with permeability k ˜ 26 - 85 × 10-8 m2) and a solid boundary. Results show how permeability affects the stretching phenomena of the vortex ring and the formation and evolution of the secondary vortex ring with opposite sign. Moreover, permeability also affects the macroscopic no-slip boundary condition found on the solid boundary, turning it into an apparent slip boundary condition for the most permeable boundary. The apparent slip-boundary condition and the flux exchange between the ambient fluid and the foam are jointly responsible for both the modified formation of the secondary vortex and changes on the vortex ring diameter increase.

  15. Development of an ion-pair to improve the colon permeability of a low permeability drug: Atenolol.

    PubMed

    Lozoya-Agullo, Isabel; González-Álvarez, Isabel; González-Álvarez, Marta; Merino-Sanjuán, Matilde; Bermejo, Marival

    2016-10-10

    To ensure the optimal performance of oral controlled release formulations, drug colon permeability is one of the critical parameters. Consequently developing this kind of formulations for low permeability molecules requires strategies to increase their ability to cross the colonic membrane. The objective of this work is to show if an ion-pair formation can improve the colon permeability of atenolol as a low permeability drug model. Two counter ions have been tested: brilliant blue and bromophenol blue. The Distribution coefficients at pH7.00 (DpH7) of atenolol, atenolol + brilliant blue and atenolol + bromophenol blue were experimentally determined in n-octanol. Moreover, the colonic permeability was determined in rat colon using in situ closed loop perfusion method based in Doluisio's Technique. To check the potential effects of the counter ions on the membrane integrity, a histological assessment of colonic tissue was done. The results of the partitioning studies were inconclusive about ion-pair formation; nevertheless colon permeability was significantly increased by both counter ions (from 0.232±0.021cm/s to 0.508±0.038cm/s in the presence of brilliant blue and to 0.405±0.044cm/s in the presence of bromophenol blue). Neither damage on the membrane was observed on the histological studies, nor any change on paracellular permeability suggesting that the permeability enhancement could be attributed to the ion-pair formation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Prediction of hydrocarbon surface seepage potential using infiltrometer data

    NASA Astrophysics Data System (ADS)

    Connors, J. J.; Jackson, J. L.; Engle, R. A.; Connors, J. L.

    2017-12-01

    Environmental regulations addressing above-ground storage tank (AST) spill control activities typically require owners/operators to demonstrate that local soil permeability values are low enough to adequately contain released liquids while emergency-response procedures are conducted. Frequently, geotechnical borings and soil samples/analyses, and/or monitoring well slug-test analyses, are used to provide hydraulic conductivity data for the required calculations. While these techniques are useful in assessing hydrological characteristics of the subsurface, they do not always assess the uppermost surface soil layer, where the bulk of the containment can occur. This layer may have been subject to long-term permeability-reduction by activities such as compaction by vehicular and foot traffic, micro-coatings by hydrophobic pollutants, etc. This presentation explores the usefulness of dual-ring infiltrometers, both in field and bench-scale tests, to rapidly acquire actual hydraulic conductivity values of surficial soil layers, which can be much lower than subsurface values determined using more traditional downhole geotechnical and hydrogeological approaches.

  17. Permeability-Porosity Relationships of Subduction Zone Sediments

    NASA Astrophysics Data System (ADS)

    Gamage, K.; Screaton, E.; Bekins, B.; Aiello, I.

    2008-12-01

    Permeability-porosity relationships for sediments from Northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on their sediment type and grain size distribution. Greater correlation was observed between permeability and porosity for siliciclastic sediments, diatom oozes, and nannofossil chalk than for nannofossil oozes. For siliciclastic sediments, grouping of sediments by clay content yields relationships that are generally consistent with results from other marine settings and suggest decreasing permeability for a given porosity as clay content increases. Correction of measured porosities for smectite content generally improves the quality of permeability-porosity relationships. The relationship between permeability and porosity for diatom oozes may be controlled by the amount of clay present in the ooze, causing diatom oozes to behave similarly to siliciclastic sediments. For a given porosity the nannofossil oozes have higher permeability values by 1.5 orders of magnitude than the siliciclastic sediments. However, the use of a permeability-porosity relation may not be appropriate for unconsolidated carbonates such as nannofossil oozes. This study provided insight to the effects of porosity correction for smectite, variations in lithology and grain size in permeability-porosity relationships. However, further progress in delineating controls on permeability will require more careful and better documented permeability tests on characterized samples.

  18. Fumigation efficacy and emission reduction using low-permeability film in orchard soil fumigation.

    PubMed

    Gao, Suduan; Sosnoskie, Lynn M; Cabrera, Jose Alfonso; Qin, Ruijun; Hanson, Bradley D; Gerik, James S; Wang, Dong; Browne, Greg T; Thomas, John E

    2016-02-01

    Many orchards use fumigation to control soilborne pests prior to replanting. Controlling emissions is mandatory to reduce air pollution in California. This research evaluated the effects of plastic film type [polyethylene (PE) or totally impermeable film (TIF)], application rate of Telone C35 [full (610 kg ha(-1) ), 2/3 or 1/3 rates] and carbonation at 207 kPa on fumigant transport (emission and in soil) and efficacy. While increasing fumigant concentrations under the tarp, TIF reduced emissions >95% (∼2% and <1% of total applied 1,3-dichloropropene and chloropicrin respectively) relative to bare soil, compared with ∼30% reduction by PE. All fumigation treatments, regardless of film type, provided good nematode control above 100 cm soil depth; however, nematode survival was high at deeper depths. Weed emergence was mostly affected by tarping and fumigant rate, with no effects from the carbonation. TIF can effectively reduce fumigant emissions. Carbonation under the studied conditions did not improve fumigant dispersion and pest control. The 2/3 rate with TIF controlled nematodes as effectively as the full rate in bare soil or under the PE film to 100 cm soil depth. However, control of nematodes in deeper soil remains a challenge for perennial crops. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  19. Biopharmaceutics permeability classification of lorcaserin, a selective 5-hydroxytryptamine 2C agonist: method suitability and permeability class membership.

    PubMed

    Chen, Chuan; Ma, Michael G; Fullenwider, Cody L; Chen, Weichao G; Sadeque, Abu J M

    2013-12-02

    The objectives of the study were (1) to demonstrate that a Caco-2 cell-based permeability assay, developed in our laboratory, is suitable to identify the permeability classification according to the US Food and Drug Administration Biopharmaceutics Classification System guidance, and (2) to use the validated Caco-2 method to determine permeability class membership of lorcaserin. Lorcaserin, marketed in United States as Belviq, is a selective human 5-hydroxytryptamine 2C agonist used for weight management. First, the permeability of twenty commercially available drugs was determined in the apical-to-basolateral direction at a final concentration of 10 μM, with the pH of transporter buffer in the apical and basolateral compartments being 6.8 and 7.4, respectively. A rank-order relationship between in vitro permeability results and the extent of human intestinal absorption for the drugs tested was observed. Second, the apparent permeability coefficient values of lorcaserin at 2, 20, and 200 μM and apical pH values of 6.8 and 7.4 in the apical-to-basolateral direction were determined using the validated method and found to be comparable to those of the high-permeability internal standard metoprolol. Lorcaserin permeability across Caco-2 cell monolayers was not dependent on the variation of apical pH. Furthermore, lorcaserin was not a substrate for efflux transporters such as P-glycoprotein. In conclusion, using the validated Caco-2 permeability assay, it was shown that lorcaserin is a highly permeable compound.

  20. End effects on stress dependent permeability measurements

    NASA Astrophysics Data System (ADS)

    Korsnes, R. I.; Risnes, R.; Faldaas, I.; Norland, T.

    2006-10-01

    Permeability changes have been studied under deviatoric stresses for chalk cores and under both hydrostatic- and deviatoric stresses for sandstone cores at room temperature. To avoid end effects in the triaxial cell, caused by friction between the axial steel pistons and the sample, the cell was modified to have pressure outlets from the mid-section of the sample with pressure tubes connected to the outside of the cell for pressure recording. Both permeabilities over the mid-section and over the total core were determined during the action of stresses. The chalk cores with permeability in the range of 1-3 × 10 - 15 m 2 and porosity of about 40-45% were flooded with methanol, while the sandstone cores with permeability values varying from 8 to 100 × 10 - 15 m 2 and porosity of about 30% were flooded with a mineral oil. Major observations were: For the chalk cores, 4 out of 8 samples showed a mid-section permeability with a factor of 1.2 to 1.4 higher than the overall permeability, the remaining 4 samples did not show differences in permeability values taking into account the error on measurements. For the sandstone samples, the mid-section permeability was a factor of 1.2 to 2.4 higher than the overall permeability. In all cases during the deviatoric phase, the change in permeability was rather small, even if the tests were run beyond the yield point. The permeability generally decreased with increasing hydrostatic stresses.

  1. Permeability of cork to gases.

    PubMed

    Faria, David P; Fonseca, Ana L; Pereira, Helen; Teodoro, Orlando M N D

    2011-04-27

    The permeability of gases through uncompressed cork was investigated. More than 100 samples were assessed from different plank qualities to provide a picture of the permeability distribution. A novel technique based on a mass spectrometer leak detector was used to directly measure the helium flow through the central area of small disks 10 mm in diameter and 2 mm thick. The permeability for nitrogen, oxygen, and other gases was measured by the pressure rise technique. Boiled and nonboiled cork samples from different sections were evaluated. An asymmetric frequency distribution ranging 3 orders of magnitude (roughly from 1 to 1000 μmol/(cm·atm·day)) for selected samples without macroscopic defects was found, having a peak below 100 μmol/(cm·atm·day). Correlation was found between density and permeability: higher density samples tend to show lower permeability. However, boiled cork showed a mean lower permeability despite having a lower density. The transport mechanism of gases through cork was also examined. Calculations suggest that gases permeate uncompressed cork mainly through small channels between cells under a molecular flow regime. The diameter of such channels was estimated to be in the range of 100 nm, in agreement with the plasmodesmata size in the cork cell walls.

  2. Fracture-permeability behavior of shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, J. William; Lei, Zhou; Rougier, Esteban

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less

  3. Fracture-permeability behavior of shale

    DOE PAGES

    Carey, J. William; Lei, Zhou; Rougier, Esteban; ...

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less

  4. Benchmarking of relative permeability

    NASA Astrophysics Data System (ADS)

    DiCarlo, D. A.

    2017-12-01

    Relative permeability is the key relation in terms of multi-phase flow through porous media. There are hundreds of published relative permeability curves for various media, some classic (Oak 90 and 91), some contradictory. This can lead to a confusing situation if one is trying to benchmark simulation results to "experimental data". Coming from the experimental side, I have found that modelers have too much trust in relative permeability data sets. In this talk, I will discuss reasons for discrepancies within and between data sets, and give guidance on which portions of the data sets are most solid in terms of matching through models.

  5. Soil physicochemical properties to evaluate soil degradation under different land use types in a high rainfall tropical region: A case study from South Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Lopulisa, C.; Imran, A. M.; Baja, S.

    2018-05-01

    Intensive cropping in the tropical region always becomes one of important driving forces of soil degradation. The primary aim of this study is to analyze the states and the dynamics of soil physicochemical properties to evaluate soil degradation in the tropical region a high rainfall on agricultural areas in South Sulawesi. A number of soil characteristics were analyzed for physical and chemical properties, and clay minerals with X-ray diffractometer. The degree of soil degradation is determined using Wischmeier and Smith equation. This study reveals that mean annual precipitation in 1979-2016 ranged from 1853.15 to 2981.30 mm/year. For land used for paddy field, palm oil, cacao and coffee plantation, the texture dominated with silt loam-clay loam, cation exchange capacity was 18.63-26.32 cmol+ kg-1, 0.98-2.91% of C-organic, 32-55% of base saturation, 0.1-3.5 cm h-1 of permeability, soil clay minerals were montmorillonite-kaolinite-halloysite, and the index erodibility was 0.3-0.5. Land used for mixed plants and shrubs, the texture dominated with silt loam-sandy clay loam, cation exchange capacity was 18.63-27.12 cmol+ kg-1, 1.09-2.89% of C-organic, 32-55% of base saturation, 0.2-4.9 cm/h of permeability, soil clay minerals were kaolinite-halloysite, and index erodibility was 0.1-0.3. Land use for cultivated in the high intensity of rainfall has changed the physicochemical properties of soils, but cultivated in monoculture has at some degree increased soil erodibility.

  6. Clogging in permeable concrete: A review.

    PubMed

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R

    2017-05-15

    Permeable concrete (or "pervious concrete" in North America) is used to reduce local flooding in urban areas and is an important sustainable urban drainage system. However, permeable concrete exhibits reduction in permeability due to clogging by particulates, which severely limits service life. This paper reviews the clogging mechanism and current mitigating strategies in order to inform future research needs. The pore structure of permeable concrete and characteristics of flowing particulates influence clogging, which occurs when particles build-up and block connected porosity. Permeable concrete requires regular maintenance by vacuum sweeping and pressure washing, but the effectiveness and viability of these methods is questionable. The potential for clogging is related to the tortuosity of the connected porosity, with greater tortuosity resulting in increased potential for clogging. Research is required to develop permeable concrete that can be poured on-site, which produces a pore structure with significantly reduced tortuosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Remediation of PCB contaminated soils in the Canadian Arctic: excavation and surface PRB technology.

    PubMed

    Kalinovich, Indra; Rutter, Allison; Poland, John S; Cairns, Graham; Rowe, R Kerry

    2008-12-15

    The site BAF-5 is located on the summit of Resolution Island, Nunavut, just southeast of Baffin Island at 61 degrees 35'N and 60 degrees 40'W. The site was part of a North American military defense system established in the 1950s that became heavily contaminated with PCBs during and subsequent, its operational years. Remediation through excavation of the PCB contaminated soil at Resolution Island began in 1999 and at its completion in 2006 approximately 5 tonnes of pure PCBs in approximately 20,000 m3 of soil were remediated. Remediation strategies were based on both quantity of soil and level of contamination in the soil. Excavation removed 96% of the PCB contaminated soil on site. In 2003, a surface funnel-and-gate permeable reactive barrier was design and constructed to treat the remaining contamination left in rock crevices and inaccessible areas of the site. Excavation had destabilized contaminated soil in the area, enabling contaminant migration through erosion and runoff pathways. The barrier was designed to maximize sedimentation through settling ponds. This bulk removal enabled the treatment of highly contaminated fines and water through a permeable gate. The increased sediment loading during excavation required both modifications to the funnel and a shift to a more permeable, granular system. Granulated activated charcoal was chosen for its ability to both act as a particle retention filter and adsorptive filter. The reduction in mass of PCB and volume of soils trapped by the funnel of the barrier indicate that soils are re-stabilizing. In 2007, nonwoven geotextiles were re-introduced back into the filtration system as fine filtering could be achieved without clogging. Monitoring sites downstream indicate that the barrier system is effective. This paper describes the field progress of PCB remediation at Resolution Island.

  8. Permeable pavement study (Edison)

    EPA Pesticide Factsheets

    While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types have on nutrient concentrations present in stormwater runoff are limited. In 2009, the U.S. EPA constructed a 0.4-ha parking lot in Edison, New Jersey, that incorporated permeable interlocking concrete pavement (PICP), pervious concrete (PC), and porous asphalt (PA). Each permeable pavement type has four, 54.9-m2, lined sections that direct all infiltrate into 5.7-m3 tanks enabling complete volume collection and sampling. This paper highlights the results from a 12-month period when samples were collected from 13 rainfall/runoff events and analyzed for nitrogen species, orthophosphate, and organic carbon. Differences in infiltrate concentrations among the three permeable pavement types were assessed and compared with concentrations in rainwater samples and impervious asphalt runoff samples, which were collected as controls. Contrary to expectations based on the literature, the PA infiltrate had significantly larger total nitrogen (TN) concentrations than runoff and infiltrate from the other two permeable pavement types, indicating that nitrogen leached from materials in the PA strata. There was no significant difference in TN concentration between runoff and infiltrate from either PICP or PC, but TN in runoff was significantly larger than in the rainwater, suggesting meaningful inter-event dry de

  9. Facile Fabrication of Composite Membranes with Dual Thermo- and pH-Responsive Characteristics.

    PubMed

    Ma, Bing; Ju, Xiao-Jie; Luo, Feng; Liu, Yu-Qiong; Wang, Yuan; Liu, Zhuang; Wang, Wei; Xie, Rui; Chu, Liang-Yin

    2017-04-26

    Facile fabrication of novel functional membranes with excellent dual thermo- and pH-responsive characteristics has been achieved by simply designing dual-layer composite membranes. pH-Responsive poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymers and polystyrene blended with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) nanogels are respectively used to construct the top layer and bottom layer of composite membranes. The stretching/coiling conformation changes of the P4VP chains around the pK a (∼3.5-4.5) provide the composite membranes with extraordinary pH-responsive characteristics, and the volume phase transitions of PNIPAM nanogels at the pore/matrix interfaces in the bottom layer around the volume phase transition temperature (VPTT, ∼33 °C) provide the composite membranes with great thermoresponsive characteristics. The microstructures, permeability performances, and dual stimuli-responsive characteristics can be well tuned by adjusting the content of PNIPAM nanogels and the thickness of the PS-b-P4VP top layer. The water fluxes of the composite membranes can be changed in order of magnitude by changing the environment temperature and pH, and the dual thermo- and pH-responsive permeation performances of the composite membranes are satisfactorily reversible and reproducible. The membrane fabrication strategy in this work provides valuable guidance for further development of dual stimuli-responsive membranes or even multi stimuli-responsive membranes.

  10. Evolution of gas saturation and relative permeability during gas production from hydrate-bearing sediments: Gas invasion vs. gas nucleation

    NASA Astrophysics Data System (ADS)

    Jang, Jaewon; Santamarina, J. Carlos

    2014-01-01

    Capillarity and both gas and water permeabilities change as a function of gas saturation. Typical trends established in the discipline of unsaturated soil behavior are used when simulating gas production from hydrate-bearing sediments. However, the evolution of gas saturation and water drainage in gas invasion (i.e., classical soil behavior) and gas nucleation (i.e., gas production) is inherently different: micromodel experimental results show that gas invasion forms a continuous flow path while gas nucleation forms isolated gas clusters. Complementary simulations conducted using tube networks explore the implications of the two different desaturation processes. In spite of their distinct morphological differences in fluid displacement, numerical results show that the computed capillarity-saturation curves are very similar in gas invasion and nucleation (the gas-water interface confronts similar pore throat size distribution in both cases); the relative water permeability trends are similar (the mean free path for water flow is not affected by the topology of the gas phase); and the relative gas permeability is slightly lower in nucleation (delayed percolation of initially isolated gas-filled pores that do not contribute to gas conductivity). Models developed for unsaturated sediments can be used for reservoir simulation in the context of gas production from hydrate-bearing sediments, with minor adjustments to accommodate a lower gas invasion pressure Po and a higher gas percolation threshold.

  11. Crustal permeability: Introduction to the special issue

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Gleeson, Tom

    2015-01-01

    The topic of crustal permeability is of broad interest in light of the controlling effect of permeability on diverse geologic processes and also timely in light of the practical challenges associated with emerging technologies such as hydraulic fracturing for oil and gas production (‘fracking’), enhanced geothermal systems, and geologic carbon sequestration. This special issue of Geofluids is also motivated by the historical dichotomy between the hydrogeologic concept of permeability as a static material property that exerts control on fluid flow and the perspective of economic geologists, geophysicists, and crustal petrologists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. Issues associated with fracking, enhanced geothermal systems, and geologic carbon sequestration have already begun to promote a constructive dialog between the static and dynamic views of permeability, and here we have made a conscious effort to include both viewpoints. This special issue also focuses on the quantification of permeability, encompassing both direct measurement of permeability in the uppermost crust and inferential permeability estimates, mainly for the deeper crust.

  12. Generation and mobility of radon in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, A.W.; Jester, W.A.; Ciolkosz, E.J.

    This study has confirmed large seasonal and daily variations of Rn in soil gas, developed models for the effects of temperature and moisture on air-water Rn partition, inhibited Rn diffusion from wet soil into sparse large air-filled pores and effects of diffusion into bedrock, demonstrated that organic matter is a major host for 226Ra in soils and that organic-bound Ra largely determines the proportion of 222Rn emanated to pore space, shown that in contrast 220Rn is emanated mainly from 224Ra in Fe-oxides, detected significant disequilibrium between 226Ra and 238U in organic matter and in some recent glacial soils, demonstrated bymore » computer models that air convection driven by temperature differences is expected in moderately permeable soils on hillsides.« less

  13. Hydraulic Fracturing of Soils; A Literature Review.

    DTIC Science & Technology

    1977-03-01

    best case, or worst case. The study reported herein is an overview of one such test or technique, hydraulic fracturing , which is defined as the...formation of cracks, in soil by the application of hydraulic pressure greater than the minor principal stress at that point. Hydraulic fracturing , as a... hydraulic fracturing as a means for determination of lateral stresses, the technique can still be used for determining in situ total stress and permeability at a point in a cohesive soil.

  14. Quantification of soil and water losses in an extensive olive orchard catchment in Southern Spain

    NASA Astrophysics Data System (ADS)

    Rodrigo-Comino, Jesús; Taguas, Encarnación; Seeger, Manuel; Ries, Johannes B.

    2018-01-01

    A sound understanding of erosive processes at different scales can contribute substantially to the design of suitable management strategies. The main aim of this work was to evaluate key factors at the pedon scale that cause soil erosion to occur. To achieve this goal, we quantified infiltration, permeability, soil losses and runoff volumes in a small Southern Spanish catchment cultivated with olive orchards. To assess which factor contributed most to speeding up soil erosion, a Spearman rank coefficient and principal components analysis were carried out. The results confirmed low infiltration values (11.8 mm h-1) in the surface soil layers and high permeability values (24.6 mm h-1) in the sub-surface soil layers, and produced an average soil loss of 19.7 g m-2 and average runoff coefficients of 26.1%. Statistical analyses showed that: i) the generation of runoff was closely correlated with soil loss; and, ii) an increase in the vegetation cover helped reduce soil erosion. In comparison to larger areas such as a catchment, the pedon scale produced lower or similar soil losses and runoff coefficients in rainfall simulation conditions, although the influence of vegetation cover as a control factor was also detected.

  15. Permeability Asymmetry in Composite Porous Ceramic Membranes

    NASA Astrophysics Data System (ADS)

    Kurcharov, I. M.; Laguntsov, N. I.; Uvarov, V. I.; Kurchatova, O. V.

    The results from the investigation of transport characteristics and gas transport asymmetry in bilayer composite membranes are submitted. These membranes are produced by SHS method. Asymmetric effect and hysteresis of permeability in nanoporous membranes are detected. It's shown, that permeability ratio (asymmetry value of permeability) increases up to several times. The asymmetry of permeability usually decreases monotonically with the pressure decrease.

  16. Characterization of Solute Transport in Subsurface Using Permeable Pavement and Artificial Precipitation

    NASA Astrophysics Data System (ADS)

    HAN, K.; Hong, U.; Yeum, Y.; Yoon, J.; Lee, J.; Song, K.; Kwon, S.; Kim, Y.

    2016-12-01

    Permeable block as low impact development (LID) management can reduce storm water runoff, improve surface water quality and increase groundwater recharge. Recently, in Korea, application of the permeable block has growing trend for urban planning. However, few studies have evaluated how infiltrated rainfall through permeable block affect groundwater quality. Therefore, we conducted monitoring and evaluating of contaminants transport from permeable block surface to aquifer at LID installed three test-bed site. Pollutant materials as total nitrogen (T-N), nitrate (NO3-), ammonium (NH4+), total phosphorus (T-P), phosphate (PO42-), total organic carbon (TOC), sodium (Na+) and bromide (Br-) such as nonreactive tracer were sprinkled under permeable block and sprayed artificial precipitation of 100 mm/hr intensity during a 4 hours by rainfall simulator. All the test-bed area is 2 m x 2 m and monitoring wells were drilled a maximum depth of 10 m. Test-bed 1,2 and 3 groundwater level was approximately 1.9 m, 3.6 m and 4.6 m below ground surface, respectively. Test-bed 1 and 2, time to maximum concentration of Br- as tracer were 0.15 day and 1.71 day after simulated rainfall. In the test-bed 1, average normalized concentration (C* = Cmonitoring/C0, C0 is mass of sprinkled pollutant divide by sprayed water volume) of Br-, T-N, NO3-, NH4+, T-P, PO42-, TOC and Na+ were observed 0.26, 0.08, 0.14, N.D(not detected), 0.05, 0.05, 0.13 and 0.11, respectively. C* of tracer and other solutes on test-bed 2 were 0.52, 0.15, 0.25, N.D, 0.02, 0.02, 0.16 and 0.15, respectively. These phenomena that distinctions between C* of Br-and other solutes indicate to occur retardation by physical/chemical and biological process while pollutant containing water permeate from unsaturated soil to saturated aquifer. However, at the test-bed 3 distinct concentration of all solutes were not detected until 40 days. In this study evaluated the effects of groundwater quality by rainfall leachate from

  17. A multiscale model of distributed fracture and permeability in solids in all-round compression

    NASA Astrophysics Data System (ADS)

    De Bellis, Maria Laura; Della Vecchia, Gabriele; Ortiz, Michael; Pandolfi, Anna

    2017-07-01

    We present a microstructural model of permeability in fractured solids, where the fractures are described in terms of recursive families of parallel, equidistant cohesive faults. Faults originate upon the attainment of tensile or shear strength in the undamaged material. Secondary faults may form in a hierarchical organization, creating a complex network of connected fractures that modify the permeability of the solid. The undamaged solid may possess initial porosity and permeability. The particular geometry of the superposed micro-faults lends itself to an explicit analytical quantification of the porosity and permeability of the damaged material. The model is the finite kinematics version of a recently proposed porous material model, applied with success to the simulation of laboratory tests and excavation problems [De Bellis, M. L., Della Vecchia, G., Ortiz, M., Pandolfi, A., 2016. A linearized porous brittle damage material model with distributed frictional-cohesive faults. Engineering Geology 215, 10-24. Cited By 0. 10.1016/j.enggeo.2016.10.010]. The extension adds over and above the linearized kinematics version for problems characterized by large deformations localized in narrow zones, while the remainder of the solid undergoes small deformations, as typically observed in soil and rock mechanics problems. The approach is particularly appealing as a means of modeling a wide scope of engineering problems, ranging from the prevention of water or gas outburst into underground mines, to the prediction of the integrity of reservoirs for CO2 sequestration or hazardous waste storage, to hydraulic fracturing processes.

  18. Effects of Inter- and Intra-aggregate Pore Space on the Soil-Gas Diffusivity Behavior in Unsaturated, Undisturbed Volcanic Ash Soils

    NASA Astrophysics Data System (ADS)

    Resurreccion, A. C.; Kawamoto, K.; Komatsu, T.; Moldrup, P.

    2006-12-01

    Volcanic ash soils (Andisols) have a unique dual porosity structure that results in good drainage and high soil- water retention. Despite of the complicated and highly developed soil structure, recent studies have reported a simple, highly linear relation between the soil-gas diffusion coefficient, Dp, and the soil-air content, ɛ, for several Japanese Andisols. In this study, we explain the linear Dp(ɛ) behavior from the effects of the inter- and intra-aggregate pore-size distributions. We couple the bimodal van Genuchten soil-water retention model with a general Dp(ɛ) model, ɛ^{X}, allowing the tortuosity- connectivity factor X to vary with pF (= log(-ψ; the soil-water matric potential in cm H2O)). Measured data suggest that the tortuosity-connectivity parameter X is at the minimum at pF 3 (where X ~ 2, following Buckingham, 1904), equal to the water retention point where a separation of inter- and intra-aggregate effects on Dp is observed. At pF < 3, the X values increased as pF decreased because of inactive/remote air-filled pore space entrapped by the inter-connected water films between inter-aggregate pore spaces. At pF > 3, X increased to a high value at very dry conditions due to remote air-filled space inside the intra-aggregate pores. By combining the complex dual porosity soil-water retention model with the power- law gas diffusivity model using a parabolic X(pF) function, the surprisingly simple linear behavior of Dp with ɛ was captured while the variation of Dp with pF followed a dual s-shaped curve similar to the water retention curve. A simple linear model to predict Dp(ɛ) is suggested, with slope C and threshold soil-air content, ɛth, calculated from the power-law model ɛ^{X} at pF 2 (near field capacity) and at pF 4.1 (near wilting point) using the same X value (= 2.3) at both pF in agreement with measured data. This linear Dp(ɛ) model performed better, especially at dry conditions, compared to the traditionally-used predictive models when

  19. Strain-dependent permeability of volcanic rocks.

    NASA Astrophysics Data System (ADS)

    Farquharson, Jamie; Heap, Michael; Baud, Patrick

    2016-04-01

    We explore permeability evolution during deformation of volcanic materials using a suite of rocks with varying compositions and physical properties (such as porosity ϕ). 40 mm × 20 mm cylindrical samples were made from a range of extrusive rocks, including andesites from Colima, Mexico (ϕ˜0.08; 0.18; 0.21), Kumamoto, Japan (ϕ˜0.13), and Ruapehu, New Zealand (ϕ˜0.15), and basalt from Mt Etna, Italy (ϕ˜0.04). Gas permeability of each sample was measured before and after triaxial deformation using a steady-state benchtop permeameter. To study the strain-dependence of permeability in volcanic rocks, we deformed samples to 2, 3, 4, 6, and 12 % axial strain at a constant strain rate of 10-5 s-1. Further, the influence of failure mode - dilatant or compactant - on permeability was assessed by repeating experiments at different confining pressures. During triaxial deformation, porosity change of the samples was monitored by a servo-controlled pore fluid pump. Below an initial porosity of ˜0.18, and at low confining pressures (≤ 20 MPa), we observe a dilatant failure mode (shear fracture formation). With increasing axial strain, stress is accommodated by fault sliding and the generation of ash-sized gouge between the fracture planes. In higher-porosity samples, or at relatively higher confining pressures (≥ 60 MPa), we observe compactant deformation characterised by a monotonous decrease in porosity with increasing axial strain. The relative permeability k' is given by the change in permeability divided by the initial reference state. When behaviour is dilatant, k' tends to be positive: permeability increases with progressive deformation. However, results suggest that after a threshold amount of strain, k' can decrease. k' always is negative (permeability decreases during deformation) when compaction is the dominant behaviour. Our results show that - in the absence of a sealing or healing process - the efficiency of a fault to transmit fluids is correlated to

  20. Permeability and permeability anisotropy in Crab Orchard sandstone: Experimental insights into spatio-temporal effects

    NASA Astrophysics Data System (ADS)

    Gehne, Stephan; Benson, Philip M.

    2017-08-01

    Permeability in tight crustal rocks is primarily controlled by the connected porosity, shape and orientation of microcracks, the preferred orientation of cross-bedding, and sedimentary features such as layering. This leads to a significant permeability anisotropy. Less well studied, however, are the effects of time and stress recovery on the evolution of the permeability hysteresis which is becoming increasingly important in areas ranging from fluid migration in ore-forming processes to enhanced resource extraction. Here, we report new data simulating spatio-temporal permeability changes induced using effective pressure, simulating burial depth, on a tight sandstone (Crab Orchard). We find an initially (measured at 5 MPa) anisotropy of 2.5% in P-wave velocity and 180% in permeability anisotropy is significantly affected by the direction of the effective pressure change and cyclicity; anisotropy values decrease to 1% and 10% respectively after 3 cycles to 90 MPa and back. Furthermore, we measure a steadily increasing recovery time (10-20 min) for flow parallel to cross-bedding, and a far slower recovery time (20-50 min) for flow normal to cross-bedding. These data are interpreted via strain anisotropy and accommodation models, similar to the "seasoning" process often used in dynamic reservoir extraction.

  1. Modular 3D-Printed Soil Gas Probes

    NASA Astrophysics Data System (ADS)

    Good, S. P.; Selker, J. S.; Al-Qqaili, F.; Lopez, M.; Kahel, L.

    2016-12-01

    ABSTRACT: Extraction of soil gas is required for a variety of applications in earth sciences and environmental engineering. However, commercially available probes can be costly and are typically limited to a single depth. Here, we present the open-source design and lab testing of a soil gas probe with modular capabilities that allow for the vertical stacking of gas extraction points at different depths in the soil column. The probe modules consist of a 3D printed spacer unit and hydrophobic gas permeable membrane made of high density Polyethylene with pore sizes 20-40 microns. Each of the modular spacer units contain both a gas extraction line and gas input line for the dilution of soil gases if needed. These 2-inch diameter probes can be installed in the field quickly with a hand auger and returned to at any frequency to extract soil gas from desired soil depths. The probes are tested through extraction of soil pore water vapors with distinct stable isotope ratios.

  2. Land Application of Wastes: An Educational Program. Soil as a Treatment Medium - Module 3, Objectives, Script and Booklet.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module examines the basic properties of soil which have an influence on the success of land treatment of wastes. These relevant properties include soil texture, soil structure, permeability, infiltration, available water capacity, and cation exchange capacity. Biological, chemical and physical mechanisms work to remove and renovate wastes…

  3. Discontinuities in effective permeability due to fracture percolation

    DOE PAGES

    Hyman, Jeffrey De'Haven; Karra, Satish; Carey, James William; ...

    2018-01-31

    Motivated by a triaxial coreflood experiment with a sample of Utica shale where an abrupt jump in permeability was observed, possibly due to the creation of a percolating fracture network through the sample, we perform numerical simulations based on the experiment to characterize how the effective permeability of otherwise low-permeability porous media depends on fracture formation, connectivity, and the contrast between the fracture and matrix permeabilities. While a change in effective permeability due to fracture formation is expected, the dependence of its magnitude upon the contrast between the matrix permeability and fracture permeability and the fracture network structure is poorlymore » characterized. We use two different high-fidelity fracture network models to characterize how effective permeability changes as percolation occurs. The first is a dynamic two-dimensional fracture propagation model designed to mimic the laboratory settings of the experiment. The second is a static three-dimensional discrete fracture network (DFN) model, whose fracture and network statistics are based on the fractured sample of Utica shale. Once the network connects the inflow and outflow boundaries, the effective permeability increases non-linearly with network density. In most networks considered, a jump in the effective permeability was observed when the embedded fracture network percolated. We characterize how the magnitude of the jump, should it occur, depends on the contrast between the fracture and matrix permeabilities. For small contrasts between the matrix and fracture permeabilities the change is insignificant. However, for larger contrasts, there is a substantial jump whose magnitude depends non-linearly on the difference between matrix and fracture permeabilities. A power-law relationship between the size of the jump and the difference between the matrix and fracture permeabilities is observed. In conclusion, the presented results underscore the importance of

  4. Discontinuities in effective permeability due to fracture percolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, Jeffrey De'Haven; Karra, Satish; Carey, James William

    Motivated by a triaxial coreflood experiment with a sample of Utica shale where an abrupt jump in permeability was observed, possibly due to the creation of a percolating fracture network through the sample, we perform numerical simulations based on the experiment to characterize how the effective permeability of otherwise low-permeability porous media depends on fracture formation, connectivity, and the contrast between the fracture and matrix permeabilities. While a change in effective permeability due to fracture formation is expected, the dependence of its magnitude upon the contrast between the matrix permeability and fracture permeability and the fracture network structure is poorlymore » characterized. We use two different high-fidelity fracture network models to characterize how effective permeability changes as percolation occurs. The first is a dynamic two-dimensional fracture propagation model designed to mimic the laboratory settings of the experiment. The second is a static three-dimensional discrete fracture network (DFN) model, whose fracture and network statistics are based on the fractured sample of Utica shale. Once the network connects the inflow and outflow boundaries, the effective permeability increases non-linearly with network density. In most networks considered, a jump in the effective permeability was observed when the embedded fracture network percolated. We characterize how the magnitude of the jump, should it occur, depends on the contrast between the fracture and matrix permeabilities. For small contrasts between the matrix and fracture permeabilities the change is insignificant. However, for larger contrasts, there is a substantial jump whose magnitude depends non-linearly on the difference between matrix and fracture permeabilities. A power-law relationship between the size of the jump and the difference between the matrix and fracture permeabilities is observed. In conclusion, the presented results underscore the importance of

  5. TRANSPORT OF TRICHLOROETHYLENE (TCE) IN NATURAL SOIL BY ELECTROOSMOSIS

    EPA Science Inventory

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation, primarily due to low mobilization of the contaminants and difficulty in uniform delivery of treatment reagents. An alternative approach using electroosmosis (EO) is used to mob...

  6. EPA Permeable Surface Research - Poster

    EPA Science Inventory

    EPA recognizes permeable surfaces as an effective post-construction infiltration-based Best Management Practice to mitigate the adverse effects of stormwater runoff. The professional user community conceptually embraces permeable surfaces as a tool for making runoff more closely...

  7. Implications of soil mixing for NAPL source zone remediation: Column studies and modeling of field-scale systems

    NASA Astrophysics Data System (ADS)

    Olson, Mitchell R.; Sale, Tom C.

    2015-06-01

    Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (> 96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (< 4 days) in the columns. Subsequently, modeling was conducted to scale up column results. By scaling up to field-relevant system sizes (> 10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to > 99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time.

  8. Membrane stress increases cation permeability in red cells.

    PubMed

    Johnson, R M

    1994-11-01

    The human red cell is known to increase its cation permeability when deformed by mechanical forces. Light-scattering measurements were used to quantitate the cell deformation, as ellipticity under shear. Permeability to sodium and potassium was not proportional to the cell deformation. An ellipticity of 0.75 was required to increase the permeability of the membrane to cations, and flux thereafter increased rapidly as the limits of cell extension were reached. Induction of membrane curvature by chemical agents also did not increase cation permeability. These results indicate that membrane deformation per se does not increase permeability, and that membrane tension is the effector for increased cation permeability. This may be relevant to some cation permeabilities observed by patch clamping.

  9. Vapor-liquid phase separator permeability results

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frederking, T. H. K.

    1981-01-01

    Continued studies are described in the area of vapor-liquid phase separator work with emphasis on permeabilities of porous sintered plugs (stainless steel, nominal pore size 2 micrometer). The temperature dependence of the permeability has been evaluated in classical fluid using He-4 gas at atmospheric pressure and in He-2 on the basis of a modified, thermosmotic permeability of the normal fluid.

  10. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alves, Vinicius M.; Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599; Muratov, Eugene

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, wemore » found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R{sup 2} = 0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q{sup 2}{sub ext} = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. - Highlights: • It was compiled the largest publicly-available skin permeability dataset. • Predictive QSAR models were developed for skin permeability. • No concordance between

  11. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae.

    PubMed

    Kumar, Sanjeev; Molina-Cruz, Alvaro; Gupta, Lalita; Rodrigues, Janneth; Barillas-Mury, Carolina

    2010-03-26

    Extracellular matrices in diverse biological systems are cross-linked by dityrosine covalent bonds catalyzed by the peroxidase/oxidase system. We show that a peroxidase, secreted by the Anopheles gambiae midgut, and dual oxidase form a dityrosine network that decreases gut permeability to immune elicitors. This network protects the microbiota by preventing activation of epithelial immunity. It also provides a suitable environment for malaria parasites to develop within the midgut lumen without inducing nitric oxide synthase expression. Disruption of this barrier results in strong and effective pathogen-specific immune responses.

  12. Defining clogging potential for permeable concrete.

    PubMed

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R

    2018-08-15

    Permeable concrete is used to reduce urban flooding as it allows water to flow through normally impermeable infrastructure. It is prone to clogging by particulate matter and predicting the long-term performance of permeable concrete is challenging as there is currently no reliable means of characterising clogging potential. This paper reports on the performance of a range of laboratory-prepared and commercial permeable concretes, close packed glass spheres and aggregate particles of varying size, exposed to different clogging methods to understand this phenomena. New methods were developed to study clogging and define clogging potential. The tests involved applying flowing water containing sand and/or clay in cycles, and measuring the change in permeability. Substantial permeability reductions were observed in all samples, particularly when exposed to sand and clay simultaneously. Three methods were used to define clogging potential based on measuring the initial permeability decay, half-life cycle and number of cycles to full clogging. We show for the first time strong linear correlations between these parameters for a wide range of samples, indicating their use for service-life prediction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Assessing FAO-56 dual crop coefficients using eddy covariance flux partitioning

    USDA-ARS?s Scientific Manuscript database

    Current approaches to scheduling crop irrigation using reference evapotranspiration (ET0) recommend using a dual-coefficient approach using basal (Kcb) and soil (Ke) coefficients along with a stress coefficient (Ks) to model crop evapotranspiration (ETc), [e.g. ETc=(Ks*Kcb+Ke)*ET0]. However, determi...

  14. Evaluating the Effect of Three Water Management Techniques on Tomato Crop.

    PubMed

    Elnesr, Mohammad Nabil; Alazba, Abdurrahman Ali; Zein El-Abedein, Assem Ibrahim; El-Adl, Mahmoud Maher

    2015-01-01

    The effects of three water management techniques were evaluated on subsurface drip irrigated tomatoes. The three techniques were the intermittent flow (3 pulses), the dual-lateral drip system (two lateral lines per row, at 15 and 25 cm below soil surface), and the physical barrier (buried at 30 cm below soil surface). Field experiments were established for two successive seasons. Water movement in soil was monitored using continuously logging capacitance probes up to 60 cm depth. The results showed that the dual lateral technique positively increased the yield up to 50%, water use efficiency up to 54%, while the intermittent application improved some of the quality measures (fruit size, TSS, and Vitamin C), not the quantity of the yield that decreased in one season, and not affected in the other. The physical barrier has no significant effect on any of the important growth measures. The soil water patterns showed that the dual lateral method lead to uniform wetting pattern with depth up to 45 cm, the physical barrier appeared to increase lateral and upward water movement, while the intermittent application kept the wetting pattern at higher moisture level for longer time. The cost analysis showed also that the economic treatments were the dual lateral followed by the intermittent technique, while the physical barrier is not economical. The study recommends researching the effect of the dual lateral method on the root growth and performance. The intermittent application may be recommended to improve tomato quality but not quantity. The physical barrier is not recommended unless in high permeable soils.

  15. ACF7 regulates colonic permeability.

    PubMed

    Liang, Yong; Shi, Chenzhang; Yang, Jun; Chen, Hongqi; Xia, Yang; Zhang, Peng; Wang, Feng; Han, Huazhong; Qin, Huanlong

    2013-04-01

    Colonic paracellular permeability is regulated by various factors, including dynamics of the cytoskeleton. Recently, ACF7 has been found to play a critical role in cytoskeletal dynamics as an essential integrator. To elucidate the physiological importance of ACF7 and paracellular permeability, we conditionally knocked out ACF7 in the intestinal mucosa of mice. Histopathological findings indicated that ACF7 deficiency resulted in significant interstitial proliferation and columnar epithelial cell rearrangement. Decreased colonic paracellular permeability was detected using a Ussing chamber and the FITC-inulin method. In order to clarify the underlying mechanism, we further analyzed the expression levels of three important tight junction proteins. Downregulation of ZO-1, occludin and claudin-1 was identified. Immunofluorescence provided strong evidence that ZO-1, occludin and claudin-1 were weakly stained. We hypothesized that ACF7 regulates cytoskeleton dynamics to alter mucosal epithelial arrangement and colonic paracellular permeability.

  16. A dual-porous, biophysical void structure model of soil for the understanding of the conditions causing nitrous oxide emission

    NASA Astrophysics Data System (ADS)

    Matthews, G. Peter; Maurizio Laudone, G.; Whalle, W. Richard; Bird, Nigel; Gregory, Andrew; Cardenas, Laura; Misselbrook, Tom

    2010-05-01

    Nitrous oxide is the fourth most important greenhouse gas. It is 300 times more potent than carbon dioxide, and two-thirds of anthropogenic nitrous oxide is emitted by agricultural land. This presentation will begin with a brief overview of the laboratory measurements of nitrous oxide emission from carefully characterised soils, presented in more detail by Cardenas et al.. The measurements were made in a twelve-chamber, gas chromatographic apparatus at North Wyke Research (formerly IGER). The presentation will then continue with a description of a void network model of sufficient accuracy and authenticity that it can be used to explain and predict the nitrous oxide production, and the modelling of the biological, chemical and physical processes for the production of nitrous oxide within the constructed network. Finally, conclusions will be drawn from a comparison of the model results with experiment. The void network model Nitrous oxide is produced by microbial activity located in ‘hotspots' within the microstructure of soil, and nutrients and gases flow or diffuse to and from these hotspots through the water or gas-filled macro-porosity. It is clear, therefore, that a network model to describe and explain nitrous oxide production must encompass the full size range of pore space active within the process, which covers 6 orders of magnitude, and must make realistic suppositions about the positional relationship of the hotspots relative to the soil macro-porosity. Previous experimental (Tsakiroglou, C. D. et al, European J.Soil Sci., 2008) and theoretical approaches to the modelling of soil void structure cannot generally meet these two requirements. We have therefore built on the success of the previous uni-porous model of soil (Matthews, G. P. et al, Wat.Resour.Res, 2010), and the concept of a critical percolation path, to develop a dual porous model (Laudone, G. M. et al, European J.Soil Sci., 2010) with the following features: • A porous unit cell, with

  17. Permeable bio-reactive barriers to address petroleum hydrocarbon contamination at subantarctic Macquarie Island.

    PubMed

    Freidman, Benjamin L; Terry, Deborah; Wilkins, Dan; Spedding, Tim; Gras, Sally L; Snape, Ian; Stevens, Geoffrey W; Mumford, Kathryn A

    2017-05-01

    A reliance on diesel generated power and a history of imperfect fuel management have created a legacy of petroleum hydrocarbon contamination at subantarctic Macquarie Island. Increasing environmental awareness and advances in contaminant characterisation and remediation technology have fostered an impetus to reduce the environmental risk associated with legacy sites. A funnel and gate permeable bio-reactive barrier (PRB) was installed in 2014 to address the migration of Special Antarctic Blend diesel from a spill that occurred in 2002, as well as older spills and residual contaminants in the soil at the Main Power House. The PRB gate comprised of granular activated carbon and natural clinoptilolite zeolite. Petroleum hydrocarbons migrating in the soil water were successfully captured on the reactive materials, with concentrations at the outflow of the barrier recorded as being below reporting limits. The nutrient and iron concentrations delivered to the barrier demonstrated high temporal variability with significant iron precipitation observed across the bed. The surface of the granular activated carbon was largely free from cell attachment while natural zeolite demonstrated patchy biofilm formation after 15 months following PRB installation. This study illustrates the importance of informed material selection at field scale to ensure that adsorption and biodegradation processes are utilised to manage the environmental risk associated with petroleum hydrocarbon spills. This study reports the first installation of a permeable bio-reactive barrier in the subantarctic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Enhancing Bioremediation of Oil-contaminated Soils by Controlling Nutrient Transport using Dual Characteristics of Soil Pore Structure

    NASA Astrophysics Data System (ADS)

    Mori, Y.; Suetsugu, A.; Matsumoto, Y.; Fujihara, A.; Suyama, K.; Miyamoto, T.

    2012-12-01

    Soil structure is heterogeneous with cracks or macropores allowing bypass flow, which may lead to applied chemicals avoiding interaction with soil particles or the contaminated area. We investigated the bioremediation efficiency of oil-contaminated soils by applying suction at the bottom of soil columns during bioremediation. Unsaturated flow conditions were investigated so as to avoid bypass flow and achieve sufficient dispersion of chemicals in the soil column. The boundary conditions at the bottom of the soil columns were 0 kPa and -3 kPa, and were applied to a volcanic ash soil with and without macropores. Unsaturated flow was achieved with -3 kPa and an injection rate of 1/10 of the saturated hydraulic conductivity. The resultant biological activities of the effluent increased dramatically in the unsaturated flow with macropores condition. Unsaturated conditions prevented bypass flow and allowed dispersion of the injected nutrients. Unsaturated flow achieved 60-80% of saturation, which enhanced biological activity in the soil column. Remediation results were better for unsaturated conditions because of higher biological activity. Moreover, unsaturated flow with macropores achieved uniform remediation efficiency from upper through lower positions in the column. Finally, taking the applied solution volume into consideration, unsaturated flow with -3 kPa achieved 10 times higher efficiency when compared with conventional saturated flow application. These results suggest that effective use of nutrients or remediation chemicals is possible by avoiding bypass flow and enhancing biological activity using relatively simple and inexpensive techniques.

  19. Permeability of canine vocal fold lamina propria.

    PubMed

    Meyer, Jacob P; Kvit, Anton A; Devine, Erin E; Jiang, Jack

    2015-04-01

    Determine the permeability of excised canine vocal fold lamina propria. Basic science. Vocal folds were excised from canine larynges and mounted within a device to measure the flow of 0.9% saline through the tissue over time. The resultant fluid volume displaced over time was then used in a variation of Darcy's law to calculate the permeability of the tissue. Permeability was found through each anatomical plane of the vocal fold, with five samples per plane. Permeability was also found for lamina propria stretched to 10%, 20%, and 30% of its initial length to determine the effects of tensile strain on permeability, with five samples per level of strain. Permeability was found to be 1.40 × 10(-13) m(3) s/kg through the sagittal plane, 1.00 × 10(-13) m(3) s/kg through the coronal plane, and 4.02 × 10(-13) m(3) s/kg through the axial plane. It was significantly greater through the axial plane than both the sagittal (P = .025) and coronal (P = .009) planes. Permeability under strain through the sagittal plane was found to be 1.94 × 10(-13) m(3) s/kg under 10% strain, 3.35 × 10(-13) m(3) s/kg under 20% strain, and 4.80 × 10(-13) m(3) s/kg under 30% strain. The permeability significantly increased after 20% strain (P < .05). Permeability in canine vocal fold lamina propria was found to be increased along the anterior-posterior axis, following the length of the vocal folds. This may influence fluid distribution within the lamina propria during and after vibration. Similarly, permeability increased after 20% strain was imposed on the lamina propria, and may influence vocal fold dynamics during certain phonation tasks. NA Laryngoscope, 125:941-945, 2015. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Microorganism Removal in Permeable Pavement Parking Lots ...

    EPA Pesticide Factsheets

    Three types of permeable pavements (pervious concrete, permeable interlocking concrete pavers, and porous asphalt) were monitored at the Edison Environmental Center in Edison, New Jersey for indicator organisms such as fecal coliform, enterococci, and E. coli. Results showed that porous asphalt had much lower concentration in monitored infiltrate compared to pervious concrete and permeable interlocking concrete pavers. Concentrations of monitored organisms in infiltrate from porous asphalt were consistently below the bathing water quality standard. Fecal coliform and enterococci exceeded bathing water quality standards more than 72% and 34% of the time for permeable interlocking concrete pavers and pervious concrete, respectively. Purpose is to evaluate the performance of permeable pavement in removing indicator organisms from infiltrating stormwater runoff.

  1. Surfactant enhanced recovery of tetrachloroethylene from a porous medium containing low permeability lenses. 2. Numerical simulation.

    PubMed

    Rathfelder, K M; Abriola, L M; Taylor, T P; Pennell, K D

    2001-04-01

    A numerical model of surfactant enhanced solubilization was developed and applied to the simulation of nonaqueous phase liquid recovery in two-dimensional heterogeneous laboratory sand tank systems. Model parameters were derived from independent, small-scale, batch and column experiments. These parameters included viscosity, density, solubilization capacity, surfactant sorption, interfacial tension, permeability, capillary retention functions, and interphase mass transfer correlations. Model predictive capability was assessed for the evaluation of the micellar solubilization of tetrachloroethylene (PCE) in the two-dimensional systems. Predicted effluent concentrations and mass recovery agreed reasonably well with measured values. Accurate prediction of enhanced solubilization behavior in the sand tanks was found to require the incorporation of pore-scale, system-dependent, interphase mass transfer limitations, including an explicit representation of specific interfacial contact area. Predicted effluent concentrations and mass recovery were also found to depend strongly upon the initial NAPL entrapment configuration. Numerical results collectively indicate that enhanced solubilization processes in heterogeneous, laboratory sand tank systems can be successfully simulated using independently measured soil parameters and column-measured mass transfer coefficients, provided that permeability and NAPL distributions are accurately known. This implies that the accuracy of model predictions at the field scale will be constrained by our ability to quantify soil heterogeneity and NAPL distribution.

  2. Characterization of wet aggregate stability of soils by ¹H-NMR relaxometry.

    PubMed

    Buchmann, C; Meyer, M; Schaumann, G E

    2015-09-01

    For the assessment of soil structural stability against hydraulic stress, wet sieving or constant head permeability tests are typically used but rather limited in their intrinsic information value. The multiple applications of several tests is the only possibility to assess important processes and mechanisms during soil aggregate breakdown, e.g. the influences of soil fragment release or differential swelling on the porous systems of soils or soil aggregate columns. Consequently, the development of new techniques for a faster and more detailed wet aggregate stability assessment is required. (1)H nuclear magnetic resonance relaxometry ((1)H-NMR relaxometry) might provide these requirements because it has already been successfully applied on soils. We evaluated the potential of (1)H-NMR relaxometry for the assessment of wet aggregate stability of soils, with more detailed information on occurring mechanisms at the same time. Therefore, we conducted single wet sieving and constant head permeability tests on untreated and 1% polyacrylic acid-treated soil aggregates of different textures and organic matter contents, subsequently measured by (1)H-NMR relaxometry after percolation. The stability of the soil aggregates were mainly depending on their organic matter contents and the type of aggregate stabilization, whereby additional effects of clay swelling on the measured wet aggregate stability were identified by the transverse relaxation time (T2) distributions. Regression analyses showed that only the percentage of water stable aggregates could be determined accurately from percolated soil aggregate columns by (1)H-NMR relaxometry measurements. (1)H-NMR relaxometry seems a promising technique for wet aggregate stability measurements but should be further developed for nonpercolated aggregate columns and real soil samples. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Influence of fiber packing structure on permeability

    NASA Technical Reports Server (NTRS)

    Cai, Zhong; Berdichevsky, Alexander L.

    1993-01-01

    The study on the permeability of an aligned fiber bundle is the key building block in modeling the permeability of advanced woven and braided preforms. Available results on the permeability of fiber bundles in the literature show that a substantial difference exists between numerical and analytical calculations on idealized fiber packing structures, such as square and hexagonal packing, and experimental measurements on practical fiber bundles. The present study focuses on the variation of the permeability of a fiber bundle under practical process conditions. Fiber bundles are considered as containing openings and fiber clusters within the bundle. Numerical simulations on the influence of various openings on the permeability were conducted. Idealized packing structures are used, but with introduced openings distributed in different patterns. Both longitudinal and transverse flow are considered. The results show that openings within the fiber bundle have substantial effect on the permeability. In the longitudinal flow case, the openings become the dominant flow path. In the transverse flow case, the fiber clusters reduce the gap sizes among fibers. Therefore the permeability is greatly influenced by these openings and clusters, respectively. In addition to the porosity or fiber volume fraction, which is commonly used in the permeability expression, another fiber bundle status parameter, the ultimate fiber volume fraction, is introduced to capture the disturbance within a fiber bundle.

  4. Identification of soil associations in western South Dakota on ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Westin, F. C.; Myers, V. I.

    1973-01-01

    Soil association maps show the spatial relationships of land units having characteristic soil depths and textures, available water capacities, permeabilities, pH characteristics, plasticity indices, liquid limits, and the like, from which broad interpretations can be made such as how the soil is suited as a source for top soil, and as a source for sand and gravel, and how corrosive the soil is for steel and concrete, and what crop and grass yields can be expected. Film color composites of bands 4, 5 and 7 viewed over a light table with magnification show the soil associations of western South Dakota that are now recognized, and, in addition, several new soil association areas have been brought to light.

  5. Non-isothermal infiltration and tracer transport experiments on large soil columns

    NASA Astrophysics Data System (ADS)

    Sobotkova, Martina; Snehota, Michal; Cejkova, Eva; Tesar, Miroslav

    2016-04-01

    by dual permeability. The saturated hydraulic conductivity of soil columns was higher in the case of higher temperature of flowing water. The change was however not proportional to Ksat change induced by temperature change of viscosity only.

  6. Efficient Permeability Measurement and Numerical Simulation of the Resin Flow in Low Permeability Preform Fabricated by Automated Dry Fiber Placement

    NASA Astrophysics Data System (ADS)

    Agogue, Romain; Chebil, Naziha; Deleglise-Lagardere, Mylène; Beauchene, Pierre; Park, Chung Hae

    2017-10-01

    We propose a new experimental method using a Hassler cell and air injection to measure the permeability of fiber preform while avoiding a race tracking effect. This method was proven to be particularly efficient to measure very low through-thickness permeability of preform fabricated by automated dry fiber placement. To validate the reliability of the permeability measurement, the experiments of viscous liquid infusion into the preform with or without a distribution medium were performed. The experimental data of flow front advancement was compared with the numerical simulation result using the permeability values obtained by the Hassler cell permeability measurement set-up as well as by the liquid infusion experiments. To address the computational cost issue, the model for the equivalent permeability of distribution medium was employed in the numerical simulation of liquid flow. The new concept using air injection and Hassler cell for the fiber preform permeability measurement was shown to be reliable and efficient.

  7. Use of plasma proteins as solubilizing agents in in vitro permeability experiments: correction for unbound drug concentration using the reciprocal permeability approach.

    PubMed

    Katneni, Kasiram; Charman, Susan A; Porter, Christopher J H

    2008-01-01

    The purpose of the present study was to explore the applicability of the reciprocal permeability approach to correct for changes in thermodynamic activity when in vitro permeability data are generated in the presence of plasma proteins. Diazepam (DIA), digoxin (DIG), and propranolol (PRO) permeability was assessed in the presence of bovine serum albumin (BSA) and bovine alpha-1-acid glycoprotein (AAG). The reciprocal permeability approach was subsequently employed to calculate the true permeability coefficient (Papp(corr)) and the operational protein association constant (nK(a)). For BSA binding, good agreement was observed between the Papp(corr) values and Papp values obtained in the absence of protein. For PRO and AAG, where binding affinity was high, deviation in the reciprocal permeability plots was evident suggesting ligand depletion at low drug/high protein concentrations. Bidirectional DIG permeability data in the presence of either BSA or AAG indicated that neither protein had an effect on the efflux transporters involved in DIG permeability. The data suggest that plasma proteins can be utilized in permeability experiments with no adverse effects on transporter function and that the reciprocal permeability approach can be used to correct permeability data for changes in unbound drug concentration. c) 2007 Wiley-Liss, Inc.

  8. Charge Inversion in semi-permeable membranes

    NASA Astrophysics Data System (ADS)

    Das, Siddhartha; Sinha, Shayandev; Jing, Haoyuan

    Role of semi-permeable membranes like lipid bilayer is ubiquitous in a myriad of physiological and pathological phenomena. Typically, lipid membranes are impermeable to ions and solutes; however, protein channels embedded in the membrane allow the passage of selective, small ions across the membrane enabling the membrane to adopt a semi-permeable nature. This semi-permeability, in turn, leads to electrostatic potential jump across the membrane, leading to effects such as regulation of intracellular calcium, extracellular-vesicle-membrane interactions, etc. In this study, we theoretically demonstrate that this semi-permeable nature may trigger the most remarkable charge inversion (CI) phenomenon in the cytosol-side of the negatively-charged lipid bilayer membrane that are selectively permeable to only positive ions of a given salt. This CI is manifested as the changing of the sign of the electrostatic potential from negative to positive from the membrane-cytosol interface to deep within the cytosol. We study the impact of the parameters such as the concentration of this salt with selectively permeable ions as well as the concentration of an external salt in the development of this CI phenomenon. We anticipate such CI will profoundly influence the interaction of membrane and intra-cellular moieties (e.g., exosome or multi-cellular vesicles) having implications for a host of biophysical processes.

  9. Phase 1 remediation of jet fuel contaminated soil and groundwater at JFK International Airport using dual phase extraction and bioventing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, R.; Bianco, P. Rizzo, M.; Pressly, N.

    1995-12-31

    Soil and groundwater contaminated with jet fuel at Terminal One of the JFK International Airport in New York have been remediated using dual phase extraction (DPE) and bioventing. Two areas were remediated using 51 DPE wells and 20 air sparging/air injection wells. The total area remediated by the DPE wells is estimated to be 4.8 acres. Groundwater was extracted to recover nonaqueous phase and aqueous phase jet fuel from the shallow aquifer and treated above ground by the following processes; oil/water separation, iron-oxidation, flocculation, sedimentation, filtration, air stripping and liquid-phase granular activated carbon (LPGAC) adsorption. The extracted vapors were treatedmore » by vapor-phase granular activated carbon (VPGAC) adsorption in one area, and catalytic oxidation and VPGAC adsorption in another area. After 6 months of remediation, approximately 5,490 lbs. of volatile organic compounds (VOCs) were removed by soil vapor extraction (SVE), 109,650 lbs. of petroleum hydrocarbons were removed from the extracted groundwater, and 60,550 lbs. of petroleum hydrocarbons were biologically oxidized by subsurface microorganisms. Of these three mechanisms, the rate of petroleum hydrocarbon removal was the highest for biological oxidation in one area and by groundwater extraction in another area.« less

  10. CAUSES OF POOR SEALANT PERFORMANCE IN SOIL-GAS- RESISTANT FOUNDATIONS

    EPA Science Inventory

    The paper discusses causes of poor sealant performance in soil-gas-resistant foundations. ealants for radon-resistant foundation construction must seal the gap between concrete sections. odern sealants have such low permeability that seal performance depends only on the permeabil...

  11. Permeability measurement and control for epoxy composites

    NASA Astrophysics Data System (ADS)

    Chang, Tsun-Hsu; Tsai, Cheng-Hung; Wong, Wei-Syuan; Chen, Yen-Ren; Chao, Hsien-Wen

    2017-08-01

    The coupling of the electric and magnetic fields leads to a strong interplay in materials' permittivity and permeability. Here, we proposed a specially designed cavity, called the mu cavity. The mu cavity, consisting of a mushroom structure inside a cylindrical resonator, is exclusively sensitive to permeability, but not to permittivity. It decouples materials' electromagnetic properties and allows an accurate measurement of the permeability. With the help of an epsilon cavity, these two cavities jointly determine the complex permeability and permittivity of the materials at microwave frequencies. Homemade epoxy-based composite materials were prepared and tested. Measurement and manipulation of the permeability and permittivity of the epoxy composites will be shown. The results will be compared with the effective medium theories.

  12. Age-related changes in mouse bone permeability.

    PubMed

    Rodriguez-Florez, Naiara; Oyen, Michelle L; Shefelbine, Sandra J

    2014-03-21

    The determination of lacunar-canalicular permeability is essential for understanding local fluid flow in bone, which may indicate how bone senses changes in the mechanical environment to regulate mechano-adaptation. The estimates of lacunar-canalicular permeability found in the literature vary by up to eight orders of magnitude, and age-related permeability changes have not been measured in non-osteonal mouse bone. The objective of this study is to use a poroelastic approach based on nanoindentation data to characterize lacunar-canalicular permeability in murine bone as a function of age. Nine wild type C57BL/6 mice of different ages (2, 7 and 12 months) were used. Three tibiae from each age group were embedded in epoxy resin, cut in half and indented in the longitudinal direction in the mid-cortex using two spherical fluid indenter tips (R=238 μm and 500 μm). Results suggest that the lacunar-canalicular intrinsic permeability of mouse bone decreases from 2 to 7 months, with no significant changes from 7 to 12 months. The large indenter tip imposed larger contact sizes and sampled larger ranges of permeabilities, particularly for the old bone. This age-related difference in the distribution was not seen for indents with the smaller radius tip. We conclude that the small tip effectively measured lacunar-canalicular permeability, while larger tip indents were influenced by vascular permeability. Exploring the age-related changes in permeability of bone measured by nanoindentation will lead to a better understanding of the role of fluid flow in mechano-transduction. This understanding may help indicate alterations in bone adaptation and remodeling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Implications of soil mixing for NAPL source zone remediation: Column studies and modeling of field-scale systems.

    PubMed

    Olson, Mitchell R; Sale, Tom C

    2015-01-01

    Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (>96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (<4 days) in the columns. Subsequently, modeling was conducted to scale up column results. By scaling up to field-relevant system sizes (>10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to >99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Frictional stability-permeability relationships for fractures in shales

    NASA Astrophysics Data System (ADS)

    Fang, Yi; Elsworth, Derek; Wang, Chaoyi; Ishibashi, Takuya; Fitts, Jeffrey P.

    2017-03-01

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS). We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.

  15. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    PubMed Central

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2015-01-01

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, we found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R2=0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q2ext = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. PMID:25560673

  16. Geological and geotechnical characteristics of Metro Manila volcanic soils and their suitability for landfill soil liner

    NASA Astrophysics Data System (ADS)

    Mendoza, Edna Patricia; Catane, Sandra; Pascua, Chelo; Zarco, Mark Albert

    2010-05-01

    Due to the Philippines's island-arc setting, andesitic tuff and volcanic ash constitute two-thirds of the country's agricultural land. In situ weathering of these volcanic sediments produces volcanic soils. Metro Manila volcanic soils were studied to determine their suitability for landfill soil liner. The soils were analyzed using XRD and XRF, and were tested for geotechnical properties. The results show the presence of the smectite group, a swelling variety of clay. The smectite-type clays are weathering products of volcanic glasses which are dominant components of the parental rocks. The high amounts of Al2O3 indicate an Al-rich type of soil. The clay species is either di- or tri-octahedral type, which points to montmorillonite as the main clay species. Swelling clay lowers the permeability of soils and reduces the infiltration and lateral movement of leachates in the ground. Also, geotechnical tests revealed moderate to high plasticity indices and low hydraulic conductivity values. The study shows that the physicochemical characteristics of volcanic soils meet the criteria for a soil liner for future sanitary landfill projects as mandated by RA 9003, a recently ratified solid waste management act of the Philippines. Being widespread, volcanic soils can be viewed as an important resource of the country.

  17. Gas and Liquid Permeability Measurements in Wolfcamp Samples

    NASA Astrophysics Data System (ADS)

    Bhandari, A. R.; Flemings, P. B.; Ramiro-Ramirez, S.; Polito, P. J.

    2017-12-01

    Argon gas and liquid (dodecane) permeability measurements in three mixed quality Wolfcamp samples demonstrate it is possible to close multiple bedding parallel open artificial micro-fractures and obtain representative matrix permeability by applying two confining stress cycles at a constant pore pressure under effective stresses ranging from 6.9 MPa to 59.7 MPa. The fractured sample (with no bridging-cement in fractures) exhibited a three order decrease in permeability from 4.4×10-17 m2 to 2.1×10-20 m2. In contrast, the most intact sample exhibited initial liquid permeability of 1.61×10-19 m2 that declined gradually to 2.0×10-20 m2 over the same effective stress range. A third sample, that contained a bridging-cement (gypsum) fracture, exhibited much higher initial liquid permeability of 2.8×10-15 m2 and declined gradually to 1.3×10-17 m2 with stress; this suggested that it is difficult to close partially cemented fractures and that the permeability we measured was impacted by the presence of a propped-fracture and not the matrix. We developed a new permeability testing protocol and analytical approaches to interpret the evolution of fractures and resolve the matrix permeability using matrix permeability estimates based on initial pulse decay gas permeability measurements at effective stress of 6.9 MPa. The tested samples are an argillaceous siliceous siltstone facies within the Wolfcamp Formation. A better understanding of permeability will lead to new approaches to determine the best completion and production strategies and, more importantly, to reduce the high water cut problem in Wolfcamp reservoirs.

  18. Paranodal permeability in `myelin mutants'

    PubMed Central

    Shroff, S.; Mierzwa, A.; Scherer, S.S.; Peles, E.; Arevalo, J.C.; Chao, M.V.; Rosenbluth, J.

    2011-01-01

    Fluorescent dextran tracers of varying sizes have been used to assess paranodal permeability in myelinated sciatic nerve fibers from control and three `myelin mutant' mice, Caspr-null, cst-null and shaking. We demonstrate that in all of these the paranode is permeable to small tracers (3kDa, 10kDa), which penetrate most fibers, and to larger tracers (40kDa, 70kDa), which penetrate far fewer fibers and move shorter distances over longer periods of time. Despite gross diminution in transverse bands in the Caspr-null and cst-null mice, the permeability of their paranodal junctions is equivalent to that in controls. Thus, deficiency of transverse bands in these mutants does not increase the permeability of their paranodal junctions to the dextrans we used, moving from the perinodal space through the paranode to the internodal periaxonal space. In addition, we show that the shaking mice, which have thinner myelin and shorter paranodes, show increased permeability to the same tracers despite the presence of transverse bands. We conclude that the extent of penetration of these tracers does not depend on the presence or absence of transverse bands but does depend on the length of the paranode and, in turn, on the length of `pathway 3', the helical extracellular pathway that passes through the paranode parallel to the lateral edge of the myelin sheath. PMID:21618613

  19. Soil vapor extraction with dewatering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, N.R.

    1996-08-01

    The physical treatment technology of soil vapor extraction (SVE) is reliable, safe, robust, and able to remove significant amounts of mass at a relatively low cost. SVE combined with a pump-and-treat system to create a dewatered zone has the opportunity to remove more mass with the added cost of treating the extracted groundwater. Various limiting processes result in a significant reduction in the overall mass removal rates from a SVE system in porous media. Only pilot scale, limited duration SVE tests conducted in low permeability media have been reported in the literature. It is expected that the presence of amore » fracture network in low permeability media will add another complexity to the limiting conditions surrounding the SVE technology. 20 refs., 4 figs.« less

  20. Using a soil moisture and precipitation network for satellite validation

    USDA-ARS?s Scientific Manuscript database

    A long term in situ network for the study of soil moisture and precipitation was deployed in north central Iowa, in cooperation between USDA and NASA. A total of 20 dual precipitation gages were established across a watershed landscape with an area of approximately 600 km2. In addition, four soil mo...

  1. Miniaturized dual-band antenna array with double-negative (DNG) metamaterial for wireless applications

    NASA Astrophysics Data System (ADS)

    Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Rahim, Sharul Kamal Abdul; Vandenbosch, Guy A. E.; Narbudowicz, Adam

    2017-01-01

    A miniaturized dual-band antenna array using a negative index metamaterial is presented for WiMAX, LTE, and WLAN applications. This left-handed metamaterial plane is located behind the antenna array, and its unit cell is a combination of split-ring resonator, square electric ring resonator, and rectangular electrical coupled resonator. This enables the achievement of a metamaterial structure exhibiting both negative permittivity and permeability, which results in antenna size miniaturization, efficiency, and gain enhancement. Moreover, the proposed metamaterial antenna has realized dual-band operating frequencies compared to a single frequency for normal antenna. The measured reflection coefficient (S11) shows a 50.25% bandwidth in the lower band (from 2.119 to 3.058 GHz) and 4.27% in the upper band (from 5.058 to 5.276 GHz). Radiation efficiency obtained in the lower and upper band are >95 and 80%, respectively.

  2. CO2 breakthrough pressure and permeability for unsaturated low-permeability sandstone of the Ordos Basin

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yu, Qingchun

    2017-07-01

    With rising threats from greenhouse gases, capture and injection of CO2 into suitable underground formations is being considered as a method to reduce anthropogenic emissions of CO2 to the atmosphere. As the injected CO2 will remain in storage for hundreds of years, the safety of CO2 geologic sequestration is a major concern. The low-permeability sandstone of the Ordos Basin in China is regarded as both caprock and reservoir rock, so understanding the breakthrough pressure and permeability of the rock is necessary. Because part of the pore volume experiences a non-wetting phase during the CO2 injection and migration process, the rock may be in an unsaturated condition. And if accidental leakage occurs, CO2 will migrate up into the unsaturated zone. In this study, breakthrough experiments were performed at various degrees of water saturation with five core samples of low-permeability sandstone obtained from the Ordos Basin. The experiments were conducted at 40 °C and pressures of >8 MPa to simulate the geological conditions for CO2 sequestration. The results indicate that the degree of water saturation and the pore structure are the main factors affecting the rock breakthrough pressure and permeability, since the influence of calcite dissolution and clay mineral swelling during the saturation process is excluded. Increasing the average pore radius or most probable pore radius leads to a reduction in the breakthrough pressure and an increase by several orders of magnitude in scCO2 effective permeability. In addition, the breakthrough pressure rises and the scCO2 effective permeability decreases when the water saturation increases. However, when the average pore radius is greater than 0.151 μm, the degree of water saturation will has a little effect on the breakthrough pressure. On this foundation, if the most probable pore radius of the core sample reaches 1.760 μm, the breakthrough pressure will not be impacted by the increasing water saturation. We establish

  3. Effects of triethyl phosphate and nitrate on electrokinetically enhanced biodegradation of diesel in low permeability soils.

    PubMed

    Lee, G T; Ro, H M; Lee, S M

    2007-08-01

    Bench-scale experiments for electrokinetically enhanced bioremediation of diesel in low permeability soils were conducted. An electrokinetic reactor (ER) was filled with kaolin that was artificially contaminated with diesel at a level of 2500 mg kg(-1). A constant voltage gradient of 1.0 V cm(-1) was applied. In phosphorus transport experiments, KH2PO4 was not distributed homogeneously along the ER, and most of the transported phosphorus was converted to water-insoluble aluminum phosphate after 12 days of electrokinetic (EK) operation. However, the advancing P front of triethyl phosphate (TEP) progressed with time and resulted in uniform P distribution. The treatments employed in the electrokinetically enhanced bioremediation of diesel were control (no addition of nitrogen and phosphorus), NP (KNO3+ KH2PO4), NT (KNO3+ TEP), UP (urea+ KH2PO4), and UT (urea+TEP). Analysis of effluent collected during the first 12 days of EK operation showed that diesel was not removed from the kaolin. After nutrient delivery, using the EK operation, the ER was transferred into an incubator for the biodegradation process. After 60 days of biodegradation, the concentrations of diesel in the kaolin for the NP, NT, UP, UT, and control treatments were 1356, 1002, 1658, 1612, and 2003 mg kg(-1), respectively. The ratio of biodegraded diesel concentration to initial concentration (2465 mg kg(-1)) in NP, NT, UP, UT, and control were 45.0%, 59.4%, 32.7%, 34.6%, and 18.7%, respectively. This result showed that TEP, treated along with NO3-, was most effective for the biodegradation of diesel. TEP was delivered more efficiently to the target zones and with less phosphorus loss than KH2PO4. However, this facilitated phosphorus delivery was effective in biodegrading diesel under anaerobic conditions only when electron acceptors, such as NO3-, were present.

  4. A high-performance dual-scale porous electrode for vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zhou, X. L.; Zeng, Y. K.; Zhu, X. B.; Wei, L.; Zhao, T. S.

    2016-09-01

    In this work, we present a simple and cost-effective method to form a dual-scale porous electrode by KOH activation of the fibers of carbon papers. The large pores (∼10 μm), formed between carbon fibers, serve as the macroscopic pathways for high electrolyte flow rates, while the small pores (∼5 nm), formed on carbon fiber surfaces, act as active sites for rapid electrochemical reactions. It is shown that the Brunauer-Emmett-Teller specific surface area of the carbon paper is increased by a factor of 16 while maintaining the same hydraulic permeability as that of the original carbon paper electrode. We then apply the dual-scale electrode to a vanadium redox flow battery (VRFB) and demonstrate an energy efficiency ranging from 82% to 88% at current densities of 200-400 mA cm-2, which is record breaking as the highest performance of VRFB in the open literature.

  5. 46 CFR 172.240 - Permeability of spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Permeability of spaces. 172.240 Section 172.240 Shipping... Permeability of spaces. When doing the calculations required in § 172.225, (a) The permeability of a floodable space, other than a machinery or cargo space, must be assumed as listed in Table 172.240; (b...

  6. 46 CFR 172.240 - Permeability of spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Permeability of spaces. 172.240 Section 172.240 Shipping... Permeability of spaces. When doing the calculations required in § 172.225, (a) The permeability of a floodable space, other than a machinery or cargo space, must be assumed as listed in Table 172.240; (b...

  7. 46 CFR 172.240 - Permeability of spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Permeability of spaces. 172.240 Section 172.240 Shipping... Permeability of spaces. When doing the calculations required in § 172.225, (a) The permeability of a floodable space, other than a machinery or cargo space, must be assumed as listed in Table 172.240; (b...

  8. 46 CFR 172.240 - Permeability of spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Permeability of spaces. 172.240 Section 172.240 Shipping... Permeability of spaces. When doing the calculations required in § 172.225, (a) The permeability of a floodable space, other than a machinery or cargo space, must be assumed as listed in Table 172.240; (b...

  9. 46 CFR 172.240 - Permeability of spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Permeability of spaces. 172.240 Section 172.240 Shipping... Permeability of spaces. When doing the calculations required in § 172.225, (a) The permeability of a floodable space, other than a machinery or cargo space, must be assumed as listed in Table 172.240; (b...

  10. Generation and mobility of radon in soil. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, A.W.; Jester, W.A.; Ciolkosz, E.J.

    This study has confirmed large seasonal and daily variations of Rn in soil gas, developed models for the effects of temperature and moisture on air-water Rn partition, inhibited Rn diffusion from wet soil into sparse large air-filled pores and effects of diffusion into bedrock, demonstrated that organic matter is a major host for 226Ra in soils and that organic-bound Ra largely determines the proportion of 222Rn emanated to pore space, shown that in contrast 220Rn is emanated mainly from 224Ra in Fe-oxides, detected significant disequilibrium between 226Ra and 238U in organic matter and in some recent glacial soils, demonstrated bymore » computer models that air convection driven by temperature differences is expected in moderately permeable soils on hillsides.« less

  11. Permeability enhancement by shock cooling

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of

  12. Modelling of Longwall Mining-Induced Strata Permeability Change

    NASA Astrophysics Data System (ADS)

    Adhikary, D. P.; Guo, H.

    2015-01-01

    The field measurement of permeability within the strata affected by mining is a challenging and expensive task, thus such tests may not be carried out in large numbers to cover all the overburden strata and coal seams being affected by mining. However, numerical modelling in conjunction with a limited number of targeted field measurements can be used efficiently in assessing the impact of mining on a regional scale. This paper presents the results of underground packer testing undertaken at a mine site in New South Wales in Australia and numerical simulations conducted to assess the mining-induced strata permeability change. The underground packer test results indicated that the drivage of main headings (roadways) had induced a significant change in permeability into the solid coal barrier. Permeability increased by more than 50 times at a distance of 11.2-11.5 m from the roadway rib into the solid coal barrier. The tests conducted in the roof strata above the longwall goaf indicated more than 1,000-fold increase in permeability. The measured permeability values varied widely and strangely on a number of occasions; for example the test conducted from the main headings at the 8.2-8.5 m test section in the solid coal barrier showed a decline in permeability value as compared to that at the 11.2-11.5 m section contrary to the expectations. It is envisaged that a number of factors during the tests might have had affected the measured values of permeability: (a) swelling and smearing of the borehole, possibly lowering the permeability values; (b) packer bypass by larger fractures; (c) test section lying in small but intact (without fractures) rock segment, possibly resulting in lower permeability values; and (d) test section lying right at the extensive fractures, possibly measuring higher permeability values. Once the anomalous measurement data were discarded, the numerical model results could be seen to match the remaining field permeability measurement data

  13. 46 CFR 174.090 - Permeability of spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Permeability of spaces. 174.090 Section 174.090 Shipping... Permeability of spaces. When doing the calculations required in § 174.065— (a) The permeability of a floodable space, other than a machinery space, must be as listed in Table 174.090; and (b) Calculations in which a...

  14. 46 CFR 174.090 - Permeability of spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Permeability of spaces. 174.090 Section 174.090 Shipping... Permeability of spaces. When doing the calculations required in § 174.065— (a) The permeability of a floodable space, other than a machinery space, must be as listed in Table 174.090; and (b) Calculations in which a...

  15. 46 CFR 174.090 - Permeability of spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Permeability of spaces. 174.090 Section 174.090 Shipping... Permeability of spaces. When doing the calculations required in § 174.065— (a) The permeability of a floodable space, other than a machinery space, must be as listed in Table 174.090; and (b) Calculations in which a...

  16. 46 CFR 174.090 - Permeability of spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Permeability of spaces. 174.090 Section 174.090 Shipping... Permeability of spaces. When doing the calculations required in § 174.065— (a) The permeability of a floodable space, other than a machinery space, must be as listed in Table 174.090; and (b) Calculations in which a...

  17. 46 CFR 172.140 - Permeability of spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Permeability of spaces. 172.140 Section 172.140 Shipping... Subchapter O of This Chapter § 172.140 Permeability of spaces. (a) When doing the calculations required in § 172.130, the permeability of a floodable space other than a machinery space must be as listed in Table...

  18. 46 CFR 172.185 - Permeability of spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Permeability of spaces. 172.185 Section 172.185 Shipping... Under Subchapter O of This Chapter § 172.185 Permeability of spaces. (a) When doing the calculations required in § 172.170, the permeability of a floodable space other than a machinery space must be as listed...

  19. 46 CFR 172.185 - Permeability of spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Permeability of spaces. 172.185 Section 172.185 Shipping... Under Subchapter O of This Chapter § 172.185 Permeability of spaces. (a) When doing the calculations required in § 172.170, the permeability of a floodable space other than a machinery space must be as listed...

  20. 46 CFR 172.185 - Permeability of spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Permeability of spaces. 172.185 Section 172.185 Shipping... Under Subchapter O of This Chapter § 172.185 Permeability of spaces. (a) When doing the calculations required in § 172.170, the permeability of a floodable space other than a machinery space must be as listed...

  1. 46 CFR 172.140 - Permeability of spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Permeability of spaces. 172.140 Section 172.140 Shipping... Subchapter O of This Chapter § 172.140 Permeability of spaces. (a) When doing the calculations required in § 172.130, the permeability of a floodable space other than a machinery space must be as listed in Table...

  2. 46 CFR 172.140 - Permeability of spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Permeability of spaces. 172.140 Section 172.140 Shipping... Subchapter O of This Chapter § 172.140 Permeability of spaces. (a) When doing the calculations required in § 172.130, the permeability of a floodable space other than a machinery space must be as listed in Table...

  3. 46 CFR 172.140 - Permeability of spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Permeability of spaces. 172.140 Section 172.140 Shipping... Subchapter O of This Chapter § 172.140 Permeability of spaces. (a) When doing the calculations required in § 172.130, the permeability of a floodable space other than a machinery space must be as listed in Table...

  4. 46 CFR 172.140 - Permeability of spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Permeability of spaces. 172.140 Section 172.140 Shipping... Subchapter O of This Chapter § 172.140 Permeability of spaces. (a) When doing the calculations required in § 172.130, the permeability of a floodable space other than a machinery space must be as listed in Table...

  5. 46 CFR 174.090 - Permeability of spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Permeability of spaces. 174.090 Section 174.090 Shipping... Permeability of spaces. When doing the calculations required in § 174.065— (a) The permeability of a floodable space, other than a machinery space, must be as listed in Table 174.090; and (b) Calculations in which a...

  6. 46 CFR 172.185 - Permeability of spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Permeability of spaces. 172.185 Section 172.185 Shipping... Under Subchapter O of This Chapter § 172.185 Permeability of spaces. (a) When doing the calculations required in § 172.170, the permeability of a floodable space other than a machinery space must be as listed...

  7. 46 CFR 172.185 - Permeability of spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Permeability of spaces. 172.185 Section 172.185 Shipping... Under Subchapter O of This Chapter § 172.185 Permeability of spaces. (a) When doing the calculations required in § 172.170, the permeability of a floodable space other than a machinery space must be as listed...

  8. Polymer as Permeability Modifier in Porous Media

    NASA Astrophysics Data System (ADS)

    Parsa, S.; Weitz, D.

    2017-12-01

    Polymer flow through porous media is of particular interest in applications such as enhanced oil recovery and ground water remediation. We measure the effects of polymer flow on the permeability and local velocity distribution of a single phase flow in 3D micromodel of porous media using confocal microscopy and bulk permeability measurement. Our measurements show considerable reduction in permeability and increased velocity fluctuations with fluid velocities being diverted in some pores after polymer flow. We also find that the average velocity in the medium at constant imposed flow rate scales with the inverse square root of permeability.

  9. The influence of anisotropy on preferential flow in landslides

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; Barontini, Stefano; Bogaard, Thom A.; Shao, Wei

    2015-04-01

    Infiltration is one of the most important landslides triggering mechanisms and it is controlled by the hydraulic characteristics of the soil, which depends on the degree of saturation, the existence of preferential flow paths and by anisotropy. Many soils, indeed, exhibit a certain degree of anisotropy due to the stratification associated with soil forming process. Recently, various authors investigated the effect of rainfall in layered soils and its effect on rainfall triggered landslides by means of experimental, conceptual, numerical and theoretical approaches. However, the combined effect of anisotropy and preferential flow on infiltration process and related to rainfall induced landslides has, according to the authors best knowledge, not been studied yet. Aiming at better understanding the soil hydrological processes which take place during an infiltration process, the stability of a synthetic hill slope is numerically investigated. The geometry we considered for the model is a slope with two different layers: the upper soil layer consists of sandy loam, while the lower soil layer is made out of clay. The geometry was studied using both a single permeability and a dual permeability model. In the first case the hydraulic conductivity at saturation was considered isotropic, equal in all directions. Then the vertical component of the hydraulic conductivity tensor at saturation was reduced, while in the third scenario the horizontal component was reduced. In this way the anisotropy effects on both the principal directions were studied. In the dual permeability model, the influence of the anisotropy was considered only in the preferential flow domain, and the hydraulic conductivity at saturation of the soil matrix domain was defined as being isotropic. In order to evaluate also the effects of rainfall intensity on the slope, two different rainfall events were studied: a low intensity rainfall with a long time duration (2 mmh-1,150 h) and an high intensity rainfall

  10. Surface-subsurface turbulent interaction at the interface of a permeable bed: influence of the wall permeability

    NASA Astrophysics Data System (ADS)

    Kim, T.; Blois, G.; Best, J.; Christensen, K. T.

    2017-12-01

    Coarse-gravel river beds possess a high degree of permeability. Flow interactions between surface and subsurface flow across the bed interface is key to a number of natural processes occurring in the hyporheic zone. In fact, it is increasingly recognized that these interactions drive mass, momentum and energy transport across the interface, and consequently control biochemical processes as well as stability of sediments. The current study explores the role of the wall permeability in surface and subsurface flow interaction under controlled experimental conditions on a physical model of a gravel bed. The present wall model was constructed by five layers of cubically arranged spheres (d=25.4mm, where d is a diameter) providing 48% of porosity. Surface topography was removed by cutting half of a diameter on the top layer of spheres to render the flow surface smooth and highlight the impact of the permeability on the overlying flow. An impermeable smooth wall was also considered as a baseline of comparison for the permeable wall flow. To obtain basic flow statistics, low-frame-rate high-resolution PIV measurements were performed first in the streamwise-wall-normal (x-y) plane and refractive-index matching was employed to optically access the flow within the permeable wall. Time-resolved PIV experiments in the same facility were followed to investigate the flow interaction across the wall interface in sptaio-temporal domain. In this paper, a detailed analysis of the first and second order velocity statistics as well as the amplitude modulation for the flow overlying the permeable smooth wall will be presented.

  11. Using Soil Apparent Electrical Conductivity to Optimize Sampling of Soil Penetration Resistance and to Improve the Estimations of Spatial Patterns of Soil Compaction

    PubMed Central

    Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Bueno Lema, Javier; Valcárcel Armesto, Montserrat; Silva, Ênio Farias França e

    2014-01-01

    This study presents a combined application of an EM38DD for assessing soil apparent electrical conductivity (ECa) and a dual-sensor vertical penetrometer Veris-3000 for measuring soil electrical conductivity (ECveris) and soil resistance to penetration (PR). The measurements were made at a 6 ha field cropped with forage maize under no-tillage after sowing and located in Northwestern Spain. The objective was to use data from ECa for improving the estimation of soil PR. First, data of ECa were used to determine the optimized sampling scheme of the soil PR in 40 points. Then, correlation analysis showed a significant negative relationship between soil PR and ECa, ranging from −0.36 to −0.70 for the studied soil layers. The spatial dependence of soil PR was best described by spherical models in most soil layers. However, below 0.50 m the spatial pattern of soil PR showed pure nugget effect, which could be due to the limited number of PR data used in these layers as the values of this parameter often were above the range measured by our equipment (5.5 MPa). The use of ECa as secondary variable slightly improved the estimation of PR by universal cokriging, when compared with kriging. PMID:25610899

  12. Emergent Imaging and Geospatial Technologies for Soil Investigations

    NASA Technical Reports Server (NTRS)

    DeGloria, Stephen D.; Beaudette, Dylan E.; Irons, James R.; Libohova, Zamir; O'Neill, Peggy E.; Owens, Phillip R.; Schoeneberger, Philip J.; West, Larry T.; Wysocki, Douglas A.

    2014-01-01

    Soil survey investigations and inventories form the scientific basis for a wide spectrum of agronomic and environmental management programs. Soil data and information help formulate resource conservation policies of federal, state, and local governments that seek to sustain our agricultural production system while enhancing environmental quality on both public and private lands. The dual challenges of increasing agricultural production and ensuring environmental integrity require electronically available soil inventory data with both spatial and attribute quality. Meeting this societal need in part depends on development and evaluation of new methods for updating and maintaining soil inventories for sophisticated applications, and implementing an effective framework to conceptualize and communicate tacit knowledge from soil scientists to numerous stakeholders.

  13. Permeability-porosity relationship for compaction of a low-permeability creeping material : Experimental evaluation using a single transient test

    NASA Astrophysics Data System (ADS)

    Ghabezloo, S.; Sulem, J.; Saint-Marc, J.

    2009-04-01

    It is well-known that there is no unique permeability-porosity relationship that can be applied to all porous materials. For a given evolution process that changes both permeability and porosity of a porous material, for example elastic or plastic compaction, microcracking or chemical alteration, it is usually assumed that there is an empirical relationship in the form of a power-law or exponential relationship between these parameters. The coefficients of these empirical relationships depend strongly on the properties of the material and of the evolution process. For the case of the power-law permeability-porosity relationship, a review of the literature shows that the exponent of this relation may be integer or non-integer, constant or variable, and the reported values of exponent vary between 1.1 and 25.4 for different materials and evolution processes, but no clear correlation between the exponenet and the petrophysical properties could be found. This wide variability of the permeability-porosity relationship highlights the necessity of experimental evaluation of this relationship for each material and evolution process. An experimental method is presented for the evaluation of a permeability-porosity relationship in a low-permeability porous material using the results of a single transient test. This method accounts for both elastic and non-elastic deformations of the sample during the test and is applied to a hardened class G oil well cement paste. An initial hydrostatic undrained loading is applied to the sample which generates an excess pore pressure, related to the applied hydrostatic stress by the Skempton coefficient of the material. The generated excess pore pressure is then released at one end of the sample while monitoring the pore pressure at the other end and the radial strain in the middle of the sample during the dissipation of the pore pressure. These measurements are back analysed using a finite-difference numerical scheme to evaluate the

  14. Active intestinal drug absorption and the solubility-permeability interplay.

    PubMed

    Porat, Daniel; Dahan, Arik

    2018-02-15

    The solubility-permeability interplay deals with the question: what is the concomitant effect on the drug's apparent permeability when increasing the apparent solubility with a solubility-enabling formulation? The solubility and the permeability are closely related, exhibit certain interplay between them, and ongoing research throughout the past decade shows that treating the one irrespectively of the other may be insufficient. The aim of this article is to provide an overview of the current knowledge on the solubility-permeability interplay when using solubility-enabling formulations for oral lipophilic drugs, highlighting active permeability aspects. A solubility-enabling formulation may affect the permeability in opposite directions; the passive permeability may decrease as a result of the apparent solubility increase, according to the solubility-permeability tradeoff, but at the same time, certain components of the formulation may inhibit/saturate efflux transporters (when relevant), resulting in significant apparent permeability increase. In these cases, excipients with both solubilizing and e.g. P-gp inhibitory properties may lead to concomitant increase of both the solubility and the permeability. Intelligent development of such formulation will account for the simultaneous effects of the excipients' nature/concentrations on the two arms composing the overall permeability: the passive and the active arms. Overall, thorough mechanistic understanding of the various factors involved in the solubility-permeability interplay may allow developing better solubility-enabling formulations, thereby exploiting the advantages analyzed in this article, offering oral delivery solution even for BCS class IV drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Role of P-glycoprotein and permeability upon the brain distribution and pharmacodynamics of etamicastat: a comparison with nepicastat.

    PubMed

    Loureiro, Ana I; Bonifácio, Maria João; Fernandes-Lopes, Carlos; Pires, Nuno; Igreja, Bruno; Wright, Lyndon C; Soares-da-Silva, Patrício

    2015-01-01

    1. This study explores the impact of permeability and P-glycoprotein (P-gp) efflux, upon brain exposure to etamicastat, a new dopamine-β-hydroxylase (DBH) inhibitor and consequently brain levels of catecholamines. 2. Brain exposure to etamicastat (10 mg/kg), following intravenous administration to mice, was residual and upon oral administration of the same dose no compound was detected, concurring with the absence of effects upon brain catecholamines. The intravenous co-administration of elacridar (1.0 mg/kg), a known P-gp/BCRP dual modulator, significantly increased brain etamicastat exposure, but the levels attained were very low when compared to those of nepicastat, a centrally active DBH inhibitor. 3. In vitro permeability studies from apical-to-basal direction conducted in Caco-2 cells and MDCK-II cells showed that etamicastat apparent permeability was 1.2 × 10(-5) and 1.1 × 10(-6 )cm/s, respectively, 5- and 50-fold lower as compared to nepicastat. The secretory efflux ratio in MDCK-II cells overexpressing human P-gp showed an efflux ratio greater than 2, for both compounds, which was significantly decreased by elacridar. Despite its lower bioavailability and higher clearance, as compared to nepicastat, etamicastat showed preferential distribution to peripheral tissues and high plasma free fraction (15.5%), which may explain its effects upon peripheral DBH and catecholamine levels. 4. Though P-gp-mediated efflux may contribute to the limited brain penetration of etamicastat, the low permeability along with the pharmacokinetic properties of etamicastat may be perceived as the main contributors for its peripheral selectivity, which is advantageous for a cardiovascular drug candidate.

  16. Long-term Metal Performance of Three Permeable Pavements

    EPA Science Inventory

    EPA constructed a 4,000-m2 parking lot surfaced with three permeable pavements (permeable interlocking concrete pavers, pervious concrete, and porous asphalt) on the Edison Environmental Center in Edison, NJ in 2009. Samples from each permeable pavement infiltrate were collected...

  17. Permeable Pavement Research - Edison, New Jersey

    EPA Science Inventory

    This presentation provides the background and summary of results collected at the permeable pavement parking lot monitored at the EPA facility in Edison, NJ. This parking lot is surfaced with permeable interlocking concrete pavers (PICP), pervious concrete, and porous asphalt. ...

  18. Small intestinal permeability in patients with eosinophilic oesophagitis during active phase and remission.

    PubMed

    Katzka, David A; Geno, Debra M; Blair, Hilary E; Lamsam, Jesse L; Alexander, Jeffrey A; Camilleri, Michael

    2015-04-01

    Eosinophilic oesophagitis (EoE) is presumed to be an isolated oesophageal disease; yet other allergic diseases associated with eosinophilic infiltration of target tissues, such as asthma and eczema, show perturbed functions of other sites that may be involved in the diathesis of allergy modulation. To analyse small intestinal permeability in patients with active EoE and in a separate group of patients in remission. Small bowel permeability was determined using a dual sugar method by calculating lactulose:mannitol (L:M) ratio in 17 patients who met consensus criteria for active EoE (>15 eos/HPF) and 8 patients in remission (<5 eos/HPF). Data from 28 healthy controls was used for comparison. Patients with active EoE had significantly higher L:M ratios when compared to controls (0.045 vs. 0.033, p<0.001) and to EoE in remission (0.041 vs. 0.027, p<.001). There was no significant difference in L:M between the group with EoEin remission and healthy controls. The current data show that L:M ratio of 0.033 also provides a reasonable cut-off that defined the active EoE group compared to patients in remission. The main component explaining the change in L:M ratio was increased absorption (and excretion) of lactulose ((1601 ± 106 ug) when compared to the EoE remission (969 ± 91 ug) and control (1043 ± 92 ug, p<.001) groups. Small bowel permeability is overall increased in patients with active EoE, and is normal in patients with EoE in remission when compared to healthy controls. The role of the small bowel in active EoE deserves further investigation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Hybrid joule heating/electro-osmosis process for extracting contaminants from soil layers

    DOEpatents

    Carrigan, Charles R.; Nitao, John J.

    2003-06-10

    Joule (ohmic) heating and electro-osmosis are combined in a hybrid process for removal of both water-soluble contaminants and non-aqueous phase liquids from contaminated, low-permeability soil formations that are saturated. Central to this hybrid process is the partial desaturation of the formation or layer using electro-osmosis to remove a portion of the pore fluids by induction of a ground water flow to extraction wells. Joule heating is then performed on a partially desaturated formation. The joule heating and electro-osmosis operations can be carried out simultaneously or sequentially if the desaturation by electro-osmosis occurs initially. Joule heating of the desaturated formation results in a very effective transfer or partitioning of liquid state contaminants to the vapor phase. The heating also substantially increases the vapor phase pressure in the porous formation. As a result, the contaminant laden vapor phase is forced out into soil layers of a higher permeability where other conventional removal processes, such as steam stripping or ground water extraction can be used to capture the contaminants. This hybrid process is more energy efficient than joule heating or steam stripping for cleaning low permeability formations and can share electrodes to minimize facility costs.

  20. Structural and conformational determinants of macrocycle cell permeability.

    PubMed

    Over, Björn; Matsson, Pär; Tyrchan, Christian; Artursson, Per; Doak, Bradley C; Foley, Michael A; Hilgendorf, Constanze; Johnston, Stephen E; Lee, Maurice D; Lewis, Richard J; McCarren, Patrick; Muncipinto, Giovanni; Norinder, Ulf; Perry, Matthew W D; Duvall, Jeremy R; Kihlberg, Jan

    2016-12-01

    Macrocycles are of increasing interest as chemical probes and drugs for intractable targets like protein-protein interactions, but the determinants of their cell permeability and oral absorption are poorly understood. To enable rational design of cell-permeable macrocycles, we generated an extensive data set under consistent experimental conditions for more than 200 non-peptidic, de novo-designed macrocycles from the Broad Institute's diversity-oriented screening collection. This revealed how specific functional groups, substituents and molecular properties impact cell permeability. Analysis of energy-minimized structures for stereo- and regioisomeric sets provided fundamental insight into how dynamic, intramolecular interactions in the 3D conformations of macrocycles may be linked to physicochemical properties and permeability. Combined use of quantitative structure-permeability modeling and the procedure for conformational analysis now, for the first time, provides chemists with a rational approach to design cell-permeable non-peptidic macrocycles with potential for oral absorption.

  1. Update to permeable pavement research at the Edison ...

    EPA Pesticide Factsheets

    Abstract: The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable pavers; porous concrete; and permeable asphalt. The parking lot is instrumented with water content reflectometers and thermistors for continuous monitoring and has four lined sections for each surface to capture permeable pavement infiltrate for water quality analyses.Previous technical releases concerning the demonstration site focused on monitoring techniques, observed chloride and nutrient concentrations, and infiltration and evaporation rates. Thispresentation summarizes past findings and addresses current water quality efforts. This presentation summarizes past findings and addresses current water quality efforts.

  2. Minimizing soil impacts from forest operations

    Treesearch

    Emily A. Carter

    2011-01-01

    Several studies were conducted by Forest Service researchers and University and Industrial collaborators that investigated the potential for lessening soil surface disturbances and compaction in forest operations through modifications of machine components or harvest systems. Specific machine modifications included change in tire size, use of dual tire systems,...

  3. Lunar electrical conductivity and magnetic permeability

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1975-01-01

    Improved analytical techniques are applied to a large Apollo magnetometer data set to yield values of electroconductivity, temperature, magnetic permeability, and iron abundance. Average bulk electroconductivity of the moon is calculated to be .0007 mho/m; a rapid increase with depth to about .003 mho/m within 250 km is indicated. The temperature profile, obtained from the electroconductivity profile for olivine, indicates high lunar temperatures at relatively shallow depths. Magnetic permeability of the moon relative to its environment is calculated to be 1.008 plus or minus .005; a permeability relative to free space of 1.012 plus 0.011, minus 0.008 is obtained. Lunar iron abundances corresponding to this permeability value are 2.5 plus 2.3, minus 1.7 wt% free iron and 5.0-13.5 wt% total iron for a moon composed of a combination of free iron, olivine, and orthopyroxene.

  4. Measuring Permeability of Composite Cryotank Laminants

    NASA Technical Reports Server (NTRS)

    Oliver, Stanley T.; Selvidge, Shawn; Watwood, Michael C.

    2004-01-01

    This paper describes a test method developed to identify whether certain materials and material systems are suitable candidates for large pressurized reusable cryogenic tanks intended for use in current and future manned launch systems. It provides a quick way to screen numerous candidate materials for permeability under anticipated loading environments consistent with flight conditions, as well as addressing reusability issues. cryogenic tank, where the major design issue was hydrogen permeability. It was successfully used to evaluate samples subjected to biaxial loading while maintaining test temperatures near liquid hydrogen. After each sample was thermally preconditioned, a cyclic pressure load was applied to simulate the in-plane strain. First permeability was measured while a sample was under load. Then the sample was unloaded and allowed to return to ambient temperature. The test was repeated to simulate reusability, in order to evaluate its effects on material permeability.

  5. Permeability of compacting porous lavas

    NASA Astrophysics Data System (ADS)

    Ashwell, P. A.; Kendrick, J. E.; Lavallée, Y.; Kennedy, B. M.; Hess, K.-U.; von Aulock, F. W.; Wadsworth, F. B.; Vasseur, J.; Dingwell, D. B.

    2015-03-01

    The highly transient nature of outgassing commonly observed at volcanoes is in part controlled by the permeability of lava domes and shallow conduits. Lava domes generally consist of a porous outer carapace surrounding a denser lava core with internal shear zones of variable porosity. Here we examine densification using uniaxial compression experiments on variably crystalline and porous rhyolitic dome lavas from the Taupo Volcanic Zone. Experiments were conducted at 900°C and an applied stress of 3 MPa to 60% strain, while monitoring acoustic emissions to track cracking. The evolution of the porous network was assessed via X-ray computed tomography, He-pycnometry, and relative gas permeability. High starting connected porosities led to low apparent viscosities and high strain rates, initially accompanied by abundant acoustic emissions. As compaction ensued, the lavas evolved; apparent viscosity increased and strain rate decreased due to strain hardening of the suspensions. Permeability fluctuations resulted from the interplay between viscous flow and brittle failure. Where phenocrysts were abundant, cracks had limited spatial extent, and pore closure decreased axial and radial permeability proportionally, maintaining the initial anisotropy. In crystal-poor lavas, axial cracks had a more profound effect, and permeability anisotropy switched to favor axial flow. Irrespective of porosity, both crystalline samples compacted to a threshold minimum porosity of 17-19%, whereas the crystal-poor sample did not achieve its compaction limit. This indicates that unconfined loading of porous dome lavas does not necessarily form an impermeable plug and may be hindered, in part by the presence of crystals.

  6. Alterations in Intestinal Permeability After Thermal Injury,

    DTIC Science & Technology

    1992-01-01

    intestinal permeability has been documented in the infected group. Our finding of increased intestinal many clinical states, including celiac disease ...Crohn’s permeability before the episode of infection suggests, but disease , and other intestinal mucosal disorders.6,7 It was does not prove, a causal...permeability to sugars in patients with Crohn’s disease ofresult in endotoxemia only in those patients who develop the terminal ileus and colon. Digestion

  7. Green roof soil system affected by soil structural changes: A project initiation

    NASA Astrophysics Data System (ADS)

    Jelínková, Vladimíra; Dohnal, Michal; Šácha, Jan; Šebestová, Jana; Sněhota, Michal

    2014-05-01

    Anthropogenic soil systems and structures such as green roofs, permeable or grassed pavements comprise appreciable part of the urban watersheds and are considered to be beneficial regarding to numerous aspects (e.g. carbon dioxide cycle, microclimate, reducing solar absorbance and storm water). Expected performance of these systems is significantly affected by water and heat regimes that are primarily defined by technology and materials used for system construction, local climate condition, amount of precipitation, the orientation and type of the vegetation cover. The benefits and potencies of anthropogenic soil systems could be considerably threatened in case when exposed to structural changes of thin top soil layer in time. Extensive green roof together with experimental green roof segment was established and advanced automated monitoring system of micrometeorological variables was set-up at the experimental site of University Centre for Energy Efficient Buildings as an interdisciplinary research facility of the Czech Technical University in Prague. The key objectives of the project are (i) to characterize hydraulic and thermal properties of soil substrate studied, (ii) to establish seasonal dynamics of water and heat in selected soil systems from continuous monitoring of relevant variables, (iii) to detect structural changes with the use of X-ray Computed Tomography, (iv) to identify with the help of numerical modeling and acquired datasets how water and heat dynamics in anthropogenic soil systems are affected by soil structural changes. Achievements of the objectives will advance understanding of the anthropogenic soil systems behavior in conurbations with the temperate climate.

  8. Soil architecture relationships with dynamic soil physical processes: a conceptual study using natural, artificial, and 3D-printed soil cores

    NASA Astrophysics Data System (ADS)

    Lamandé, Mathieu; Schjønning, Per; Dal Ferro, Nicola; Morari, Francesco

    2017-04-01

    Pore system architecture is a key feature for understanding physical, biological and chemical processes in soils. Development of visualisation technics, especially x-ray CT, during recent years has been useful in describing the complex relationships between soil architecture and soil functions. We believe that combining visualization with physical models is a step further towards a better understanding of these relationships. We conducted a concept study using natural, artificial and 3D-printed soil cores. Eight natural soil cores (100 cm3) were sampled in a cultivated stagnic Luvisol at two depths (topsoil and subsoil), representing contrasting soil pore systems. Cylinders (100 cm3) were produced from plastic or from autoclaved aerated concrete. Holes of diameters 1.5 and 3 mm were drilled in the cylinder direction for the plastic cylinder and for one of the AAC cylinders. All natural and artificial cores were scanned in a micro x-ray CT scanner at a resolution of 35 µm. The reconstructed image of each soil core was printed with 3D multijet printing technology at a resolution of 29 µm. In some reconstructed digital volumes of the natural soil cores, pores of different sizes (equivalent diameter of 35, 70, 100, and 200 µm) were removed before additional 3D printing. Effective air-filled porosity, Darcian air permeability, and oxygen diffusion were measured on all natural, artificial and printed cores. The comparison of the natural and the artificial cores emphasized the difference in pore architecture between topsoil (sponge like) and subsoil (dominated by large vertical macropores). This study showed the high potential of using printed soil cores for understanding soil pore functions. The results confirm the suitability of the Ball model partitioning the pore system into arterial, marginal and remote pores to describe effects of soil structure on gas transport.

  9. Studies on unsaturated flow in dual-scale fiber fabrics

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Yan, Shilin; Li, Yongjing

    2018-03-01

    Fiber fabrics in liquid composite molding (LCM) can be recognized as a dual-scale structure. As sink theory developed, this unsaturated flow behavior has already been simulated successfully; however, most of simulated results based on a unit cell under ideal status, thus making results were not agreement with experiment. In this study, an experimental method to establish sink function was proposed. After compared the simulation results by this sink function, it shows high accuracy with the experimental data. Subsequently, the key influencing factors for unsaturated flow have been further investigated; results show that the filling time for unsaturated flow was much longer than saturated flow. In addition, the injection pressure and permeability were the key factors lead to unsaturated flow.

  10. Honeycomb Core Permeability Under Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Raman, V. V.; Venkat, Venki S.; Sankaran, Sankara N.

    1997-01-01

    A method for characterizing the air permeability of sandwich core materials as a function of applied shear stress was developed. The core material for the test specimens was either Hexcel HRP-3/16-8.0 and or DuPont Korex-1/8-4.5 and was nominally one-half inch thick and six inches square. The facesheets where made of Hercules' AS4/8552 graphite/epoxy (Gr/Ep) composites and were nominally 0.059-in. thick. Cytec's Metalbond 1515-3M epoxy film adhesive was used for co-curing the facesheets to the core. The permeability of the specimens during both static (tension) and dynamic (reversed and non-reversed) shear loads were measured. The permeability was measured as the rate of air flow through the core from a circular 1-in2 area of the core exposed to an air pressure of 10.0 psig. In both the static and dynamic testing, the Korex core experienced sudden increases in core permeability corresponding to a core catastrophic failure, while the URP core experienced a gradual increase in the permeability prior to core failure. The Korex core failed at lower loads than the HRP core both in the transverse and ribbon directions.

  11. Radar response to vegetation. [soil moisture mapping via microwave backscattering

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1975-01-01

    Active microwave measurements of vegetation backscatter were conducted to determine the utility of radar in mapping soil moisture through vegetation and mapping crop types. Using a truck-mounted boom, spectral response data were obtained for four crop types (corn, milo, soybeans, and alfalfa) over the 4-8 GHz frequency band, at incidence angles of 0 to 70 degrees in 10-degree steps, and for all four linear polarization combinations. Based on a total of 125 data sets covering a wide range of soil moisture, content, system design criteria are proposed for each of the aforementioned objectives. Quantitative soil moisture determination was best achieved at the lower frequency end of the 4-8 GHz band using HH polarized waves in the 5- to 15-degree incidence angle range. A combination of low and high frequency measurements are suggested for classifying crop types. For crop discrimination, a dual-frequency dual-polarization (VV and cross) system operating at incidence angles above 40 degrees is suggested.

  12. Application of soil in forensic science: residual odor and HRD dogs.

    PubMed

    Alexander, Michael B; Hodges, Theresa K; Bytheway, Joan; Aitkenhead-Peterson, Jacqueline A

    2015-04-01

    Decomposing human remains alter the environment through deposition of various compounds comprised of a variety of chemical constituents. Human remains detection (HRD) dogs are trained to indicate the odor of human remains. Residual odor from previously decomposing human remains may remain in the soil and on surfaces long after the remains are gone. This study examined the ability of eight nationally certified HRD dogs (four dual purpose and four single purpose) to detect human remains odor in soil from under decomposing human remains as well as soils which no longer contained human remains, soils which had been cold water extracted and even the extraction fluid itself. The HRD dogs were able to detect the odor of human remains successfully above the level of chance for each soil ranging between 75% and 100% accurate up to 667 days post body removal from soil surface. No significant performance accuracy was found between the dual and single purpose dogs. This finding indicates that even though there may not be anything visually observable to the human eye, residual odor of human remains in soil can be very recalcitrant and therefore detectible by properly trained and credentialed HRD dogs. Further research is warranted to determine the parameters of the HRD dogs capabilities and in determining exactly what they are smelling. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Comparing dynamic recording of infiltration by X-Ray tomography to the results of a dual porosity model for structured soils

    NASA Astrophysics Data System (ADS)

    Lissy, Anne-Sophie; Sammartino, Stephane; Di Pietro, Liliana; Lecompte, François; Ruy, Stephane

    2017-04-01

    With climate change, preferential flow phenomenon in soil could be predominant in Mediterranean zone. Understanding this phenomenon becomes a fundamental issue for preserving the water resource in quantity (drinking water) and quality (pesticide content). Non-invasive imaging technics, as X-ray tomography, allow studying water infiltration in laboratory with time-lapse imaging to visualize preferential flow path in soil columns (Sammartino et al. 2012). The modeling of water flow with a dual porosity model (matrix and macropores) integrates these fast flow phenomena (Ilhem 2014). These models, however needs more explicit links with the soil structure. The comparison of experimental results of infiltration (dynamics images and mass data) and modeling could improve our comprehension of preferential flow phenomenon and allow a better integration of the functional macroporosity (i.e. which drains water infiltration during a rain event) in such mass transfer models (Sammartino et al. 2015). Soil columns (Ø 12 cm - hauteur 13 cm, clay-loamy & medium sandy loam) have been sampled in the field to preserve their structure (field plowed or not). Several rains have been simulated in the laboratory and the last one was performed in an X-ray medical scanner (Siemens Somatom® 128 slices) at the CIRE platform (INRA, Centre - Val de Loire). Total and functional macro porosities were identified from time lapse tridimensional images. Water dynamics in the porosities was characterized from the identification and analysis of voxels filled by water. With an image resolution of 350μm only water in the largest macropores can be identified. The modeling of these experiments was carried out via the VirtualSoil platform (UMR Emmah, Avignon; www6.inra.fr/vsoil) using a water flow model coupling Darcy-Richards and KDW equations (Di Pietro et al., 2003). The simulated water flux drained by macropores is similar to the experimental hydrograph obtained for rainfalls on soils close to the

  14. Liquid-permeable electrode

    DOEpatents

    Folser, George R.

    1980-01-01

    Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

  15. WATSFAR: numerical simulation of soil WATer and Solute fluxes using a FAst and Robust method

    NASA Astrophysics Data System (ADS)

    Crevoisier, David; Voltz, Marc

    2013-04-01

    To simulate the evolution of hydro- and agro-systems, numerous spatialised models are based on a multi-local approach and improvement of simulation accuracy by data-assimilation techniques are now used in many application field. The latest acquisition techniques provide a large amount of experimental data, which increase the efficiency of parameters estimation and inverse modelling approaches. In turn simulations are often run on large temporal and spatial domains which requires a large number of model runs. Eventually, despite the regular increase in computing capacities, the development of fast and robust methods describing the evolution of saturated-unsaturated soil water and solute fluxes is still a challenge. Ross (2003, Agron J; 95:1352-1361) proposed a method, solving 1D Richards' and convection-diffusion equation, that fulfil these characteristics. The method is based on a non iterative approach which reduces the numerical divergence risks and allows the use of coarser spatial and temporal discretisations, while assuring a satisfying accuracy of the results. Crevoisier et al. (2009, Adv Wat Res; 32:936-947) proposed some technical improvements and validated this method on a wider range of agro- pedo- climatic situations. In this poster, we present the simulation code WATSFAR which generalises the Ross method to other mathematical representations of soil water retention curve (i.e. standard and modified van Genuchten model) and includes a dual permeability context (preferential fluxes) for both water and solute transfers. The situations tested are those known to be the less favourable when using standard numerical methods: fine textured and extremely dry soils, intense rainfall and solute fluxes, soils near saturation, ... The results of WATSFAR have been compared with the standard finite element model Hydrus. The analysis of these comparisons highlights two main advantages for WATSFAR, i) robustness: even on fine textured soil or high water and solute

  16. The transition from brittle faulting to cataclastic flow: Permeability evolution

    NASA Astrophysics Data System (ADS)

    Zhu, Wenlu; Wong, Teng-Fong

    1997-02-01

    Triaxial compression experiments were conducted to investigate influences of stress and failure mode on axial permeability of five sandstones with porosities ranging from 15% to 35%. In the cataclastic flow regime, permeability and porosity changes closely track one another. A drastic decrease in permeability was triggered by the onset of shear-enhanced compaction caused by grain crushing and pore collapse. The compactive yield stress C* maps out a boundary in stress space separating two different types of permeability evolution. Before C* is attained, permeability and porosity both decrease with increasing effective mean stress, but they are independent of deviatoric stresses. However, with loading beyond C*, both permeability and porosity changes are strongly dependent on the deviatoric and effective mean stresses. In the brittle faulting regime, permeability and porosity changes are more complex. Before the onset of shear-induced dilation C', both permeability and porosity decrease with increasing effective mean stress. Beyond C', permeability may actually decrease in a dilating rock prior to brittle failure. After the peak stress has been attained, the development of a relatively impermeable shear band causes an accelerated decrease of permeability. Permeability evolution in porous sandstones is compared with that in low-porosity crystalline rocks. A conceptual model for the coupling of deformation and fluid transport is proposed in the form of a deformation-permeability map.

  17. Dual-Energy CT Imaging of Tumor Liposome Delivery After Gold Nanoparticle-Augmented Radiation Therapy

    PubMed Central

    Ashton, Jeffrey R.; Castle, Katherine D.; Qi, Yi; Kirsch, David G.; West, Jennifer L.; Badea, Cristian T.

    2018-01-01

    Gold nanoparticles (AuNPs) are emerging as promising agents for both cancer therapy and computed tomography (CT) imaging. AuNPs absorb x-rays and subsequently release low-energy, short-range photoelectrons during external beam radiation therapy (RT), increasing the local radiation dose. When AuNPs are near tumor vasculature, the additional radiation dose can lead to increased vascular permeability. This work focuses on understanding how tumor vascular permeability is influenced by AuNP-augmented RT, and how this effect can be used to improve the delivery of nanoparticle chemotherapeutics. Methods: Dual-energy CT was used to quantify the accumulation of both liposomal iodine and AuNPs in tumors following AuNP-augmented RT in a mouse model of primary soft tissue sarcoma. Mice were injected with non-targeted AuNPs, RGD-functionalized AuNPs (vascular targeting), or no AuNPs, after which they were treated with varying doses of RT. The mice were injected with either liposomal iodine (for the imaging study) or liposomal doxorubicin (for the treatment study) 24 hours after RT. Increased tumor liposome accumulation was assessed by dual-energy CT (iodine) or by tracking tumor treatment response (doxorubicin). Results: A significant increase in vascular permeability was observed for all groups after 20 Gy RT, for the targeted and non-targeted AuNP groups after 10 Gy RT, and for the vascular-targeted AuNP group after 5 Gy RT. Combining targeted AuNPs with 5 Gy RT and liposomal doxorubicin led to a significant tumor growth delay (tumor doubling time ~ 8 days) compared to AuNP-augmented RT or chemotherapy alone (tumor doubling time ~3-4 days). Conclusions: The addition of vascular-targeted AuNPs significantly improved the treatment effect of liposomal doxorubicin after RT, consistent with the increased liposome accumulation observed in tumors in the imaging study. Using this approach with a liposomal drug delivery system can increase specific tumor delivery of chemotherapeutics

  18. Field tests on biochar to reduce emissions from soil fumigation

    USDA-ARS?s Scientific Manuscript database

    Soil fumigation continues to be one of the most important strategies for pest management in orchards. Although low permeability tarp such as totally impermeable film (TIF) has shown to be the most effective in reducing fumigant emissions, costs are high and tarp disposal is needed after use. The obj...

  19. Measurements, interpretation and climate change effects evaluation for pyroclastic bare soil evaporation

    NASA Astrophysics Data System (ADS)

    Rianna, G.; Pagano, L.; Mercogliano, P.; Montesarchio, M.

    2012-12-01

    A physical model has been designed to achieve the following goals: to mark out the main features of the soil-atmosphere interaction; to quantify the water and energy fluxes through the soil surface during several years; to monitor the trends of the main variables regulating the hydraulic and thermal conditions. It is constituted by a soil volume (about 1mc) exposed to weather forcing; it is instrumented at four depths by sensors for measuring suction, water content and temperature. Therefore, a station allows knowing the meteo variables (rainfall, wind velocity and direction, air temperature, air pressure and relative humidity) and the two directly measurable components of the energy balance at the soil surface (net radiation and soil heat flux). Under the soil specimen, three shear beam load cells measure the soil weight and, hence, because the soil particles weight can be assumed as constant, the sample water storage. As first attempt, the soil surface is kept bare to avoid the complications led by overlapping processes induced by vegetation (interception, transpiration). Since May 2010, the soil involved in testing is pyroclastic material (silty sand) representative of air fall deposits covering a large part of Campania (South Italy) and erupted in the last 10,000 years by different volcanic centres (Phlegrean fields, Vesuvius). Because of their genesis, these soils show peculiar features: high porosity, low weight of soil unit volume, high water retention capacity; they cause an unusual hydraulic behaviour, halfway between coarse and fine soils in terms of saturated hydraulic permeability and mean slope of soil-water characteristic curve. In turn, these elements induce, among other things, that the currently adopted predictive approaches to estimate, for example, infiltration and evaporation processes are not directly suitable for these soils as the available parameters, even for grain sizes comparable to those of pyroclastic soils, fail to reproduce the

  20. Dual-fuel, dual-throat engine preliminary analysis

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.

    1979-01-01

    A propulsion system analysis of the dual fuel, dual throat engine for launch vehicle applications was conducted. Basic dual throat engine characterization data were obtained to allow vehicle optimization studies to be conducted. A preliminary baseline engine system was defined.

  1. Hydrogeological characterization of soil/weathered zone and underlying fractured bedrocks in DNAPL contaminated areas using the electromagnetic flowmeter

    NASA Astrophysics Data System (ADS)

    Kang, E.; Yeo, I.

    2011-12-01

    Flowmeter tests were carried out to characterize hydrogeology at DNAPL contaminated site in Wonju, Korea. Aquifer and slug tests determined hydraulic conductivity of soil/weathered zone and underlying fractured bed rocks to be 2.95×10-6 to 7.11×10-6 m/sec and 9.14×10-7 to 2.59×10-6 m/sec, respectively. Ambient flowmeter tests under natural hydraulic conditions revealed that the inflow and outflow take place through the borehole of soil/weathered zone with a tendency of down flow in the borehole. In particular, the most permeable layer of 22 to 30 m below the surface was found to form a major groundwater flow channel. On the contrary, a slight inflow and outflow was observed in the borehole, and the groundwater that inflows in the bottom section of the fractured bedrock flows up and exits through to the most permeable layer. Hydraulic heads measured at nearby multi-level boreholes confirmed the down flow in the soil/weathered zone and the up flow in fractured bedrocks. It was also revealed that the groundwater flow converges to the most permeable layer. TCE concentration in groundwater was measured at different depths, and in the borehole of the soil/weathered zone, high TCE concentration was found with higher than 10 mg/L near to the water table and decreased to about 6 mg/L with depth. The fractured bedrocks have a relatively constant low TCE concentration through a 20 m thick screen at less than l mg/L. The hydrogeology of the up flow in the soil/weathered zone and the down flow in underlying fractured bedrock leads the groundwater flow, and subsequently TCE plume, mainly to the most permeable layer that also restricts the advective transport of TCE plume to underlying fractured bedrocks. The cross borehole flowmeter test was carried out to find any hydrogeological connection between the soil/weathered zone and underlying fractured bedrocks. When pumping groundwater from the soil/weathered zone, no induced flow by groundwater extraction was observed at the

  2. Detection of semi-volatile organic compounds in permeable pavement infiltrate

    EPA Science Inventory

    Abstract The Edison Environmental Center (EEC) has a research and demonstration permeable parking lot comprised of three different permeable systems: permeable asphalt, porous concrete and interlocking concrete permeable pavers. Water quality and quantity analysis has been ongoin...

  3. Long-term Metal Performance of Three Permeable Pavements ...

    EPA Pesticide Factsheets

    EPA constructed a 4,000-m2 parking lot surfaced with three permeable pavements (permeable interlocking concrete pavers, pervious concrete, and porous asphalt) on the Edison Environmental Center in Edison, NJ in 2009. Samples from each permeable pavement infiltrate were collected for six years beginning in January 2010 and analyzed for twenty-two metals. Although the infiltrate metals concentrations varied by surface, metal concentrations in more than 99% of the permeable pavement infiltrate samples met both the groundwater effluent limitations and maximum contaminant levels in national primary drinking water regulations for barium, chromium, copper, manganese, nickel and zinc. Arsenic, cadmium, lead and antimony met those standards in 60% to 98% of the samples with no measurable difference found among pavements. Aluminum and iron in pervious concrete and porous asphalt infiltrates met standards at more than 90%, however permeable interlocking concrete paver infiltrates have 50% and 93% samples exceeds standards, respectively. Concentrations of arsenic, iron, potassium, lithium, magnesium, antimony, tin, manganese, and zinc in all permeable pavement infiltrates decreased with time, whereas, aluminum, barium, calcium, chromium and strontium in porous asphalt infiltrates increased. Most metal concentrations in permeable pavement infiltrates either exhibited no significant difference between snow/no-snow seasons or showed statistically larger concentrations

  4. Stainless Steel Permeability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchenauer, Dean A.; Karnesky, Richard A.

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of themore » role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.« less

  5. Permeability, storage and hydraulic diffusivity controlled by earthquakes

    NASA Astrophysics Data System (ADS)

    Brodsky, E. E.; Fulton, P. M.; Xue, L.

    2016-12-01

    Earthquakes can increase permeability in fractured rocks. In the farfield, such permeability increases are attributed to seismic waves and can last for months after the initial earthquake. Laboratory studies suggest that unclogging of fractures by the transient flow driven by seismic waves is a viable mechanism. These dynamic permeability increases may contribute to permeability enhancement in the seismic clouds accompanying hydraulic fracking. Permeability enhancement by seismic waves could potentially be engineered and the experiments suggest the process will be most effective at a preferred frequency. We have recently observed similar processes inside active fault zones after major earthquakes. A borehole observatory in the fault that generated the M9.0 2011 Tohoku earthquake reveals a sequence of temperature pulses during the secondary aftershock sequence of an M7.3 aftershock. The pulses are attributed to fluid advection by a flow through a zone of transiently increased permeability. Directly after the M7.3 earthquake, the newly damaged fault zone is highly susceptible to further permeability enhancement, but ultimately heals within a month and becomes no longer as sensitive. The observation suggests that the newly damaged fault zone is more prone to fluid pulsing than would be expected based on the long-term permeability structure. Even longer term healing is seen inside the fault zone of the 2008 M7.9 Wenchuan earthquake. The competition between damage and healing (or clogging and unclogging) results in dynamically controlled permeability, storage and hydraulic diffusivity. Recent measurements of in situ fault zone architecture at the 1-10 meter scale suggest that active fault zones often have hydraulic diffusivities near 10-2 m2/s. This uniformity is true even within the damage zone of the San Andreas fault where permeability and storage increases balance each other to achieve this value of diffusivity over a 400 m wide region. We speculate that fault zones

  6. Permeability hysterisis of limestone during isotropic compression.

    PubMed

    Selvadurai, A P S; Głowacki, A

    2008-01-01

    The evolution of permeability hysterisis in Indiana Limestone during application of isotropic confining pressures up to 60 MPa was measured by conducting one-dimensional constant flow rate tests. These tests were carried out either during monotonic application of the confining pressure or during loading-partial unloading cycles. Irreversible permeability changes occurred during both monotonic and repeated incremental compression of the limestone. Mathematical relationships are developed for describing the evolution of path-dependent permeability during isotropic compression.

  7. Role of mitochondrial permeability transition pores in mitochondrial autophagy.

    PubMed

    Rodriguez-Enriquez, Sara; He, Lihua; Lemasters, John J

    2004-12-01

    During autophagy, cells rid themselves of damaged and superfluous mitochondria, as well as other organelles. This activation of mitochondrial turnover could be the result of changes in the physiological state of mitochondria. Confocal microscopy and fluorescence techniques indicate that onset of mitochondrial permeability transition is one such change. The mitochondrial permeability transition is a reversible phenomenon whereby the mitochondrial inner membrane becomes freely permeable to solutes of less than 1500 Da. At onset of the mitochondrial permeability transition, mitochondria depolarize, uncouple, and undergo large amplitude swelling due to opening of permeability transition pores, which may form by aggregation of damaged, misfolded membrane proteins. When injurious cellular stresses occur, cells may protect themselves using autophagy to remove damaged mitochondria and mutated mitochondrial DNA. Ca(2+) overloading, reactive oxygen and nitrogen species, decreased mitochondrial membrane potential, and oxidation of pyridine nucleotides and glutathione all promote mitochondrial damage and onset of the mitochondrial permeability transition. The mitochondrial permeability transition is also associated with necrosis and apoptosis after a variety of stimuli. This review emphasizes the role of the mitochondrial permeability transition as a key event in mitochondrial autophagy.

  8. Method and apparatus for removing ions from soil

    DOEpatents

    Bibler, Jane P.

    1993-01-01

    A method and apparatus for selectively removing species of ions from an area of soil. Permeable membranes 14 and 18 impregnated with an ion exchange resin that is specific to one or more species of chemical ions are inserted into ground 12 in close proximity to, and on opposing sides of, a soil area of interest 22. An electric potential is applied across electrodes 26 and 28 to cause the migration of ions out of soil area 22 toward the membranes 14 and 18. Preferably, the resin exchanges ions of sodium or hydrogen for ions of mercury that it captures from soil area 22. Once membranes 14 and 18 become substantially saturated with mercury ions, the potential applied across electrodes 26 and 28 is discontinued and membranes 14 and 18 are preferably removed from soil 12 for storage or recovery of the ions. The membranes are also preferably impregnated with a buffer to inhibit the effect of the hydrolysis of water by current from the electrodes.

  9. Detecting Defects Within Soil-Bentonite Slurry Cutoff Walls Using Electrical Resistivity Methods

    NASA Astrophysics Data System (ADS)

    Aborn, L.; Jacob, R. W.; Mucelli, A.

    2016-12-01

    Installed in the subsurface, vertical cutoff walls may limit groundwater movement. The effectiveness of these walls can be undermined by defects, for example high permeability material, within the wall. An efficient way of detecting these defects in a soil-bentonite slurry cutoff wall has yet to be established. We installed an approximately 200-meter long and 7-meter deep soil-bentonite slurry cutoff wall for the purposes of research. The wall was constructed adjacent to a natural wetland, the Montandon Marsh near Lewisburg, PA. The wall is composed of soil-bentonite backfill and was designed to be a typical low permeability material. We evaluate the capability of non-invasive geophysical techniques, specifically electrical resistivity, to detect high permeability defects that are expected to have higher electrical resistivity values than the backfill material. The laboratory measured electrical resistivity of the backfill used for construction was 12.27-ohm meters. During construction, designed defects of saturated fine-grained sand bags were deployed at different positions and depths within the wall. To create larger defects multiple bags were tied together. Laboratory resistivity testing of the sand and the filled sand bags indicates values between 125-ohm meters at full saturation and 285-ohm meters at partial saturation. Post construction, we collected electrical resistivity data using a 28-channel system along the centerline of the cutoff wall, which indicated the backfill material to have a resistivity value of 15-ohm meters. The electrical resistivity profile was affected by the sidewalls of the trench, as expected, which may explain the difference between laboratory results and field measurements. To minimize the sidewalls obscuring the defects, we developed electrodes that are pushed into the backfill at different depths to collect subsurface resistivity. Different arrays and electrode spacings are being tested. Our presentation will report the most

  10. Low-concentration tailing and subsequent quicklime-enhanced remediation of volatile chlorinated hydrocarbon-contaminated soils by mechanical soil aeration.

    PubMed

    Ma, Yan; Du, Xiaoming; Shi, Yi; Xu, Zhu; Fang, Jidun; Li, Zheng; Li, Fasheng

    2015-02-01

    Mechanical soil aeration has long been regarded as an effective ex-situ remediation technique and as suitable for remediation of large-scale sites contaminated by volatile organic compounds (VOCs) at low cost. However, it has been reported that the removal efficiency of VOCs from soil is relatively low in the late stages of remediation, in association with tailing. Tailing may extend the remediation time required; moreover, it typically results in the presence of contaminants residues at levels far exceeding regulations. In this context, the present study aimed to discuss the tailing that occurs during the process of remediation of soils contaminated artificially with volatile chlorinated hydrocarbons (VCHs) and to assess possible quicklime-enhanced removal mechanisms. The results revealed the following conclusions. First, temperature and aeration rate can be important controls on both the timing of appearance of tailing and the levels of residual contaminants. Furthermore, the addition of quicklime to soil during tailing can reduce the residual concentrations rapidly to below the remedial target values required for site remediation. Finally, mechanical soil aeration can be enhanced using quicklime, which can improve the volatilization of VCHs via increasing soil temperature, reducing soil moisture, and enhancing soil permeability. Our findings give a basic understanding to the elimination of the tailing in the application of mechanical soil aeration, particularly for VOCs-contaminated soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Caprock integrity susceptibility to permeable fracture creation

    DOE PAGES

    Frash, Luke; Carey, James William; Ickes, Timothy Lee; ...

    2017-07-14

    Caprock leakage is of crucial concern for environmentally and economically sustainable development of carbon dioxide sequestration and utilization operations. One potential leakage pathway is through fractures or faults that penetrate the caprock. In this study, we investigate the permeability induced by fracturing initially intact Marcellus shale outcrop specimens at stressed conditions using a triaxial direct-shear method. Measurements of induced permeability, fracture geometry, displacement, and applied stresses were all obtained at stressed conditions to investigate the coupled processes of fracturing and fluid flow as may occur in the subsurface. Fracture geometry was directly observed at stressed conditions using X-ray radiography video.more » Numerical simulation was performed to evaluate the stress distribution developed in the experiments. Our experiments show that permeability induced by fracturing is strongly dependent on the stresses at which the fractures are created, the magnitude of shearing displacement, and the duration of flow. The strongest permeability contrast was observed when comparing specimens fractured at low stress to others fractured at higher stress. Measureable fracture permeability decreased by up to 7 orders of magnitude over a corresponding triaxial confining stress range of 3.5 MPa to 30 MPa. These results show that increasing stress, depth, and time are all significant permeability inhibitors that may limit potential leakage through fractured caprock.« less

  12. Caprock integrity susceptibility to permeable fracture creation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frash, Luke; Carey, James William; Ickes, Timothy Lee

    Caprock leakage is of crucial concern for environmentally and economically sustainable development of carbon dioxide sequestration and utilization operations. One potential leakage pathway is through fractures or faults that penetrate the caprock. In this study, we investigate the permeability induced by fracturing initially intact Marcellus shale outcrop specimens at stressed conditions using a triaxial direct-shear method. Measurements of induced permeability, fracture geometry, displacement, and applied stresses were all obtained at stressed conditions to investigate the coupled processes of fracturing and fluid flow as may occur in the subsurface. Fracture geometry was directly observed at stressed conditions using X-ray radiography video.more » Numerical simulation was performed to evaluate the stress distribution developed in the experiments. Our experiments show that permeability induced by fracturing is strongly dependent on the stresses at which the fractures are created, the magnitude of shearing displacement, and the duration of flow. The strongest permeability contrast was observed when comparing specimens fractured at low stress to others fractured at higher stress. Measureable fracture permeability decreased by up to 7 orders of magnitude over a corresponding triaxial confining stress range of 3.5 MPa to 30 MPa. These results show that increasing stress, depth, and time are all significant permeability inhibitors that may limit potential leakage through fractured caprock.« less

  13. Cell permeability beyond the rule of 5.

    PubMed

    Matsson, Pär; Doak, Bradley C; Over, Björn; Kihlberg, Jan

    2016-06-01

    Drug discovery for difficult targets that have large and flat binding sites is often better suited to compounds beyond the "rule of 5" (bRo5). However, such compounds carry higher pharmacokinetic risks, such as low solubility and permeability, and increased efflux and metabolism. Interestingly, recent drug approvals and studies suggest that cell permeable and orally bioavailable drugs can be discovered far into bRo5 space. Tactics such as reduction or shielding of polarity by N-methylation, bulky side chains and intramolecular hydrogen bonds may be used to increase cell permeability in this space, but often results in decreased solubility. Conformationally flexible compounds can, however, combine high permeability and solubility, properties that are keys for cell permeability and intestinal absorption. Recent developments in computational conformational analysis will aid design of such compounds and hence prediction of cell permeability. Transporter mediated efflux occurs for most investigated drugs in bRo5 space, however it is commonly overcome by high local intestinal concentrations on oral administration. In contrast, there is little data to support significant impact of transporter-mediated intestinal absorption in bRo5 space. Current knowledge of compound properties that govern transporter effects of bRo5 drugs is limited and requires further fundamental and comprehensive studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Transformable ferroelectric control of dynamic magnetic permeability

    NASA Astrophysics Data System (ADS)

    Jiang, Changjun; Jia, Chenglong; Wang, Fenglong; Zhou, Cai; Xue, Desheng

    2018-02-01

    Magnetic permeability, which measures the response of a material to an applied magnetic field, is crucial to the performance of magnetic devices and related technologies. Its dynamic value is usually a complex number with real and imaginary parts that describe, respectively, how much magnetic power can be stored and lost in the material. Control of permeability is therefore closely related to energy redistribution within a magnetic system or energy exchange between magnetic and other degrees of freedom via certain spin-dependent interactions. To avoid a high power consumption, direct manipulation of the permeability with an electric field through magnetoelectric coupling leads to high efficiency and simple operation, but remains a big challenge in both the fundamental physics and material science. Here we report unambiguous evidence of ferroelectric control of dynamic magnetic permeability in a Co /Pb (Mg1/3Nb2/3) 0.7Ti0.3O3 (Co/PMN-PT) heterostructure, in which the ferroelectric PMN-PT acts as an energy source for the ferromagnetic Co film via an interfacial linear magnetoelectric interaction. The electric field tuning of the magnitude and line shape of the permeability offers a highly localized means of controlling magnetization with ultralow power consumption. Additionally, the emergence of negative permeability promises a new way of realizing functional nanoscale metamaterials with adjustable refraction index.

  15. Analytical solutions of one-dimensional multispecies reactive transport in a permeable reactive barrier-aquifer system

    NASA Astrophysics Data System (ADS)

    Mieles, John; Zhan, Hongbin

    2012-06-01

    The permeable reactive barrier (PRB) remediation technology has proven to be more cost-effective than conventional pump-and-treat systems, and has demonstrated the ability to rapidly reduce the concentrations of specific chemicals of concern (COCs) by up to several orders of magnitude in some scenarios. This study derives new steady-state analytical solutions to multispecies reactive transport in a PRB-aquifer (dual domain) system. The advantage of the dual domain model is that it can account for the potential existence of natural degradation in the aquifer, when designing the required PRB thickness. The study focuses primarily on the steady-state analytical solutions of the tetrachloroethene (PCE) serial degradation pathway and secondly on the analytical solutions of the parallel degradation pathway. The solutions in this study can also be applied to other types of dual domain systems with distinct flow and transport properties. The steady-state analytical solutions are shown to be accurate and the numerical program RT3D is selected for comparison. The results of this study are novel in that the solutions provide improved modeling flexibility including: 1) every species can have unique first-order reaction rates and unique retardation factors, and 2) daughter species can be modeled with their individual input concentrations or solely as byproducts of the parent species. The steady-state analytical solutions exhibit a limitation that occurs when interspecies reaction rate factors equal each other, which result in undefined solutions. Excel spreadsheet programs were created to facilitate prompt application of the steady-state analytical solutions, for both the serial and parallel degradation pathways.

  16. Studying the Variation in Gas Permeability of Porous Building Substrates

    NASA Astrophysics Data System (ADS)

    Townsend, L.; Savidge, C. R.; Hu, L.; Rizzo, D. M.; Hayden, N. J.; Dewoolkar, M.

    2009-12-01

    Understanding permeability of building materials is important for problems involving studies of contaminant transport. Examples include contamination from fire, acid rain, and chemical and biological weapons. Our research investigates the gas permeability of porous building substrates such as concretes, limestones, sandstones, and bricks. Each sample was cored to produce 70 mm (2.75”) diameter cores approximately 75-130 mm (3-5”) tall. The surface gas permeability was measured on the top surface of these specimens using the AutoScan II device manufactured by New England Research, Inc. The measurements were taken along a 3 mm grid producing a map of surface gas permeability. An example map is shown in Figure 1. The macroscopic measurements were performed along the entire cored specimen. A second set of measurements were made on a 5 mm thick slice cut from the top of each specimen to examine whether these measurements compare better with the surface measurements. The macroscopic gas permeability was measured for all specimens using ASTM D 4525. The results are summarized in Table 1. In general, the surface and macroscopic gas permeability measurements (Table 1) compare reasonably well (within one order of magnitude). The permeability of the 5 mm slices is not significantly different from the entire core for the specimens tested. Figure 1. Results of surface permeability mappingof Ohio Sandstone using the AutoScan II device. a) Map of gas permeability b) Range of gas permeability c) Density function of permeability. Table 1. Gas permeability values (mD)

  17. Estimation of the superhigh-frequency magnetic permeability of alsifer from the measured permeability of composites

    NASA Astrophysics Data System (ADS)

    Starostenko, S. N.; Rozanov, K. N.; Shiryaev, A. O.; Lagar'kov, A. N.; Shalygin, A. N.

    2017-11-01

    The magnetic permeability of alsifer was restored from the frequency dependences of the dielectric and magnetic permeabilities of powder alsifer (AlSiFe alloy)-wax matrix composites. The permeabilities were measured using the coaxial line technique within a frequency range of 0.05-20 GHz. The effect of the concentration, shape, and size of powder particles on the microwave magnetic properties of composites was considered. A good agreement between the measurement results and the Maxwell-Garnett formula generalized with consideration for the particle shape, the percolation threshold, and the skin-effect was obtained. The found sizes of particles agreed with electron microscopy and granulometry data. Both the frequency and the ferromagnetic resonance line figure of merit (FOM) for lamellar particles proved to be higher than for spherical ones. Alsifer powders were shown to be promising fillers for radioabsorbing materials.

  18. Selection of Streptomyces against soil borne fungal pathogens by a standardized dual culture assay and evaluation of their effects on seed germination and plant growth.

    PubMed

    Kunova, Andrea; Bonaldi, Maria; Saracchi, Marco; Pizzatti, Cristina; Chen, Xiaoyulong; Cortesi, Paolo

    2016-11-09

    In the search for new natural resources for crop protection, streptomycetes are gaining interest in agriculture as plant growth promoting bacteria and/or biological control agents. Because of their peculiar life cycle, in which the production of secondary metabolites is synchronized with the development of aerial hyphae and sporulation, the commonly used methods to screen for bacterial antagonists need to be adapted. The dual culture assay was standardized in terms of inoculation timing of Streptomyces antagonist and pathogen, and growth rate of different fungal pathogens. In case of fast-growing fungi, inoculation of the antagonist 2 or 3 days prior to the pathogen resulted in significantly stronger inhibition of mycelium growth. One hundred and thirty Streptomyces strains were evaluated against six destructive soil borne pathogens. The activity of strains varied from broad-spectrum to highly specific inhibition of individual pathogens. All strains inhibited at least one tested pathogen. Three strains, which combined the largest broad-spectrum with the highest inhibition activity, were selected for further characterization with four vegetable species. All of them were able to colonize seed surface of all tested vegetable crops. They mostly improved radicle and hypocotyl growth in vitro, although no statistically significant enhancement of biomass weight was observed in vivo. Occasionally, transient negative effects on germination and plant growth were observed. The adapted dual culture assay allowed us to compare the inhibition of individual Streptomyces strains against six fungal soil borne pathogens. The best selected strains were able to colonize the four vegetable crops and have a potential to be developed into biocontrol products. Although they occasionally negatively influenced plant growth, these effects did not persist during the further development. Additional in vivo studies are needed to confirm their potential as biological control or plant growth

  19. Minimize emissions and improve efficacy with low permeability tarp and deep injection in soil fumigation

    USDA-ARS?s Scientific Manuscript database

    Soil fumigation targets high pest control efficiency and low environmental impact. Earlier field data show that most fumigated treatments provided 100% kill for plant parasitic nematodes in the soil above 3 ft depth, but not below due to insufficient fumigant delivery. A fumigation trial was conduct...

  20. Effects of different agricultural management on a stagnic Luvisol in Lower Saxony, Germany - Factors for sustainable soil protection

    NASA Astrophysics Data System (ADS)

    Lorenz, Marco; Brunotte, Joachim; Ortmeier, Berthold

    2017-04-01

    Regarding increasing pressures by global societal and climate change, for example, the assessment of the impact of land use and land management practices on land productivity, land degradation and the related decrease in sustainable food production and the provision of ecosystem services gains increasing interest. Regarding international research on land use and soil threats, main problems in agricultural land use on global scale are erosion by water and wind, soil organic matter loss, salinization, depletion of nutrients, chemical and physical deterioration, including e.g. soil compaction. When coming to soil sciences, basically soil functions are affected negatively by intensive food production and field traffic. Management based negative changes in soil functions and a suboptimal soil structure have multiple negative effects on physical, biological and chemical soil functions, like a poor water balance, air and water permeability, disturbed soil fauna, impeded root penetration etc. and in consequence on the achievable yields. The presentation deals with the multiple effects of different agricultural machinery and technologies and different agricultural soil tillage (e.g. no-till, conservation tillage, ploughing), on various soil properties of a stagnic Luvisol in Lower Saxony, Germany. These are e.g. bulk density, air capacity, saturated water permeability, changes in pore size distribution and water retention curve as well as crop yields. Furthermore results of a long term study of bulk density and total pore size on more then 20 farms in Lower Saxony since the year 1952 will be presented. Finally, key factors and first recommendations for sustainable agricultural soil protection will be derived from the results.

  1. Petrophysics of low-permeability medina sandstone, northwestern Pennsylvania, Appalachian Basin

    USGS Publications Warehouse

    Castle, J.W.; Byrnes, A.P.

    1998-01-01

    Petrophysical core testing combined with geophysical log analysis of low-permeability, Lower Silurian sandstones of the Appalachian basin provides guidelines and equations for predicting gas producibility. Permeability values are predictable from the borehole logs by applying empirically derived equations based on correlation between in-situ porosity and in-situ effective gas permeability. An Archie-form equation provides reasonable accuracy of log-derived water saturations because of saturated brine salinities and low clay content in the sands. Although measured porosity and permeability average less than 6% and 0.1 mD, infrequent values as high as 18% and 1,048 mD occur. Values of effective gas permeability at irreducible water saturation (Swi) range from 60% to 99% of routine values for the highest permeability rocks to several orders of magnitude less for the lowest permeability rocks. Sandstones having porosity greater than 6% and effective gas permeability greater than 0.01 mD exhibit Swi less than 20%. With decreasing porosity, Swi sharply increases to values near 40% at 3 porosity%. Analysis of cumulative storage and flow capacity indicates zones with porosity greater than 6% generally contain over 90% of flow capacity and hold a major portion of storage capacity. For rocks with Swi < 20%, gas relative permeabilities exceed 45%. Gas relative permeability and hydrocarbon volume decrease rapidly with increasing Swi as porosity drops below 6%. At Swi above 40%, gas relative permeabilities are less than approximately 10%.

  2. Soil quality as a factor of the distribution of damages at the meizoseismal area of the Kozani-Grevena 1995 earthquake, in Greece ( Ms = 6.6)

    NASA Astrophysics Data System (ADS)

    Christaras, B.; Dimitriou, An; Lemoni, Hel

    The physical and mechanical properties of the soil formations were related to the damages observed in Kozani and Grevena area, in Northern Greece, after the earth-quake of 13th May 1995 ( Ms = 6.6). Properties such as grain size distribution, plasticity, shear strength, compression index, permeability and ultrasonic velocity were measured in order to classify the suitability of the soil formations, for urban planning, and correlate their mechanical behaviour with the damages observed in the construction. According to our observations, a great number of recent buildings were damaged also in areas far away from the seismotectonic zones, where silty and clayey soils dominate, presenting very low permeability, low ultrasonic velocity together with high plasticity and compressibility.

  3. Soil moisture depletion in three lodgepole pine stands in northeastern Oregon.

    Treesearch

    Daniel M. Bishop

    1961-01-01

    A 1-year study in the Blue Mountains of northeastern Oregon indicates that substantial amounts of soil moisture are consumed during the growing season in lodgepole pine stands. Dual purposes of the study were to estimate the quantities of water that can be stored in basalt-pumice soils typical of the Blue Mountains, and to determine the rate and amount of moisture...

  4. Using artificial intelligence to predict permeability from petrographic data

    NASA Astrophysics Data System (ADS)

    Ali, Maqsood; Chawathé, Adwait

    2000-10-01

    Petrographic data collected during thin section analysis can be invaluable for understanding the factors that control permeability distribution. Reliable prediction of permeability is important for reservoir characterization. The petrographic elements (mineralogy, porosity types, cements and clays, and pore morphology) interact with each other uniquely to generate a specific permeability distribution. It is difficult to quantify accurately this interaction and its consequent effect on permeability, emphasizing the non-linear nature of the process. To capture these non-linear interactions, neural networks were used to predict permeability from petrographic data. The neural net was used as a multivariate correlative tool because of its ability to learn the non-linear relationships between multiple input and output variables. The study was conducted on the upper Queen formation called the Shattuck Member (Permian age). The Shattuck Member is composed of very fine-grained arkosic sandstone. The core samples were available from the Sulimar Queen and South Lucky Lake fields located in Chaves County, New Mexico. Nineteen petrographic elements were collected for each permeability value using a combined minipermeameter-petrographic technique. In order to reduce noise and overfitting the permeability model, these petrographic elements were screened, and their control (ranking) with respect to permeability was determined using fuzzy logic. Since the fuzzy logic algorithm provides unbiased ranking, it was used to reduce the dimensionality of the input variables. Based on the fuzzy logic ranking, only the most influential petrographic elements were selected as inputs for permeability prediction. The neural net was trained and tested using data from Well 1-16 in the Sulimar Queen field. Relying on the ranking obtained from the fuzzy logic analysis, the net was trained using the most influential three, five, and ten petrographic elements. A fast algorithm (the scaled conjugate

  5. Multiple technologies applied to characterization of the porosity and permeability of the Biscayne aquifer, Florida

    USGS Publications Warehouse

    Cunningham, K.J.; Sukop, M.C.

    2011-01-01

    Research is needed to determine how seepage-control actions planned by the Comprehensive Everglades Restoration Plan (CERP) will affect recharge, groundwater flow, and discharge within the dual-porosity karstic Biscayne aquifer where it extends eastward from the Everglades to Biscayne Bay. A key issue is whether the plan can be accomplished without causing urban flooding in adjacent populated areas and diminishing coastal freshwater flow needed in the restoration of the ecologic systems. Predictive simulation of groundwater flow is a prudent approach to understanding hydrologic change and potential ecologic impacts. A fundamental problem to simulation of karst groundwater flow is how best to represent aquifer heterogeneity. Currently, U.S. Geological Survey (USGS) researchers and academic partners are applying multiple innovative technologies to characterize the spatial distribution of porosity and permeability within the Biscayne aquifer.

  6. Quantifying Evaporation in a Permeable Pavement System

    EPA Science Inventory

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  7. Permeability-porosity data sets for sandstones

    USGS Publications Warehouse

    Nelson, P.H.

    2004-01-01

    Due to the variable nature of permeability-porosity relations, core should be obtained and permeability (k) and porosity (??) should be determined on core plugs in the laboratory for the formation of interest. A catalog of k versus (??) data sets is now available on the Web. Examples from the catalog are considered to illustrate some aspects of k versus ?? dependencies in siliciclastic reservoirs.

  8. METHOD OF ESTIMATING THE TRAVEL TIME OF NONINTERACTING SOLUTES THROUGH COMPACTED SOIL MATERIAL

    EPA Science Inventory

    The pollutant travel time through compacted soil material (i.e., when a pollutant introduced at the top first appears at the bottom) cannot be accurately predicted from the permeability (saturated hydraulic conductivity) alone. The travel time is also dependent on the effective p...

  9. Peroxisomal membrane permeability and solute transfer.

    PubMed

    Antonenkov, Vasily D; Hiltunen, J Kalervo

    2006-12-01

    The review is dedicated to recent progress in the study of peroxisomal membrane permeability to solutes which has been a matter of debate for more than 40 years. Apparently, the mammalian peroxisomal membrane is freely permeable to small solute molecules owing to the presence of pore-forming channels. However, the membrane forms a permeability barrier for 'bulky' solutes including cofactors (NAD/H, NADP/H, CoA, and acetyl/acyl-CoA esters) and ATP. Therefore, peroxisomes need specific protein transporters to transfer these compounds across the membrane. Recent electrophysiological studies have revealed channel-forming activities in the mammalian peroxisomal membrane. The possible involvement of the channels in the transfer of small metabolites and in the formation of peroxisomal shuttle systems is described.

  10. The application of permeable pavement with emphasis on successful design, water quality benefits, and identification of knowledge and data gaps : a summary report from the National Center for Sustainable Transportation.

    DOT National Transportation Integrated Search

    2015-06-01

    Permeable pavement presented in this paper is defined as a type of pavement that has ability : to store stormwater until it infiltrates through the subgrade soil and can function as a : conventional pavement to carry specific traffic load and speed. ...

  11. Dual Credit/Dual Enrollment and Data Driven Policy Implementation

    ERIC Educational Resources Information Center

    Lichtenberger, Eric; Witt, M. Allison; Blankenberger, Bob; Franklin, Doug

    2014-01-01

    The use of dual credit has been expanding rapidly. Dual credit is a college course taken by a high school student for which both college and high school credit is given. Previous studies provided limited quantitative evidence that dual credit/dual enrollment is directly connected to positive student outcomes. In this study, predictive statistics…

  12. Permeability Evolution of Slowly Slipping Faults in Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Reece, Julia S.; Gensterblum, Yves; Zoback, Mark D.

    2017-11-01

    Slow slip on preexisting faults during hydraulic fracturing is a process that significantly influences shale gas production in extremely low permeability "shale" (unconventional) reservoirs. We experimentally examined the impacts of mineralogy, surface roughness, and effective stress on permeability evolution of slowly slipping faults in Eagle Ford shale samples. Our results show that fault permeability decreases with slip at higher effective stress but increases with slip at lower effective stress. The permeabilities of saw cut faults fully recover after cycling effective stress from 2.5 to 17.5 to 2.5 MPa and increase with slip at constant effective stress due to asperity damage and dilation associated with slip. However, the permeabilities of natural faults only partially recover after cycling effective stress returns to 2.5 MPa and decrease with slip due to produced gouge blocking fluid flow pathways. Our results suggest that slowly slipping faults have the potential to enhance reservoir stimulation in extremely low permeability reservoirs.

  13. Mapping Soil Surface Macropores Using Infrared Thermography: An Exploratory Laboratory Study

    PubMed Central

    de Lima, João L. M. P.; Abrantes, João R. C. B.; Silva, Valdemir P.; de Lima, M. Isabel P.; Montenegro, Abelardo A. A.

    2014-01-01

    Macropores and water flow in soils and substrates are complex and are related to topics like preferential flow, nonequilibrium flow, and dual-continuum. Hence, the quantification of the number of macropores and the determination of their geometry are expected to provide a better understanding on the effects of pores on the soil's physical and hydraulic properties. This exploratory study aimed at evaluating the potential of using infrared thermography for mapping macroporosity at the soil surface and estimating the number and size of such macropores. The presented technique was applied to a small scale study (laboratory soil flume). PMID:25371915

  14. Determination of Matric Suction and Saturation Degree for Unsaturated Soils, Comparative Study - Numerical Method versus Analytical Method

    NASA Astrophysics Data System (ADS)

    Chiorean, Vasile-Florin

    2017-10-01

    Matric suction is a soil parameter which influences the behaviour of unsaturated soils in both terms of shear strength and permeability. It is a necessary aspect to know the variation of matric suction in unsaturated soil zone for solving geotechnical issues like unsaturated soil slopes stability or bearing capacity for unsaturated foundation ground. Mathematical expression of the dependency between soil moisture content and it’s matric suction (soil water characteristic curve) has a powerful character of nonlinearity. This paper presents two methods to determine the variation of matric suction along the depth included between groundwater level and soil level. First method is an analytical approach to emphasize one direction steady state unsaturated infiltration phenomenon that occurs between the groundwater level and the soil level. There were simulated three different situations in terms of border conditions: precipitations (inflow conditions on ground surface), evaporation (outflow conditions on ground surface), and perfect equilibrium (no flow on ground surface). Numerical method is finite element method used for steady state, two-dimensional, unsaturated infiltration calculus. Regarding boundary conditions there were simulated identical situations as in analytical approach. For both methods, was adopted the equation proposed by van Genuchten-Mualen (1980) for mathematical expression of soil water characteristic curve. Also for the unsaturated soil permeability prediction model was adopted the equation proposed by van Genuchten-Mualen. The fitting parameters of these models were adopted according to RETC 6.02 software in function of soil type. The analyses were performed in both methods for three major soil types: clay, silt and sand. For each soil type were concluded analyses for three situations in terms of border conditions applied on soil surface: inflow, outflow, and no flow. The obtained results are presented in order to highlight the differences

  15. An Establishment of Rainfall-induced Soil Erosion Index for the Slope Land in Watershed

    NASA Astrophysics Data System (ADS)

    Tsai, Kuang-Jung; Chen, Yie-Ruey; Hsieh, Shun-Chieh; Shu, Chia-Chun; Chen, Ying-Hui

    2014-05-01

    With more and more concentrated extreme rainfall events as a result of climate change, in Taiwan, mass cover soil erosion occurred frequently and led to sediment related disasters in high intensity precipiton region during typhoons or torrential rain storms. These disasters cause a severely lost to the property, public construction and even the casualty of the resident in the affected areas. Therefore, we collected soil losses by using field investigation data from the upstream of watershed where near speific rivers to explore the soil erosion caused by heavy rainfall under different natural environment. Soil losses induced by rainfall and runoff were obtained from the long-term soil depth measurement of erosion plots, which were established in the field, used to estimate the total volume of soil erosion. Furthermore, the soil erosion index was obtained by referring to natural environment of erosion test plots and the Universal Soil Loss Equation (USLE). All data collected from field were used to compare with the one obtained from laboratory test recommended by the Technical Regulation for Soil and Water Conservation in Taiwan. With MATLAB as a modeling platform, evaluation model for soil erodibility factors was obtained by golden section search method, considering factors contributing to the soil erosion; such as degree of slope, soil texture, slope aspect, the distance far away from water system, topography elevation, and normalized difference vegetation index (NDVI). The distribution map of soil erosion index was developed by this project and used to estimate the rainfall-induced soil losses from erosion plots have been established in the study area since 2008. All results indicated that soil erodibility increases with accumulated rainfall amount regardless of soil characteristics measured in the field. Under the same accumulated rainfall amount, the volume of soil erosion also increases with the degree of slope and soil permeability, but decreases with the

  16. Fast Laplace solver approach to pore-scale permeability

    NASA Astrophysics Data System (ADS)

    Arns, C. H.; Adler, P. M.

    2018-02-01

    We introduce a powerful and easily implemented method to calculate the permeability of porous media at the pore scale using an approximation based on the Poiseulle equation to calculate permeability to fluid flow with a Laplace solver. The method consists of calculating the Euclidean distance map of the fluid phase to assign local conductivities and lends itself naturally to the treatment of multiscale problems. We compare with analytical solutions as well as experimental measurements and lattice Boltzmann calculations of permeability for Fontainebleau sandstone. The solver is significantly more stable than the lattice Boltzmann approach, uses less memory, and is significantly faster. Permeabilities are in excellent agreement over a wide range of porosities.

  17. Using satellite image data to estimate soil moisture

    NASA Astrophysics Data System (ADS)

    Chuang, Chi-Hung; Yu, Hwa-Lung

    2017-04-01

    Soil moisture is considered as an important parameter in various study fields, such as hydrology, phenology, and agriculture. In hydrology, soil moisture is an significant parameter to decide how much rainfall that will infiltrate into permeable layer and become groundwater resource. Although soil moisture is a critical role in many environmental studies, so far the measurement of soil moisture is using ground instrument such as electromagnetic soil moisture sensor. Use of ground instrumentation can directly obtain the information, but the instrument needs maintenance and consume manpower to operation. If we need wide range region information, ground instrumentation probably is not suitable. To measure wide region soil moisture information, we need other method to achieve this purpose. Satellite remote sensing techniques can obtain satellite image on Earth, this can be a way to solve the spatial restriction on instrument measurement. In this study, we used MODIS data to retrieve daily soil moisture pattern estimation, i.e., crop water stress index (cwsi), over the year of 2015. The estimations are compared with the observations at the soil moisture stations from Taiwan Bureau of soil and water conservation. Results show that the satellite remote sensing data can be helpful to the soil moisture estimation. Further analysis can be required to obtain the optimal parameters for soil moisture estimation in Taiwan.

  18. Gas Permeable Chemochromic Compositions for Hydrogen Sensing

    NASA Technical Reports Server (NTRS)

    Mohajeri, Nahid (Inventor); Muradov, Nazim (Inventor); Tabatabaie-Raissi, Ali (Inventor); Bokerman, Gary (Inventor)

    2013-01-01

    A (H2) sensor composition includes a gas permeable matrix material intermixed and encapsulating at least one chemochromic pigment. The chemochromic pigment produces a detectable change in color of the overall sensor composition in the presence of H2 gas. The matrix material provides high H2 permeability, which permits fast permeation of H2 gas. In one embodiment, the chemochromic pigment comprises PdO/TiO2. The sensor can be embodied as a two layer structure with the gas permeable matrix material intermixed with the chemochromic pigment in one layer and a second layer which provides a support or overcoat layer.

  19. Step Permeability on the Pt(111) Surface

    NASA Astrophysics Data System (ADS)

    Altman, Michael

    2005-03-01

    Surface morphology will be affected, or even dictated, by kinetic limitations that may be present during growth. Asymmetric step attachment is recognized to be an important and possibly common cause of morphological growth instabilities. However, the impact of this kinetic limitation on growth morphology may be hindered by other factors such as the rate limiting step and step permeability. This strongly motivates experimental measurements of these quantities in real systems. Using low energy electron microscopy, we have measured step flow velocities in growth on the Pt(111) surface. The dependence of step velocity upon adjacent terrace width clearly shows evidence of asymmetric step attachment and step permeability. Step velocity is modeled by solving the diffusion equation simultaneously on several adjacent terraces subject to boundary conditions at intervening steps that include asymmetric step attachment and step permeability. This analysis allows a quantitative evaluation of step permeability and the kinetic length, which characterizes the rate limiting step continuously between diffusion and attachment-detachment limited regimes. This work provides information that is greatly needed to set physical bounds on the parameters that are used in theoretical treatments of growth. The observation that steps are permeable even on a simple metal surface should also stimulate more experimental measurements and theoretical treatments of this effect.

  20. 21 CFR 886.5916 - Rigid gas permeable contact lens.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rigid gas permeable contact lens. 886.5916 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5916 Rigid gas permeable contact lens. (a) Identification. A rigid gas permeable contact lens is a device intended to be worn directly...

  1. 21 CFR 886.5916 - Rigid gas permeable contact lens.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rigid gas permeable contact lens. 886.5916 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5916 Rigid gas permeable contact lens. (a) Identification. A rigid gas permeable contact lens is a device intended to be worn directly...

  2. Fort A.P. Hill Soil Permittivity and Conductivity Measurements for the Wide Area Airborne Minefield Detection Program

    DTIC Science & Technology

    2003-09-01

    4 3. Purpose 4 4. Description of Test Equipment 4 4.1 Damaskos Model 3000T Liquid/Powder Cell Permittivity...Permeability System ..........4 4.2 HP8510 Network Analyzer/ Damaskos System Overview..............................................5 5. Soil Sample Site...Permittivity and conductivity values were measured from 100 to 3000 MHz. The soil samples were packed as tight as possible into the Damaskos

  3. Stress dependence of permeability of intact and fractured shale cores.

    NASA Astrophysics Data System (ADS)

    van Noort, Reinier; Yarushina, Viktoriya

    2016-04-01

    Whether a shale acts as a caprock, source rock, or reservoir, understanding fluid flow through shale is of major importance for understanding fluid flow in geological systems. Because of the low permeability of shale, flow is thought to be largely confined to fractures and similar features. In fracking operations, fractures are induced specifically to allow for hydrocarbon exploration. We have constructed an experimental setup to measure core permeabilities, using constant flow or a transient pulse. In this setup, we have measured the permeability of intact and fractured shale core samples, using either water or supercritical CO2 as the transporting fluid. Our measurements show decreasing permeability with increasing confining pressure, mainly due to time-dependent creep. Furthermore, our measurements show that for a simple splitting fracture, time-dependent creep will also eliminate any significant effect of this fracture on permeability. This effect of confinement on fracture permeability can have important implications regarding the effects of fracturing on shale permeability, and hence for operations depending on that.

  4. Importance of Low Permeability Natural Gas Reservoirs (released in AEO2010)

    EIA Publications

    2010-01-01

    Production from low-permeability reservoirs, including shale gas and tight gas, has become a major source of domestic natural gas supply. In 2008, low-permeability reservoirs accounted for about 40% of natural gas production and about 35% of natural gas consumption in the United States. Permeability is a measure of the rate at which liquids and gases can move through rock. Low-permeability natural gas reservoirs encompass the shale, sandstone, and carbonate formations whose natural permeability is roughly 0.1 millidarcies or below. (Permeability is measured in darcies.)

  5. Rock-Fluid Interactions Under Stress: How Rock Microstructure Controls The Evolution of Porosity and Permeability

    NASA Astrophysics Data System (ADS)

    Vanorio, T.

    2016-12-01

    Monitoring chemo-mechanical processes geophysically — e.g., fluid disposal or storage, thermal and chemical stimulation of reservoirs, or natural fluids simply entering a new system in the subsurface— raises numerous concerns because of the likelihood of fluid-rock chemical interactions and our limited ability to decipher the geophysical signature of coupled processes. One of the missing links is coupling the evolution of porosity, permeability, and velocity of rocks together with reactive transport, since rocks deform and their microstructure evolves, as a result of chemical reactions under stress. This study describes recent advances in rock-physics experiments to understand the effects of dissolution-induced compaction on acoustic velocity, porosity, and permeability. Data observation includes time-lapse experiments and imaging tracking transport and elastic properties, the rock microstructure, and the pH and chemical composition of the fluid permeating the rock. Results show that the removal of high surface area, mineral phases such as microcrystalline calcite and clay appears to be mostly responsible for dissolution-induced compaction. Nevertheless, it is the original rock microstructure and its response to stress that ultimately defines how solution-transfer and rock compaction feed back upon each other. This work has a dual aim: understanding the mechanisms underlying permanent modifications to the rock microstructure and providing a richer set of experimental information to inform the formulation of new simulations and rock modeling.

  6. Permeability-porosity relationships in sedimentary rocks

    USGS Publications Warehouse

    Nelson, Philip H.

    1994-01-01

    In many consolidated sandstone and carbonate formations, plots of core data show that the logarithm of permeability (k) is often linearly proportional to porosity (??). The slope, intercept, and degree of scatter of these log(k)-?? trends vary from formation to formation, and these variations are attributed to differences in initial grain size and sorting, diagenetic history, and compaction history. In unconsolidated sands, better sorting systematically increases both permeability and porosity. In sands and sandstones, an increase in gravel and coarse grain size content causes k to increase even while decreasing ??. Diagenetic minerals in the pore space of sandstones, such as cement and some clay types, tend to decrease log(k) proportionately as ?? decreases. Models to predict permeability from porosity and other measurable rock parameters fall into three classes based on either grain, surface area, or pore dimension considerations. (Models that directly incorporate well log measurements but have no particular theoretical underpinnings from a fourth class.) Grain-based models show permeability proportional to the square of grain size times porosity raised to (roughly) the fifth power, with grain sorting as an additional parameter. Surface-area models show permeability proportional to the inverse square of pore surface area times porosity raised to (roughly) the fourth power; measures of surface area include irreducible water saturation and nuclear magnetic resonance. Pore-dimension models show permeability proportional to the square of a pore dimension times porosity raised to a power of (roughly) two and produce curves of constant pore size that transgress the linear data trends on a log(k)-?? plot. The pore dimension is obtained from mercury injection measurements and is interpreted as the pore opening size of some interconnected fraction of the pore system. The linear log(k)-?? data trends cut the curves of constant pore size from the pore-dimension models

  7. Modeling of Permeability Structure Using Pore Pressure and Borehole Strain Monitoring

    NASA Astrophysics Data System (ADS)

    Kano, Y.; Ito, H.

    2011-12-01

    Hydraulic or transport property, especially permeability, of the rock affect the behavior of the fault during earthquake rupture and also interseismic period. The methods to determine permeability underground are hydraulic test utilizing borehole and packer or core measurement in laboratory. Another way to know the permeability around a borehole is to examine responses of pore pressure to natural loading such as barometric pressure change at surface or earth tides. Using response to natural deformation is conventional method for water resource research. The scale of measurement is different among in-situ hydraulic test, response method, and core measurement. It is not clear that the relationship between permeability values form each method for an inhomogeneous medium such as a fault zone. Supposing the measurement of the response to natural loading, we made a model calculation of permeability structure around a fault zone. The model is 2 dimensional and constructed with vertical high-permeability layer in uniform low-permeability zone. We assume the upper and lower boundaries are drained and no-flow condition. We calculated the flow and deformation of the model for step and cyclic loading by numerically solving a two-dimensional diffusion equation. The model calculation shows that the width of the high-permeability zone and contrast of the permeability between high- and low- permeability zones control the contribution of the low-permeability zone. We made a calculation with combinations of permeability and fault width to evaluate the sensitivity of the parameters to in-situ measurement of permeability. We applied the model calculation to the field results of in-situ packer test, and natural response of water level and strain monitoring carried out in the Kamioka mine. The model calculation shows that knowledge of permeability in host rock is also important to obtain permeability of fault zone itself. The model calculations help to design long-term pore pressure

  8. Combining Nitrilotriacetic Acid and Permeable Barriers for Enhanced Phytoextraction of Heavy Metals from Municipal Solid Waste Compost by and Reduced Metal Leaching.

    PubMed

    Zhao, Shulan; Jia, Lina; Duo, Lian

    2016-05-01

    Phytoextraction has the potential to remove heavy metals from contaminated soil, and chelants can be used to improve the capabilities of phytoextraction. However, environmentally persistent chelants can cause metal leaching and groundwater pollution. A column experiment was conducted to evaluate the viability of biodegradable nitrilotriacetic acid (NTA) to increase the uptake of heavy metals (Cd, Cr, Ni, Pb, Cu, and Zn) by L. in municipal solid waste (MSW) compost and to evaluate the effect of two permeable barrier materials, bone meal and crab shell, on metal leaching. The application of NTA significantly increased the concentrations and uptake of heavy metals in . The enhancement was more pronounced at higher dosages of NTA. In the 15 mmol kg NTA treatment using a crab shell barrier, the Cr and Ni concentrations in the plant shoots increased by approximately 8- and 10-fold, respectively, relative to the control. However, the addition of NTA also caused significant heavy metal leaching from the MSW compost. Bone meal and crab shell barriers positioned between the compost and the subsoil were effective in preventing metal leaching down through the soil profile by the retention of metals in the barrier. The application of a biodegradable chelant and the use of permeable barriers is a viable form of enhanced phytoextraction to increase the removal of metals and to reduce possible leaching. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots.

    PubMed

    Dordas, C; Chrispeels, M J; Brown, P H

    2000-11-01

    Boron is an essential micronutrient for plant growth and the boron content of plants differs greatly, but the mechanism(s) of its uptake into cells is not known. Boron is present in the soil solution as boric acid and it is in this form that it enters the roots. We determined the boron permeability coefficient of purified plasma membrane vesicles obtained from squash (Cucurbita pepo) roots and found it to be 3 x 10(-7) +/-1.4 x 10(-8) cm s(-1), six times higher than the permeability of microsomal vesicles. Boric acid permeation of the plasma membrane vesicles was partially inhibited (30%-39%) by mercuric chloride and phloretin, a non-specific channel blocker. The inhibition by mercuric chloride was readily reversible by 2-mercaptoethanol. The energy of activation for boron transport into the plasma membrane vesicles was 10.2 kcal mol(-1). Together these data indicate that boron enters plant cells in part by passive diffusion through the lipid bilayer of the plasma membrane and in part through proteinaceous channels. Expression of the major intrinsic protein (MIP) PIP1 in Xenopus laevis oocytes resulted in a 30% increase in the boron permeability of the oocytes. Other MIPs tested (PIP3, MLM1, and GlpF) did not have this effect. We postulate that certain MIPs, like those that have recently been shown to transport small neutral solutes, may also be the channels through which boron enters plant cells.

  10. Permeability of continental crust influenced by internal and external forcing

    USGS Publications Warehouse

    Rojstaczer, S.A.; Ingebritsen, S.E.; Hayba, D.O.

    2008-01-01

    The permeability of continental crust is so highly variable that it is often considered to defy systematic characterization. However, despite this variability, some order has been gleaned from globally compiled data. What accounts for the apparent coherence of mean permeability in the continental crust (and permeability-depth relations) on a very large scale? Here we argue that large-scale crustal permeability adjusts to accommodate rates of internal and external forcing. In the deeper crust, internal forcing - fluxes induced by metamorphism, magmatism, and mantle degassing - is dominant, whereas in the shallow crust, external forcing - the vigor of the hydrologic cycle - is a primary control. Crustal petrologists have long recognized the likelihood of a causal relation between fluid flux and permeability in the deep, ductile crust, where fluid pressures are typically near-lithostatic. It is less obvious that such a relation should pertain in the relatively cool, brittle upper crust, where near-hydrostatic fluid pressures are the norm. We use first-order calculations and numerical modeling to explore the hypothesis that upper-crustal permeability is influenced by the magnitude of external fluid sources, much as lower-crustal permeability is influenced by the magnitude of internal fluid sources. We compare model-generated permeability structures with various observations of crustal permeability. ?? 2008 The Authors Journal compilation ?? 2008 Blackwell Publishing Ltd.

  11. Toxic Elements in Soil and Groundwater: Short-Time Study on Electrokinetic Removal of Arsenic in the Presence of other Ions

    PubMed Central

    Leszczynska, Danuta; Ahmad, Hafiz

    2006-01-01

    The electrokinetic technique is an emerging technology presently tested in situ to remove dissolved heavy metals from contaminated groundwater. There is a growing interest for using this system to cleanse clayey soil contaminated by toxic metallic ions. Currently, there are very few available non-destructive treatment methods that could be successfully applied in situ on low permeable type of soil matrix. The main objective of presented study was to validate and possibly enhance the overall efficiency of decontamination by the electrokinetic technique of the low permeable soil polluted by the arsenic in combination with chromium and copper ions. The chosen mixture of ions was imitating leak of pesticide well known as chromate copper arsenate (CCA). The chosen technique is showing a big promise to be used in the future as a portable, easy to install and run on sites with spills or leaks hard to reach otherwise; such as in the dense populated and urbanized areas. Laboratory electrokinetic experiments were designed to understand and possibly manipulate main mechanisms involved during forced migration of ions. All tests were conducted on artificially contaminated kaolinite (low permeable clay soil). Electrokinetic migration was inducted by the low voltage dc current applied through soil column. Series of experiments were designed to assess the efficiency of arsenic-chromium-copper remediation by applying (1) only dc current; and (2) by altering the soil environment. Obtained results showed that arsenic could be successfully removed from the soil in one day (25 hours) span. It was significant time reduction, very important during emergency response. Mass recovered at the end of each test depended on initial condition of soil and type of flushing solution. The best results were obtained, when soil was flushed with either NaOH or NaOCl (total removal efficiency 74.4% and 78.1%, respectively). Direct analysis of remained arsenic in soil after these tests confirmed

  12. Effects of the soil pore network architecture on the soil's physical functionalities

    NASA Astrophysics Data System (ADS)

    Smet, Sarah; Beckers, Eléonore; Léonard, Angélique; Degré, Aurore

    2017-04-01

    The soil fluid movement's prediction is of major interest within an agricultural or environmental scope because many processes depend ultimately on the soil fluids dynamic. It is common knowledge that the soil microscopic pore network structure governs the inner-soil convective fluids flow. There isn't, however, a general methodthat consider the pore network structure as a variable in the prediction of thecore scale soil's physical functionalities. There are various possible representations of the microscopic pore network: sample scale averaged structural parameters, extrapolation of theoretic pore network, or use of all the information available by modeling within the observed pore network. Different representations implydifferent analyzing methodologies. To our knowledge, few studies have compared the micro-and macroscopic soil's characteristics for the same soil core sample. The objective of our study is to explore the relationship between macroscopic physical properties and microscopic pore network structure. The saturated hydraulic conductivity, the air permeability, the retention curve, and others classical physical parameters were measured for ten soil samples from an agricultural field. The pore network characteristics were quantified through the analyses of X-ray micro-computed tomographic images(micro-CT system Skyscan-1172) with a voxel size of 22 µm3. Some of the first results confirmed what others studies had reported. Then, the comparison between macroscopic properties and microscopic parameters suggested that the air movements depended mostly on the pore connectivity and tortuosity than on the total porosity volume. We have also found that the fractal dimension calculated from the X-ray images and the fractal dimension calculated from the retention curve were significantly different. Our communication will detailthose results and discuss the methodology: would the results be similar with a different voxel size? What are the calculated and measured

  13. Permeability of gypsum samples dehydrated in air

    NASA Astrophysics Data System (ADS)

    Milsch, Harald; Priegnitz, Mike; Blöcher, Guido

    2011-09-01

    We report on changes in rock permeability induced by devolatilization reactions using gypsum as a reference analog material. Cylindrical samples of natural alabaster were dehydrated in air (dry) for up to 800 h at ambient pressure and temperatures between 378 and 423 K. Subsequently, the reaction kinetics, so induced changes in porosity, and the concurrent evolution of sample permeability were constrained. Weighing the heated samples in predefined time intervals yielded the reaction progress where the stoichiometric mass balance indicated an ultimate and complete dehydration to anhydrite regardless of temperature. Porosity showed to continuously increase with reaction progress from approximately 2% to 30%, whilst the initial bulk volume remained unchanged. Within these limits permeability significantly increased with porosity by almost three orders of magnitude from approximately 7 × 10-19 m2 to 3 × 10-16 m2. We show that - when mechanical and hydraulic feedbacks can be excluded - permeability, reaction progress, and porosity are related unequivocally.

  14. Permeability After Impact Testing of Composite Laminates

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    2003-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  15. Permeability After Impact Testing of Composite Laminates

    NASA Technical Reports Server (NTRS)

    Nettles, A.T.; Munafo, Paul (Technical Monitor)

    2002-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  16. Octopus microvasculature: permeability to ferritin and carbon.

    PubMed

    Browning, J

    1979-01-01

    The permeability of Octopus microvasculature was investigated by intravascular injection of carbon and ferritin. Vessels were tight to carbon while ferritin penetrated the pericyte junction, and was found extravascularly 1-2 min after its introduction. Vesicles occurred rarely in pericytes; fenestrae were absent. The discontinuous endothelial layer did not consitute a permeability barrier. The basement membrane, although retarding the movement of ferritin, was permeable to it; carbon did not penetrate the basement membrane. Evidence indicated that ferritin, and thus similarly sized and smaller water soluble materials, traverse the pericyte junction as a result of bulk fluid flow. Comparisons are made with the convective (or junctional) and slower, diffusive (or vesicular) passage of materials known to occur across the endothelium of continuous capillaries in mammals. Previous macrophysiological determinations concerning the permeability of Octopus vessels are questioned in view of these findings. Possible reasons for some major structural differences in the microcirculatory systems of cephalopods and vertebrates are briefly discussed.

  17. Relative Permeabilities of Plastic Films to Water and Carbon Dioxide

    PubMed Central

    Woolley, Joseph T.

    1967-01-01

    The permeabilities of several types of plastic films to water and to carbon dioxide were measured. No material was found to have a carbon dioxide permeability as great as its water permeability. PMID:16656548

  18. Method and apparatus for removing ions from soil

    DOEpatents

    Bibler, J.P.

    1993-03-02

    A method and apparatus are presented for selectively removing species of ions from an area of soil. Permeable membranes 14 and 18 impregnated with an ion exchange resin that is specific to one or more species of chemical ions are inserted into ground 12 in close proximity to, and on opposing sides of, a soil area of interest 22. An electric potential is applied across electrodes 26 and 28 to cause the migration of ions out of soil area 22 toward the membranes 14 and 18. Preferably, the resin exchanges ions of sodium or hydrogen for ions of mercury that it captures from soil area 22. Once membranes 14 and 18 become substantially saturated with mercury ions, the potential applied across electrodes 26 and 28 is discontinued and membranes 14 and 18 are preferably removed from soil 12 for storage or recovery of the ions. The membranes are also preferably impregnated with a buffer to inhibit the effect of the hydrolysis of water by current from the electrodes.

  19. Fractal Theory for Permeability Prediction, Venezuelan and USA Wells

    NASA Astrophysics Data System (ADS)

    Aldana, Milagrosa; Altamiranda, Dignorah; Cabrera, Ana

    2014-05-01

    Inferring petrophysical parameters such as permeability, porosity, water saturation, capillary pressure, etc, from the analysis of well logs or other available core data has always been of critical importance in the oil industry. Permeability in particular, which is considered to be a complex parameter, has been inferred using both empirical and theoretical techniques. The main goal of this work is to predict permeability values on different wells using Fractal Theory, based on a method proposed by Pape et al. (1999). This approach uses the relationship between permeability and the geometric form of the pore space of the rock. This method is based on the modified equation of Kozeny-Carman and a fractal pattern, which allows determining permeability as a function of the cementation exponent, porosity and the fractal dimension. Data from wells located in Venezuela and the United States of America are analyzed. Employing data of porosity and permeability obtained from core samples, and applying the Fractal Theory method, we calculated the prediction equations for each well. At the beginning, this was achieved by training with 50% of the data available for each well. Afterwards, these equations were tested inferring over 100% of the data to analyze possible trends in their distribution. This procedure gave excellent results in all the wells in spite of their geographic distance, generating permeability models with the potential to accurately predict permeability logs in the remaining parts of the well for which there are no core samples, using even porority logs. Additionally, empirical models were used to determine permeability and the results were compared with those obtained by applying the fractal method. The results indicated that, although there are empirical equations that give a proper adjustment, the prediction results obtained using fractal theory give a better fit to the core reference data.

  20. Heat Source/Sink in a Magneto-Hydrodynamic Non-Newtonian Fluid Flow in a Porous Medium: Dual Solutions.

    PubMed

    Hayat, Tasawar; Awais, Muhammad; Imtiaz, Amna

    2016-01-01

    This communication deals with the properties of heat source/sink in a magneto-hydrodynamic flow of a non-Newtonian fluid immersed in a porous medium. Shrinking phenomenon along with the permeability of the wall is considered. Mathematical modelling is performed to convert the considered physical process into set of coupled nonlinear mathematical equations. Suitable transformations are invoked to convert the set of partial differential equations into nonlinear ordinary differential equations which are tackled numerically for the solution computations. It is noted that dual solutions for various physical parameters exist which are analyzed in detail.

  1. Gas permeability of ice-templated, unidirectional porous ceramics

    NASA Astrophysics Data System (ADS)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-01-01

    We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 ?m and 19.1 ?m. The maximum permeability (?? m?) was measured in samples with the highest total pore volume (72%) and pore size (19.1 ?m). However, we demonstrate that it is possible to achieve a similar permeability (?? m?) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity (?) is mainly controlled by pore size, unlike in isotropic porous structures where ? is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.

  2. Detection of semi-volatile organic compounds in permeable ...

    EPA Pesticide Factsheets

    Abstract The Edison Environmental Center (EEC) has a research and demonstration permeable parking lot comprised of three different permeable systems: permeable asphalt, porous concrete and interlocking concrete permeable pavers. Water quality and quantity analysis has been ongoing since January, 2010. This paper describes a subset of the water quality analysis, analysis of semivolatile organic compounds (SVOCs) to determine if hydrocarbons were in water infiltrated through the permeable surfaces. SVOCs were analyzed in samples collected from 11 dates over a 3 year period, from 2/8/2010 to 4/1/2013.Results are broadly divided into three categories: 42 chemicals were never detected; 12 chemicals (11 chemical test) were detected at a rate of less than 10% or less; and 22 chemicals were detected at a frequency of 10% or greater (ranging from 10% to 66.5% detections). Fundamental and exploratory statistical analyses were performed on these latter analyses results by grouping results by surface type. The statistical analyses were limited due to low frequency of detections and dilutions of samples which impacted detection limits. The infiltrate data through three permeable surfaces were analyzed as non-parametric data by the Kaplan-Meier estimation method for fundamental statistics; there were some statistically observable difference in concentration between pavement types when using Tarone-Ware Comparison Hypothesis Test. Additionally Spearman Rank order non-parame

  3. Issues pertaining to the permeability characteristics of coarsegraded Superpave mixes

    DOT National Transportation Integrated Search

    2002-07-01

    In order to evaluate the relationships between in-place air voids, lift thickness, and permeability, 23 on-going HMA construction projects were visited and field permeability tests conducted. Field permeability tests were conducted at 15 randomly det...

  4. The investigation of parachute fabric permeability under an unsteady pressure differential

    NASA Astrophysics Data System (ADS)

    Rondeau, Nichole C.

    An apparatus for assessing permeability of textiles subjected to time-varying pressure differentials is presented. A Computer Numerically Controlled Piston Permeability Apparatus (CNC-PPA) that can control the volume flow rate through a fabric has been designed and built. This test device has been developed in an effort to improve the understanding and design choices for aerodynamic decelerators. Preliminary results for a low permeability fabric (PIA-C-44378, Type IV) under both steady and unsteady loads are presented. The results from this investigation do indicate a small effect of unsteady pressure differential on the fabric permeability. The fabric permeability is slightly higher than the static permeability when the pressure differential is increasing with respect to time and the opposite is true when the pressure differential is decreasing. This change in permeability is more pronounced as the pressure is higher and the pressure changes more rapidly with respect to time, suggesting dynamic permeability likely affects highly unsteady phenomena such as parachute opening.

  5. Functional test of pedotransfer functions to predict water flow and solute transport with the dual-permeability model MACRO

    NASA Astrophysics Data System (ADS)

    Moeys, J.; Larsbo, M.; Bergström, L.; Brown, C. D.; Coquet, Y.; Jarvis, N. J.

    2012-07-01

    Estimating pesticide leaching risks at the regional scale requires the ability to completely parameterise a pesticide fate model using only survey data, such as soil and land-use maps. Such parameterisations usually rely on a set of lookup tables and (pedo)transfer functions, relating elementary soil and site properties to model parameters. The aim of this paper is to describe and test a complete set of parameter estimation algorithms developed for the pesticide fate model MACRO, which accounts for preferential flow in soil macropores. We used tracer monitoring data from 16 lysimeter studies, carried out in three European countries, to evaluate the ability of MACRO and this "blind parameterisation" scheme to reproduce measured solute leaching at the base of each lysimeter. We focused on the prediction of early tracer breakthrough due to preferential flow, because this is critical for pesticide leaching. We then calibrated a selected number of parameters in order to assess to what extent the prediction of water and solute leaching could be improved. Our results show that water flow was generally reasonably well predicted (median model efficiency, ME, of 0.42). Although the general pattern of solute leaching was reproduced well by the model, the overall model efficiency was low (median ME = -0.26) due to errors in the timing and magnitude of some peaks. Preferential solute leaching at early pore volumes was also systematically underestimated. Nonetheless, the ranking of soils according to solute loads at early pore volumes was reasonably well estimated (concordance correlation coefficient, CCC, between 0.54 and 0.72). Moreover, we also found that ignoring macropore flow leads to a significant deterioration in the ability of the model to reproduce the observed leaching pattern, and especially the early breakthrough in some soils. Finally, the calibration procedure showed that improving the estimation of solute transport parameters is probably more important than the

  6. Detection of semi-volatile organic compounds in permeable pavement infiltrate

    EPA Science Inventory

    Abstract The Edison Environmental Center (EEC) performs research on green infrastructure (GI) treatment options. One such treatment option is the use of permeable pavements. EEC constructed a parking lot comprised of three different permeable systems: permeable asphalt, porous ...

  7. Quantifying Evaporation in a Permeable Pavement System ...

    EPA Pesticide Factsheets

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. The U.S. Environmental Protection Agency (USEPA) constructed a 0.4-ha parking lot in Edison, NJ, that incorporated three different permeable pavement types in the parking lanes – permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). An impermeable liner installed 0.4 m below the driving surface in four 11.6-m by 4.74-m sections per each pavement type captures all infiltrating water and routes it to collection tanks that can contain events up to 38 mm. Each section has a design impervious area to permeable pavement area ratio of 0.66:1. Pressure transducers installed in the underdrain collection tanks measured water level for 24 months. Level was converted to volume using depth-to-volume ratios for individual collection tanks. Using a water balance approach, the measured infiltrate volume was compared to rainfall volume on an event-basis to determine the rainfall retained in the pavement strata and underlying aggregate. Evaporation since the previous event created additional storage in the pavement and aggregate layers. Events were divided into three groups based on antecedent dry period (ADP) and three, four-month categories of potential e

  8. Effect of desensitizing agents on dentin permeability.

    PubMed

    Ishihata, Hiroshi; Kanehira, Masafumi; Nagai, Tomoko; Finger, Werner J; Shimauchi, Hidetoshi; Komatsu, Masashi

    2009-06-01

    To investigate the in vitro efficacy of two dentin desensitizing products at reducing liquid permeability through human dentin discs. The tested hypothesis was that the products, in spite of different chemical mechanisms were not different at reducing or eliminating flow through dentin discs. Dentin slices (1 mm thick) were prepared from 16 extracted human third molars and their permeability was indirectly recorded in a split chamber model, using a chemiluminescence technique, after EDTA treatment (control), after soaking with albumin, and after desensitizer application. Two products were studied: MS Coat, a self-curing resin-containing oxalate product, and Gluma Desensitizer, a glutaraldehyde/HEMA-based agent without initiator. The dentin slices were mounted between an upper chamber, filled with an aqueous solution of 1% potassium ferricyanide and 0.3% hydrogen peroxide, and a lower chamber filled with 1% sodium hydroxide solution and 0.02% luminol. The upper solution was pressurized, and upon contact with the luminol solution a photochemical signal was generated and recorded as a measure of permeability throughout two consecutive pressurizing cycles at 2.5 and 13 kPa (26 and 133 cm H2O), respectively. The permeability of the control and albumin-soaked samples was similarly high. After application of the desensitizing agents, dentin permeability was reduced to virtually zero at both pressure levels (P < 0.001).

  9. Quantitative MRI study of the permeability of peritumoral brain edema in lung cancer patients with brain metastases.

    PubMed

    Wang, Dan; Wang, Ming-Liang; Li, Yue-Hua

    2017-08-15

    To use Ktrans to evaluate the aggressiveness and vascular permeability of peritumoral edema in cases of lung cancer brain metastases. A total of 68 lung cancer patients with 92 metastatic brain lesions were enrolled (20 metastatic lesions only in the gray matter - group 1; and 72 metastatic lesions located in the gray and white matter junction - group 2). All patients underwent MRI examination, which involved a dual angle (2° and 15°) enhanced T1W-VIBE (volume interpolated breath-hold examination) sequence to calculate the T1 parameter map. We used the enhanced T1-3D sequence to measure the tumor volume. The vascular permeability coefficient (Ktrans) was calculated using the single-compartment Tofts model, motion registration, and quick input mode. We examined the correlations of Ktrans with the edema index (EI), Ktrans with the tumor volume, and Ktrans with the histological expression of MMP-9 or VEGF in the original lung tumor using Pearson's' correlation analysis. Ktrans and EI were highly correlated in group 2 (r=0.66687; P<0.001) and not correlated in group 1 (r=0.33096; P=0.15405). Ktrans was also moderately related to the positive expression of MMP-9 (r=0.50912; P<0.001) and VEGF (r=0.36995; P=0.00138) There is statistical correlation between Ktrans and EI for group 2, and no statistical correlation between Ktrans and EI for group 1. The Ktrans of the peritumoral brain edema may be used to indicate the aggressiveness and vascular permeability of brain metastases in patients with lung cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Study on Surface Permeability of Concrete under Immersion

    PubMed Central

    Liu, Jun; Xing, Feng; Dong, Biqin; Ma, Hongyan; Pan, Dong

    2014-01-01

    In this paper, concrete specimens are immersed in ultrapure water, to study the evolutions of surface permeability, pore structure and paste microstructure following the prolonging of immersion period. According to the results, after 30-day immersion, the surface permeability of concrete becomes higher as compared with the value before immersion. However, further immersion makes the surface permeability decrease, so that the value measured after 150-day immersion is only half that measured after 30-day immersion. The early increase in surface permeability should be mainly attributed to the leaching of calcium hydroxide, while the later decrease to the refinement of pore structure due to hydration. The two effects work simultaneously and compete throughout the immersion period. The proposed mechanisms get support from microscopic measurements and observations. PMID:28788490

  11. Mobilization of microspheres from a fractured soil during intermittent infiltration events

    USGS Publications Warehouse

    Mohanty, Sanjay; Bulicek, Mark; Metge, David W.; Harvey, Ronald W.; Ryan, Joseph N.; Boehm, Alexandria B.

    2015-01-01

    Pathogens or biocolloids mobilized in the vadose zone may consequently contaminate groundwater. We found that microspheres were mobilized from a fractured soil during intermittent rainfall and the mobilization was greater when the microsphere size was larger and when the soil had greater water permeability.The vadose zone filters pathogenic microbes from infiltrating water and consequently protects the groundwater from possible contamination. In some cases, however, the deposited microbes may be mobilized during rainfall and migrate into the groundwater. We examined the mobilization of microspheres, surrogates for microbes, in an intact core of a fractured soil by intermittent simulated rainfall. Fluorescent polystyrene microspheres of two sizes (0.5 and 1.8 mm) and Br− were first applied to the core to deposit the microspheres, and then the core was subjected to three intermittent infiltration events to mobilize the deposited microspheres. Collecting effluent samples through a 19-port sampler at the base of the core, we found that water flowed through only five ports, and the flow rates varied among the ports by a factor of 12. These results suggest that flow paths leading to the ports had different permeabilities, partly due to macropores. Although 40 to 69% of injected microspheres were retained in the core during their application, 12 to 30% of the retained microspheres were mobilized during three intermittent infiltration events. The extent of microsphere mobilization was greater in flow paths with greater permeability, which indicates that macropores could enhance colloid mobilization during intermittent infiltration events. In all ports, the 1.8-mm microspheres were mobilized to a greater extent than the 0.5-mm microspheres, suggesting that larger colloids are more likely to mobilize. These results are useful in assessing the potential of pathogen mobilization and colloid-facilitated transport of contaminants in the subsurface under natural infiltration

  12. Properties and characteristics of dual-modified rice starch based biodegradable films.

    PubMed

    Woggum, Thewika; Sirivongpaisal, Piyarat; Wittaya, Thawien

    2014-06-01

    In this study, the dual-modified rice starch was hydroxypropylated with 6-12% of propylene oxide followed by crosslinking with 2% sodium trimetaphosphate (STMP) and a mixture of 2% STMP and 5% sodium tripolyphosphate (STPP). Increasing the propylene oxide concentrations in the DMRS yielded an increase in the molar substitution (MS) and degree of substitution (DS). However, the gelatinization parameters, paste properties, gel strength and paste clarity showed an inverse trend. The biodegradable films from the DMRS showed an increase the tensile strength, elongation at break and film solubility, while the transparency value decreased when the concentration of propylene oxide increased. However the water vapor permeability of the films did not significantly change with an increase in the concentration of propylene oxide. In addition, it was found that DMRS films crosslinked with 2% STMP demonstrated higher tensile strength, transparency value and lower water vapor permeability than the DMRS films crosslinked with a mixture of 2% STMP and 5% STPP. The XRD analysis of the DMRS films showed a decrease in crystallinity when the propylene oxide concentrations increased and the crystallinity of DMRS films with 2% STMP were higher than the DMRS films with a mixture of 2% STMP and 5% STPP. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Impervious Surfaces Alter Soil Bacterial Communities in Urban Areas: A Case Study in Beijing, China

    PubMed Central

    Hu, Yinhong; Dou, Xiaolin; Li, Juanyong; Li, Feng

    2018-01-01

    The rapid expansion of urbanization has caused land cover change, especially the increasing area of impervious surfaces. Such alterations have significant effects on the soil ecosystem by impeding the exchange of gasses, water, and materials between soil and the atmosphere. It is unclear whether impervious surfaces have any effects on soil bacterial diversity and community composition. In the present study, we conducted an investigation of bacterial communities across five typical land cover types, including impervious surfaces (concrete), permeable pavement (bricks with round holes), shrub coverage (Buxus megistophylla Levl.), lawns (Festuca elata Keng ex E. Alexeev), and roadside trees (Sophora japonica Linn.) in Beijing, to explore the response of bacteria to impervious surfaces. The soil bacterial communities were addressed by high-throughput sequencing of the bacterial 16S rRNA gene. We found that Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, and Firmicutes were the predominant phyla in urban soils. Soil from impervious surfaces presented a lower bacterial diversity, and differed greatly from other types of land cover. Soil bacterial diversity was predominantly affected by Zn, dissolved organic carbon (DOC), and soil moisture content (SMC). The composition of the bacterial community was similar under shrub coverage, roadside trees, and lawns, but different from beneath impervious surfaces and permeable pavement. Variance partitioning analysis showed that edaphic properties contributed to 12% of the bacterial community variation, heavy metal pollution explained 3.6% of the variation, and interaction between the two explained 33% of the variance. Together, our data indicate that impervious surfaces induced changes in bacterial community composition and decrease of bacterial diversity. Interactions between edaphic properties and heavy metals were here found to change the composition of the bacterial community and diversity across

  14. Transient pressure-pulse decay permeability measurements in the Barnett shale

    NASA Astrophysics Data System (ADS)

    Bhandari, A. R.; Reece, J.; Cronin, M. B.; Flemings, P. B.; Polito, P. J.

    2012-12-01

    We conducted transient pressure-pulse decay permeability measurements on core plugs of the Barnett shale using a hydrostatic pressure cell. Core plugs, 3.8 cm in diameter and less than 2.5 cm in length, were prepared from a core obtained at a depth of approximately 2330 m from the Mitchel Energy 2 T. P. Sims well in the Mississippian Barnett Formation (Loucks and Ruppel, 2007). We performed permeability measurements of the core plugs using argon at varying confining pressures in two different directions (perpendicular and parallel to bedding planes). We calculate gas permeability from changes in pressure with time using the analytical solution of the pressure diffusion equation with appropriate boundary conditions for our test setup (Dicker and Smits, 1988). Based on our limited results, we interpret 2 × 10-18 m2 for vertical permeability and 156 × 10-18 m2 for horizontal permeability. We demonstrate an extreme stress dependence of the horizontal flow permeability where permeability decreases from 156 × 10-18 m2 to 2.5 × 10-18 m2 as the confining stress is increased from 3.5 to 35 MPa. These permeability measurements are at the high side of other pulsed permeability measurements in the Barnett shale (Bustin et al. 2008; Vermylen, 2011). Permeabilities calculated from mercury injection capillary pressure curves, using theoretically derived permeability-capillary pressure models based on parallel tubes assumption, are orders of magnitude less than our transient pressure-pulse decay permeability measurements (for example, 3.7×10-21 m2 (this study), 10-21 -10-20 m2 (Sigal, 2007), 10-20 -10-17 m2 (Prince et al., 2010)). We interpret that the high measured permeabilities are due to microfractures in the sample. At this point, we do not know if the microfractures are due to sampling disturbance (stress-relief induced) or represent an in-situ fracture network. Our study illustrates the importance of characterization of microfractures at the core scale to understand

  15. The permeability of fault zones in the upper continental crust: statistical analysis from 460 datasets, updated depth-trends, and permeability contrasts between fault damage zones and protoliths.

    NASA Astrophysics Data System (ADS)

    Scibek, J.; Gleeson, T. P.; Ingebritsen, S.; McKenzie, J. M.

    2017-12-01

    Fault zones are an important part of the hydraulic structure of the Earth's crust and influence a wide range of Earth processes and a large amount of test data has been collected over the years. We conducted a meta-analysis of global of fault zone permeabilities in the upper brittle continental crust, using about 10,000 published research items from a variety of geoscience and engineering disciplines. Using 460 datasets at 340 localities, the in-situ bulk permeabilities (>10's meters scale, including macro-fractures) and matrix permeabilities (drilled core samples or outcrop spot tests) are separated, analyzed, and compared. The values have log-normal distributions and we analyze the log-permeability values. In the fault damage zones of plutonic and metamorphic rocks the mean bulk permeability was 1x10-14m2, compared to matrix mean of 1x10-16m2. In sedimentary siliciclastic rocks the mean value was the same for bulk and matrix permeability (4x10-14m2). More useful insights were determined from the regression analysis of paired permeability data at all sites (fault damage zone vs. protolith). Much of the variation in fault permeability is explained by the permeability of protolith: in relatively weak volcaniclastic and clay-rich rocks up to 70 to 88% of the variation is explained, and only 20-30% in plutonic and metamorphic rocks. We propose a revision at shallow depths for previously published upper-bound curves for the "fault-damaged crust " and the geothermal-metamorphic rock assemblage outside of major fault zones. Although the bounding curves describe the "fault-damaged crust" permeability parameter space adequately, the only statistically significant permeability-depth trend is for plutonic and metamorphic rocks (50% of variation explained). We find a depth-dependent systematic variation of the permeability ratio (fault damage zone / protolith) from the in-situ bulk permeability global data. A moving average of the log-permeability ratio value is 2 to 2

  16. Comparing watershed black locust afforestation and natural revegetation impacts on soil nitrogen on the Loess Plateau of China

    NASA Astrophysics Data System (ADS)

    Jin, Zhao; Li, Xiangru; Wang, Yunqiang; Wang, Yi; Wang, Kaibo; Cui, Buli

    2016-04-01

    This study examined a pair of neighbouring small watersheds with contrasting vegetations: artificial forestland and natural grassland. Since 1954, afforestation which mainly planted with black locust has been conducted in one of these watersheds and natural revegetation in the other. The differences in soil total N, nitrate, ammonium, foliar litterfall δ15N and dual stable isotopes of δ15N and δ18O in soil nitrate were investigated in the two ecosystems. Results showed that there was no significant difference in soil total N storage between the two ecosystems, but the black locust forestland presented higher soil nitrate than the grassland. Moreover, the foliar litterfall N content and δ15N of the forestland were significant higher than the grassland. These results indicate that 60 years of watershed black locust afforestation have increased soil N availability. The higher nitrate in the forestland was attributed to the biological N fixation of black locust and difference in ecosystem hydrology. The dual stable isotopes of δ15N and δ18O revealed that the two ecosystems had different sources of soil nitrate. The soil nitrate in the forestland was likely derived from soil N nitrification, while the soil nitrate in the grassland was probably derived from the legacy of NO3- fertiliser.

  17. Kalman filters for assimilating near-surface observations in the Richards equation - Part 2: A dual filter approach for simultaneous retrieval of states and parameters

    NASA Astrophysics Data System (ADS)

    Medina, H.; Romano, N.; Chirico, G. B.

    2012-12-01

    We present a dual Kalman Filter (KF) approach for retrieving states and parameters controlling soil water dynamics in a homogenous soil column by using near-surface state observations. The dual Kalman filter couples a standard KF algorithm for retrieving the states and an unscented KF algorithm for retrieving the parameters. We examine the performance of the dual Kalman Filter applied to two alternative state-space formulations of the Richards equation, respectively differentiated by the type of variable employed for representing the states: either the soil water content (θ) or the soil matric pressure head (h). We use a synthetic time-series series of true states and noise corrupted observations and a synthetic time-series of meteorological forcing. The performance analyses account for the effect of the input parameters, the observation depth and the assimilation frequency as well as the relationship between the retrieved states and the assimilated variables. We show that the identifiability of the parameters is strongly conditioned by several factors, such as the initial guess of the unknown parameters, the wet or dry range of the retrieved states, the boundary conditions, as well as the form (h-based or θ-based) of the state-space formulation. State identifiability is instead efficient even with a relatively coarse time-resolution of the assimilated observation. The accuracy of the retrieved states exhibits limited sensitivity to the observation depth and the assimilation frequency.

  18. Permeability model of sintered porous media: analysis and experiments

    NASA Astrophysics Data System (ADS)

    Flórez Mera, Juan Pablo; Chiamulera, Maria E.; Mantelli, Marcia B. H.

    2017-11-01

    In this paper, the permeability of porous media fabricated from copper powder sintering process was modeled and measured, aiming the use of the porosity as input parameter for the prediction of the permeability of sintering porous media. An expression relating the powder particle mean diameter with the permeability was obtained, based on an elementary porous media cell, which is physically represented by a duct formed by the arrangement of spherical particles forming a simple or orthorhombic packing. A circular duct with variable section was used to model the fluid flow within the porous media, where the concept of the hydraulic diameter was applied. Thus, the porous is modeled as a converging-diverging duct. The electrical circuit analogy was employed to determine two hydraulic resistances of the cell: based on the Navier-Stokes equation and on the Darcýs law. The hydraulic resistances are compared between themselves and an expression to determine the permeability as function of average particle diameter is obtained. The atomized copper powder was sifted to reduce the size dispersion of the particles. The porosities and permeabilities of sintered media fabricated from powders with particle mean diameters ranging from 20 to 200 microns were measured, by means of the image analysis method and using an experimental apparatus. The permeability data of a porous media, made of copper powder and saturated with distilled water, was used to compare with the permeability model. Permeability literature models, which considers that powder particles have the same diameter and include porosity data as input parameter, were compared with the present model and experimental data. This comparison showed to be quite good.

  19. Clay and Shale Permeability at Lab to Regional Scale

    NASA Astrophysics Data System (ADS)

    Neuzil, C.

    2017-12-01

    Because clays, shales, and other clay-rich media tend to be only poorly permeable, and are laterally extensive and voluminous, they play key roles in problems as diverse as groundwater supply, waste confinement, exploitation of conventional and unconventional oil and gas, and deformation and failure in the crust. Clay and shale permeability is a crucial but often highly uncertain analysis parameter; direct measurements are challenging, error-prone, and - perhaps most importantly - provide information only at quite small scales. Fortunately, there has been a dramatic increase in clay and shale permeability data from sources that include scientific ocean drilling, nuclear waste repository research, groundwater resource studies, liquid waste and CO2 sequestration, and oil and gas research. The effect of lithology as well as porosity on matrix permeability can now be examined and permeability - scale relations are becoming discernable. A significant number of large-scale permeability estimates have been obtained by inverse methods that essentially treat large-scale flow systems as natural experiments. They suggest surprisingly little scale-dependence in clay and shale permeabilities in subsiding basins and accretionary complexes. Stable continental settings present a different picture; as depths increase beyond 1 km, scale dependence mostly disappears even over the largest areas. At depths less than 1 km, secondary permeability is not always present over areas of 1 - 10 km2, but always evident for areas in excess of about 103 km2. Transmissive fractures have been observed in very low porosity (< 0.03) shales in these settings, but the cause of scale dependence in other cases is unclear; it may reflect time-dependent, or "dynamic" conditions, including irreversible and ongoing changes imposed on subsurface flow systems by human activities.

  20. Modeling stress/strain-dependent permeability changes for deep geoenergy applications

    NASA Astrophysics Data System (ADS)

    Rinaldi, Antonio Pio; Rutqvist, Jonny

    2016-04-01

    Rock permeability is a key parameter in deep geoenergy systems. Stress and strain changes induced at depth by fluid injection or extraction may substantially alter the rock permeability in an irreversible way. With regard to the geoenergies, some applications require the permeability to be enhanced to improve productivity. The rock permeability is generally enhanced by shearing process of faults and fractures (e.g. hydroshearing for Enhanced and Deep Geothermal Systems), or the creation of new fractures (e.g. hydrofracturing for shale gas). However, such processes may, at the same time, produce seismicity that can be felt by the local population. Moreover, the increased permeability due to fault reactivation may pose at risk the sealing capacity of a storage site (e.g. carbon sequestration or nuclear waste disposal), providing then a preferential pathway for the stored fluids to escape at shallow depth. In this work we present a review of some recent applications aimed at understanding the coupling between stress (or strain) and permeability. Examples of geoenergy applications include both EGS and CO2 sequestration. To investigate both "wanted" and "unwanted" effects, THM simulations have been carried out with the TOUGH-FLAC simulator. Our studies include constitutive equations relating the permeability to mean effective stress, effective normal stress, volumetric strain, as well as accounting for permeability variation as related to fault/fracture reactivation. Results show that the geomechanical effects have a large role in changing the permeability, hence affecting fluids leakage, reservoir enhancement, as well as the induced seismicity.

  1. Intestinal Membrane Permeability and Hypersensitivity In the Irritable Bowel Syndrome

    PubMed Central

    Zhou, QiQi; Zhang, Buyi; Verne, G. Nicholas

    2009-01-01

    Irritable bowel syndrome (IBS) is a common gastrointestinal disorder in which the underlying pathophysiology is poorly understood; however, increased intestinal permeability in diarrhea-predominant IBS patients has been reported. Here we demonstrate diarrhea-predominant IBS patients (D-IBS) that display increased intestinal permeability. We have also found that increased intestinal membrane permeability is associated with visceral and thermal hypersensitivity in this subset of D-IBS patients. We evaluated 54 D-IBS patients and 22 controls for intestinal membrane permeability using the lactulose / mannitol method. All subjects ingested 5 g laclulose and 2 g mannitol in 100 ml of water after which their urine was collected. We also evaluated the mean mechanical visual analogue (MVAS) pain rating to nociceptive thermal and visceral stimulation in all subjects. All study participants also completed the FBDSI scale. Approximately 39% of diarrhea-predominant IBS patients have increased intestinal membrane permeability as measured by the lactulose / mannitol ratio. These IBS patients also demonstrated higher M-VAS pain intensity reading scale. Interestingly, the IBS patients with hypersensitivity and increased intestinal permeability had a higher FBDSI score (100.8±5.4) compared to IBS patients with normal membrane permeability and sensitivity (51.6±12.7) and controls (6.1 ± 5.6) (p<0.001). A subset of D-IBS patients have increased intestinal membrane permeability that is associated with an increased FBDSI score and increased hypersensitivity to visceral and thermal nociceptive pain stimuli. Thus, increased intestinal membrane permeability in D-IBS patients may lead to more severe IBS symptoms and hypersensitivity to somatic and visceral stimuli. PMID:19595511

  2. Analytical approximations for effective relative permeability in the capillary limit

    NASA Astrophysics Data System (ADS)

    Rabinovich, Avinoam; Li, Boxiao; Durlofsky, Louis J.

    2016-10-01

    We present an analytical method for calculating two-phase effective relative permeability, krjeff, where j designates phase (here CO2 and water), under steady state and capillary-limit assumptions. These effective relative permeabilities may be applied in experimental settings and for upscaling in the context of numerical flow simulations, e.g., for CO2 storage. An exact solution for effective absolute permeability, keff, in two-dimensional log-normally distributed isotropic permeability (k) fields is the geometric mean. We show that this does not hold for krjeff since log normality is not maintained in the capillary-limit phase permeability field (Kj=k·krj) when capillary pressure, and thus the saturation field, is varied. Nevertheless, the geometric mean is still shown to be suitable for approximating krjeff when the variance of ln⁡k is low. For high-variance cases, we apply a correction to the geometric average gas effective relative permeability using a Winsorized mean, which neglects large and small Kj values symmetrically. The analytical method is extended to anisotropically correlated log-normal permeability fields using power law averaging. In these cases, the Winsorized mean treatment is applied to the gas curves for cases described by negative power law exponents (flow across incomplete layers). The accuracy of our analytical expressions for krjeff is demonstrated through extensive numerical tests, using low-variance and high-variance permeability realizations with a range of correlation structures. We also present integral expressions for geometric-mean and power law average krjeff for the systems considered, which enable derivation of closed-form series solutions for krjeff without generating permeability realizations.

  3. Permeability Evolution With Shearing of Simulated Faults in Unconventional Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Wu, W.; Gensterblum, Y.; Reece, J. S.; Zoback, M. D.

    2016-12-01

    Horizontal drilling and multi-stage hydraulic fracturing can lead to fault reactivation, a process thought to influence production from extremely low-permeability unconventional reservoir. A fundamental understanding of permeability changes with shear could be helpful for optimizing reservoir stimulation strategies. We examined the effects of confining pressure and frictional sliding on fault permeability in Eagle Ford shale samples. We performed shear-flow experiments in a triaxial apparatus on four shale samples: (1) clay-rich sample with sawcut fault, (2) calcite-rich sample with sawcut fault, (3) clay-rich sample with natural fault, and (4) calcite-rich sample with natural fault. We used pressure pulse-decay and steady-state flow techniques to measure fault permeability. Initial pore and confining pressures are set to 2.5 MPa and 5.0 MPa, respectively. To investigate the influence of confining pressure on fault permeability, we incrementally raised and lowered the confining pressure and measure permeability at different effective stresses. To examine the effect of frictional sliding on fault permeability, we slide the samples four times at a constant shear displacement rate of 0.043 mm/min for 10 minutes each and measure fault permeability before and after frictional sliding. We used a 3D Laser Scanner to image fault surface topography before and after the experiment. Our results show that frictional sliding can enhance fault permeability at low confining pressures (e.g., ≥5.0 MPa) and reduce fault permeability at high confining pressures (e.g., ≥7.5 MPa). The permeability of sawcut faults almost fully recovers when confining pressure returns to the initial value, and increases with sliding due to asperity damage and subsequent dilation at low confining pressures. In contrast, the permeability of natural faults does not fully recover. It initially increases with sliding, but then decreases with further sliding most likely due to fault gouge blocking fluid

  4. [Research progress on the dual-mulching of ridge and furrow technology in dry farming regions of northern China: A review.

    PubMed

    Li, Rong; Hou, Xian Qing; Wang, Xiao Min; Jia, Zhi Kuan; Han, Qing Fang

    2016-04-22

    The precipitation exiguity and water deficiency are the major factors limiting crop growth in dry farming regions of northern China. Dual-mulching of ridges and furrows, which have been widely concerned both domestically and internationally, could increase the utilization efficiency of precipitation and crop yield. In this paper, we reviewed the concept and model of dual-mulching of ridges and furrows, its supporting farm machinery and implements as well as its ecological effects on soil and crops. Based on the current research progress of cultivation techniques using harvested rainfall in ridge and furrow, priority of future research aspects of the dual-mulching of ridges and furrows were suggested as follows: 1) to establish the suitable ridge-furrow ratios for different crops in different types of dry farming regions of northern China; 2) to pay more attention to the study of coupling effects of soil moisture with temperature, fertility and other factors; 3) to explore better environment-friendly mulching materials; 4) to enhance the research on technical evaluation and popularization, and the design of supporting farm machinery and implements.

  5. Duration of ultrasound-mediated enhanced plasma membrane permeability.

    PubMed

    Lammertink, Bart; Deckers, Roel; Storm, Gert; Moonen, Chrit; Bos, Clemens

    2015-03-30

    Ultrasound (US) induced cavitation can be used to enhance the intracellular delivery of drugs by transiently increasing the cell membrane permeability. The duration of this increased permeability, termed temporal window, has not been fully elucidated. In this study, the temporal window was investigated systematically using an endothelial- and two breast cancer cell lines. Model drug uptake was measured as a function of time after sonication, in the presence of SonoVue™ microbubbles, in HUVEC, MDA-MB-468 and 4T1 cells. In addition, US pressure amplitude was varied in MDA-MB-468 cells to investigate its effect on the temporal window. Cell membrane permeability of HUVEC and MDA-MB-468 cells returned to control level within 1-2 h post-sonication, while 4T1 cells needed over 3h. US pressure affected the number of cells with increased membrane permeability, as well as the temporal window in MDA-MB-468 cells. This study shows that the duration of increased membrane permeability differed between the cell lines and US pressures used here. However, all were consistently in the order of 1-3 h after sonication. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Cannabinoids mediate opposing effects on inflammation-induced intestinal permeability

    PubMed Central

    Alhamoruni, A; Wright, KL; Larvin, M; O'Sullivan, SE

    2012-01-01

    BACKGROUND AND PURPOSE Activation of cannabinoid receptors decreases emesis, inflammation, gastric acid secretion and intestinal motility. The ability to modulate intestinal permeability in inflammation may be important in therapy aimed at maintaining epithelial barrier integrity. The aim of the present study was to determine whether cannabinoids modulate the increased permeability associated with inflammation in vitro. EXPERIMENTAL APPROACH Confluent Caco-2 cell monolayers were treated for 24 h with IFNγ and TNFα (10 ng·mL−1). Monolayer permeability was measured using transepithelial electrical resistance and flux measurements. Cannabinoids were applied either apically or basolaterally after inflammation was established. Potential mechanisms of action were investigated using antagonists for CB1, CB2, TRPV1, PPARγ and PPARα. A role for the endocannabinoid system was established using inhibitors of the synthesis and degradation of endocannabinoids. KEY RESULTS Δ9-Tetrahydrocannabinol (THC) and cannabidiol accelerated the recovery from cytokine-induced increased permeability; an effect sensitive to CB1 receptor antagonism. Anandamide and 2-arachidonylglycerol further increased permeability in the presence of cytokines; this effect was also sensitive to CB1 antagonism. No role for the CB2 receptor was identified in these studies. Co-application of THC, cannabidiol or a CB1 antagonist with the cytokines ameliorated their effect on permeability. Inhibiting the breakdown of endocannabinoids worsened, whereas inhibiting the synthesis of endocannabinoids attenuated, the increased permeability associated with inflammation. CONCLUSIONS AND IMPLICATIONS These findings suggest that locally produced endocannabinoids, acting via CB1 receptors play a role in mediating changes in permeability with inflammation, and that phytocannabinoids have therapeutic potential for reversing the disordered intestinal permeability associated with inflammation. LINKED ARTICLES This

  7. A probabilistic damage model of stress-induced permeability anisotropy during cataclastic flow

    NASA Astrophysics Data System (ADS)

    Zhu, Wenlu; MontéSi, Laurent G. J.; Wong, Teng-Fong

    2007-10-01

    A fundamental understanding of the effect of stress on permeability evolution is important for many fault mechanics and reservoir engineering problems. Recent laboratory measurements demonstrate that in the cataclastic flow regime, the stress-induced anisotropic reduction of permeability in porous rocks can be separated into 3 different stages. In the elastic regime (stage I), permeability and porosity reduction are solely controlled by the effective mean stress, with negligible permeability anisotropy. Stage II starts at the onset of shear-enhanced compaction, when a critical yield stress is attained. In stage II, the deviatoric stress exerts primary control over permeability and porosity evolution. The increase in deviatoric stress results in drastic permeability and porosity reduction and considerable permeability anisotropy. The transition from stage II to stage III takes place progressively during the development of pervasive cataclastic flow. In stage III, permeability and porosity reduction becomes gradual again, and permeability anisotropy diminishes. Microstructural observations on deformed samples using laser confocal microscopy reveal that stress-induced microcracking and pore collapse are the primary forms of damage during cataclastic flow. A probabilistic damage model is formulated to characterize the effects of stress on permeability and its anisotropy. In our model, the effects of both effective mean stress and differential stress on permeability evolution are calculated. By introducing stress sensitivity coefficients, we propose a first-order description of the dependence of permeability evolution on different loading paths. Built upon the micromechanisms of deformation in porous rocks, this unified model provides new insight into the coupling of stress and permeability.

  8. Permeable Pavement Research at the Edison Environmental Center

    EPA Science Inventory

    There are few detailed studies of full-scale, replicated, actively-used permeable pavement systems. Practitioners need additional studies of permeable pavement systems in its intended application (parking lot, roadway, etc.) across a range of climatic events, daily usage conditio...

  9. Permeability and Channel-Mediated Transport of Boric Acid across Membrane Vesicles Isolated from Squash Roots1

    PubMed Central

    Dordas, Christos; Chrispeels, Maarten J.; Brown, Patrick H.

    2000-01-01

    Boron is an essential micronutrient for plant growth and the boron content of plants differs greatly, but the mechanism(s) of its uptake into cells is not known. Boron is present in the soil solution as boric acid and it is in this form that it enters the roots. We determined the boron permeability coefficient of purified plasma membrane vesicles obtained from squash (Cucurbita pepo) roots and found it to be 3 × 10−7 ±1.4 × 10−8 cm s−1, six times higher than the permeability of microsomal vesicles. Boric acid permeation of the plasma membrane vesicles was partially inhibited (30%–39%) by mercuric chloride and phloretin, a non-specific channel blocker. The inhibition by mercuric chloride was readily reversible by 2-mercaptoethanol. The energy of activation for boron transport into the plasma membrane vesicles was 10.2 kcal mol−1. Together these data indicate that boron enters plant cells in part by passive diffusion through the lipid bilayer of the plasma membrane and in part through proteinaceous channels. Expression of the major intrinsic protein (MIP) PIP1 in Xenopus laevis oocytes resulted in a 30% increase in the boron permeability of the oocytes. Other MIPs tested (PIP3, MLM1, and GlpF) did not have this effect. We postulate that certain MIPs, like those that have recently been shown to transport small neutral solutes, may also be the channels through which boron enters plant cells. PMID:11080310

  10. Dual nozzle aerodynamic and cooling analysis study. [dual throat and dual expander nozzles

    NASA Technical Reports Server (NTRS)

    Meagher, G. M.

    1980-01-01

    Geometric, aerodynamic flow field, performance prediction, and heat transfer analyses are considered for two advanced chamber nozzle concepts applicable to Earth-to-orbit engine systems. Topics covered include improvements to the dual throat aerodynamic and performance prediction program; geometric and flow field analyses of the dual expander concept; heat transfer analysis of both concepts, and engineering analysis of data from the NASA/MSFC hot-fire testing of a dual throat thruster model thrust chamber assembly. Preliminary results obtained are presented in graphs.

  11. A Fractal Permeability Model for Shale Oil Reservoir

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Dong, Mingzhe; Li, Yajun

    2018-01-01

    In this work, a fractal analytical model is proposed to predict the permeability of shale reservoir. The proposed model explicitly relates the permeability to the micro-structural parameters (tortuosity, pore area fractal dimensions, porosity and slip velocity coefficient) of shale.

  12. Limitations of the permeability-limited compartment model in estimating vascular permeability and interstitial volume fraction in DCE-MRI.

    PubMed

    Carreira, Guido Correia; Gemeinhardt, Ole; Gorenflo, Rudolf; Beyersdorff, Dirk; Franiel, Tobias; Plendl, Johanna; Lüdemann, Lutz

    2011-06-01

    Dynamic contrast-enhanced magnetic resonance imaging commonly uses compartment models to estimate tissue parameters in general and perfusion parameters in particular. Compartment models assume a homogeneous distribution of the injected tracer throughout the compartment volume. Since tracer distribution within a compartment cannot be assessed, the parameters obtained by means of a compartment model might differ from the actual physical values. This work systematically examines the widely used permeability-surface-limited one-compartment model to determine the reliability of the parameters obtained by comparing them with their actual values. A computer simulation was used to model spatial tracer distribution within the interstitial volume using diffusion of contrast agent in tissue. Vascular parameters were varied as well as tissue parameters. The vascular parameters used were capillary radius (4 and 12 μm), capillary permeability (from 0.03 to 3.3 μm/s) and intercapillary distances from 30 to 300 μm. The tissue parameters used were tortuosity (λ), porosity (α) and interstitial volume fraction (v(e)). Our results suggest that the permeability-surface-limited compartment model generally underestimates capillary permeability for capillaries with a radius of 4 μm by factors from ≈0.03 for α=0.04, to ≈ 0.1 for α=0.2, to ≈ 0.5 for α=1.0. An overestimation of actual capillary permeability for capillaries with a radius of 12 μm by a factor of ≥1.3 was found for α=1.0, while α=0.2 yielded an underestimation by a factor of ≈0.3 and α=0.04 by a factor of ≈ 0.03. The interstitial volume fraction, v(e), obtained by the compartment model differed with increasing intercapillary distances and for low vessel permeability, whereas v(e) was found to be estimated approximately accurately for P=0.3 μm/s and P=3.3 μm/s for vessel distances <100 μm. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Attribution of soil information associated with modeling background clutter

    NASA Astrophysics Data System (ADS)

    Mason, George; Melloh, Rae

    2006-05-01

    This paper examines the attribution of data fields required to generate high resolution soil profiles for support of Computational Test Bed (CTB) used for countermine research. The countermine computational test bed is designed to realistically simulate the geo-environment to support the evaluation of sensors used to locate unexploded ordnance. The goal of the CTB is to derive expected moisture, chemical compounds, and measure heat migration over time, from which we expect to optimize sensor performance. Several tests areas were considered for the collection of soils data to populate the CTB. Collection of bulk soil properties has inherent spatial resolution limits. Novel techniques are therefore required to populate a high resolution model. This paper presents correlations between spatial variability in texture as related to hydraulic permeability and heat transfer properties of the soil. The extracted physical properties are used to exercise models providing a signature of subsurface media and support the simulation of detection by various sensors of buried and surface ordnance.

  14. Fumigation efficacy and emission reduction using low-permeability film in orchard soil fumigation

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Many orchards in California, USA, apply fumigants to soil before replanting to reduce the impact of pest pressure or replanting disease on new tree establishment. Emission control of alternative fumigants to methyl bromide is mandatory in air quality (ozone) non-attainment areas. This s...

  15. Fault Damage Zone Permeability in Crystalline Rocks from Combined Field and Laboratory Measurements: Can we Predict Damage Zone Permeability?

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Faulkner, D. R.

    2009-04-01

    Models predicting crustal fluid flow are important for a variety of reasons; for example earthquake models invoking fluid triggering, predicting crustal strength modelling flow surrounding deep waste repositories or the recovery of natural resources. Crustal fluid flow is controlled by both the bulk transport properties of rocks as well as heterogeneities such as faults. In nature, permeability is enhanced in the damage zone of faults, where fracturing occurs on a wide range of scales. Here we analyze the contribution of microfracture damage on the permeability of faults that cut through low porosity, crystalline rocks by combining field and laboratory measurements. Microfracture densities surrounding strike-slip faults with well-constrained displacements ranging over 3 orders of magnitude (~0.12 m - 5000 m) have been analyzed. The faults studied are excellently exposed within the Atacama Fault Zone, where exhumation from 6-10 km has occurred. Microfractures in the form of fluid inclusion planes (FIPs) show a log-linear decrease in fracture density with perpendicular distance from the fault core. Damage zone widths defined by the density of FIPs scale with fault displacement, and an empirical relationship for microfracture density distribution throughout the damage zone with displacement is derived. Damage zone rocks will have experienced differential stresses that were less than, but some proportion of, the failure stress. As such, permeability data from progressively loaded, initially intact laboratory samples, in the pre-failure region provide useful insights into fluid flow properties of various parts of the damage zone. The permeability evolution of initially intact crystalline rocks under increasing differential load leading to macroscopic failure was determined at water pore pressures of 50 MPa and effective pressure of 10 MPa. Permeability is seen to increase by up to, and over, two orders of magnitude prior to macroscopic failure. Further experiments were

  16. Experimental datasets on engineering properties of expansive soil treated with common salt.

    PubMed

    Durotoye, Taiwo O; Akinmusuru, Joseph O; Ogundipe, Kunle E

    2018-06-01

    Construction of highway pavements or high rise structures over the expansive soils are always problematic due to failures of volume change or swelling characteristic experienced in the water permeability of the soil. The data in this article represented summary of (Durotoye et al., 2016; Durotoye, 2016) [1], [2]. The data explored different percentages of sodium chloride as additive in stabilizing the engineering properties of expansive soil compared with other available stabilizer previously worked on. Experimental procedures carried out on expansive soil include: (Liquid limit, Plastic limit, Plasticity index, Shrinkage limit, Specific gravity Free swell index and Optimum water content) to determine the swelling parameters and (maximum dry density, California bearing ratio and unconfined compressive strength) to determine the strength parameters. The results of the experiment were presented in pie charts.

  17. Permeability Development at Layer Interfaces in Bedded Rocksalt

    NASA Astrophysics Data System (ADS)

    Muhammad, N.; Spiers, C. J.; Peach, C. J.; De Bresser, J. H. P.; Liu, W.

    2016-12-01

    Solution mined salt caverns are of great interest for storage of fluids such as compressed air, natural gas or hydrogen fuel, and are expected to show excellent healing and sealing capacity. However, it is of utmost importance to be able to reliably quantify the permeability of salt cavern walls, so that potential loss of the stored asset may be assessed. Data on dilatancy, permeability and damage development are readily available for pure rocksalt undergoing deformation, but little is known about the permeability development at the bedding interfaces within layered salt under varying differential stresses. Layered salt samples were obtained from the walls of a pilot well in Hubei province China. The natural salt shows alternating layers of rock salt, anhydrite, mudstone and glauberite. Cylindrical samples, 50 mm diameter and 85 mm long, were prepared with layer interfaces oriented vertical, horizontal or obliquely to the core axis. Tests were conducted at room temperature and a confining pressure of 20 and (for shallower depth) 10 MPa, representing in-situ conditions. Axial deformation was performed using a triaxial machine in the HPT-laboratory at Utrecht. Compaction/dilation was measured using a servo control dilatometer for confining pressure control, and, in conjunction, the permeability was measured using Argon gas transient step permeameter. The samples were deformed at a constant displacement rate of 1 µm/s. After reaching 10, 20 and 30 MPa differential stress, deformation was halted and permeability was measured parallel to the compositional interfaces for each of the three geometries. Overall, it was found that during deformation, no shear slippage occurred at interface and the bulk permeability of most specimens decreased, where the absolute permeability value (found in the range 10-15 to <10-21 m2) depending upon the orientation of the bedding interface and composition of the sample. All samples showed a decrease in volume with axial strain

  18. Hydrogen-permeable composite metal membrane and uses thereof

    DOEpatents

    Edlund, D.J.; Friesen, D.T.

    1993-06-08

    Various hydrogen production and hydrogen sulfide decomposition processes are disclosed that utilize composite metal membranes that contain an intermetallic diffusion barrier separating a hydrogen-permeable base metal and a hydrogen-permeable coating metal. The barrier is a thermally stable inorganic proton conductor.

  19. Nitrogen Transformations in Three Types of Permeable Pavement

    EPA Science Inventory

    In 2009, USEPA constructed a 0.4-ha (1-ac) parking lot at the Edison Environmental Center in Edison, NJ, that incorporated three different permeable pavement types - permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). The driving lanes...

  20. Effects of Aspirin on Gastroduodenal Permeability in Alcoholics and Controls

    PubMed Central

    Farhadi, Ashkan; Keshavarzian, Ali; Kwasny, Mary J.; Shaikh, Maliha; Fogg, Louis; Lau, Cynthia; Fields, Jeremy Z.; Forsyth, Christopher B.

    2010-01-01

    Alcohol and non-steroidal anti-inflammatory drugs (NSAIDS) are noxious agents that can disrupt the integrity of the gastroduodenal mucosal and damage the epithelial barrier, and lead to increased gastroduodenal permeability. Moreover, it is not uncommon that patients are exposed to these two barrier stressors at the same time. It is thus important to know how simultaneous exposure affects the gastroduodenal barrier, and acquiring that knowledge was the goal of this study. We used a method that has been widely used for the assessment of injury to the gastroduodenal barrier induced by these noxious agents – measurement of gastroduodenal permeability as indicated by urinary excretion of ingested sucrose. We used gas chromatography to measure the amount of sucrose excreted in the urine over the 5–12 h following ingestion of a bolus of sucrose. The 148 participants in the study included 92 alcoholics and 56 healthy controls. All study subjects had a baseline permeability test. To determine whether addition of a second noxious agent, in addition to chronic alcohol, further decreases gastroduodenal barrier integrity, a subset of 118 study subjects participated in another permeability test in which they were exposed to aspirin. For this test, participants ingested 1300 mg aspirin twice, 12 hours and 1 hour before the final permeability test. The baseline permeability test showed that alcoholics have significantly higher gastroduodenal permeability than controls. Aspirin caused a significant within group absolute increase in gastroduodenal permeability in both alcoholics and controls (+7.72%, p=0.003 and +2.25%, p = 0.011, respectively) but the magnitude of these increases were not significantly different from each other. Baseline permeability did vary by gender, self-reported illegal drug use, and employment type. The extent of the permeability increase after aspirin ingestion varied with illegal drug use and recruitment site (a surrogate marker of socioeconomic status

  1. A new structure of permeable pavement for mitigating urban heat island.

    PubMed

    Liu, Yong; Li, Tian; Peng, Hangyu

    2018-09-01

    The urban heat island (UHI) effect has been a great threat to human habitation, and how to mitigate this problem has been a global concern over decades. This paper addresses the cooling effect of a novel permeable pavement called evaporation-enhancing permeable pavement, which has capillary columns in aggregate and a liner at the bottom. To explore the efficiency of mitigating the UHI, bench-scale permeable pavement units with capillary columns were developed and compared with conventional permeable pavement. Criteria of capillary capacities of the column, evaporation rates, and surface temperature of the pavements were monitored under simulated rainfall and Shanghai local weather conditions. Results show the capillary column was important in increasing evaporation by lifting water from the bottom to the surface, and the evaporation-enhancing permeable pavement was cooler than a conventional permeable pavement by as much as 9.4°C during the experimental period. Moreover, the cooling effect of the former pavement could persist more than seven days under the condition of no further rainfall. Statistical analysis result reveals that evaporation-enhancing permeable pavement can mitigate the UHI effect significantly more than a conventional permeable pavement. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Effective pressure law for permeability of E-bei sandstones

    NASA Astrophysics Data System (ADS)

    Li, M.; Bernabé, Y.; Xiao, W.-I.; Chen, Z.-Y.; Liu, Z.-Q.

    2009-07-01

    Laboratory experiments were conducted to determine the effective pressure law for permeability of tight sandstone rocks from the E-bei gas reservoir, China. The permeability k of five core samples was measured while cycling the confining pressure pc and fluid pressure pf. The permeability data were analyzed using the response-surface method, a statistical model-building approach yielding a representation of k in (pc, pf) space that can be used to determine the effective pressure law, i.e., peff = pc - κpf. The results show that the coefficient κ of the effective pressure law for permeability varies with confining pressure and fluid pressure as well as with the loading or unloading cycles (i.e., hysteresis effect). Moreover, κ took very small values in some of the samples, even possibly lower than the value of porosity, in contradiction with a well-accepted theoretical model. We also reanalyzed a previously published permeability data set on fissured crystalline rocks and found again that the κ varies with pc but did not observe κ values lower than 0.4, a value much larger than porosity. Analysis of the dependence of permeability on effective pressure suggests that the occurrence of low κ values may be linked to the high-pressure sensitivity of E-bei sandstones.

  3. Analysis the configuration of earthing system based on high-low and low-high soil structure

    NASA Astrophysics Data System (ADS)

    Ramani, A. N.; Ahmad, Abdul Rahman; Sulaima, M. F.; Nasir, M. N. M.; Ahmad, Arfah

    2015-05-01

    Each TNB transmission tower requires a tower footing resistance (TFR) with a lower grounding resistance value that depends on the transmission line voltage. For 132kV and 275kV tower, the TFR must less than 10Ω and 500kV tower must less than 5Ω. The TFR is changeable with variable factors such as soil resistivity. Low TFR provides essential protection to the fault such as lightning strike that may occur at any time. The fault current flow to the lowest resistance path and easily disperses to earth. Back flashover voltage across the insulator of transmission lines may occur when the TFR is high. The TFR is influenced by soil resistivity. There are three parameters affecting the soil resistivity; moisture content, salt content and temperature of the soil. High moisture content in soil will reduce the soil resistivity and resultant low TFR. Small scale moisture control by using Micro Reservoir (MR) irrigation with semi-permeable membranes have the power to offer the stable moisture in soil. By using osmosis concept, it is the process of net movement of water molecules from high potential water to lower potential water though a semi permeable membrane. The MR can withstand for 3 to 5 days without continuous water supply. The MR installed in the centre of the tower that contains a multiple parallel of electrode rods. The concentrated of electrode rods grounding configuration with a combination of MR will improve the TFR even at multilayer soil. As a result, MR gives a little improvement to TFR. The MR in area of concentrated electrode rod configuration to ensure the soil always wet and moist at all times. The changes in soil affect the tower-footing-resistance. The tower-footing-resistance measurement at afternoon is higher than at evening because of the temperature and moisture content in soil is change due to sun radiation.

  4. Analysis the configuration of earthing system based on high-low and low-high soil structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramani, A. N.; Ahmad, Abdul Rahman; Sulaima, M. F.

    2015-05-15

    Each TNB transmission tower requires a tower footing resistance (TFR) with a lower grounding resistance value that depends on the transmission line voltage. For 132kV and 275kV tower, the TFR must less than 10Ω and 500kV tower must less than 5Ω. The TFR is changeable with variable factors such as soil resistivity. Low TFR provides essential protection to the fault such as lightning strike that may occur at any time. The fault current flow to the lowest resistance path and easily disperses to earth. Back flashover voltage across the insulator of transmission lines may occur when the TFR is high.more » The TFR is influenced by soil resistivity. There are three parameters affecting the soil resistivity; moisture content, salt content and temperature of the soil. High moisture content in soil will reduce the soil resistivity and resultant low TFR. Small scale moisture control by using Micro Reservoir (MR) irrigation with semi-permeable membranes have the power to offer the stable moisture in soil. By using osmosis concept, it is the process of net movement of water molecules from high potential water to lower potential water though a semi permeable membrane. The MR can withstand for 3 to 5 days without continuous water supply. The MR installed in the centre of the tower that contains a multiple parallel of electrode rods. The concentrated of electrode rods grounding configuration with a combination of MR will improve the TFR even at multilayer soil. As a result, MR gives a little improvement to TFR. The MR in area of concentrated electrode rod configuration to ensure the soil always wet and moist at all times. The changes in soil affect the tower-footing-resistance. The tower-footing-resistance measurement at afternoon is higher than at evening because of the temperature and moisture content in soil is change due to sun radiation.« less

  5. Permeability of the San Andreas Fault Zone at Depth

    NASA Astrophysics Data System (ADS)

    Rathbun, A. P.; Song, I.; Saffer, D.

    2010-12-01

    Quantifying fault rock permeability is important toward understanding both the regional hydrologic behavior of fault zones, and poro-elastic processes that affect fault mechanics by mediating effective stress. These include long-term fault strength as well as dynamic processes that may occur during earthquake slip, including thermal pressurization and dilatancy hardening. Despite its importance, measurements of fault zone permeability for relevant natural materials are scarce, owing to the difficulty of coring through active fault zones seismogenic depths. Most existing measurements of fault zone permeability are from altered surface samples or from thinner, lower displacement faults than the SAF. Here, we report on permeability measurements conducted on gouge from the actively creeping Central Deformation Zone (CDZ) of the San Andreas Fault, sampled in the SAFOD borehole at a depth of ~2.7 km (Hole G, Run 4, sections 4,5). The matrix of the gouge in this interval is predominantly composed of particles <10 µm, with ~5 vol% clasts of serpentinite, very fine-grained sandstone, and siltstone. The 2.6 m-thick CDZ represents the main fault trace and hosts ~90% of the active slip on the SAF at this location, as documented by repeated casing deformation surveys. We measured permeability in two different configurations: (1) in a uniaxial pressure cell, in which a sample is placed into a rigid steel ring which imposes a zero lateral strain condition and subjected to axial load, and (2) in a standard triaxial system under isostatic stress conditions. In the uniaxial configuration, we obtained permeabilities at axial effective stresses up to 90 MPa, and in the triaxial system up to 10 MPa. All experiments were conducted on cylindrical subsamples of the SAFOD core 25 mm in diameter, with lengths ranging from 18mm to 40mm, oriented for flow approximately perpendicular to the fault. In uniaxial tests, permeability is determined by running constant rate of strain (CRS) tests up

  6. Small intestinal permeability is increased in diarrhoea predominant IBS, while alterations in gastroduodenal permeability in all IBS subtypes are largely attributable to confounders.

    PubMed

    Mujagic, Z; Ludidi, S; Keszthelyi, D; Hesselink, M A M; Kruimel, J W; Lenaerts, K; Hanssen, N M J; Conchillo, J M; Jonkers, D M A E; Masclee, A A M

    2014-08-01

    Intestinal permeability has been studied in small groups of IBS patients with contrasting findings. To assess intestinal permeability at different sites of the GI tract in different subtypes of well-characterised IBS patients and healthy controls (HC), and to assess potential confounding factors. IBS patients and HC underwent a multi-sugar test to assess site-specific intestinal permeability. Sucrose excretion and lactulose/rhamnose ratio in 0-5 h urine indicated gastroduodenal and small intestinal permeability, respectively. Sucralose/erythritol ratio in 0-24 h and 5-24 h urine indicated whole gut and colonic permeability, respectively. Linear regression analysis was used to assess the association between IBS groups and intestinal permeability and to adjust for age, sex, BMI, anxiety or depression, smoking, alcohol intake and use of medication. Ninety-one IBS patients, i.e. 37% IBS-D, 23% IBS-C, 33% IBS-M and 7% IBS-U and 94 HC were enrolled. Urinary sucrose excretion was significantly increased in the total IBS group [μmol, median (Q1;Q3): 5.26 (1.82;11.03) vs. 2.44 (0.91;5.85), P < 0.05], as well as in IBS-C and IBS-D vs. HC. However, differences attenuated when adjusting for confounders. The lactulose/rhamnose ratio was increased in IBS-D vs. HC [0.023 (0.013;0.038) vs. 0.014 (0.008;0.025), P < 0.05], which remained significant after adjustment for confounders. No difference was found in 0-24 and 5-24 h sucralose/erythritol ratio between groups. Small intestinal permeability is increased in patients with IBS-D compared to healthy controls, irrespective of confounding factors. Adjustment for confounders is necessary when studying intestinal permeability, especially in a heterogeneous disorder such as IBS. © 2014 John Wiley & Sons Ltd.

  7. Experimental Measurements of Permeability Evolution along Faults during Progressive Slip

    NASA Astrophysics Data System (ADS)

    Strutz, M.; Mitchell, T. M.; Renner, J.

    2010-12-01

    Little is currently known about the dynamic changes in fault-parallel permeability along rough faults during progressive slip. With increasing slip, asperities are worn to produce gouge which can dramatically reduce along fault permeability within the slip zone. However, faults can have a range of roughness which can affect both the porosity and both the amount and distribution of fault wear material produced in the slipping zone during the early stages of fault evolution. In this novel study we investigate experimentally the evolution of permeability along a fault plane in granite sawcut sliding blocks with a variety of intial roughnesses in a triaxial apparatus. Drillholes in the samples allow the permeability to be measured along the fault plane during loading and subsequent fault displacement. Use of the pore pressure oscillation technique (PPO) allows the continuous measurement of permeability without having to stop loading. To achieve a range of intial starting roughnesses, faults sawcut surfaces were prepared using a variety of corundum powders ranging from 10 µm to 220 µm, and for coarser roughness were air-blasted with glass beads up to 800µm in size. Fault roughness has been quantified with a laser profileometer. During sliding, we measure the acoustic emissions in order to detect grain cracking and asperity shearing which may relate to both the mechanical and permeability data. Permeability shows relative reductions of up to over 4 orders of magnitude during stable sliding as asperities are sheared to produce a fine fault gouge. This variation in permeability is greatest for the roughest faults, reducing as fault roughness decreases. The onset of permeability reduction is contemporaneous with a dramatic reduction in the amount of detected acoustic emissions, where a continuous layer of fault gouge has developed. The amount of fault gouge produced is related to the initial roughness, with the rough faults showing larger fault gouge layers at the end of

  8. A Spatial Correlation Model of Permeability on the Columbia River Plateau

    NASA Astrophysics Data System (ADS)

    Jayne, R., Jr.; Pollyea, R. M.

    2017-12-01

    This study presents a spatial correlation model of regional scale permeability variability within the Columbia River Basalt Group (CRBG). The data were compiled from the literature, and include 893 aquifer test results from 598 individual wells. In order to quantify the spatial variation of permeability within the CRBG, three experimental variograms (two horizontal and one vertical) are calculated and then fit with a linear combination of mathematical models. The horizontal variograms show there is a 4.5:1 anisotropy ratio for the permeability correlation structure with a long-range correlation of 35 km at N40°E. The km-scale range of these variograms suggests that there is regional control on permeability within the CRBG. One plausible control on the permeability distribution is that rapid crustal loading during CRBG emplacement ( 80% over 1M years) resulted in an isostatic response where the Columbia Plateau had previously undergone subsidence. To support this hypothesis, we calculate a 200 m moving average of all permeability values with depth. This calculation shows that permeability generally follows a systematic decay until 1,100 m depth, beyond which the 200 m moving average permeability increases 3 orders of magnitude. Since basalt fracture networks govern permeability on Columbia River Plateau, this observation is consistent with basal flexure causing tensile stress that counteract lithostatic loading, thus maintaining higher than expected permeability at depth within the Columbia River Basalt Group. These results may have important implications for regional CRBG groundwater management, as well as engineered reservoirs for carbon capture and sequestration and nuclear waste storage.

  9. Study of permeability characteristics of membranes

    NASA Technical Reports Server (NTRS)

    Spiegler, K. S.; Messalem, R. M.; Moore, R. J.; Leibovitz, J.

    1971-01-01

    Pressure-permeation experiments were performed with the concentration-clamp cell. Streaming potentials and hydraulic permeabilities were measured for an AMF C-103 cation-exchange membrane bounded by 0.1 N NaCl solutions. The streaming potential calculated from the slope of the recorded potential differences versus the applied pressure, yields a value of 1.895 millivolt/dekabar. When comparison with other membranes of similar characteristics could be made, good agreement was found. The values of the hydraulic permeability varied somewhat with the applied pressure difference and are between 1.3 x 10 to the minus 8th power and 3.9 x 10 to the minus 8th power sq cm/dekabar-sec. The specific hydraulic permeabilities were also calculated and compared with data from the literature. Fair agreement was found. The diffusion coefficient of the chloride ion in the AMF C-103 membrane was calculated, using Fick's first law of diffusion based on ion concentrations calculated from the Donnan equilibrium concentration of Cl(-).

  10. Radar backscattering measurement of bare soil and vegetation covered soil using X-band and full polarization

    NASA Astrophysics Data System (ADS)

    Goswami, B.; Kalita, M.

    2014-11-01

    The objective of the study is to measure backscattered power of bare soil and vegetation covered soil using X-band scatterometer system with full polarization and various angles during monsoon season and relate backscattered power to the density of vegetation over soil. The measurement was conducted at an experimental field located in the campus of Assam Engineering College, Guwahati, India. The soil sample consists of Silt and Clay in higher proportions as compared to Sand. The scatterometer system consists of dual-polarimetric square horn antennas, Power meter, Klystron, coaxial cables, isolator and waveguide detector. The polarization of the horn antennas as well as the look angle can be changed in the set-up. The backscattering coefficients were calculated by applying a radar equation for the measured values at incident angles between 30° and 60° for full polarization (HH, VV, HV, VH), respectively, and compared with vegetation cover over soil for each scatterometer measurement simultaneously. The VH polarization and 60° look angle are found to be the most suitable combination of configuration of an X-band scatterometer for distinguishing the land cover targets such as bare soil and vegetation covered soil. From the analysis of the results, polarimetric scatterometer data appear to be promising to distinguish the land cover types such as bare soil and soil completely covered by vegetation. The results of this study will help the scientists working in the field of active microwave remote sensing.

  11. Dabigatran abrogates brain endothelial cell permeability in response to thrombin

    PubMed Central

    Hawkins, Brian Thomas; Gu, Yu-Huan; Izawa, Yoshikane; del Zoppo, Gregory John

    2015-01-01

    Atrial fibrillation (AF) increases the risk and severity of thromboembolic stroke. Generally, antithrombotic agents increase the hemorrhagic risk of thromboembolic stroke. However, significant reductions in thromboembolism and intracerebral hemorrhage have been shown with the antithrombin dabigatran compared with warfarin. As thrombin has been implicated in microvessel injury during cerebral ischemia, we hypothesized that dabigatran decreases the risk of intracerebral hemorrhage by direct inhibition of the thrombin-mediated increase in cerebral endothelial cell permeability. Primary murine brain endothelial cells (mBECs) were exposed to murine thrombin before measuring permeability to 4-kDa fluorescein isothiocyanate-dextran. Thrombin increased mBEC permeability in a concentration-dependent manner, without significant endothelial cell death. Pretreatment of mBECs with dabigatran completely abrogated the effect of thrombin on permeability. Neither the expressions of the endothelial cell β1-integrins nor the tight junction protein claudin-5 were affected by thrombin exposure. Oxygen-glucose deprivation (OGD) also increased permeability; this effect was abrogated by treatment with dabigatran, as was the additive effect of thrombin and OGD on permeability. Taken together, these results indicate that dabigatran could contribute to a lower risk of intracerebral hemorrhage during embolism-associated ischemia from AF by protection of the microvessel permeability barrier from local thrombin challenge. PMID:25669912

  12. A free software for pore-scale modelling: solving Stokes equation for velocity fields and permeability values in 3D pore geometries

    NASA Astrophysics Data System (ADS)

    Gerke, Kirill; Vasilyev, Roman; Khirevich, Siarhei; Karsanina, Marina; Collins, Daniel; Korost, Dmitry; Mallants, Dirk

    2015-04-01

    In this contribution we introduce a novel free software which solves the Stokes equation to obtain velocity fields for low Reynolds-number flows within externally generated 3D pore geometries. Provided with velocity fields, one can calculate permeability for known pressure gradient boundary conditions via Darcy's equation. Finite-difference schemes of 2nd and 4th order of accuracy are used together with an artificial compressibility method to iteratively converge to a steady-state solution of Stokes' equation. This numerical approach is much faster and less computationally demanding than the majority of open-source or commercial softwares employing other algorithms (finite elements/volumes, lattice Boltzmann, etc.) The software consists of two parts: 1) a pre and post-processing graphical interface, and 2) a solver. The latter is efficiently parallelized to use any number of available cores (the speedup on 16 threads was up to 10-12 depending on hardware). Due to parallelization and memory optimization our software can be used to obtain solutions for 300x300x300 voxels geometries on modern desktop PCs. The software was successfully verified by testing it against lattice Boltzmann simulations and analytical solutions. To illustrate the software's applicability for numerous problems in Earth Sciences, a number of case studies have been developed: 1) identifying the representative elementary volume for permeability determination within a sandstone sample, 2) derivation of permeability/hydraulic conductivity values for rock and soil samples and comparing those with experimentally obtained values, 3) revealing the influence of the amount of fine-textured material such as clay on filtration properties of sandy soil. This work was partially supported by RSF grant 14-17-00658 (pore-scale modelling) and RFBR grants 13-04-00409-a and 13-05-01176-a.

  13. A study of the application of permeable pavements as a sustainable technique for the mitigation of soil sealing in cities: A case study in the south of Spain.

    PubMed

    Rodríguez-Rojas, M I; Huertas-Fernández, F; Moreno, B; Martínez, G; Grindlay, A L

    2018-01-01

    The use of 'Sustainable Urban Drainage Systems' (SuDS) has become a more sustainable alternative for managing stormwater, greatly reducing the effects of soil sealing. However, the lack of monitored projects is a barrier to their implementation, as the companies which manage sewer systems cannot quantify the impact and cost-efficiency of SuDS. This paper presents a project developed in the south of Spain, in which the hydrological performance of 3 types of permeable pavements has been analyzed. The efficiencies obtained (over 70%), are higher than or similar to the efficiencies of vegetated SuDS, demonstrating the capacity of these pavements for delaying catchment area response and slow flow velocities, reducing the operating costs of sewer systems and the flood risk, while also ensuring service conditions for cities and safety for pedestrian and vehicular circulation. This pilot site has generated results which are sufficiently consistent so as to be representative, and serve as a reference for other cities with a similar climate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Gas permeability of ice-templated, unidirectional porous ceramics.

    PubMed

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J

    2016-01-01

    We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 [Formula: see text]m and 19.1 [Formula: see text]m. The maximum permeability ([Formula: see text] [Formula: see text] m[Formula: see text]) was measured in samples with the highest total pore volume (72%) and pore size (19.1 [Formula: see text]m). However, we demonstrate that it is possible to achieve a similar permeability ([Formula: see text] [Formula: see text] m[Formula: see text]) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity ([Formula: see text]) is mainly controlled by pore size, unlike in isotropic porous structures where [Formula: see text] is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.

  15. S-nitrosylation of VASP at cysteine 64 mediates the inflammation-stimulated increase in microvascular permeability.

    PubMed

    Zamorano, Patricia; Marín, Natalie; Córdova, Francisco; Aguilar, Alejandra; Meininger, Cynthia; Boric, Mauricio P; Golenhofen, Nikola; Contreras, Jorge E; Sarmiento, José; Durán, Walter N; Sánchez, Fabiola A

    2017-07-01

    We tested the hypothesis that platelet-activating factor (PAF) induces S -nitrosylation of vasodilator-stimulated phosphoprotein (VASP) as a mechanism to reduce microvascular endothelial barrier integrity and stimulate hyperpermeability. PAF elevated S -nitrosylation of VASP above baseline levels in different endothelial cells and caused hyperpermeability. To ascertain the importance of endothelial nitric oxide synthase (eNOS) subcellular location in this process, we used ECV-304 cells transfected with cytosolic eNOS (GFPeNOSG2A) and plasma membrane eNOS (GFPeNOSCAAX). PAF induced S -nitrosylation of VASP in cells with cytosolic eNOS but not in cells wherein eNOS is anchored to the cell membrane. Reconstitution of VASP knockout myocardial endothelial cells with cysteine mutants of VASP demonstrated that S -nitrosylation of cysteine 64 is associated with PAF-induced hyperpermeability. We propose that regulation of VASP contributes to endothelial cell barrier integrity and to the onset of hyperpermeability. S -nitrosylation of VASP inhibits its function in barrier integrity and leads to endothelial monolayer hyperpermeability in response to PAF, a representative proinflammatory agonist. NEW & NOTEWORTHY Here, we demonstrate that S -nitrosylation of vasodilator-stimulated phosphoprotein (VASP) on C64 is a mechanism for the onset of platelet-activating factor-induced hyperpermeability. Our results reveal a dual role of VASP in endothelial permeability. In addition to its well-documented function in barrier integrity, we show that S -nitrosylation of VASP contributes to the onset of endothelial permeability. Copyright © 2017 the American Physiological Society.

  16. Structure/permeability relationships of silicon-containing polyimides

    NASA Technical Reports Server (NTRS)

    Stern, S. A.; Vaidyanathan, R.; Pratt, J. R.

    1989-01-01

    The permeability to H2, O2, N2, CO2 and CH4 of three silicone-polyimide random copolymers and two polyimides containing silicon atoms in their backbone chains, was determined at 35.0 C and at pressures up to about 120 psig (approximately 8.2 atm). The copolymers contained different amounts of BPADA-m-PDA and amine-terminated poly (dimethyl siloxane) and also had different numbers of siloxane linkages in their silicone component. The polyimides containing silicon atoms (silicon-modified polyimides) were SiDA-4,4'-ODA and SiDA-p-PDA. The gas permeability and selectivity of the copolymers are more similar to those of their silicone component than of the polyimide component. By contrast, the permeability and selectivity of the silicon-modified polyimides are more similar to those of their parent polyimides, PMDA-4,4'-ODA and SiDA-p-PDA. The substitution of SiDA for the PMDA moiety in a polyimide appears to result in a significant increase in gas permeability, without a correspondingly large decrease in selectivity. The potential usefulness of the above polymers and copolymers as gas separation membranes is discussed.

  17. Carboxyhaemoglobin and pulmonary epithelial permeability in man.

    PubMed Central

    Jones, J G; Minty, B D; Royston, D; Royston, J P

    1983-01-01

    The effect of cigarette smoke exposure on pulmonary epithelial permeability was studied in 45 smokers and 22 non-smokers. An index of cigarette smoke exposure was obtained from the carboxyhaemoglobin concentration (HbCO%). Pulmonary epithelial permeability was proportional to the half-time clearance rate of technetium-99m-labelled diethylene triamine pentacetate (99mTc DTPA) from lung to blood (T1/2LB). The relationship between T1/2LB and HbCO% was hyperbolic in form and the data could be fitted to the quadratic formula (formula; see text) where the parameters a0, a1, and a2 represent respectively the asymptotic T1/2LB value at large carboxyhaemoglobin values and the slope and shape of the curve. The values of these parameters were a0 4.4 (2.6), a1 = 77.8 (15.5), and a2 -25.5 (9.7) (SE). This is the first demonstration of a dose-response relationship between carboxyhaemoglobin and an increased permeability of the lungs in man and provides a technique for identifying the roles of carbon monoxide and other cigarette smoke constituents in causing increased pulmonary epithelial permeability. PMID:6344310

  18. Soil quality changes in response to their pollution by heavy metals, Georgia.

    PubMed

    Matchavariani, Lia; Kalandadze, Besik; Lagidze, Lamzira; Gokhelashvili, Nino; Sulkhanishvili, Nino; Paichadze, Nino; Dvalashvili, Giorgi

    2015-01-01

    The present study deals with the composition, migration and accumulation of heavy metals in irrigated soils, plants and partially natural waters; and also, establishing the possible sources of pollution and their impact on environmental situation. The content of toxic elements in the irrigated soils adjacent to ore mining and processing enterprise were studied. Content of toxic elements in the irrigated soils adjacent to ore mining, showed that more than half of territory was seriously polluted by copper and zinc. Some part of the area were considered catastrophically polluted. Expressed technogenesis taking place influenced irrigation. Heavy metals like copper, zinc and manganese negative by effected the properties of soil, thus composition and soil-forming processes taking place in the soil. It was especially well represented in the deterioration of hydro-physical potential of the soil. Irrigation of agricultural land plots by water, polluted with heavy metals changed the pH. Balanced correlation among solid, liquid and gas phases was disrupted. In highly polluted soil, the cementing processes took place that sharply increased the bulk density of the soil, deteriorated the porosity of soil and reduced water permeability critically.

  19. Microbially Induced Carbonate Precipitation: a Novel Grout for Permeability Control in Subsurface Engineering Works

    NASA Astrophysics Data System (ADS)

    Minto, J. M.; Hingerl, F.; Lunn, R. J.; Benson, S. M.

    2016-12-01

    ContextWe utilise the urea hydrolysing capability of soil bacteria Sporosarcina pasteurii to precipitate CaCO3 in a process termed Microbially Induced Carbonate Precipitation (MICP). MICP injection fluid properties are low particle size and low viscosity giving excellent grout penetrability. The CaCO3 grout has been shown to be effective at reducing permeability in porous and fractured media. MICP has consequently been proposed as an alternative to more traditional cement and chemical grouts, particularly in the fields of radioactive waste disposal and geological sequestration of CO2. This study investigates the role of fluid flow/CaCO3 feedback during precipitation and accelerated dissolution to better understand the longevity of an MICP grout under low pH environmental conditions such as found in a carbon sequestration reservoir. MethodsExperiments were conducted on a single Berea sandstone core in a high pressure core holder to characterise permeability, porosity and multiphase flow behaviour at sequestration reservoir temperature and pressure. Characterisation was carried out before MICP, after MICP, and after accelerated dissolution with hydrochloric acid. At each step the entire core was scanned in a medical x-ray CT scanner to spatially resolve (with a resolution of 0.5x0.5x1mm) the changes in porosity and saturation with CaCO3 precipitation and dissolution. Finally, the dried core was scanned with μ-CT at 30μm (full core) and 10μm (sub-volume) resolutions to investigate structural changes to the Berea at near pore scale. ResultsSix MICP treatment cycles over two days reduced core permeability from 886 mDarcy to 40 mDarcy with a greater reduction in porosity at the inlet. Dissolution with acid restored much of the porosity, but did not restore permeability to the same extent. Preferential flow paths formed during the dissolution step were visible in the first 4mm of the 100mm core, but did not extend further into the core. DiscussionThis study provides

  20. Regulation of AQP0 water permeability is enhanced by cooperativity

    PubMed Central

    Németh-Cahalan, Karin L.; Clemens, Daniel M.

    2013-01-01

    Aquaporin 0 (AQP0), essential for lens clarity, is a tetrameric protein composed of four identical monomers, each of which has its own water pore. The water permeability of AQP0 expressed in Xenopus laevis oocytes can be approximately doubled by changes in calcium concentration or pH. Although each monomer pore functions as a water channel, under certain conditions the pores act cooperatively. In other words, the tetramer is the functional unit. In this paper, we show that changes in external pH and calcium can induce an increase in water permeability that exhibits either a positive cooperativity switch-like increase in water permeability or an increase in water permeability in which each monomer acts independently and additively. Because the concentrations of calcium and hydrogen ions increase toward the center of the lens, a concentration signal could trigger a regulatory change in AQP0 water permeability. It thus seems plausible that the cooperative modes of water permeability regulation by AQP0 tetramers mediated by decreased pH and elevated calcium are the physiologically important ones in the living lens. PMID:23440275

  1. Permeability Estimation Directly From Logging-While-Drilling Induced Polarization Data

    NASA Astrophysics Data System (ADS)

    Fiandaca, G.; Maurya, P. K.; Balbarini, N.; Hördt, A.; Christiansen, A. V.; Foged, N.; Bjerg, P. L.; Auken, E.

    2018-04-01

    In this study, we present the prediction of permeability from time domain spectral induced polarization (IP) data, measured in boreholes on undisturbed formations using the El-log logging-while-drilling technique. We collected El-log data and hydraulic properties on unconsolidated Quaternary and Miocene deposits in boreholes at three locations at a field site in Denmark, characterized by different electrical water conductivity and chemistry. The high vertical resolution of the El-log technique matches the lithological variability at the site, minimizing ambiguity in the interpretation originating from resolution issues. The permeability values were computed from IP data using a laboratory-derived empirical relationship presented in a recent study for saturated unconsolidated sediments, without any further calibration. A very good correlation, within 1 order of magnitude, was found between the IP-derived permeability estimates and those derived using grain size analyses and slug tests, with similar depth trends and permeability contrasts. Furthermore, the effect of water conductivity on the IP-derived permeability estimations was found negligible in comparison to the permeability uncertainties estimated from the inversion and the laboratory-derived empirical relationship.

  2. Formulation of humic-based soil conditioners

    NASA Astrophysics Data System (ADS)

    Amanova, M. A.; Mamytova, G. A.; Mamytova, B. A.; Kydralieva, K. A.; Jorobekova, Sh. J.

    2009-04-01

    The goal of the study is to prepare soil conditioners (SC) able to carry out the following functions: (i) the chemical conditioning of soil mainly comprising the adjustment of pH, (ii) the balancing of inorganic nutrients, (iii) the physical conditioning of soil mainly comprising the improvement of water permeability, air permeability and water retention properties, and (iv) improvement of the ecological system concerning of useful microorganisms activity in the soil. The SC was made of a mixture of inorganic ingredients, a chemical composition and physical and chemical properties of which promoted improvement of physical characteristic of soil and enrichment by its mineral nutritious elements. In addition to aforesaid ingredients, this soil conditioner contains agronomical-valued groups of microorganisms having the function promoting the growth of the crop. As organic component of SC humic acids (HA) was used. HA serve many major functions that result in better soil and plant health. In soil, HA can increase microbial and mycorrhizal activity while enhancing nutrient uptake by plant roots. HA work as a catalyst by stimulating root and plant growth, it may enhance enzymatic activity that in turn accelerates cell division which can lead to increased yields. HA can help to increase crop yields, seed germination, and much more. In short, humic acids helps keep healthy plants health. The first stage goal was to evaluate mineral and organic ingredients for formulation of SC. Soil conditioners assessed included ash and slag. The use of slags has been largelly used in agriculture as a source of lime and phosphoric acid. The silicic acid of slags reduces Al-acitivity thus, promoting a better assimilation of P-fertilizer by plants. Additionally, silicic acid is also known to improve soil moisture capacity, thus enhancing soil water availability to plants. Physico-chemical characteristics of ash and slag were determined, as a total - about 20 samples. Results include

  3. Polysulfone - CNT composite membrane with enhanced water permeability

    NASA Astrophysics Data System (ADS)

    Hirani, Bhakti; Kar, Soumitra; Aswal, V. K.; Bindal, R. C.; Goyal, P. S.

    2018-04-01

    Polymeric membranes are routinely used for water purification. The performance of these conventional membranes can be improved by incorporating nanomaterials, such as metal oxide nanoparticle and carbon nanotubes (CNTs). This manuscript reports the synthesis and characterization of polysulfone (Psf) based nanocomposite membranes where multi wall carbon nanotubes (MWCNTs) and oleic acid coated Fe3O4 nanoparticles have been impregnated onto the polymeric host matrix. The performance of the membranes was evaluated by water permeability and solute rejection measurements. It was observed that the permeability of Psf membrane increases three times at 0.1% loading of MWCNT without compromise in selectivity. It was further observed that the increase in permeability is not affected upon addition of Fe3O4 nanoparticles into the membrane. In order to get a better insight into the membrane microstructure, small angle neutron scattering (SANS) studies were carried out. There is a good correlation between the water permeability and the pore sizes of the membranes as measured using SANS.

  4. Heat Source/Sink in a Magneto-Hydrodynamic Non-Newtonian Fluid Flow in a Porous Medium: Dual Solutions

    PubMed Central

    Hayat, Tasawar; Awais, Muhammad; Imtiaz, Amna

    2016-01-01

    This communication deals with the properties of heat source/sink in a magneto-hydrodynamic flow of a non-Newtonian fluid immersed in a porous medium. Shrinking phenomenon along with the permeability of the wall is considered. Mathematical modelling is performed to convert the considered physical process into set of coupled nonlinear mathematical equations. Suitable transformations are invoked to convert the set of partial differential equations into nonlinear ordinary differential equations which are tackled numerically for the solution computations. It is noted that dual solutions for various physical parameters exist which are analyzed in detail. PMID:27598314

  5. Permeability Changes in Reaction Induced Fracturing

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Malthe-Sørenssen, Anders; Kalia, Rajiv

    2013-04-01

    The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al.[4], serpentinization and carbonation of peridotite by Rudge et al.[3] and replacement reactions in silica-poor igneous rocks by Jamtveit et al.[1]. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total reaction rate, as summarised by Kelemen et al.[2]. Røyne et al.[4] have shown that transport in fractures will have an effect on the fracture pattern formed. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing under compression, and it remains an open question how sensitive a fracture pattern is to permeability changes. In this work, we study the permeability of fractures formed under compression, and we use a 2D discrete element model to study the fracture patterns and total reaction rates achieved with different permeabilities. We achieve an improved understanding of the feedback processes in reaction-driven fracturing, thus improving our ability to decide whether industrial scale CO2 sequestration in ultramafic rock is a viable option for long-term handling of CO2. References [1] Jamtveit, B, Putnis, C. V., and Malthe-Sørenssen, A., "Reaction induced fracturing during replacement processes," Contrib. Mineral Petrol. 157, 2009, pp. 127 - 133. [2] Kelemen, P., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., and Blusztajn, J., "Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage," Annu. Rev. Earth Planet. Sci. 2011. 39:545-76. [3] Rudge, J. F., Kelemen, P. B., and

  6. Microstrip Antenna for Remote Sensing of Soil Moisture and Sea Surface Salinity

    NASA Technical Reports Server (NTRS)

    Ramhat-Samii, Yahya; Kona, Keerti; Manteghi, Majid; Dinardo, Steven; Hunter, Don; Njoku, Eni; Wilson, Wiliam; Yueh, Simon

    2009-01-01

    This compact, lightweight, dual-frequency antenna feed developed for future soil moisture and sea surface salinity (SSS) missions can benefit future soil and ocean studies by lowering mass, volume, and cost of the antenna system. It also allows for airborne soil moisture and salinity remote sensors operating on small aircraft. While microstrip antenna technology has been developed for radio communications, it has yet to be applied to combined radar and radiometer for Earth remote sensing. The antenna feed provides a key instrument element enabling high-resolution radiometric observations with large, deployable antennas. The design is based on the microstrip stacked-patch array (MSPA) used to feed a large, lightweight, deployable, rotating mesh antenna for spaceborne L-band (approximately equal to 1 GHz) passive and active sensing systems. The array consists of stacked patches to provide dual-frequency capability and suitable radiation patterns. The stacked-patch microstrip element was designed to cover the required L-band center frequencies at 1.26 GHz (lower patch) and 1.413 GHz (upper patch), with dual-linear polarization capabilities. The dimension of patches produces the required frequencies. To achieve excellent polarization isolation and control of antenna sidelobes for the MSPA, the orientation of each stacked-patch element within the array is optimized to reduce the cross-polarization. A specialized feed-distribution network was designed to achieve the required excitation amplitude and phase for each stacked-patch element.

  7. Permeability study of cancellous bone and its idealised structures.

    PubMed

    Syahrom, Ardiyansyah; Abdul Kadir, Mohammed Rafiq; Harun, Muhamad Nor; Öchsner, Andreas

    2015-01-01

    Artificial bone is a suitable alternative to autografts and allografts, however their use is still limited. Though there were numerous reports on their structural properties, permeability studies of artificial bones were comparably scarce. This study focused on the development of idealised, structured models of artificial cancellous bone and compared their permeability values with bone surface area and porosity. Cancellous bones from fresh bovine femur were extracted and cleaned following an established protocol. The samples were scanned using micro-computed tomography (μCT) and three-dimensional models of the cancellous bones were reconstructed for morphology study. Seven idealised and structured cancellous bone models were then developed and fabricated via rapid prototyping technique. A test-rig was developed and permeability tests were performed on the artificial and real cancellous bones. The results showed a linear correlation between the permeability and the porosity as well as the bone surface area. The plate-like idealised structure showed a similar value of permeability to the real cancellous bones. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. A Dual-Phase Ceramic Membrane with Extremely High H2 Permeation Flux Prepared by Autoseparation of a Ceramic Precursor.

    PubMed

    Cheng, Shunfan; Wang, Yanjie; Zhuang, Libin; Xue, Jian; Wei, Yanying; Feldhoff, Armin; Caro, Jürgen; Wang, Haihui

    2016-08-26

    A novel concept for the preparation of multiphase composite ceramics based on demixing of a single ceramic precursor has been developed and used for the synthesis of a dual-phase H2 -permeable ceramic membrane. The precursor BaCe0.5 Fe0.5 O3-δ decomposes on calcination at 1370 °C for 10 h into two thermodynamically stable oxides with perovskite structures: the cerium-rich oxide BaCe0.85 Fe0.15 O3-δ (BCF8515) and the iron-rich oxide BaCe0.15 Fe0.85 O3-δ (BCF1585), 50 mol % each. In the resulting dual-phase material, the orthorhombic perovskite BCF8515 acts as the main proton conductor and the cubic perovskite BCF1585 as the main electron conductor. The dual-phase membrane shows an extremely high H2 permeation flux of 0.76 mL min(-1)  cm(-2) at 950 °C with 1.0 mm thickness. This auto-demixing concept should be applicable to the synthesis of other ionic-electronic conducting ceramics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Update to permeable pavement research at the Edison Environmental Center - slides

    EPA Science Inventory

    Abstract: The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable paver...

  10. Update to Permeable Pavement Research at the Edison Environmental Center - abstract

    EPA Science Inventory

    Abstract The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable pavers...

  11. Dynamic model of open shell structures buried in poroelastic soils

    NASA Astrophysics Data System (ADS)

    Bordón, J. D. R.; Aznárez, J. J.; Maeso, O.

    2017-08-01

    This paper is concerned with a three-dimensional time harmonic model of open shell structures buried in poroelastic soils. It combines the dual boundary element method (DBEM) for treating the soil and shell finite elements for modelling the structure, leading to a simple and efficient representation of buried open shell structures. A new fully regularised hypersingular boundary integral equation (HBIE) has been developed to this aim, which is then used to build the pair of dual BIEs necessary to formulate the DBEM for Biot poroelasticity. The new regularised HBIE is validated against a problem with analytical solution. The model is used in a wave diffraction problem in order to show its effectiveness. It offers excellent agreement for length to thickness ratios greater than 10, and relatively coarse meshes. The model is also applied to the calculation of impedances of bucket foundations. It is found that all impedances except the torsional one depend considerably on hydraulic conductivity within the typical frequency range of interest of offshore wind turbines.

  12. Microwave Soil Moisture Retrieval Under Trees

    NASA Technical Reports Server (NTRS)

    O'Neill, P.; Lang, R.; Kurum, M.; Joseph, A.; Jackson, T.; Cosh, M.

    2008-01-01

    Soil moisture is recognized as an important component of the water, energy, and carbon cycles at the interface between the Earth's surface and atmosphere. Current baseline soil moisture retrieval algorithms for microwave space missions have been developed and validated only over grasslands, agricultural crops, and generally light to moderate vegetation. Tree areas have commonly been excluded from operational soil moisture retrieval plans due to the large expected impact of trees on masking the microwave response to the underlying soil moisture. Our understanding of the microwave properties of trees of various sizes and their effect on soil moisture retrieval algorithms at L band is presently limited, although research efforts are ongoing in Europe, the United States, and elsewhere to remedy this situation. As part of this research, a coordinated sequence of field measurements involving the ComRAD (for Combined Radar/Radiometer) active/passive microwave truck instrument system has been undertaken. Jointly developed and operated by NASA Goddard Space Flight Center and George Washington University, ComRAD consists of dual-polarized 1.4 GHz total-power radiometers (LH, LV) and a quad-polarized 1.25 GHz L band radar sharing a single parabolic dish antenna with a novel broadband stacked patch dual-polarized feed, a quad-polarized 4.75 GHz C band radar, and a single channel 10 GHz XHH radar. The instruments are deployed on a mobile truck with an 19-m hydraulic boom and share common control software; real-time calibrated signals, and the capability for automated data collection for unattended operation. Most microwave soil moisture retrieval algorithms developed for use at L band frequencies are based on the tau-omega model, a simplified zero-order radiative transfer approach where scattering is largely ignored and vegetation canopies are generally treated as a bulk attenuating layer. In this approach, vegetation effects are parameterized by tau and omega, the microwave

  13. Stress does not increase blood–brain barrier permeability in mice

    PubMed Central

    Roszkowski, Martin

    2016-01-01

    Several studies have reported that exposure to acute psychophysiological stressors can lead to an increase in blood–brain barrier permeability, but these findings remain controversial and disputed. We thoroughly examined this issue by assessing the effect of several well-established paradigms of acute stress and chronic stress on blood–brain barrier permeability in several brain areas of adult mice. Using cerebral extraction ratio for the small molecule tracer sodium fluorescein (NaF, 376 Da) as a sensitive measure of blood–brain barrier permeability, we find that neither acute swim nor restraint stress lead to increased cerebral extraction ratio. Daily 6-h restraint stress for 21 days, a model for the severe detrimental impact of chronic stress on brain function, also does not alter cerebral extraction ratio. In contrast, we find that cold forced swim and cold restraint stress both lead to a transient, pronounced decrease of cerebral extraction ratio in hippocampus and cortex, suggesting that body temperature can be an important confounding factor in studies of blood–brain barrier permeability. To additionally assess if stress could change blood–brain barrier permeability for macromolecules, we measured cerebral extraction ratio for fluorescein isothiocyanate-dextran (70 kDa). We find that neither acute restraint nor cold swim stress affected blood–brain barrier permeability for macromolecules, thus corroborating our findings that various stressors do not increase blood–brain barrier permeability. PMID:27146513

  14. MiR-18a increased the permeability of BTB via RUNX1 mediated down-regulation of ZO-1, occludin and claudin-5.

    PubMed

    Miao, Yin-Sha; Zhao, Ying-Yu; Zhao, Li-Ni; Wang, Ping; Liu, Yun-Hui; Ma, Jun; Xue, Yi-Xue

    2015-01-01

    The purposes of this study were to investigate the possible molecular mechanisms of miR-18a regulating the permeability of blood-tumor barrier (BTB) via down-regulated expression and distribution of runt-related transcription factor 1 (RUNX1). An in vitro BTB model was established with hCMEC/D3 cells and U87MG cells to obtain glioma vascular endothelial cells (GECs). The endogenous expressions of miR-18a and RUNX1 were converse in GECs. The overexpression of miR-18a significantly impaired the integrity and increased the permeability of BTB, which respectively were detected by TEER and HRP flux assays, accompanied by down-regulated mRNA and protein expressions and distributions of ZO-1, occludin and claudin-5 in GECs. Dual-luciferase reporter assay was carried out and revealed RUNX1 is a target gene of miR-18a. Meanwhile, mRNA and protein expressions and distribution of RUNX1 were downregulated by miR-18a. Most important, miR-18a and RUNX1 could reversely regulate the permeability of BTB as well as the expressions and distributions of ZO-1, occludin and claudin-5. Finally, chromatin immunoprecipitation verified that RUNX1 interacted with "TGGGGT" DNA sequence in promoter region of ZO-1, occludin and claudin-5 respectively. Taken together, our present study indicated that miR-18a increased the permeability of BTB via RUNX1 mediated down-regulation of tight junction related proteins ZO-1, occludin and claudin-5, which would attract more attention to miR-18a and RUNX1 as potential targets of drug delivery across BTB and provide novel strategies for glioma treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Map showing radon potential of rocks and soils in Montgomery County, Maryland

    USGS Publications Warehouse

    Gundersen, L.C.; Reimer, G.M.; Wiggs, C.R.; Rice, C.A.

    1988-01-01

    This report summarizes the radon potential of Montgomery County in the context of its geology. Radon is a naturally occurring gas produced by the radioactive decay of uranium. Radon produced by uraniferous rocks and soils may enter a house through porous building materials and through openings in walls and floors. Radon gases has a tendency to move from the higher pressure commonly existing in the soil to the lower pressure commonly existing in the house. The U.S. Environmental Protection Agency (U.S. EPA, 1986a) estimates that elevated levels of indoor radon may be associated with 5,000 to 20,000 of the 130,000 lung cancer deaths per year. They also estimate that 8 to 12 percent of the homes in the United States will have annual average indoor radon levels exceeding 4 picoCuries per liter of air (pCi/L). Above this level, the U.S. EPA recommends homeowners take remedial action. May factors control the amount of radon which may enter a home from the geologic environment. Soil drainage, permeability, and moisture content effect the amount of radon that can be released from rocks and soils (known as the emmanation) and may limit or increase how far it can migrate. Well drained, highly permeable soils facilitate the movement of radon. Soils with water content in the 8 to 15 percent range enhance the emmanation of radon (Lindmark, 1985). Daily and seasonal variations in soil and indoor radon can be caused by meteorologic factors such as barometric pressure, temperature, and wind (Clements and Wilkening, 1974; Schery and other, 1984). Construction practices also inhibit or promote entry of radon into the home (U.S. EPA, 1986b). In general, however, geology controls the source and distribution of radon (Akerblom and Wilson, 1982; Gundersen and others, 1987, 1988; Sextro and others, 1987; U.S. EPA, 1983; Peake, 1988; Peake and Hess, 1988). The following sections describe: 1) the methods used to measure radon and equivalent uranium (eU) in soil; 2) the radon potential

  16. Connexin Channel Permeability to Cytoplasmic Molecules

    PubMed Central

    Harris, Andrew L.

    2007-01-01

    Connexin channels are known to be permeable to a variety of cytoplasmic molecules. The first observation of second messenger junctional permeability, made ∼30 years ago, sparked broad interest in gap junction channels as mediators of intercellular molecular signaling. Since then, much has been learned about the diversity of connexin channels with regard to isoform diversity, tissue and developmental distribution, modes of channel regulation, assembly and expression, biochemical modification and permeability, all of which appear to be dynamically regulated. This information has expanded the potential roles of connexin channels in development, physiology and disease, and made their elucidation much more complex - 30 years ago such an orchestra of junctional dynamics was unanticipated. Only recently, however, have investigators been able to directly address, in this more complex framework, the key issue: What specific biological molecules, second messengers and others, are able to permeate the various types of connexin channels, and how well? An important related issue, given the ever-growing list of connexin-related pathologies, is how these permeabilities are altered by disease-causing connexin mutations. Together, many studies show that a variety of cytoplasmic molecules can permeate the different types of connexin channels. A few studies reveal differences in permeation by different molecules through a particular type of connexin channel, and differences in permeation by a particular molecule through different types of connexin channels. This article describes and evaluates the various methods used to obtain these data, presents an annotated compilation of the results, and discusses the findings in the context of what can be inferred about mechanism of selectivity and potential relevance to signaling. The data strongly suggest that highly specific interactions take place between connexin pores and specific biological molecular permeants, and that those

  17. Fault Zone Permeability Decrease Following Large Earthquakes in a Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Shi, Zheming; Zhang, Shouchuan; Yan, Rui; Wang, Guangcai

    2018-02-01

    Seismic wave shaking-induced permeability enhancement in the shallow crust has been widely observed. Permeability decrease, however, is seldom reported. In this study, we document coseismic discharge and temperature decrease in a hot spring following the 1996 Lijiang Mw 7.0 and the 2004 Mw 9.0 earthquakes in the Balazhang geothermal field. We use three different models to constrain the permeability change and the mechanism of coseismic discharge decrease, and we use an end-member mixing model for the coseismic temperature change. Our results show that the earthquake-induced permeability decrease in the fault zone reduced the recharge from deep hot water, which may be the mechanism that explains the coseismic discharge and temperature responses. The changes in the hot spring response reflect the dynamic changes in the hydrothermal system; in the future, the earthquake-induced permeability decrease should be considered when discussing controls on permeability.

  18. Insights into reptile dermal contaminant exposure: Reptile skin permeability to pesticides.

    PubMed

    Weir, Scott M; Talent, Larry G; Anderson, Todd A; Salice, Christopher J

    2016-07-01

    There is growing interest in improving ecological risk assessment exposure estimation, specifically by incorporating dermal exposure. At the same time, there is a growing interest in amphibians and reptiles as receptors in ecological risk assessment, despite generally receiving less research than more traditional receptors. Previous research has suggested that dermal exposure may be more important than previously considered for reptiles. We measured reptile skin permeability to four pesticides (thiamethoxam, malathion, tebuthiuron, trifluralin) using ventral skin samples. All four pesticides penetrated the skin but generally had low permeability. There was no apparent relationship between physicochemical properties and permeability coefficients. Malathion had a significantly greater permeability rate at all time points compared to the other pesticides. Tebuthiuron had a greater permeability than thiamethoxam. Reptiles and mammals appear to have similar skin permeability suggesting that dermal exposure estimates for mammals may be representative of reptiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Can organic matter hide from decomposers in the labyrinth of soil aggregates? Micro-engineered Soil Chips challenging foraging fungi

    NASA Astrophysics Data System (ADS)

    Hammer, Edith C.; Aleklett, Kristin; Arellano Caicedo, Carlos G.; Bengtsson, Martin; Micaela Mafla Endara, Paola; Ohlsson, Pelle

    2017-04-01

    From the point of view of microorganisms, the soil environment is an enormously complex labyrinth with paths and dead-end streets, where resources and shelters are unevenly distributed. We study foraging strategies of soil organisms, especially fungi, and the possibility of physio-spatial stabilization of organic matter by "hiding" in occluded soil spaces. We manipulate growth habitat microstructure with lab-on-a-chip techniques, where we designed complex environments with channels and obstacle at dimensions of the size of hyphae, and construct them in the transparent, gas-permeable polymer PDMS. We fill those with different nutrient solutions or combine with mineral nutrient gradients, and inoculate them with soil organisms. We analyze organisms and substrates with microscopy, fluorescence microscopy and analytical chemistry. We compared different soil litter decomposers and an arbuscular mycorrhizal fungus for their ability to forage through complex air-gap structures and attempt to classify them into functional traits concerning their mycelium directionality, space-exploring approach and ability to grow through acute angles and narrow constrictions. We identified structures which are very difficult to penetrate for most species, and compounds located behind such features may thus be spatially unavailable for decomposers. We discuss our approach in comparison to soil pore space tomographic analyses and findings we made in the pore space of colonized wood biochar.

  20. Anisotropy of permeability of reservoir rocks over Miaoli area, NW Taiwan.

    NASA Astrophysics Data System (ADS)

    Bo-Siang, Xiong; Loung-Yie, Tsai

    2013-04-01

    The amount of the CO2 has risen since the Industrial Evolution. In order to reduce the amount of CO2 in atmosphere, CO2 sequestration is considered to be the most effective way. In recent years, research about subsurface storage of CO2 into geological formations has increased rapidly. Assessment of storage capability is needed before selecting a site for sequestration. Porosity and permeability are important assessment factors for CO2 sequestration in reservoir rocks. In order to improve the assessment, reservoir rock properties are important and need to be evaluated in advance. Porosity of sandstone is controlled by texture and degree of cementation, whereas permeability is controlled by pore-throat size, pore types and connectivity of pore throat. Sandstones of Miocene to Pleistocene in Miaoli area, NW Taiwan, were collected in this study. YOKO2 porosity/permeability detector is used to measure their permeability perpendicular and parallel to bedding planes under 3 to 60MPa confining pressure with Helium as media. Optical microscope and scanning electron microscope (SEM) were then used to observe the mineral composition, lithology, texture and pore type of sandstones, so as to explore the influence of rock properties on porosity and anisotropy of permeability, as well as the storage potential for CO2 sequestration in the future. The experimental results show that most of the horizontal permeability exceeds the vertical permeability and the anisotropy increases with increasing confining pressure. Mineral composition of sandstones studied were mainly quartz and lithic with little feldspar content. The pore types were mainly primary pores and micropores in this study. The correlation between quantity of macropores and permeability were higher than total porosity and permeability, mainly due to total porosity contains micropores which contribute little to permeability.

  1. High Temperature Permeability of Carbon Cloth Phenolic Composite

    NASA Technical Reports Server (NTRS)

    Park, O. Y.; Lawrence, T. W.

    2003-01-01

    The carbon fiber phenolic resin composite material used for the RSRM nozzle insulator occasionally experiences problems during operation from pocketing or spalling-like erosion and lifting of plies into the char layer. This phenomenon can be better understood if the permeability of the material at elevated temperatures is well defined. This paper describes an experimental approach to determining high temperature permeability of the carbon phenolic material used as the RSRM nozzle liner material. Two different approaches were conducted independently using disk and bar type specimens with the designed permeability apparatus. The principle of the apparatus was to subject a test specimen to a high pressure differential and a heat supply and to monitor both the pressure and temperature variations resulting from gas penetration through the permeable wall between the two chambers. The bar types, especially designed to eliminate sealing difficulties at a high temperature environment, were directly exposed to real time temperature elevation from 22 C to 260 C during the test period. The disk types were pre-heat treated up to 300 C for 8 hours and cooled to room temperature before testing. Nonlinear variation of downstream pressure at a certain temperature range implied moisture release and matrix pyrolysis. Permeability was calculated using a semi-numerical model of quasi-steady state. The test results and the numerical model are discussed in the paper.

  2. Responses of soil carbon turnover rates to pyrogenic carbon additions to a forest soil of Sierra Nevada, California: effects of pyrolysis temperature and soil depth

    NASA Astrophysics Data System (ADS)

    Santos, F.; Bird, J. A.; Berhe, A. A.

    2017-12-01

    Pyrogenic organic carbon (PyC) is a heterogenous mixture of thermally altered residues, ranging from slightly charred plant biomass to soot. Despite its apparent stability in soils, PyC has been reported to either increase or decrease (priming effect, PE), or have no effect on the mineralization rates of native soil organic matter (SOM), highlighting our limited knowledge on the mechanisms driving PyC-induced PE. Little is known about how PyC's pyrolysis temperature, and soil depth (surface versus subsurface) affect the direction of PE. To address this gap knowledge, we conducted from a 1-year laboratory incubation study aimed to investigate the interactive effects of pyrolysis temperature and soil depth on the mineralization rates of native SOM in fine-loamy, temperate forest soil that received additions of dual-labeled 13C and 15N jack pine pyrogenic organic matter produced at 300oC (PyC300) and 450oC (PyC450). Soil and PyC mixture were incubated in surface (0-10 cm) and subsurface (50-70 cm) forest soils in the dark at 55% soil field capacity and 25oC. Losses of native SOM as 13CO2 were measured periodically from the 13C-labeled PyC, and native (unlabeled) SOM during the incubation study using a Thermo Scientific GasBench interfaced to a Delta V Plus isotope ratio mass spectrometer. In surface soils, the addition of PyC300 decreased the turnover rates of native C relative to control treatments, whereas PyC400 had no effect on native C turnover rates. In subsurface soils, neither PyC300 nor PyC400 additions affected native C turnover rates. Our preliminary findings suggest that pyrolysis temperature is an important factor driving the persistence of soil C in Sierra Nevada forest soils.

  3. Structure, function and translational relevance of aquaporin dual water and ion channels.

    PubMed

    Yool, Andrea J; Campbell, Ewan M

    2012-01-01

    Aquaporins have been assumed to be selective for water alone, and aquaglyceroporins are accepted as carrying water and small uncharged solutes including glycerol. This review presents an expanded view of aquaporins as channels with more complex mechanisms of regulation and diverse repertoires of substrate permeabilities than were originally appreciated in the early establishment of the field. The role of aquaporins as dual water and gated ion channels is likely to have physiological and potentially translational relevance, and can be evaluated with newly developed molecular and pharmacological tools. Ion channel activity has been shown for Aquaporins -0, -1, and -6, Drosphila Big Brain, and plant Nodulin-26. Although the concept of ion channel function in aquaporins remains controversial, research advances are beginning to define not only the ion channel function but also the detailed molecular mechanisms that govern and mediate the multifunctional capabilities. With regard to physiological relevance, the adaptive benefit of expression of ion channel activity in aquaporins, implied by amino acid sequence conservation of the ion channel gating domains, suggests they provide more than water or glycerol and solute transport. Dual ion and water channels are of interest for understanding the modulation of transmembrane fluid gradients, volume regulation, and possible signal transduction in tissues expressing classes of aquaporins that have the dual function capability. Other aquaporin classes might be found in future work to have ion channel activities, pending identification of the possible signaling pathways that could govern activation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Quantitation of small intestinal permeability during normal human drug absorption

    PubMed Central

    2013-01-01

    Background Understanding the quantitative relationship between a drug’s physical chemical properties and its rate of intestinal absorption (QSAR) is critical for selecting candidate drugs. Because of limited experimental human small intestinal permeability data, approximate surrogates such as the fraction absorbed or Caco-2 permeability are used, both of which have limitations. Methods Given the blood concentration following an oral and intravenous dose, the time course of intestinal absorption in humans was determined by deconvolution and related to the intestinal permeability by the use of a new 3 parameter model function (“Averaged Model” (AM)). The theoretical validity of this AM model was evaluated by comparing it to the standard diffusion-convection model (DC). This analysis was applied to 90 drugs using previously published data. Only drugs that were administered in oral solution form to fasting subjects were considered so that the rate of gastric emptying was approximately known. All the calculations are carried out using the freely available routine PKQuest Java (http://www.pkquest.com) which has an easy to use, simple interface. Results Theoretically, the AM permeability provides an accurate estimate of the intestinal DC permeability for solutes whose absorption ranges from 1% to 99%. The experimental human AM permeabilities determined by deconvolution are similar to those determined by direct human jejunal perfusion. The small intestinal pH varies with position and the results are interpreted in terms of the pH dependent octanol partition. The permeability versus partition relations are presented separately for the uncharged, basic, acidic and charged solutes. The small uncharged solutes caffeine, acetaminophen and antipyrine have very high permeabilities (about 20 x 10-4 cm/sec) corresponding to an unstirred layer of only 45 μm. The weak acid aspirin also has a large AM permeability despite its low octanol partition at pH 7.4, suggesting

  5. Subsurface Hydrologic Processes Revealed by Time-lapse GPR in Two Contrasting Soils in the Shale Hills CZO

    NASA Astrophysics Data System (ADS)

    Guo, L.; Lin, H.; Nyquist, J.; Toran, L.; Mount, G.

    2017-12-01

    Linking subsurface structures to their functions in determining hydrologic processes, such as soil moisture dynamics, subsurface flow patterns, and discharge behaviours, is a key to understanding and modelling hydrological systems. Geophysical techniques provide a non-invasive approach to investigate this form-function dualism of subsurface hydrology at the field scale, because they are effective in visualizing subsurface structure and monitoring the distribution of water. In this study, we used time-lapse ground-penetrating radar (GPR) to compare the hydrologic responses of two contrasting soils in the Shale Hills Critical Zone Observatory. By integrating time-lapse GPR with artificial water injection, we observed distinct flow patterns in the two soils: 1) in the deep Rushtown soil (over 1.5 m depth to bedrock) located in a concave hillslope, a lateral preferential flow network extending as far as 2 m downslope was identified above a less permeable layer and via a series of connected macropores; whereas 2) in the shallow Weikert soil ( 0.3 m depth to saprock) located in a planar hillslope, vertical infiltration into the permeable fractured shale dominated the flow field, while the development of lateral preferential flow along the hillslope was restrained. At the Weikert soil site, the addition of brilliant blue dye to the water injection followed by in situ excavation supported GPR interpretation that only limited lateral preferential flow formed along the soil-saprock interface. Moreover, seasonally repeated GPR surveys indicated different patterns of profile moisture distribution in the two soils that in comparison with the dry season, a dense layer within the BC horizon in the deep Rushtown soil prevented vertical infiltration in the wet season, leading to the accumulation of soil moisture above this layer; whereas, in the shallow Weikert soil, water infiltrated into saprock in wet seasons, building up water storage within the fractured bedrock (i.e., the

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilarrasa, Víctor; Rutqvist, Jonny; Blanco Martin, Laura

    Expansive soils are suitable as backfill and buffer materials in engineered barrier systems to isolate heat-generating nuclear waste in deep geological formations. The canisters containing nuclear waste would be placed in tunnels excavated at a depth of several hundred meters. The expansive soil should provide enough swelling capacity to support the tunnel walls, thereby reducing the impact of the excavation-damaged zone on the long-term mechanical and flow-barrier performance. In addition to their swelling capacity, expansive soils are characterized by accumulating irreversible strain on suction cycles and by effects of microstructural swelling on water permeability that for backfill or buffer materialsmore » can significantly delay the time it takes to reach full saturation. In order to simulate these characteristics of expansive soils, a dual-structure constitutive model that includes two porosity levels is necessary. The authors present the formulation of a dual-structure model and describe its implementation into a coupled fluid flow and geomechanical numerical simulator. The authors use the Barcelona Basic Model (BBM), which is an elastoplastic constitutive model for unsaturated soils, to model the macrostructure, and it is assumed that the strains of the microstructure, which are volumetric and elastic, induce plastic strain to the macrostructure. The authors tested and demonstrated the capabilities of the implemented dual-structure model by modeling and reproducing observed behavior in two laboratory tests of expansive clay. As observed in the experiments, the simulations yielded nonreversible strain accumulation with suction cycles and a decreasing swelling capacity with increasing confining stress. Finally, the authors modeled, for the first time using a dual-structure model, the long-term (100,000 years) performance of a generic heat-generating nuclear waste repository with waste emplacement in horizontal tunnels backfilled with expansive clay and

  7. Study on road surface source pollution controlled by permeable pavement

    NASA Astrophysics Data System (ADS)

    Zheng, Chaocheng

    2018-06-01

    The increase of impermeable pavement in urban construction not only increases the runoff of the pavement, but also produces a large number of Non-Point Source Pollution. In the process of controlling road surface runoff by permeable pavement, a large number of particulate matter will be withheld when rainwater is being infiltrated, so as to control the source pollution at the source. In this experiment, we determined the effect of permeable road surface to remove heavy pollutants in the laboratory and discussed the related factors that affect the non-point pollution of permeable pavement, so as to provide a theoretical basis for the application of permeable pavement.

  8. Air Permeability of Renovation Plasters Evaluated with Torrent’s Method

    NASA Astrophysics Data System (ADS)

    Brasse, Krystian; Tracz, Tomasz

    2017-10-01

    The aim of research was to determine the air permeability of the renovation plasters, using Torrent’s method. The scope of this research included three renovation plaster systems. Each of them was applied on experimental, masonry element and had a different rendering coat. Permeability measurements were performed after 28 days of curing in a natural state. In order to calculate the coefficient of air permeability (kT), the partial data was registered during the measurements. The test results indicate the possibility of determination the coefficient of air permeability kT in relation to the renovation plasters. At the same time results confirm the high porosity of the renovation plasters.

  9. The permeability of fractured rocks in pressurised volcanic and geothermal systems.

    PubMed

    Lamur, A; Kendrick, J E; Eggertsson, G H; Wall, R J; Ashworth, J D; Lavallée, Y

    2017-07-21

    The connectivity of rocks' porous structure and the presence of fractures influence the transfer of fluids in the Earth's crust. Here, we employed laboratory experiments to measure the influence of macro-fractures and effective pressure on the permeability of volcanic rocks with a wide range of initial porosities (1-41 vol. %) comprised of both vesicles and micro-cracks. We used a hand-held permeameter and hydrostatic cell to measure the permeability of intact rock cores at effective pressures up to 30 MPa; we then induced a macro-fracture to each sample using Brazilian tensile tests and measured the permeability of these macro-fractured rocks again. We show that intact rock permeability increases non-linearly with increasing porosity and decreases with increasing effective pressure due to compactional closure of micro-fractures. Imparting a macro-fracture both increases the permeability of rocks and their sensitivity to effective pressure. The magnitude of permeability increase induced by the macro-fracture is more significant for dense rocks. We finally provide a general equation to estimate the permeability of intact and fractured rocks, forming a basis to constrain fluid flow in volcanic and geothermal systems.

  10. Electrochemical Processes for In-Situ Treatment of Contaminated Soils - Final Report - 09/15/1996 - 01/31/2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chin-Pao

    2001-05-31

    This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactormore » integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.« less

  11. Evapotranspiration and Dual Crop Coefficients Sonisa Sharma1, Ayse Irmak12, Anne Parkhurst3, Elizabeth walter-Shea1 and Kenneth G. Hubbard1 1School of Natural Resources, 2Civil Engineering, 3Departments of Statistics, University of Nebraska-Lincoln

    NASA Astrophysics Data System (ADS)

    Sharma, S.

    2012-12-01

    Accurate estimation of water content in the crop root zone is most important for water conservation and management practices like irrigation. The objective of this study is to use the FA0-56 dual crop cefficients: basal crop coefficient Kcb and the soil evaporation coefficient Ke for a large corn/soybean field in the year 2005 at the Mead Turf Farm in the state of Nebraska, USA..Dual crop coefficients can be used to estimate both transpiration from crops and evaporation from soil. The Kcb has a low value of 0.15(K cb, in) during the initial period, increases rapidly to a maximum of 1.14 (K cb, mid) for the entire midseason and decreases rapidly to 0.5 at the end of the corn growing season (K cb,end). When examined together with precipitation, the dual crop coefficient was higher following rainfall or irrigation, as expected. The data suggests that the dual crop coefficient approach is a good estimation of water loss from well-watered crops. Irrigation can be scheduled to replace the loss of water from the crop/soil system. Similarly, when we compared the measured daily ET and the ET calculated from dual crop coefficients, it gives 98 % R2.; Comparision of calculated ET from dual crop coefficient appraoch with Weather Station ET

  12. Dual Protection and Dual Methods in Women Living with HIV: The Brazilian Context

    PubMed Central

    Barbosa, Regina María; Pinho, Adriana de Araujo

    2013-01-01

    The cooccurrence of HIV and unintended pregnancy has prompted a body of work on dual protection, the simultaneous protection against HIV and unintended pregnancy. This study examines dual protection and dual methods as a risk-reduction strategy for women living with HIV. Data are from a cross-sectional sample of HIV-positive women attended in Specialized STI/AIDS Public Health Service Clinics in 13 municipalities from all five regions of Brazil 2003-2004 (N = 834). Descriptive techniques and logistic regression were used to examine dual protection among women living with HIV. We expand the definition of dual protection to include consistent condom use and reversible/irreversible contraceptive methods, we test the dual methods hypothesis that women who use dual methods will use condoms less consistently than women who use only condoms, and we identify predictors of dual protection. Dual protection is common in our sample. Women who use dual methods have lower odds of consistent condom use than women who only use condoms. Among dual method users, we find that women who use an irreversible method use condoms more consistently than women who use a reversible method. Women on ART and with an HIV-serodiscordant partner have greater odds of consistent condom use than their counterparts. PMID:26316959

  13. Influence of relative permeabilities on chemical enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Destefanis, M. F.; Savioli, G. B.

    2011-05-01

    The main objective of chemical flooding is to mobilize the trapped oil remaining after a secondary recovery by waterflooding. This purpose is achieved by lowering the oil-water interfacial tension and producing partial miscibility between both phases. The chemical partition among phases (phase behavior) influences all other physical properties. In particular, it affects residual saturations determining relative permeability curves. Relative permeabilities rule the flow of each phase through the porous medium, so they play an essential role in oil recovery. Therefore, in this work we study the influence of relative permeabilities on the behavior of a surfactant-polymer flooding for the three different types of phase behavior. This analysis is performed applying the 3D compositional numerical simulator UTCHEM developed at the University of Texas at Austin. From the examples studied, we conclude that the influence of relative permeabilities depends on the type of phase behavior, i.e., as microemulsion relative permeability decreases, oil recovery increases for Types II(+) and III while slightly decreases for Type II(-). Moreover, a better displacement efficiency is observed for Types II(+) and III, because they behave similarly to a miscible displacement.

  14. Microfluidic passive permeability assay using nanoliter droplet interface lipid bilayers.

    PubMed

    Nisisako, Takasi; Portonovo, Shiva A; Schmidt, Jacob J

    2013-11-21

    Membrane permeability assays play an important role in assessing drug transport activities across biological membranes. However, in conventional parallel artificial membrane permeability assays (PAMPA), the membrane model used is dissimilar to biological membranes physically and chemically. Here, we describe a microfluidic passive permeability assay using droplet interface bilayers (DIBs). In a microfluidic network, nanoliter-sized donor and acceptor aqueous droplets are alternately formed in cross-flowing oil containing phospholipids. Subsequently, selective removal of oil through hydrophobic pseudo-porous sidewalls induces the contact of the lipid monolayers, creating arrayed planar DIBs between the donor and acceptor droplets. Permeation of fluorescein from the donor to the acceptor droplets was fluorometrically measured. From the measured data and a simple diffusion model we calculated the effective permeabilities of 5.1 × 10(-6) cm s(-1), 60.0 × 10(-6) cm s(-1), and 87.6 × 10(-6) cm s(-1) with donor droplets at pH values of 7.5, 6.4 and 5.4, respectively. The intrinsic permeabilities of specific monoanionic and neutral fluorescein species were obtained similarly. We also measured the permeation of caffeine in 10 min using UV microspectroscopy, obtaining a permeability of 20.8 × 10(-6) cm s(-1). With the small solution volumes, short measurement time, and ability to measure a wide range of compounds, this device has considerable potential as a platform for high-throughput drug permeability assays.

  15. Iron abundance and magnetic permeability of the moon

    NASA Technical Reports Server (NTRS)

    Parkin, C. W.; Daily, W. D.; Dyal, P.

    1974-01-01

    A set of simultaneous data from the Apollo 12 lunar surface magnetometer and the Explorer 35 Ames magnetometer are used to construct a whole-moon hysteresis curve, from which a new value of global lunar permeability is determined to be mu = 1.012 + or - 0.006. The corresponding global induced dipole moment is 2.1 x 10 to the 18th power gauss-cucm for typical inducing fields of .1000 gauss in the lunar environment. From the permeability measurement, lunar free iron abundance is determined to be 2.5 + or - 2.0 wt. %. Total iron abundance is calculated for two assumed compositional models of the lunar interior: a free iron/orthopyroxene lunar composition and a free iron/olivine composition. The overall lunar total iron abundance is determined to be 9.0 + or - 4.7 wt. %. Other lunar models with a small iron core and with a shallow iron-rich layer are discussed in light of the measured global permeability. Effects on permeability and iron content calculations due to a possible lunar ionosphere are also considered.

  16. Effect of Lactobacilli on Paracellular Permeability in the Gut

    PubMed Central

    Ahrne, Siv; Hagslatt, Marie-Louise Johansson

    2011-01-01

    Paracellular permeability is determined by the complex structures of junctions that are located between the epithelial cells. Already in 1996, it was shown that the human probiotic strain Lactobacillus plantarum 299v and the rat-originating strain Lactobacillus reuteri R2LC could reduce this permeability in a methotrexate-induced colitis model in the rat. Subsequently, many animal models and cell culture systems have shown indications that lactobacilli are able to counteract increased paracellular permeability evoked by cytokines, chemicals, infections, or stress. There have been few human studies focusing on the effect of lactobacilli on intestinal paracellular permeability but recently it has been shown that they could influence the tight junctions. More precisely, short-term administration of L. plantarum WCSF1 to healthy volunteers increased the relocation of occludin and ZO-1 into the tight junction area between duodenal epithelial cells. PMID:22254077

  17. Effect of lactobacilli on paracellular permeability in the gut.

    PubMed

    Ahrne, Siv; Hagslatt, Marie-Louise Johansson

    2011-01-01

    Paracellular permeability is determined by the complex structures of junctions that are located between the epithelial cells. Already in 1996, it was shown that the human probiotic strain Lactobacillus plantarum 299v and the rat-originating strain Lactobacillus reuteri R2LC could reduce this permeability in a methotrexate-induced colitis model in the rat. Subsequently, many animal models and cell culture systems have shown indications that lactobacilli are able to counteract increased paracellular permeability evoked by cytokines, chemicals, infections, or stress. There have been few human studies focusing on the effect of lactobacilli on intestinal paracellular permeability but recently it has been shown that they could influence the tight junctions. More precisely, short-term administration of L. plantarum WCSF1 to healthy volunteers increased the relocation of occludin and ZO-1 into the tight junction area between duodenal epithelial cells.

  18. Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms

    USGS Publications Warehouse

    Manga, Michael; Beresnev, Igor; Brodsky, Emily E.; Elkhoury, Jean E.; Elsworth, Derek; Ingebritsen, Steve E.; Mays, David C.; Wang, Chi-Yuen

    2012-01-01

    Oscillations in stress, such as those created by earthquakes, can increase permeability and fluid mobility in geologic media. In natural systems, strain amplitudes as small as 10–6 can increase discharge in streams and springs, change the water level in wells, and enhance production from petroleum reservoirs. Enhanced permeability typically recovers to prestimulated values over a period of months to years. Mechanisms that can change permeability at such small stresses include unblocking pores, either by breaking up permeability-limiting colloidal deposits or by mobilizing droplets and bubbles trapped in pores by capillary forces. The recovery time over which permeability returns to the prestimulated value is governed by the time to reblock pores, or for geochemical processes to seal pores. Monitoring permeability in geothermal systems where there is abundant seismicity, and the response of flow to local and regional earthquakes, would help test some of the proposed mechanisms and identify controls on permeability and its evolution.

  19. Greater scaffold permeability promotes growth of osteoblastic cells in a perfused bioreactor.

    PubMed

    Fan, Jie; Jia, Xiaoling; Huang, Yan; Fu, Bingmei M; Fan, Yubo

    2015-12-01

    Pore size and porosity have been widely acknowledged as important structural factors in tissue-engineered scaffolds. In fact, scaffolds with similar pore size and porosity can provide important and varied permeability due to different pore shape, interconnectivity and tortuosity. However, the effects of scaffold permeability on seeded cells remains largely unknown during tissue regeneration in vitro. In this study, we measured the Darcy permeability (K) of tri-calcium phosphate scaffolds by distributed them into three groups: Low, Medium and High. As a result, the effects of scaffold permeability on cell proliferation, cellular activity and growth in the inner pores were investigated in perfused and static cultures in vitro. Results demonstrated that higher permeable scaffolds exhibited superior performance during bone regeneration in vitro and the advantages of higher scaffold permeability were amplified in perfused culture. Based on these findings, scaffold permeability should be considered in future scaffold fabrications. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Multifractal Model of Soil Water Erosion

    NASA Astrophysics Data System (ADS)

    Oleshko, Klaudia

    2017-04-01

    Breaking of solid surface symmetry during the interaction between the rainfall of high erosivity index and internally unstable volcanic soil/vegetation systems, results in roughness increasing as well as fertile horizon loosing. In these areas, the sustainability of management practices depends on the ability to select and implement the precise indicators of soil erodibility and vegetation capacity to protect the system against the extreme damaging precipitation events. Notwithstanding, the complex, non-linear and scaling nature of the phenomena involved in the interaction among the soil, vegetation and precipitation is still not taken into account by the numerous commonly used empirical, mathematical and computer simulation models: for instance, by the universal soil loss equation (USLE). The soil erodibility factor (K-factor) is still measuring by a set of empirical, dimensionless parameters and indexes, without taking into account the scaling (frequently multifractal) origin of a broad range of heterogeneous, anisotropic and dynamical phenomena involved in hydric erosion. Their mapping is not representative of this complex system spatial variability. In our research, we propose to use the toolbox of fractals and multifractals techniques in vista of its ability to measure the scale invariance and type/degree of soil, vegetation and precipitation symmetry breaking. The hydraulic units are chosen as the precise measure of soil/vegetation stability. These units are measured and modeled for soils with contrasting architecture, based on their porosity/permeability (Poroperm) as well as retention capacity relations. The simple Catalog of the most common Poroperm relations is proposed and the main power law relations among the elements of studied system are established and compared for some representative agricultural and natural Biogeosystems of Mexico. All resulted are related with the Mandelbrot' Baby Theorem in order to construct the universal Phase Diagram which

  1. Changes in Physical and Chemical Soil Properties on Burnt Shrub Areas in Mediterranean Mountains, Northern Portugal

    NASA Astrophysics Data System (ADS)

    Fonseca, Felícia; de Figueiredo, Tomás; Leite, Micaela

    2014-05-01

    Human induced fire in scrublands to obtain better pastures for cattle is a relatively common practice in North Portugal. During burning, plant cover and litter layers are consumed, and the mineral soil is heated, resulting in changes to physical, chemical, mineralogical, and biological soil properties. Aiming at evaluating the effect of this kind of fires on a set of physical and chemical soil properties, two study areas were selected in contrasting mountain environments: Edroso, Vinhais municipality, NE Portugal, with typical Mediterranean climate, and Revelhe, Fafe, NW Portugal, with a strong ocean-influenced climate. In both, sampling was carried out in contiguous areas burnt and not burnt, covered by shrub vegetation, predominantly Cytisus multiflorus and Ulex europeus. In each study area (Edroso and Revelhe) 16 locations were selected for soil sampling (8 in the burned area and 8 in the not burnt area), six months after fire occurrence. Disturbed soil samples were collected in the layers 0-5, 5-10, 10-15, 15-20 and 20-30 cm depth, for assessing organic matter, N, P and K concentration, cation exchange capacity and related determinations, soil pH, electrical conductivity and soil texture. Undisturbed samples were collected, in 100 cm3 cylinders, to determine bulk density in the same above mentioned layers, and permeability in the 0-5 cm layer. Compared results of burnt and not burnt areas in Edroso and Revelhe study sites, show that coarse elements content and permeability decreased and bulk density slightly increased with the fire effect. Chemical properties in both sites changed with after fire, as organic matter content, exchangeable Al and cation exchange capacity increased, the opposite trend being found for phosphorus, sum of exchangeable bases and electrical conductivity. Potassium, total nitrogen and exchangeable acidity showed different soil responses to fire in the two study areas. Results stress the clear effects of fire on fertility related soil

  2. An Experimental Study of CO2-Brine Relative Permeability in Sandstone

    NASA Astrophysics Data System (ADS)

    Chen, X.; DiCarlo, D. A.

    2013-12-01

    Accurate determinations of CO2-brine relative permeability are important for modeling potential CO2 storage scenarios. The most common assumption is that CO2-brine relative permeability is likely to be similar to oil-brine relative permeability for water-wet rocks. But recent measurements of CO2-brine relative permeability have differed greatly from oil-brine relative permeability; particularly, the measurements show a very low CO2 end point relative permeability (kr,CO2=0.1~0.2) and a relatively high residual water saturation (Swr>0.4) ( Lee et al. 2010, Zuo et al. 2012, Akbarabadi et al. 2013 and etc.). It has been hypothesized that the differences are related to CO2-brine having a different contact angle from oil-brine. In this study, we hypothesize that the differences are caused by large capillary end effects resulted from the very low CO2 viscosity. We conduct steady-state CO2-brine flow experiments in 2-foot-long and 2.8-inch-diamter Berea sandstone cores at 20 °C and 1500 psi. Four pressure taps drilled on a core allow both the total pressure drop and that across five individual sections to be measured. Three experiments, two drainage and one imbibition, have been conducted so far. Our results show: (1) The relative permeability to both brine and CO2 of the last section (downstream, 15 cm long) is significantly smaller than that of any of the middle three sections. This testifies that the capillary end effect makes the relative permeability under-measured at the end of a core. (2) The values of the middle three sections are very close to each other, which indicate the middle part of our core is free of capillary end effect. (3) The CO2 end point relative permeability is 0.3~0.5, which is much higher than the recent measurements. (4) The brine end point relative permeability during imbibition is about 0.08, which is close to literature data. Reference: Lee, Y.S, Kim, K. H. and Lee, T.H. et al. Analysis of CO2 Endpoint Relative Permeability and Injectivity

  3. Glomus fasciculatum Fungi as a Bio-convertor and Bio-activator of Inorganic and Organic P in Dual Symbiosis.

    PubMed

    Azmat, Rafia; Hamid, Neelofer; Moin, Sumeira; Saleem, Ailyan

    2016-01-01

    Dual symbiosis played an effective role in drought condition and temperature. Furthermore, performed services in absorption of water and solubilization of chief nutrients specially phosphorus for growth of plants. Phosphorous is essential for plant growth in any climatic condition because of central constituent of ATP providing chemical energy for all metabolic reactions of plants. The goal of this work was to monitor the growth of plant under three climatic conditions in comparison to control plant under Glomus fasciculatum inoculation related with adequate supply of phosphorous. Results demonstrated that Glomus fasciculatum (VAM) activates the solubilization of P into the anionic form H2PO4(-) which is highly consumable form by the plants. Minerals including P in soil most regularly solubilized for fixing in plants and continuously changed to highly soluble forms by reaction with inorganic or organic constituents of the soil which are activated in the presence of fungi for continuous availability. Experimental facts and nonstop growth of plants recommended that VAM fungi act as a bio-convertor and bio-activator of soil nutrients, especially of P and their hyphal interaction absorbs soil nutrients and activates insoluble P to soluble one for plant development. Continuous growth of 18 months old Conocarpus erectus L plant in dual symbiosis supports the proposed idea that phosphorus cycle exists during VAM inoculations, where soil reaction altered in presence of spores that help to solubilize the P which strengthens the plant, activates photo-biological activity and demonstrates the new function of VAM as a recycler for continues growth.

  4. Mechanisms of Soil Aggregation: a biophysical modeling framework

    NASA Astrophysics Data System (ADS)

    Ghezzehei, T. A.; Or, D.

    2016-12-01

    Soil aggregation is one of the main crosscutting concepts in all sub-disciplines and applications of soil science from agriculture to climate regulation. The concept generally refers to adhesion of primary soil particles into distinct units that remain stable when subjected to disruptive forces. It is one of the most sensitive soil qualities that readily respond to disturbances such as cultivation, fire, drought, flooding, and changes in vegetation. These changes are commonly quantified and incorporated in soil models indirectly as alterations in carbon content and type, bulk density, aeration, permeability, as well as water retention characteristics. Soil aggregation that is primarily controlled by organic matter generally exhibits hierarchical organization of soil constituents into stable units that range in size from a few microns to centimeters. However, this conceptual model of soil aggregation as the key unifying mechanism remains poorly quantified and is rarely included in predictive soil models. Here we provide a biophysical framework for quantitative and predictive modeling of soil aggregation and its attendant soil characteristics. The framework treats aggregates as hotspots of biological, chemical and physical processes centered around roots and root residue. We keep track of the life cycle of an individual aggregate from it genesis in the rhizosphere, fueled by rhizodeposition and mediated by vigorous microbial activity, until its disappearance when the root-derived resources are depleted. The framework synthesizes current understanding of microbial life in porous media; water holding and soil binding capacity of biopolymers; and environmental controls on soil organic matter dynamics. The framework paves a way for integration of processes that are presently modeled as disparate or poorly coupled processes, including storage and protection of carbon, microbial activity, greenhouse gas fluxes, movement and storage of water, resistance of soils against

  5. Pedologic influences on hillslope hydrology: The relationships between soil and hydrologic connectivity in a Californian oak-woodland

    NASA Astrophysics Data System (ADS)

    Alldritt, K.; O'Geen, A.; Dahlgren, R. A.

    2013-12-01

    EMI showed potential in showing the discontinuous distribution of the claypan, a horizon characterized by a large and abrupt increase in clay content and very low permeability. The data obtained from the transect excavation was used to create a two-dimensional hillslope model using HYDRUS-2D. Coupled with the soil moisture and local precipitation data the hillslope hydrology was modeled at individual storm event time scale. The field data showed that the hillslope was very complex and comprised of a discontinuous claypan, undulating bedrock topography and highly variable saprolite. The soil moisture data and modeling efforts showed that the surface horizons, which are highly permeable and contain numerous macropores, are the primary hydrologic flowpaths during storm events. The model showed that the presence of claypan decreased effective soil depth, increased antecedent wetness and created a perched water table. The model also showed that the undulating bedrock acted like a dam along the hillslope. The claypan network and undulating bedrock created isolated zones of wetness that only become connected and flow downhill into the stream when a storm caused the disconnected zones to rise in the highly permeable surface horizons.

  6. A fast Laplace solver approach to pore scale permeability

    NASA Astrophysics Data System (ADS)

    Arns, Christoph; Adler, Pierre

    2017-04-01

    The permeability of a porous medium can be derived by solving the Stokes equations in the pore space with no slip at the walls. The resulting velocity averaged over the pore volume yields the permeability KS by application of the Darcy law. The Stokes equations can be solved by a number of different techniques such as finite differences, finite volume, Lattice Boltzmann, but whatever the technique it remains a heavy task since there are four unknowns at each node (the three velocity components and the pressure) which necessitate the solution of four equations (the projection of Newton's law on each axis and mass conservation). By comparison, the Laplace equation is scalar with a single unknown at each node. The objective of this work is to replace the Stokes equations by an elliptical equation with a space dependent permeability. More precisely, the local permeability k is supposed to be proportional to (r-alpha)**2 where r is the distance of the voxel to the closest wall, and alpha a constant; k is zero in the solid phase. The elliptical equation is div(k gradp)=0. A macroscopic pressure gradient is assumed to be exerted on the medium and again the resulting velocity averaged over space yields a permeability K_L. In order to validate this method, systematic calculations have been performed. First, elementary shapes (plane channel, circular pipe, rectangular channels) were studied for which flow occurs along parallel lines in which case KL is the arithmetic average of the k's. KL was calculated for various discretizations of the pore space and various values of alpha. For alpha=0.5, the agreement with the exact analytical value of KS is excellent for the plane and rectangular channels while it is only approximate for circular pipes. Second, the permeability KL of channels with sinusoidal walls was calculated and compared with analytical results and numerical ones provided by a Lattice Boltzmann algorithm. Generally speaking, the discrepancy does not exceed 25% when

  7. [Effects and mechanisms of plant roots on slope reinforcement and soil erosion resistance: a research review].

    PubMed

    Xiong, Yan-Mei; Xia, Han-Ping; Li, Zhi-An; Cai, Xi-An

    2007-04-01

    Plant roots play an important role in resisting the shallow landslip and topsoil erosion of slopes by raising soil shear strength. Among the models in interpreting the mechanisms of slope reinforcement by plant roots, Wu-Waldron model is a widely accepted one. In this model, the reinforced soil strength by plant roots is positively proportional to average root tensile strength and root area ratio, the two most important factors in evaluating slope reinforcement effect of plant roots. It was found that soil erosion resistance increased with the number of plant roots, though no consistent quantitative functional relationship was observed between them. The increase of soil erosion resistance by plant roots was mainly through the actions of fiber roots less than 1 mm in diameter, while fiber roots enhanced the soil stability to resist water dispersion via increasing the number and diameter of soil water-stable aggregates. Fine roots could also improve soil permeability effectively to decrease runoff and weaken soil erosion.

  8. Percolation Network Study on the Gas Apparent Permeability of Rock

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Tang, Y. B.; Li, M.

    2017-12-01

    We modeled the gas single phase transport behaviors of monomodal porous media using percolation networks. Different from the liquid absolute permeability, which is only related to topology and morphology of pore space, the gas permeability depends on pore pressure as well. A published gas flow conductance model, included usual viscous flow, slip flow and Knudsen diffusion in cylinder pipe, was used to simulated gas flow in 3D, simple cubic, body-center cubic and face-center cubic networks with different hydraulic radius, different coordination number, and different pipe radius distributions under different average pore pressure. The simulation results showed that the gas apparent permeability kapp obey the `universal' scaling law (independence of network lattices), kapp (z-zc)β, where exponent β is related to pore radius distribution, z is coordination number and zc=1.5. Following up on Bernabé et al.'s (2010) study of the effects of pore connectivity and pore size heterogeneity on liquid absolute permeability, gas apparent permeability kapp model and a new joint gas-liquid permeability (i.e., kapp/k∞) model, which could explain the Klinkenberg phenomenon, were proposed. We satisfactorily tested the models by comparison with published experimental data on glass beads and other datasets.

  9. Fractured Rock Permeability as a Function of Temperature and Confining Pressure

    NASA Astrophysics Data System (ADS)

    Alam, A. K. M. Badrul; Fujii, Yoshiaki; Fukuda, Daisuke; Kodama, Jun-ichi; Kaneko, Katsuhiko

    2015-10-01

    Triaxial compression tests were carried out on Shikotsu welded tuff, Kimachi sandstone, and Inada granite under confining pressures of 1-15 MPa at 295 and 353 K. The permeability of the tuff declined monotonically with axial compression. The post-compression permeability became smaller than that before axial compression. The permeability of Kimachi sandstone and Inada granite declined at first, then began to increase before the peak load, and showed values that were almost constant in the residual strength state. The post-compression permeability of Kimachi sandstone was higher than that before axial compression under low confining pressures, but lower under higher confining pressures. On the other hand, the permeability of Inada granite was higher than that before axial compression regardless of the confining pressure values. For the all rock types, the post-compression permeability at 353 K was lower than at 295 K and the influence of the confining pressure was less at 353 K than at 295 K. The above temperature effects were observed apparently for Inada granite, only the latter effect was apparent for Shikotsu welded tuff, and they were not so obvious for Kimachi sandstone. The mechanisms causing the variation in rock permeability and sealability of underground openings were discussed.

  10. Performances of Metal Concentrations from Three Permeable Pavement Infiltrates

    EPA Science Inventory

    The U.S. Environmental Protection Agency designed and constructed a 4000-m2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements: permeable interlocking concrete pavers, pervious concrete, and porous asphalt. Water sampling was con...

  11. Modeling the Hydrologic Processes of a Permeable Pavement System

    EPA Science Inventory

    A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has be...

  12. Evaluating uncertainties in multi-layer soil moisture estimation with support vector machines and ensemble Kalman filtering

    NASA Astrophysics Data System (ADS)

    Liu, Di; Mishra, Ashok K.; Yu, Zhongbo

    2016-07-01

    This paper examines the combination of support vector machines (SVM) and the dual ensemble Kalman filter (EnKF) technique to estimate root zone soil moisture at different soil layers up to 100 cm depth. Multiple experiments are conducted in a data rich environment to construct and validate the SVM model and to explore the effectiveness and robustness of the EnKF technique. It was observed that the performance of SVM relies more on the initial length of training set than other factors (e.g., cost function, regularization parameter, and kernel parameters). The dual EnKF technique proved to be efficient to improve SVM with observed data either at each time step or at a flexible time steps. The EnKF technique can reach its maximum efficiency when the updating ensemble size approaches a certain threshold. It was observed that the SVM model performance for the multi-layer soil moisture estimation can be influenced by the rainfall magnitude (e.g., dry and wet spells).

  13. EFFECT OF AQUEOUS PHASE PROPERTIES ON CLAY PARTICLE ZETA POTENTIAL AND ELECTRO-OSMOTIC PERMEABILITY: IMPLICATIONS FOR ELECTRO-KINETIC SOIL REMEDIATION PROCESSES

    EPA Science Inventory

    The influence of aqueous phase properties (pH, ionic strength and divalent metal ion concentration) on clay particle zeta potential and packed-bed electro-osmotic permeability was quantified. Although pH strongly altered the zeta potential of a Georgia kaolinite, it did not signi...

  14. Sharp Permeability Transitions due to Shallow Diagenesis of Subduction Zone Sediments

    NASA Astrophysics Data System (ADS)

    James, S.; Screaton, E.

    2013-12-01

    The permeability of hemipelagic sediments is an important factor in fluid flow in subduction zones and can be affected by porosity changes and cementation-dissolution processes acting during diagenesis. Anomalously high porosities have been observed in cores from the Shikoku Basin sediments approaching the Nankai Trough subduction zone. These high porosities have been attributed to the presence of minor amounts of amorphous silica cement that strengthen the sediment and inhibit consolidation. The porosity rapidly drops from 66-68% to 54-56% at a diagenetic boundary where the amorphous silica cement dissolves. Although the anomalous porosity profiles at Nankai have received attention, the magnitude of the corresponding permeability change has not been addressed. In this study, permeability profiles were constructed using permeability-porosity relationships from previous studies, to estimate the magnitude and rate of permeability changes with depth. The predicted permeability profiles for the Nankai Trough sediment cores indicate that permeability drops by almost one order of magnitude across the diagenetic boundary. This abrupt drop in permeability has the potential to facilitate significant changes in pore fluid pressures and thus to influence the deformation of the sediment onto the accretionary prism. At the Costa Rica subduction zone, results vary with location. Site U1414 offshore the Osa Peninsula shows porosities stable at 69% above 145 mbsf and then decrease to 54% over a 40 m interval. A porosity drop of that magnitude is predicted to correlate to an order of magnitude permeability decrease. In contrast, porosity profiles from Site 1039 offshore the Nicoya Peninsula and Site U1381 offshore the Osa Peninsula show anomalously high porosities but no sharp drop. It is likely that sediments do not cross the diagenetic boundary due to the extremely low (<10°C/km) thermal gradient at Site 1039 and the thin (<100 m) sediment cover at Site U1381. At these locations

  15. Characterization of vascular permeability using a biomimetic microfluidic blood vessel model

    PubMed Central

    Thomas, Antony; Wang, Shunqiang; Sohrabi, Salman; Orr, Colin; He, Ran; Shi, Wentao; Liu, Yaling

    2017-01-01

    The inflammatory response in endothelial cells (ECs) leads to an increase in vascular permeability through the formation of gaps. However, the dynamic nature of vascular permeability and external factors involved is still elusive. In this work, we use a biomimetic blood vessel (BBV) microfluidic model to measure in real-time the change in permeability of the EC layer under culture in physiologically relevant flow conditions. This platform studies the dynamics and characterizes vascular permeability when the EC layer is triggered with an inflammatory agent using tracer molecules of three different sizes, and the results are compared to a transwell insert study. We also apply an analytical model to compare the permeability data from the different tracer molecules to understand the physiological and bio-transport significance of endothelial permeability based on the molecule of interest. A computational model of the BBV model is also built to understand the factors influencing transport of molecules of different sizes under flow. The endothelial monolayer cultured under flow in the BBV model was treated with thrombin, a serine protease that induces a rapid and reversible increase in endothelium permeability. On analysis of permeability data, it is found that the transport characteristics for fluorescein isothiocyanate (FITC) dye and FITC Dextran 4k Da molecules are similar in both BBV and transwell models, but FITC Dextran 70k Da molecules show increased permeability in the BBV model as convection flow (Peclet number > 1) influences the molecule transport in the BBV model. We also calculated from permeability data the relative increase in intercellular gap area during thrombin treatment for ECs in the BBV and transwell insert models to be between 12% and 15%. This relative increase was found to be within range of what we quantified from F-actin stained EC layer images. The work highlights the importance of incorporating flow in in vitro vascular models, especially

  16. The influence of pore textures on the permeability of volcanic rocks

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Spieler, O.; Scheu, B.; Dingwell, D.

    2006-12-01

    The permeability of a porous medium is strongly dependent on its porosity, as a higher proportion of pore volume is generally expected to lead to a greater probability of pore interconnectedness and the formation of a fluid-flow providing pathway. However, the relationship between permeability and porosity is not a unique one, as many other textural parameters may play an important role and substantially affect gas flow properties. Among these parameters are (a) the connection geometry (i.e. intergranular pore spaces in clastic sediments vs. bubble interconnections), (b) the pore sizes, (c) pore shape and (d) pore size distribution. The gas permeability of volcanic rocks may influence various eruptive processes. The transition from a quiescent degassing dome to rock failure (fragmentation) may, for example, be controlled by the rock's permeability, in as much as it affects the speed by which a gas overpressure in vesicles is reduced in response to decompression. It is therefore essential to understand and quantify influences of different pore textures on the degassing properties of volcanic rocks, as well as investigate the effects of permeability on eruptive processes. Using a modified shock-tube-based fragmentation apparatus, we have measured unsteady-state permeability at a high initial pressure differential. Following sudden decompression above the rock cylinder, pressurized gas flows through the sample in a steel autoclave. A transient 1D filtration code has been developed to calculate permeability using the experimental pressure decay curve within a defined volume below the sample. An external furnace around the autoclave and the use of compressed salt as sealant allows also measurements at high temperatures up to 800 °C. Over 130 permeability measurements have been performed on samples of different volcanic settings, covering a wide range of porosity. The results show a general positive relationship between porosity and permeability with a high data scatter

  17. Fate of the antibiotic sulfadiazine in natural soils: Experimental and numerical investigations.

    PubMed

    Engelhardt, Irina; Sittig, Stephan; Šimůnek, Jirka; Groeneweg, Joost; Pütz, Thomas; Vereecken, Harry

    2015-01-01

    Based on small-scale laboratory and field-scale lysimeter experiments, the sorption and biodegradation of sulfonamide sulfadiazine (SDZ) were investigated in unsaturated sandy and silty-clay soils. Sorption and biodegradation were low in the laboratory, while the highest leaching rates were observed when SDZ was mixed with manure. The leaching rate decreased when SDZ was mixed with pure water, and was smallest with the highest SDZ concentrations. In the laboratory, three transformation products (TPs) developed after an initial lag phase. However, the amount of TPs was different for different mixing-scenarios. The TP 2-aminopyrimidine was not observed in the laboratory, but was the most prevalent TP at the field scale. Sorption was within the same range at the laboratory and field scales. However, distinctive differences occurred with respect to biodegradation, which was higher in the field lysimeters than at the laboratory scale. While the silty-clay soil favored sorption of SDZ, the sandy, and thus highly permeable, soil was characterized by short half-lives and thus a quick biodegradation of SDZ. For 2-aminopyrimidine, half-lives of only a few days were observed. Increased field-scale biodegradation in the sandy soil resulted from a higher water and air permeability that enhanced oxygen transport and limited oxygen depletion. Furthermore, low pH was more important than the organic matter and clay content for increasing the biodegradation of SDZ. A numerical analysis of breakthrough curves of bromide, SDZ, and its TPs showed that preferential flow pathways strongly affected the solute transport within shallow parts of the soil profile at the field scale. However, this effect was reduced in deeper parts of the soil profile. Due to high field-scale biodegradation in several layers of both soils, neither SDZ nor 2-aminopyrimidine was detected in the discharge of the lysimeter at a depth of 1m. Synthetic 50 year long simulations, which considered the application of

  18. Fate of the antibiotic sulfadiazine in natural soils: Experimental and numerical investigations

    NASA Astrophysics Data System (ADS)

    Engelhardt, Irina; Sittig, Stephan; Šimůnek, Jirka; Groeneweg, Joost; Pütz, Thomas; Vereecken, Harry

    2015-06-01

    Based on small-scale laboratory and field-scale lysimeter experiments, the sorption and biodegradation of sulfonamide sulfadiazine (SDZ) were investigated in unsaturated sandy and silty-clay soils. Sorption and biodegradation were low in the laboratory, while the highest leaching rates were observed when SDZ was mixed with manure. The leaching rate decreased when SDZ was mixed with pure water, and was smallest with the highest SDZ concentrations. In the laboratory, three transformation products (TPs) developed after an initial lag phase. However, the amount of TPs was different for different mixing-scenarios. The TP 2-aminopyrimidine was not observed in the laboratory, but was the most prevalent TP at the field scale. Sorption was within the same range at the laboratory and field scales. However, distinctive differences occurred with respect to biodegradation, which was higher in the field lysimeters than at the laboratory scale. While the silty-clay soil favored sorption of SDZ, the sandy, and thus highly permeable, soil was characterized by short half-lives and thus a quick biodegradation of SDZ. For 2-aminopyrimidine, half-lives of only a few days were observed. Increased field-scale biodegradation in the sandy soil resulted from a higher water and air permeability that enhanced oxygen transport and limited oxygen depletion. Furthermore, low pH was more important than the organic matter and clay content for increasing the biodegradation of SDZ. A numerical analysis of breakthrough curves of bromide, SDZ, and its TPs showed that preferential flow pathways strongly affected the solute transport within shallow parts of the soil profile at the field scale. However, this effect was reduced in deeper parts of the soil profile. Due to high field-scale biodegradation in several layers of both soils, neither SDZ nor 2-aminopyrimidine was detected in the discharge of the lysimeter at a depth of 1 m. Synthetic 50 year long simulations, which considered the application of

  19. Potassium-Based Dual Ion Battery with Dual-Graphite Electrode.

    PubMed

    Fan, Ling; Liu, Qian; Chen, Suhua; Lin, Kairui; Xu, Zhi; Lu, Bingan

    2017-08-01

    A potassium ion battery has potential applications for large scale electric energy storage systems due to the abundance and low cost of potassium resources. Dual graphite batteries, with graphite as both anode and cathode, eliminate the use of transition metal compounds and greatly lower the overall cost. Herein, combining the merits of the potassium ion battery and dual graphite battery, a potassium-based dual ion battery with dual-graphite electrode is developed. It delivers a reversible capacity of 62 mA h g -1 and medium discharge voltage of ≈3.96 V. The intercalation/deintercalation mechanism of K + and PF 6 - into/from graphite is proposed and discussed in detail, with various characterizations to support. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Outer Membrane Permeability of Cyanobacterium Synechocystis sp. Strain PCC 6803: Studies of Passive Diffusion of Small Organic Nutrients Reveal the Absence of Classical Porins and Intrinsically Low Permeability

    PubMed Central

    Kowata, Hikaru; Tochigi, Saeko; Takahashi, Hideyuki

    2017-01-01

    ABSTRACT The outer membrane of heterotrophic Gram-negative bacteria plays the role of a selective permeability barrier that prevents the influx of toxic compounds while allowing the nonspecific passage of small hydrophilic nutrients through porin channels. Compared with heterotrophic Gram-negative bacteria, the outer membrane properties of cyanobacteria, which are Gram-negative photoautotrophs, are not clearly understood. In this study, using small carbohydrates, amino acids, and inorganic ions as permeation probes, we determined the outer membrane permeability of Synechocystis sp. strain PCC 6803 in intact cells and in proteoliposomes reconstituted with outer membrane proteins. The permeability of this cyanobacterium was >20-fold lower than that of Escherichia coli. The predominant outer membrane proteins Slr1841, Slr1908, and Slr0042 were not permeable to organic nutrients and allowed only the passage of inorganic ions. Only the less abundant outer membrane protein Slr1270, a homolog of the E. coli export channel TolC, was permeable to organic solutes. The activity of Slr1270 as a channel was verified in a recombinant Slr1270-producing E. coli outer membrane. The lack of putative porins and the low outer membrane permeability appear to suit the cyanobacterial autotrophic lifestyle; the highly impermeable outer membrane would be advantageous to cellular survival by protecting the cell from toxic compounds, especially when the cellular physiology is not dependent on the uptake of organic nutrients. IMPORTANCE Because the outer membrane of Gram-negative bacteria affects the flux rates for various substances into and out of the cell, its permeability is closely associated with cellular physiology. The outer membrane properties of cyanobacteria, which are photoautotrophic Gram-negative bacteria, are not clearly understood. Here, we examined the outer membrane of Synechocystis sp. strain PCC 6803. We revealed that it is relatively permeable to inorganic ions but is